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The ovarian follicle is a major site of steroidogenesis, crucially required for normal ovarian function
and female reproduction. Our understanding of androgen synthesis and metabolism in the de-
veloping follicle has been limited by the sensitivity and specificity issues of previously used assays.
Here we used liquid chromatography–tandem mass spectrometry to map the stage-dependent
endogenous steroid metabolome in an encapsulated in vitro follicle growth system, from murine
secondary through antral follicles. Furthermore, follicles were cultured in the presence of androgen
precursors, nonaromatizable active androgen, and androgen receptor (AR) antagonists to assess
effects on steroidogenesis and follicle development. Cultured follicles showed a stage-dependent
increase in endogenous androgen, estrogen, and progesterone production, and incubations with
the sex steroid precursor dehydroepiandrosterone revealed the follicle as capable of active an-
drogen synthesis at early developmental stages. Androgen exposure and antagonismdemonstrated
AR–mediated effects on follicle growth and antrum formation that followed a biphasic pattern,
with low levels of androgens inducing more rapid follicle maturation and high doses inhibiting
oocyte maturation and follicle growth. Crucially, our study provides evidence for an intrafollicular
feedback circuit regulating steroidogenesis, with decreased follicle androgen synthesis after ex-
ogenous androgen exposure and increased androgen output after additional AR antagonist
treatment. We propose that this feedback circuit helps maintain an equilibrium of androgen ex-
posure in the developing follicle. The observed biphasic response of follicle growth and function
in increasing androgen supplementations has implications for our understanding of polycystic
ovary syndrome pathophysiology and the dose-dependent utility of androgens in in vitro
fertilization settings. (Endocrinology 158: 1474–1485, 2017)

F emale reproductive health relies on the proper de-
velopment of the follicle, the fundamental unit of the

ovary. As waves of follicles grow, they produce sex
steroid hormones that regulate maturation in an
autocrine/paracrine manner, supply endocrine feedback

that sets the tempo of each reproductive cycle, prepare
the reproductive tissues for pregnancy, and regulate
bone, cardiovascular, and metabolic health. Many ele-
gant studies have evaluated androgen production in
various follicle culture and in vivo settings (1–6).We have
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extensively validated a method to study encapsulated
in vitro ovarian follicle growth (eIVFG) from mouse,
bovine, goat, canine, nonhuman primate, and human
biomaterials, all of which result in mature eggs or em-
bryos (7–15). Steroid hormone measurements in this
culture system provided valuable information but relied
on immunoassays (7, 16). This latter technology is
hampered by intrinsic problems of sensitivity and spec-
ificity, especially in the presence of low steroid concen-
trations (17), such as the production of androgens by
individual preantral growing follicles in culture. Modern
mass spectrometry–based steroid analysis overcomes
these challenges (18) but has not yet been applied to the
developing follicle. Here we studied endogenous basal
steroid production in isolated ovarian follicles by liquid
chromatography–tandem mass spectrometry (LC-MS/
MS), employing a murine eIVFG system.

Another advantage of eIVFG is the possibility of di-
rectly studying the dose- and stage-dependent effects of
exogenous factors on individual follicle development and
function. Manipulating the local or endocrine microen-
vironment of the growing follicle may also phenocopy
certain aspects of human ovarian disease (19). With use
of eIVFG, testosterone directly increases survival and
growth of macaque secondary follicles, supporting the
notion that androgens regulate follicle dynamics (20).
Indeed, androgen action is essential for preantral follicle
development, as initially demonstrated by global an-
drogen receptor (AR) knockout models and mirrored by
the granulosa cell–specific AR knockout mice, in which
females are subfertile and have reduced follicle devel-
opment, altered gonadotrophin regulation, decreased
ovulation rates, and poor oocyte quality (21–26). Recent
work has shown that nuclear and extranuclear AR-
mediated signaling pathways are crucially involved in
promoting follicle growth and survival (27).

These fundamental studies are important because al-
terations in androgen homeostasis in women may result
in infertility and anovulation. In clinical conditions of
androgen excess, as observed in women with polycystic
ovary syndrome (PCOS), follicle development is arrested,
leading to chronic anovulation and subfertility (28, 29).
The dysfunctional follicle phenotype may relate to excess
androgen exposure during critical developmental stages,
as demonstrated by studies in mice showing that pre-
pubertal androgen exposure leads to follicular arrest and
increased follicular atresia (30). Similarly, in nonhuman
primates, in vivo exposure to exogenous androgens in
early gestation results in PCOS-like ovarian dysfunction
in the adult offspring, manifesting with follicle excess,
oligomenorrhea, and hyperandrogenemia (31, 32). Al-
though androgen excess is deleterious for follicle devel-
opment, androgen deficiency might equally alter follicle

maturation. In assisted reproductive clinics, androgen
supplementation, either with the androgen precursor
dehydroepiandrosterone (DHEA) or with testosterone, is
widely used to improve follicular development and fer-
tility in women with diminished ovarian reserve (33–35).

Here we have used the murine eIVFG system and steroid
analysis by LC-MS/MS to comprehensively map the stage-
dependent endogenous steroid metabolome of the follicle
during development and to directly examine the dose-
dependent effects of the nonaromatizable potent androgen
5a-dihydrotestosterone (DHT), the sex steroid precursor
DHEA, and the selective AR antagonist enzalutamide
(MDV) on follicular function and steroidogenesis.

Methods

Murine encapsulated in vitro follicle culture
CD1mice were housed and bred in a temperature- and light-

controlled (12-hour light, 12-hour dark cycle) environment and
were provided with unrestricted access to water and chow
(PicoLabMouse Diet 20; Sandown Scientific, Hampton, UK) in
the Biomedical Services Unit at the University of Birmingham.
Nonweaned pups (days 15 to 17) were culled by cervical dis-
location before dissection for excision of ovarian tissue. The
euthanasia procedure was conducted in accordance with cur-
rent UK Home Office regulations in accordance with the UK
Animal (Scientific Procedures) Act 1986 andwas covered by the
generic breeding license of the Biomedical Services Unit. Ovaries
were transported in L-15 GlutaMAX medium (Thermo Fisher
Scientific, Loughborough, UK) supplemented with 1% fetal
bovine serum (FBS; Sigma-Aldrich, Gillingham, Dorset, UK)
and 0.5% penicillin/streptomycin (Thermo Fisher Scientific)
in a carrier-incubator at 37°C. After transport, ovaries were
transferred to a dish containing L-15 medium supplemented
with 0.1%DNase I (Lorne Laboratories Limited, Reading, UK)
and 0.1% Liberase TM (Roche Life Science, West Sussex, UK)
and were placed on a shaker in a 37°C 6% CO2 incubator for
35 to 40 minutes.

After the addition of 10% FBS, multilayered secondary
follicles (diameter, 150 to 180 mm) were mechanically isolated
employing insulin-gauge needles under a dissection scope.
Follicles were placed in a maintenance medium containing
minimal essential medium (a-MEM GlutaMAX; Life Tech-
nologies Ltd, Paisley, UK) supplemented with 1% FBS and
0.5%penicillin/streptomycin for 2 to 3 hours in a 37°C 6%CO2

incubator.
Follicles were individually encapsulated in 0.5% alginate

(NovaMatrix, Sandvika, Norway) and were allowed to cross-
link in a calcium solution for 2 minutes, as previously described
(7). Alginate beadswere transferred to a 96-well plate, with each
well containing 100 mL culture medium consisting of a-MEM
GlutaMAX supplemented with 3 mg/mL bovine serum albumin
(BSA; MP Biomedicals, Leicester, UK), 10 mIU/mL recombinant
follicle-stimulating hormone (FSH; Gonal-f; Merck Serono,
Feltham, UK), 1 mg/mL bovine fetuin (Sigma-Aldrich), and
5 mg/mL insulin, 5 mg/mL transferrin, and 5 mg/mL selenium
(Sigma-Aldrich).

For the treatment conditions, culture medium was supple-
mented with 25 or 50 nM DHT (Sigma-Aldrich); 100, 200, or
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500 nM DHEA (Sigma-Aldrich); and 10 or 25 nM estradiol
(E2) (Sigma-Aldrich). The steroid concentrations used were
based on published dose-response experiments (27, 36). For AR
blockade,MDV (AxonMedchem, Groningen, The Netherlands)
was used at the dose of 1 mM on the basis of its half maximal
inhibitory concentration value (37).

After plating, encapsulated follicles were imaged using a
Nikon Eclipse TE300 light microscope (Leica, Nikon, UK) with
103 phase objective. Follicles with intact alginate beads and
with preserved integrity of the oocyte and somatic cell com-
partment were selected for culture. Follicles were cultured for
6 days in a 37°C 6% CO2 incubator. Media changes (50 mL)
were performed on alternate days, with fresh steroids at the
initial concentration for the treatment conditions as well as
repeated imaging. Images were analyzed using ImageJ Software
(National Institutes of Health, Bethesda, MD).

Follicle sizes were obtained by averaging two perpendicular
measurements of follicle diameter. The movement of the oocyte
to an eccentric position with the appearance of a fluid-filled
space determined the presence of an antrum. Follicles were
classified as nonviablewhen the oocyte or somatic compartment
appeared shrunken or dark, when their interphase was com-
promised, or when the alginate bead was disrupted. Only
surviving follicles were included in the data analysis.

In vitro follicle maturation
After the 6-day culture period, follicles were retrieved from

the alginate bead using alginate lyase (Sigma-Aldrich) and were
transferred to a maturation medium composed of a-MEM
GlutaMAX, 10% FBS, 1.5 IU/mL human chorionic gonado-
tropin (Sigma-Aldrich), and 5 ng/mL epidermal growth factor
(BDBiosciences, Oxford, UK) for 16 hours at 37°C, 6%CO2, as
previously described (7). Oocytes were then denuded from the
surrounding cumulus cells by treatment with 0.3% hyaluron-
idase (Sigma-Aldrich) and gentle aspiration. The oocytes were
classified as mature, or metaphase II, when a polar body was
visible in the perivitelline space. Healthy oocytes that had not
resumed meiosis were classified as immature.

Steroid analysis by LC-MS/MS
Pooled follicle culture supernatant (from 30 to 100 follicle

incubations) was placed in silanized glass tubes, and 20 mL of
internal standard was added. Three milliliters of methyl tert-
butyl-ether was added to each sample, followed by vortexing
and freezing for 1 hour. The upper organic phase was trans-
ferred to a 96-well plate using glass Pasteur pipettes, followed by
evaporation under nitrogen at 55°C. Samples were recon-
stituted with 125 mL methanol:water mixture (50:50) and were
frozen at 220°C before analysis. Steroids were quantified by
LC-MS/MS using a Waters Xevo mass spectrometer with an
Acquity UPLC system with the following settings: electrospray
ionization source with capillary voltage at 4.0 kV, temperature
source at 150°C, and a desolvation temperature of 500°C.

Steroid identification was based on an identical retention
time and two identical mass transitions when compared with
authentic reference compounds. Quantification was performed
relative to a calibration series (0, 0.5 to 250 ng/mL of each
steroid) with an appropriate internal standard steroid, as pre-
viously described (38), and was appropriately validated, in-
cluding determination of the lower limits of detection (LLOD)
and quantification (LLOQ) (Table 1). Steroid concentrations

above the steroid-specific LLOQ were considered accurately
quantified; steroid concentrations below the steroid-specific
LLOQ but above the respective LLOD were described as de-
tectable. All measurements were performed in triplicate except
for treatment conditions DHT + MDV and DHEA 100 nM,
which were assessed in duplicate because of a shortage of
biological material.

Messenger RNA expression analysis
At the end of culture, we pooled 18 to 30 follicles for each

experimental condition, which were immediately flash frozen in
liquid nitrogen. RNA was purified from the follicles using the
RNeasyMicro Kit (Qiagen,Manchester, UK). RNA quality and
quantity were assessed employing NanoDrop technology (ND-
1000; Thermo Fisher Scientific) and High Sensitivity R6K
ScreenTape System (Agilent, Cheshire, UK). RNA was di-
luted to a concentration of 50 to 100 ng/mL. RNA was reverse
transcribed to complementaryDNA (cDNA) using anAccuScript
High Fidelity 1st Strand cDNA Synthesis Kit (Agilent Tech-
nologies) according to the instructions of the manufacturer.
Messenger RNA (mRNA) expression levels were assessed by
quantitative polymerase chain reaction using an ABI se-
quence detection system (Perkin-Elmer Applied Biosystems,
Warrington, UK). All analyses were assessed in 10-mL final
volume in reaction buffer, containing 2 X Taqman Universal
PCR Master Mix (5.0 mL; Thermo Fisher Scientific), probe-
primer mix for the target gene (0.5 mL), and 4.5 mL cDNA
(100 ng) (39). All reactions were normalized against the
housekeeping genes 18S ribosomal RNA and ribosomal protein
L18 (Rpl18) ribosomal RNA. Data were expressed as Dcycle
threshold (CT) values [DCT = (CT of target gene) 2 (CT of
housekeeping gene)].

Statistical analysis
Statistical analysis was performed with Prism 6 (GraphPad)

software, using one-way analysis of variance with a post hoc
Tukey test to compare follicle growth and oocyte size between
the different treatment groups. Contingency analysis by Fisher’s
exact test was used for survival, antrum formation, and oocyte
maturation status. Independent t tests were used to compare

Table 1. Lower Limits of Quantification and
Detection of Liquid Chromatography–Tandem Mass
Spectrometry Assay for Multisteroid Profiling

Steroid LLOQ (nmol/L) LLOD (nmol/L)

Prog 1.6 0.8
DHEA 1.7 0.9
A’dione 1.8 0.8
Testosterone 2.0 0.9
DHT 4.5 1.7
E1 4.0 1.9
E2 4.0 1.8

LLOQ and LLOD were calculated from calibration series experiments
employing steroid-spiked cell culture media. LLOQ was defined as
a detectable signal with a signal/noise ratio of more than 10:1 and with
a signal variation of ,20%. LLOD was defined as the lowest detectable
concentration with a signal/noise ratio of more than 3:1 andwith a signal
variation of ,20%.

Abbreviations: A’dione, androstenedione; E1, estrone; Prog,
progesterone.
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steroid quantifications and DCT values between control and
treatment conditions. Matched or repeated measurements were
analyzed using paired t tests, and unpaired t tests were used for
independent measurements. All studies were performed in at
least three independent experiments unless otherwise specified.

Results

Endogenous steroid synthesis in the
developing follicle

We used a murine eIVFG system to assess stage-
dependent steroidogenesis in the developing follicle using
mass spectrometry–based multisteroid profiling opti-
mized for highly sensitive and specific detection of sex
steroids and their precursors [Fig. 1(a)]. At day 2 of
culture, we detected progesterone (Prog) and the sex
steroid precursors DHEA, androstenedione (A’dione),
and estrone (E1) at levels close to the lower limit of de-
tection (0.5 to 2.0 nmol/L) [Fig. 1(b)]. At day 4, the
androgen precursors DHEA and A’dione as well as
bioactive testosterone were generated in quantifiable
amounts, and 17b-estradiol became detectable. At
day 6 of culture, Prog synthesis increased significantly
(P , 0.001 vs day 4) to the quantifiable range, and we
observed a significant surge in active sex hormones, in-
cluding testosterone (P , 0.001), DHT (P = 0.04), and
17b-estradiol (P , 0.001) [Fig. 1(b)].

Corresponding to the increasing production of active
sex steroids across follicle development, steroid enzyme
mRNA also increased in a stage-dependent fashion. A
significant (P , 0.01) increase in 17b-hydroxysteroid
dehydrogenase type 1 was noted by day 6 (Supplemental
Table 1). This enzyme catalyzes the conversions of
A’dione to testosterone and E1 to E2 and is FSH re-
sponsive (40). Concurrent with follicle maturation, we
detected significantly increased transcription (P , 0.05)
of the FSH-regulated CYP19a1 gene encoding aroma-
tase, the enzyme responsible for the conversion of an-
drogens to estrogens (Supplemental Table 1). Consistent
with the increasing generation of Prog detected by mass
spectrometry, mRNA expression analysis showed in-
creased transcription of the side-chain cleavage enzyme
CYP11a1 (P , 0.01) [Supplemental Table 1; Fig. 1(a)].

Effect of exogenous androgen exposure and
antagonism on follicular development
and steroidogenesis

We next examined the direct effects of androgen sup-
plementation on follicle morphology, oocyte development,
and steroid synthesis in the isolated follicle. For these
studies, we delivered exogenous DHT to secondary folli-
cles. DHT is the most potent androgen, which, in contrast
to testosterone, cannot be converted to estrogens by aro-
matase activity. To determine AR-mediated androgen

effects, we used AR blockade by administration of the
highly selective AR antagonist MDV, isolated and in
combination with DHT. Individual follicles were imaged
at days 0, 2, 4, and 6 of culture to study follicle growth
by measuring follicle diameters, antrum formation, and
follicle survival. Oocyte quality was assessed following
in vitro maturation.

DHT-treated follicles were significantly growth ad-
vanced at all stages of follicular development [Fig. 2(a) and
2(b)]. Conversely, MDV- and DHT + MDV–treated fol-
licles were growth restricted compared with control folli-
cles [Fig. 2(a) and 2(b)]. DHT supplementation resulted in
significant acceleration of the preantral to antral follicle
transition (P , 0.0001), with a higher total number of
follicles reaching the antral stage at day 6 (P , 0.001)
[Fig. 2(c)]. By contrast, MDV- and DHT + MDV–treated
follicles showed evidence of delayed antrum formation
(P , 0.05 at day 4 for MDV follicles and P , 0.0001 at
days 4 and 6 for DHT + MDV follicles) [Fig. 2(c)]. DHT-
treated follicles had a significantly increased survival rate
compared with control follicles; survival of MDV- and
DHT + MDV–treated follicles did not differ from that of

Figure 1. Steroid hormone production by the cultured follicles,
measured by LC-MS/MS, in follicle culture medium pooled from
incubations with 72 to 105 individual follicles at days 2, 4, and 6 of
culture and normalized to 100 follicles. Data are expressed as
mean 6 standard deviation. (a) The steroidogenic pathway and the
murine steroidogenic enzymes involved in the conversions. Gray-
shaded boxes indicate significant upregulation of mRNA expression
on day 6 of follicular development. (b) Endogenous steroid production
in the isolated follicle. Panels C through E show intrafollicular
steroidogenesis in the untreated follicle and after incubation with
DHT 25 nM without and with the addition of the AR antagonist
MDV(1 mM).17-OH-Prog, 17-hydroxyprogesterone; Chol, cholesterol;
CYP17a1, 17-hydroxylase; hsd3b1, 3b-hydroxysteroid dehydrogenase;
StAR, steroidogenic acute regulatory protein.
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controls [Fig. 2(d)]. Neither DHT exposure nor MDV
treatment significantly regulated oocyte size [Fig. 2(e)] or
nuclear maturation [Fig. 2(f)] compared with control fol-
licles. These results document the crucial role of AR-
mediated androgen action in achieving optimal follicle
growth, antrum formation, and protection from atresia.

Exposing follicles to exogenous DHT did not change
steroidogenesis at days 2 and 4 [Fig. 3(a) and 3(b)] but
significantly decreased endogenous androgen synthesis
at day 6, calculated as the sum of DHEA, A’dione, and
testosterone (80 6 15 nmol/L vs 208 6 10 nmol/L in
controls; P, 0.01) [Fig. 3(c)]. Vice versa, administration
of DHT in combination with the AR antagonist MDV
resulted in a significant upregulation of follicular an-
drogen synthesis at day 6 (4906 256 nmol/LwithDHT+
MDV vs 80 6 15 nmol/L with DHT alone; P , 0.05)
[Fig. 3(c)]. These differences in androgen production
were not mirrored by significant changes in steroidogenic
enzyme expression at the mRNA level (data not shown).

These results suggest that in vitro cultured follicles are
capable of autonomously adapting endogenous androgen
synthesis in response to changes in AR activation status,
possibly indicating an intrafollicular AR-mediated
autocrine feedback circuit involved in steroidogenesis.
Interestingly, the addition of MDV alone resulted in
significantly decreased steroid output at days 4 and 6
(Fig. 3), which suggests that the observed intrafollicular
feedback circuit becomes activated only after induction
by endogenous or exogenous androgen exposure.

DHT treatment decreased E2 synthesis at day 6 (776
10 nmol/L vs 1386 8 nmol/L in controls; P, 0.01) and
had no effect on Prog production (10 6 0.5 nmol/L vs
116 1 nmol/L in controls; not significant). DHT +MDV
supplementation tended to increase E2 synthesis at
day 6 (169 6 75 nmol/L vs 77 6 10 nmol/L with DHT
alone; not significant) and significantly increased Prog
production (456 2 nmol/L vs 106 0.5 nmol/LwithDHT
alone; P , 0.01).

Figure 2. Effect of DHT 25 nM, AR antagonist MDV, and combined DHT + MDV treatment versus control (dotted lines) on follicle and oocyte
morphology during culture, with regard to (a) follicle size, (b) light microscopic images, (c) antrum formation rate, (d) follicle survival, (e) oocyte
size, and (f) oocyte nuclear maturation status. Data from 57 to 170 follicles per condition are expressed as mean 6 standard deviation for
diameter, antrum formation, survival, and oocyte meiotic status. Oocyte size is presented in box and whisker plots, with boxes representative of
the interquartile range and whiskers representative of the 5th and 95th percentiles. *P , 0.05; ***P , 0.001; ****P , 0.0001.
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When calculating the androgen/estrogen ratio
[(A’dione + testosterone)]/(E1 + E2)] to assess aromatase
activity (5, 41), we found that DHT and DHT + MDV
follicles maintained the balance observed in control
follicles (DHT vs controls on day 6: 0.9 6 0.2 vs 1.3 6
0.01, respectively, P = 0.2; DHT + MDV vs controls on
day 6: 2.4 6 0.5 vs 1.3 6 0.01, respectively, P = 0.1).

The androgen precursor DHEA is converted to active
sex steroid in the developing follicle

Because the secondary follicles synthetize appreciable
levels of steroid hormones in the second half of the in vitro
culture, we used the addition of the sex steroid precursor
DHEA as a probe to further examine the stage-dependent
steroidogenic capacity of the follicle. Steroid profiling by
LC-MS/MS revealed that DHEA was actively converted
by the follicle at all time points, including the immature
stage (day 2) when endogenous steroidogenesis in control

follicles was not quantifiable [Fig. 4(a)]. Supplementation
with 100 nM DHEA revealed high capacity for down-
stream androgen generation (A’dione, testosterone, and
DHT) and high levels of conversion to estrogens at day 4
[Fig. 4(b)], which appeared further enhanced by day 6
[Fig. 4(c)]. When increasing DHEA concentrations to
200 nM and 500 nM, we observed a gradual loss of ap-
preciable generation of DHT from testosterone alongside
a decrease in estrogen production, which became sig-
nificant at day 6 of 500 nM DHEA (P, 0.05) [Fig. 4(c)].
At mRNA level, incubation with DHEA resulted in a
significant (P , 0.05) downregulation of CYP19a1
mRNA expression compared with control follicles at

Figure 3. Intrafollicular steroidogenesis in the untreated follicle and
after incubation with the AR antagonist MDV (1 mM), with DHT
25 nM, and with co-incubation of DHT 25 nM and MDV 1 mM,
across follicular development. (a–c) Panels represent days 2, 4, and
6 of culture, respectively. The color coding refers to Fig. 1(a).
Steroids were measured by LC-MS/MS in pooled follicle culture
medium (57 to 105 follicles) and normalized to 100 follicles. Data
are expressed as mean 6 standard deviation.

Figure 4. Effect of increasing concentrations of DHEA
supplementation (100, 200, and 500 nM) on follicular steroid
hormone production compared with control conditions across
follicular development. (a–c) Panels represent days 2, 4, and 6 of
culture, respectively. The color coding refers to Fig. 1(a). Steroids
were measured by LC-MS/MS in pooled follicle culture medium (30
to 105 follicles) and were normalized to 100 follicles. Data are
expressed as mean 6 standard deviation.
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all concentrations used (DCT CYP19a1: DHEA 0 nM,
12.36 1.3; DHEA 100 nM, 15.96 0.8; DHEA 200 nM,
14.1 6 0.4; DHEA 500 nM, 14.9 6 0.2).

When calculating the androgen/estrogen ratio [(A’dione +
testosterone)/(E1 + E2)] to assess aromatase (CYP19a1)
activity (5, 41), we found that DHEA 100 nM main-
tained the balance observed in control follicles (DHEA
100 nM vs controls on day 6: 0.9 6 0.3 vs 1.3 6 0.01,
respectively; P = 0.3), whereas higher DHEA concen-
trations significantly increased the androgen/estrogen
ratio (DHEA 200 nM, 1.76 0.09, P, 0.01 vs controls;
DHEA 500 nM, 4.36 1, P, 0.05; day 6), indicative of
an androgenic intrafollicular milieu.

Thus, using exogenous DHEA administration as a
probe, we found that earlier stages of the developing fol-
licle were capable of active androgen generation and that
increased exposure to DHEA resulted in inhibition of
aromatase activity and, consequently, estrogen production.

Effects of increasing concentrations of exogenous
androgens and estrogens on follicular development

Next, we looked at the impact of the androgen pre-
cursor DHEA on follicular development and oocyte
maturation. We showed that DHEA was converted by
the follicles to androgens and subsequently estrogens.
Therefore, we compared the effects observed after DHEA
stimulation with the impact of increasing doses of non-
aromatizable DHT and biologically active estrogen, E2,
to dissect effects due to androgens vs estrogens in a
potentially distinct fashion.

Follicle size, reflective of follicular growth, was en-
hanced byDHEA 100 nMandDHT25 nM [Fig. 5(a) and
5(b)]; increasing androgen exposure to DHEA 200 nM
neutralized this effect, and a further increase to DHEA
500 nM and exposure to DHT 50 nM showed the op-
posite effect, with a significant reduction in follicle size
[Fig. 5(a) and 5(b)]. The higher dose of E2 (25 nM) in-
creased follicle size significantly, whereas 10 nM of E2
had no effect [Fig. 5(c)].

Antrum formation was significantly enhanced by
DHT 25 nM, whereas increasing DHT to 50 nM reverted
this effect [Fig. 5(e)]. DHEA 100 nM appeared to have a
beneficial effect on antrum formation, whereas higher
concentrations had an adverse effect, though the differ-
ences failed to reach statistical significance [Fig. 5(d)]. E2
had no effect on antrum formation [Fig. 5(f)].

Follicle survival rates increased significantly with ex-
posure to DHEA 100 and 200 nM and DHT 25 nM.
This effect was lost whenDHEAwas increased to 500 nM
and DHT was increased to 50 nM. By contrast, E2 at
10 nM yielded no discernible effect on follicle survival,
whereas a significant increase was observed after in-
creasing E2 to 25 nM [Fig. 5(g–i)].

Oocyte size was significantly reduced by the higher
concentrations of DHEA (200 and 500 nM) and the
higher DHT concentration (50 nM) [Fig. 5(j) and 5(k)].
By contrast, E2 exposure had no effect on oocyte size
[Fig. 5(l)]. These findings were completely mirrored when
assessing oocyte nuclear maturation, which was signifi-
cantly decreased by higher androgen concentrations but
was not affected by estrogen administration [Fig. 5(m–o)].

Taken together, although moderate androgen levels
exerted beneficial effects on follicle growth, survival, and
antrum formation, increasing bioactive androgen caused
poor oocyte quality and negative effects on follicle
growth and antrum formation. Increasing estrogen ex-
posure enhanced follicle growth and survival, with no
effect on antrum formation or oocyte quality.

Discussion

Although previous studies have proven the importance
of androgen action in follicular development, our study
extends this knowledge by approaching the follicle as a
coordinated steroidogenic unit. We report simultaneous
quantitative analysis of multiple steroids in the de-
veloping murine follicle under physiological conditions
and in the presence of androgen exposure and antago-
nism, with highly sensitive and specific multisteroid
profiling by tandem mass spectrometry. We demon-
strated that the growing follicle has the capacity for
active sex steroid synthesis at all developmental stages
examined and provided evidence for the existence of an
intrafollicular AR-responsive feedback circuit that dy-
namically regulated androgen synthesis in an auton-
omous fashion. We confirmed the beneficial effects of
low-dose androgen supplementation to the growing
follicle and described an AR-mediated facilitating role
in antrum formation. Finally, we observed that grad-
ually increasing androgen concentrations resulted in
follicle developmental arrest, characterized by suppressed
oocyte maturation, follicular growth stagnation, and de-
creased estrogen synthesis.

We reported a quantitative multisteroid metabolome
of the developing follicle, indicative of FSH-stimulated
endogenous production of androgens, estrogens, and
progestins, consistent with the current knowledge of
follicular steroid production and in vivo hormone dy-
namics (42). Androgen secretionwas quantifiable around
day 4, which corresponds to antrum formation and
gonadotrophin responsiveness. Estrogen biosynthesis
increased sharply between days 4 and 6 of culture, as the
follicle reached ovulatory maturity. At day 6, Prog se-
cretion started to increase, as expected, in preparation for
luteinization. The FSH-dependent steroidogenic enzymes
17b-hydroxysteroid dehydrogenase type 1 and CYP19a1
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significantly increased with ongoing follicle maturation.
According to the two-cell, two-gonadotrophin hypothesis,
luteinizing hormone (LH) stimulates A’dione production
by theca cells, which provides a substrate for estrogen
biosynthesis by granulosa cells (43). In the culture system
used, however, maturing follicles produced significant
amounts of E2 in an LH-free and serum-freemedium. This
means that follicular cells are able to constitutively pro-
duce androgens in the absence of LH. Paracrine theca cell
LH-independent androgen production is known to occur
under the influence of insulin (44, 45), present in physi-
ological amounts in the culture medium used. Expression
of steroidogenic acute regulatory protein, a theca cell
marker (46), remained stable during follicle culture, which
suggests that de novo theca cell formation was limited and
that granulosa-theca cell trans-differentiation possibly
accounts for the observed androgen production. Although
the eIVFG system allowed for complete theca cell devel-
opment, LH was not present; future studies on the effects
of increasing doses of LH on androgen production in our
system would enhance the translatability of our results.

In our study, LC-MS/MS measured similar (47) or
lower (7, 48) concentrations of A’dione and E2 compared
with those obtained in similar culture conditions but

measured with immunoassays. These differences could
be explained by the fact that immunoassays are prone to
cross-reactivity, which may lead to falsely increased
concentrations (49). A major advantage of our mass
spectrometry–based multisteroid profiling assay is the
ability to simultaneously measure multiple steroid con-
centrations in a single assay, whereas immunoassays are
limited to one target molecule. Therefore, our validated
mass spectrometry approach (50) yielded a state-of-the-
art representation of the dynamic endogenous steroid
production in murine follicles.

When follicles were exposed to exogenous DHT,
the most potent and nonaromatizable androgen, we
observed a downregulation of endogenous androgen
secretion. This was AR-mediated, as the addition of the
selective AR antagonist MDV prompted increased en-
dogenous androgen synthesis. These findings are in-
dicative of a feedback circuit at the level of the follicle,
which may provide the homeostatic set point for
androgen-AR downstream effects.

We further reported a detailed analysis of AR-mediated
androgen effects on the development of the follicle and
oocyte. The current results are in line with the previously
reported follicular growth-promoting effects of androgens

Figure 5. Effect of increasing concentrations of DHEA supplementation (100, 200, and 500 nM) and increasing concentrations of DHT (25 and
50 nM) and E2 (10 and 25 nM) supplementation versus control (dotted lines) on follicle and oocyte biology during culture, with regard to
(a–c) follicle size, (d–f) antrum formation rate, (g–i) follicle survival, (j–l) oocyte size, and (m–o) oocyte nuclear maturation status. Data (n = 31
to 170 follicles/condition) are expressed as mean 6 standard deviation for diameter, antrum formation, survival, and meiotic maturation.
Oocyte size is presented in box and whisker plots, with boxes representative of the interquartile range and whiskers representative of the 5th
and 95th percentiles. *P , 0.05; **P , 0.01; ***P , 0.001; ****P , 0.0001.
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(4, 27, 36, 51) and their roles in protecting from atresia
(27) and enhancing follicle survival (20). We showed that
the process of antrum formation occurred earlier and to
a higher extent in DHT-treated follicles and was impaired
in AR-blocked follicles. It was previously shown that
follicles grown in antiandrogen serum (4), in the absence of
FSH (27) or in steroid-depleted conditions (20), displayed
limited antrum formation. Oocyte growth andmaturation
were not affected by AR agonist (DHT) or antagonist
(MDV) treatment in our system. Tarumi et al. (52) treated
mouse ovarian follicles in culture with a concentration
rate of 10210 to 1026 M DHT and found no effect on the
capacity of the oocyte to resume meiosis following an
ovulatory stimulus. Lenie and Smitz (5) observed no
change in oocyte quality when treating mouse follicles
in vitro with the AR-antagonist hydroxyflutamide or
bicalutamide (in a concentration range of 5 nM to 5 mM),
and only the highest dose (50mM)ofARblockade resulted
in decreased oocyte meiotic maturation.

Murine steroidogenesis resembles human steroid
production but differs slightly in some details; for ex-
ample, the human CYP17A1 enzyme does not efficiently
convert 17-hydroxyprogesterone to A’dione (53), which
means that the overwhelming majority of androgen
synthesis in humans proceeds through the androgen
precursor DHEA. The addition of 100 nM of DHEA had
positive effects on follicle growth and survival and did
not impair oocyte development, whereas increasing
concentrations of DHEA (200 and 500 nM) provoked
dysfunctional follicle development, with dose-dependent
robust suppression of oocyte growth and maturation,
aromatase enzyme activity, estrogen production, and
follicular proliferation. Previous studies reported that
in vitro supplementation of mouse follicles cultured with
A’dione at doses .200 nM (54) or 1025 M (55) was
associated with decreased meiotic maturation and im-
paired spindle formation. The toxic effect on the oocyte
was attributed to estrogen excess in one study (52) and
was inconclusive with regard to its androgen-mediated
mechanism in the other study (54). In our study, the
detrimental oocyte phenotype in .200 nM of DHEA-
treated follicles was clearly attributable to increased
provision of active androgens to the follicle generated
by conversion of DHEA to testosterone (T) and DHT.
The androgen-mediated downregulation of aromatase is
in line with reported observations in granulosa (56) and
Leydig cells (57, 58). In rats, administration of DHT was
accompanied by decreased granulosa cell proliferation
(59), suppressed aromatase activity, and reduced E2
production (60). In primates, DHTadministration resulted
in reduced FSH-stimulated estrogen synthesis (61).
DHEA does not mediate its effect by direct binding and
transactivation of the AR but exerts androgenic activity

only indirectly, after downstream conversion to AR-
binding androgens, such as testosterone and DHT. In the
context of our experiments with isolated murine ovarian
follicles, we used DHEA as a probe for exploring the ste-
roidogenic capacity of the developing follicle, which is
more readily achieved by adding substrate than by looking
at baseline production only. Employing single-follicle
steroid metabolome analysis, we showed that the follicle is
capable of downstream conversion of DHEA to active
androgen as early as day 2 of follicular development.

Our findings were obtained with experimental an-
drogen concentrations in murine follicles. Therefore,
we have to be cautious in translating them to human
pathologic follicle development in hypoandrogenic or
hyperandrogenic conditions; however, some general
implications might hold true. Our results contribute to
the scientific foundation for DHEA pretreatment in poor
responder women undergoing IVF to improve the de-
velopmental quality of the maturing follicles. As others
have highlighted before (62, 63), the maturing follicle is
subject to a delicate androgen homeostasis, with a clear
threshold level. In our study, using a murine model this
threshold is DHEA 200 nM, beyond which the beneficial
effects of enhanced active androgen generation become
deleterious. Although a murine model has limitations in
assessing DHEA action (i.e., given its limited physio-
logical role in rodents), our results appear to indicate
that over-replacement of DHEA in human-assisted re-
productive settings might actually harm oocyte quality
and become detrimental for follicle growth. This study
clearly underlines the need for adequately powered,
randomized, controlled trials on DHEA supplementation
that takes into account baseline levels of circulating
androgens and aims to restore physiological DHEA
concentrations in women with low ovarian reserve un-
dergoing fertility workup. Previous studies have shown
that daily doses of DHEA (25 to 50 mg) restore physi-
ological serum androgen concentrations from non-
detectable baseline concentrations in women with adrenal
insufficiency (64–66). Daily doses of $75 mg of DHEA
will yield supraphysiological androgen concentrations
(64). However, these are the doses used by many studies
targeting enhanced fertility by DHEA treatment (67, 68),
which renders DHEA administration in this context a
pharmacological intervention.

Sex steroid production occurred earlier in DHEA-
treated follicles than in nonstimulated follicles, indicating
that in the presence of steroid substrate, immature follicles
are steroidogenically active and capable of androgen
synthesis. In women with PCOS, DHEA and A’dione
production is increased (69–71), and these circulating
androgen precursors are likely to be metabolized by the
small preantral PCOS follicles, thereby contributing to
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intraovarian hyperandrogenism. The intrafollicular feed-
back circuit we observed, with decreased endogenous
androgen synthesis after exogenous DHT and increased
androgen productionwith addedARantagonist, may help
to maintain an androgen equilibrium in the follicle, pro-
viding steady levels of AR activation during development
to maximize the beneficial effects of androgens on follicle
growth and function. However, if androgen exposure ex-
ceeds the physiological concentration range for women,
this feedback circuit can no longer provide sufficient pro-
tection, and adverse biological effects of excess androgens
affect follicle growth and function. We describe a gradual,
oocyte-centered process of follicle developmental arrest in
our study. From this, we extrapolate that local androgen
excess may negatively affect oocyte quality in PCOS, which
in turn could co-orchestrate antral follicle arrest.

In conclusion, we have shown that androgen ho-
meostasis in the developing preantral and antral murine
follicle is crucial to ensure optimal growth, steroido-
genesis, and oocyte maturation. Our study illustrates the
dynamic steroid metabolome of the developing follicle
in vitro and a feedback mechanism at the level of the
isolated follicle that responds to androgen excess with
downregulation of intrafollicular androgen production;
these findings have translational implications for our
understanding of PCOS and low ovarian reserve.
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50. Büttler RM,Martens F, Fanelli F, PhamHT, Kushnir MM, Janssen
MJ, Owen L, Taylor AE, Soeborg T, Blankenstein MA, Heijboer
AC. Comparison of 7 published LC-MS/MS methods for the
simultaneous measurement of testosterone, androstenedione,
and dehydroepiandrosterone in serum. Clin Chem. 2015;61(12):
1475–1483.

51. Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA. An-
drogens stimulate early stages of follicular growth in the primate
ovary. J Clin Invest. 1998;101(12):2622–2629.

52. Tarumi W, Itoh MT, Suzuki N. Effects of 5a-dihydrotestosterone
and 17b-estradiol on the mouse ovarian follicle development and
oocyte maturation. PLoS One. 2014;9(6):e99423.

53. Auchus RJ, Lee TC, Miller WL. Cytochrome b5 augments the
17,20-lyase activity of human P450c17 without direct electron
transfer. J Biol Chem. 1998;273(6):3158–3165.

54. Romero S, Smitz J. Exposing culturedmouse ovarian follicles under
increased gonadotropin tonus to aromatizable androgens in-
fluences the steroid balance and reduces oocyte meiotic capacity.
Endocrine. 2010;38(2):243–253.

55. TarumiW, Tsukamoto S,OkutsuY, TakahashiN,Horiuchi T, Itoh
MT, Ishizuka B. Androstenedione induces abnormalities in mor-
phology and function of developing oocytes, which impairs oocyte
meiotic competence. Fertil Steril. 2012;97(2):469–476.

1484 Lebbe et al Androgens and the Developing Follicle Endocrinology, May 2017, 158(5):1474–1485



56. Yang F, RuanYC, YangYJ,WangK, Liang SS, HanYB, TengXM,
Yang JZ. Follicular hyperandrogenismdownregulates aromatase in
luteinized granulosa cells in polycystic ovary syndrome women.
Reproduction. 2015;150(4):289–296.

57. LiuL,KangJ,DingX,ChenD,ZhouY,MaH.Dehydroepiandrosterone-
regulated testosterone biosynthesis via activation of the ERK1/2
signaling pathway in primary tat Leydig vells. Cell Physiol
Biochem. 2015;36(5):1778–1792.

58. Maris P, Campana A, Barone I, GiordanoC,Morelli C,Malivindi R,
Sisci D, Aquila S, Rago V, Bonofiglio D, Catalano S, Lanzino M,
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