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Abstract

For forecasting volatility of futures returns, the paper proposes an indirect method
based on the relationship between futures and the underlying asset for the returns and
time-varying volatility. For volatility forecasting, the paper considers the stochastic
volatility model with asymmetry and long memory, using high frequency data for the
underlying asset. Empirical results for Nikkei 225 futures indicate that the adjusted R2

supports the appropriateness of the indirect method, and that the new method based
on stochastic volatility models with the asymmetry and long memory outperforms the
forecasting model based on the direct method using the pseudo long time series.

Keywords: Forecasting; Volatility; Futures; Realized Volatility; Realized Kernel; Leverage Ef-
fects; Long Memory.
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1 Introduction

It is essential to forecast financial market volatility in both the short and long run. For example,

under the Basel II Accord, banks and other authorized deposit-taking institutions need to use

short-term volatility forecasts to produce daily Value-at-Risk (VaR) measures, while they use

longer term volatility forecasts for option pricing and asset allocation. However, most research

has focused on equity markets, foreign exchange markets, and their accompanying options, and

studies on modeling and forecasting volatility of returns on futures contracts are limited (see

Simon (2002) and Hong, Nohel, and Todd (2015) for the options trading).

One reason for this gap in the literature is that the available sample size before each matu-

rity date is generally insufficient to use time series models, such as autoregressive moving-average

(ARMA), autoregressive fractionally integrated moving-average (ARFIMA), and generalized au-

toregressive conditional heteroskedasticity (GARCH) models. In order to alleviate this problem,

the datasets used in Jorion (1995), Martens (2002), Sadorsky (2006), Lai and Sheu (2010), and

Lai (2015), among others, are based on the prices of futures contracts closest to maturity, in order

to connect small-sized datasets to create a pseudo long time series.

For connected return data for petroleum futures contracts, Sadorsky (2006) compared several

statistical models, and found that the asymmetric GARCH model gave the best forecasts. For

modeling the joint distribution of spot and futures returns of the S&P 500 index, Lai and Sheu

(2010) and Lai (2015) use realized volatility (RV), which is a direct estimate of latent volatility,

without specifying explicit models. Extending the work of Kroner and Sultan (1993), Lai and

Sheu (2010) and Lai (2015) developed the RV-based bivariate asymmetric GARCH models (see

Barndorff-Nielsen et al. (hereafter BHLS; 2008) and McAleer and Medeiros (2011) for recent

developments regarding RV). For connecting the datasets, as the information on time to maturity

and overlapping data are discarded, the potential to improve forecasts exists. Unlike Sadorsky
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(2006), Lai and Sheu (2010) and Lai (2015), the paper uses unconnected datasets and considers

volatility forecasts as a function of each maturity date.

The paper develops a new approach for forecasting the volatility of futures returns, based on

the following relationship between the futures contract and underlying asset. Theoretically, the

futures price depends on the price of the underlying asset and the time to maturity. Therefore, the

futures volatility may depend on the volatility of the underlying asset and the quadratic function

of the time to maturity. If the volatility forecasts of the underlying asset are accurate, it is possible

to forecast accurately the volatility of the futures contract. For this reason, the new method also

uses the volatility forecasts of the underlying asset.

This paper accommodates two important features, namely the leverage effect and long memory,

in order to develop three kinds of volatility forecasting models. One is the SV model, with

asymmetry and long memory, using high frequency data. This model is based on the work

of Andersen et al. (2003), Andersen, Bollerslev and Meddahi (2005), and Asai, McAleer and

Medeiros (2012). Another model is the heterogeneous autoregressive model, with asymmetric

effects, which is a variant of Corsi (2009), Martens et al. (2009) and Corsi and Renò (2010). The

third model is the fractionally integrated exponential GARCH model of Bollerslev and Mikkelsen

(1996). Based on the volatility forecasts of the underlying asset, this new approach is indirect,

and is based on the relationships between the volatilities of the spot and futures returns. The

new approach also extends previous work, including Jorion (1995), Martens (2002), and Sadorsky

(2006), as the new model accommodates long memory.

In order to overcome the small sample problem referred to above, we may consider an alter-

native approach based on GARCH family models using intraday return series, as investigated by

Andersen and Bollerslev (1998). In using intraday returns observed every minute, for example,

it is appropriate to accommodate U-shaped intraday periodicity in volatility, as investigated by
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Wood et al. (1985), Harris (1986), and Andersen and Bollerslev (1997), among others. In this

case, it is difficult to use daily realized volatility for the differences in frequency. We will not

examine this issue further as it moves away from the topic of daily volatility estimates, and is

beyond the scope of this paper.

Using the new approach, we can avoid connecting futures data to construct a pseudo long

time series. When new futures contracts are launched in the market, we can obtain the volatility

forecasts more efficiently from the volatility of the underlying asset, using the relationship between

spot and futures volatility. In the empirical analysis, we find that the long range dependence in the

connected data often yields a bias in forecasting the futures return volatility, and that the datasets

support the use of indirect methods rather than a direct method via the connected datasets.

The paper considers newly launched and illiquid futures markets. First, as our approach is

based on the theoretical relationship between futures prices and their underlying assets, it is worth

discussing liquidity effects on their markets. Oehmke (2009) develops a model to show that the

stock prices of the illiquid segment of the cash index will subsequently align with the index or index

futures level, suggesting that arbitrage is slower in more illiquid markets. The recent empirical

analysis of Fung, Lau, and Tse (2015) supports the theoretical result for RV in the Hong Kong

Hang Seng Index futures. As illiquid markets reduce arbitrage efficiency and weaken the link

between futures prices and their underlying stocks, our approach may not work satisfactorily in

this situation. We should note that a simple autoregressive model for RV with asymmetric effects,

which will be used in the empirical analysis, is expected to show better forecasting performance

than existing approaches. Second, we consider a case where a single underlying asset is used

for several markets with different maturities. In this case, each market has a different volatility,

especially for the newly launched market. Although the existing approaches are unable to provide

multiple volatility estimates, our approach is able to do so. We will not extend the issues as they
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are beyond the scope of the paper. In this paper, we use Nikkei 225 futures, which has relatively

highly liquid derivatives.

The organization of the remainder of the paper is as follows. Section 2 reviews the volatility

estimator of BHLS (2008), and discusses the theoretical relationships between futures and their

underlying assets regarding returns and time-varying volatility. Based on the relationship between

the volatilities of futures and spot returns, Section 2 proposes a new approach for forecasting

the volatility of futures. Section 3 explains three kinds of volatility forecasting models for the

underlying asset that are used in the new approach. Section 4 presents the empirical results using

high frequency Nikkei 225 futures data and the underlying Nikkei Stock Average Index (Nikkei

225). Section 5 gives some concluding remarks.

2 A New Approach for Forecasting Volatility of Futures Returns

2.1 Realized Kernel

Let Yτ be the log-price of a financial asset at time τ on day t, where τ ∈ [t − 1, t]. We assume

that Yτ follows the Brownian semimartingale plus jump (BMSJ) process:

Yτ =
∫ τ

t−1
audu+

∫ τ

t−1
σudWu + Jτ ,

where Jτ =
∑Nτ

i=1Ci is a finite activity jump process, Nτ denotes the number of finite jumps in the

interval [t−1, τ ], with Nτ <∞ for any t, au is the drift term, σu denotes the volatility, and Wu is a

standard Brownian motion process. For any deterministic partition t−1 = τ0 < τ1 < · · · < τn = t,

the quadratic variation (QV) at day t is defined by:

[Y ]t = plim
τj≤t∑
j=1

(
Yτj+1 − Yτj

)2 =
∫ t

t−1
σ2
udu+

Nt∑
i=1

C2
i ,

where
∫ t
t−1 σ

2
udu is the integrated variance, and it is assumed that supj{τj+1− τj} → 0 as n→ ∞.
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Define the noisy observation of Yτj as Xτj = Yτj +Uτj , where Uτj denotes the noise with mean

zero and constant variance. The noise can be caused by, for example, liquidity effects, bid/ask

bounce and mis-recording. We estimate daily QV from the observations Xτ0 , . . . ,Xτn . A simple

approach is to use realized variance (RV), which is defined by
∑n

j=1 x
2
j , where xj is the jth high

frequency return calculated over the interval [τj−1, τj], defined by xj = Xτj−Xτj−1 . Unfortunately,

RV is inconsistent in the presence of microstructure noise.

There are two popular approaches for estimating QV. One is the realized kernel (RK) estimator

of BHLS (2008), while the other is the two time scale realized volatility (TSRV) estimator of Zhang

et al. (2005) and Aı̈t-Sahalia et al. (2011). These estimators are robust to microstructure noise.

Among them, we use the RK estimator, since it is the only estimator which is robust to jumps.

For estimating daily QV, BHLS (2008) developed the non-negative estimator which takes the

following form:

Kt(X) =
H∑

h=−H
k

(
h

H + 1

)
γk, γk =

n∑
j=|h|+1

xjxj−|h|, (1)

where k(x) is a kernel weight function. Following BHLS (2009), we use the Parzen kernel function:

k(x) =

⎧⎨⎩
1 − 6x2 + 6x3 0 ≤ x ≤ 1/2
2(1 − x)3 1/2 ≤ x ≤ 1
0 x > 1.

The estimator takes the same form as the standard heteroskedasticity and autocorrelated (HAC)

covariance matrix estimator (e.g. Newey and West (1987) and Andrews (1991)), but Kt(X) is

not normalized by the sample size. As shown in BHLS (2008), Kt(X) is a consistent estimator of

[Y ]t (see BHLS (2008, 2009) for further details on the selection of an appropriate value of H). By

construction, the estimator is called RK. The estimate of volatility is obtained by the square root

of the RK estimate.
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2.2 The Relationship between Spot and Futures Volatility

Let Rt be the logarithmic return of the underlying asset on day t, and let ft be the futures return

with the time to maturity, T . The relationship between ft and Rt is given by ft = Rt − (δ − r)T ,

where r is the risk-free rate, and δ is the expected dividend yield. The relationship leads to a

regression model:

ft = αr + βrRt + γr(−T ) + εt, (2)

with the restrictions αr = 0 and βr = 1, where εt is the disturbance term. The estimate of γr can

be interpreted as the estimate of (δ − r).

Turning to the time-varying volatility, let RKt and RKf
t be the realized kernel estimates of

the variance of the spot and futures returns, respectively. By the above relationships, we have∑n
j=1 f

2
jt =

∑n
j=1R

2
jt + 2(δ − r)T

∑
j=1Rjt + n(δ − r)T 2, where fjt (Rit) is the ith futures (spot)

return at day t. By adding cross-products, fjtfj−|h|,t and RjtRj−|h|,t, to this equation, as in (1),

we obtain the relationship that RKf
t is affected by, not only RKt, but also by the time to maturity

and its square. Hence, we consider the regression model:

RKf
t = αv + βvRKt + γv1T + γv2T

2 + vt, (3)

with the restrictions αv = 0 and βv = 1, where vt is the disturbance term.

We estimate parameters of equations (2) and (3), using the OLS and HAC covariance matrix

estimators. We construct the robust χ2 test statistic for testing the restrictions using the HAC

covariance matrix estimator.

2.3 Forecasting Volatility of Futures Returns

There are alternative techniques for forecasting spot return volatilities, as explained in the intro-

duction. It is not easy to develop forecasting models for the volatility of the futures return as
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the sample size is not large enough for estimation, except for simple autoregressive (AR) models.

The new approach for forecasting the volatility of futures return is based on the spot-futures

relationship for the time-varying variance (3), and the forecasts of spot return volatility.

Corresponding to day t (t = 1, 2, . . . ) for the underlying asset, we denote t = n0 as the

previous day to when trading of the futures starts, and denote the maturity date as t = n0 + nf .

Hence, futures are traded for nf days. The new approach estimates the initial relationship, using

estimated time-varying variances of spot and futures returns for q days, RKn0+h and RKf
n0+h

(h = 1, 2, . . . , q), respectively, starting from q = 5 in the empirical analysis given below.

On day t = n0 + q, the one-step-ahead forecast of the volatility of futures is obtained using

the following two steps:

Step 1: For the underlying asset, obtain the one-step-ahead forecast, R̂Kn0+1, using the esti-

mated time-varying variances, RKt (t = 1, . . . , n0). Fixing the sample size as n0, update

RKn0+1 and obtain R̂Kn0+2. Repeat the process q + 1 times in order to obtain the series

of one-step ahead forecasts, R̂Kn0+h (h = 1, 2, . . . , q + 1).

Step 2: For the futures return, obtain the estimates of time-varying variances, RKf
n0+h

(h =

1, 2, . . . , q), and estimate the parameters of the regression model:

RKf
t = αv + βvR̂Kt + γv1T + γv2T

2 + vt, (t = n0 + 1, n0 + 2, . . . , n0 + q), (4)

using OLS. Setting R̂Kn0+q+1 in the right-hand-side gives the predicted value, R̂K
f

n0+q+1.

The proposed approach can easily be extended to obtain 5 and 10 step-ahead forecasts. After

obtaining the new estimates of the time-varying variances, set q = q+1, and repeat Steps 1 and 2

until q = nf −1, which corresponds to the prior day to the maturity date. The volatility forecasts

of futures returns are obtained by taking the square root of R̂K
f

n0+h (h = q + 1, . . . , nf ).
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As the process starts from q = 5, we cannot use the method in the first week of newly launched

markets. For the first week, we may use simple methods, such as a moving-average of past RKf s

for predicting volatility.

3 Volatility Forecasting Models for the Underlying Asset

Consider the following stochastic volatility model with asymmetry and long memory (ALSV):

Rt = V
1/2
t zt, zt ∼ iid(0,1),

(1 − φL)(1 − L)d(lnVt − μ) = ξt, (5)

ξt = λ1zt−1 + λ2(z2
t−1 − 1) + ηt, ηt ∼ iid(0, σ2

η),

where Vt is the stochastic variance, L is the lag operator, zt and ηt are independent processes,

and d, φ, λ1, λ2 and ση are scalar parameters. zt may have a heavy-tailed distribution, but it is

assumed that E(z4
t ) is finite. As ξt has mean zero and finite variance, by construction, lnVt follows

the ARFIMA(1,d,0) process, with the parameter of fractional difference, d. It is also possible to

consider an ARFIMA(5,d,0) model as in Andersen et al. (2003) and Andersen, Bollerslev and

Meddahi (2005). For stationarity and invertibility, the process needs to assume that |φ| < 1 and

|d| < 1/2. If λ1 < 0 and λ2 ≥ 0, zt and ξt+1 are negatively correlated, yielding leverage effects.

Furthermore, λ1zt−1 + λ2(z2
t−1 − 1) can be considered as the second-order approximation of the

Hermite polynomials. Chen and Ghysels (2010) and Asai, McAleer and Medeiros (2012) provide

alternative specifications.

Although Vt is the latent variable in the ALSV model, it can be replaced by the realized kernel

estimate. As discussed in Barndorff-Nielsen and Shephard (2002), the ‘RV error’, which is the

difference between the true and realized volatility, causes bias in estimating the parameters of

stochastic volatility models. The simulation experiments of Asai, McAleer and Medeiros (2012b)

indicate that the estimation bias is severe, but that the effects of the RV error are negligible
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in forecasting volatilities. For this reason, the above model works by setting Vt = RKt and

zt = Rt/
√
RKt (see also Andersen et al. (2003) and Andersen, Bollerslev and Meddahi (2005),

and Bollerslev et al. (2009)). The following two-step approach is used for estimating the ALSV

model: The first step estimates the long memory parameter, d, by the local Whittle (LW) estimator

of Shimotsu and Phillips (2006); the second step estimates the remaining parameter using OLS.

For purposes of comparison, the heterogeneous autoregressive (HAR) model of Corsi (2009)

and the fractionally-integrated exponential generalized ARCH (FIEGARCH) model of Bollerslev

and Mikkelsen (1996) are used. Following Corsi (2009), denote the average of Vt for the past h

period as (V )t−1:t−h = h−1
∑h

i=1 Vt−i. Consider the asymmetric HAR (HAR-A) model:

RKt = αc + βdRKt−1 + βw(RK)t−1:t−5 + βm(RK)t−1:t−22 + λ1Rt−1 + λ2R
2
t−1 + et, (6)

where et is the disturbance term. Note that (RK)t−1:t−5 and (RK)t−1:t−22 are the weekly and

monthly averages, respectively. The HAR model can also be considered as the AR(22) model with

restrictions, and hence it is expected to capture longer effects than the conventional AR(1) and/or

AR(5) models. The estimation of the HAR-A model can be conducted by OLS. It is also possible

to use the indicator function and thresholds to describe asymmetric effects, as in Martens et al.

(2009) and Corsi and Renò (2010).

The FIEGARCH model used in the paper is obtained from the ALSV model (5) by removing

the disturbance term, ηt. By the elemination, ξt is determined by the information set up to

t− 1, giving the deterministic value of Vt, which means the reduced model belongs to the ARCH

family. Instead of (z2
t−1 − 1), which is the only difference, Bollerslev and Mikkelsen (1996) work

with (|zt−1| − E|zt−1|), as in Nelson (1991). The FIEGARCH model can be estimated by the

quasi-maximum likelihood method.

All three models accommodate long memory and asymmetric effects in their volatility struc-

tures. Compared with RK-ALSV, the RK-HAR-A model approximates the long memory, and the
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FIEGARCH model is less flexible as it omits the disturbance, ηt. Hence, the RK-ALSV model is

expected to fit the data better than do the other two models. We should note that there is no

guarantee that the model which gives the best fit produces the best forecasting performance.

As discussed in the previous section, the RK-ALSV, RK-HAR-A, and FIEGARCH models

are used for Step 1 in forecasting the time-varying variances of futures returns. The forecasts of

volatility are obtained by taking the square root of R̂Kn0+h (h = 1, . . . , nf ).

4 Empirical Analysis

4.1 Data and Preliminary Results

The data for the empirical analysis in the paper consists of high frequency Nikkei 225 futures

contracts and their underlying Nikkei 225 index for the period January 4, 2012 to October 31,

2014. Nikkei 225 futures are traded on the Osaka Exchange (OSE), Japan, and the contracts

months are March, June, September and December. The paper focuses on the twelve kinds of

contracts where the maturity dates are included in the years 2012 to 2014. Trading hours consist

of day and night sessions, namely 9:00am-3:15pm, 4:30pm-3:00am. Data for the day session are

used for simplicity. The open-close returns and RKs are calculated using 1-minuet data, which

are provided by the OSE.

The underlying equity of the futures is the Nikkei 225, which is comprised of 225 stocks listed

on the Tokyo Stock Exchange First Section. Similarly, the returns and RKs are calculated using

the 15-second data, provided by the Index Business Office, Nikkei Inc. Figure 1 shows the daily

return and volatility for Nikkei 225, with large fluctuations starting from May 23, 2013 until the

middle of August, 2013. We use the open-close return instead of the close-close return, following

Hansen Huang, and Shek (2012).

Table 1 presents the descriptive statistics for Nikkei 225 futures. Corresponding to the above

period, ft and RKf
t with contract months which are June, September and December, 2013 has a
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higher sample standard deviation than the others. As the sample size is 148 at most, it is hard to

apply conventional ARMA and GARCH models to obtain forecasts for most of the sample period.

Table 2 shows the OLS estimates for regression (2), which is based on the theoretical relation-

ship between the spot and futures returns. Table 2 indicates that all estimated coefficients are

significant at the 1% level. Although the estimates of the constant term (αr) are close to zero

and those of the coefficient of Rt (βr) are close to one, the null hypothesis, H0 : αr = 0, βr = 1,

is rejected in all cases, except for the contract month of June, 2012. All values of adjusted R2

reported in Table 2 are higher than 0.84.

Table 3 reports the OLS estimates for regression (3), which is based on the theoretical relation-

ship between the spot and futures time-varying volatility. Table 3 indicates that the constant term

(αv) and the estimated coefficient of RKt (βv) are significant. The estimates of αv are far from

zero in most cases, while the estimates of βr are close to one. The null hypothesis, H0 : αv = 0,

βv = 1, is rejected in all cases. The robust χ2 test for the null hypothesis, H0 : γv1 = γv2 = 0, is

also rejected, although the results are not reported in Table 3. All of the values of adjusted R2

reported in Table 3 are higher than 0.91, implying the strong relationships between the spot and

futures volatilities.

The small sample size of the futures contracts indicates that it is difficult to work with conven-

tional time series models in forecasting time-varying variances. The preliminary results suggest

that, if the forecasts of the volatility of the spot equity returns are accurate, reliable forecasts of

futures volatility can be obtained via the relationship between the spot and futures volatilities.

4.2 Volatility Forecasts

This subsection compares the accuracy of the one-step-ahead forecasts of futures volatility via the

proposed approach based on the three volatility forecasting models of the underlying Nikkei 225
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returns, namely the RK-ALSV, RK-HAR-A, and FIEGARCH models. For purposes of compari-

son, the root mean squared forecast error (RMSFE) and the Diebold and Mariano (1995) test are

used. Diebold and Mariano (1995) develop a test of equal forecast accuracy between two sets of

forecasts, using the mean squared error. The test of the null hypothesis of equal forecast accuracy

is based on E(dt) = 0, where dt = e21t − e22t, and e1t and e2t are forecast errors from models 1 and

2, respectively. The Diebold and Mariano (1995) test statistic is given by Z = d̄/
√
V̂ (d̄), where

d̄ = n−1
∑n

t=1 dt, and V̂ (d̄) is given by the HAC-type estimator. Under the null hypothesis, Z has

an asymptotic normal distribution.

One-step-ahead forecasts via the RK-ALSV, RK-HAR-A, and FIEGARCH models for volatil-

ities of the underlying Nikkei 225 returns are obtained by the rolling window method, fixing

n0 = 250, and the forecasting period is from March 1, 2013 to October 31, 2014. Table 4(a) shows

that the RK-ALSV model has the smallest RMSFE, while the FIEGARCH model has the largest

RMSFE. Table 4(b) shows the results of the Diebold and Mariano (1995) test. The null hypothesis

that there is no difference in the forecasts between two models is rejected at 5% significance level

for all three combinations, implying that there are significant differences in the forecasts of the

three models at the 5% level.

Table 5 reports the RMSFE for one-step-ahead forecasts for the volatility of Nikkei 225 futures,

based on the approach proposed in Section 2, for the futures of 6 kinds of contract months. In

addition to the proposed approach, the simple AR(1) model with asymmetric effects (AR(1)-A):

RKf
t = α0 + β0RK

f
t−1 + λ1ft−1 + λ2f

2
t−1 + et,

is used as the benchmark model. The AR(1)-A model based on the past values of RKf
t and ft

outperforms the new indirect method based on the FIEGARCH model in five of six cases. The

indirect approach based on RK-ALSV has the smallest RMSFE in all six cases. The results of the

Diebold and Mariano test indicate that there are significant differences between the forecasts of
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the RK-ALSV model and the second best model in four of the six cases.

4.3 Analysis on Connected Futures Data

In this subsection, we compare the RMSFE of the indirect method with the direct method, using

the connected futures data, as in Jorion (1995), Martens (2002), Sadorsky (2006), Lai and Sheu

(2010), and Lai (2015). For the connected futures data, we use the realized kernel estimates of

daily volatility, RKf
t , to estimate the HAR-A and ALSV models, and to obtain the one-step-ahead

forecasts. We may classify the RKf -HAR-A and RKf -ALSV models, and the AR(1)-A model in

the previous section, as direct methods for obtaining forecasts of futures return volatility.

Table 6 presents the RMSFE for these six models. Among the direct methods, the RKf -HAR-

A, RKf -ALSV and AR(1)-A models yield similar results. For all models, the indirect method

based on the RK-ALSV model has the smallest RMSFEs except for the last period. For the

last period, the difference in RMSFEs between the best model and RK-ALSV are negligible.

The empirical results imply that long range dependence plays an important role in forecasting

volatility. For the connected data, we may consider the dataset before the previous maturity date

as a proxy for the true data. If the proxy is close to the true data, we will have accurate forecasts

using the RKf -HAR-A and RKf -ALSV models. On the other hand, if the proxy is not close to

the true, the long range dependence in the proxy data will give misleading forecasts. For this

reason, the simple AR(1)-A model often outperforms the RKf -HAR-A and RKf -ALSV models

in Table 6. For the connected data, the indirect method based on the RK-ALSV model tends to

produce better forecasts than do the direct methods.

The empirical results imply the existence of long-range dependence in the futures return volatil-

ity. For the disconnected data, the spot return volatility is known to have long memory properties,

while the empirical results for the indirect methods indicate strong relationships between the spot

and futures volatilities. Regarding the connected data, the direct forecasts via long memory mod-
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els show the differences from those of the simple AR(1)-A model. However, the long memory

models are often inferior to the AR(1)-A model, as the detected long memory in the connected

data often causes a bias in forecasting. The empirical analysis here compares the accuracy of the

direct method with biased long memory, the direct one without long memory, and the indirect

method with accurate long memory. The results show that the last method above produces the

best forecasting performance for the Nikkei 225 futures volatility.

4.4 Utility-Based Measure

Consider a risk averse investor (hedger), who wishes to use futures to reduce the price risk of his

or her spot portfolio, with quadratic utility. Denote the hedged portfolio return from day t to

t + 1 as rp,t+1 = rt+1 − θtft+1, where θt is the hedge ratio determined by the information up to

day t. The optimal hedge ratio is given by:

θ∗t = ρt

√
V art(rt+1)
V art(ft+1)

,

where V art(xt+1) and ρt are the conditional variance of xt+1, and the conditional correlation be-

tween rt+1 and ft+1, respectively. We use the one-step-ahead forecasts of volatilities of spot and

futures returns as V art(rt+1)/V art(ft+1), calculated by the indirect methods based on the FIE-

GARCH, RK-HAR-A, and RK-ALSV models. We also use the futures volatility forecasts based

on the AR(1)-A model, paired with the spot volatility forecasts via FIEGARCH, for constructing

the baseline portfolio. For the value of ρt, we calculated the correlation coefficient of rs and fs

(s = 1, . . . , t), as an ad hoc approach. We should note that, for obtaining the values of the optimal

portfolio, we are unable to use the multivariate GARCH models and their extensions, as in Baillie

and Myers (1991), Kroner and Sultan (1993), Lai and Sheu (2010), and Lai (2015), among others,

the available sample size before the maturity date is insufficient for using such models.

Fleming et al. (2001, 2003) suggested a utility-based approach to measure the value of perfor-

mance gains associated with the volatility forecasts. The daily utility generated by this portfolio
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is given by:

U(rp,t) = W0

(
(1 + rf + rp,t) − ψ

2(1 + ψ)
(1 + rf + rp,t)2

)
,

where ψ is the investor’s relative risk aversion, and rf denotes the risk-free interest rate. Note that

the quadratic utility function can be considered as a second-order approximation to the investor’s

true utility function.

Let rp1,t and rp2,t denote the returns using two different portfolios. Following Fleming et al.

(2001, 2003), we measure the incremental value of using the second portfolio instead of the first,

by obtaining a constant Δ which satisfies:

nf∑
t=n0+q+1

U(rp2,t) =
nf∑

t=n0+q+1

U(rp1,t + Δ).

This constant indicates the maximum return that the investor would be willing to sacrifice each

day in order to capture the performance gains by switching from the first portfolio to the second.

As in Fleming et al. (2001, 2003), we set rf = 0.06, and report the value of Δ as an annualized

basis point fee, with respect to two kinds of relative risk aversion level, namely ψ = 1 and ψ = 10.

Table 7 compares 4 kinds of hedge portfolios. The baseline model uses the AR(1)-A model

for forecasting futures volatility, while the other three models use the indirect methods based

on the FIEGARCH, RK-HAR-A, and RK-ALSV models. For each model, Table 7 presents the

mean next-day portfolio return (μ), volatility (σ), and the basis point fees (Δψ) which an investor

would pay to switch from the static portfolio for relative risk aversion, ψ. Table 7 indicates that

the indirect method based on the RK-ALSV model outperforms the baseline model in nine of

twelve cases. Compared with the other models, the RK-ALSV model gives better and more stable

results.
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5 Conclusions

As daily observations for one maturity date in a futures market are insufficient to estimate long

memory volatility models, samples of different maturity months are combined to create pseudo

time series data for estimating and forecasting the volatility of futures returns. As the approach

discards the information on time to maturity and overlapping observations, there is potential to

improve the forecasts by accommodating these effects. For this purpose, the paper develops an

indirect approach based on the relationship between spot and futures volatilities. The empirical

results for the volatility of Nikkei 225 futures indicate that the new indirect method based on the

RK-ALSV model outperforms the direct forecasting models that use connected datasets.

Extensions of the new approach are possible. First, we can improve the volatility forecasting

model for the underlying asset by accommodating the jump component, as in Andersen et al.

(2007) and Bollerslev et al. (2009), and by including trading volumes, as in Tauchen and Pitts

(1983) and Fleming, Kirby, and Ostdiek (2006), among others. Second, we can improve the

relationship between the spot and futures volatilities. Third, we can develop better approaches to

construct the hedge portfolio. Fourth, the market of Nikkei 225 futures has relatively high liquidity

from the beginning date to its maturity. As discussed in the Introduction, we can investigate the

issues of newly launched and illiquid markets. Such tasks await future research.
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Figure 1: Daily Return and Volatility for Nikkei 225
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Note: Open-close returns are used, while the volatilities are calculated by taking the square root of

RK in equation (1).
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Table 1: Descriptive Statistics for Nikkei 225 Futures

Data nf Average Std. Dev. Skewness Kurtosis
f201203

t 46 0.0718 0.6528 0.7039 3.7455
f201206

t 107 −0.0502 0.6678 0.0792 4.6563
f201209

t 95 −0.0234 0.7337 0.0029 3.2024
f201212

t 115 −0.0180 0.6762 0.1164 2.6953
f201303

t 105 0.0332 0.7961 −0.0330 2.9120
f201306

t 128 −0.0565 1.3939 −1.5636 11.541
f201309

t 135 −0.0247 1.5982 −0.8189 7.9047
f201312

t 134 0.0359 1.3708 −0.0362 4.7350
f201403

t 128 −0.0006 0.9230 −0.2069 3.1277
f201406

t 148 −0.0079 0.8389 −0.0203 3.3904
f201409

t 134 0.0137 0.7256 0.1878 4.3808
f201412

t 126 0.0474 0.7257 0.9428 9.7890
RK201203

t 46 0.6541 0.3476 1.1704 3.9350
RK201206

t 107 0.6175 0.3727 1.7664 7.3817
RK201209

t 95 0.7239 0.3419 2.7107 15.984
RK201212

t 115 0.6482 0.3390 1.5026 6.5683
RK201303

t 105 0.7803 0.4671 1.6055 6.7894
RK201306

t 128 1.4877 2.2604 3.5632 16.853
RK201309

t 135 2.0075 2.5408 3.6612 20.302
RK201312

t 134 1.6681 1.6150 3.0244 12.857
RK201403

t 128 0.9638 0.5082 1.3250 4.8540
RK201406

t 148 0.8350 0.5132 1.5186 6.0937
RK201409

t 134 0.5636 0.3733 1.9800 7.7633
RK201412

t 126 0.4621 0.5464 6.7074 60.208
Note: The superscripts of ft and RKf

t indicate the contract month
and year (yyyymm), while nf denotes the number of observations.
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Table 2: Estimation Results for Regression (2)

Explanatory Var.
Dep. Var. Const. Rt −T R̄2 Robust χ2 Test
f201203

t −0.0644 1.0307 −0.2773 0.9161 35.377
(0.0001) (0.0001) (0.0109) [0.0000]

f201206
t 0.0065 0.9906 0.1186 0.8849 2.4506

(6.48×10−5) (4.64×10−5) (0.0007) [0.2937]
f201209

t −0.0493 0.9679 −0.2907 0.9034 93.591
(4.72×10−5) (2.38×10−5) (0.0012) [0.0000]

f201212
t −0.0270 0.9659 −0.0114 0.9050 110.84

(4.02×10−5) (2.03×10−5) (0.0004) [0.0000]
f201303

t −0.0469 0.8874 −0.0964 0.8737 374.42
(8.77×10−5) (3.39×10−5) (0.0011) [0.0000]

f201306
t −0.1200 0.9156 −0.2494 0.8934 395.04

(0.0002) (2.1413×10−5) (0.0012) [0.0000]
f201309

t 0.0005 0.9750 0.1764 0.9121 29.721
(8.49×10−5) (2.12×10−5) (0.0010) [0.0000]

f201312
t 0.0326 0.9915 0.1357 0.9272 17.566

(6.13×10−5) (3.39×10−5) (0.0010) [0.0002]
f201403

t 0.0521 0.8868 0.1558 0.8583 550.42
(8.80×10−5) (2.38×10−5) (0.0010) [0.0000]

f201406
t 0.0215 0.8777 0.03056 0.8452 681.52

(3.67×10−5) (2.21×10−5) (0.0003) [0.0000]
f201409

t −0.0370 0.9517 −0.1880 0.8644 152.35
(2.23×10−5) (2.27×10−5) (0.0005) [0.0000]

f201412
t 0.0765 0.9363 0.2092 0.9306 636.77

(3.48×10−5) (2.84×10−5) (0.0004) [0.0000]
Note: The superscripts of ft indicate the contract month and year (yyyymm). The robust
χ2 test reports the statistics for testing the restrictions αr = 0 and βr = 1, and follows
the χ2(2) distribution asymptotically, under the null hypothesis. Standard errors via the
HAC estimator are given in parentheses, while P -values for the robust χ2 test statistic are
reported in brackets.
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Table 3: Estimation Results for Regression (3)

Explanatory Var.
Dep. Var. Const. RKt T T 2 R̄2 Robust χ2 Test
RK201203

t −0.0271 1.6306 0.7174 −0.5520 0.9146 389.60
(0.0001) (0.0017) (0.2606) (5.7535) [0.0000]

RK201206
t −0.0688 1.1710 1.6999 −3.6927 0.9249 92.246

(0.0003) (0.0004) (0.0118) (0.0392) [0.0000]
RK201209

t 0.2945 1.0652 0.4875 −3.6937 0.9362 643.32
(0.0002) (0.0004) (0.0178) (0.0885) [0.0000]

RK201212
t 0.2627 1.2009 0.3039 −2.2745 0.9293 1305.1

(0.0001) (0.0002) (0.0071) (0.0253) [0.0000]
RK201303

t 0.2527 1.0340 0.9183 −3.4820 0.9378 997.40
(0.0003) (0.0005) (0.0105) (0.0420) [0.0000]

RK201306
t 0.1276 1.0433 −0.2638 0.3662 0.9673 139.04

(0.0017) (8.30×10−5) (0.0766) (0.1753) [0.0000]
RK201309

t 0.3425 1.1760 −1.4416 0.9773 0.9548 2359.0
(0.0002) (0.0002) (0.0335) (0.1246) [0.0000]

RK201312
t 0.2152 1.1777 0.4865 −2.1182 0.9653 1243.3

(0.0001) (0.0002) (0.0138) (0.0652) [0.0000]
RK201403

t 0.3506 0.9952 −0.9590 1.4600 0.9341 1482.5
(0.0002) (0.0002) (0.0095) (0.0433) [0.0000]

RK201406
t 0.2048 0.9990 0.5594 −1.6682 0.9402 1862.7

(2.53×10−5) (0.0001) (0.0038) (0.0110) [0.0000]
RK201409

t 0.1166 1.1377 0.4779 −1.5226 0.9220 781.47
(5.70×10−5) (0.0004) (0.0047) (0.0251) [0.0000]

RK201412
t −0.0581 1.3572 0.7068 −1.5981 0.9684 1681.3

(6.71×10−5 ) (8.17×10−5) (0.0024) (0.0060) [0.0000]
Note: The superscripts of RKf indicate the contract month and year (yyyymm). The robust
χ2 test reports the statistics for testing the restrictions αv = 0 and βv = 1, and follows the
χ2(2) distribution asymptotically, under the null hypothesis. Standard errors via the HAC
estimator are given in parentheses, while P -values for the robust χ2 test statistic are reported
in brackets.

Table 4: One-Step-Ahead Forecasts for Volatility of Nikkei 225 Returns

(a) RMSFE
Data FIEGARCH RK-HAR-A RK-ALSV
RK 25.891 19.569 18.213

(b) Diebold-Mariano Test
Model 1 Model 2 Z P -value　

FIEGARCH RK-HAR-A −1.6890 0.0456
FIEGARCH RK-ALSV −3.3660 0.0004
RK-HAR-A RK-ALSV −1.6684 0.0476
Note: The test statistic, Z, has an asymptotic normal
distribution under the null hypothesis.
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Table 5: RMSFE for One-Step-Ahead Forecasts for Volatility of Nikkei 225 Futures

Data AR(1)-A FIEGARCH RK-HAR-A RK-ALSV
RK201309

t 31.580 29.981 27.223 27.105*
RK201312

t 21.636 23.480 23.308 17.826**
RK201403

t 7.9803 8.3802 7.4992 6.2840*
RK201406

t 6.1994 6.3315 6.4050 5.1506
RK201409

t 6.8921 8.9260 4.9410 4.0989
RK201412

t 6.0217 5.7820 5.8207 4.9519*
Note: The superscripts of RKf

t indicate the contract month and
year (yyyymm). ‘*’ (‘**’) denotes significant differences between
the forecasts of the RK-ALSV model and the second best model at
the 5%(1%) significance level.

Table 6: RMSFE for Connected Data of Volatility of Nikkei 225 Futures

Direct Method Indirect Method
Data RKf -HAR-A RKf -ALSV AR(1)-A FIEGARCH RK-HAR-A RK-ALSV

RK201309
t 10.194 12.119 11.520 17.587 12.680 8.9877

RK201312
t 4.0814 4.3886 4.0430 4.6122 4.7111 2.2943

RK201403
t 4.5715 4.1080 3.6947 3.9723 3.9539 2.0571

RK201406
t 2.9927 2.9782 2.5067 2.6320 2.5960 1.8416

RK201409
t 3.0065 2.8287 2.3869 2.6344 2.3610 1.6429

RK201412
t 5.3582 4.5186 5.5123 5.1075 5.2661 4.6056

Note: The superscripts of RKf
t indicate the contract month and year (yyyymm).

Table 7: Utility-Based Measure

Maturity AR(1)-A FIEGARCH RK-HAR-A RK-ALSV
Date μ σ μ σ Δ1 Δ10 μ σ Δ1 Δ10 μ σ Δ1 Δ10

201309 −0.6 8.0 1.1 28.0 21.3 138 0.1 1.3 34.7 −78.0 −0.5 5.5 11.9 28.1
201312 0.0 1.0 −0.8 79.2 −227 −111 4.5 57.9 454 571 1.7 14.7 100 78.4
201403 0.3 4.8 −0.7 14.1 −66.8 −85.5 −0.3 8.9 −23.7 −47.6 −0.0 4.2 2.5 19.4
201406 0.2 4.0 −0.0 0.9 7.1 34.1 −0.0 0.9 7.2 35.3 −0.1 0.9 7.1 34.4
201409 −0.7 5.4 0.0 4.4 6.3 34.0 0.1 5.0 3.4 −21.1 0.3 3.4 14.8 −24.7
201412 −0.1 0.7 −0.3 6.3 −16.3 −43.6 −0.2 2.3 −2.1 −11.9 −0.2 2.1 −1.9 −10.4

Note: For each model, we report the mean next-day portfolio return (μ), volatility (σ), and the basis point
fees (Δψ) which an investor would pay to switch from the static portfolio for relative risk aversion level, ψ.
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