
Encoding Temporal Features of Skilled
Movements—What, Whether and How?

Katja Kornysheva

Abstract In order to reliably produce intelligible speech or fluently play a melody on
a piano, learning the precise timing of muscle activations is essential. Surprisingly, the
fundamental question of how memories of complex temporal dynamics of movement
are stored across the brain is still unresolved. This review outlines the constraints that
determine whether and how the timing of skilled movements is represented in the
central nervous system and introduces different computational and neural mechanisms
that can be harnessed for temporal encoding. It concludes by proposing a schematic
model of how these different mechanisms may complement and interact with each
other in fast feedback loops to achieve skilled motor timing.

Keywords Motor timing � Spatiotemporal control � Sequence learning � Modular
representation � Cortico-subcortical loops

Introduction (“What”)

In the middle of the past century, the engineer and photographer Gjon Mili developed a
technique to capture trajectories of movements in space such as those produced by
musicians, athletes and painters using stroboscopic cameras. He was able to record
skilled movement sequences by attaching a light to the subjects’ effector of interest,
such as the hand holding the violin bow, and letting the movement unfold in darkness
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with a long film exposure. The artist himself was only captured towards the end of the
sequence when illuminating the room (Fig. 1a). Recording these trajectories revealed
the skillful movement sequences humans are able to retrieve from memory and produce
with their body in space. What remained invisible to Mili’s lens is how the captured
trajectory unfolded in time. It is left to the observer’s imagination what velocity,
acceleration and deceleration patterns the trajectory follows, how these spatial patterns
emerged in time—its temporal features.

While traditionally the focus in motor neuroscience has been on the spatial
dimension of movement sequences, such as the ordering or evolution of movements
in space (Tanji and Shima 1994; Graybiel 1998; Hikosaka et al. 2002; Shenoy et al.
2012), the temporal dimension is equally crucial for the production of many skilled
actions. Producing muscle activations in a correct order, but with inaccurate timing
can have detrimental effects on performance in domains such as speech, complex
tool use and music—a verbal utterance would become incomprehensible to the
receiver, the tennis racket would miss the tennis ball and the violinist would
desynchronize from the orchestra’s pace.

At a purely descriptive level, skilled timing of a movement sequence in space entails
that the movement has a reproducible temporal structure relative to an external stimulus
or an internal motor state such as the occurrence of a movement onset. Here repro-
ducibility entails that there is a certain level of temporal accuracy—typically within tens

Fig. 1 a Example of a skilled motor sequence depicted in two-dimensional Cartesian space
(x and y) (adapted from http://www.telegraph.co.uk/culture/culturepicturegalleries/7073785/On-
the-Move-Visualising-Action-at-the-Estorick-Collection-of-Modern-Italian-Art.html?image=4).
Repeating the skilled sequence can lead to the clustering of time points T2 to Tn following the
onset of movement (T1) respectively. Note that while here for illustrative purposes the
variability of the spatial trajectory across trials is ignored, in reality the clustering across trials
would take into account both space (position) and time (colour), cf. Laje and Buonomano
(2013). b An example of a variable of interest during motor production such as dynamics (force)
on a finger keyboard during a timed finger sequence task (adapted from Kornysheva and
Diedrichsen 2014). Other variables of interest could be different kinematic measurements such
as position and velocity depending on the motor task requirements. Accordingly motor timing
can be quantified as time differences between task-relevant extrinsic stimuli and intrinsic
states—such as maximum finger force after a go cue (DT2–1), eyelid position or velocity after a
conditioning stimulus in eyeblink conditioning, the interval between two finger presses defined
as the points of maximum velocity for each finger (DT5–4), or the movement duration, i.e. the
difference between the offset and the onset of a movement (DT7–6)
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of milliseconds for most skilled motor sequences—relative to such a point of reference,
when reaching a particular extrinsically (e.g. in Cartesian space) or intrinsically (e.g. in
joint or muscle space) defined state of the body. Thus, when repeating a skilled spatial
sequence of movements such as the position of the hand controlling the bow, the
particular points in time (T2, T3) after movement onset time (T1), cluster at the same
extrinsic positions of the bow in two-dimensional space (x and y coordinates), respec-
tively. In other words, a certain spatial configuration is reached at about the same time,
with the degree of clustering reflecting the temporal precision of the movement. The
temporal pattern of a movement trajectory becomes particularly evident with increased
jerk, which reflects the strength of changes between acceleration and deceleration and
whether the movement sequence contains activation pauses such as in a finger pressing
task (Fig. 1b). Defining the motor points of interest is more straightforward for the latter
type of actions (Fig. 1b), as they involve discrete kinematic events. When measuring
motor timing, the timing of several kinematic and dynamic variables may be of interest
depending on the motor task requirements, such as the variability of the spatial trajectory
in time, the interval between an external stimulus and the maximum force, position,
velocity, of a movement, etc., as well as between movements produced using the same
or different effectors. Thus, in principle these variables may capture different aspects of
temporal dynamics of skilled motor sequences as diverse as typing out a Morse code
involving one effector and uttering a word or phrase which engages hundreds of mus-
cles, both of which have to be executed with precise timing.

How does the nervous system represent and integrate the temporal features of
such spatio-temporal sequences?

Representation of Timing for Spatio-temporal Skills
(“Whether”)

Regularity or precision of a behavioural feature such as the temporal or spatial
structure of a movement does not entail that the central nervous system
(CNS) forms a dedicated representation or control mechanism for this feature.
While goal directed and skilled movements have been shown to be sub-served by
dedicated representations of force, direction, temporal order of muscle activations or
a trajectory of movement in space (Evarts 1968; Georgopoulos et al. 1982;
Hikosaka et al. 2002; Averbeck et al. 2002; Churchland et al. 2006; Shima et al.
2007; Shenoy et al. 2012) the presence of a dedicated substrate for encoding the
timing for spatio-temporal motor skills is under debate.

In a series of experiments, Mussa-Ivaldi and colleagues demonstrated that the motor
system is inherently biased to learn velocity-dependent over time-dependent repre-
sentations during force field adaptations (Conditt and Mussa-Ivaldi 1999). Subjects
performed reaching movements and were perturbed by force fields dependent either on
the time after movement onset (time-dependent) or on the velocity (velocity-dependent,
proportional to velocity) of the movement. Crucially, aftereffects and adaptation were
evaluated in the context of generalization, when subjects were tested on circular instead
of the trained reaching movements. These experiments revealed that after training on a
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time-dependent force field, generalization to a new movement was indistinguishable
from the aftereffects and adaptation to velocity-dependent training. The authors con-
cluded that there is an automatic bias to learn state-dependent instead of time-dependent
representations during motor adaptation. Notably, the force field profile employed in
the time-dependent condition was designed to be similar to a velocity-dependent force
field, involving a bell-shaped perturbation with a maximum force in the middle of the
movement when subjects produced the highest velocity. The primacy of
state-dependent representations occurred when a perturbation environment was similar
to a viscous field (water like environment). It is thus feasible that time-dependent force
field profiles that are less correlated with movement velocity may override this bias.

However, in a follow-up study, Mussa-Ivaldi and colleagues (Karniel and
Mussa-Ivaldi 2003) demonstrate that a time-dependent force field that is uncorre-
lated to movement velocity still produces no motor adaptation. Here the
time-dependent force followed a sinusoidal amplitude at 3 Hz and was presented
continuously during the experiment. This important study suggests that the CNS is
unable to form a representation of a regular, temporally predictable force profile that
is uncoupled from state-dependent representation. However, the employed
time-dependent perturbation was not coupled to the onset of the movement as in the
previous experiment (Conditt and Mussa-Ivaldi 1999), or at least to an external cue
relevant to movement initiation. It can thus be hypothesized that this link may be a
constraint for the acquisition of a time-dependent movement adaptation.

Indeed, Medina and colleagues demonstrated that learning motor timing during
adaptation in smooth pursuit eye movements could be independent of
state-dependent encoding (Medina et al. 2005). In training trials, a target moved
horizontally for a fixed duration (500 ms) and deflected vertically from a horizontal
to vertical movement. Probe trials were used to assess adaptation by looking at eye
movement velocity into the vertical direction. Learning to time movements cor-
rectly was independent of the position of the eyes on the horizontal plane and of the
distance/velocity of the movements. Importantly the adaptation effects were
dependent on the predictive power of each variable. If both the time from target
motion onset and the distance travelled were equally predictive, the adapted eye
movements were a mixture of the two representations, whereas if only one variable
was predictive of the vertical perturbation, the adaptation reflected the learning of
time or distance only, respectively. This highlights the flexibility of motor adap-
tation with regard to the representation of time and space depending on which
variable leads to task success.

Diedrichsen and colleagues showed that time- and state-dependent representation of
spatio-temporal movements that involves the coordination of two effectors—the arm
and the thumb—depends on whether their activation overlaps in time (Diedrichsen
et al. 2007). Following a training phase in which the movements had to be timed
precisely, the subjects were asked to reduce the speed of the arm movement. The thumb
press was also timed and scaled in length proportionally to the arm movements,
suggesting that the thumb movement was made dependent on the state (velocity) of the
arm movement and not on absolute time since arm movement onset. Interestingly,
absolute timing was employed when the movements were separated in time during
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training, that is when the thumb preceded the arm movement by 100–500 ms. This
suggests that training temporally overlapping movements produces a bias to encode the
movements of multiple effectors relative to their state, efficiently binding the effectors
together to achieve well-timed coordination. Indeed, it would be detrimental to actions
such as throwing a ball to a target to time arm and wrist movements based on inde-
pendent time estimates. Independent noise levels or drifts would quickly lead to a
decoupled motor state where the timing of muscle activations is disrupted, as in
cerebellar ataxia, and may lead to a state resembling movement decomposition (Bastian
et al. 1996; Timmann et al. 1999).

The impact of overlap between different motor activity states on their temporal
encoding echoes the findings on discrete (non-overlapping) versus continuous
(overlapping) timing tasks. Ivry and colleagues suggested a dichotomy of dedicated
versus emergent encoding of timing for discrete versus continuous movements,
respectively (Spencer et al. 2003; Ivry and Spencer 2004; Ivry and Schlerf 2008).
Temporal variability on continuous tasks characterized by smooth transitions
between different motor states (e.g. circle drawing) have been reported to be
uncorrelated with the temporal variability on discrete tasks characterized by
movement pauses in between boosts of motor activity (e.g. tapping) (Zelaznik et al.
2005). Moreover adjustment to timing perturbations is faster and more precise for
discrete as opposed to continuous movements (Elliott et al. 2009; Repp and
Steinman 2010; Studenka and Zelaznik 2011) and patient studies suggest that these
movements might rely on different neural substrates (Spencer et al. 2003; Spencer
and Ivry 2005). Yet, it is unlikely that movement kinematics alone determine
whether temporal encoding is dedicated versus emergent: As discussed above, even
continuous movements like smooth pursuit can be controlled using dedicated
timing mechanisms and independently of parameters such as movement velocity,
whenever the absolute timing predicts task success (Medina et al. 2005), or when a
periodic circle drawing tasks contains a salient auditory cue marking the completion
of a cycle (Zelaznik and Rosenbaum 2010; Braun Janzen et al. 2014).

When it comes to dissociating the spatial and temporal organization of sequential
motor skills, the focus has been on learning the organization of sequences of move-
ments rather than on learning the production of the constituent movements per se. Thus,
typically subjects are trained to sequence simple overlearned movements like finger
presses (Sakai et al. 2003; Ullen and Bengtsson 2003; O’Reilly et al. 2008; Kornysheva
et al. 2013; Kornysheva and Diedrichsen 2014). With training the production of
sequences becomes more accurate and is retrieved faster as evidenced by shorter
sequence duration or reaction times (RT) depending on the task employed. In addition,
a temporal grouping idiosyncratic to the subject or facilitated externally by the
sequence structure emerges, such that certain movements in the sequence become
closer in time than others creating so-called chunks. There is compelling evidence that
breaking up the sequence within chunks as opposed to between chunks when
reordering the sequence leads to losses in performance [for reviews see (Sakai et al.
2004)]. This suggests that a dedicated representation has been formed for each chunk of
movements in space which facilitates performance—similar to chunks in working
memory and cognitive control (Baddeley 2010). It has been hypothesized that this
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temporal grouping is a sign of a skill becoming automatic and pairing the sequence
with a different temporal structure would lead to losses in performance as this automatic
representation has not been formed (Hikosaka et al. 2002; Sakai et al. 2004).

Interestingly, there is evidence that while changing a chunking structure (ex-
ternally induced) can lead to performance losses, these are not as pronounced as
when performing a novel sequence (O’Reilly et al. 2008). This suggests some form
of independence for the spatial organization of sequences, on top of the integrated
spatio-temporal chunking structure. In contrast, many studies have shown that
retaining the timing while changing the spatial feature of movement sequences does
not provide any benefit as compared to a new sequence, which advocates that the
temporal structure of these sequences is invariably bound to their sequential
movements in space (Shin and Ivry 2002, 2003; O’Reilly et al. 2008).

This, however, has been challenged recently in a series of experiments
(Kornysheva et al. 2013; Kornysheva and Diedrichsen 2014). Here the experi-
mental test involved producing sequences following training of a single
spatio-temporal sequence of finger presses in a timed SRT task (Penhune and Steele
2012). These were either repeated in a block of several trials or new on every trial.
The results suggested that RT savings for a trained temporal feature paired with a
new sequence of finger presses (spatial feature) could only emerge once the new
spatial feature became more predictable through repetition (Fig. 2a, b). Note that
the advantage for the trained temporal features is relative to the control condition in
which the sequence was also repeated and the finger sequence became equally more
predictable with repetition. In contrast when the finger order was new on each trial
comparable to the random spatial sequence controls in the studies discussed above,
there was no advantage related to learning the timing of the sequence. It is unlikely
that this is an effect of whether these sequences were learned implicitly or had an
explicit component, as both the presence and the absence of temporal transfer were
found depending on the familiarity with the spatial feature.

More formally, drift diffusion modelling demonstrated that these results can be best
approximated using a multiplicative integration of independent spatial and temporal
sequence feature representations as follows such as Zn+1 = Zn + V + S + (S * T),
rather then an additive integration (Zn+1 = Zn + V + S + T), or a combined
spatio-temporal term without a separate temporal representation
(Zn+1 = Zn + V + S + C). Here Z is the selection layer corresponding to the five fin-
gers, V is the visual stimulus in the serial reaction time task (SRTT), S the spatial, T the
temporal and C the combined representation in which the temporal sequence feature is
linked to a specific spatial feature (weights and noise terms are omitted for abbreviation
purposes). Essentially, this means that while effects of the spatial feature representation
act independently (additive integration) the temporal representation can only be
expressed when S > 0, in other words there is some knowledge of the spatial repre-
sentation. The difference between an integrated spatio-temporal versus an independent
temporal representation which is multiplicatively combined with the spatial one is
critical, as only the latter allows for temporal transfer which we could reliably observe
across experiments (Fig. 2b, c).
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A subsequent study investigated how independent and integrated spatial and
temporal representations are represented across the neocortex and the cerebellum
based on fine-grained local fMRI activity patterns (Kornysheva and Diedrichsen
2014). Despite the low resolution (fMRI voxels) these neural representations can be
probed due to tiny, but systematic spatial activity biases which occur with trial
repetition. Here instead of training one particular spatio-temporal sequence, subjects
were trained to produce nine spatio-temporal finger sequences, which were unique
combinations of three finger order (spatial feature) and temporal interval (temporal
feature) sequences. This factorial design in combination with multivariate pattern
analysis allowed to test for local voxel activity patterns related to the spatial feature
across sequences with different temporal features, and orthogonally, patterns related
to the temporal feature across different spatial features—feature transfer on the

Fig. 2 Evidence suggesting that spatial and temporal features of movement sequences are
represented independently. a Participants were trained on a specific spatio-temporal finger
sequence (green) and then tested on a novel sequence (black) or on sequences that retained either
the temporal (red) or spatial (blue) structure (Kornysheva et al. 2013; Kornysheva and Diedrichsen
2014). The numbers 1–5 in exemplary sequences correspond to the thumb, index, middle, ring and
little finger, respectively. b Reaction time advantages relative to a new sequence that are related to
a learned trained temporal feature can only be expressed when the spatial feature becomes more
predictable. Solid lines correspond to “trained”, “temporal” and “novel” conditions in which the
corresponding sequences are presented 10 times in a row, whereas the dashed lines correspond to
conditions where the trained temporal feature is paired with a new spatial feature on every trial
(dashed red) and compared to a sequence that changes both the temporal and the spatial feature on
every trial. Stars indicate significant differences across trials (Kornysheva et al. 2013). c Reaction
time results indicate independent transfer of spatial and temporal features to test conditions
(Kornysheva and Diedrichsen 2014). d Separate, but partly overlapping spatial (blue) and temporal
(red) representations of finger sequences can be revealed bilaterally in premotor cortex (PM and
SMA) using multi-voxel pattern analysis. The two features are integrated in contralateral M1 only
(green). In a series of behavioural and fMRI experiments employing (Kornysheva and Diedrichsen
2014) e The premotor nucleus HVC in zebra finches reflects changes in the temporal feature of a
bird song (red line), such as a prolonged syllable, but not changes in its pitch feature (blue line).
Both types of changes were acquired through aversive conditional auditory feedback (adapted
from Ali et al. 2013)
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neural level. Moreover, subtracting out the main effects of independent spatial and
temporal features from the overall activity patterns isolated residual patterns, which,
if unique for each sequence, were taken as integrated neural representations.

The results revealed that fine-grained patterns in overlapping patches of the
lateral (dorsal and ventral) and medial (SMA) premotor cortex carried information
on the independent spatial as well as independent temporal patterns, whilst the only
region informative of an integrated spatio-temporal representation was the con-
tralateral primary motor cortex, the output stage of the neocortex (Fig. 2d). Thus, in
M1 each sequence may recruit a subpopulation of neurons that controls a particular
combination of spatiotemporal synergies (d’Avella et al. 2003). The latter cannot be
synergies of individual finger movements as each finger movement occurred in each
sequence, but particular spatio-temporal transitions within sequences. The same
principle, but now for spatial and temporal parameters would apply for the premotor
cortex—unique combinations of synergies capturing particular spatial
(timing-invariant) or temporal transitions.

The alternative is that the encoding observed in M1 is not sequential encoding
per se, but reflects the two spatial and temporal codes being combined nonlinearly.
Also while the force level for each finger matched well across sequences, it cannot
be completely excluded that tiny biases—thumb, index finger, etc., being more
active in one sequence than in another—may have contributed to the encoding to
some extent. Yet, this explanation is unlikely, since encoding in contralateral M1
correlated with sequence learning, but not with sequence classification accuracy
based on the force at each finger.

The presence of independent spatial and temporal codes, as well as integrated
representations suggests varied levels of abstraction from the actual motor response
implementation. To be transferable across different temporal profiles, the spatial
sequence in the premotor cortices has to lack specifics on the kinematics or
dynamics of each effector involved during sequence production, and may carry
more abstract information such as on sequential transitions between movements
(Tanji and Shima 1994). Conversely, the temporal feature representation is bound
to lack any information on the effectors and the dynamics such as force on each
finger to be transferable across different finger movement sequences.

Interestingly, a similar dissociation in the control of spatial (pitch) and temporal
sequences has been found in songbirds (Ali et al. 2013). Using aversive auditory
conditioning, the authors taught the animals to selectively modify temporal and
spectral features of their song, such as changing the length of a syllable, or its pitch
which requires a different configuration of muscle activations controlling the syrinx
(Fig. 2e). The basal ganglia analog was required for the modification of the spectral
properties (pitch), but not for changes in the temporal structure. By contrast, the
activity in HVC (an analog to the premotor cortex) reflected the temporal but not
spectral features of the song. This dissociation and therefore modularity of spatial
and temporal features in motor sequence control may thus be a universal property of
the CNS.

These findings resonate with the hypothesis by d’Avella and colleagues sug-
gesting that the control of movement may be modular during a variety of reaching
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movements (d’Avella 2017), as the variability of muscle activations recorded as
EMG signals can be explained by three types of components, so called muscle
synergies: (a) time-invariant spatial (S), (b) muscle-invariant temporal (T), (c) as
well as muscle-specific spatio-temporal synergies (ST). S are the activation weights
on each muscle required for the movement, which do not specify any change over
time, T are the temporal activation profiles which are shared across different
muscles and ST are activation waveforms for specific muscles which amount to an
idiosyncratic dynamical trajectory of individual muscles. These results suggest that
at the muscular level the underlying temporal features of movements are transfer-
able across different muscle synergies, respectively. Although explaining variability
of muscle activations by synergies does not provide direct evidence for the
encoding of these synergies in the CNS, these results allow for the possibility of
controllers somewhere in the corticoid-spinal pathway that impose this modular
regularity on motor output. A recent analysis of premotor and primary motor units
provided the first evidence that neural activity in the CNS can be explained by
EMG synergies (Overduin et al. 2015).

A modular representation enables a radical simplification of motor control
policies: Instead of controlling the spatio-temporal evolution of each individual
muscle throughout the movement, the CNS triggers spatial and temporal synergies
required for the skilled movement. Moreover, instead of encoding all combinations
of movements, the brain utilizes temporal and spatial synergies or profiles which
can be recombined flexibly into different combinations. If skilled movements did
not in principle require a dedicated representation of their temporal dimension and
were merely emergent from the encoding of the dynamics of the movement they are
performed with, such learned movements would be rigid with regard to their
temporal evolution beyond a simple speed up of slow down. It would entail that the
temporal dimension could not be utilized across different effectors and motor states.
Coming back to the musical example, the violinist would have to form an entirely
new representation whenever the temporal structure of a sequence is modified or
whenever a new sequence of movements is paired with a familiar temporal struc-
ture, which contradicts the findings above.

Computational Models and Neural Mechanisms
of Temporal Representation (“How”)

It has been hypothesized that a variety of neural structures are capable of encoding
the timing of movements, which corresponds to the widespread involvement of
these areas in explicit or implicit motor timing tasks—in particular the cerebellum,
the striatum and the lateral and medial premotor cortices (Lewis and Miall 2003;
Buhusi and Meck 2005; Ivry and Schlerf 2008; Buonomano and Laje 2010; Teki
et al. 2011; Laje and Buonomano 2013). This is surprising as these different parts of
the nervous system have diverse neural architectures, as well as physiological and
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computational constraints. Conversely, such diversity suggests that these systems
are unlikely to be redundant with respect to skilled motor timing, specializing on a
particular neural computation which determines or co-varies with motor timing.
Below I will present a hypothesis of how such parallel processes may operate and
interact to enable precise motor timing based on results from computational mod-
elling and current neuroscientific evidence.

The cerebellar cortex has been one of the first regions hypothesized in motor and
more generally sub-seconds timing (Braitenberg 1967). In stark contrast to the
neocortex, the architecture of the cerebellar circuitry is remarkably uniform across
the different parts of the cerebellum (with the exception of the floccular cortex) with
the main difference between regions being the origins of their inputs and the targets
of their outputs. The circuitry is designed to integrate only two types of inputs from
the rest of the nervous system, which converge in the cerebellum: The mossy fibre
pathway that relays information from the cortex (via the pons), as well as the
periphery (via the brainstem) and the climbing fibre pathway that carries signals
from the inferior olive in the brainstem. The cerebellar output is sent to the neo-
cortex via the thalamus or to the periphery via brainstem nuclei, and has been
shown to form reciprocal multisynaptic cortico-cerebellar loops (Kelly and Strick
2003).

While the deep cerebellar nuclei (DCN) receive excitatory input directly via
mossy and climbing fibre collaterals, the anatomical connections of the two fibre
systems to the Purkinje cell (PC) layer is at the core of cerebellar architecture:
Unlike to the DCN, the mossy fibre to PC projection is indirect, going through a
layer of granule cells, which remarkably constitute the majority of neurons in the
brain. Granule cells relay this information by parallel fibres that run transversally
through flattened and orthogonally oriented dendritic trees of PCs with some of
which they form direct excitatory connection on the way, and inhibit them indi-
rectly via the inhibitory interneurons. Remarkably, Purkinje cells have a baseline
firing rate of 50–100, sometimes up to 200 Hz (Zeeuw et al. 2011; Zhou et al.
2014), and inhibitory projections to the DCN as their only output (GABA). They
act as a constant break on the DCN, which activity is released only when the PCs
exhibit a firing pause that in turn disinhibits the DCN, the sole output of the
cerebellum.

The granular layer has been hypothesized to act like a giant “filter” of the mossy
fibre input (Dean et al. 2009, 2013) redistributing the mossy fibre inputs across
granule cells (divergence), but at the same time mixing inputs from different
channels—sensory and motor at the single cell level (Huang et al. 2013; Ishikawa
et al. 2015). In classical eyeblink conditioning, which acts as a model for the
learning of timed motor responses, time varying activity in a subset of granule cells
activated by the conditioning stimulus (CS) has been hypothesized to produce a
temporal code at the parallel fibre to PC synapses (Medina and Mauk 2000). This
synaptic input to the PC can act as a clock, as each unique state of the synaptic input
after a stimulus corresponds to the passage of time following the CS onset. In
contrast, learning of the precisely time motor response (eyeblink) takes place based
on an aversive stimulus, such as a short air-puff directed into the eye (unconditioned
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stimulus, US). The latter is transmitted by the climbing fibre system, and leads to
the depression of those parallel fibre to PC synapses active just before the time of
the aversive stimulus, partly mediated by plasticity in interneurons inhibiting the PC
(Medina and Mauk 2000; Heiney et al. 2014). This eventually leads to decreased
PC simple spike cell firing during the interval between the two stimuli with the most
pronounced reduction timed just before the conditioned response (CR), the latter
being initiated via the disinhibition of the DCN (Jirenhed et al. 2007; Ten Brinke
et al. 2015). It has been repeatedly shown that the intact cerebellar cortex is nec-
essary for a precisely timed response, as the intact DCN alone produces a
short-latency response without any temporal features necessary for the task (Perrett
et al. 1993; Koekkoek et al. 2003). Importantly, this notion advocates a distributed
motor learning architecture across the cerebellum (Gao et al. 2012), and argues for a
special role of the cerebellar cortex in motor timing.

More recently it has been proposed that the temporal profile of the response can
be acquired locally in the PC (Johansson et al. 2014). Specifically, pairing a CS
consisting of a direct stimulation of the parallel fibres (circumventing the granular
cell layer) with a US consisting of direct climbing fibre stimulation led to a Purkinje
cell CR that was adaptively timed. The cell reached maximum suppression of
75 ms before the onset of the US across different CS-US intervals. Importantly,
even when blocking inhibition from inhibitory interneurons that are also innervated
by parallel fibres and could have had an effect on the PC response, the learned
timing was preserved. This led the authors to conclude that the encoding of the
precisely timed response is located in the PC at the molecular level. Specifically,
blocking mGluR7 receptor has been shown to disrupt timing in the direct stimu-
lation paradigm above (Johansson et al. 2015). While the exact mechanism of
molecular timing is still unknown, it has been hypothesized that the CS may initiate
a predictable biochemical cascade while the US onset induces interval-specific
changes to this cascade. This could take place in form of a selection of different
molecular components with particular properties with regard to the duration of ion
channel open states, so that the time course of the PC simple spike depression
matches the CS-US interval.

Regardless of whether the timing mechanism is distributed or localized, the parts
of the cerebellar cortex involved in classical conditioning project to a specific target
effector in the periphery and cannot be expected to be transferable across different
effectors, spatial configurations or motor states. For instance, the cerebellar cortical
projection to the anterior interpositus of the DCN nucleus involved in eyeblink
conditioning innervates periorbital muscles of the eye via the brain stem (Ten
Brinke et al. 2015). However, a more abstract representation of timing for
spatio-temporal movements is still conceivable in those regions of the cerebellum
that project to the premotor and prefrontal cortices via the dentate nucleus (Kelly
and Strick 2003), albeit only if they receive climbing fibre stimulation at the time of
the US during learning which has not been investigated systematically so far.

Another timing mechanism has been attributed to the basal ganglia, the striatal
beat frequency model (Matell et al. 2004; Buhusi and Meck 2005). Unlike the
cerebellar timing mechanisms described in this chapter, the latter is relevant for
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interval timing that involves intervals of seconds-to-minutes. While even the lower
range may appear too long to be relevant for motor timing many skilled movements
like verbal utterances, musical and dance sequences, as well as the typing Morse
code messages involve sequences of movements that unfold over the timescale of
several seconds to tens of seconds. The basal ganglia is organized in cortico-basal
ganglia-thalamo-cortical loops with the majority of the excitatory input coming
from the cortex and then sent out to direct and indirect pathways of the basal
ganglia which excite and inhibit the cortex, respectively, via the thalamus (Graybiel
1998). Here each medium spiny neuron in the striatum receives up to 30.000
separate axons from the cortex. Thus, it has been proposed that through learning the
medium spiny neurons in the striatum act as coincidence detectors of neural
oscillations that operate at different frequencies in the neocortex (Buhusi and Meck
2005). With trial onset the phase of the oscillations is reset (“start-gun”). During
learning a reward signal at the end of the interval to be trained is conveyed by
dopaminergic input from the substantia nigra pars compacta and the ventral
tegmental area. Experience-dependent changes in cortico-striatal transmission (both
LTP and LTD) lead to a ramp of striatal activity with a peak at the time of the
expected reward, i.e. at the end of the interval. Accordingly, following training
striatal neurons may be capable of detecting the unique coincidence of phases of the
neural oscillators that project to these neurons, respectively. Interestingly such
adaptively timed ramping activity has also been observed in the neocortex, such as
in a motor synchronization-continuation task involving isochronous intervals per-
formed at different speeds in the monkey supplementary motor area
(SMA) (Merchant et al. 2013) and an interval reproduction task in the parietal
cortex (Jazayeri and Shadlen 2015). Although there has been no direct experimental
evidence from studies involving sub-second intervals, it is likely that such ramps
reflect the striatal activity via the direct basal ganglia thalamic route to the neo-
cortex. Indeed, imaging, lesion and pharmacological studies have confirmed the
involvement of the striatum in interval timing (for a review cf. Buhusi and Meck
2005).

Finally, the neocortex could be regarded as most closely related to models
involving random recurrent networks (Thomson and Bannister 2003; Buonomano
and Laje 2010). Recent concurrent multiunit recordings from premotor and primary
motor cortices suggest that the trajectory of a movement is not represented in terms
of its features such as position, velocity, direction, force and timing as suggested
before, but rather as a compound of variables correlated leading to the performed
trajectory in space (Churchland et al. 2006; Shenoy et al. 2012; Kaufman et al.
2015). Here the timing is merely an emergent feature of the evolution of the
multiunit activity which controls the spatial movement trajectory. Accordingly, a
model of randomly connected networks can be trained to produce skilled sequential
movements and have perfectly reproducible temporal dynamics without any dedi-
cated encoding of the temporal dimension in the model (Laje and Buonomano
2013). Such a network of interconnected units can be trained to represent the
spatio-temporal evolution of a trajectory as complex as handwriting (in
two-dimensional space).
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Central to the function of this model is a random recurrent network of inter-
connected firing-rate nodes with a multiunit firing rate that learn to follow a par-
ticular innate trajectory depending on the input trigger. Learning consists of the
reduction of the variability in this innate trajectory in space by adjusting the net-
work weights enabling the firing rate activity to be robust to noise and perturba-
tions, so that the trajectory can return to a carved out path. This network activity can
be read out continuously by an output module that maps its multiunit state into
external variables like an x and y position for complex motor trajectories and could
in principle also guide movements in muscle space. The timing of this movement is
also reliable after training, such that a certain position in space clusters equally
tightly in time. This is despite the temporal features of the movement not having a
dedicated representation, but emerging from the dynamics of the trajectory dedi-
cated to the spatial position of the movement.

While the dynamical systems view focuses on the representation of a movement
in space with timing being an emergent property of the trajectory, Buonomano and
colleagues proposed that the dynamical trajectories produced by random recurrent
networks could also be utilized to encode discrete timing of movements
(Buonomano and Laje 2010). These networks could be trained to control a simple
timing task, producing a phasic pulse after a specific interval (activity in
one-dimensional space y), analogous to a discrete button press in a finger tapping
task or eyelid closure in eyeblink conditioning. Computationally the mechanisms of
such dedicated temporal representations are equivalent to the encoding of the
continuous spatio-temporal trajectory. What is crucial here is the mapping of the
network output to a readout unit controlling a motor response. This mapping
determines whether the timing is a by-product of the spatial trajectory or whether
the network activity which is consolidated after training essentially acts as a pop-
ulation clock, triggering a discrete response once the network activity reaches a
particular state. The latter can be extrapolated to sequential representations of finger
movement sequences. Thus, from the perspective of the neocortex discrete event
timing and continuous emergent timing which have been tied to distinct neural
substrates as discussed earlier (cf. Spencer et al. 2003) could in principle be
encoded in the same way.

This flexibility of temporal encoding in the networks resembling the neocortex
resonates with the imaging results showing independent temporal and spatial fea-
ture encoding in the premotor cortices versus integrated spatio-temporal encoding
in contralateral primary motor cortex (Kornysheva and Diedrichsen 2014;
Diedrichsen and Kornysheva 2015). Within the dynamical systems framework, this
modularity would be related to the activation of several recurrent neocortical net-
works that are utilized to encode integrated spatio-temporal encoding in M1 and
dedicated temporal encoding in premotor regions, the latter enabling the flexibility
of the response independently of a spatial motor features, analogous to the temporal
transfer observed behaviourally (Fig. 2a–d). In contrast, it is much less straight-
forward how such recurrent networks could be mapped to encode the spatial feature
of sequences (e.g. finger order) independently of their exact temporal feature. If the
encoding of movement sequences draws on consolidated multiunit trajectories of
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randomly recurrent units, the precise changes in multiunit space would be ignored,
such that a certain cascade of states would be mapped onto the same spatial state
(configuration of finger activations). The temporal evolution would then be speci-
fied at the stage when both are combined either by acting on integrated
spatio-temporal M1 representations (Kornysheva and Diedrichsen 2014) or
downstream in the case of direct cortico-spinal projections from the premotor
cortex.

How do these regions interact with each other to achieve precise motor timing of
skilled movements? Here only projections with a short latency (“online”) trans-
duction up to tens of milliseconds can be considered to exhibit control at time scales
relevant to online motor control.

For a long time it has been assumed that the basal ganglia and the cerebellum
operate in parallel to each other at the subcortical level, having separate thalamic
relays to the neocortex (Bostan et al. 2013). However, in rodents (Ichinohe et al.
2000) and more recently in primates (Hoshi et al. 2005; Bostan et al. 2010) disy-
naptic connections from the DCN to the striatum have been established. The relay is
located in the intralaminar nuclei of the thalamus which contain projections to the
striatum. Recently, it has been determined that the propagation speed between DCN
and the dorsolateral striatum can be as low as 10 ms (Chen et al. 2014). This
suggests a rapid transmission of cerebellar output to striatal. High frequency and
well-timed bursts in DCN neurons can modulate activity at the entry stage of the
basal ganglia, thereby coordinating cerebellar output with the basal ganglia com-
putations in real time. Interestingly when stimulation of the DCN was combined
with concurrent cortico-striatal input, the cortico-striatal activation was potentiated
(Chen et al. 2014). The cerebellar output signals which carry a high temporal
resolution profile of a signal are therefore impacting the neocortical input at the
level of the ramping activity of medium spiny neurons. At the same time the
subthalamic nucleus to which striatal neurons project via the indirect pathway
innervates the cerebellum via the pontine nuclei. The propagation speed of this
connection is currently unknown.

As with the basal ganglia, the premotor cortex forms reciprocal disynaptic
connections with the cerebellum (Kelly and Strick 2003). The DCN project to the
neocortex via the ventrolateral nucleus of the thalamus and affect not only supra-
granular layers, but also directly layer V in M1 as shown by optogenetic stimulation
of the cerebellar Purkinje cells (Proville et al. 2014). Importantly, the DCN inhi-
bition is followed by a rebound excitation following the offset of Purkinje cell
stimulation at around 60ms and in M1 40ms later. At the same time this study
revealed a short-latency transmission between M1/S1 and the lateral cerebellar
cortex, with onsets of Purkinje cell frequency modulation as early as 10ms after
neocortical stimulation. Finally, non-invasive research in humans has shown that
the latency of cerebellar inhibition of the cortex as measured by M1 triggered MEP
is highest at 5 ms delay (Ugawa et al. 1991), confirming a rapid transmission
between the cerebellum and the neocortex. In other words, it is likely that the (pre-)
motor cortical networks relevant for temporal encoding receive a precisely timed
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(high resolution) signal from the cerebellum while the latter is modulated by
neocortical input, with these interactions unfolding almost instantaneously.

Why do we need parallel timers in our brain operating in parallel and what is
their specific contribution? A schematic model based on the current review is
presented in Fig. 3 (cf. caption for details). At the current stage, any answers to this
question will remain speculative. Most of the invasive electrophysiological
recordings that could provide direct evidence for this report only from one region at
a time. Yet, in an intact brain it is impossible to disentangle whether the activities
reported relay the input of interconnected regions, or whether this activity originates
and is causally involved in the production of well-timed movements. Even lesion
studies (temporal inactivation, TMS, patients, etc.) are of limited use, as they cause

Fig. 3 Temporal encoding for skilled spatiotemporal sequence production. a Modular represen-
tation of temporal (red dots, a longer and a shorter interval) and spatial (blue dots) sequence
features. The temporal representation modulates the signal originating from two different spatial
representations (black broken arrows) (Kornysheva et al. 2013). This allows two different
sequences S1 and S2 to utilize the same learned temporal structure flexibly (adapted from
Diedrichsen and Kornysheva 2015). b The premotor cortex, the cerebellar cortex and the striatum
utilize different computational mechanisms that can be harnessed to learn and control motor timing
—either independently of the movement in space as shown here or in an integrated spatio-temporal
fashion (see main text). These regions are interconnected with each other by short-latency circuits
via the thalamus and the pons, respectively. The following model of motor timing for skilled
movement sequences is proposed in the current review: The neocortex produces sustained
dynamic activity in a population of interconnected neurons which can be utilized for the duration
of a whole sequence of movements (Buonomano and Laje 2010). This multi-unit activity is read
out by the MSN in the striatum based on oscillation phase detection and chunked into a series of
ramps that mark the interval between movement onsets or between an external stimulus and a
motor response (Buhusi and Meck 2005). Crucially, the cortical and striatal activity is fed into the
cerebellum, providing a sequential context signal for each movement unfolding in the seconds time
range. This activity is transformed by the cerebellar cortex into a precise high temporal resolution
output on a sub-seconds scale in the deep cerebellar nuclei for each sequence component. Through
disynaptic projections, the latter modulates both the ramps in the striatum and the population
clocks in the neocortex to achieve a more precisely timed representation of the sequence.
Abbreviations: il—intralaminar; MSN—medium spiny neurons; S—sequence; T—time point; Tha
—Thalamus; va—ventroanterior; vl—ventrolateral
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reorganization in the network, that unless recorded, remains hidden and may impact
conclusions with regard to behaviour. Short-lived local inactivation though mus-
cimol, optogenetic stimulation (animal models) and transcranial magnetic stimu-
lation (humans) whilst recording from the site to which the region that is disrupted
projects are likely to provide more conclusive answers to this question. For
instance, to assess the individual contribution of cortical and subcortical sites to
learned timing, a pioneering study by Mauk and colleagues has been conducted to
decompose the contributions of the neocortex versus the cerebellar nuclei to trace
eye blink conditioning (Siegel and Mauk 2013). This task is known to rely not only
on the cerebellum (in contrast to delay eyeblink conditioning), but also on the
cortex and the hippocampus. Here it could be demonstrated that ramping activity
observed in prefrontal cells, as well as the well-timed conditioned motor response is
abolished when cerebellar output is inhibited, whereas the sustained activity during
the duration of the CS remained intact. In the future similar studies need to be
designed to directly probe the contribution of the premotor cortex, the striatum and
the cerebellar cortex to skilled motor timing.

Conclusions/Take Home Message

Precise motor timing of spatio-temporal skills is crucial for a variety of skilled
movements. During the past decade there have been contradictory results with
regard to how timing for spatio-temporal motor skills is represented in the brain.
The encoding of motor timing is achieved either directly by measuring time
intervals from movement onset or an external stimulus (dedicated timing) or
indirectly via state-dependent encoding (emergent timing). Which mode is chosen
depends on the characteristics of the motor task, such as the correlation of the
temporal target with a state-dependent variable (e.g. position or velocity), the
presence of temporal overlap across effectors requiring their coordination in time
and the reliability of temporal versus state-dependent encoding for task success.
The ability to transfer temporal features across different motor configurations in
space indicate a modular representations of these features for the control of skilled
motor sequences which can be found in the premotor as opposed to primary motor
cortices. The idea that there is a localizable universal neural clock in the CNS,
which is utilized across different domains, perceptual and motor, is an unlikely
scenario. Partly this is evidenced by the fact that timing functions have been
attributed to different areas across the brain. Instead, different neural mechanisms
that operate in parallel—dynamical systems (random recurrent network), oscillation
phase detection (ramps), patterned input and molecular delays at the cell level—
constitute representations in neocortical motor areas, the striatum and the cerebellar
cortex, respectively. These neural representations interact with each other in
short-latency loops to produce well-timed behaviour.
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