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Chapter 1

HEAD AND NECK CANCER

Epidemiology
Cancer is a major public health problem, with an estimated lifetime risk of 9% until the age of 60, increasing 
to 50% by the age of 95.1 Among adults, it has beaten diseases of the circulatory system to become the 
leading cause of death. In 2013, 30% of all deaths in the Netherlands were ascribed to invasive cancers.2 
Two percent of these cancers originated in the head and neck, giving this region a place in the top ten 
deadliest cancers.2 
The head and neck region includes the oral cavity (comprising the lips, anterior two-thirds of the tongue, 
floor of the mouth, gingiva, buccal mucosa, retromolar trigone, and hard palate), salivary glands, paranasal 
sinuses, pharynx, and larynx. The oral cavity and pharynx share the top position in head and neck cancer 
incidence, both accounting for 29% of cases.1 Most head and neck cancers (90%) originate in the epithelial 
surface and show squamous cell differentiation; therefore, they are called head and neck squamous cell 
carcinomas (HNSCCs). Although this thesis focuses on squamous cell carcinomas of the oral cavity, in 
particular the tongue, a brief general overview of the carcinogenesis of a HNSCC will be useful here.

Carcinogenesis and metastasis
Transformation from normal squamous epithelium to HNSCC is a multistep process characterized by 
several alterations that are, in the beginning, not visible to the naked eye neither under the microscope. 
The accumulation of genetic and epigenetic events that results in the activation of oncogenes and the 
inactivation of tumor suppressor genes leads to uncontrolled cell proliferation.3 This cell proliferation 
subsequently results in visible morphological changes, like a disorganized orientation, size, shape, and 
layering of the epithelial cells. This is known as dysplasia.4 The more severe the dysplasia becomes, 
the greater the likelihood of progression into HNSCC.3 Unfortunately, despite continuous efforts to 
standardize classification criteria, the grading of dysplasia is quite subjective, with low intra- and inter-
observer reproducibility.5 
In general, uncontrolled cell proliferation is followed by cells’ resistance to death (apoptosis), their limitless 
replicative potential, and the sustained formation of new blood vessels (angiogenesis). Subsequent 
degradation of the basement membrane and loss of cell-cell/matrix attachment proteins leads to the 
invasion and infiltration of neoplastic epithelial cells into the subepithelial tissue,6 which features the 
development of an invasive HNSCC. The metastatic cascade is initiated through the acquisition of several 
additional capabilities, like changes in the physical coupling of cells to their microenvironment and 
activation of extracellular proteases.7 In this cascade the neoplastic cells multiply further, detach from 
their neighboring cells, and invade the surrounding tissue. After penetrating the blood and lymphatic 
vessels (intravasation), the neoplastic cells survive in the circulation (life in transit) and become trapped 
in the capillary beds of distant organs (arrest). The subsequent exit from the circulation (extravasation) 
allows colonization, and a metastasis is formed.6
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ORAL CAVITY SQUAMOUS CELL CARCINOMA

Epidemiology and etiology
In the Netherlands, nearly 3000 invasive HNSCCs were diagnosed in 2015, of which 888 were located in 
the oral cavity. With 359 cases (40%), the tongue was the most common subsite.2

An oral cavity squamous cell carcinoma (OCSCC) occurs predominantly in alcohol- and tobacco-using 
adults (men > women), in their fifth and sixth decades of life.8,9 Other identified risk factors are race, betel 
quid (paan) chewing, radiation, immune deficiencies, and prior upper aerodigestive tract cancer.10,11 There 
has been ongoing debate regarding the influence of poor oral hygiene, chronic irritation, Human Papilloma 
Virus type 16 and 18, and diet, particularly the diets that are fat rich, low in fibers and lack antioxidants.11,12

Diagnosis and classification
Small-sized OCSCCs are mostly asymptomatic, while non-healing mucosal ulcerations, discomfort, 
referred ear pain, halitosis, hemoptysis, limited mobility of the tongue, weight loss, and neck swelling 
occur with more extensive tumors.13 Optimal treatment of a patient with an OCSCC of the tongue 
depends on an accurate diagnosis. In the first place, physical examination including visual inspection and 
palpation are combined with imaging modalities such as magnetic resonance imaging (MRI) or computed 
tomography.13 Subsequently, histopathological confirmation of the diagnosis is performed.
In the internationally accepted TNM classification, the size and extent of a histopathologically proven 
tumor (T1 – T4) is combined with the presence of nodal (N0 – N3) and distant metastases (M0 – M1).14,15 
The nodal status is defined using imaging techniques, such as MRI, computed tomography and ultrasound 
guided fine needle aspiration cytology.13,16 The presence of distant metastasis is evaluated by either 
computed tomography of the thorax or positron emission tomography.17 Considering that in 3% of cases 
simultaneous carcinomas occur in the upper aerodigestive tract,18 a panendoscopy is often carried out to 
screen for them.
The TNM classification is a dual system that includes a clinical (pretreatment) classification, which is 
designated 'cTNM', and a final pathological (postoperative) classification, designated 'pTNM'.15 

Treatment
Currently available treatment modalities for OCSCCs include surgery, radiotherapy, chemotherapy, targeted 
(bio) therapy, or a combination of these. The cTNM classification is, among other, used as a basis for the 
choice of treatment.19,20 Other factors that influence choice of treatment are related to the characteristics 
of the primary tumor and the patient. Relevant tumor characteristics are: subsite, exact location, depth 
of invasion, proximity and invasion to bone, previous treatment and histology (differentiation grade). 
Patient factors include age, medical condition, tolerance, acceptance, compliance, lifestyle, and other 
socioeconomic considerations. Factors related to the treatment team will also be considered in treatment 
planning. 
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Intraoperative assessment of resection margins
The majority of OCSCCs of the tongue are treated with surgical excision.20 The ultimate goal of surgical 
treatment is to eradicate the cancer and to preserve or restore form and function. Often, a 1 cm margin 
around the tumor is taken,21 in order to obtain adequate microscopic resection margins. Adequate 
microscopic resection margins are defined as a distance of more than 5 mm between tumor border 
and resection surface, according to the guidelines of the Royal College of Pathologists.22 Adequate 
resection margins are an important predictor for disease control and survival.14,23-27 Survival improves 
with each additional millimeter of tumor-free tissue in the resection margins.28 Nevertheless, literature 
shows that in current practice up to 85% of OCSCCs are inadequately resected (tumor-positive margins: 
less than or equal to 1 mm, or close margin: between 1 and 5 mm).26,29 
As mentioned above, many imaging techniques are available preoperatively to help the surgeon plan the 
tumor resection. During the operation, the surgeon attempts to define the borders of the tumor by visual 
inspection and tissue palpation. Additionally, a frozen section procedure can be used for intraoperative 
histopathological examination of suspicious regions in the resection surface (Figure 1A – E).30 Although 
state-of-the-art, this procedure has major limitations. The diagnostic accuracy of the frozen section 
method depends on how well the tissue samples from the suspected inadequate margin represents the 
complete resection margin.24,27,31 Often the samples are taken from the epithelial margins, because these 
are more accessible and the tissue is relatively compact. However, up to 87% of all tumor-positive margins 
in the oral cavity tumor resections are located in the subepithelial tissue,32 which makes sampling the 
epithelial margin of limited value. Moreover, due to the fact that the frozen section procedure is time-
consuming and laborious,33 only a small portion of the resection margin can be evaluated, inevitably 
leading to a sampling error. Despite these limitations, additional resections based on frozen sections can 
result in an increased rate of tumor-free margins34 and thereby improve outcomes for many patients.27,31,35

Postoperative assessment
Based on the results of the final, histopathological (postoperative) examination of the resection specimen 
(pTNM) a decision is made for further treatment and a prognostic estimation can be made.36 The resection 
specimen is pathologically evaluated to check whether the resection margins are adequate. Moreover, 
postoperative assessment also defines other histopathological parameters (tumor differentiation grade, 
invasion depth, presence of perineural and lymphovascular invasion, and extra nodal growth).37 This 
routine histopathological procedure is based on thin sections from formalin-fixed and paraffin-embedded 
tissue, which are stained with haematoxylin and eosin (H&E).38 If needed immunohistochemical-staining 
procedures are used to obtain additional information.39

The pTNM is the basis for decisions regarding the need for adjuvant therapy (postoperative radiotherapy 
and/or chemotherapy). Major criteria for postoperative radiotherapy include tumor-positive margins (less 
than or equal to 1 mm), lymph node metastases with extra nodal growth, or more than two lymph node 
metastases. The patient receives postoperative radiotherapy preferably within six weeks after surgery. In 
case of the following minor criteria postoperative radiotherapy is also recommended: pT3 – pT4 tumors 
(more than 4 cm in diameter and/or invading surrounding structures), perineural growth or close resection 
margins (between 1 and 5 mm).40
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A B

C D E

Figure 1. A: Schematic overview of a tongue with an OCSCC on its left edge. B: Sampling of a suspicious region 
in the wound bed. C: Tissue sample. D: Cutting a frozen tissue section from the sample. E: Frozen tissue section 
showing residual tumor.

Prognosis
The still increasing OCSCC incidence rates (especially in women in developed countries)41,42 and the 
high disease-related mortality are reasons for concern. Recent decades have brought several advances 
in therapy, in the form of enhanced surgery, (postoperative) radiotherapy, chemotherapy, targeted (bio) 
therapy or a combination. However, still only half of the patients diagnosed with an OCSCC will survive the 
five years following diagnosis.19,43-45 
This poor prognosis is mostly attributable to late diagnoses of primary and of recurrent tumors.46,47 
Large and extensive tumors are harder to excise with adequate resection margins and are associated 
with increased regional and distant metastases.26,48 However, also early OCSCCs show high numbers of 
inadequate resection margins.26 Of the many factors that may affect the clinical outcome (such as tumor 
site, pTNM classification, histopathological parameters, patient’s age and comorbidity) only the resection 
margin can be controlled by the surgeon and pathologist.26,49-51 Therefore, comprehensive intraoperative 
(histopathological) assessment can be of great value.
Although a gradually increasing number of publications is seen which emphasize the need for such 
comprehensive intraoperative assessment of the resection margins, this practice is not yet well 
adapted. One important prerequisite is the presence of a dedicated team of head and neck surgeons and 
pathologists.
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ROOM FOR IMPROVEMENT

A technique for the intraoperative evaluation of all resection margins (especially in the subepithelial, soft 
tissue margins) might increase the number of adequate resections and thereby improve patient outcome. 
Optical imaging techniques are capable of characterizing tissues in real-time and can potentially fulfill 
this need. 

OPTICS

Light
Optics describes the behavior and properties of light, and the interaction of light with matter. For optical 
imaging, nearly all types of electromagnetic radiation (EMR) can be used. The broad spectrum of 
EMR ranges from ionizing radiation (gamma rays and X-rays) through ultraviolet, visible light, infrared, 
microwaves, and radiofrequency waves.52 Visible light is usually defined as having a wavelength in the 
range of 390 – 780  nm. When visible white light is  dispersed  through a  prism it gets separated into 
different colors with shorter wavelengths and longer wavelengths (Figure 2). 
In the 17th century, Isaac Newton was one of the first scientists to theorize that light is not only a wave 
phenomenon, but may also be interpreted as a stream of high-speed, submicroscopic particles, which 
we now call photons.53 Subsequently it has been discovered that photons in a vacuum travel in harmonic 
waves at a constant speed (c), the speed of light, which is 299 792 458 ms-1.52 Light can interact with 
matter by absorption and by elastic and inelastic scattering.52 The manner in which light interacts with 
matter depends on the nature of the molecules and atoms in the matter. 
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Figure 2. Part of electromagnetic radiation spectrum.
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Absorption
Absorption is the simplest phenomenon that can occur when matter is illuminated by light. An atom is 
composed of a nucleus (protons and neutrons) and one or more electrons that are bound to this nucleus.54 
Atoms can attach to one or more other atoms by chemical bonds. At room temperature most electrons 
move around their nuclei in the lowest possible energy state, called the ground state. If an electron in the 
ground state is hit by a photon, the photon can be absorbed, transferring its energy and promoting the 
electron to a higher energy level, the excited state.52 Electrons in an excited state will, over time, give off 
their obtained energy and return to their ground state. Most excited state energy resulting from absorption 
is converted into heat when the electron falls back to its ground state. However, in many atoms a portion 
of the stored energy can be re-emitted as light. When this happens immediately, this emission is known as 
fluorescence. When atoms gradually release their obtained energy to return to the ground state, it is called 
phosphorescence.55

Scattering
Scattering is, together with absorption, the second physical process that contributes to the visible 
appearance of matter.55 The distribution of scattered light provides unique information about the 
illuminated atoms and molecules. Scattering can occur in two different ways (Figure 3).

incident photon (λ1)

ground
vibrational state

vibrational modes

excited
vibrational state

Figure 3. Schematic overview of the different scattering processes.

Elastic scattering
Elastic scattering of light occurs when no energy is transferred in the scattering event. On collision 
with matter, photons can be scattered in any direction without change of their energy (Figure 3).52 The 
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frequency of the incident light is then the same as the scattered light’s frequency. This type of scattering 
is called Rayleigh scattering after Lord Rayleigh, who was the first to correctly attribute scattering to tiny 
particles like atoms and molecules.56

Inelastic scattering
Only a fraction (1 in 106 to 1 in 108 photons) of incident photons undergo inelastic scattering.57 In this 
so-called Raman scattering process, energy is tranferred from incident light to the illuminated molecules. 
This causes frequency shifts in the scattered light (Figure 3). These frequency shifts are predominantly 
caused by changes of the vibrational state of a molecule. 
The exact photon energy needed to excite a molecular vibration is, among other things, determined by the 
mass and the strength of the chemical bonds of the atoms that are involved in the vibration.57 Chemicals 
bonds can be regarded as stiff springs that can be stretched and bent. Vibrational modes are often given 
descriptive names, such as symmetric and asymmetric stretching, scissoring, rocking, wagging, and 
twisting (Figure 3). For instance, contrary to stretching, rocking, wagging, and twisting modes do not 
change the chemical bond lengths, but only their angles. Rocking is distinguished from wagging by the 
fact that, following it, the atoms remain in the same plane.
Molecules may have a great number of independent vibrational modes (3N-6 for a non-linear molecule 
consisting of N atoms).58 The unique combination of vibrational levels means that the inelastic scattering 
of a molecule is highly molecule specific. 

Stokes and anti-Stokes
Inelastic scattering can either cause a decrease or an increase of the energy of the scattered photon 
(Figure 3). The energy of a photon can be transferred to a molecule, which raises it to an excited vibrational 
state. This results in a decreased light frequency and increased wavelength. Vice versa, if the molecule 
transfers energy to the photon, the light frequency will increase and the scattered light will have a shorter 
wavelength than the incident light.57 This latter way of scattering is only possible if the molecule is already 
in an excited vibrational state. This is rare at room temperature, since most molecules are then in their 
ground vibrational state. 
These two types of inelastic scattering are known as Stokes (shifts to longer wavelengths) and anti-
Stokes (shifts to shorter wavelengths) scattering.57 At room temperature, anti-Stokes scattering causes a 
very weak signal compared to Stokes scattering. Therefore Stokes scattering is mostly used for analysis 
applications,59 including the research described in this thesis.

RAMAN SPECTROSCOPY

Back to the beginning
The phenomenon of inelastic photon scattering is nowadays used as an optical characterization 
technique, known as Raman spectroscopy. In 1923 the phenomenon of Raman scattering was predicted on 
theoretical grounds by the Austrian physicist Adolf Gustav Smekal.60 Experimental evidence for the effect 
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was first reported by the Indians Chandrasekhara Venkata Raman and Kariamanickam Srinivasa Krishna 
in 1928.61 Sir C.V. Raman was later rewarded with the Nobel Prize in Physics in 1930. The complete story 
of achieving the Nobel Prize was published in 1998 by Singh et al.62

It took more than 60 years before Raman spectroscopy was applied in biosciences. Only after the invention 
of the laser in 1960,63 it was possible to use incident light of a sufficient intensity to obtain a satisfactory 
Raman signal. Despite this innovation, several hours of signal collection were still needed to obtain a good 
quality Raman spectrum. The second major technological improvement essential for the practical use of 
Raman spectroscopy was the development of charge coupled device (CCD) in 1970,64 which has been 
used as a detector in Raman spectroscopy since 1987.
Raman spectroscopy is very well suited for use in microscopic analysis. Since it is a scattering technique, 
tissue specimens do not need to be fixed or labelled, and can in principle be studied in vivo. The 
combination of Raman spectroscopy with a confocal microscope was first introduced by Puppels et al. 
in 1990.65 Through the small confocal measurement volume, the collection of Raman spectra from inside 
cells was shown to be possible.

Instrumentation
The instrumentational requirements for Raman experiments are: 1) an excitation source, 2) focusing and 
collection optics, 3) a spectrometer, and 4) a personal computer (Figure 4).58 The monochromatic light 
and excitation source currently most used is a laser. The lower the excitation wavelength of the laser, 
the stronger the Raman spectral intensities that can be obtained. However, when using an excitation 
wavelength between 250 nm and 700 nm, the Raman spectrum will be hampered by fluorescence, which 
is orders of magnitude stronger in intensity than the Raman scattered light.66 Therefore, an excitation 
wavelength in the near infrared (NIR) region, 785 nm, is often used. This wavelength ensures minimal 
spectral interference from tissue fluorescence, limited chance of tissue damage, and enables deeper 
penetration of the light into the tissue.58

tissue 
section

microscope
spectrometer

personal computer

785 nm 
diode laser

reflection
grating

filter
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Figure 4. Instrumentation required for Raman spectroscopic experiments.
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For the measurements on tissue sections described in this thesis, a microscope objective is used to focus 
the laser light onto the sample, and Raman scattered light is collected through the same objective. The 
scattered light is recorded by a spectrometer. First, the much stronger Rayleigh scattered light has to be 
suppressed. This suppression is accomplished by the use of an optical filter, which allows only minimal 
transmission of shorter wavelengths (laser), while longer wavelengths (Raman shifts) are optimally 
transmitted. Then, the transmitted light is separated in different wavelengths. This works by the same 
principle by which a prism divides white light into different colors, or wavelengths.52 However, nowadays 
most spectrometers employ reflecting gratings rather than prisms. Next, the separated wavelength 
components are projected onto a sensitive, NIR optimized CCD camera, which works as a multichannel 
detector. Finally, a personal computer with dedicated software is used to display the Raman spectra.

Raman spectrum
The frequency shifts of the inelastically scattered light are specific to the illuminated molecule and are 
constant for that particular molecule, i.e. they are independent of the wavelength of excitation.57 In a 
Raman spectrum (Figure 4), the intensity of the Stokes scattered light is plotted along the y-axis and the 
corresponding frequency shift along the x-axis. Since the frequency is equal to the number of waves in 
a distance of 299 792 458 meters; this is a very large number. Therefore, the frequency shift is generally 
expressed as the number of waves in one centimeter, called the wavenumber.57 Wavenumber shifts in cm-1 
are calculated according to the formula: 

Δ cm-1 = (1/λ0 – 1/λs) 
λ0 = excitation wavelength in cm
λs = wavelength of backscattered light in cm

A Raman spectrum is highly molecule specific. Furthermore, Raman scattering is a linear process, which 
means the number of Raman scattered photons is directly proportional to the intensity of the incident 
light and to the number of irradiated molecules. Thus, the intensity of a Raman peak is proportional to the 
concentration of the respective molecule.67 The position, shape, and intensity of the peaks in a Raman 
spectrum (Figure 5) provide detailed, quantitative information about the overall molecular composition of 
a sample.66 This allows an objective characterization of cells and tissues.58

Analysis of Raman spectrum
Raman spectroscopic information is obtained mostly from two different spectral regions. The wavenumber 
region with the most detailed biochemical information lies between 400 – 2000 cm-1, called the fingerprint 
region.57 The high wavenumber (HWVN) region, which lies between 2000 – 4000 cm-1, contains less 
spectroscopic information, originating mostly from CH-, OH- and NH-stretching vibrations. In this thesis 
only the fingerprint region is studied.
Analysis of a Raman spectrum of tissue is complex, due to the large number of partly overlapping 
Raman peaks. However, as mentioned above, a Raman tissue spectrum can be used as a tissue-specific 
spectroscopic fingerprint. To classify or subdivide spectral classes, unsupervised classification methods 
can be applied that use the spectral differences in these fingerprints. The unsupervised methods require 
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no a priori knowledge of group similarities. Examples of unsupervised methods are K-means cluster 
analysis (KCA) and hierarchical cluster analysis (HCA).68 In supervised methods pattern recognition is 
used for the creation of models based on previously known labeling. An example of a supervised method 
is (hierarchical) linear discriminant analysis ((h)LDA).69 (h)LDA is often used in combination with principal 
component analysis (PCA).70 Such PCA-LDA models can be trained to identify or classify unknown Raman 
tissue spectra. This way of fingerprint analysis is often used in clinical diagnostics.
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Figure 5. The position, shape, and intensity of the peaks in a Raman tissue 
spectrum provide a tissue-specific spectroscopic fingerprint.

A different approach to analyze the complex Raman tissue spectra is to decompose them. In this way, 
detailed information about the molecular composition of the measured tissue can be obtained. This 
is possible in a qualitative manner, by visual comparison of the peaks in the tissue spectrum with the 
features of pure-compound reference spectra. A more quantitative and objective approach is the use of 
fitting procedures that find the best (linear) combinations of known pure-compound reference spectra to 
approximate the tissue spectrum.71 The fit coefficients of the pure-compound reference spectra relate to 
the relative concentrations of these compounds in the analyzed tissue spectrum. 
For an accurate fitting procedure, multiple pure-compound reference spectra are needed. These pure 
compounds have to represent the main components of the investigated tissue. Generally, there are five 
principle chemical classes within biological tissues that can contribute to the Raman tissue spectra: 
proteins, lipids, nucleotides, carbohydrates, and amino acids.29 This type of analysis is used to obtain 
more insight into the molecular composition of tissues and the differences in the composition of different 
tissues. 
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RAMAN SPECTROSCOPIC APPLICATIONS

To date, a number of publications have demonstrated the potential of Raman spectroscopy for tissue 
characterization and tumor detection in several anatomical regions,72 including the oral cavity.73-81 The 
technique is especially suited for intraoperative use, since it is nondestructive, reproducible, quick to 
perform without pretreatment or labelling, and suitable for use with fiber-optic probes.82-85

Most previously published Raman studies have focused on the analysis of tissue-specific spectroscopic 
fingerprints, using Raman signals from relatively large tissue volumes. However, oral tissue is not 
homogeneous, it is comprised of different histological structures and layers.86 The various tissue structures 
have their own molecular compositions and, as a consequence, their own specific Raman features. All 
structures present in the measurement volume will contribute to the overall Raman spectrum. This must 
be taken into account when developing tissue classification algorithms based on Raman spectroscopy. 
A thorough understanding of the spectral contributions of the different tissue structures is essential for 
optimizing the discriminatory power of the technique. 

MORPHOLOGY OF THE TONGUE

To create a solid foundation for Raman spectroscopic applications in head and neck oncological surgery 
and pathology, the spectral features of the main histological structures in the tongue need to be elucidated. 
The main tissue layers and structures of the tongue are illustrated in Figure 6 (inspired by the descriptions 
in Mills et al.).86 The mucosa includes the squamous epithelium and lamina propria. The squamous 
epithelium of oral tongue shows regional variations in structure and keratin expression based on its 
function.86 The dorsum of the tongue (i.e. superior side) is exposed to the forces of mastication and 
is covered with (para)keratinized squamous epithelium, whereas the ventral side (i.e. inferior side) is 
not keratinized. The epithelial thickness also varies dependent on sex, age, and tobacco- and alcohol 
consumption habits.87,88 The basement membrane forms the interface between the basal epithelial layers 
and the lamina propria. The lamina propria is a delicate layer situated beneath the surface squamous 
epithelium and basement membrane, which contains few elastic and collagenous connective tissue 
(CT) fibers and is rich in blood vessels, lymphatics, and (sensory branches of) nerves. It also contains 
scattered lymphocytes that can migrate through the squamous epithelium.
The layer under the mucosa is called the submucosa. The submucosa is composed of CT, in which muscle 
fibers, adipose tissue, nerves, larger blood vessels, and lymphatics are distributed. The distribution of 
these tissue structures varies throughout the tongue.89 Numerous minor salivary glands (predominantly 
mucinous) characterize the submucosa of the inferior side of the tongue. Taste buds are present in large 
numbers on the superior side and lateral edges of the tongue.86
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SCOPE OF THIS THESIS

The main goal of this thesis is to provide a solid foundation for further development of Raman spectroscopic 
applications in head and neck oncology. This is a multistep process in which we want to investigate and 
understand the Raman spectroscopic features that distinguish the epithelial (keratinocytic) component of 
a tongue OCSCC from its surrounding tissue (referred to as non-tumorous or healthy tissue).

superficial layers
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basal layers
basement membrane

lymphocytes
connective tissue

muscle
adipose tissue

nerve
gland

blood vessel
lymphatics CD

superior
side

inferior
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A B

squamous epithelium
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submucosa

Figure 6. A: Schematic overview of a tongue. B: Cross section (lateral edge). C: Main histological tissue layers. 
D: Main histological structures.

First, we aimed to develop a standardized method to collect and analyze detailed Raman spectral information 
of OCSCC and the individual non-tumorous tissue structures in the tongue, as described in Chapter 2. Next, 
the potential of Raman spectroscopy to distinguish between the characteristic Raman features of OCSCC 
and the individual non-tumorous tissue structures is investigated in Chapter 3. In Chapter 4, these results 
are used for the development of a ‘tumor’ versus ‘non-tumorous tissue’ classification model. Lastly, in 
Chapter 5 the Raman spectra of OCSCC and individual non-tumorous tissue structures are analyzed in 
terms of the quantitative information they contain about the tissue’s molecular composition. In Chapter 6 
an overview is given of the pure-compound reference spectra used for this analysis.
To conclude, in this thesis the strengths and limitations of Raman spectroscopy, regarding its OCSCC-
detecting potential in tongue, are elucidated.
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Chapter 2

ABSTRACT

An earlier and more accurate detection of (small) cancerous and precancerous lesions in the oral cavity 
is essential to improve the prognosis of oral cavity squamous cell carcinomas. Raman spectroscopy is 
being pursued as a potential method to realize this improvement, since the technique provides objective 
information on a biochemical level and can be used for real-time guidance of the diagnostic procedure.
Since oral mucosal tissue is inhomogeneous and comprises different layers and histological structures, 
a good understanding of the signal contributions of the individual layers and structures is required for 
an accurate interpretation of in vivo measured tissue spectra. The aim of this study was to create a 
standardized method to collect and analyze the spectral contributions of individual histopathological 
structures in oral mucosa.
The method is based on Raman micro spectroscopic mapping of unstained frozen tissue sections and 
subsequent histopathological annotation of the features in the resulting Raman images. The obtained 
annotated Raman spectra were used as input in an unsupervised hierarchical cluster analysis in order to 
determine the spectral characteristics and variance within one histopathological structure.
The described method resulted in an annotated database of Raman spectral characteristics of individual 
histopathological structures encountered in oral tissue. This database can be used as input for the 
development of classification and quantification algorithms, in order to achieve a high specificity and 
sensitivity for clinical diagnostic instruments. Additionally, this database can be used to optimize the 
exact location and measurement volume of in vivo measurements.
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Method development: Raman spectroscopy-based histopathology of oral mucosa

INTRODUCTION

Oral cavity squamous cell carcinomas (OCSCC) are a source of concern, not only because of the still 
increasing incidence (especially in women in developed countries), but also because of the high disease-
related mortality. Every year 640 000 new cases of OCSCC are diagnosed worldwide, and only half of 
these patients will survive 5 years.1,2 Over the past decades, only marginal improvements in 5-year-survival 
rates were achieved through advances in therapy (surgery, radiotherapy, chemotherapy, or a combination 
of these).3 The relatively poor prognosis is mostly attributed to late diagnosis of primary and recurrent 
tumors, which leads to a higher risk of residual tumor after surgery and, consequently to the development 
of regional and distant metastases.4-6 The gold standard for diagnosis of OCSCC is histopathological 
evaluation of biopsy tissue samples. Unfortunately, histopathological diagnosis of (pre)cancerous 
oral lesions is subjective7 despite continuing efforts to standardize the criteria for classification of the 
disease. Moreover, the diagnostic accuracy depends on how well the biopsy material represents the 
actual suspected lesion. To improve the prognosis of these patients, earlier and more accurate detection 
of (small) cancerous and precancerous lesions in the oral cavity is essential. An objective technique 
for tissue characterization that can be used for real-time guidance of the diagnostic procedure would 
therefore be helpful.
Raman spectroscopy is an optical technique which may be able to provide an alternative for, or adjunct to, 
conventional diagnostic modalities in head and neck oncology.8-10 Raman spectroscopy does not require 
sample preparation, is nondestructive, and can be used in vivo.11,12 Because of these attractive properties 
there has been much interest in the use of Raman spectroscopy in cancer detection in recent years. 
To date, a number of publications have appeared which have shown that diseased and normal tissue 
samples, from a variety of organs, can be differentiated by means of Raman spectroscopy.13-18

Raman spectroscopic research also entered the field of head and neck oncology.19-28 Malini et al. studied 
50 normal, 50 malignant, 10 inflammatory, and 5 premalignant oral samples. They recorded a total of 
216 spectra using a diode laser (SDL-8530 and a HR320 spectrograph) and concluded that key features of 
spectra of normal tissues can be attributed to lipids, whereas pathological tissue spectra were dominated 
by proteins.24 Singh et al. have found similar results, after comparing the spectra from 10 normal and 
10 tumor samples from the oral cavity, using a fiber optic probe coupled Raman spectrometer.26 By means 
of Raman confocal micro spectrometry, Su et al. identified specific spectral markers associated with DNA 
and protein vibrational modes, which exhibited discrimination power for cancer sample identification.28 
These results demonstrate the strong diagnostic potential of Raman spectroscopy in head and neck 
oncology.
Most Raman studies published to date have focused on intact (non-sectioned) oral tissue samples, using 
relatively large measurement volumes. However, it is important to realize that a Raman spectrum of a 
tissue sample is dependent on the exact location, and size of the tissue volume from which the signal is 
collected. Since oral mucosal tissue is inhomogeneous and comprises different layers and histological 
structures,29 a good understanding of the signal contributions of individual layers and structures is 
required for an accurate interpretation of in vivo tissue spectra with large measurement volumes. For that 
reason, spectral characteristics of individual histo(patho)logical structures of normal and diseased oral 
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mucosa need to be elucidated, before Raman spectroscopic diagnosis can be implemented in real-time 
clinical practice.
The aim of this study was to create a standardized method to collect and analyze the spectral contributions 
of individual histopathological structures in oral mucosa. The method is based on Raman micro 
spectroscopic mapping of frozen tissue sections and histopathological annotation of the features in the 
resulting Raman images. The method provides clear insight into how well Raman and histopathological 
results correlate, as well as into the variance in biochemical composition of individual histopathological 
structures. This should provide a more solid foundation for the development of classification and 
quantification algorithms, in order to achieve a high specificity and sensitivity for clinical diagnostic 
instruments.

MATERIALS AND METHODS

Sample handling and sample preparation
This study was approved by the Medical Ethics Committee of the Erasmus MC Cancer Institute, University 
Medical Center Rotterdam. At the Department of Otorhinolaryngology and Head and Neck Surgery of the 
Erasmus MC Cancer Institute, University Medical Center Rotterdam, tissue samples were collected from 
patients who had undergone surgical resection because of a primary squamous cell carcinoma (SCC) of 
the edge of the tongue. In total, three samples of tumor tissue and three samples of normal appearing 
mucosa (adjacent to the tumor) were collected from three patients after given informed consent. Samples 
were collected from resection material within 60 minutes after surgical excision. These samples were 
snap frozen by immersion in isopentane and subsequently in liquid nitrogen and kept at -80˚C until further 
use. Figure 1 shows the next steps of the sample handling and sample preparation.
The frozen tissue samples were mounted on a cryotome stage using CryoCompound (KP-CryoCompound, 
Klinipath B.V., and The Netherlands) (Figure 1B). Adjacent 6 µm (Figure 1C) and 20 µm (Figure 
1D) thick sections were cut. The 6 µm sections were stained with haematoxylin and eosin (H&E) for 
histopathological evaluation, which served to select regions of interest for Raman mapping experiments 
(Figure 1E). Corresponding regions in the unstained 20 µm sections were identified (Figure 1F). Prior to 
Raman measurements, the 20 µm tissue sections were placed on fused silica slides and were allowed to 
dry at the room temperature. These unfixed, unstained tissue sections were used for Raman spectroscopic 
mapping experiments without further treatment (Figure 1G). After completing the experiments, the 20 µm 
tissue sections were routine stained with H&E (Figure 1H) to enable precise histopathological correlation 
(Figure 1I) with the resulting pseudo color Raman images (Figure 1J).
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Figure 1. A: Biopsy sample from a suspected lesion of the tongue. B: Frozen tissue sample mounted on a cryotome 
stage. C: Adjacent 6 µm H&E-stained tissue section. D: 20 µm unstained tissue section. E: Region of interest 
selected for Raman mapping experiments. F: Corresponding region in unstained section. G: Point-by-point scanning 
in a 2D grid. J: Pseudo color Raman images. H: Afterwards H&E-stained 20 µm section. I:  Mapped region.

Raman spectroscopic mapping experiments
A flowchart, including all steps needed to collect and analyze spectral information about individual 
histopathological structures in oral mucosa, is shown in Figure 2. All steps are described in detail in the 
following sections. For clarity, the steps and the ultimate results are summarized in this paragraph.
A total of 20 Raman mapping experiments were performed on multiple tissue sections. The selected 
region in the 20 µm thick unstained tissue section was scanned point-by-point in a two-dimensional grid. 
After pre-processing of the collected spectra, K-means cluster analysis (KCA) was applied to the dataset. 
Spectra within one cluster were assigned the same color, resulting in a pseudo color Raman image. After 
completing the measurements, the 20 µm section was H&E stained.30 Each differently colored area, and 
thus each K-means cluster average, in the Raman image was then histopathologically annotated. Next, the 
annotated Raman spectra of all experiments together were used as input in an unsupervised hierarchical 
cluster analysis (HCA). The HCA results provide a clear insight into the level of correlation between Raman 
and histopathological results, and allow determination of a spectral average and standard deviation for 
each histopathological annotation.
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Scanning procedure
A near infrared (NIR) multichannel Raman micro spectrometer, built in-house, was used to collect the 
Raman spectra of the tissue sections as described earlier.31 Briefly, 30 to 60 mW of laser power (785 nm) 
was focused on the 20 µm tissue section through an 80x microscope-objective. The Raman scattered 
light was collected through the same objective and guided to a NIR optimized spectrometer (model HPRM 
2500, RiverD International B.V., Rotterdam, The Netherlands), dispersed, and subsequently imaged on a 
charge coupled device (CCD) camera. Data were collected in the wavenumber interval from 310 to 2530 
cm-1 with a spectral resolution of 4 cm-1. Automatic scanning of sections was enabled by a xyz-motorized, 
computer-controlled sample stage (Leica DM STC, Cambridge, UK). The laser light was focused in the 
tissue section to a spot of about 1 – 2 µm2. For each Raman mapping experiment, a selected region in 
the tissue section was scanned point-by-point in a two-dimensional grid with a step size of 2 µm and an 
acquisition time of 1 second per point. Moving the stage together with focusing took another second per 
point, resulting in a total measurement time of 2 seconds per point. Twenty Raman mapping experiments 
were performed on the six tissue sections. The scanned areas ranged between 212 192 µm and 602 802 
µm in size, resulting in 10 176 to 120 700 points per mapping experiment. Thus, the time to measure an 
individual experiment varied between 15 and 67 h.

Data processing and data analysis
The Raman data were processed and analyzed with software developed in-house that operated in a 
MATLAB environment (MATLAB 7.3, MathWorks, MA, USA) and used the multivariate toolbox PLS-
toolbox 7.0.0c (EigenVector Research, WA, USA). The data processing and analysis consisted of three 
consecutive steps that are described in detail below. The first two steps were applied to all individual 
mapping experiments separately, and in the last step, the annotated Raman spectra of all experiments 
were combined and analyzed together.

Data processing
The goal of data processing was to ensure that the processed spectra are a true representation of the 
local tissue molecular composition, so that the spectra of multiple experiments were comparable with 
respect to relevant biochemical differences.

Cosmic ray event removal
First, the cosmic ray events in the raw data (CCD readouts) were identified using a threshold filter and 
removed by interpolating the data over the affected CCD channels.

Calibration
The raw data were then calibrated and corrected for the wavelength-dependent signal detection efficiency 
of the Raman setup as described earlier.32 Briefly, we calibrated the wavenumber range of the setup 
using the internal standards of the HPRM. The interfering background Raman signals originating from 
the optical elements in the laser-light delivery pathway were separately measured and subtracted. The 
detection efficiency was corrected using a NIST Relative Intensity Correction Standard (SRM 2241, NIST, 
USA). Finally, all spectra were interpolated to the range of 360 – 2450 cm-1 wavenumbers.
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Figure 2. Flowchart of all steps used to collect and analyze spectral information about individual histopathological 
structures in oral mucosa (see text for a detailed description).
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Scaling
After calibration, spectra are comparable from experiment to experiment but may show considerable 
differences in intensity and in spectral features that are considered to be non-informative, such as signals 
arising from the fused silica tissue carrier. A spectral scaling procedure called extended multiplicative 
signal correction procedure combined with spectral interference subtraction (EMSC-SIS)33 was used to 
eliminate all the non-informative interfering signals, and to scale the spectra on the basis of informative 
biochemical content only.
• EMSC-SIS: EMSC-SIS uses a fitting procedure which estimates contributions of known spectral sources 

in a measured spectrum. We identified the following sources; [1] relevant informative biological signal 
contributions, and non-informative interfering contributions from [2] the fused silica tissue carrier 
RiverD International B.V., Rotterdam, The Netherlands [3] CryoCompound, [4] blood, [5] β-carotene, [6] 
hydroxyapatite, and [7] background fluorescence. Reference spectra of [2 – 6] were measured from 
pure compounds (Sigma–Aldrich Chemie B.V., The Netherlands). The contribution of [7] was modelled 
as a seventh-order polynomial. A tissue prototype spectrum was calculated after manual correction 
for any non-informative interfering contributions of [2 – 6], as described earlier.33 The tissue prototype 
spectrum, which serves as the reference for relevant informative biological signal contributions [1] 
was also used to detect spectral outliers.

• Interfering signals: The contributions of [2 and 3] were considered to be non-informative for 
histopathological correlation, since none of these are biologically found in untreated oral mucosa. 
The contributions of [4, 5 and 6] represented biological signals that were considered non-informative, 
since these signals showed a large influence on the scaling procedure, resulting in non-informative 
differences between similar histopathological structures in different Raman experiments. The 
contribution of [7] fluorescence was considered to be non-specific information.

Wavenumber range restriction
The wavenumber range of the spectra was restricted to the fingerprint region (400 – 1800 cm-1) which is 
considered the most informative region for biological Raman signals.

Data analysis – individual experiments
After data processing, each mapping experiment was analyzed to obtain a pseudo color Raman image, 
which was used for histopathological annotation. In order to achieve this, the processed spectra were 
subjected to a KCA.

Outlier detection
As a first step in the individual experiment analysis, all spectral outliers were eliminated because these 
can have a significant effect on the cluster analysis results. Two types of outliers were automatically 
identified: [1] low quality spectra (based on high scaling factors to tissue prototype from the EMSC-SIS 
scaling procedure) and [2] spectra with a non-biological signature (based on low correlation to the tissue 
prototype).
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Principal component analysis
The remaining spectra were transformed by principal component analysis (PCA).34 PCA is a mathematical 
procedure to transform a set of possibly correlated variables into a set of scores on linearly uncorrelated 
variables called principal components (PCs). PCA is also used to decrease the amount of data to enable 
further analysis. The first PC accounts for the major direction of variance in the data set, and each next 
PC has the highest possible variance that is uncorrelated with the previous components. In this way, each 
subsequent PC represents a decreasing amount of variance in the data set. As the PCs are ordered in 
importance, a significant reduction of the dataset without significant loss of information can be realized 
by restricting the number of PCs that are taken into account.

K-means cluster analysis
The first 20 PCA scores of all spectra of an individual experiment, where PC 20 accounts for less than 
0,5% of the variance present in the dataset, were then grouped using KCA,35 with a Euclidian distance 
measured to define the distance between the spectral scores. KCA is a heuristic partitioning clustering 
technique that does not always find the optimal solution, but the algorithm is computationally fast with 
large amounts of data and gives acceptable results.
KCA started with a user-defined number of cluster centers that, in our implementation, were selected 
by uniform sampling of the PCA space of the data set. Each single spectrum was then assigned to the 
closest cluster center, thus forming the first partitioning of the data. In the next step, new cluster centers 
were calculated by taking the mean of all spectra assigned to that cluster. Subsequently, each spectrum 
was again assigned to the closest cluster center, thus forming the second partitioning of the data. This 
process was repeated until a stable solution was reached for the requested amount of K-means clusters.

Correlation to histopathology
From the KCA results, a pseudo color Raman image can be generated by assigning a color to each cluster 
and plotting the cluster membership of each spectrum as a colored pixel at its measurement position. A 
trained pathologist evaluated the scanned regions in the H&E-stained 20 µm tissue sections and determined 
which morphological histopathological structures were present. Afterwards, for each experiment, the 
optimal amount of K-means clusters was defined, based on the best match between the pseudo color 
Raman image and the present histopathological structures. Correlating a too low number of K-means 
clusters resulted in heterogeneous clusters that represented more than one specific histopathological 
structure. However, correlating a too high number of K-means clusters resulted in clusters that were 
annotated equally, and in very small clusters (representing a small amount of points in the grid) that 
could not be correlated to histopathology. Thus, the choice of the optimal number of K-means clusters 
was determined empirically, by defining the best match as the cluster result with [1] the lowest amount of 
clusters possible without presence of Raman clusters comprising different histopathological structures, 
and [2] the lowest amount of equally annotated and/or uncorrelated clusters.
In this way, for each individual experiment, a specific number of K-means clusters was defined of which 
each cluster was either annotated as a specific histopathological oral tissue structure, or annotated as 
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undetermined. The K-means cluster averages serve as histopathologically annotated Raman spectra, and 
are hereafter called annotated Raman spectra.

Data analysis – multiple experiments
The cluster results of the KCA of all individual maps were used as input for an unsupervised HCA. The 
goal of this analysis was to determine a spectral average and standard deviation for each individual 
histopathological structure. The analysis also shows whether clusters with the same histopathological 
annotation, but from different Raman mapping experiments, form one or more spectroscopic subgroups. 
This provides an insight into the variance in biochemical composition of individual histopathological 
structures.

Hierarchical cluster analysis
All annotated Raman spectra in the database were used as input for a HCA. HCA is a non-heuristic clustering 
method to find the best subdivision in clusters at each possible division level.35 HCA finds the optimal 
solution for a given clustering algorithm and distance measure, but the algorithm is computationally slow 
(full enumeration) and cannot be used with large amounts of data. HCA can be divisive, starting from the 
complete set, or agglomerative, starting from the individual observations. Here, we used an agglomerative 
algorithm (Ward’s method) with the squared Pearson’s correlation coefficient (R2) between two spectra as 
proximity measure (and (1-R2) as distance measure). The output of HCA is a membership matrix (N x N, 
where N is the number of spectra) that represents the clustering at each level of agglomeration.

Identification of HCA clusters representing individual histopathological structures
The HCA membership matrix was used to identify the HCA clusters that only contain annotated Raman 
spectra with the same histopathological annotation. Starting from the highest level, where all annotated 
Raman spectra are within one HCA cluster, we analyzed the splitting of the input data in an ascending 
number of HCA clusters, in order to identify the largest possible clusters that consist of reference spectra 
with identical histopathological annotation.

Calculation of spectral average and standard deviation
The identification procedure described above results in multiple clusters per histopathological structure. 
The spectral characteristics define which annotated Raman spectra cluster together, instead of the 
histopathological annotations. In this way, the procedure preserves information that would be lost by 
simple averaging all equally annotated Raman spectra. Each HCA cluster represents a spectroscopic 
subgroup of a specific histopathological structure. When averaging all HCA clusters of an individual 
structure, a spectral average and standard deviation can be calculated that represents the overall 
molecular composition of that histopathological structure. The standard deviation provides an insight 
into the variance in biochemical composition within individual histopathological structures.
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RESULTS

Histopathological evaluation of tissue sections
Twenty Raman mapping experiments were performed on unstained, unfixed sections of three normal tongue 
tissue samples and three samples with OCSCC, taken from three patients. Different histopathological 
structures were identified on the adjacent sections that were routinely stained (i.e. H&E). An example 
of the histology of normal tongue tissue is given by Figure 3. Figure 3A shows a low magnification 
micrograph of a transversally cut tongue tissue section with the epithelium (indicated E), lamina propria 
(indicated LP), and submucosa (indicated SM). Higher magnification of the epithelium and lamina propria 
(Figure 3B) shows that the basal epithelial layers (indicated BEL) are relatively darker compared to the 
epithelium layers towards the surface (indicated suprabasal layers, SBL). This is due to the fact that the 
basal epithelial cells have less cytoplasm.29 The lamina propria is a delicate layer of loose connective 
tissue (indicated LCT) and contains capillaries, lymphatics and peripheral nerves. Figure 3C shows the 
underlying supportive layer, termed submucosa, in more detail. Submucosa is mostly composed of dense 
connective tissue (indicated DCT) and contains larger blood vessels, peripheral nerves, lymphatic vessels, 
adipose tissue (indicated A), and seromucous glands. The mucosa and submucosa are bound to the 
underlying smooth muscle tissue (indicated M) by connective tissue fibers.

E

LP

SM

BEL

SBL

LCT

A

B

C

M

DCT

A

Figure 3. A: Microphotograph (original 
magnification 16x) of an H&E-stained section 
showing a transversally cut sample of normal 
oral tongue tissue, with stratified squamous 
epithelium (indicated E), underlying lamina 
propria (indicated LP), and submucosa (indicated 
SM). In panel B and C, the histological structures 
are shown in more detail (original magnification 
40x). B: The basal epithelial layers (indicated 
BEL) can be distinguished from suprabasal 
layers (indicated SBL), and the underlying 
loose connective tissue (indicated LCT) in the 
lamina propria. C: Within the submucosa, dense 
connective tissue (indicated DCT), adipose 
tissue (indicated A), and smooth muscle tissue 
(indicated M) can be appointed.

Correlation between Raman images and histopathological structures
For Raman mapping experiments, the regions of interest, containing different histopathological structures, 
were selected in the unstained tissue sections by correlation to the adjacent H&E-stained sections. The 
acquired Raman spectra of each experiment were analyzed by PCA, followed by KCA. This resulted in 
pseudo color Raman images after assigning a color to each cluster, as described in the materials and 
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methods section. After all mapping experiments were completed, the 20 µm tissue sections were routine 
stained for histopathological correlation with the Raman images. This procedure was performed by an 
experienced pathologist. For each individual experiment, the optimal number of K-means clusters was 
defined, based on the best match between the pseudo color Raman image and the histopathological 
structures present. 
In Figure 4, this procedure is illustrated using the results of one mapping experiment. Figure 4A shows the 
magnified photograph of the scanned region in the afterwards H&E-stained section. Based on histological 
evaluation, three different tissue layers/structures were distinguished; [I] central part of well-differentiated 
OCSCC, [II] peripheral part of well-differentiated OCSCC, and [III] peritumoral stroma. In Figures 4B – 4H, 
the pseudo color Raman images of this experiment are shown with an increasing number of K-means 
clusters (ranging 2 – 8). Using K-means 2, 3, 4, or 5 for correlation resulted in clusters that combined more 
than one histopathological structure (Figures 4B – 4E). In these Raman images, the peripheral part of well-
differentiated OCSCC was not represented in a separate cluster, in contrary to the image with K-means 
6 (Figure 4F). Using an even higher amount of K-means clusters (Figures 4G – 4H) resulted in multiple 
K-means clusters that were assigned the same histopathological annotation, as well as in a higher number 
of uncorrelated clusters that could not be assigned a specific histopathological annotation. The optimal 
number of K-means clusters in this experiment was therefore 6 (Figure 4F). Next, clusters 2, 3, and 4 were 
annotated as peritumoral stroma, cluster 5 as peripheral part of well-differentiated OCSCC, and cluster 6 
as central part of well-differentiated OCSCC. The spectrum of the first cluster contained too much noise 
and was therefore excluded from further analysis. Another two examples are shown in Figure 5 and 6.

II

IIII

1
2
3
4
5
6
7

1

2

3

4

5

6

1

2

3

4

5

1

2

3

1

2

1
2
3
4
5
6
7
8

1

2

3

4
III
A B C D

E F G H

I

Figure 4. A: Microphotograph (original magnification 100x) of an H&E-stained section of the scanned tissue 
region. Three different tissue layers/structures were distinguished; [I] central part of well-differentiated OCSCC, 
[II] peripheral part of well-differentiated OCSCC, and [III] peritumoral stroma. B – H: pseudo color Raman images 
of this experiment are shown with an increasing number of K-means clusters (ranging 2 – 8). The best correlation, 
representing all identified histopathological structures in a separate cluster, was defined at 6.
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Figure 5. A: Microphotograph (original magnification 100x) of an H&E-stained section of the scanned tissue region. 
Four different tissue layers/structures were distinguished; [I] superficial layers of squamous epithelium, [II] basal 
layers of squamous epithelium, [III] lymphocyte rich CT, and [IV] dense connective tissue. B – H: pseudo color 
Raman images of this experiment are shown with an increasing number of K-means clusters (ranging 2 – 8). The 
best correlation, representing all identified histopathological structures in a separate cluster, was defined at 6.
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Figure 6. A: Microphotograph (original magnification 100x) of an H&E-stained section of the scanned tissue region. 
Two different tissue layers/structures were distinguished; [I] poorly differentiated OCSCC and [II] peritumoral 
stroma. B – H: pseudo color Raman images of this experiment are shown with an increasing number of K-means 
clusters (ranging 2 – 8). The best correlation, representing all identified histopathological structures in a separate 
cluster, was defined at 7.

In this way, for each individual experiment, a specific amount of K-means clusters was defined (ranging 
between 5 and 12), resulting in 140 Raman spectra obtained from the 20 mapping experiments. In total 
17 K-means clusters, mostly consisted of just a small amount of pixels, could not be correlated to a 
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specific structure. Another 9 K-means clusters represented an interface region in between two different 
histopathological structures. These could neither be annotated as a specific structure. The remaining 
114 K-means clusters were annotated as one of the 19 specific histopathological oral tissue structures.

Spectral characteristics and standard deviation of different histopathological 
structures
In order to determine a spectral average and spectral variance of individual histopathological structures, 
all annotated Raman spectra were used as input for the HCA. Table 1 shows the results of this HCA. An 
alphabetical enumeration of the 19 identified histopathological structures is shown in the first column. 
The second column shows the total number of annotated Raman spectra per histopathological structure 
acquired from all 20 mapping experiments. In the third column, the number of selected HCA clusters that 
only comprised Raman spectra with the same annotation is shown. It is clear that for each histopathological 
structure, multiple HCA clusters were found. The final columns show of how many annotated Raman 
spectra these HCA clusters consisted. This overview shows that within one histopathological structure, 
multiple spectroscopic subgroups were present. These spectroscopic subgroups were used to calculate 
a spectral average with standard deviation, as described in the materials and methods section.
Previous steps are illustrated using the results obtained from one tissue sample. Bright-field microscopic 
image of the unstained tissue section of this normal oral sample are shown in Figure 7A. In this section, 
three regions including a variety of histopathological structures were selected for Raman mapping 
experiments. Figures 7B – 7D shows the magnified images of the unstained regions that were scanned. 
The pseudo color Raman images (Figures 7E – 7G) are shown that represented the best match to the 
corresponding regions in the afterwards stained tissue section (Figures 7H – 7J). A comparison between 
these images reveal that they correlate very well.
Figure 8 shows the averaged spectra of the histopathological structures that were present in the three 
prior illustrated mapping experiments. Although it was expected that the standard deviation, which is 
illustrated by a grey shadow around the spectra, was larger whenever more HCA clusters were found, all 
the standard deviations are remarkably small. No discriminative spectral subgroups could be appointed 
in these histopathological structures. This might be due to a limited number of annotated Raman spectra 
obtained from the different samples and patients in the current database. Nevertheless, it enabled us 
to point out a number of characteristic peaks (highlighted by yellow bars) that differ between these 
mean spectra. Especially, the slopes between 784 and 938 cm-1, as well as between 1206 and 1370 cm-1 
are characteristic for each of these histological structures. These slopes look quite alike in the mean 
spectra of basal and of suprabasal layers of epithelium. Both mean spectra of epithelium are furthermore 
distinguishable from others by their peaks at 526, 546, 784, 828, 942, 958, 1128, 1318 and 1340 cm-1. 
Similar looking spectra of (bronchial) epithelium were published before.16X
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Histopathological annotation Number of  
Raman clusters

Number of HCA 
clusters

Composition of HCA clusters

1 2 3 6 17

1 adipose tissue 7 2 1 1

2 basal epithelial layers 7 7 7

3 capillaries 2 2 2

4 central part of well differentiated OCSCC 1 1 1

5 collagen fibers 9 7 5 2

6 dense connective tissue 13 11 9 2

7 epithelial layer of gland 1 1 1

8 loose connective tissue 22 13 6 5 2

9 lymphocyte rich connective tissue 7 6 5 1

10 lymphocyte rich peritumoral stroma 4 4 4

11 peripheral nerve 2 1 1

12 peripheral part of well differentiated OCSCC 1 1 1

13 peritumoral stroma 15 10 6 3 1

14 poorly differentiated OCSCC 4 2 2

15 smooth muscle 3 3 3

16 superficial layers of epithelium 2 2 2

17 suprabasal layers of epithelium 11 9 8 1

18 well differentiated OCSCC with hyperkeratosis 1 1 1

19 well differentiated OCSCC with parakeratosis 2 1 1

interface 9 9 9

ignored 17 1 1

total 140 94

Table 1. The results of the HCA are shown.
First column: an alphabetical enumeration of the 19 identified histopathological structures. Second column: total number of 
annotated Raman spectra per histopathological structure acquired from all 20 mapping experiments. Third column: number 
of selected HCA clusters that only comprised Raman spectra with the same annotation. Final column: number of annotated 
Raman spectra included in the HCA clusters.

As expected, the spectra of loose (indicated in light grey) and dense (indicated in dark grey) connective 
tissue also represent more or less the same molecular composition, when compared to the other structures. 
These spectra are recognized by their peaks at 570, 820, 858, 876, 922, 1248 cm-1, which are mostly 
appointed to collagen contribution).36 The spectral difference between loose and dense connective tissue 
is based on differences in the amount of contribution of collagen. Adipose tissue (indicated in orange) is 
the easiest to recognize on its mean spectrum because of some distinctive peaks at 874, 972 1064, 1082, 
1264, 1304, 1440, and 1746 cm-1. All these peaks are attributed to lipids),36 which confirm the correlation 
with the histological origin. The averaged spectrum of smooth muscle, although just based upon three 
annotated Raman spectra, show characteristic peaks at 488, 758, 904, 1046, 1104, 1278, 1304, and 1398 
cm-1. These peaks can be partly attributed to glycogen (488 and 1046 cm-1) and collagen type I (1278 and 
1304 cm-1).36 A similar looking spectrum of smooth muscle was published before.16 Using the described 
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method, distinguishable and characteristic averaged spectra and standard deviation were calculated of 
a total of 19 individual histopathological structures encountered in oral mucosal samples. This created 
database will be supplemented in the future by all spectroscopic features present in histopathological 
structures of oral mucosa. This will be the scope of our future work.

A

B E H

F I

D G J

C

Figure 7. A: In this tissue section, three regions including a variety of histopathological structures were selected 
for Raman mapping experiments. B – D: show the magnified microphotographs (original magnification 100x) of 
the unstained regions that were scanned point-by-point. E – G: pseudo color Raman images, which represent the 
optimal number of K-m means clusters. H – J: microphotographs (original magnification 100x) of the afterwards 
stained tissue section.

suprabasal layers of epithelium

basal epithelial layers

loose connective tissue

dense connective tissue

adipose tissue

smooth muscle

Figure 8. The averaged spectra of the histopathological structures from the Raman mapping experiments shown in 
Figure 7. The standard deviation is shown in grey shadow around the spectral average. A number of characteristic 
peaks (highlighted by yellow bars) can be appointed for each spectrum.
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DISCUSSION

An earlier and more accurate detection of (small) cancerous and precancerous lesions in the oral cavity 
is essential to improve the prognosis of OCSCC. Raman spectroscopy is being pursued as a potential  
technique to realize this improvement, since the technique provides objective information on a biochemical 
level and can be used for real-time guidance of the diagnostic procedure. To apply Raman spectroscopy 
for in vivo diagnosis of oral mucosal lesions, it is essential to discriminate accurately between normal and 
malignant transformed tissue. Previous studies repeatedly indicated that the main difference between 
normal and malignant tissue samples was attributed to lipid features in normal tissue spectra and protein 
features in the spectra of malignant tissue.20,21,24,26,28 Our results indicate that this may be due to differences 
in tissue morphology, rather than to differences in molecular composition.
As OCSCC originates in the epithelial surface, a malignant mucosal sample shows squamous cell 
differentiation and has an increased epithelium thickness.29 When a Raman spectrum is obtained from 
an intact (non-sectioned) normal sample, it may therefore gather more signals from the structures in 
the deeper tissue layers, in relation to a malignant tissue sample. As mentioned above, previous studies 
repeatedly concluded that spectral features of normal tissue had predominant lipid signatures. This was 
particularly indicated by two sharp features assigned to = C-H cis stretch and CH2 twist respectively 
(1260 and 1300 cm-1), a strong CH2 bend (1440 – 1450 cm-1), a sharp peak in the spectral region of C = C 
stretch vibrations (1656 – 1660 cm-1) and ester bands (1740 – 1750 cm-1).21,24,26,28,37 Comparing these peak 
positions to our calculated mean spectra, strong similarities were detected with the mean spectrum of 
adipose tissue. Since the deeper submucosal layer is composed of among others adipose tissue, the lipid-
dominated spectra of normal samples may be explained by differences in epithelium thickness. However, 
an increase in epithelial thickness does not automatically imply the presence of carcinoma, and therefore 
incorrect classification of a sample can occur. Classification algorithms based on lipid to protein ratios 
may therefore result in diagnostic models with low specificity.
In order to build a diagnostic model with a high specificity, we devised a method to obtain (characteristic) 
spectral signatures of all histopathological structures that can contribute to an in vivo spectrum. The 
used method of Raman mapping experiments, followed by KCA, resulted in pseudo color Raman images 
that could be clearly correlated to the afterwards H&E-stained sections. We demonstrated that Raman 
correlates well with the current gold standard, histopathology. By using the unsupervised HCA, a spectral 
subdivision in equally annotated Raman spectra occurred. This suggests that Raman results contain 
even more specific information than histopathology. Within one histopathological structure, some 
unexplained biochemical variance is present that might be caused by patient, sample, or other structural 
characteristics. The described method resulted in a database that can be supplemented in future, in order 
to answer these questions.
The scanning step size of 2 µm enabled us to obtain information about the molecular composition on a 
cellular level. Moreover, it limited the amount of spectral contribution of neighboring structures, resulting 
in the purest possible spectral information. However, it also limited the size of the scanned regions within 
the tissue sections per experiment.
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The Raman tissue characterization method described here was devised using a relatively small amount of 
samples. We are currently using the described method to create an extensive database of histopathologically 
annotated Raman spectra of oral mucosa and mucosal lesions, based on larger numbers of samples. This 
database can serve to analyze the spectral characteristics and variance of all histopathological structures 
in more detail. Specific spectral subgroups within one structure can be selected, which leads to additional 
useful information for the development of classification and quantification algorithms, in order to improve 
data interpretation of in vivo tissue spectra.

We conclude that in vitro Raman mapping experiments, followed by KCA and HCA, can be used 
as a reproducible method to obtain, identify, and define the spectral characteristics of individual 
histopathological structures in oral mucosal tissue. As a result, a distinguishable spectral average, 
including a standard deviation can be calculated for each structure. This provides an insight into the 
presence of spectral variance within one structure.
We expect that the knowledge of the spectral characteristics of individual histopathological structures 
will help to develop an accurate diagnostic model that can be used to identify suspect lesions within the 
oral cavity. We believe that our method provides an essential contribution to the research field on new 
diagnostic tools in head and neck oncology. 
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ABSTRACT

The poor prognosis of oral cavity squamous cell carcinoma (OCSCC) patients is associated with residual 
tumor after surgery. Raman spectroscopy has the potential to provide an objective intra-operative evaluation 
of the surgical margins. Our aim was to understand the discriminatory basis of Raman spectroscopy at 
a histological level. In total, 127 pseudo color Raman images were generated from unstained thin tissue 
sections of 25 samples (11 OCSCC and 14 healthy) of 10 patients. These images were clearly linked to the 
histopathological evaluation of the same sections after hematoxylin and eosin-staining. In this way, Raman 
spectra were annotated as OCSCC or as a surrounding healthy tissue structure (i.e. squamous epithelium, 
connective tissue (CT), adipose tissue, muscle, gland, or nerve). These annotated spectra were used as 
input for linear discriminant analysis (LDA) models to discriminate between OCSCC spectra and healthy 
tissue spectra. A database was acquired with 88 spectra of OCSCC and 632 spectra of healthy tissue. 
The LDA models could distinguish OCSCC spectra from the spectra of adipose tissue, nerve, muscle, 
gland, CT, and squamous epithelium in 100%, 100%, 97%, 94%, 93%, and 75% of the cases, respectively. 
More specifically, the structures that were most often confused with OCSCC were dysplastic epithelium, 
basal layers of epithelium, inflammation- and capillary-rich CT, and connective and glandular tissue close 
to OCSCC. Our study shows how well Raman spectroscopy enables discrimination between OCSCC and 
surrounding healthy tissue structures. This knowledge supports the development of robust and reliable 
classification algorithms for future implementation of Raman spectroscopy in clinical practice.
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INTRODUCTION

Inadequate surgery (tumor-positive (≤ 1 mm) or close (> 1 and ≤ 5 mm) resection margins) for oral cavity 
squamous cell carcinomas (OCSCCs) varies between 30 and 85%.1 This indicates that currently used 
visual inspection and tissue palpation by the surgeon are not sufficient to define the borders of the 
tumor intraoperatively. Frequently, frozen tissue sections are taken during surgery to evaluate whether 
the margins are tumor-free (so-called frozen tissue section procedure). Although state of the art, this 
procedure has major limitations such as time-consuming whereby only a small percentage (1 – 5%) of the 
resection margin can be evaluated.2 The consequences of tumor-positive resection margins are significant 
since this often leads to revision surgery, the need for adjuvant therapy (postoperative radiotherapy), and 
higher morbidity and mortality.3,4 

Therefore, several optical diagnostic modalities have entered the field of head and neck oncology in 
the last decades, aiming to support the surgeon in achieving tumor-free resections. The most studied 
optical techniques include fluorescence,5-8 optical coherence tomography,9,10 elastic light scattering 
spectroscopy,11 (high resolution) micro endoscopy12,13 and Raman spectroscopy.14,15

Raman spectroscopy is especially suited for intraoperative use since this nondestructive technique does 
not need any pretreatment or labeling of the tissue. Previously, several groups investigated the potential 
application of Raman spectroscopy for tumor detection in the head and neck region,16-18 including the 
oral cavity.19-26 Based on the results of ex vivo and in vivo measurements of oral tissue, it was repeatedly 
concluded that spectra from normal tissue were recognized by their high lipid content, whereas the spectra 
from malignant tissue were characterized by their protein features.20,21,23,25 However, the interpretation of 
the previously published measurements is not straightforward because no exact correlation was made 
between the histopathological structures in the tissue volume from which the Raman signal was obtained, 
and the Raman results.
The different layers and structures in healthy oral cavity tissue have their own specific molecular 
composition and as a consequence their own specific Raman features. OCSCC of the tongue can be 
surrounded by any of the different healthy tissue structures. In previous research, we developed a method 
of collecting detailed spectral information of individual histopathological structures based on in vitro 
Raman mapping experiments.27 
In the current study, we used that method to create a spectral database that comprises OCSCC and 
healthy tissue structures of the tongue. We investigated how well the tissue spectra enable discrimination 
between OCSCC and surrounding healthy tissue structures. We discuss how these results would affect 
development of classification algorithms and future implementation of Raman spectroscopy in clinical 
practice.
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MATERIALS AND METHODS

Sample handling and sample preparation
This study was approved by the Medical Ethics Committee (MEC-2011-450) of the Erasmus MC Cancer 
Institute, University Medical Center Rotterdam. At the Department of Otorhinolaryngology and Head and 
Neck Surgery of the Erasmus MC Cancer Institute, University Medical Center Rotterdam, 25 tissue samples 
were collected from 10 patients who had undergone surgical resection of a primary OCSCC of the tongue. 
All patients gave informed consent.
In total, 11 samples contained OCSCC and surrounding healthy tissue structures. These samples were 
harvested from the surgical resection specimen, more specifically from the center of the macroscopically 
visible tumor. The 14 normal samples that contained only healthy tissue structures, were harvested 
from two different locations. Eight samples were harvested from the surgical resection specimen, more 
specifically from normal-appearing mucosa adjacent to the tumor i.e., between the tumor border and the 
resection border (Figure 1). Six samples were collected from the contralateral (not-affected site) edge of 
the tongue.

C

A

B

Normal sample:
between tumor border 
and resection border

Tumor sample:
center of tumor

Figure 1. A: OCSCC of the tongue. B: Resection specimen. C: Tumor sample was harvested from the center of the 
macroscopically visible tumor, and normal sample was taken between the tumor border and the resection border.
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All samples were at least 5 × 5 mm in size. Samples from the surgical resection specimen were taken 
within 60 minutes after surgical excision. Contralateral samples were taken during surgery. The samples 
were snap frozen by immersion in isopentane and subsequently in liquid nitrogen, and kept at −80°C until 
further use.
For Raman mapping experiments, the frozen tissue samples were mounted on a cryotome stage using 
CryoCompound (KP-CryoCompound, Klinipath B.V., the Netherlands). Adjacent 6 μm and 20 μm-thick 
sections were cut. The 6 μm sections were stained with haematoxylin and eosin (H&E) for histopathological 
evaluation.28 The H&E-stained sections were used to select regions for Raman mapping experiments. 
Corresponding regions were then identified in the unfixed, unstained 20 μm sections that were placed on 
fused silica windows. These 20 μm sections were allowed to dry at the room temperature and used for the 
Raman mapping experiments without further treatment. After completing the mapping experiments, the 
20 μm sections were also H&E stained.

Raman spectroscopic mapping experiments
Raman spectroscopic mapping experiments were performed using a SpectraCell RA Bacterial Strain 
Analyzer (RiverD International B.V., Rotterdam, the Netherlands). This instrument was designed as a fully 
automated inverted confocal Raman microscope for analyzing bacterial samples. After modification of 
the software, it was used for point-by-point Raman mapping of tissue sections. Each measured point 
(pixel) represents an individual spectrum.
For each mapping experiment, the selected region was scanned point-by-point in a two-dimensional grid 
with a step size of 5 μm, and an acquisition time of 1 second per point. About 100 mW of laser light (785 
nm) was focused to a spot of 2 μm in diameter, using a custom made infinity corrected objective with an 
NA of 0,7 and a magnification of 14 (RiverD International B.V.). Raman scattered light was collected in 
the wavenumber interval from 300 to 2500 cm-1 with a spectral resolution of 4 cm-1, using a custom made 
reflection grating with 1650 lines/mm (RiverD International B.V.).

Data preprocessing
The data preprocessing is described in detail in previous work.27 Briefly, for each individual mapping 
experiment, the Raman data were processed and analyzed with software developed in-house that operates 
in a MATLAB environment (MATLAB 7.5.0 (R2007b), MathWorks, MA, USA) and uses the multivariate 
toolbox PLS-toolbox 7.0.0c (EigenVector Research, WA, USA). After removing cosmic ray events, the 
raw data were calibrated. Extended multiplicative signal correction combined with spectral interference 
subtraction29 was used to eliminate all non-informative interfering signals, comprising signal of the 
fused silica window, CryoCompound, blood, carotenoid (Sigma-Aldrich Chemie B.V., The Netherlands), 
hydroxyapatite (Sigma-Aldrich Chemie B.V., The Netherlands), and background fluorescence, as described 
earlier.27 The contributions of carotenoid and hydroxyapatite represented biological signals that were 
considered non-informative, since these signals showed a large influence on the scaling procedure, 
resulting in non-informative differences between similar histopathological structures in different Raman 
experiments. Finally, the wavenumber range of the spectra that were included in the data-analysis was 
restricted to the 400 – 1800 cm-1.
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Data processing
Processing of the Raman map spectra was done as described in previous work.27 Briefly, principal 
components analysis (PCA) was used to reduce the data set without significant loss of information.30 
All data were mean-centered before PCA. The first 20 PCA scores accounted for more than 99,5% of the 
variance present. These PCA scores were grouped using K-means cluster analysis (KCA).31 From the KCA 
results, a pseudo color Raman image was generated by assigning a color to each cluster and by plotting 
the cluster membership of each spectrum as a colored pixel at its measurement position.

Border between gland – adipose and CT

Gland, mucinous

CT, mixed

Nerve

100µm

Squamous epithelium, suprabasal layers

Squamous epithelium, basal layers

CT, inflammation- & capillary-rich

CT, mixed

CT, dense & collagen-rich 

Adipose tissue

CT, mixed

Muscle

OCSCC, central part

OCSCC, peripheral part

CT, mixed

Gland, mucinous

CT, inflammation- & capillary-rich

A B

C D

F

G H

E

Figure 2. A, C, E and G: H&E-stained tissue sections. B, D, F and H: corresponding pseudo color images. The 
K-means cluster averages were annotated as one of the following tissue structures: OCSCC (central part, peripheral 
part, or not otherwise specified), squamous epithelium (superficial layers, suprabasal layers, or basal layers), CT 
(dense and collagen-rich, mixed, or inflammation- and capillary-rich), gland (mucinous or serous), muscle, adipose 
tissue, or nerve.
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Histopathologically annotated Raman spectra
After the Raman mapping experiment and H&E staining, a trained pathologist identified the histopathological 
structures that were present in the scanned region. For each experiment, the optimal number of K-means 
clusters was defined, based on the best match between histopathological structures that were present 
in the mapped region and the pseudo color Raman image, as described in detail earlier.27 Figure 2 shows 
representative examples of H&E-stained sections and their corresponding pseudo color Raman images 
(Figure 2). The pathologist was blinded for the corresponding spectra.
These K-means cluster averages were selected on the basis of sufficient signal-to-noise ratio, and on an 
adequate cluster size to allow histopathological annotation. The signal was calculated as the peak height 
at CH2 (1448 cm-1), and the noise was estimated from the signal part between 1770 and 1800 cm-1 where 
no signal is present. Clusters with a signal-to-noise ratio < 30 were excluded, to ensure that low spectral 
quality was of no influence to the model, especially for small clusters consisting of few spectra. The 
cluster size was expressed as percentage (number of representing pixels/total number of pixels in the 
map). A percentage of ≤ 5% was used as an exclusion criterion.
The remaining K-means cluster averages were then annotated as one of the following tissue structures: 
[1] OCSCC, [2] squamous epithelium, [3] connective tissue (CT), [4] gland, [5] muscle, [6] adipose tissue, 
or [7] nerve, as shown in Figure 2. The K-means cluster averages served as histopathologically annotated 
Raman spectra, and are hereafter called annotated Raman spectra.
The annotated Raman spectra were further subdivided based on the histopathological heterogeneity of 
corresponding tissue areas. In this way the OCSCC spectra were subdivided in: [1a] central part, [1b] 
peripheral part, or [1c] OCSCC not otherwise specified (n.o.s.). Squamous epithelium spectra were 
subdivided in: [2a] superficial layers, [2b] suprabasal layers, or [2c] basal layers. The CT contains varying 
amounts of collagen (bundles), blood vessels, and lymphocytes. Accordingly, three subtypes were 
distinguished: [3a] dense and collagen-rich CT, [3b] mixed CT, and [3c] inflammation-and capillary-rich 
CT. This second subtype contains loose CT, CT with less collagen, CT with blood vessels, or a mixture of 
different CT subtypes. Gland spectra were subdivided in: [4a] mucinous and [4b] serous. Figure 3 shows 
an H&E-stained tissue section which illustrates these subdivisions.

T1

E4

E1

E2

E3

T2

T3

A
CT1

CT2

CT3

M

Figure 3. Microphotograph (magnification × 16) of an 
H&E-stained tissue section of a tumor sample. The 
squamous epithelium can be divided into three layers; 
superficial layers (E1), suprabasal layers (E2), and 
basal layers (E3). The epithelium changes toward the 
right into dysplastic epithelium (E4). An OCSCC (T1 
– T3) arises from this dysplasia and can be divided 
into central part (T1) and peripheral part (T2) or not 
otherwise specified (n.o.s.) (T3). The underlying 
lamina propria and submucosa consist of CT that 
can be divided into dense and collagen-rich CT (CT1), 
inflammation- and capillary-rich CT (CT2), or mixed CT 
(CT3). Adipose tissue (A) and muscle tissue (M) are 
also found in the submucosa.



Processed on: 24-3-2017Processed on: 24-3-2017Processed on: 24-3-2017Processed on: 24-3-2017

509044-L-sub01-bw-Cals509044-L-sub01-bw-Cals509044-L-sub01-bw-Cals509044-L-sub01-bw-Cals

56

Chapter 3

A second subdivision of the OCSCC spectra was based on the differentiation grade of the measured tumor: 
[I] moderately differentiated, [II] moderately to poorly differentiated, or [III] poorly differentiated OCSCC.32 
A second subdivision of the squamous epithelium spectra was based on the presence or absence of 
dysplastic changes; [i] dysplasia, or [ii] no dysplasia.32 Finally, the spectra of the healthy tissue structures 
([2] squamous epithelium, [3] CT, [4] gland, [5] muscle, [6] adipose tissue, and [7] nerve) were subdivided 
depending on their distance to OCSCC. Spectra that were measured in normal (tumor-free) samples were 
divided in: [A] harvested contralateral (not-affected site of the tongue), [B] harvested adjacent to OCSCC 
(between tumor border and resection border). Healthy tissue structures that were measured in samples 
that contained regions of OCSCC were annotated as [C] close to the tumor. Spectra that could not be 
histologically annotated were excluded.

Hierarchical cluster analysis
The annotated Raman spectra of all experiments together were used as input in an unsupervised 
hierarchical cluster analysis (HCA). The output of HCA is a membership matrix (N × N, where N is the 
number of spectra) that represents the clustering at each level of agglomeration.31 The HCA results 
were used to determine the spectral average and standard deviation, for each histopathological 
annotation as described earlier.27 The spectral average represents the overall molecular composition of 
a histopathological structure. The standard deviation provides insight into the variance in biochemical 
composition within the histopathological structure.

Linear discriminant analysis
To investigate how well the tissue spectra enabled discrimination between OCSCC and the six surrounding 
healthy tissue structures, a linear discriminant analysis (LDA) was used.33 Six separate LDA models were 
made, using the scores of the PCA of the annotated Raman spectra as input variables. Each model was 
tested by leave-one-patient-out (LOPO) analysis, i.e. the models were trained using a subset of nine 
patients and tested on the remaining one patient. For each model, the optimal number of input parameters 
was determined by the best result in the LOPO analysis. To prevent overfitting of the LDA model, the 
amount of input parameters was in all cases smaller than half the number of annotated Raman spectra 
in the smallest group. The classification accuracy (proportion of true results, both true positives and true 
negatives) served as a measure for discriminative power.

RESULTS

Histopathologically annotated database
A total of 127 Raman mapping experiments were performed on 25 samples from 10 patients (11 samples 
contained OCSCC and surrounding healthy tissue structures, and 14 samples contained only healthy 
tissue structures). The scanned areas ranged between 405 × 150 μm and 1005 × 470 μm. The step size of 
5 μm resulted in 2700 to 24 426 pixels per experiment (mean number of pixels per experiment: 11 538). 
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The optimal number of K-means clusters varied between 4 and 20, resulting in a total of 1114 K-means 
clusters.
Seven hundred-twenty K-means clusters were annotated based on histopathological correlation of the 
scanned tissue regions. In total 88 K-means clusters were annotated as OCSCC, 140 as squamous 
epithelium, 396 as CT, 41 as muscle, and 33 as adipose tissue. Gland and nerve were both underrepresented 
in our samples with 17 and 5 annotated Raman spectra, respectively. The spectral averages and standard 
deviations of these seven histopathological tissue structures are shown in Figure 4.

In total, 394 K-means cluster averages were excluded from further analysis. These excluded K-means 
clusters represented 17% of the total number of pixels of all experiments together. Examples of the 
excluded K-means spectra are shown in Supplementary Figure S1. First, 216 K-means clusters did not 
pass the inclusion criteria. For 62 clusters, the signal-to-noise ratio was < 30. The average signal-to-
noise ratio of all included spectra was 279 (range: 52 – 999). The other 154 clusters only represented 
a few pixels (≤ 5%) in the scanned regions which made exact histopathological correlation impossible. 
Another 178 K-means clusters were excluded to prevent addition of non-representative contribution to 
the spectral averages. These include 65 clusters that represented borders between two different tissue 
structures, and that therefore reveal a composition of the spectral features of both tissue structures. For 
83 clusters, no reliable correlation with histopathology was possible, because these clusters consisted 
of single pixels dispersed throughout several tissue structures in the pseudo color Raman images. For 
20 clusters, contamination or tissue loss during the cutting and H&E staining procedure prevented a 
reliable correlation. Last, 17 clusters were excluded because they represented structures that were rarely 
encountered in our samples, such as parakeratotic layers of epithelium and gland’s duct.

Distinction between OCSCC and its surrounding healthy tissue structures
To investigate how well OCSCC could be distinguished from the six healthy tissue structures, we made six 
separate LDA models based on the whole spectrum (i.e. OCSCC vs squamous epithelium; OCSCC vs CT; 
OCSCC vs gland; OCSCC vs muscle; OCSCC vs adipose tissue, and OCSCC vs nerve). The results of each 
classification model are given below.

OCSCC vs squamous epithelium
Similar to the OCSCC spectrum (pink spectrum Figure 5A), the average spectrum of squamous epithelium 
(blue spectrum Figure 5A) is dominated by proteins (peaks at 668, 782, 830, 936, 1004, 1156, 1174, 1208, 
1302, 1316, 1448, 1514, and 1656 cm-1).34 The major differences between these spectra are caused by 
the more intense peaks at 902, 936, and 1656 cm-1 in the squamous epithelium spectrum, and the more 
intense peaks at 878, 990, 1064, and 1448 cm-1 in the average OCSCC spectrum (enlarged details in Figure 
5B). The LDA model classified 39 of the 140 squamous epithelium spectra as OCSCC, and 17 out of 88 
OCSCC spectra as squamous epithelium (Figure 5C). This resulted in a classification accuracy of 75%.



Processed on: 24-3-2017Processed on: 24-3-2017Processed on: 24-3-2017Processed on: 24-3-2017

509044-L-sub01-bw-Cals509044-L-sub01-bw-Cals509044-L-sub01-bw-Cals509044-L-sub01-bw-Cals

58

Chapter 3

H&E section excluded clustersRaman image

H&E section excluded clustersRaman image

H&E section excluded clustersRaman image

A B C D

F G HE

J K LI

Figure S1. A, E and I: Microphotograph (magnification 16x) of scanned regions in H&E-stained tissue sections. B, 
F and J: corresponding pseudo color Raman images.  C, G and K: K-means clusters that could not be histologically 
annotated and were therefore excluded from further analysis. D, H and L:  Corresponding spectral averages of 
excluded K-means clusters.
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OCSCC

squamous epithelium

connective tissue

gland

muscle

nerve

adipose tissue

Figure 4. Average spectra ± standard deviation of all individual histopathological structures; OCSCC (pink), 
squamous epithelium (blue), connective tissue (gray),  gland (teal), muscle (red), nerve (salmon), and adipose 
tissue (yellow).
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Figure 5. A: The average spectra ± standard deviation 
of OCSCC (pink) and squamous epithelium (blue). B: 
Enlarged details showing the most striking differences. 
C: Confusion table.

Figure 6. A: The average spectra ± standard deviation of 
OCSCC (pink) and CT (gray). B: Confusion table.
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OCSCC vs CT
The most discriminative region of the mean CT spectrum (gray spectrum Figure 6A) is attributed to 
collagen (peaks at 532, 854, 876, 922, 938, 1246, 1266, and 1448 cm-1).34 The LDA model classified 21 
out of 396 CT spectra as OCSCC, and 12 out of 88 OCSCC spectra as CT (Figure 6B). This resulted in a 
classification accuracy of 93%.

OCSCC vs gland
Glandular tissue was not often encountered in our samples. Since the mean spectrum was based on 
spectra of two different types of gland tissue (serous and mucinous) the standard deviation was larger 
than in other tissue types (Figure 4). Nevertheless the characteristic peaks (440, 718, 874, 1042, 1114, 
1156, 1376, and 1518 cm-1) of the mean gland spectrum (teal spectrum Figure 7A) were striking compared 
with the average OCSCC spectrum (pink spectrum Figure 7A). The LDA model classified 6 out of 17 gland 
spectra as OCSCC, but none of the 88 OCSCC spectra as gland (Figure 7B), resulting in a classification 
accuracy of 94%.

OCSCC vs muscle
The spectral features of OCSCC (pink spectrum Figure 8A) and muscle (red spectrum Figure 8A) are quite 
similar; however some clear differences are visible. Peaks at 546, 782, 1084, and 1096 cm-1 were present 
in the average OCSCC spectrum but were absent in the muscle spectrum. The peaks at 936, 1042, and 
1396 cm-1 were more intense in the muscle spectrum, compared with the OCSCC spectrum (enlarged 
details in Figure 8B). The LDA model classified 1 out of 41 muscle spectra as OCSCC, and 3 out of 88 
OCSCC spectra as muscle (Figure 8C), resulting in a classification accuracy of 97%.

OCSCC vs adipose tissue and OCSCC vs nerve
The average spectra of nerve (salmon spectrum Figure 9A) and adipose tissue (yellow spectrum Figure 9A) 
mainly represent lipids (peaks at 962, 1064, 1080, 1302, 1368, 1440, 1558, 1656, and 1744 – 1748 cm-1),34 

whereas the average spectrum of OCSCC (pink spectrum Figure 9A) is dominated by protein signals (peaks 
at 668, 782, 830, 936, 1004, 1156, 1174, 1208, 1316, 1448, 1514, and 1656 cm-1).34 Thanks to these large 
differences in lipid protein ratios both LDA models showed a classification accuracy of 100% (Figure 9B).

Analysis of misclassifications by the use of subdivisions
Highly accurate discrimination between OCSCC and the majority of healthy tissue structures was 
possible (CT: 93%, gland: 94%, muscle: 97%, adipose tissue: 100%, and nerve: 100%), with the exception 
of squamous epithelium (75%). A detailed overview of the misclassifications is given in Table 1.
The spectra of OCSCC, squamous epithelium, CT, and gland, each showed a large variance around their 
mean (Figure 4). This reflects the heterogeneity in their histopathological annotations. To understand the 
cause of the misclassifications, we used further subdivisions of these tissue structures (as described in 
the materials and methods section).
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Figure 7. A: The average spectra ± standard deviation of 
OCSCC (pink) and gland (teal). B: Confusion table.

Figure 8. A: The average spectra ± standard deviation 
of OCSCC (pink) and muscle (red). B: Enlarged details 
showing the most striking differences. C: Confusion 
table. 

Misclassifications in squamous epithelium
Of the 140 spectra annotated as squamous epithelium, 101 were correctly classified (72%), and 39 were 
misclassified as OCSCC. The spectra that represented the superficial layers were more often correctly 
classified as epithelium (84% (37/44)), than the suprabasal layers (78% (31/40)) or basal layers (59% 
(33/56)), as shown in Supplementary Figure S2.
Spectra that represented squamous epithelium without dysplasia were more often correctly classified 
as squamous epithelium (78% (87/111)), than the squamous epithelium with dysplasia (48% (14/29)) 
(Supplementary Figure S2).
The percentage of correct classifications was higher for squamous epithelium in the contralateral 
normal samples (91% (31/34)), than in the adjacent harvested normal samples (58% (40/69)), or than 
for squamous epithelium from the samples that contained OCSCC (81% (30/37)) (Table 1). This might be 
related to previous observation since less dysplasia was seen in the contralateral samples.
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Figure 9. A: The average spectra ± standard deviation of OCSCC (pink), adipose tissue (yellow) and nerve (salmon). 
B:  Confusion table. 
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Figure S2. A and B: Average spectra ± standard deviation of subdivisions in squamous epithelium. C: Confusion 
table.
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Misclassifications in CT
Of the 396 spectra annotated as CT, 375 were correctly classified (95%) and 21 were misclassified as 
OCSCC. The spectra that represented dense and collagen-rich CT were correctly classified as CT in 100% 
(62/62), whereas mixed CT was correctly classified in 97% (269/278) and inflammation-and capillary-rich 
CT in 79% (44/56), as shown in Supplementary Figure S3.
The percentage of correct classifications was lowest for CT in the samples containing OCSCC (92% 
(144/157)), than for CT measured in normal samples harvested adjacent to OCSCC (between tumor 
border and resection border) (97% (134/138)) or harvested contralateral (not-affected site of the tongue) 
(96% (97/101)) (Table 1).

histopathological annotation
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CT dense & 
collagen-rich mixed types inflamm. & 

capillary-rich

normal, 
contralateral

sample

normal, 
adjacent
sample

tumor
sample

OCSCC 375 62 269 44 97 134 144

CT 21 0 9 12 4 4 13

% correct 95 100 97 79 96 97 92

Figure S3. A and B: Average spectra ± standard deviation of subdivisions in CT. C: Confusion table.

Misclassifications in gland
Of the 17 spectra annotated as gland, 11 were correctly classified (65%) and 6 were misclassified as 
OCSCC. The mucinous gland spectra were more often correctly classified as OCSCC (79% (11/14)), than 
the serous gland spectra (0% (0/3)), as shown in Supplementary Figure S4.
The percentage of correct classifications was higher for gland measured in the contralateral normal 
samples (100% (5/5)), than measured in adjacent harvested normal samples (86% (6/7)) or than samples 
containing OCSCC 0% (0/5)) (Table 1).
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Figure S4. A: Average spectra ± standard deviation of subdivisions in gland. B: Confusion table.

Misclassifications in OCSCC
OCSCC vs squamous epithelium

Out of 88 spectra annotated as OCSCC, 71 were correctly classified (81%), and 17 were classified as 
squamous epithelium by the (OCSCC vs squamous epithelium) LDA model.
The spectra that represented the peripheral part were more often correctly classified as OCSCC (91% 
(21/23)) than the central part (72% (13/18)) or the OCSCC n.o.s. (79% (37/47)), as shown in Supplementary 
Figures S5A and S5C.

OCSCC vs CT
Out of 88 spectra annotated as OCSCC, 76 were correctly classified (86%) and 12 were classified as CT by 
the (OCSCC vs CT) LDA model.
The OCSCC spectra that represented the central part were correctly classified in 100% (18/18). More 
misclassifications occurred in the peripheral part 78% (18/23)), and in OCSCC n.o.s. (85% (40/47)), as 
shown in Supplementary Figures S5A and S5D.

Differentiation grade
In both distinctions (OCSCC vs squamous epithelium and OCSCC vs CT) the percentage of correct 
classifications was higher in the poorly differentiated OCSCC (93% (28/30)) and (90% (27/30)), than in the 
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moderately differentiated OCSCC (81% (29/36) and 83% (30/36)) and moderately to poorly differentiated 
OCSCC (64% (14/22) and 86% (19/22) (Supplementary Figures S5B – S5D).
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Figure S5. A and B: Average spectra ± standard deviation of subdivisions in OCSCC. C and D: Confusion tables.

DISCUSSION

Our ultimate goal is to develop an algorithm that helps the surgeon to achieve tumor-free resection 
margins and as a result improve the outcome of patients with OCSCC. The future implementation of 
such classification algorithm in clinical practice is dependent on the discriminatory power of Raman 
spectroscopy. To understand the discriminatory basis of Raman spectroscopy at a histological level, we 
performed experiments in which spectra and tissue locations (from which the spectra were obtained) were 
clearly linked. This has enabled us to identify which healthy tissue structures were difficult to distinguish 
from OCSCC.
OCSCC can be spectrally distinguished from most subepithelial healthy tissue structures with high 
accuracy (≥ 97% correct discrimination between OCSCC and adipose tissue, nerve, and muscle). Squamous 
epithelium, CT, and gland were the healthy tissue structures that were most often confused with OCSCC.
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Most misclassifications occurred in the distinction between OCSCC and squamous epithelium, especially 
in the basal layers of epithelium, the dysplastic squamous epithelium, and in the epithelium measured 
in the samples that contained OCSCC. This is not surprising because OCSCC originates in the epithelial 
surface (Figure 3). In carcinogenesis, stem cells located in the basal layers of the epithelium acquire 
genetic alterations, followed by clonal expansion.35 Normal epithelium alters in dysplastic epithelium, 
which is more often seen adjacent to invasive oral carcinomas36 and is considered to be a premalignant 
disease. As a consequence, the biochemical composition of both tissue structures shows high similarity. 
Due to clonal expansion of stem cells in the basal layers, the lamina propria is pushed away, and invasion 
through the basal membrane follows. An OCSCC can develop from well differentiated to moderately 
differentiated to poorly differentiated OCSCC.37,38 In each step the similarity with the original squamous 
epithelium will become smaller. This might explain that moderately differentiated OCSCC is more often 
correctly classified.
Irrespective of the distance to OCSCC, inflammation- and capillary-rich CT was most often misclassified 
in the OCSCC vs CT model. This type of CT is more often seen close to tumor (Figure 3). This is caused by 
two reasons: [1] tumor development is accompanied by an immune response that leads to massive tumor 
infiltration by inflammatory cells39 and [2] a relatively higher amount of capillaries is present in the CT 
around the tumor because OCSCC creates new blood supply by stimulating endothelial cell proliferation 
and formation of new blood vessels.40 This can probably explain why most misclassifications occurred 
in this type of CT as well as the higher percentage misclassifications in the CT in the samples containing 
tumor.
Furthermore, the higher percentage of misclassifications in the peripheral part of OCSCC might be 
explained by the epithelial-mesenchymal transition (EMT). EMT occurs at the periphery of a tumor and 
is characterized by the loss of epithelial characteristics.41 EMT has a role in invasion and metastasis of 
cancer cells.42

However, the clinical relevance of these possible misclassifications is questionable. First, the imperfect 
discrimination between OCSCC and squamous epithelium will not necessarily influence the potential for 
intraoperative application of Raman spectroscopy. The majority of residual tumor is namely located in 
the subepithelial, deeper tissue layers. Woolgar et al.43 described that < 2% of the resection specimens 
had solely an involved mucosal margin, whereas 87% of the involved margins was located in the deep 
soft tissue. In the future it might be an option to develop an algorithm that deals with the real clinical 
problem by excluding squamous epithelium and discriminating tumor only from the subepithelial healthy 
structures.
Second, regarding the misclassifications in the CT, it has to be mentioned that in clinical practice a margin 
of at least 1 cm around the tumor is resected to ensure an adequate resection. A part of inflammation- and 
capillary-rich CT, as well as the CT close to the tumor will most likely be resected anyway within the 1 cm 
margin, independent on an intraoperative classification by Raman. However, for algorithm development, 
this is important to know since over resection (and as a result a less functional organ) by expanding the 
border beyond the 1 cm margin is also not desirable.
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In this study, we determined how well Raman spectroscopy enables discrimination between OCSCC 
and surrounding healthy tissue structures. This provided knowledge that supports the development of 
robust and reliable classification algorithms for future implementation of Raman spectroscopy in clinical 
practice.
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ABSTRACT

Currently, up to 85% of the oral resection specimens have inadequate resection margins, of which the 
majority is located in the deeper soft tissue layers. The prognosis of patients with oral cavity squamous 
cell carcinoma (OCSCC) of the tongue is negatively affected by these inadequate surgical resections. 
Raman spectroscopy, an optical technique, can potentially be used for intraoperative evaluation of 
resection margins. Our aim was to develop in vitro Raman spectroscopy-based tissue classification 
models that discriminate OCSCC of the tongue from (subepithelial) non-tumorous tissue.
Tissue classification models were developed using principal components analysis (PCA) followed by 
(hierarchical) linear discriminant analysis ((h)LDA). The models were based on a training set of 720 
histopathologically annotated Raman spectra, obtained from 25 tongue samples (11 OCSCC and 14 
normal) of 10 patients, and were validated by means of an independent validation set of 367 spectra, 
obtained from 19 tongue samples (6 OCSCC and 13 normal) of 11 patients.
A PCA-LDA tissue classification model ‘tumor’ versus ‘non-tumorous tissue’ (i.e. surface squamous 
epithelium, connective tissue, muscle, adipose tissue, gland and nerve) showed an accuracy of 86% 
(sensitivity: 100%, specificity: 66%). A two-step PCA-hLDA tissue classification model ‘tumor’ versus ‘non-
tumorous tissue’ showed an accuracy of 91% (sensitivity: 100%, specificity: 78%).
In this study an accurate PCA-hLDA Raman spectroscopy-based tissue classification model for 
discrimination between OCSCC and (especially the subepithelial) non-tumorous tongue tissue was 
developed and validated. This model with high sensitivity and specificity may prove to be very helpful to 
detect tumor in the resection margins.
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INTRODUCTION

Every year 300 000 new cases of oral cavity squamous cell carcinomas (OCSCCs) are diagnosed 
worldwide1 and only half of these patients will survive 5 years.2 The prognosis is negatively affected by 
inadequate surgical resections.3-5 Nevertheless, it was recently shown that in current practice up to 85% of 
the oral resection specimens have inadequate resection margins (≤ 5 mm distance between tumor border 
and resection surface).3,4

During operation, the surgeon attempts to define the borders of the tumor by visual inspection and 
palpation. Additionally, a so-called frozen tissue procedure can be used for intraoperative histopathological 
examination of suspicious regions.6 However, the diagnostic accuracy of the frozen section procedure 
depends on how well the sampled tissue represents the actual resection margin that is suspected to 
be inadequate.7 Since in oral cavity up to 87% of all tumor-positive margins are located in the deeper 
soft tissue layers,8 the common practice of taking samples of the epithelial margin is of limited value. 
Moreover, the sampling error is often inevitable because only a small portion of the resection margins can 
be evaluated by frozen sections, due to the fact that the procedure is too time-consuming and laborious.9 
Thus, an intraoperative tool that provides a real-time and objective evaluation of all resection margins 
(especially in the deeper soft tissue margins) may increase the number of adequate resections and 
thereby improve the prognosis of patients with OCSCC. 
Raman spectroscopy is an optical technique that is suited for such intraoperative use because it is 
nondestructive and no pretreatment or labeling of the tissue is needed.10 The technique is based on 
inelastic scattering of light by molecules.11 A Raman spectrum contains characteristic peaks that are 
assigned to a corresponding molecular structure within the illuminated tissue. Thus, Raman spectroscopy 
enables tissue characterization based on objective molecular information.12 Because of these attractive 
properties, there has been much interest in the use of Raman spectroscopy for differentiation between 
tumor and non-tumorous tissue13-16 in the head and neck region,17-20 including the oral cavity.21-27

Tongue, which is the most common subsite of OCSCC,28 comprises different histological structures and 
layers,29 all having their own specific Raman spectroscopic features. In order to provide a tool that detects 
OCSCC within the surrounding non-tumorous tongue tissue, a good understanding of all histological 
structures and their spectroscopic features is needed. Histopathologically annotated Raman spectra 
were used in our previous work30 to enable distinction between OCSCC of the tongue and individual 
tissue structures, including those in the deeper soft tissue. Due to the large differences in lipid-protein 
ratio, a 100% accurate distinction was possible between OCSCC and adipose tissue, and OCSCC and 
nerve. Although the other deeper located healthy tissue structures (connective tissue (CT), gland and 
muscle) had a greater spectral similarity to the OCSCC spectrum, these structures were also spectrally 
distinguishable from OCSCC with high accuracy (93%, 94%, and 97% respectively). Furthermore, as might 
be expected by similarities in biochemical composition, the spectral features of OCSCC and surface 
squamous epithelium (i.e. non-tumorous squamous epithelium covering the surface of the tongue) were 
partly overlapping, resulting in a lower discriminatory power of 75%.30 
The objective of our current study was to prove the potential of Raman spectroscopy in discriminating 
OCSCC from non-tumorous tongue tissue, by developing in vitro tissue classification models based on 
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spectral data of individual non-tumorous tissue structures. The accuracy of the models was validated by 
means of an independent dataset.

MATERIALS AND METHODS

Sample handling and sample preparation
At the department of Otorhinolaryngology and Head and Neck Surgery of the Erasmus MC Cancer 
Institute, University Medical Center Rotterdam, 44 tissue samples were collected from 21 patients who 
had undergone a surgical resection because of a primary OCSCC of the tongue. Informed consent was 
obtained prior to the operation according to the protocol approved by the Medical Ethics Committee (MEC-
2011-450) of the Erasmus University Medical Center Rotterdam.
Seventeen samples (from 14 patients) contained OCSCC and non-tumorous tissue (i.e. surface squamous 
epithelium, CT, muscle, adipose tissue, gland and nerve). These samples were harvested from the fresh 
resection specimens, from a region with macroscopically visible tumor. The other 27 samples (from 19 
patients) contained only non-tumorous tissue and were harvested from 2 locations: [1] 14 samples (from 
12 patients) were taken from the resection specimen within a macroscopically normal-appearing region 
adjacent to the tumor, and [2] 13 samples (from 13 patients) were taken from the contralateral (not-
affected) edge of the tongue.
All samples were at least 5 x 5 mm in size. Samples from the surgical resection specimens were taken 
within 60 minutes after surgical excision. Contralateral samples were taken during surgery. The samples 
were snap frozen by immersion in isopentane and subsequently in liquid nitrogen, and kept at -80˚C until 
further use.

Raman spectroscopic mapping experiments and annotated Raman spectra
The frozen tissue samples were mounted on a cryotome stage using CryoCompound (KP-CryoCompound, 
Klinipath B.V., The Netherlands), and 20 µm thick frozen tissue sections were cut, placed on fused silica 
windows and allowed to dry at room temperature. Raman mapping experiments were performed, using 
a SpectraCell RA Bacterial Strain Analyzer (RiverD International B.V., Rotterdam, The Netherlands). 
This instrument was designed as a fully automated inverted confocal Raman microscope for analyzing 
bacterial samples. After modification of the software it was used for point-by-point Raman mapping of 
tissue sections.
The data processing and data analysis has been described in detail previously.31 The data analysis 
software was developed in-house and operates in a MATLAB environment (MATLAB 7.5.0 (R2007b), 
MathWorks, MA, USA) with the multivariate toolbox PLS-toolbox 7.0.0c (EigenVector Research, WA, USA).
Briefly, about 100 mW of laser light (785 nm) was focused to a spot of 2 µm in diameter on the unfixed, 
unstained 20 µm thick frozen tissue sections. Selected regions were scanned point-by-point in a 
2-dimensional grid with a step size of 5 µm and a spectral resolution of 8 cm-1. Of each point a single 
spectrum was obtained, constricted to the wavenumber range of 400 – 1800 cm-1. The spectra were 
grouped using K-means cluster analysis (KCA).32 By assigning a color to each K-means cluster, pseudo 
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color Raman images were generated. After the Raman experiments tissue sections were stained with 
haematoxylin and eosin (H&E).33 Comparison of these pseudo color Raman images with the H&E-stained 
tissue sections enabled histopathological annotation of the K-means cluster averages as [1] OCSCC, [2] 
surface squamous epithelium, [3] CT, [4] muscle, [5] adipose tissue, [6] gland or [7] nerve, as described 
in detail previously.31 With OCSCC the epithelial (keratinocytic) component of the tumor is meant. Based 
on the observed histopathological heterogeneity, the annotated Raman spectra of surface squamous 
epithelium were subdivided into 3 layers (basal layer, suprabasal layer and superficial layer) and 2 
epithelial subtypes (dysplastic and non-dysplastic), as described in detail previously.30 
These histopathologically annotated K-means cluster averages are hereafter referred to as annotated 
Raman spectra. For further analysis, the spectra annotated as [1] were labeled as ‘tumor’ and the six 
individual non-tumorous tissues/tissue structures [2 – 7] were all marked as ‘non-tumorous tissue’.

Development of tissue classification models
One half of the spectral database containing annotated Raman spectra of 10 patients (hereafter called the 
training set) was used to develop the tissue classification models. To ensure an accurate representation 
of all tissue structures, the training set was created such that each tissue structure was represented in 
at least three patients. For the development of tissue classification models principal component analysis 
(PCA)34 was used, followed by (hierarchical) linear discriminant analysis ((h)LDA).35

In this study, two tissue classification models were developed (Figure 1).
• A PCA-LDA model ‘tumor’ (OCSCC) versus ‘non-tumorous tissue’ (i.e. surface squamous epithelium, 

CT, muscle, adipose tissue, gland and nerve). 
• A two-step PCA-hLDA model ‘tumor’ versus ‘non-tumorous tissue’. In the first step the spectra of 

adipose tissue and nerve were distinguished from all the other spectra. In the second step the spectra 
of surface squamous epithelium, CT, muscle and gland were distinguished from the spectra of OCSCC. 

The best model parameters were selected based on the classification accuracy (proportion of true results 
(both true positives and true negatives) of a leave-one-patient-out (LOPO) analysis. In a LOPO analysis the 
classification models are built using the data of all patients in the training set but one, and tested on the 
data of the patient that was left out.

Validation of tissue classification models
The final tissue classification models were validated using the other half of the spectral database 
(hereafter called the validation set) that contained annotated Raman spectra of the samples of the 11 
different patients not included in the training set.
The discriminative power of the tissue classification models was determined by a receiver operator 
characteristic (ROC) analysis where the true positive rate (sensitivity) is plotted against the false positive 
rate (1-specificity) for different values of the discrimination threshold. The area under the ROC curve 
(AUC) is a measure of discriminatory power of the tissue classification model. The maximum value for the 
AUC is 1,0 thereby indicating a (theoretically) perfect model (i.e. 100% sensitive and 100% specific). An 
AUC value of 0,5 indicates no discriminative value (i.e. 50% sensitive and 50% specific) and is represented 
by a straight, diagonal line extending from the lower left corner to the upper right. There are several scales 
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for AUC value interpretation, but ROC curves with an AUC of > 0,9 are generally interpreted as an excellent 
discriminative power, an AUC between 0,8 and 0,9 as good, between 0,7 and 0,8 as moderate and between 
0,6 and 0,7 as poor.36 The Youden index37 is known as an optimal value of the discrimination threshold, 
yielding the highest combined sensitivity and specificity. However, the discrimination threshold can be 
chosen along the ROC curve, such that it provides the combination of sensitivity and specificity that is of 
greatest clinical value.

adipose tissue
nerve
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tissue
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Figure 1. A: PCA-LDA tissue classification model ‘tumor’ versus ‘non-tumorous tissue’. 
B: PCA-hLDA tissue classification model ‘tumor’ versus ‘non-tumorous tissue’.

Tumor-heat maps
From the PCA-(h)LDA models, predictions of the posterior probability of being tumor were calculated for 
each individual point spectrum of each map. By coding this probability as a color between yellow and red, 
a heat map was generated for each measured Raman map.
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RESULTS

Characteristics of the training set
The training set consisted of 127 Raman maps, obtained from 25 tissue samples from 10 patients. Of 
these 25 samples, 11 samples contained OCSCC as well as surrounding non-tumorous tissue structures 
(i.e. surface squamous epithelium, CT, muscle, adipose tissue, gland and nerve), and 14 samples 
contained non-tumorous tissue structures only. From the 14 tumor free samples, 8 originated from the 
resection specimen from a region with macroscopically normal-appearing mucosa adjacent to the tumor, 
and 6 from the contralateral (not-affected) edge of the tongue. The scanned areas ranged in size between 
250 µm x 250 µm and 1005 µm x 470 µm. With a Raman measurement step size of 5 µm this resulted in 
2700 – 18 894 point spectra per Raman map (mean number of spectra per map: 11 421). The optimal 
number of K-means clusters per map varied between 4 and 20.
In total 88 K-means clusters averages were annotated as ‘tumor’, and 632 K-means clusters averages were 
annotated as ‘non-tumorous tissue’ (140 surface squamous epithelium, 396 CT, 41 muscle, 33 adipose 
tissue, 17 gland and 5 nerve).

Characteristics of the validation set
The tissue classification models were validated using an independent dataset. This validation set 
consisted of 70 Raman maps, obtained from 19 samples from 11 patients that were not included in 
the training set. Of these 19 tissue samples, 6 samples contained OCSCC as well as surrounding non-
tumorous tissue structures (i.e. surface squamous epithelium, CT, muscle, adipose tissue, gland and 
nerve), and 13 samples contained non-tumorous tissue structures only. From the 13 tumor free samples, 
6 originated from the resection specimen from a region with macroscopically normal-appearing mucosa 
adjacent to the tumor, and 7 from the contralateral (not-affected) edge of the tongue. The scanned areas 
ranged in size between 250 µm x 100 µm and 1005 µm x 420 µm. With a Raman measurement step size 
of 5 µm this resulted in 1050 – 16 884 point spectra per Raman map (mean number of spectra per map: 
9620). The optimal number of K-means clusters per map varied between 3 and 19.
In total 54 K-means clusters averages were annotated as ‘tumor’, and 313 K-means clusters averages were 
annotated as ‘non-tumorous tissue’ (62 surface squamous epithelium, 185 CT, 20 muscle, 32 adipose 
tissue, 9 gland and 5 nerve).

Validation of the tissue classification models
All results shown were generated using the validation set. Initially, a PCA-LDA model was built to 
distinguish ‘tumor’ from ‘non-tumorous tissue’ (i.e. surface squamous epithelium, CT, muscle, adipose 
tissue, gland and nerve). This model used five principal components (PCs) and showed a maximum 
classification accuracy of 86%. The ROC analysis showed an AUC of 0,90 (Figure 2). At a sensitivity 
of 100%, specificity reached 66%. The misclassifications with this discrimination threshold occurred for 
surface squamous epithelium (58/62), CT (11/185), muscle (15/20), adipose tissue (16/32), gland (4/9) 
and nerve (3/5) (Table 1).
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Since previous published results indicated that certain individual non-tumorous tissue structures were 
easier to distinguish from OCSCC than others,30 a PCA-hLDA model with two consecutive steps was built. 
In the first step the spectra of adipose tissue and nerve were distinguished from all the other spectra, 
using three PCs. In the second step the spectra of surface squamous epithelium, CT, muscle and gland 
were distinguished from the spectra of OCSCC, with an optimal number of 11 PCs. This model showed 
a maximum classification accuracy of 91%. The ROC analysis resulted in an AUC of 0,95 (Figure 2). At a 
sensitivity of 100% this model yielded a specificity of 78%. The misclassifications with this discrimination 
threshold occurred for surface squamous epithelium (51/62), CT (12/185) and gland (5/9) (Table 1).

‘tumor’ ‘non-tumorous tissue’

maximum 
accuracy

sensitivity specificity OCSCC surface 
squamous 
epithelium

CT muscle adipose 
tissue

gland nerve

Model 1:  
PCA-LDA  

‘tumor’ versus  
‘non-tumorous 

tissue’  

86% 100% 66% 0/54 58/62 11/185 15/20 16/32 4/9 3/5

Model 2:  
PCA-hLDA  

‘tumor’ versus  
‘non-tumorous 

tissue’  

91% 100% 78% 0/54 51/62 12/185 0/20 0/32 5/9 0/5

Table 1. Per tissue classification model the maximum accuracy, sensitivity (true positive rate) and specificity 
(true negative rate) are shown. The discrimination threshold is chosen such that a 100% sensitivity is 
obtained. The number of misclassified spectra per tissue structure have been further detailed in the last 7 
columns.

Detailed histopathological evaluation of the misclassified surface squamous epithelium spectra revealed 
that 30 of the 32 spectra annotated as dysplastic epithelium were misclassified. Furthermore, all spectra 
(23/23) annotated as basal epithelial layers were misclassified. Analysis of the CT misclassifications 
showed that all misclassified CT spectra (12/12) were obtained from tissue samples containing OCSCC; 
i.e. from peritumoral stroma.
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Figure 2. Receiver operator characteristic (ROC) analysis. Sensitivity is plotted against 1-specificity. The area under 
the ROC curve (AUC) is a measure of the discriminatory power of the classification models. Gray line: PCA-LDA 
model (‘tumor’ versus ‘non-tumorous tissue’). Black line: 2-step PCA-hLDA model (‘tumor’ versus ‘non-tumorous 
tissue’).

Proof of principle: tumor-heat maps
To demonstrate the differences between the tissue classification models, heat maps were made. A 
representative example is shown in Figure 3. Figures 3A – 3C shows a mapped area with OCSCC and 
surrounding non-tumorous CT. Figures 3D – 3F shows non-tumorous tissue structures only. For more 
examples see Supplementary Figures S1 – S3. 
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Figure 3. A: H&E-stained tissue section showing areas with OCSCC and surrounding CT. D: H&E-stained tissue 
section showing non-tumorous tissue (CT: connective tissue, M: muscle and A: adipose tissue). B – C and E – F: 
Posterior probability of being tumor was calculated for each individual point spectrum of each map and plotted as 
a color between yellow and red.
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Figure S1. A: H&E-stained tissue section showing areas with OCSCC and surrounding CT. D: H&E-stained tissue 
section showing non-tumorous tissue (N: nerve and A: adipose tissue). B – C and E – F: Posterior probability of 
being tumor was calculated for each individual point spectrum of each map and plotted as a color between yellow 
and red.
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Figure S2. A: H&E-stained tissue section showing areas with OCSCC and surrounding CT. D: H&E-stained tissue 
section showing non-tumorous tissue (CT: connective tissue and adipose tissue). B – C and E – F: Posterior 
probability of being tumor was calculated for each individual point spectrum of each map and plotted as a color 
between yellow and red.
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Figure S3. A: H&E-stained tissue section showing areas with OCSCC and surrounding CT. D: H&E-stained tissue 
section showing non-tumorous tissue (CT: connective tissue, G: gland and A: adipose tissue). B – C and E – F: 
Posterior probability of being tumor was calculated for each individual point spectrum of each map and plotted as 
a color between yellow and red.
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DISCUSSION

Raman spectroscopy is a nondestructive, optical technique that does not need pretreatment or labeling 
to characterize tissue in real-time.12 This makes the technique potentially very suitable for intraoperative 
application. In vivo recorded Raman spectra from intact (bulk) tissue will contain spectroscopic features 
from all histological structures and layers present in the entire illuminated volume.22 To provide a solid 
foundation for the development of a diagnostic tool, spectroscopic knowledge about the entire target 
volume is mandatory. We therefore focus on the individual spectroscopic features of all histological 
structures present in tongue tissue. In previous work we investigated the potential of Raman spectroscopy 
for tongue cancer detection, by distinction between OCSCC spectra and spectra of individual non-
tumorous tissue structures.21 In this study, we used this knowledge to develop and validate ‘tumor’ versus 
‘non-tumorous tissue’ classification models.
The use of Raman spectroscopy for characterization of normal and malignant tongue tissue was 
demonstrated by several authors21,23,38 but an independently validated tissue classification model that 
distinguishes OCSCC from non-tumorous tongue tissue has not been published before. Singh et al. 
described a tumor classification model for another oral cavity subsite: buccal mucosa.39 They performed 
ex vivo measurements on intact (bulk) buccal mucosa samples. With their validated PCA-LDA tissue 
classification model, eighty-seven percent overall accuracy was obtained when discriminating tumor 
tissue-spectra from normal tissue-spectra.39 Although Raman results of different oral cavity subsites can 
show inherent spectral differences,40 the accuracy of this buccal model and our tongue PCA-LDA tissue 
classification model was comparable. The higher accuracy (91%) of our second model can be explained 
by the use of a multistep hierarchical LDA. This proved to be more effective than a single step PCA-LDA 
model in the discrimination between tumor and non-tumorous tissue. The reason for this, is that in a 
PCA-hLDA model each discrimination step can be optimized separately.35

Compared to tissue classification models that are based on intact (bulk) tissue measurements our method 
uses the spectra of individual tissue structures. This makes it possible to explore the misclassifications 
of the developed models in detail and gain insight in their clinical relevance. All spectra annotated as 
basal epithelial layers were misclassified as tumor. This is not surprising because OCSCC originates from 
the surface squamous epithelium. In carcinogenesis, stem cells located in the basal epithelial layers 
acquire genetic alterations, followed by clonal expansion.41 This explains the similarity in biochemical 
composition (and thus Raman spectra) of surface squamous epithelium and OCSCC. However, it is 
important to underline that the misclassifications of surface squamous epithelium spectra do not 
compromise the clinical value of our tissue classification model. Up to 87% of tumor-positive resections 
margins are located in the deeper soft tissue layers,8 because tumor at the epithelium surface is visible 
and therefore often adequately resected. A Raman signature resembling squamous epithelium found in 
the deeper soft tissue is automatically suspicious of OCSCC.
In total 6,8% (17/251) of the non-tumorous tissue spectra that were obtained in the deeper soft tissue 
layers were misclassified. The majority (12/251) represented CT spectra that were obtained in the 
proximity (< 5 mm) of the tumor (also referred to as ‘peritumoral stroma’). This might be explained by 
micro-environmental stromal changes that occur around a tumor. Tumor development is accompanied 
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by an immune response that leads to tumor infiltration by inflammatory cells42 and neo-angiogenesis.43 
Hereby the biochemical composition of ‘peritumoral stroma’ differs from that of CT at a greater distance 
to the tumor. Though, these CT misclassifications are neither of clinical concern. In respect to the surgical 
aim which is to remove the tumor with an adequate margin of at least 5 mm of non-tumorous surrounding 
tissue, these false-positive classified spectra would in clinical practice not result in unnecessary resection 
of healthy tissue.
The developed PCA-hLDA classification model could directly be used for objective and automated 
assessment of frozen tissue sections. Unfortunately, current Raman mapping experiments take too much 
time to replace the routine frozen tissue section procedure. In our study, the scanning step size of 5 µm 
was chosen to obtain molecular information on a (sub)cellular level. Investigation of the detection limit 
(minimum amount of tumor cells necessary to be detected as tumor) will define whether this step size 
can be increased to reduce the measurement time without the loss of information. Furthermore, there are 
several other approaches proposed to reduce the current measurement time. Takamori et al. showed that 
the total mapping time was reduced by the combination of Raman spectroscopy with auto-fluorescence.44 
Auto-fluorescence, which has a high sensitivity and speed, but low specificity, was used to identify the 
areas in a tissue section that were suspicious for tumor and needed further detailed classification by 
Raman spectroscopy.
Use of intact fresh tissue (without making frozen sections) is another way to speed up the evaluation 
time, as described by Kong et al.45 They also used a combination of Raman spectroscopy and auto-
fluorescence, and demonstrated that an objective diagnosis of basal cell carcinoma was provided for 
non-sectioned tissue layers, faster than conventional histopathology and without the need for sample 
preparation. With this reduced measurement time intraoperative evaluation of all resection margins on 
the surgical specimen and/or in the wound bed is more achievable.
The classification model with an AUC of 0,95 from this study is the basis for further development of a 
Raman-spectroscopic diagnostic tool which can intraoperatively guide the surgeon to achieve adequate 
resection margins. Such tool can add to surgeon’s experience (based on the visual inspection and 
palpation). The cut-off values of desired sensitivity and specificity may vary depending on the a-priori 
probability of suspicious tissue being tumor. Lower sensitivity and thus higher specificity may be accepted 
when a suspicious tissue to be resected had as low a-priori probability, combined with an expected 
functional loss or extended reconstruction.

In this study we developed and validated Raman spectroscopy-based in vitro tissue classification models 
for discrimination between OCSCC and (subepithelial) non-tumorous tongue tissue. A detailed analysis 
was made of the misclassifications to gain insight in their clinical relevance. We conclude that the high 
sensitivity and specificity of the PCA-hLDA classification model would be helpful in achieving adequate 
resection margins and that such clinical implementation is technically feasible.
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ABSTRACT

A Raman spectrum is a quantitative representation of the overall molecular composition of a tissue. 
Raman spectra are often used as tissue fingerprints, without further interpreting them in terms of 
the information they contain about the tissue’s molecular composition. In this study, we analyzed the 
characteristic spectra of oral cavity squamous cell carcinoma (OCSCC) and healthy tissue structures in 
oral tongue to define the differences in molecular composition.
A total of 1087 histopathologically annotated spectra (142 OCSCC, 202 surface squamous epithelium, 
61 muscle, 65 adipose tissue, 581 connective tissue (CT), 26 gland, and 10 nerve) were obtained from 
Raman maps of 44 tongue samples from 21 patients. A characteristic, average spectrum per tissue 
structure was fitted with a set of 55 pure-compound reference spectra, that comprised a representation 
of proteins, lipids, nucleic acids, carbohydrates, amino acids and miscellaneous, to define the best library 
of fit-spectra. This was done by using a non-negative least-squares fitting procedure. Next, all individual 
spectra per histopathological annotation were fitted with this selected library to define the mean and 
standard deviation of the molecular composition. 
The results show that using the set of 55 pure-compound reference spectra all characteristic tissue-
type spectra could be explained with a fit-residual of < 4,82%. The carbohydrate, protein and amino 
acid content were the most important factors to discriminate between tumor and healthy tissue. The 
combination of these chemical classes were used in a classification model. Validation of this ‘tumor’ 
versus ‘healthy tissue’ classification model on an independent dataset of individual spectra showed a 
sensitivity of 100% and specificity of 93%. 
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INTRODUCTION

Tools that provide real-time detection of oral cavity squamous cell carcinoma (OCSCC) may help head and 
neck surgeons to increase the number of adequate oncological resections and thereby improve patients’ 
outcome.1,2 The interest in surgery that is guided by optical techniques is increasing because these 
techniques are generally not invasive, and can provide real-time and objective tissue characterization.3-6 
The applications and performance of (auto) fluorescence,7-10 narrow-band imaging,11,12 optical coherence 
tomography,13,14 confocal (reflectance) microscopy,15-18 elastic scattering spectroscopy19 and Raman 
spectroscopy20-23 are being investigated.
Raman spectroscopy is a non-destructive optical technique that is based on the inelastic scattering of 
light by molecules.24 The interaction between light and molecules can lead to the excitation of vibrational 
energy levels in the molecule. Hereby, the incident light loses a quantified amount of energy, which causes 
a frequency shift in the scattered light. Such shifts in frequency are called 'Raman shifts' and can be 
plotted in a Raman spectrum. Because the vibrational information is very specific for molecules, Raman 
spectra can serve as fingerprints, in which molecules can be identified. In the case of a combination of 
molecules in the measurement volume, they will all add their own specific Raman shifts to the obtained 
Raman spectrum. The contribution of a specific molecule to a Raman spectrum is proportional to the 
concentration of that molecule in a measurement volume.25 The Raman spectrum can therefore be a 
quantitative representation of the overall molecular composition of a tissue.
Raman spectra are often studied as tissue fingerprints, without further interpreting the spectra in terms 
of the information they contain about the tissue’s molecular composition. A number of such studies have 
appeared, showing Raman spectroscopy’s potential to discriminate between malignant and healthy tissue 
in several anatomical regions,26 including the oral cavity.27-34 The high spatial resolution of the technique 
allows to define spectral differences between healthy tissue and OCSCC on both subcellular27 and cellular 
level29,32 in sectioned oral tissue.28,32 However, Raman spectra that are collected from non-sectioned tissue 
with a fiber-optic probe contain signal contributions of all present molecules. The more heterogeneous 
the measurement volume, the more complex the obtained Raman spectrum. 
Oral tissue is not homogeneous, but rather comprises different tissue structures and layers.35 The 
tongue is the most common location of an OCSCC.36 The keratinized tongue is comprised of mucosa and 
submucosa. The mucosa includes the stratified squamous epithelium and underlying lamina propria.35 
The lamina propria is a delicate layer, which contains few elastic and collagenous connective tissue (CT) 
fibers and is rich in blood vessels, lymphatics, and (sensory branches of) nerves. The submucosa is 
situated beneath the lamina propria and is composed of CT, in which muscle fibers, adipose tissue, nerves, 
blood vessels, and lymphatics are distributed. The thickness of the epithelium is dependent on sex, age, 
and tobacco- and alcohol consumption habits.37,38 The epithelial thickness and the distribution of the 
different tissue structures in the lamina propria and submucosa vary throughout the tongue.39 
Each of these tissue structures have a specific Raman spectrum,21,22 which may make the discrimination 
between non-sectioned healthy tissue and OCSCC more difficult.34 Various ex vivo studies on oral cavity 
tissue show that, despite this complexity, healthy tissue and OCSCC can be successfully distinguished.30,31,33 
The discrimination has mostly been attributed to predominant Raman features that can be assigned to 
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proteins in OCSSC fingerprints, and to predominant lipid features in the Raman fingerprints of normal 
tissue. Similar results were shown in in vivo studies conducted in the oral cavity.40,41 However, as these 
measurements were taken on bulky, non-sectioned tissue using a fiber-optic probe, it is not clear how the 
discrimination between healthy tissue and OCSCC was influenced by the presence and exact proportions 
of the individual tissue structures in the measurement volume. 
A thorough understanding of the spectral contribution of the different tissue structures is essential in 
optimizing the technique’s discriminative power. The aim of this study is to determine and compare the 
molecular compositions of individual tissue structures within oral tongue tissue. The Raman spectra of 
the individual tissue structures were analyzed by means of non-negative least-squares fitting with the 
reference spectra of pure compounds. The molecular compositions of the individual healthy tissue 
structures were then compared to that of OCSCC. Based on these results, a ‘tumor’ versus ‘healthy tissue’ 
classification model was developed and validated. Finally, simulations of large measurement volumes 
were performed, in order to demonstrate the impact of their composition on the discrimination between 
healthy tissue and OCSCC. 

MATERIALS AND METHODS

An overview of the steps that were taken to determine the molecular composition of the tissue structures 
is given in Figure 1, and described in more detail in the paragraphs below. 
In summary, the main tissue structures within oral tongue tissue were identified (Figure 1, step 1): 
surface squamous epithelium, muscle, adipose tissue, CT, gland and nerve.35 A spectral database was 
created containing Raman spectra that were correlated to histopathology. This enabled annotation as 
either OCSCC or one of the healthy tissue structures (Figure 1, step 2). A representative/characteristic 
Raman spectrum was calculated by averaging all equally annotated spectra per tissue structure, called 
'characteristic tissue-type spectrum' (Figure 1, step 3).
The main molecular compounds of these tissue structures were categorized into one of the following 
chemical classes: proteins, lipids, nucleotides, carbohydrates, amino acids and miscellaneous.42 A set 
of pure-compound reference spectra was created representing all these chemical classes. The spectra in 
this set are called 'fit-spectra' (Figure 1, step 4). 
A selection procedure was developed to find the best library, i.e. the optimal combination of fit-spectra to 
approximate each of the characteristic tissue-type spectra (Figure 1, steps 5 – 7).43 The best library was 
defined as having the smallest fit-residual (Figure 1, step 9). The fit residual is that part of the characteristic 
tissue-type spectrum that cannot be explained by the selected library of fit-spectra (Figure 1, step 8). 
Next, the average and standard deviation of the molecular composition per tissue structure were 
determined by fitting all individual histopathologically annotated spectra with the best library for that 
tissue structure (Figure 1, step 10 – 13). Quantitative information about the overall molecular composition 
of the tissue structures is obtained, because the fit coefficients represent the relative proportions in which 
the molecules contribute to the final spectrum (Figure 1, step 14). An average and standard deviation per 
chemical class were calculated for each tissue structure (Figure 1, step 15). 
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molecular
composition

individual Raman spectrum
per tissue structure

step 9

input

step 10
best library

optimal combination of fit-spectra to 
approximate the tissue-type spectrum

non-negative least-squares fit procedure

step 5

step 1 tissue structures:
main structures in oral tongue

characteristic tissue-type spectrum:
average of equally annotated spectra

fit-spectra:
set of 55 pure-compound reference 

spectra representing the most common 
chemical classes

step 2

step 4

input

step 6

step 7 optimization

step 8

input spectra were normalized in intensity

output

histopathologically 
annotated Raman spectra

step 3

define
library

sum(abs(tissue-type sp - optimal fit))
sum(tissue-type sp)

smallest fit residual 

100*

non-negative least-squares fit procedure

step 11

step 12

step 13 optimization

input spectra were normalized in intensity

final fit

output
sum(abs(fit coefficients per class))

sum(fit coefficients all classes)

contribution per chemical class
100*

step 14

average and standard deviation per contribution
per chemical class of equally annotated spectra

step 15

Figure 1. Flowchart of all steps taken to determine the molecular composition of the tissue structures in oral 
tongue (see text for a detailed description).

Histopathologically annotated Raman spectra
Multiple histopathologically annotated Raman spectra were obtained per tissue structure by performing 
Raman mapping experiments, as described in detail earlier.21,22

At the department of Otorhinolaryngology and Head and Neck Surgery of the Erasmus MC Cancer Institute, 
tissue samples were collected from patients who had undergone surgery for a primary squamous cell 
carcinoma of the tongue. Informed consent was obtained prior to the operation according to a protocol 
which was approved by the Medical Ethics Committee (MEC-2011-450) of the Erasmus MC Cancer 
Institute, University Medical Center Rotterdam. 
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A modified SpectraCell RA Bacterial Strain Analyzer (RiverD International B.V., Rotterdam, The Netherlands) 
was used for Raman mapping experiments on unstained frozen tissue sections of 20 µm in thickness. 
About 100 mW of laser light (785 nm) was focused on a spot of 2 µm in diameter. The selected regions 
were scanned point-by-point in a 2-dimensional grid with a step size of 5 µm. At each measurement 
position a single spectrum was obtained. Raman-scattered light was collected in the wavenumber interval 
from 300 – 2500 cm-1, with a spectral resolution of 4 cm-1. The wavenumber range of the spectra that were 
included in the data-analysis was restricted to 400 – 1800 cm-1. 
The raw data were processed as described in detail in a previous study.21,22 Extended multiplicative 
signal correction procedure combined with spectral interference subtraction (EMSC-SIS)44 was used 
for calibration and scaling. The processed spectra were grouped using K-means Cluster Analysis.45 By 
assigning a color to each K-means cluster average, pseudo color Raman images were generated. After 
the Raman experiments, the tissue sections were stained with haematoxylin and eosin (H&E),46 enabling 
correlation and then histopathological annotation of the K-means cluster averages as [1] OCSCC, [2] 
surface squamous epithelium, [3] muscle, [4] adipose tissue, [5] connective tissue, [6] gland or [7] nerve, 
as described in detail previously (Figure 1, step 2).21 With OCSCC the epithelial (keratinocytic) component 
of the tumor is meant.

Set of fit-spectra
In order to create a set of reference spectra, 55 pure compounds were measured which are representative 
of the following chemical classes: proteins, lipids, nucleic acids, amino acids, carbohydrates and 
miscellaneous (Figure 1, step 4). All pure compounds were measured using either a modified SpectraCell 
RA Bacterial Strain Analyzer (RiverD International B.V., Rotterdam, The Netherlands) or a Model 3510 
SCA Skin Composition Analyzer (RiverD International B.V., Rotterdam, The Netherlands). Chemicals 
were purchased from Sigma-Aldrich Chemie B.V. (Zwijndrecht, The Netherlands), Enzo Life Sciences, 
Inc (Raamsdonksveer, The Netherlands) and MP biochemicals (Santa Ana, USA) and were used without 
further purification. 
All of the spectra were calibrated according to the instructions of the spectrometer’s manufacturer. Any 
spectral contributions of the sample carrier (fused silica) and the solvent were subtracted manually. 
The pure-compound reference spectra were grouped per chemical class (proteins, lipids, nucleic acids, 
amino acids, carbohydrates and miscellaneous), as displayed in Figure 2. Hereafter, the pure-compound 
reference spectra are referred to as 'fit-spectra'. 
A complete overview of the specifications (name, CAS-number, chemical class, firm, product number, 
purity, source, instrument, measured condition (dry/dissolved), solvent, concentration, pH, acquisition 
time, accumulations, spectral corrections and S/N ratio), as well as the peak positions of all pure-
compound measurements are given in Chapter 6.
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Figure 2. Pure-compound reference spectra grouped per chemical class. A: Proteins. B: Lipids. C: Nucleic acids. D: 
Amino acids. E: Carbohydrates. F: Miscellaneous.

Fit of characteristic tissue-type spectra to select the best library
In order to find the best spectral representative of a tissue structure, all equally annotated K-means clusters 
were averaged (Figure 1, step 3). These spectral averages are hereafter referred to as 'characteristic 
tissue-type spectra' and were fitted according to the following fitting procedure.

Non-negative least-square fitting procedure
A fitting procedure finds the best combination of fit-spectra in order to approximate the characteristic 
tissue-type spectrum (Figure 1, steps 5 – 9).43 The software that was used for processing and analysis 
was developed in-house and operates in a MATLAB environment (MATLAB 7.5.0 (R2007b), MathWorks, 
MA, USA) with the multivariate toolbox PLS-toolbox 7.0.0c (EigenVector Research, WA, USA).
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Pre-processing, fitting and output
Firstly, the characteristic tissue-type spectrum and the fit-spectra were scaled by normalizing the mean 
intensity of the spectra to a value of 1, after which their offset was removed (Figure 1, step 5). In this 
way, the intensities of all of the spectra that serve as input to the fitting procedure, become comparable 
in intensity.
Secondly, the characteristic tissue-type spectrum was fitted with the 55 fit-spectra by using a non-negative 
least-squares (nn-lsq) fit procedure (Figure 1, step 6).43 An nn-lsq fit is a constrained version of the least-
squares fit in which the fit coefficients are not allowed to become negative. This fit procedure was chosen 
because only the pure compounds that add positively to the fit (i.e. molecular composition) are of interest. 
A third order polynomial was included in each fitting step in order to account for spectral backgrounds. 
The non-negativity constraint is implemented in an iterative optimization procedure, as detailed below. 
The quality of the fit is dependent on how well the fit-spectra approximate the characteristic tissue-type 
spectrum and is defined as the fraction of the tissue-type spectrum that could be explained by the fit-
spectra. The fit-residual was calculated by subtracting the fit from the characteristic tissue-type spectrum 
and was expressed as a percentage of the total intensity of the characteristic tissue-type spectrum 
(Figure 1, step 8).

Optimization 
In order to determine the optimal combination of fit-spectra per characteristic tissue-type spectrum, a 
multistep fit optimization procedure was used in which the fit-spectra were selected one by one (Figure 
1, step 7). This multistep optimization was developed to obtain a reproducible fit and to find the smallest 
possible fit-residual. 
In the first step of the optimization, a nn-lsq fit was performed in which a characteristic tissue-type 
spectrum was fitted with each of the 55 individual fit-spectra separately. The fit-spectrum that gave 
the best improvement, i.e. the highest reduction of the fit-residual, was selected. In the next step, the 
characteristic tissue-type spectrum was fitted with the fit-spectrum that was first selected and with all 
remaining individual fit-spectra separately. The fit-spectrum that yielded the best fit when it was added 
(i.e. lowest fit-residual) was selected as second, and so on. The procedure was repeated until the optimal 
fit was reached. The optimal fit was accomplished when the inclusion of an additional fit-spectrum no 
longer decreased the fit-residual (Figure 1, step 8). Per tissue structure the best library of fit-spectra was 
now selected (Figure 1, step 9). 

Molecular composition per tissue structure
The molecular composition per tissue structure was determined by fitting all individual histopathologically 
annotated spectra with the selected library for that tissue structure. Again the multistep optimization 
fitting procedure was used, as described above (Figure 1, step 11 – 13). Instead of a characteristic tissue-
type spectrum, the individual histopathologically annotated Raman spectra served as input (Figure 1, step 
10). 
The molecular compositions of the different tissue structures were compared by examining the fit 
contributions per chemical class. The fit coefficients represent the relative proportions in which the 
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molecular fit-spectra contribute to the spectrum (Figure 1, step 14). The fit coefficients of the included fit-
spectra were grouped per chemical class (proteins, lipids, nucleic acids, amino acids, carbohydrates and 
miscellaneous). An average and standard deviation per chemical class were calculated for each tissue 
structure (Figure 1, step 15). The molecular compositions of all healthy tissue structures were compared 
to that of OCSCC. 

‘Tumor’ versus ‘healthy tissue’ classification model 
The significance and consistency of the differences in chemical class fit contributions (ccfc) between 
OCSCC and the healthy tissue structures were tested by using the ccfc as input for a classification model. 
The ccfc of spectra annotated as [1] OCSCC were labeled as ‘tumor’ and the ccfc of spectra from the 
six individual healthy tissues/tissue structures; [2] surface squamous epithelium, [3] muscle, [4] adipose 
tissue, [5] connective tissue, [6] gland or [7] nerve, were all marked as ‘healthy tissue’. 
One half of the spectral database containing annotated Raman spectra of 10 patients (hereafter called 
the training set) was used to develop a classification model. To ensure an accurate representation of all 
tissue structures, the training set was created such that each tissue structure was represented in at least 
three patients. A conditional model was developed in which the most distinctive chemical classes were 
selected. Based on the fit data from the training set a cut-off was determined per chemical class that 
distinguished tumor spectra from healthy tissue spectra.
The final tissue classification model was validated using the other half of the spectral database (hereafter 
called the validation set) that contained annotated Raman spectra of the samples of the 11 different 
patients not included in the training set.

Spectral simulations of large measurement volumes
In order to investigate the clinical implications of our results, simulations were performed of large 
measurement volumes (1 mm3), such as those that can be expected while using fiber-optic probes. In 
this study, the discriminating differences between OCSCC and healthy tongue tissue collected from the 
anterior one third and mid one third of the tongue were compared. 
The epithelial layer of the dorsal side at the apex, or 'anterior one third of the tongue', has an average 
thickness of 700 µm.38 The average subepithelial, deeper soft tissue consists of 33% muscle, 40% adipose 
tissue, 24% CT, and 2% combined glandular, vascular and nervous tissue.39 In comparison, the dorsal side 
at the midpoint between the apex and the foramen caecum, or 'mid one third of the tongue', has an average 
epithelial layer of 600 µm.37 The average subepithelial, deeper soft tissue consists of 53% muscle, 6% 
adipose tissue, 13% CT, and 27% combined glandular, vascular and nervous tissue.39

The molecular compositions of the simulated healthy measurement volumes were calculated based on 
results of the fits of the individual tissue structures. The average molecular composition of gland and nerve 
were used to represent the combined glandular, vascular and nervous tissue.39 A similar approach was 
adopted in order to create simulations representing healthy measurement volumes of the subepithelial, 
deeper soft tissue layers of the tongue. 
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RESULTS

Histopathologically annotated Raman spectra
A database containing Raman spectra that were correlated to histopathology was created. The spectra 
were obtained from the data of 197 Raman mapping experiments on 44 tissue samples from 21 patients. Of 
these 44 samples, 17 contained OCSCC and surrounding healthy tissue structures (i.e. surface squamous 
epithelium, CT, muscle, adipose tissue, gland and nerve), and 27 contained healthy tissue structures only. 
The scanned areas ranged in size between 250 µm x 100 µm and 1005 µm x 470 µm. Adopting a Raman 
measurement step size of 5 µm resulted in 2700 to 18 894 point spectra per Raman map (mean number 
of spectra per map: 10 781). The optimal number of K-means clusters per map varied between 3 and 20, 
resulting in a total of 1087 histopathologically annotated K-means cluster averages.
In total, 142 K-means cluster averages were annotated as OCSCC, 202 as surface squamous epithelium, 
581 as CT, 61 as muscle, 65 as adipose tissue, 26 as gland and 10 as nerve. Averaging all equally annotated 
spectra revealed a representative/characteristic Raman spectrum per tissue structure, or 'characteristic 
tissue-type spectrum'. 

Fit of characteristic tissue-type spectra to select the best library
To select the optimal combination of fit-spectra per tissue structure, the characteristic tissue-type spectra 
were fit conform the described multistep optimization procedure. The results are plotted in Figure 3 and 
Figure 4. The selected fit-spectra per tissue structure are summarized in Table 1. 

Figure 3. Optimal fit of characteristic OCSCC spectrum.
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A B

C D

E F

Figure 4. Optimal fits of characteristic healthy tissue-type spectra. A: Surface squamous epithelium. B: Muscle. C: 
Adipose tissue. D: Connective tissue. E: Gland. F: Nerve.

Molecular composition per tissue structure 
The molecular composition per tissue structure was determined by fitting all individual spectra with 
the selected fit-spectra for that tissue structure. An average and standard deviation per chemical class 
were calculated. Again the described multistep optimization procedure was used. The compositions 
of the healthy tissue structures were compared to that of OCSCC, as illustrated in Figure 5A – 5F and 
summarized in Table 2. 
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OCSCC 
The optimal fit included 21 fit-spectra, with which only 2,20% of the characteristic OCSCC spectrum was 
unexplained (fit-residual) (Figure 3). All 142 individual OCSCC spectra were fitted with these 21 fit-spectra. 
This resulted in an average molecular composition of 82% proteins, 6% lipids, 6% nucleic acids, 5% amino 
acids and 1% miscellaneous. 

Surface squamous epithelium 
The optimal fit included 23 fit-spectra and had 2,50% fit-residual (Figure 4A). The fits of 202 individual 
surface squamous epithelium spectra resulted in an average molecular composition of 82% proteins, 
6% lipids, 5% nucleic acids, 4% amino acids, 2% carbohydrates and 1% miscellaneous. The only two 
differences with the composition of OCSCC were found in a lower nucleic acid and amino acid content, 
and in a higher carbohydrate content (Figure 5). 

Muscle 
The optimal fit included 22 fit-spectra and had 2,07% fit-residual (Figure 4B). All 61 individual muscle 
spectra were fitted, which resulted in an average molecular composition of 83% proteins, 6% lipids, 
4% nucleic acids, 6% amino acids and 2% miscellaneous. A lower nucleic acid content was seen for 
muscle, compared to OCSCC. Furthermore, muscle had a (slightly) higher contribution of proteins, amino 
acids and miscellaneous (Figure 5). 

Adipose tissue 
The optimal fit included 12 fit-spectra and had 4,82% fit-residual (Figure 4C). The fits of 65 individual 
adipose tissue spectra resulted in an average molecular composition of 50% proteins, 45% lipids, 3% amino 
acids, 3% carbohydrates and 1% miscellaneous. The composition of adipose tissue comprised a higher 
lipid and carbohydrate content, and a lower protein, nucleic acid and amino acid content, compared to 
OCSCC (Figure 5). 

Connective tissue
The optimal fit included 21 fit-spectra and had 2,78% fit-residual (Figure 4D). All 581 individual connective 
tissue spectra were fitted. This resulted in an average molecular composition of 91% proteins, 2% lipids, 
3% nucleic acids, 2% amino acids, 1% carbohydrates and 1% miscellaneous. Compared to OCSCC, the CT 
showed a higher content of proteins and carbohydrates, and a lower content of lipids, nucleic acids and 
amino acids (Figure 5). 

Gland
The optimal fit included 20 fit-spectra and had 4,18% fit-residual (Figure 4E). Twenty-six individual 
gland spectra were fitted, resulting in an average molecular composition of 71% proteins, 18% lipids, 
3% nucleic acids, 4% amino acids and 4% carbohydrates. Compared to OCSCC, gland showed a higher 
contribution of lipids and carbohydrates, and a lower contribution of proteins, nucleic acids, amino acids 
and miscellaneous (Figure 5).
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Nerve 
The optimal fit included 16 fit-spectra and had 2,38% fit-residual (Figure 4F). All 10 individual nerve spectra 
were fitted with these fit-spectra. This resulted in an average molecular composition of 78% proteins, 
18% lipids, 1% amino acids, 2% carbohydrates and 1% miscellaneous. Compared to the composition of 
OCSCC, nerve was composed of more lipids and carbohydrates, and less proteins, nucleic acids and 
amino acids (Figure 5).

As shown in Table 2, the main compounds of all of the analyzed tissue structures were proteins and 
lipids. Whether the contribution of proteins and lipids was higher of lower than OCSCC, depended on the 
analyzed tissue structure. The molecular composition of adipose tissue, gland and nerve showed a lower 
contribution of proteins and a higher contribution of lipids than OCSCC. This stands in contrast with CT, 
which was characterized by more proteins and less lipids, compared to OCSCC. OCSCC differed from 
all healthy tissue structures by its higher amount of nucleic acids. In all healthy tissue structures the 
contribution of carbohydrates was higher than in OCSCC, except for muscle. Only muscle had a higher 
content of amino acids than OCSCC. 

‘Tumor’ versus ‘healthy tissue’ classification model 
Characteristics of the training and validation set 
The training set consisted of 127 Raman maps, obtained from 25 (11 OCSCC and 14 healthy) tissue 
samples from 10 patients. In total 88 K-means clusters averages were annotated as ‘tumor’, and 632 
K-means clusters averages were annotated as ‘healthy tissue’ (140 surface squamous epithelium, 396 
CT, 41 muscle, 33 adipose tissue, 17 gland and 5 nerve). The ‘tumor’ versus 'healthy tissue' classification 
model was validated using an independent dataset. This validation set consisted of 70 Raman maps, 
obtained from 19 (6 OCSCC and 13 healthy) samples from 11 patients that were not included in the 
training set. In total 54 K-means clusters averages were annotated as ‘tumor’, and 313 K-means clusters 
averages were annotated as ‘healthy tissue’ (62 surface squamous epithelium, 185 CT, 20 muscle, 32 
adipose tissue, 9 gland and 5 nerve).

Results of ‘tumor’ versus ‘healthy tissue’ classification model
The chemical class fit contributions (ccfc) of carbohydrates, proteins and amino acids revealed to be 
most discriminative. Setting the cut-off for carbohydrates at < 0,001%, for proteins at < 87% and for amino 
acids at > 2% resulted in a total of 86 of 88 tumor spectra being classified as ‘tumor’ and 580 of 632 
healthy tissue spectra being classified as ‘healthy tissue’ in the training set. This matches an accuracy 
of 93%, a sensitivity of 98% and a specificity of 92%. Validation of this classification model showed an 
accuracy of 94%, sensitivity of 100% and specificity of 93%, as illustrated in Table 3. 
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Figure 5. Discriminating differences in molecular composition of fitted individual OCSCC and healthy tissue-type 
spectra. A: Contribution of proteins. B: Contribution of lipids. C: Contribution of nucleic acids. D: Contribution of 
amino acids. E: Contribution of carbohydrates. F: Contribution of miscellaneous.

Spectral simulations of large measurement volumes
In most clinical applications of Raman spectroscopy, fiber-optic probes are used with measurement 
volumes that contain multiple tissue structures. When a probe is placed on the epithelial surface, a 
signal can be collected from depths up to 1 mm. In the tongue, the epithelial thickness as well as the 
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distribution of the subepithelial, deeper soft tissue structures is location dependent.37-39 Simulations of 
1 mm3 measurements representing the distribution of healthy tissue structures at the anterior one third 
and mid one third of the tongue were created as described in the materials and methods section. Figure 
6 shows that although the healthy anterior one third and mid one third of the tongue differed in their 
distribution of tissue structures and thus in their molecular composition, their distinction with OCSCC 
remained similar. Nucleic acid, protein and amino acid content were higher in OCSCC, whereas lipid and 
carbohydrate contributions were higher in healthy tissue.

superior side

inferior side

apex/ tip

foramen 
cecum

sulcus 
terminalis

A B

C OCSCC Anterior  
one third

Mid  
one third

Subepithelial 
anterior one third

Subepithelial  
medial one third

Proteins 82 79 81 71 80

Lipids 6 11 8 21 11

Nucleic acids 6 4 4 2 3

Amino acids 5 4 4 4 4

Carbohydrates 0 2 2 1 0

Miscellaneous 1 1 1 1 1

Figure 6. A: Schematic overview of a tongue with an OCSCC on its left edge, with three simulated large-volume 
measurement points. B: Schematic overview of the tongue wound bed after resection, with residual tumor and 
three simulated large-volume measurement points. C: Table shows the calculated molecular composition of 
the simulated points. First column: the chemical classes. Second column: mean percentage of simulated large 
measurement volume with OCSCC. Third and fourth column: mean percentage of simulated large measurement 
volume from mucosal surface. Fifth and sixth column: mean percentage of simulated large measurement volume 
from subepithelial, deeper soft tissue layers.
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Accuracy Sensitivity Specificity True  
positive

True  
negative

False  
positive

False  
negative

Training set 93% 98% 92% 86 580 52 2

Validation set 94% 100% 93% 54 291 22 0

Table 3. Per dataset the accuracy, sensitivity (true positive rate) and specificity (true negative rate) are shown. The 
number of correct classified spectra per dataset have been further detailed in the last 4 columns.

The epithelial layer contributes significantly when the probe is placed on the epithelial surface. Regarding 
the application of Raman spectroscopy as a surgery-guidance tool, it is also of interest to examine how the 
Raman results of subepithelial, deeper soft tissue are influenced by the distribution of tissue structures. 
Likewise, simulations were therefore made for the subepithelial anterior one third and the subepithelial 
mid one third of the tongue. Figure 6 shows that the aforementioned differences between healthy tissue 
and OCSCC persisted in the subepithelial, deeper soft tissue layers, except for the carbohydrate content. 

DISCUSSION

In this study, a set of 55 fit-spectra was used in order to analyze the molecular compositions of OCSCC 
and individual healthy tissue structures in the oral tongue. The content of carbohydrates was the most 
important factor to discriminate between tumor and healthy tissue. Only 2 out of 142 OCSCC spectra had 
a carbohydrate content of > 0%. The markedly increased uptake and utilization of glucose in tumors have 
been well documented.47,48 Increased glycolysis allows the change of glycolytic intermediates into various 
biosynthetic pathways, including those generating nucleic acids and aminos acids.48 By the additional 
use of a high protein (> 87%) and low amino acids (< 2%) contribution a high accuracy, sensitivity and 
specificity was obtained with the developed ‘tumor’ versus ‘healthy tissue’ classification model. 
The results of this study corroborate those of Deshmukh et al.28 They compared Raman spectra that were 
obtained from bulk buccal tissue containing surface squamous epithelium and submucosa, with spectra 
obtained from sectioned tissue samples containing only surface squamous epithelium. Their samples 
had an average epithelial thickness of 500 µm and were measured using a probe, collecting signal from a 
tissue volume with a depth of 1 mm. The analysis of the wavenumber range of 1200 – 1800 cm-1 reveals that 
the spectra of bulk tissues showed features from the epithelial surface as well as from the deeper layers. 
Independently of the sample type, the cluster analysis demonstrates that tumor spectra with dominating 
protein features were distinguisable from healthy tissues that had predominant lipid signatures.28 This 
was also seen in our simulated larger measurement volumes. The results may be explained by the fact 
that oral submucosa is characterized by the presence of adipose tissue and glands.35 However, if on 
the contrary, a healthy tissue volume consists of a large proportion of CT and muscle, the lipid/protein 
ratio might approach or be smaller than the one of OCSCC. This confirms that the actual discrimination 
between an OCSCC spectrum and a spectrum obtained from a larger healthy tissue volume, is dependent 
on the presence and exact proportion of the individual healthy tissue structures in the measurement 
volume. 
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We showed that the molecular composition of OCSCC differs from all other healthy tissue structures by 
its higher mean content of nucleic acids. However the standard deviation in OCSCC and in the healthy 
structures was so large that it did not contribute to the classification model. The predominant nucleic acid 
features in tumor were also described by Sahu et al., who compared 122 in vivo acquired spectra of tongue 
OCSCC, with 137 spectra of tongue from volunteers without tobacco and/or alcohol habits.41 
As shown by the simulations, the difference in nucleic acid content becomes greater if the subepithelial, 
deeper soft tissue is studied. This is due to the absence of surface squamous epithelium in the 
measurement volume. The biochemical compositions of OCSCC and surface squamous epithelium are 
highly similar, which is not surprising because OCSCC originates from the surface squamous epithelium. 
In carcinogenesis, stem cells located in the basal epithelial layers acquire genetic alterations, followed 
by clonal expansion and invasion to the deeper tissue layers.49 In a previous Raman-fingerprint study,21 
we concluded that squamous epithelium was spectrally distinguishable from OCSCC with lower accuracy 
(75%), compared to the deeper located healthy tissue structures (adipose tissue, CT, muscle, gland and 
nerve) (100%, 93%, 97%, 94% and 100% respectively). Within clinical practice, there is especially need for 
a medical diagnostic device that provides an intraoperative and objective evaluation of the subepithelial, 
deeper soft tissue resection margins.1,2,50,51

However, the developed classification model cannot be directly implemented in such a diagnostic device 
because it is based on in vitro measurements on untreated frozen tissue sections. Water, the most 
abundant component of human tissue, was not measured in these thin tissue sections. The approach 
adopted here, however, enabled a detailed analysis of the discriminating differences in the molecular 
composition of individual tissue structures within oral tongue tissue. The scanning-step size of 5 µm 
allowed us to obtain information with a minimal interference of spectral contribution from neighboring 
tissue structures. 
In order to define the molecular composition, a set of 55 fit-spectra was created. Some pure compounds 
that were added to the set were measured in a solid state, while others were dissolved in dissimilar 
concentrations (see specifications in Chapter 6). A limitation of this study is therefore that the calculated 
compositions are based on spectral contributions and do not represent the actual chemical composition 
in the tissues in mass percentages. The set of fit-spectra that was used in this study was extensive 
but evidently not complete. Nonetheless, the fits of the characteristic tissue-type spectra demonstrate 
a reasonable spectroscopic representation of the measured frozen tissue section spectra. In the case 
of adipose tissue, the fit-residual was highest (4,82%) and showed distinct spectroscopic features that 
can possibly be assigned to heme groups. An expansion of the set of fit-spectra could further reduce the 
unexplained fit-residual. 

The results of this study present important knowledge for future Raman spectroscopic research, as well 
as for the implementation of the technique as a medical-diagnostic device. This study can help to interpret 
the results of any in vivo acquired tongue spectrum. In the tongue, an OCSCC is surrounded by healthy 
tissue structures. A mixture of both within a measurement volume can complicate the interpretation of 
results. In future, this database will be used in order to determine the limit of tumor detection in probe 
volumes with various mixtures of tissue structures, with and without surface squamous epithelium.
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PURE-COMPOUND REFERENCE SPECTRA

A complete overview of the specifications (name, CAS-number, chemical class, firm, product number, 
purity, source, instrument, measured condition (dry/dissolved), solvent, concentration, pH, acquisition 
time, accumulations, spectral corrections and S/N ratio), as well as the peak positions of all pure-
compound measurements are given. 
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Chapter 7

CLINICAL NEED

In oncology there is increasing interest in optical techniques as diagnostic tools. In daily head and neck 
oncological care there are three major applications for such techniques: [1] screening of high-risk patients, 
[2] targeted biopsy of clinically evident lesions with a heterogeneous aspect, and [3] surgery guidance. 
As all optical techniques tend to provide a real-time, non-invasive signature of the examined tissue, 
they are ideal for integrating into the oncological workflow without causing harm to the patient or the 
tissue.1 Numerous publications demonstrate the potential and feasibility of several optical techniques. 
Currently the techniques studied most include Raman spectroscopy,2-7 (auto) fluorescence,8-11 narrow 
band imaging (NBI),12,13 optical coherence tomography (OCT),14,15 confocal (reflectance) microscopy 
(C(R)M)16-19 and elastic scattering spectroscopy (ESS).20 Several reviews provide an overview of the most 
recent publications on oncological applications in the head and neck region.21-28 Each technique is based 
on a different principle and all have their own advantages and disadvantages. To evaluate the different 
optical techniques it is important to keep the specific future clinical application in mind, as the technical 
and discriminatory requirements of a technique may vary (Figure 1). This will be dealt with in more detail 
in the paragraph ‘optical techniques’.

normal
mucosa

OCSCC

premalignant
disorders

III.

I. II.
optics

surgery guidance requirements:
in vivo
ex vivo

mucosal surface
deep layers
large area

within 15 minutes

targeted biopsy requirements:
in vivo

mucosal surface
small area

within minutes
high spatial resolution
deep penetration depth

screening requirements:
in vivo

mucosal surface
large area

within seconds

Figure 1. Different applications require different technical and discriminatory specifications. I. Screening of high-
risk patients. II. Targeted biopsy of clinically evident lesions. III. Surgery guidance.
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Screening of high-risk patients
The Netherlands currently has nationwide screening programs for breast cancer, cervical cancer and 
colorectal cancer.29 A screening program for head and neck cancer may be potentially beneficial, not only 
for the patient but also for society by reducing healthcare costs through earlier detection of malignancies. 
Screening can be offered to high-risk patients; those that have extensive nicotine and alcohol habits, and 
those that have had previous malignancies in the aerodigestive tract.30 For screening purposes the goal 
would be to scan the mucosal lining of the upper aerodigestive tract in asymptomatic individuals with 
the intention of examining potentially malignant disorders such as leukoplakia, erythroplakia and lichen 
planus.8 When a mucosal lesion is detected the optical technique can also be used to monitor changes 
over time.

Targeted biopsy of clinically evident lesions with a heterogeneous aspect
With targeted biopsy the goal is to detect the most altered region within a clinically evident mucosal lesion. 
Mucosal lesions harbor inflammation, dysplastic epithelial changes and cancer,31-33 which are difficult 
to distinguish clinically. Histopathological assessment is the gold standard for malignancy diagnosis.34 
Optical techniques can help in the selection of the best area to sample for histological assessment, and 
thereby minimize the sampling error. This prevents the need for repeated biopsies to achieve an accurate 
diagnosis, and reduces the risk of patient harm and anxiety. 

Surgery guidance 
In surgical guidance the goal is to delineate tumor margins. Therefore the tumor needs to be distinguished 
from the surrounding non-tumorous tissue. Accurate delineation of the tumor is of great importance as 
inadequate tumor resection is associated with a poor prognosis.35 Accurate delineation may also limit 
unnecessary resection of healthy tissue, which in turn preserves organ function and esthetics and 
improves the patient’s quality of life. 
Intraoperative assessment of resection margins can be performed in the wound bed (i.e. wound bed-
driven assessment/defect-driven assessment, in vivo) or on the resection specimen (i.e. specimen-driven 
assessment, ex vivo). Various publications have shown that intraoperative ex vivo specimen-driven 
assessment is superior to in vivo defect-driven assessment.36-38 

An ideal optical technique can be used in all of these applications, and should meet as many as possible 
of the following requirements: [1] is applicable both in vivo and ex vivo, [2] requires no pretreatment 
or use of labels, probes or dyes, [3] provides objective, reproducible data, independent of the operator, 
[4] provides information on large tissue regions in a limited amount of time, [5] obtains high spatial 
resolution, [6] obtains sufficient penetration depth, and [7] enables objective result interpretation. 
The time required to obtain the results should not far exceed that of the required time for current 
intraoperative procedures. The average time-span for clinical judgment of a tissue ranges between a few 
seconds to a few minutes, whereas the histopathological assessment of a frozen tissue section may take 
up to 15 minutes.39 The acquired spatial resolution is dependent on the anticipated differences between the 
tissues to be distinguished. The average cell size is between 10 – 20 µm.40 Thus, subcellular differences 
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are noticed from a spatial resolution of ≤ 10 µm. The penetration depth needed for measurements from 
the mucosal surface should be at least the thickness of the epithelium in order to detect invasion through 
the basement membrane. The epithelial thickness within the head and neck region varies between 100 µm 
in the floor of the mouth and up to 700 µm in the dorsal tongue.41 Regarding the desired penetration 
depth of an optical technique, one needs to consider that most premalignant disorders are characterized 
by an increased epithelial thickness, and invasive malignant transformation is characterized by invasion 
through the basement membrane.40 Generally, one can distinguish between point measurement techniques 
(Raman spectroscopy, fluorescence, ESS) and imaging techniques ((auto) fluorescence, NBI, OCT, CRM). 
With point measurement techniques the scanning size is restricted, whereas with imaging techniques 
the information per pixel is limited. Point measurement techniques are most useful for suspicious areas 
that are limited in size, because the user needs to determine the position of the measurement. On the 
other hand, in imaging technique a learning curve is often experienced before good quality images are 
obtained. Also result interpretation can be subjectively influenced. The scanning size is dependent on the 
acquisition time as well as on the size of the probe used. Further technical improvements will solve these 
drawbacks. The excitation source used is one of the essential factors determining the penetration depth; 
the longer the wavelength the deeper the penetration.1 

Below, the principles and characteristics of the following techniques are discussed: Raman spectroscopy, 
(auto) fluorescence, NBI, OCT, C(R)M, and ESS. Their properties are summarized in Table 1.

OPTICAL TECHNIQUES

Raman spectroscopy
The principle of Raman spectroscopy is described in detail in the introduction of this thesis. Briefly, 
the technique is based on the inelastic scattering of light by molecules.42 The contribution of a specific 
molecule to the Raman spectrum is proportional to the concentration of that molecule in the measurement 
volume.43 A Raman spectrum therefore provides both a qualitative and quantitative representation of the 
molecular composition of the tissue examined.
The technique can be used with UV, visible and near infrared (NIR) light.26 Usually a NIR excitation source 
is used to reduce spectral interference from tissue fluorescence. This also ensures a deeper penetration 
of the light into the tissue, up to 1000 µm.44 Both the mucosal surface and the deeper soft tissue layers 
can be investigated without pretreatment of the tissue
Reproducible point measurements can be provided within a second.45 With a high spatial resolution of up 
to 1 µm, highly specific information can be obtained. However, this leads to a restricted scanning size. 
Data interpretation is objective as this is based on statistical and analytical classification algorithms. The 
technique can be used in vivo as well as ex vivo.
As is often mentioned, the disadvantage of Raman spectroscopy is the weak signal: this is because only 
inelastic scattered photons are measured.27 This requires a longer collection time to obtain an adequate 
signal. Technical improvements, such as more sensitive detectors, have solved this problem.46
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Several variations of Raman spectroscopy have been developed. Their purpose is to enhance sensitivity 
(e.g. surface-enhanced Raman scattering (SERS)), or to acquire very specific information (e.g. coherent 
anti-Stokes Raman scattering (CARS)).47 However, these techniques have their own limitations.

Fluorescence
Fluorescence is based on the presence of endogenous fluorophores in cells, such as hemoglobin, collagen, 
elastin, keratin, flavin adenine dinucleotide (FADH) and nicotinamide adenine dinucleotide (NADH).48 
Fluorophores can absorb photons and gain energy when they are illuminated by electromagnetic radiation. 
The stored energy can be re-emitted as light with a longer wavelength, which is known as fluorescence.49

Carcinogenesis leads to changes that can alter the concentration and characteristics of the fluorophores.9 
A review of the optimal wavelength showed that the normalized red-to-green fluorescence intensity ratio of 
405 nm excitation provided the best discrimination between neoplastic and non-neoplastic oral mucosa.50 
Normal cells emit more green fluorescence, while abnormal cells show a loss of auto-fluorescence and 
appear darker. This is imaged by using filtered camera systems. 
The maximum penetration depth is 500 µm.10 Reproducible auto-fluorescence is obtained by using a very 
short acquisition time of less than a second. With commercially available devices the auto-fluorescence 
of large tissue surfaces is evaluated at once.51 This results in a modest amount of spectral information, 
but for a significant area of tissue surface.52 More detailed spectroscopic information can be provided 
when single points are measured. However, this naturally limits the total scanning size. 
Image interpretation is subjective as it relies on the ability of the examiner to recognize loss of 
fluorescence. The development of automated classification algorithms, used to quantify the decrease in 
the ratio of red-to-green auto-fluorescence, tends to reduce this subjective interpretation.50

The technique can be used in vivo and ex vivo. However, within epithelium the most relevant fluorophores 
are NADH and FADH,53 which have been reported to lose their fluorescent properties after resection. The 
oxygenation of tissue leads to a shift from NADH to its oxidized form NAD, which does not fluoresce. This 
limits the use of the technique after resection.
As is often mentioned, the relatively low specificity of auto-fluorescence is a limitation. This is due 
to a few fluorophores with broad and overlapping features.26 Several commonly occurring conditions, 
such as mucosal pigmentation, hyperkeratosis, ulceration, irritation and gingivitis also show a loss of 
fluorescence.54 Therefore the use of exogenous dyes/labels and probes has been explored. A probe is an 
antibody or ligand conjugated to an optically active reporter that is designed to target specific hallmarks 
of cancer.10 The use of probes allows the detection of specific and relatively abundant molecules in 
malignant tissue, which can be associated with specific characteristics (e.g. invasive, aggressive or 
metastatic tendency) of the tumor.10 Topical or intravenous application of tumor selective dyes, such 
as 5-aminolevulinic acid (5-ALA),55 hypericin,56 acriflavine and proflavine57 can be used to enhance 
fluorescence. However, this requires preparation of the tissue or patient.
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Narrow band imaging
In NBI blue light with a short wavelength (415 nm) penetrates the mucosa and highlights the superficial 
capillaries, while another wavelength (540 nm) penetrates deeper and identifies prominent vessels in the 
submucosa.58 A colored composite image is displayed directly onto a monitor, in which the superficial 
capillaries are shown as brown and the deeper vessel as cyan.59 Due to the penetrating depths of the 
blue (160 µm) and green (240 µm) lights, usage is limited to in vivo evaluation of superficial lesions, or 
the mucosal extension of deeper lesions.60 There is no need for dyes or probes. As this is a non-contact 
technique, large areas can be examined at once. Lesions as small as 300 µm in diameter can be detected.61

Histology and 3D imaging confirm that the further a lesion is along the carcinogenesis continuum, the 
more pronounced are the microvascular changes. Stepwise changes in these microvascular irregularities 
form the basis for pattern classifications.62 Up to 50x magnification can be used to facilitate further 
the visualization of these changes in the degree of dilation, tortuosity, meandering and the caliber of 
intra-papillary capillary loops (IPCL).13 The interpretation of these IPCL patterns is highly subjective. 
For the development of more objective classification systems, knowledge of the habits and underlying 
diseases of the study population is crucial, as these can affect the appearance of vessels due to 
vasoconstriction or vascular complications.60 Other anatomical and (patho) physiological issues can 
also affect the appearance of underlying blood vessels. Bleeding, hyperkeratosis, chronic inflammation, 
postoperative radiotherapy, ulcers and leukoplakia can alter the penetration of light into tissue, precluding 
NBI evaluation.12,63 In the oral cavity the reflective shine caused by mucous and salivary secretions also 
complicates result interpretation.64

NBI systems are commercially available, in which switching between white light and NBI modes can 
be performed.59 Positioning the rigid endoscope to provide clear images on the monitor can initially be 
difficult, requiring an experienced operator, particularly in the oral cavity where soft tissues may overlap 
or become mobile.13 The technique is not reliable in a surgical field for assessing deep margins because 
of blood interference, and also because it has been developed to recognize specific mucosal patterns 
without information on different submucosal tissue structures.65

Optical coherence tomography
OCT is an analogue of ultrasound, although infrared light is used instead of sound.66 Back-scattered signals 
that reflect from the different layers within the tissue are used to reconstruct cross-sectional structural 
images.66 In this way tissue architecture is depicted from the mucosal surface or from the deeper soft 
tissue.67 High speed OCT devices with a high spatial resolution (< 4 µm) are currently available.68 Only 
a small area can be examined at a time, because of the small size of the OCT probe.69 OCT records 
reflections up to a depth of up to 2000 µm per second.70 There is no need for pretreatment of the tissue.
Providing an image of high quality is however contingent on a learning curve,71 which makes the 
technique operator dependent. There are no standards for the evaluation of the OCT images, thus the 
interpretation is subjective and rests on the experience of the investigator. This could lead to inter-
observer inconsistencies.15 Moreover, interpretation by a more experienced pathologist is often desirable. 
No quantitative information is provided. Nevertheless, image analysis algorithms for the extraction 
of morphological features are being investigated in order to achieve a more objective and automated 
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diagnosis.72 Certain morphological alterations cause diagnostic difficulties, such as hyperkeratotic 
lesions (due to increased light reflection), hyperplastic lesions (that exceed the penetration depth) and 
ulcers (the lack of basement membrane being confused with invasive carcinoma).73

The technique can be used to assess ex vivo and in vivo lesions. However, ex vivo samples lack capillary 
fluid perfusion, which may affect optical scattering properties and image resolution.15

Confocal microscopy
Confocal microscopy (CM) involves the examination of tissue in vivo at magnifications from 60x to 150x.23 
It differs from conventional microscopy in that it uses a confocal point source of visible light to illuminate 
a small spot within the tissue. Consecutively scanned points in the x-y-plane produce an image that is 
oriented parallel rather than perpendicular to the tissue surface.74 The thin section image illustrates tissue 
architecture and cellular morphology. By moving the microscope lens closer to or further away from the 
tissue, images become either deeper or shallower from the surface.75 However, with a magnification of 
60x it only assesses depths of 80 µm, and with a 150x magnification an even shallower depth of 30 µm.76 
When NIR light is used instead of visible light a deeper penetration up to 300 µm can be obtained. This 
is called laser scanning confocal microscopy (LSCM).74 The technique can be used both on the mucosal 
surface and in the deeper soft tissue layers.
In (LS)CM various topical and intravenous antibody targeted dyes are utilized to help highlight the cellular 
structures. The most commonly used stains include methylene blue, acetic acid, hypericin, acriflavine and 
fluorescein.75

Confocal reflectance microscopy (CRM) differs from LSCM in that fluorescence is not required for imaging. 
Reflected light from various tissue components is detected only from the plane in focus.74 Variations in 
brightness of structures are a function of the light-reflecting properties of tissues. Image contrast is due 
to local natural variations in the refractive indices of various cellular structures.17 CRM devices usually 
operate at a wavelength of 830 nm.18 Detailed information of the epithelium can be gained up to 500 µm 
in depth.75

In confocal (reflectance) endomicroscopy the technique is integrated into an endoscope. Commercially 
available endoscopes have an average spatial resolution of 1 µm.75 Obtaining an image of 10 µm x 10 µm 
takes minutes. The endomicroscope is available in different sizes. However, its large diameter (up to 
5,5 mm) and rigidity limits imaging of certain areas in the mouth.75

Confocal (reflectance) microscopy depends on a user’s learning curve for a consistent image quality.23 
Image resolution is significantly affected by glare from light reflected in cells not in focus. Additionally, 
minimal patient movement during the imaging procedure and motion artifacts due to poor soft tissue 
stability complicates the task of obtaining clear images.16 Keratinization and hyperplasia can cause 
background artifacts due to changes in the refractive index.19 Result interpretation of confocal images is 
subjective and requires a detailed knowledge of the cellular morphology.

Elastic scattering spectroscopy
In ESS the acquired point spectra reflects both the elastic scattering and absorptive properties of the 
tissue without separating these contributions.77 In this way ESS translates tissue micro-morphological 
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changes into spectral features.22 Micro-morphological characteristics including the size and density 
of the nucleus, nucleolus and cytoplasm, will change on transformation to premalignant or malignant 
conditions.20 In ESS a width range of wavelengths is used in the visible or NIR region (300 – 900 nm).23 
The average penetration depth is 500 µm.78 Both the mucosa surface and the deeper tissue layers can be 
evaluated with the technique.
The entire measurement can be made in less than a second and is operator independent.23 The technique 
can be used both in vivo and ex vivo without tissue preparation. Objective and automated result 
interpretation is based on a statistical and analytical algorithm of the spectra rather than on a subjective 
interpretation of images.25

The correlation to gold standard histopathology can be a problem, as the optical signature reports 
changes commonly in a volume of 1 mm3.23 False-positive results were found in inflamed tissue.28 There 
are limited numbers of publications on its use in the oral cavity.

RAMAN SPECTROSCOPY FOR SURGERY GUIDANCE

None of these techniques discussed meet all the prior stated requirements, and thus none of them is 
generally superior regarding its future use in the field of head and neck oncological care. As stated, 
in order to judge which technique should be used it is important to keep the specific future clinical 
application in mind.
For this thesis we decided to focus on the application in surgery guidance. The majority of head and 
neck carcinomas arise in the oral cavity, of which the tongue is the most common subsite.79 Most 
patients with a carcinoma of the tongue will be treated with surgical excision.80 The goal of surgery 
is to excise the tumor with adequate resection margins (> 5 mm distance between tumor border and 
resection surface).81 The patient’s prognosis is negatively affected when this goal is not accomplished. 
Nevertheless, to date inadequate resection margins are found in 30% – 85% of the cases.35,82 Preoperative 
imaging (magnetic resonance imaging, computed tomography, etc.) combined with intraoperative tactile 
and visual information is apparently insufficient for guiding the surgeon to an adequate tumor resection. 
There are several ways to assess resection margins. The most accurate and current gold standard is 
the postoperative final histopathological assessment on formalin-fixed and paraffin-embedded tissue 
sections of the resection specimen.83 This laborious and time-consuming procedure may take up to a 
couple of days, or even weeks in case of complex cases with, for instance, bone involvement. Due to 
wound healing and scarring an additional resection in case of an inadequate resection margin is after 
this time not possible anymore. Therefore, intraoperative histopathological examination of frozen tissue 
sections from suspicious regions, mostly sampled by the surgeon (from the wound bed), is used to 
achieve intraoperative feedback on the resection margin.39,84,85 An additional resection can be taken from 
the wound bed in case of detected tumor residual. Although state-of-the-art, this so-called frozen section 
procedure has major limitations: sampling error risks, costs and the time-consuming nature.38,85,86 Thus 
an intraoperative tool providing a real-time, non-invasive and objective discrimination between oral cavity 
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squamous cell carcinoma (OCSCC) and surrounding non-tumorous tissue could help to increase the 
number of adequate resections and thereby improve the prognosis.
In this thesis we have explored whether Raman spectroscopy is a potential candidate to fulfill this need, 
because the technique requires no tissue preparation or use of dyes, does not suffer from subjective result 
interpretation, and requires no learning curve. It also has a favorable spatial resolution and penetration 
depth, and can be used in vivo as well as ex vivo.2-7 Of all the techniques discussed only ESS also meets 
these requirements.20 Raman results are a quantitative representation of the molecular composition 
of the measurement volume. This enables tissue characterization based on biochemical composition 
rather than on changes in cellular and subcellular size and density, as is the case in ESS.20 Due to these 
properties we have focused in this thesis on Raman spectroscopy.

FINDINGS OF THIS THESIS

The main goal of this thesis was to provide a solid foundation for further development of Raman 
spectroscopic applications in head and neck oncology. This was a multistep process in which we aimed 
to investigate and thoroughly understand those Raman spectroscopic features that distinguish tongue 
OCSCC from its surrounding non-tumorous tissue.
The tongue is comprised of different tissue structures (i.e. surface squamous epithelium, connective 
tissue, muscle, adipose tissue, gland and nerve).40 In most published Raman studies large measurement 
volumes are used that contain multiple tissue structures.6,7,87,88 These structures differ in their molecular 
composition and consequently have their own characteristic Raman features. Although other authors 
describe clear spectral differences between tumor and normal tissue, the cause of these differences 
remains unknown, because histopathological confirmation of the tissue samples examined was often 
omitted. Our first step was the development of a method to answer these questions. With in vitro Raman 
mapping experiments performed on thin tissue sections, detailed spectral information could be clearly 
correlated to histopathology.89

This method provided clear insight into the spectral characteristics and variance of OCSCC and the 
individual non-tumorous tissue structures. An accurate distinction (93% – 100%) was possible between 
OCSCC and individual subepithelial tissue structures.90 Furthermore, as might be expected by similarities 
in biochemical composition, the spectroscopic features of OCSCC and surface squamous epithelium 
were partly overlapping, resulting in a lower discriminatory power of 75%. More specifically, the structures 
that were most often misclassified as OCSCC were dysplastic epithelium, basal layers of epithelium, 
inflammation- and capillary-rich connective tissue (CT), and connective and glandular tissue close to 
OCSCC.90

This knowledge was used for the development of a ‘tumor’ or ‘non-tumorous tissue’ classification model. 
A two-step tissue classification model was based on principal components analysis (PCA) followed 
by hierarchical linear discriminant analysis (hLDA). In the first step the spectra of adipose tissue and 
nerve were distinguished from all the other spectra. In the second step the spectra of surface squamous 
epithelium, CT, muscle and gland were distinguished from the spectra of OCSCC. The validated results 
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showed an accuracy of 91%, a sensitivity of 100% and a specificity of 78%.91 The suboptimal specificity was 
mainly due to misclassifications of the surface squamous epithelium spectra.91 Therefore, it is important 
to underline the clinical problem. In 30 – 85% of the cases the tumor is excised with inadequate resection 
margins (< 5 mm distance between tumor border and resection surface).35 Woolgar et al. found that 87% of 
the resection specimens with involved margins showed the involvement of a deeper soft tissue margin.92 
This implies that the mucosal margin is not often a clinical problem, and that the imperfect discrimination 
of surface squamous epithelium and OCSCC by our current Raman spectroscopic classification model 
should not hamper its future clinical use. 
A Raman spectrum of a tissue contains spectroscopic contributions of all molecules present.93 We 
investigated these contributions of all tissue structures individually. Pure-compound reference spectra 
were used that represented the main components of the tongue; proteins, lipids, nucleic acids, amino 
acids and carbohydrates. A non-negative least-squares fitting procedure found the best combination of 
these pure-compound reference spectra in order to approximate the representative/characteristic tissue 
spectra. The fit-results showed that only a small percentage of the characteristic tissue spectra remained 
unexplained (< 4,82%). Next, all individual annotated Raman spectra per tissue structure were fitted with 
a selected fit-library. In this way the molecular composition per tissue structure was determined, splitted 
in an average and standard deviation per chemical class. The carbohydrate, protein and amino acid 
content were the most important factors to discriminate between tumor and non-tumorous tissue. The 
combination of these chemical classes were used in a ‘tumor’ versus ‘non-tumorous’ tissue classification 
model. The validated results showed a sensitivity of 100% and a specificity of 93%.
Previous studies concluded that the discrimination between OCSCC and normal tissue was found in 
predominant protein and nucleic acids features in OCSCC spectra and predominant lipid features in the 
Raman fingerprints of normal tissue.87,88,94 However, by analyzing the non-tumorous tissue structures 
individually, we showed that whether the spectral contributions of proteins and lipids were higher or lower 
than OCSCC depended on the analyzed normal tissue structure. In contrast to previous studies we now 
know that CT-rich and muscle-rich normal tissue contains more proteins and less lipids compared to 
OCSCC. Being aware of this is crucial for an accurate interpretion of Raman results obtained from large 
measurement volumes.
Only the mean content of nucleic acids was consistently higher in OCSCC, compared to all individual non-
tumorous tissue structures. However, the absolute content of nucleic acids was insufficient to be used as 
a tumor-detection determinant due to a small percentage contribution and a high variance within OCSCC 
and non-tumorous tissue spectra.

There is a great deal of literature in which the tumor-detection potential of Raman spectroscopy is 
demonstrated. However, we were the first to answer the question ‘what is measured?’ sufficiently that 
the strengths and pitfalls of Raman spectroscopy could be defined. We concluded that: [1] accurate 
correlation with histopathology is essential for identifying the precise source of the signals needed to 
interpret the Raman results, [2] it is quite challenging to discriminate surface squamous epithelium from 
OCSCC, [3] spectroscopic fingerprints can be used to develop highly accurate classification models, 
[4] decomposing these fingerprints provides more knowledge about them but does not necessarily add to 
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the discriminative power, and [5] the composition of the measurement volume defines the discriminative 
features. This knowledge is needed for further technological development, in order to integrate Raman 
spectroscopy into daily head and neck oncological care.

FUTURE PERSPECTIVES

What are the steps that need to be taken to bring Raman spectroscopy to the head and neck oncological 
clinics? In 1992 Littenberg published an interesting paradigm for the evaluation of new medical 
technologies.95 In this hierarchical assessment scheme he simplifies the process of examining and reporting 
the properties of medical technologies into a biological plausibility, level I, in which the technology’s 
proposed mode of action is compared with current biological information and theory. At level II, technical 
feasibility, it is determined whether the technology meets its own performance specifications and can 
be delivered to the target population. In the case of a diagnostic test, level III, intermediate outcomes, 
assesses the sensitivity and specificity in a relevant population. The overall medical, psychological and 
financial impacts of the technology upon the patient, including unintended side effects and long-term 
morbidity and mortality is investigated in level IV, patient outcomes. Finally, the costs of the technology 
to society in terms of resource use, ethical issues and social and political hazards are measured in level 
V, societal outcomes. A technology’s success at one level does not guarantee success at another level.95

The results described in this thesis provide a fundamental basis that contribute to level I, biological 
plausibility. The methodology that we have developed for tongue can be used as a blueprint for other 
anatomical regions, and likewise for other types of malignant neoplasms in the head and neck regions. 
We conclude that the spectral variance found within one tissue structure was not due to sample or 
patient characteristics.89 Nevertheless, many interesting fundamental questions remain unanswered. For 
instance, whether there are discriminative spectral differences between healthy contralateral tissue and 
healthy-looking tissue adjacent to the tumor, and whether spectral differences exist between tumors or 
healthy tissue structures at different oral cavity subsites. All subsites have their own architectures of 
tissue structures, their own thicknesses and degrees of keratinization40 and therefore their own specific 
optical signatures. If not taken into account, this may affect the diagnostic accuracy.
Level II, the technical feasibility of Raman spectroscopic measurements to detect tumor in frozen tissue 
sections, has also been demonstrated in this thesis. However, the measurements are currently too slow 
to be of any value in daily clinical practice. Future technical improvements could speed up measurement 
time by, for instance, massive parallel measurements (> 100 points simultaneously). Another possibility 
is to skip and/or minimize non-informative regions, to limit spectral resolution or to use a larger step 
size. Research is needed to determine the ideal conditions. The solution to the speed problem might 
otherwise be found in combinations with other optical techniques. The pioneering work of Notingher et al. 
shows that auto-fluorescence can be used to determine which regions need a more specified evaluation 
with Raman spectroscopy.96 A multimodal approach has the ability to exploit the strengths of several 
techniques.
Other fundamental research questions may be answered using the methodology developed in this thesis, 
e.g. whether there are specific spectroscopic features that discriminate metastatic from non-metastatic 
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tumors. In patients with no clinical evidence of lymph nodal metastasis (N0), there is a percentage of 
occult metastasis.97 Whenever it can be reliably predicted which tumors metastasize, this can change 
the recommended therapy. Furthermore, if it is known which specific cell populations are responsible 
for invasive behavior and metastasis, then Raman spectroscopy might be helpful in their detection. 
Subsequently, molecular based targeted-therapy could be performed. 
The results of this thesis cannot directly be translated into requirements for in vivo applications using 
a fiber optic probe. The results can be used to make a first estimate to define the ideal measurement 
volume of a probe and to get a first estimate on the limit of detection, i.e. how many tumor cells need to 
be in the target volume to be able to recognize them as tumor? However, the answer will be different for 
detection of tumor in frozen tissue sections compared to the in vivo assessment of large measurement 
volumes. Recent results on freshly excised resection tissue show that the differences between tumor 
and surrounding healthy tissue may be much larger when measured in vivo due to differences in water 
concentration that are not visible in frozen tissue sections.2 

In conclusion, this thesis provides a solid foundation for further development of Raman spectroscopic 
applications in head and neck oncology. Nevertheless, it will take several more years before patients with 
an OCSCC can experience the benefits of Raman spectroscopy.
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Chapter 8

Summary

Cancer has become a major public health problem as it is now the leading cause of death. In the 
Netherlands, annually nearly 1000 new patients are diagnosed with cancer of the oral cavity. The majority 
(90%) originate from the epithelial surface and show squamous cell differentiation. Those oral cavity 
squamous cell carcinomas (OCSCC) are a source of concern because of the high disease-related mortality: 
only half of the patients diagnosed with OCSCC will survive the five years following diagnosis. 
The majority of patients with an OCSCC will be treated with surgical excision. The ultimate goal of surgery 
is to excise the tumor with adequate microscopic resection margins (> 5 mm distance between tumor 
border and resection surface). The prognosis of the patient is negatively affected when this goal is not 
accomplished. Nevertheless, to date this happens in 30% – 85% of the cases. Preoperative imaging 
(computer tomography, magnetic resonance imaging, etc.) combined with intraoperative tactile and visual 
information is apparently insufficient to guide the surgeon to an adequate resection. Biopsy samples can 
be taken during surgery to evaluate whether suspicious resection margins are tumor free. Although state 
of art, this so-called frozen tissue section procedure has major limitations, such as sampling error, costs 
and the time-consuming nature of the procedure. 
Thus, an intraoperative tool that provides real-time and objective evaluation of the resection margins 
would increase the number of adequate resections and thereby improve patient’s prognosis. In this thesis 
we explored whether Raman spectroscopy is a potential candidate to fulfill this need.
Raman spectroscopy is an optical technique named after the Indian scientist, Chandrasekhara Venkata 
Raman, who discovered in 1928 a new phenomenon of inelastic scattering of light by molecules. A Raman 
spectrum contains characteristic peaks that are assigned to corresponding molecular structures within 
the illuminated tissue. Thus, this technique enables nondestructive and objective tissue characterization 
based on molecular information. Compared to other optical imaging techniques, Raman spectroscopy 
does not need pretreatment or labeling of the tissue to provide real-time results with sufficient penetration 
depth (up to 1 mm) and a high spatial resolution. 
The tongue, which is the most common subsite of OCSCC, is comprised of different tissue structures 
(i.e. surface squamous epithelium, connective tissue, muscle, adipose tissue, gland and nerve). These 
tissue structures differ in their molecular composition and consequently have their own characteristic 
Raman spectrum. A thorough understanding of the Raman spectroscopic features that distinguish OCSCC 
from its surrounding non-tumorous tissue structures is needed to provide a solid foundation for further 
development of a Raman-spectroscopic diagnostic tool.
In Chapter 2 a standardized method was developed to collect and analyze the Raman spectroscopic 
features of OCSCC and individual non-tumorous tissue structures in the tongue. In vitro Raman mapping 
experiments performed on tissue sections supplied detailed spectral information that could be correlated 
to histopathology. The method provided clear insight into the spectral characteristics and variance of 
OCSCC and the individual non-tumorous tissue structures. 
In Chapter 3 we investigated whether the spectroscopic differences could be used to discriminate between 
OCSCC and individual non-tumorous tissue structures. A highly accurate distinction (93% – 100%) was 
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possible between OCSCC and individual subepithelial tissue structures. Furthermore, as might be expected 
by similarities in biochemical composition, the spectroscopic features of OCSCC and surface squamous 
epithelium were partly overlapping, resulting in a lower discriminatory power of 75%. 
With this knowledge we proved in Chapter 4 the potential of Raman spectroscopy in classifying unknown 
Raman tissue spectra obtained from tissue sections. Two tissue classification models were developed 
using principal components analysis (PCA) followed by (hierarchical) linear discriminant analysis ((h)
LDA). The models were validated by means of an independent set of spectra. In our first PCA-LDA 
model, the spectra of the validation set were classified as either ‘tumor’ or ‘normal’ (non-tumorous tissue 
structures) with an accuracy of 86%, a sensitivity of 100% and a specificity of 66%. The results improved 
by the use of a two-step PCA-hLDA tissue classification model, showing an accuracy of 91%, a sensitivity 
of 100% and a specificity of 78%. In the first step of the PCA-hLDA the spectra of adipose tissue and 
nerve were distinguished from all the other spectra. In the second step the spectra of surface squamous 
epithelium, CT, muscle and gland were distinguished from the spectra of OCSCC. 
The suboptimal specificity was mainly due to misclassifications of the surface squamous epithelium 
spectra. Therefore, it is important to underline the clinical problem. In 30 – 85% of the cases, the tumor 
is excised with inadequate resection margins (< 5 mm distance between tumor border and resection 
surface). The majority (87%) of these tumor-positive margins are located in the depth, in other words in 
the subepithelial, deeper soft tissue. This implies that the mucosal margin is not often a clinical problem, 
and that the imperfect discrimination of surface squamous epithelium and OCSCC by our current Raman 
spectroscopic classification model should not hamper its future clinical use. 
A Raman spectrum of a tissue contains spectroscopic contributions of all molecules present. By 
detailed analysis of these spectroscopic contributions, the molecular composition of a tissue structure 
can be quantified. In Chapter 5 we analyzed the Raman spectra of OCSCC and individual healthy tissue 
structures in terms of the information they contain about the tissue’s molecular composition. This was 
done by using a non-negative least-squares fitting procedure, which finds the best combination of pure-
compound reference spectra in order to approximate a representative/characteristic tissue spectrum. 
Chapter 6 gives an overview of the 55 pure-compound reference spectra that were used. These reference 
spectra represented the main components of tongue; proteins, lipids, nucleic acids, amino acids and 
carbohydrates. The fit-results showed that only a small percentages of the characteristic tissue spectra 
remained unexplained (< 4,82%). 
By analyzing the non-tumorous tissue structures individually, we showed that whether the spectral 
contributions of proteins and lipids were higher or lower than OCSCC depended on the analyzed normal 
tissue structure. In contrast to previous studies we now know that CT-rich and muscle-rich normal tissue 
contains more proteins and less lipids compared to OCSCC. Only the mean content of nucleic acids was 
consistently higher in OCSCC, compared to all individual non-tumorous tissue structures. However, the 
absolute content of nucleic acids was insufficient to be used as a tumor-detection determinant due to a 
small percentage contribution and a high variance within OCSCC and non-tumorous tissue spectra. The 
carbohydrate, protein and amino acid content were the most important factors to discriminate between 
tumor and non-tumorous tissue. The combination of these chemical classes were used in a ‘tumor’ versus 
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‘healthy tissue' classification model. The validated results showed a sensitivity of 100% and a specificity 
of 93%.
In most clinical applications of Raman spectroscopy, fiber-optic probes are used with measurement volumes 
that contain multiple tissue structures. Simulations mimicking the sampling of larger measurement 
volumes demonstrated that the Raman results and the tumor-detection power of the technique are 
dependent on the presence and exact proportion of the tissue structures in the volume. Being aware of 
this is crucial for an accurate interpretion of Raman results obtained from large measurement volumes. 

To conclude, this thesis provided a thorough understanding of the Raman spectroscopic features that 
distinguish OCSCC from the individual non-tumorous tissue structures in the tongue. The strengths 
and limitations of Raman spectroscopy regarding its discriminative potential were elucidated. Raman 
spectroscopy turned out to be a perfect candidate for OCSCC detection in the tongue. The technique can 
add value in multiple clinical settings, as discussed in Chapter 7. With our work we aimed to help (head 
and neck) surgeons, pathologists and spectroscopists to understand and adopt the added value of this 
objective technique in their (future) clinical practice.
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Samenvatting

Sinds enkele jaren is kanker wereldwijd doodsoorzaak nummer 1. In Nederland horen jaarlijks bijna 1000 
patiënten dat ze een vorm van kanker in de mondholte hebben. Het merendeel (> 90%) van deze tumoren 
ontstaat in het slijmvlies, ofwel plaveiselepitheel, en worden daarom mondholte plaveiselcel carcinomen 
(MHPCC) genoemd. MHPCC hebben een slechte prognose; slechts de helft van de patiënten overleeft de 
eerste 5 jaar nadat de diagnose is gesteld. 
De meeste patiënten met een MHPCC worden geopereerd. Het doel van de operatie is om de tumor 
volledig te verwijderen met adequate microscopische marges (> 5 mm afstand tussen de snijranden en 
de rand van de tumor). De prognose van de patiënt wordt negatief beïnvloedt indien dit doel niet wordt 
behaald. Helaas is dit momenteel het geval in 30 – 85% van de operaties. Beeldvorming, zoals magnetic 
resonance imaging (MRI) of computed tomography, die voor de operatie wordt verricht, wordt tijdens de 
operatie gecombineerd met de tactiele en visuele informatie van de chirurg. Desondanks zet de chirurg 
de snee vaak niet op de goede plek. Door vriescoupes te nemen tijdens de operatie, kan een chirurg extra 
informatie krijgen over de snijranden die verdacht zijn voor tumor residu. Deze procedure heeft echter 
grote nadelen, zoals hoge kosten en een lange analysetijd waardoor het onmogelijk is om alle snijranden 
te onderzoeken. 
Een hulpmiddel, dat tijdens de operatie direct informatie kan verschaffen over de snijranden, kan het 
aantal adequate marges vergroten en daarmee de prognose van de patiënten verbeteren. Tijdens deze 
promotie werd onderzocht of Raman spectroscopie die extra informatie zou kunnen verschaffen. 
Raman spectroscopie is een optische techniek die vernoemd is naar een Indische wetenschapper, 
Chandrasekhara Venkata Raman, die in 1928 een nieuwe vorm van lichtverstrooiing door moleculen 
heeft ontdekt en daar zijn naam aan heeft verbonden. Een Raman spectrum is een afspiegeling van de 
moleculen die aanwezig zijn in het weefsel dat wordt belicht. Aan de hand van de pieken in een spectrum 
is het dus mogelijk om, op een niet invasieve manier, de moleculaire samenstelling van weefsel objectief 
te analyseren. In vergelijking met andere optische technieken vereist Raman spectroscopie geen 
voorbehandeling van het weefsel, heeft het voldoende penetratiediepte (tot 1 mm) en een hoge ruimtelijke 
resolutie.
Tong is de meest voorkomende locatie van een MHPCC en bestaat uit verschillende weefselstructuren 
(zoals oppervlakte slijmvlies, bindweefsel, spier, vet, speekselklier en zenuw). Deze weefselstructuren 
verschillen in moleculaire samenstelling en hebben dus hun eigen karakteristieke Raman spectrum. 
Om een goede basis te leggen voor de toekomstige ontwikkeling van een Raman spectroscopisch 
hulpmiddel is het noodzakelijk de Raman signalen, die MHPCC onderscheiden van de individuele gezonde 
weefselstructuren, volledig te begrijpen.
In hoofdstuk 2 hebben we een gestandaardiseerde methode ontwikkeld om de spectrale informatie 
van MHPCC en van de individuele gezonde weefselstructuren te verzamelen en te analyseren. In vitro 
metingen op vriescoupes verschaften gedetailleerde spectrale informatie die kon worden gecorreleerd 
met de histopathologische beoordeling. Deze methode gaf inzicht in de spectrale karakteristieken en 
variatie van MHPCC en van de individuele gezonde weefselstructuren.
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In hoofdstuk 3 werd onderzocht of de spectrale verschillen konden worden gebruikt om onderscheid 
te maken tussen MHPCC en de individuele gezonde weefselstructuren. Het bleek mogelijk om met een 
hoge betrouwbaarheid (93% – 100%) MHPCC te differentiëren van de individuele subepitheliale (onder 
het oppervlakte slijmvlies gelegen) gezonde weefselstructuren. Zoals kon worden verwacht door de 
overeenkomsten in moleculaire samenstelling (en dus in spectrale karakteristieken), was het onderscheid 
tussen MHPCC en het oppervlakte slijmvlies moeilijker. Dit resulteerde in een iets lagere betrouwbaarheid 
van 75%.
Deze kennis hebben we gebruikt in hoofdstuk 4 om te bewijzen dat Raman spectroscopie onbekende 
spectra correct kan classificeren als ‘tumor’ of ‘normaal’. Er werden twee classificatiemodellen 
ontwikkeld, gebaseerd op een principale-componenten analyse (PCA) gevolgd door een (hiërarchische) 
lineaire discriminantanalyse ((h)LDA). De modellen werden gevalideerd op een onafhankelijke set van 
spectra. Met het eerste PCA-LDA classificatiemodel was het mogelijk om de spectra van de validatie set te 
classificeren als ‘tumor’ of als ‘normaal’ met een betrouwbaarheid van 86%, een sensitiviteit van 100% en 
een specificiteit van 66%. Door in het tweede PCA-hLDA model gebruik te maken van twee opeenvolgende 
stappen verbeterden de resultaten naar een betrouwbaarheid van 91%, een sensitiviteit van 100% en een 
specificiteit van 78%. 
De suboptimale specificiteit werd voornamelijk veroorzaakt door misclassificaties van het oppervlakte 
slijmvlies. Hierbij is het van belang om de resultaten te zien in het licht van het klinische probleem. In 
30 – 85% van de gevallen wordt de tumor verwijderd met niet-adequate marges (< 5 mm afstand tussen 
de snijranden en de rand van de tumor). Het merendeel (87%) van deze niet-adequate marges wordt 
gevonden in de diepte, met andere woorden te midden van de subepitheliale, diepe weefselstructuren. Dit 
impliceert dat de niet-perfecte differentiatie tussen MHPCC en het oppervlakte slijmvlies het gebruik van 
onze classificatiemodellen in de kliniek niet in de weg staat.
Een Raman spectrum bevat signaalbijdragen van alle aanwezige moleculen in het belichte weefsel. 
Door die signaalbijdragen te analyseren is een kwantitatieve uitspraak mogelijk over de moleculaire 
samenstelling van het weefsel. In hoofdstuk 5 hebben we de verschillen in moleculaire samenstelling 
van MHPCC en de individuele gezonde weefselstructuren onderzocht. Hiervoor hebben we gebruik 
gemaakt van een zogenoemde niet-negatieve least-squares fit procedure die de beste combinatie van 
referentie spectra zoekt om de representatieve/karakteristieke Raman spectra van MHPCC en van de 
individuele gezonde weefselstructuren te benaderen. In hoofdstuk 6 staat het volledig overzicht van de 
55 referentie spectra die we hiervoor hebben gebruikt. De referentie spectra zijn een representatie van 
de belangrijkste bouwstoffen van tong; eiwitten, vetten, nucleotiden, aminozuren en koolhydraten. Met 
het fitten bleven slechts kleine percentages van de karakteristieke Raman spectra onverklaard (< 4,82%). 
De hoeveelheid koolhydraten, eiwitten en aminozuren bleken het belangrijkste in het onderscheid tussen 
tumor en normaal. De combinatie van deze drie werd gebruikt voor de ontwikkeling van een ‘tumor’ versus 
‘normaal’ classificatie model. De gevalideerde resultaten laten een sensitiviteit van 100% en specificiteit 
van 93% zien. 
Er werden diverse verschillen gevonden tussen de moleculaire samenstelling van MHPCC en van de 
individuele gezonde weefselstructuren. Het was afhankelijk van de onderzochte gezonde weefselstructuur 
of de spectrale bijdrage van eiwitten, vetten, aminozuren en koolhydraten hoger of lager was dan die van 



Processed on: 24-3-2017Processed on: 24-3-2017Processed on: 24-3-2017Processed on: 24-3-2017

509044-L-sub01-bw-Cals509044-L-sub01-bw-Cals509044-L-sub01-bw-Cals509044-L-sub01-bw-Cals

165

Samenvatting

8

MHPCC. Alleen de hoeveelheid nucleotiden was altijd hoger in MHPCC in vergelijking met de gezonde 
weefselstructuren. Helaas bleek de absolute hoeveelheid nucleotiden, ten gevolge van een grote variatie 
in MHPCC en gezonde weefsel-spectra, onvoldoende om te gebruiken als tumor-detecterende factor. 
Voor de klinische toepassing van Raman spectroscopie worden meestal fiber-optische instrumenten 
gebruikt met een meetvolume dat meerdere weefselstructuren kan bevatten. Simulaties van grotere 
meetvolumes werden gebruikt om te demonstreren dat de precieze locatie en samenstelling van het 
onderzochte meetvolume het Raman signaal en het vermogen van de techniek tot tumor-detectie kan 
beïnvloeden. Voor een betrouwbare interpretatie van Raman signalen die zijn verkregen van grotere 
meetvolumes, is het cruciaal om hiervan bewust te zijn. 

Ter conclusie, deze promotie verschaft gedetailleerde informatie over de Raman signalen die MHPCC 
onderscheiden van de individuele gezonde weefselstructuren in tong. De krachten en de beperkingen van 
Raman spectroscopie werden opgehelderd. Raman spectroscopie kan de extra informatie verschaffen 
die nodig is om tumor te detecteren in de tong. Hiermee kan de techniek waarde toevoegen in diverse 
klinische situaties, zoals beschreven in hoofdstuk 7. Met ons werk hopen we dat (hoofdhals) chirurgen, 
pathologen en spectroscopisten de toegevoegde waarde van deze optische techniek in hun toekomstige 
klinische praktijk zien en begrijpen. 
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Abbreviations

5-ALA 5-aminolevulinic acid
AUC area under the ROC curve
CARS coherent anti-Stokes Raman scattering
CCD charge coupled device
ccfc chemical class fit contributions
CM confocal microscopy
CRM confocal reflectance microscopy
CT connective tissue
EMR electromagnetic radiation
EMSC-SIS extended multiplicative signal correction – spectral interference subtraction
EMT epithelial – mesenchymal transition
ESS elastic scattering spectroscopy
FADH flavin adenine dinucleotide 
HCA hierarchical cluster analysis 
H&E haematoxylin and eosin
hLDA hierarchical linear discriminant analysis 
HNSCC head and neck squamous cell carcinoma
HWVN high wavenumber
IPCL intra-papillary capillary loops
KCA K-means cluster analysis 
LDA linear discriminant analysis 
LOPO leave-one-patient-out
LSCM laser scanning confocal microscopy
MEC Medical Ethics Committee
MHPCC mondholte plaveiselcel carcinoom
MRI magnetic resonance imaging
NADH nicotinamide adenine dinucleotide
NBI narrow band imaging
NIR near infrared
nn-lsq non-negative least-squares
n.o.s. not otherwise specified
OCSCC oral cavity squamous cell carcinoma
OCT optical coherence tomography
PCA principal component analysis 
PCs principal components 
ROC receiver operator characteristic
SCC squamous cell carcinoma
SERS surface-enhanced Raman scattering
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