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Abstract

This paper investigates the maximum entropy method for estimating the implied

volatility. Compared to existing methods the maximum entropy method has four ad-

vantages. First, it does not rely on parametric models for the risk neutral distribution.

Second, it does not require a large number of options with a wide range of strike prices.

Third, it allows for estimating implied skewness and kurtosis. Fourth, it allows for con-

structing confidence intervals around the implied volatility. We show that the maximum

entropy method outperforms the existing methods if the risk neutral distribution deviates

from normality. By applying this method to the S&P500 index options, we examine the

information content of the entropy-based implied volatility for forecasting future real-

ized volatility. In some specifications, its information content is of the highest among all

available volatility measures, both in terms of in-sample fit and out-of-sample predictive

power. The entropy-based variance risk premium performs comparably with other alter-

natives in predicting future monthly market returns.
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1 Introduction

In financial markets, investors use options to hedge their positions against unfavorable future

movements of asset prices. Consequently, option prices reflect investors’ perceptions on the

likelihood of having such movements. Risk measures implied by option prices can therefore be

informational superior to their historical counterparts in forecasting the risk of the underlying

asset. With a large literature emphasizing on the information content of option implied

risk measures, little efforts have been devoted to examine whether these implied measures

actually capture the characteristics of the risk neutral distribution. The situation is even more

in doubt when the method of estimating option implied risk measures is based on certain

parametric assumptions without empirical validation. An example reflecting this critique

is the working horse methodology in practice, the Black-Scholes (BS) formula. Estimating

the implied volatility by the BS formula (Black and Scholes (1973)) based on options with

different strike prices results in the well-known volatility smile or smirk. This is against

the uniquely defined volatility in the underlying Gaussian model. Furthermore, Neumann

and Skiadopoulos (2013) show that the implied skewness calculated from S&P500 index

options is consistently negative and the implied kurtosis is always higher than three during

the period from 1996 to 2010. All empirical evidence points to the fact that the risk neutral

distribution observed in the financial market is inconsistent with the Gaussian assumption

in the BS formula. Therefore, the Black-Scholes implied volatility (BSIV) may not capture

the volatility of the risk neutral distribution accurately. This critique may apply to any

parametric method for estimating the implied volatility.

In this paper, we investigate a non-parametric method, the maximum entropy (ME)

method, for estimating the option implied risk measures. The estimated implied volatility

using the ME method is called the entropy-based implied volatility (EBIV). We show at least

four advantages of the ME method. First, the ME method does not rely on parametric models

while allowing the data to determine the shape of the risk neutral distribution. Second,

different from the model-free method in Britten-Jones and Neuberger (2000) and Bakshi

et al. (2003), the ME method does not require a large number of options with strike prices

covering a wide range. Even with limited number of options, this method can produce more
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accurate estimates than the BSIV and the model-free implied volatility (MFIV). Third, the

ME method allows for calculating implied skewness and implied kurtosis. Last but not least,

the ME method allows for constructing confidence intervals around the implied volatility

by utilizing a nonparametric analog of likelihood ratio statistics proposed by Kitamura and

Stutzer (1997).

Using non-parametric methods to extract risk measures of the risk neutral distribution

has been studied extensively in the literature, in particular the so-called model-free method.

This stream of literature started from the pioneer work of Britten-Jones and Neuberger (2000)

and Bakshi et al. (2003), with following-up works in Dennis and Mayhew (2002), Jiang and

Tian (2005), Bali and Murray (2013), Neumann and Skiadopoulos (2013), and DeMiguel

et al. (2014). They show that the expected variance under the risk neutral measure can be

approximated by a linear combination of European call and put option prices with strikes

spanning the full range of possible values for the underlying asset at maturity. Consequently,

this method makes the implied variance tradable on the market. Jiang and Tian (2005) show

that the truncation error and the discretionary error of the model-free method under the

stochastic volatility and random jump (SVJ) model are admissible under certain parameter

specifications. However, these errors tend to be larger when the underlying distribution is

more negatively skewed, when the available number of options is limited and when the market

is more volatile.

This paper also contributes to the literature on testing the information content of implied

risk measures. Several studies find that the implied volatility is superior to the historical

volatility of the underlying asset in predicting future realized volatility; see Day and Lewis

(1992), Canina and Figlewski (1993), Lamoureux and Lastrapes (1993), Christensen and

Prabhala (1998), Fleming (1998), Blair et al. (2001) and Busch et al. (2011). In addition,

DeMiguel et al. (2014) show that using the implied risk measures can improve the selection

of mean-variance portfolios which leads to a better out-of-sample performance. We test the

information content of the EBIV, and compare it with that of the BSIV and MFIV.

The ME method for extracting option implied risk measures is closely related to the

principle of maximum entropy proposed in Buchen and Kelly (1996). Buchen and Kelly

(1996) find that given simulated option prices at different strikes, estimating the risk neutral
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distribution by maximizing the entropy can accurately fit the true risk neutral density. In

this paper, we apply this method to obtain the estimated risk neutral distribution first, and

then calculate characteristics of estimated distribution, such as the EBIV, implied skewness

and kurtosis. Different from Buchen and Kelly (1996), we focus on the implied risk measures

rather than the full risk neutral distribution. The empirical goal of this study is to compare

the estimation error and information content of the EBIV to the other alternatives such as

the BSIV and MFIV. Lastly, we provide a novel methodological contribution for constructing

confidence intervals around the EBIV based on Kitamura and Stutzer (1997). This study

is also related to Stutzer (1996) in which options are priced using the maximum entropy

method. By contrast, we conduct the reverse procedure to extract information of the risk

neutral distribution from option prices.

This paper has three main contributions. First, the proposed estimators of the implied

volatility, skewness and kurtosis are more accurate than their counterparts using the BS

formula and the model-free method. In particular, when the risk neutral distribution exhibits

heavy-tailedness and negative skewness, the EBIV is more accurate than the BSIV and MFIV.

If the number of available options is reduced or the true volatility increases, the estimation

error of MFIV becomes more salient while the EBIV remain robust. Second, to the best

of our knowledge, this paper is the first to construct confidence intervals around implied

volatility using the ME method. The coverage ratios of the constructed confidence intervals

are found to be close to the confidence levels. Third, using the prices of S&P500 index

options, we provide both in-sample and out-of-sample evidence that the EBIV performs

better than the BSIV and MFIV in forecasting future realized volatility. In particular, the

superior performance of the EBIV is more pronounced in high volatility regimes. In addition,

the variance risk premium calculated from the EBIV performs comparably or better than

that based on BSIV or MFIV in forecasting future stock returns.

The remainder of the paper proceeds as follows. Section 2 discusses the estimation of

the option implied risk measures using the ME method. Section 3 compares the accuracy of

different implied risk measures and shows the coverage ratios of constructed confidence inter-

vals around the EBIV. The information content of different implied volatilities are compared

in Section 4. Section 5 concludes.
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2 The entropy-based implied volatility

We first introduce the ME method for estimating the risk neutral distribution from option

prices in Section 2.1. The implied volatility is calculated from the estimated risk neutral dis-

tribution directly. Further, we explain the procedure of constructing the confidence interval

around the implied volatility in Section 2.2.

2.1 The maximum entropy method

The ME method is a non-parametric method for estimating the risk neutral distribution with

the following intuition. The absence of arbitrage guarantees the existence of a risk neutral

probability measure under which the price of any security equals to the expectation of its

discounted payoffs. By considering existing options prices as constraints for the underlying

risk neutral distribution, one may search for the distribution that maximizes the entropy

while obeying all constraints. The optimal distribution is then regarded as the estimated

risk neutral distribution. In the reminder of the paper, all probability measures refer to the

risk neutral probability measure.

Let Xt represent the gross return of a stock at the expiry time t in the future. Denote

S0 as the current price of the stock. At time 0, the value of a call option with strike price K

equals to the expectation of its discounted payoff at time t as follows:

C = E[max(S0Xt −K, 0)]/rt, (1)

where rt is the gross risk free rate from time 0 to t. In a discrete-state setting, we assume

that there are n possible states of Xt, denoted as Xt1, · · · , Xtn, with probabilities q1, · · · , qn

respectively. In addition, we require qi > 0 and
∑n

i=1 qi = 1. The pricing equation (1) can

be rewritten as:

C =

n∑
i=1

qi(max(S0Xti −K, 0))/rt.

A similar pricing equation can be correspondingly established for put options.

The number of possible states is usually much larger than the number of available op-
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tions. Consequently, the pricing equations on available options are not sufficient to uniquely

determine the underlying risk neutral distribution. Buchen and Kelly (1996) show that if the

pricing equations are regarded as constraints on the risk neutral distribution, by maximizing

the entropy, defined as

`ET = −
n∑
i=1

qilog(qi),

a unique optimal distribution can be obtained. Since the entropy measures the amount of

missing information, the optimal distribution is the least prejudiced distribution compatible

with the given constraints. For statistical inference, there is no reason to prefer any other

distribution, if the only available information is the pricing equations (Buchen and Kelly

(1996)).

More specifically, suppose there are k1 call options with strike price Kc(j) and option

price C(j), j = 1, · · · , k1. In addition, there are k2 put options with strike price Kp(j) and

option price P (j), j = 1, · · · , k2. Then the constraints based on the call and put options are:

C(j) =
n∑
i=1

qi(max(S0Xti −Kc(j), 0))/rt, j = 1, ..., k1 (2)

P (j) =
n∑
i=1

qi(max(Kp(j)− S0Xti, 0))/rt, j = 1, ..., k2 (3)

S0 =
n∑
i=1

qiS0Xti/rt (4)

n∑
i=1

qi = 1, qi > 0,

To present the constraints in a concise manner, we express the k1 + k2 + 1 constraints in

equations (2), (3) and (4) as:

n∑
i=1

qigj(Xti) = 0, j = 1, ..., k, (5)

where k = k1 + k2 + 1. The constrained optimization problem is to maximize the entropy

`ET with the k + 1 constraints.
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The Lagrange function associated with the constrained optimization problem is:

L =

n∑
i=1

qilog(qi) + γ(

n∑
i=1

qi − 1) + λ′(

n∑
i=1

qig(Xti)),

where γ ∈ R and λ ∈ Rm are the Lagrange multipliers, g(Xti) = (g1(Xti), ..., gk(Xti))
T . The

first order conditions for L are solved by:

q̂i =
exp(λ̂′g(Xti))∑n
i=1 exp(λ̂′g(Xti))

, i = 1, ..., n, (6)

(λ̂1, ..., λ̂k) = arg min
n∑
i=1

exp(λ′g(Xti)), (7)

where λj is the Lagrange multiplier of the jth constraint in equation (5). Notice that the

estimated q̂i is presented as a function of the Lagrange multipliers which are uniquely solved

from minimizing a strictly convex function.

After estimating the risk neutral probabilities associated to the predetermined states, the

EBIV is calculated as:

EBIV = V Q =

√√√√ n∑
i=1

q̂i(log(Xti)− µQ)2, µQ =

n∑
i=1

q̂ilog(Xti).

We choose to calculate the EBIV of the continuously compounded returns rather than the

discrete return in order to compare it later with the BSIV, because the BSIV is also based

on the continuously compounded return.

In the literature, the entropy is also named as the Kullback-Leibler divergence measure,

which is a member of the Cressie-Read divergence family. In fact, taking any member in the

Cressie-Read divergence family as the objective function results in a non-parametric method

for estimating a probability distribution under given constraints. A notable example of such a

method is the so-called empirical likelihood (EL) method, in which the log likelihood function

is considered as the objective function. However, there are at least two reasons why the ME

method is preferred over the EL method. Empirically, the ME method provides a robust

performance with respect to the variation in the possible states. Regardless whether we
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simulate states from a certain distribution, or enforce a series of equally distanced values as

states, the estimated risk neutral distribution remains robust as long as the chosen states

cover the range of the strike prices. On the contrary, the result following the EL method

may change substantially once varying the choice of the states1. Theoretically, Theorem 1

in Schennach (2007) shows that the EL method suffers from a dramatic degradation of its

asymptotic properties under even the slightest amount of misspecification.

2.2 Constructing the confidence interval around the EBIV

An important feature of the ME method is that it facilitates the construction of a confidence

interval around the EBIV. The procedure of constructing the confidence interval follows an

intuition similar to hypothesis testing. Roughly speaking, by considering the null hypothesis

that the implied volatility equals to a certain value around the point estimate, one may

perform a likelihood ratio with confidence level α. Such a hypothesis would be rejected for

values that are far off the point estimate. Conversely, values that are not rejected will form

the confidence interval at the confidence level 1 − α. A rigorous description of this idea is

given as follows.

First, given the level of the mean µQ, consider a hypothesis testing problem as H0 :

V Q = V Q
0 , where V Q

0 is a given level of volatility to be tested. Kitamura and Stutzer (1997)

proposed the following likelihood ratio testing statistics:

LRT = 2n[logM(V Q
0 )− logM(V̂ Q)].

The two termsM(V Q
0 ) andM(V̂ Q) are defined as follows. The termM(V̂ Q) = 1

n

∑n
i=1 exp(λ̂′g(Xti))

is the minimized value of the function (7) under the k constraints in (5). The term M(V Q
0 ) =

1
n

∑n
i=1 exp(λ̃′g(Xti)+λ̃k+1gk+1(Xti)) is the minimized value of a different optimization prob-

lem

(λ̃1, ..., λ̃k, λ̃k+1) = arg min

n∑
i=1

exp(λ′g(Xi) + λk+1gk+1(Xi)),

1Simulation results on the comparison of the two methods are upon request.
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with the initial k constraints in (5) and an additional (k + 1)-th constraint

n∑
i=1

qigk+1(Xti) = 0,

where gk+1(Xti) = (Xti − µQ)2 − (V Q
0 )2.

It is shown that under the null hypothesis, LRT
d−→ χ2

1 as n→∞. Consequently, one may

vary the value of V Q
0 around the estimated implied volatility V̂ Q and search for the values for

which the null is not rejected under a given confidence level α. Since LRT is increasing for

V Q
0 > V̂ Q and decreasing for V Q

0 < V̂ Q, there must exist two values V Q
L and V Q

H such that H0

is rejected for V Q
0 < V Q

L and for V Q
0 > V Q

H while H0 is not rejected for V Q
0 ∈ [V Q

L , V
Q
H ]. Then

the interval [V Q
L , V

Q
H ] is regarded as the confidence interval of V Q with the given confidence

level α. Obviously, we have that V̂ Q ∈ [V Q
L , V

Q
H ].

In this procedure, we assume that the mean of the continuous compounded return µQ is

fixed when varying the constraint based on V Q
0 . Such an assumption is partially supported

by the fact that the mean of the discrete return is fixed provided that both at-the-money

call and put option prices are available. According to the put-call parity, the mean of the

discrete stock return is derived as:

n∑
i=1

qiXT i =
(Catm − Patm)rt + 1

S0
,

where Catm and Patm are at-the-money call and put option prices. Approximately, we regard

the mean of the continuously compounded return as fixed at
∑n

i=1 q̂ilog(XT i) when we vary

the value of V Q
0 . In the simulation, we do observe that the means of the discrete returns and

the continuously compounded returns are close with the difference at a negligible magnitude.

3 The performance of the EBIV: a numerical study

In this section, we compare the performance of the ME method, the model-free method,

and the Black-Scholes (BS) model for backing out implied volatility from option prices. In

Section 3.1, we layout the technical details on how we use the BS model and the model-
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free method. The data generating process used for the simulation study is given in Section

3.2. Finally, in Section 3.3, we demonstrate that the ME method is more accurate than the

other two methods when there are less number of options available and when the underlying

distribution is heavy-tailed with non-zero skewness.

3.1 The BS and model-free methods for backing out implied volatility

The most conventional method for backing out implied volatility from option prices is to use

the BS model. We first calculate the implied volatilities from all available option prices, and

then take the average as the estimate of the implied volatility, denoted as the BSIV.

When the underlying return distribution deviates from log-normal, taking the average

of the BS implied volatilities may not be an efficient way to aggregate information across

different strike prices. Using the results in Bakshi and Madan (2000) that any payoff can be

spanned and priced using an explicit positioning across option strikes, Bakshi et al. (2003)

provide the explicit formula for replicating the quadratic, cubic and quartic contract. It is

derived entirely from no-arbitrage conditions and can be considered as a linear combination

of European call and put option prices with strikes spanning the full range of possible values

for the underlying asset at maturity. In that sense, the construction of the volatility measure

is of a model-free manner. The model-free implied volatility (MFIV) is defined as follows:

MFIV =
√
erTV − µ2,

V =

∫ ∞
S0

2(1− ln[KS0
])

K2
C(K,T )dK +

∫ S0

0

2(1 + ln[S0
K ])

K2
P (K,T )dK,

where C(K,T ) (P (K,T )) is the call (put) option price with strike price K and maturity

T and µ is the mean of the risk neutral return, which can also be replicated by an option

portfolio. V is defined as V = EQ[e−rTR2
T ]. The details for calculating µ are given in

Appendix 6.1. In a discrete setting, the term V can be approximated as:

V ≈
m∑
i=1

2(1− ln[Ki
S0

])

K2
i

C(Ki, T )(Ki −Ki+1) +
n∑

j=m+1

2(1 + ln[ S0
Kj

])

K2
j

P (Kj , T )(Kj −Kj+1),

where RT = ln[ST ] − ln[S0],K1 > K2 > · · · > Km > S = Km+1 > Km+2 > · · · > Kn >
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Kn+1 = 0 are the strike prices of the available options.

Practically, since the number of available options is limited, we apply a curve-fitting

method to interpolate and extrapolate the prices of the unavailable options as follows. Avail-

able option prices are first mapped to implied volatilities using the BS model. For unavailable

options with strike prices within the available range, following Bates (1991) and Jiang and

Tian (2005), we use cubic spines to interpolate their implied volatilities. For unavailable

options with strike prices beyond the available range, we use the end-point implied volatility

as their implied volatilities. Then we use the BS model to transform the obtained implied

volatilities for unavailable options back to option prices. Eventually we have the option

prices with moneyness ranging from 0.35 to 1.65 with an interval 0.002. All the prices of

these options are used for calculating the MFIV.

Note that there are different definitions of the model-free implied volatility. The VIX in-

dex, disseminated by the by the Chicago Board of Options Exchange (CBOE), is constructed

in accordance with Britten-Jones and Neuberger (2000). The VIX is defined in the following

way:

V IX2 = EQ[

∫ T

0
(
dSt
St

)2dt]

The definition is not completely consistent with the definition of the EBIV. Hence, in the

numerical analysis, we compare the performance of EBIV with the MFIV, which definition

is consistent with the definition of EBIV.

3.2 The underlying risk neutral distributions in the numerical study

We consider four data generating processes to generate the underlying continuously com-

pound returns. We start by assuming that stock price follows a geometric Brownian motion

under the risk neutral measure:

dSt = rStdt+ σStdwt,
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where St is the stock price at time t, r is the risk-free rate, σ is the constant instantaneous

volatility of the process and dwt is the increment in a standard Wiener process. Throughout

the section, we employ an annual risk-free rate r at 5%, an annual volatility σ at 20% (or

40%) and the initial stock price S0 at 100. Under this model, the risk neutral distribution of

the continuously compounded T-year returns ln(RT ) is normally distributed:

ln(RT ) ∼ N((r − 1

2
σ2)T, σ2T ). (8)

The mean of the risk neutral distribution, (r− 1
2σ

2)T , ensures that the expectation of RT is

erT under the risk neutral measure. Note that the BS model and the model-free method are

derived based on this assumption, these two methods should provide accurate estimates for

the implied volatility in this case.

Next, we consider distributions deviating from the normal distribution, in particular,

the Student-t and the skewed Student-t distributions. More specifically, the continuously

compound return is given as

ln(RT ) ∼ (r − 1

2
σ2)T + σ

√
T ε. (9)

For the random term ε, we first employ the standardized Student-t distribution with degree of

freedom 5, and then the standardized skewed Student-t distribution (skewt(η, λ)) proposed

in Hansen (1994). The skewed Student-t distribution has mean 0, variance 1, a degree of

freedom η and skewness parameter λ. We use two sets of parameters: η = 5, λ = −0.3 and

η = 5, λ = −0.7. The latter is more negatively skewed than the former.

Notice that although the mean return is comparable with that in (8), the pricing equation,

ERT = erT , does not hold if ε follows the non-normal distributions, though it remains

approximately true.

3.3 Results

Based on the risk neutral distributions specified in Section 3.2, we calculate the call and put

option prices using numerical integration for several moneyness with one month to expiration.
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Results for other expiration horizons are provided in the robustness check in Section 3.4. The

call and put option prices with strike price K and maturity T are calculated by numerical

integration:

C(K,T ) =

∫ ∞
K/S0

(S0RT −K)f(RT )dRT /rT (10)

P (K,T ) =

∫ K/S0

0
(K − S0RT )f(RT )dRT /rT (11)

where f(RT ) is the density function of RT , rT is the risk-free rate that used to discount

payoff of the options.

Following Bakshi et al. (2003), we only consider out-of-the-money (OTM) options and at-

the-money (ATM) options because in-the-money options are less traded in the option market,

while their prices can be derived from the put-call parity under the no-arbitrage condition.

Consequently, they do not provide additional information for extracting the implied volatility.

We consider different ranges of strike prices which result in different estimation accuracy.

In the first case, we specify the moneyness (K/S0) of call options from 1 to 1.15 with equal

interval 0.025, and the moneyness of put options from 0.85 to 1 with the same interval. There

are 14 options in total. In the second case, we reduce the number of available options and

only consider six options: call options with moneyness 1, 1.05, 1.1 and put options with

moneyness 0.95, 0.975, 1. By comparing the two cases, we evaluate the performance of the

three methods with different number of available options. The calculated option prices with

the chosen moneynesses under different distributions are reported in Table 1.

Table 2 reports the estimated implied volatilities under different distributions using the

three methods. The first row shows the true volatility of the underlying distribution and

the second row shows the number of options. In the parenthesis, We report the rela-

tive improvements of the MFIV and EBIV compared to the BSIV, which are defined as

|XXIV−TrueV olatility|
|BSIV−TrueV olatility| , where XXIV is either MFIV or EBIV.

From Table 2, we observe that under the normal distribution, all three methods provide

accurate estimates. However, when the underlying distribution is heavy-tailed or negatively

skewed, the EBIV estimates are closer to the true value than both the BSIV and MFIV. The

improvement is substantial.
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Although the MFIV performs better than the BSIV under heavy-tailed or skewed distri-

butions, the estimation error increases when the underlying distribution is more negatively

skewed. However, the estimation improvement of the EBIV remains robust across different

specifications. When we decrease the available number of options from 14 to 6 or increase the

true volatility from 0.2 to 0.4, the better performance of EBIV compared to MFIV becomes

more evident. For example, an estimation error of the MFIV under the skewt(5,−0.7) distri-

bution with 6 options and true volatility 0.4 is even larger than that of the BSIV, while the

EBIV has an estimation error as low as 31% of that of the BSIV. The unrobust performance

of the MFIV may be attributed to the increase of the truncation error and extrapolation

error, whereas the ME method does not suffer from such a problem.

An additional advantage of the ME method is that one may construct the confidence

interval around the estimate of the implied volatility. Table 3 shows the coverage rate of the

EBIV confidence interval under the four distributions with six option prices. This analysis is

conducted as follows. We simulate 10000 states from the true distribution for 100 times2. For

each set of simulated states, we first calculate option prices, and then construct the confidence

interval for the implied volatility. Next, we examine the confidence interval covers the true

volatility, i.e. whether the true volatility falls into the constructed interval. Across the 100

simulations, we count the number of “coverage” and divide that number by 100. From Table

3, we find that the coverage rates of the confidence interval are close to the confidence levels

under all four distributions.

3.4 Robustness and discussion

Results from Section 3.3 show that the EBIV aggregates information in the option prices

more efficiently than the MFIV, when the underlying distribution exhibits heavy tail and

when the number of options is limited. We now conduct robustness check to ensure the

generality of our findings.

In Table 4 and Table 5, we provide the estimated implied volatilities based on option

2When simulating the states, kurtosis of the simulated sample might differ from the true value in many
simulations. The reason is that sample kurtosis is very sensitive to extreme observations. If there are no
extreme observations in the simulated sample, sample kurtosis is downward biased. To alleviate this bias, we
only consider the simulated sample if the sample kurtosis is higher than 80% of the true kurtosis.
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prices with three-month and one-year maturity, respectively. In addition to the 14 or 6

options with symmetric moneyness, we consider asymmetric moneyness with 3 call options

(moneyness ranging from 1 to 1.05) and 7 put options (moneyness ranging from 0.85 to 1),

with equal interval 0.025. This is to reflect that there are more available put options than

call options traded in the market. Column 5 an 8 in Table 4 and Table 5 report the results

when having asymmetric moneyness. Results in these two tables show that the EBIV still

has a better estimation accuracy than the MFIV and BSIV for longer maturity options.

The second generalization is to consider more complex data generating process for the

risk neutral distribution, for example, the SVJ model. Further, with such data generating

process, the risk neutral distribution possesses non-trivial skewness and kurtosis. We can thus

examine the performance of the ME method for estimating implied skewness and kurtosis.

The SVJ model has been applied for pricing options in Bakshi et al. (1997) and for illustrating

truncation errors of model-free implied volatility in Jiang and Tian (2005). The model is

specified as:

dSt
St

=
√
VtdWt + JtdNt − µJλdt,

dVt = (θv − κvVt)dt+ σv
√
VtdW

v
t ,

dWtdW
v
t = ρdt,

where Nt follows a homogeneous Poisson process with jump intensity λ and ln(1+Jt) follows

a normal distribution N(ln(1 + µJ) − 1
2σ

2
J , σ

2
J). If λ = 0, the model reduces to the Heston

(1993) model. We choose the parameters as κv = 1, σv = 0.25, ρ = 0, λ = 0.5, θv = V0κv,

V0 = 0.18542. In addition, to evaluate the impact of the jump process, we choose two

sets of parameters for the jumps: (1) µJ = −1.75, σJ = 0.5, (2) µJ = −0.075, σJ = 2.5,

correspondingly. The volatility is 0.203 for the first set of parameters and 0.453 for the second

set of parameters.

Since the unconditional return distribution are unknown here, it is necessary to conduct

pre-simulations to obtain option prices and the true skewness and kurtosis. First, we simulate

21 daily returns to get one monthly return, and repeat this for 100,000 times. Second, option

prices, the true volatility, skewness and kurtosis are calculated based on these simulated
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monthly return.

With the obtained option prices, we estimate the implied volatility by the BS model, the

model-free method and the ME method, and compare the estimates with the true volatility.

In addition, we calculate the implied skewness and kurtosis using the model-free method and

the ME method. The results for options with one-month maturity are reported in Table 6:

the second column for each parameter set reports the simulated moments and the column 3-5

reports the implied moments estimated from different methods. The results show that the

ME method gives the most accurate estimation in all cases, and is especially robust when the

unconditional distribution has higher volatility, more negative skewness and higher kurtosis.

Lastly, we check the robustness of the ME method by focusing on its fundamental step: the

estimated risk neutral distribution. For the original four data generate processes, we compare

the sample of the simulated distribution (blue bars) and the estimated density produced by

the ME method (red lines) in Figure 1. More specifically, the estimated risk neutral densities

in these figures are estimated from 14 options with one year maturity. The figures show that

the risk neutral density estimated by the ME method matches the true density in all four

cases. Option prices with different moneynesses essentially provide information on different

parts of the distribution.

To conclude, the ME method provides more accurate estimates of option implied volatility

than the BS model and the model-free method. Our main findings are robust to the choice

of different number of options, maturities and data generating process. In addition, the ME

method can also be applied for other higher moments of the risk neutral distribution, because

it provides an accurate estimation for the risk neutral distribution.

4 The information content of EBIV

In this section, we conduct an empirical analysis to explore the information content of

the EBIV using the S&P500 index option traded in the Chicago Board Options Exchange

(CBOE). We first review the basic statistical properties of the various volatility measures and

then investigate their relative performance as predictors for the subsequent realized volatil-

ities of the underlying S&P500 index. Further, we analyze the forecasting power of the
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variance risk premia derived from different implied volatilities on the subsequent returns of

the S&P500 index.

The volatility measures we include in the empirical analysis are: lagged realized volatility

(RV), Black-Scholes implied volatility (BSIV), VIX provided by CBOE, model-free implied

volatility (MFIV) and entropy-based implied volatility (EBIV). We include both the VIX

and the MFIV because the construction methodologies of these two measures are different

as illustrated in Section 3. In addition, the VIX measure is not truly model free because the

derivation of this measure involves assumptions of the underlying process. While Jiang and

Tian (2005) and Carr and Wu (2009)) argue that jumps are unlikely to create sizable biases

in VIX, this view has been revised in Carr et al. (2012), Andersen et al. (2015) and Martin

(Forthcoming). The problem is that price jumps induce a discrepancy between the fair value

of future cumulative squared returns and V IX2, even in the continuous sampling limit. The

MFIV is more consistent to the model-free manner because the method does not depend on

distribution assumption on the underlying process.

4.1 Data

Our sample period covers from January 1996 to August 2014. We get the S&P500 index

price data from The Center for Research in Security Prices database. We obtain the S&P500

index options data from the Ivy DB database of OptionMetrics. Continuously-compounded

zero-coupon interest rates are also obtained from OptionMetrics as a proxy for the risk-free

rate. From the CBOE, we get daily levels of the newly calculated VIX index3 and match

them with the trading days on which options with one month expiration are traded.

Our analysis is conducted based on call and put options quoted on the S&P500 index

with 30 days expiration. We choose one-month maturity because the options with one month

to expire are more actively traded than with other maturities. From January 1996 to Febru-

ary 2007, in each month, there is only one day on which options with 30 days expiration

are traded. From March 2007, there are several such days in each month. To avoid the

overlapping problem described in Christensen and Prabhala (1998), Christensen et al. (2001)

3Although the CBOE changed the methodology for calculating the VIX in September 2003, they have
backdated the new index using the historical option prices.
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and Jiang and Tian (2005), we select one date in each month from 2006 to 2014, such that

the time intervals between any two adjacent dates are the closest to 30 days. With this

procedure, there are 222 selected dates in total. Midpoints of the bid-ask spread are used

as the option prices instead of the actual trade prices. This follows Jackwerth (2000) who

demonstrates that measurement of risk neutral distribution is not sensitive to the existence

of spreads.

Table 7 presents the descriptive statistics of the out-of-the-money call and put options.

We apply several filters to select the options. First, option quotes less than 3/8 are excluded

from the sample. Such low prices may not reflect the true option value due to proximity to tick

size. Second, options with zero open interest are excluded from the sample. Third, following

Aı̈t-Sahalia and Lo (1998) and Bakshi et al. (2003), we exclude in-the-money options, because

they have less liquidity than out-of-the-money options.

For BSIV, we calculate the mean of the Black-Scholes implied volatility using all available

option prices after the filtering procedure.

We use all available option prices with moneyness between 0.85 to 1.15 to calculate the

MFIV. We interpolate and extrapolate the prices of the unavailable options using the method

discussed in Section 3.1. Eventually we have option prices with moneyness ranging from 0.35

to 1.65. All the prices of these options are used for calculating the MFIV.

By contrast, we do not use all option prices in the ME method. To calculate the EBIV,

we select options with moneyness that are closest to the moneyness ranging from 0.85 to

1.15 with equal interval 0.025. The reason is that with more option prices as constraints,

the ME method may run into numerical difficulties as follows. If the covariance matrix of

the constraints in equation (5), cov(gi(Xt), gj(Xt)), is close to singular, then the numerical

solution for the Lagrange multipliers becomes unstable (Buchen and Kelly (1996)).

On each selected trading day, we also calculate the historical realized volatility (RV)

in the previous month. Following Christensen and Prabhala (1998), we adopt the realized

volatility over the 30 calendar days proceeding the current observation dates as the lagged

realized volatility RVt. It is computed as the sample standard deviation of the daily index
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returns:

RVt =

√√√√ 1

30

30∑
i=1

(rt,i − r̄t)2,

where r̄t = 1
30

∑30
k=1 rt,k, and rt,i, i = 1, ..., 30, are the log index returns on the 30 days

preceding to the selected trading day t. All of the volatility measures are expressed in annual

terms to facilitate interpretation.

4.2 Descriptive statistics of different volatility measures

Table 8 reports descriptive statistics of the five measures of volatility: RV, VIX, BSIV, MFIV

and EBIV. Table 9 shows the correlation matrix of these measures. We first observe that the

mean of the four implied volatility measures, VIX, BSIV, MFIV and EBIV, are comparable.

All of them exceed the mean of the realized volatility measure RV by about 24%, which is in

line with the positive volatility risk premium. Second, the four implied volatility measures

are highly correlated, with all correlation coefficients above 0.99. VIX is more correlated

with MFIV and EBIV than with BSIV. This may be a consequence of the fact that the three

shares the same nonparametric feature by construction.

In Figure 2, we plot the estimated MFIV and EBIV from 1996 to 2014. Figure 2a shows

their strong comovement during the period. From Figure 2b, we observe that in most of the

time, the differences between the EBIV and the MFIV are negative and small. Occasionally,

the differences can be positive and large. This is consistent with the results in Table 4 and 5:

when the number of the put options is more than the number of call options, the MFIV may

overestimate the true volatility under the low volatility regime (σ = 20%). Conversely, the

underestimation occurs under the higher volatility regime (σ = 40%). To further illustrate

this observation, Figure 2c plots the spread between the EBIV and the MFIV against the

BSIV. By regarding the BSIV as an indication of high and low volatility regime, this scatter

plot further demonstrates that in a higher volatility regime, the spread is also higher. We

attribute this phenomenon to the fact that the model-free method produces less accurate

estimates of implied volatility when the market condition becomes more volatile.

Figure 3a presents the confidence interval for the estimated EBIV and Figure 3b shows
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the length of the confidence interval over time. Lastly, in Figure 4, we provide the estimated

risk neutral distributions on four example dates using the ME method. From the figures,

we observe that the estimated risk neutral distributions may differ across different market

environments.

4.3 Forecasting the stock market volatility

Prior research has extensively analysed the information content of the BSIV on predicting

the future realized volatility. In particular, recent studies seem to agree on the informa-

tional superiority of the BSIV compared to historical volatility. In this paper, we assess the

predictive power of the EBIV, and compare it to the other implied volatility measures.

To nest previous research within our framework, we use five competing volatility measures:

RVt, BSIVt, V IXt , MFIVt and EBIVt to forecast the realized volatility in the next period

RVt+1. To explore the predictive ability of the implied volatility measures, we first include

each of them within an in-sample regression separately. We run the following regression

RVt+1 = αi + βiXi,t + εi,t+1,

with different predictors Xi,t ∈ I = {RVt, BSIVt, V IXt,MFIVt, EBIVt}. Adjusted R2 of

these regressions captures the proportion of total variation in the ex-post realized volatility

explained by the predictors.

We also employ encompassing regressions to investigate whether EBIV has additional

predictive information compared with other volatility measures. To mitigate the multi-

collinearity problem, we first regress EBIVt on the other volatility measures and get the

error term. Then, we run the bivariate regression of the volatility measures and the error

term from the first step. The regressions are specified as follows:

First Step: EBIVt = αEBIV,i + βEBIV,iXi,t + εEBIV,Xi,t

Second Step: RVt+1 = αi + β1,iXi,t + β2,iεEBIV,Xi,t + εt, i 6= 5,

where Xi,t an element from I, which is different from EBIVt.
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Furthermore, we investigate whether other volatility measures have additional information

content in predicting the future realized volatility, compared with EBIVt. Similarly, we

estimate the following two-step regressions:

First Step: Xi,t = αi,EBIV + βi,EBIVEBIVi,t + εXi,EBIV,t

Second Step: RVt+1 = αi + β1,iEBIVi,t + β2,iεXi,EBIV,t + εt, i 6= 5,

Table 10 summarizes the results of both univariate and the second-step encompassing

regressions for the realized volatility in the next month. First, from the estimation results of

univariate regressions in Panel A Table 10, we observe that the adjusted R2 is the highest

when using the EBIV compared to other implied volatility measures. Second, in the bivariate

regressions with volatility measures and the uncorrelated EBIV residuals, the coefficients of

the EBIV residual term are all statistically significant at 10% in Panel B. This indicates that

the EBIV can explain some variations in the future realized volatility that other volatility

measures cannot explain. Third, when we include EBIV in the predictive regression, none of

the additional information in RV, BSIV, VIX and MFIV is statistically significant at 10%.

In Panel C, the coefficients of EBIV are all significant at 1%, while the error terms of the

other volatility measures regressing on EBIV are not significant. The results indicate that

the EBIV plays a dominant role in explaining the variations of the future realized volatility.

In summary, the evidence suggests that, among all the implied volatility measures, the EBIV

explains the most variation in the next month realized volatility with the highest in-sample

fit. It is also notable that even if the MFIV uses more options as inputs, its information

content does not overweight that of EBIV.

We then turn to the out-of-sample evidence reported Table 11. We use moving window

of 100 observations preceding to the period to be forecasted as the estimation window in the

regression. Consequently, the remaining 122 months are the forecasting period. We use the

mean squared forecasting error (MSFE) as the overall measure of forecasting accuracy. We

choose MSFE for two reasons. First, it is the most widely used loss function in the volatility

forecasting literature. Second, Patton (2011) shows that it is one of the loss function that

yields inference that is invariant to the choice of units of measurement. If we denote R̂V t as
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a forecast for RVt, the MFSE is formally defined as,

MFSE =

∑222
t=101(R̂V t −RVt)2

122

To compare the out-of-sample performance of the competing implied volatility measures,

we compute the Diebold and Mariano (1995) and West (1996) (DMW) statistic for testing

the null of equal predictive ability) (MFSEj = MFSEi) against the alternative that the

competing measure has a lower MSFE than the baseline measure (MFSEj > MFSEi).

In Panel A Table 11, we report the full-sample MFSE ratio and DMW statistics in the

parenthesis, The MFSE ratio is defined as follows:

MFSE(Xi, Xj) =
MFSE(Xj)

MFSE(Xi)

where Xi represent the implied volatility measures on the first column and Xj represent

those on the first row. Panel A shows that in the full sample, the rank of out-of-sample

MFSE is RV, BSIV, VIX, MFIV and EBIV from the largest to the smallest. In terms of

the significance of DMW statistics, we can see that the out-of-sample performance of EBIV

is significantly better than VIX and MFIV at 5%. For other pairs of competing implied

volatility measures, we do not observe any statistical significance.

Since the EBIV is particularly accurate in backing out the implied volatility during high

volatility periods, we divide the monthly forecast of future volatility into three subsamples

by sorting the BSIV preceding to the forecasted month in ascending order. Panel B, C and

D in Table 11 report the results in these three subperiods, indicated by the “Low volatility

period”, “Medium volatility period” and “high volatility period” columns. First, in the low

volatility period, all implied volatility measures significantly outperform the lagged realized

volatility measure (RV) at 5%. All the model free implied volatility measures outperform the

BSIV at 10%. MFIV has the best performance among all competing measures. Second, in

the medium volatility period, VIX has the best out-of-sample predictive power. Third, in the

high volatility regime, the forecasting error of EBIV is smaller than the other four implied

volatility measures, but EBIV only significantly outperforms VIX and MFIV.

We also examine whether the out-of-sample performance has significant improvement
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when we include additional variables in the predictive regression. We calculate two MSFE

ratios: MFSE(X,X, εEBIV,X) and MFSE(EBIV ,EBIV, εX,EBIV ). The first one is used to

investigate the out-of-sample performance after we add the uncorrelated error term of EBIV

in the univariate predictive regression of the other implied volatility measures. The second

one aims at analyzing whether there is incremental out-of-sample performance when we add

the other implied volatility measures to the univariate regression of the uncorrelated EBIV

error term. To assess the relative predictive power of two nested models, we use the MSFE-

adjusted statistic suggested in Clark and West (2007). We summarize the MSFE ratio and

the DMW statistics of the encompassing models in Table 12. The table shows that the out-

of-sample performance of the univariate model for RV, BSIV and VIX improved significantly

after we add the uncorrelated EBIV term in the model. However, adding the uncorrelated

EBIV term decreases the out-of-sample performance of MFIV. The table also shows that the

out-of-sample prediction performance of EBIV cannot be improved by including information

in other implied volatility measures.

As a further robustness check, we provide in-sample and out-of-sample results based

on the log-level of the realized volatilities in Table 13 and Table 14. In this log volatility

specification, we find that the EBIV and MFIV have the highest in-sample adjusted R2

among all the implied volatility measures. The additional information in EBIV has significant

predictive power that RV and BSIV do not have, but it is not significant in the regression

of VIX and MFIV. When we regress the EBIV and the uncorrelated other implied volatility

measures, none of these measures are significant. In addition, in Table 15, it is robust that

the smallest out-of-sample MFSE is still obtained by using the EBIV in the full sample.

However, it is not significantly better than MFIV in the full sample and in the high volatility

period.

Finally, we conduct a robustness check by using a broader choice of strike prices, i.e.

moneyness ranging from 0.5 to 1.5. The quantitative results remain valid4. An additional

observation is that the adjusted R2 when using the BSIV as a sole regressor becomes smaller

when we incorporate more options. It shows that using the BS formula is not efficient for

integrating information in a large number of option prices. By contrast, the adjusted R2 of

4Regression results and out-of-sample analysis are available upon request.
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using the EBIV as the sole regressor increases in this case. Therefore, the ME method can

better integrate the information contained in multiple option prices.

To sum up, EBIV has the smallest out-of-sample forecasting error among all the com-

peting implied volatility measures. During the low, medium and high volatility period, the

differences of the forecasting errors between EBIV and other implied volatility measures are

statistically significant in terms of DMW statistics in some specifications. The extra in-

formation in EBIV significantly improves the out-of-sample performance of RV, BSIV and

VIX, while the extra information in other implied volatility measures does not significantly

improve the out-of-sample performance of EBIV.

4.4 Forecasting stock market returns

The theoretical model in Bollerslev et al. (2009) suggest that variance risk premium (VRP)

may serve as a predictor for future returns. The variance risk premium is defined by the

difference between the ex ante risk-neutral expectation of the future return variation over the

[t, t+1] time interval and the ex post realized return variation over the [t−1, t] time interval:

V RPt = IVt − RVt. Note that we implicitly assume that RVt is a martingale process and

RVt measures the expection of realized variance Et[RVt+1]. The advantage is that this VRP

measure does not depend on the specification of the forecast model for the future variance.

Instead, it is completely model-free. In this paper, we intend to compare the performance

of VRP using different methods for backing out the implied variance. We use univariate

regressions to examine the in-sample fit and out-of-sample forecasting performance.

Denote the ex-post return for month t+ 1 as Rt+1, the regressions take the form:

Rt+1 = αi + βixi,t + εi,t+1, (12)

where xi,t is one of the item in I = {V RPBS,t, V RPMF,t, V RPEB,t}, V RPBS,t = BSIV 2
t −

RV 2
t and V RPMF,t and V RPEB,t are calculated based on MFIVt and EBIVt in a similar

way.

Table 16 reports the results of predicting future monthly returns. In all regressions,

the estimated slope coefficients associated with the VRP measures are significant at 5%
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confidence level. In addition, V RPEBexplains more variations in future monthly returns

than V RPBS and V RPMF with the highest R2 at 7.1%. The out-of-sample setup is similar

to that in Section 4.3. The only difference is that the variable to be forecasted here is the

monthly stock return Rt instead of the realized volatility RVt. In the out-of-sample results,

V RPEB performs as good as V RPMF . The V RPEB and the V RPMF both perform better

than V RPBS and they forecast more accurately in the Medium and High volatility regimes.

The differences between the MFSE of different VRP measures are not statistically significant

in terms of the DMW statistics.

Our empirical results point to the direction that the EBIV performs at least at a compa-

rable level with the MFIV in different specifications. In many cases, its information content

is of the highest among all available volatility measures, both in terms of in-sample fit and

out-of-sample predictive power.

5 Conclusion

This paper provides the first comprehensive investigation on the option implied volatility

estimated by the ME method. The ME method extracts the risk neutral distribution of an

asset, given a set of option prices at different strikes. The EBIV is then calculated based

on the estimated risk neutral distribution. Compared to parametric methods such as the

BS model, the ME method does not depend on any parametric assumption. Compared to

the MFIV, proposed by Bakshi et al. (2003), the ME method does not require many options

with strike prices spanning the full range of possible values for the underlying asset at expiry.

Therefore, the ME method combines the advantages in the model-free and the parametric

methods: on the one hand, it aggregates information in multiple options with different strikes

efficiently; on the other hand, it produces accurate estimates even if the number of options

is limited. Lastly, it allows for constructing confidence interval around the estimated implied

volatility thanks to a nonparametric analog of the likelihood ratio test.

With numerical examples, we show that the EBIV has a lower estimation error than the

BSIV and the MFIV, particularly when the underlying distribution exhibits heavy tail and

non-zero skewness. With limited number of available options or under high volatility level,
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the accuracy of the EBIV remains robust while the estimation error of the MFIV gets higher.

The confidence interval around the EBIV has a coverage ratio that is close to the correct

confidence level across various numerical examples. These findings are robust to the choice

of different number of options, maturities and data generating process.

We remark that the ME method also yields estimators for other higher moments of the

risk neutral distribution, such as skewness and kurtosis. The estimators perform better than

their counterparts when using the model-free method. A potential explanation is that the

ME method provides an accurate estimation for the risk neutral distribution.

Using the S&P500 index options, we empirically test the information content of the EBIV

in predicting future monthly realized volatilities and index returns. Our empirical results

point to the direction that the EBIV performs at least at a comparable level with the MFIV

in different specifications. In many cases, its information content is of the highest among

all available volatility measures, both in terms of in-sample fit and out-of-sample predictive

power.

A potential drawback of the ME method is that the tail region of the estimated risk

neutral distribution largely depends on the options with the highest and lowest strike prices.

Given limited number of available options, the estimated density can be less accurate for that

part. This may be the reason why estimating implied skewness and kurtosis is less accurate

than implied volatility. Improving the estimation of the tail region of the risk neutral density

and the option implied skewness and kurtosis is left for future research.
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6 Appendix

6.1 Calculation of the Model-free implied moments

The calculation of the model-free option implied moments follows from Bakshi et al. (2003).

Let the t-period continuous compounded return be given by: Rt = ln[St] − ln[S0]. The fair

values of the mean, volatility, cubic and quartic contract at time 0 are defined as:

M(0, t) = E[e−rtRt], V (0, t) = E[e−rtR2
t ], W (0, t) = E[e−rtR3

t ], and X(0, t) = E[e−rtR4
t ].

To simplify the notations, we ignore the time period information in the parenthesis in the

following equations, for instance V = V (0, t). Further, under the risk neutral measure, the

values M , V , W and X can be replicated by the option prices as,

M = 1− e−rt − 1

2
V − 1

6
W − 1

24
X,

V =

∫ ∞
S

2(1− ln[KS0
])

K2
C(K, t)dK +

∫ S

0

2(1 + ln[S0
K ])

K2
P (K, t)dK,

W =

∫ ∞
S

6 ln[KS ]− 3(ln[KS0
])2

K2
C(K, t)dK −

∫ S

0

6 ln[KS ] + 3(ln[S0
K ])2

K2
P (K, t)dK,

X =

∫ ∞
S

12(ln[KS ])2 − 4(ln[KS0
])3

K2
C(K, t)dK −

∫ S

0

12(ln[KS )2] + 4(ln[S0
K ])3

K2
P (K, t)dK.

The t-period risk neutral return mean µ, volatility MFIV , skewness MFIS, and kurtosis

MFIK are given as

µ = ertM,

MFIV =
√
ertV − µ2

MFIS =
ertW − 3µertV + 2µ3

(ertV − µ2)3/2
,

MFIK =
ertX − 4µertW + 6ertµ2V − 3µ4

(ertV − µ2)2
.
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Table 1: Option prices under different risk neutral distributions

(a) Panel A: σ = 0.2

Moneyness(K/S0) lognormal Student t Skewt1 Skewt2

Call 1.15 0.020 0.078 0.020 0.000
1.125 0.057 0.125 0.038 0.001

1.1 0.148 0.210 0.080 0.003
1.075 0.349 0.373 0.188 0.022
1.05 0.744 0.691 0.474 0.237

1.025 1.435 1.292 1.146 1.002
1 2.512 2.333 2.336 2.310

Put 0.85 0.003 0.029 0.062 0.093
0.875 0.015 0.054 0.105 0.149

0.9 0.061 0.107 0.184 0.242
0.925 0.193 0.222 0.329 0.402
0.95 0.504 0.469 0.598 0.675

0.975 1.106 0.979 1.086 1.137
1 2.096 1.917 1.922 1.899

(b) Panel B: σ = 0.4

Moneyness(K/S0) lognormal Student t Skewt1 Skewt2

Call 1.15 0.730 0.811 0.394 0.041
1.125 1.049 1.063 0.598 0.131

1.1 1.479 1.410 0.921 0.400
1.075 2.046 1.882 1.417 0.947
1.05 2.774 2.521 2.140 1.779

1.025 3.688 3.368 3.123 2.886
1 4.805 4.456 4.367 4.247

Put 0.85 0.353 0.396 0.580 0.702
0.875 0.613 0.602 0.814 0.944

0.9 1.003 0.913 1.138 1.266
0.925 1.552 1.369 1.582 1.691
0.95 2.289 2.017 2.180 2.248

0.975 3.231 2.897 2.967 2.966
1 4.390 4.036 3.976 3.879

Note: This table reports call and put option prices with different moneynesses under different
risk neutral distributions. Panel A reports results for σ = 0.2 and Panel B reports for σ = 0.4.
Risk neutral distributions of the continuously compounded stock returns follow the normal, the
Student-t or two skewed Student-t distributions as specified in (8) and (9). The degree of freedom
of the Student-t and the two skewed Student-t distributions is 5. For the two skewed Student-t
distributions, the skewness parameters are -0.3 and -0.7. The risk-free rate is 5%, K is the strike
price, S0 is the initial stock price 100.
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Table 2: Comparison across the three methods, one-month maturity

Volatility σ 0.2 0.2 0.4 0.4
Option No. 14 6 14 6

Normal BSIV 0.200 0.200 0.400 0.400
MFIV 0.200 0.200 0.400 0.400
EBIV 0.200 0.202 0.402 0.413

Student-t BSIV 0.211 0.192 0.385 0.373
MFIV 0.198 0.195 0.387 0.374

(0.209) (0.628) (0.896) (0.979)
EBIV 0.199 0.196 0.393 0.393

(0.139) (0.466) (0.444) (0.264)

Skewt1 BSIV 0.206 0.192 0.374 0.368
MFIV 0.197 0.197 0.383 0.366

(0.433) (0.342) (0.657) (1.082)
EBIV 0.198 0.196 0.391 0.391

(0.322) (0.558) (0.361) (0.269)

Skewt2 BSIV 0.195 0.187 0.350 0.359
MFIV 0.196 0.196 0.375 0.355

(0.818) (0.334) (0.501) (1.106)
EBIV 0.197 0.193 0.384 0.387

(0.668) (0.541) (0.308) (0.310)

Note: This table reports the estimated implied volatility calculated from 14 or 6 options with
one-month maturity by the Black-Scholes formula (BSIV), the model-free method (MFIV) and
the maximum entropy method (EBIV) under different risk neutral distributions. The first row
provides the true volatilities of the underlying risk neutral distribution. The second row presents
number of options used in calculating implied volatilities. The moneynesses of the 14 options range
from 0.85 to 1.15 and the moneynesses of the 6 options range from 0.95 to 1.05, both with equal
interval 0.025. The degree of freedom of the Student-t and the two skewed Student-t distributions
is 5. For the two skewed Student-t distributions, the skewness parameters are -0.3 and -0.7, for
“Skew1” and “Skew2” respectively. The estimation improvements of the MFIV and the EBIV

compared to the BSIV are presented in parenthesis, which is defined as |XXIV−TrueV olatility|
|BSIV−TrueV olatility| ,

where XXIV is either EBIV or MFIV.
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Table 3: Coverage rates of the confidence intervals around the EBIV

volatility Normal Student t Skewt1 Skewt2

0.2 95% 91.21% 91.40% 92.30% 93.10%
90% 85.00% 85.50% 86.60% 92.30%

0.4 95% 92.39% 91.60% 93.40% 92.50%
90% 88.78% 86.70% 87.60% 84.50%

Note: This table reports the coverage rates of confidence intervals under different risk neutral
distributions. The upper panel is for σ = 0.2 under 95% and 90% confidence levels and the
lower panel is for σ = 0.4. The degree of freedom of the Student-t and the two skewed Student-t
distributions is 5. For the two skewed Student-t distributions, the skewness parameters are -0.3
and -0.7, for “Skew1” and “Skew2” respectively. The details on how to construct the confidence
interval of the EBIV are given in Section 2.2.
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Table 4: Comparison across the three methods: 3-month maturity

Volatility 0.2 0.2 0.2 0.4 0.4 0.4
Option No. 14 6 3+7 14 6 3+7

Normal BSIV 0.200 0.200 0.200 0.400 0.400 0.400
MFIV 0.200 0.200 0.200 0.400 0.400 0.400
EBIV 0.201 0.202 0.200 0.404 0.417 0.405

Student-t BSIV 0.195 0.192 0.200 0.384 0.376 0.379
MFIV 0.194 0.193 0.204 0.386 0.376 0.382

(1.086) (0.908) (8.784) (0.862) (0.995) (0.854)
EBIV 0.197 0.196 0.197 0.395 0.397 0.393

(0.515) (0.453) (6.329) (0.328) (0.131) (0.343)

Skewt1 BSIV 0.192 0.188 0.199 0.368 0.361 0.370
MFIV 0.194 0.191 0.208 0.379 0.363 0.378

(0.746) (0.762) (10.454) (0.664) (0.941) (0.714)
EBIV 0.197 0.196 0.197 0.391 0.393 0.391

(0.343) (0.359) (3.486) (0.274) (0.185) (0.302)

Skewt2 BSIV 0.184 0.177 0.190 0.341 0.341 0.354
MFIV 0.191 0.186 0.208 0.367 0.346 0.369

(0.534) (0.581) (0.763) (0.563) (0.902) (0.659)
EBIV 0.195 0.193 0.195 0.384 0.384 0.385

(0.290) (0.310) (0.471) (0.281) (0.262) (0.329)

Note: This table reports the estimated implied volatility calculated from 14 or 6 options with
three-month maturity by the Black-Scholes formula (BSIV), the model-free method (MFIV) and
the maximum entropy method (EBIV) under different risk neutral distributions. The first row
provides the true volatilities of the underlying risk neutral distribution. The second row presents
number of options used in calculating implied volatilities. The moneynesses of the 14 options range
from 0.85 to 1.15 and the moneynesses of the 6 options range from 0.95 to 1.05, both with equal
interval 0.025. The degree of freedom of the Student-t and the two skewed Student-t distributions
is 5. For the two skewed Student-t distributions, the skewness parameters are -0.3 and -0.7, for
“Skew1” and “Skew2” respectively. The estimation improvements of the MFIV and the EBIV

compared to the BSIV are presented in parenthesis, which is defined as |XXIV−TrueV olatility|
|BSIV−TrueV olatility| ,

where XXIV is either EBIV or MFIV.
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Table 5: Implied volatilities estimated using the three methods: 1-year maturity

Volatility 0.2 0.2 0.2 0.4 0.4 0.4
Option No. 14 6 3+7 14 6 3+7

Normal BSIV 0.200 0.200 0.200 0.400 0.400 0.400
MFIV 0.200 0.200 0.200 0.400 0.400 0.400
EBIV 0.204 0.202 0.200 0.407 0.423 0.407

Student-t BSIV 0.188 0.192 0.198 0.392 0.386 0.388
MFIV 0.190 0.192 0.199 0.390 0.381 0.387

(0.850) (0.933) (0.598) (1.363) (1.328) (1.037)
EBIV 0.197 0.197 0.197 0.401 0.406 0.399

(0.256) (0.402) (1.181) (0.101) (0.452) (0.072)

Skewt1 BSIV 0.191 0.193 0.201 0.366 0.363 0.368
MFIV 0.193 0.193 0.203 0.382 0.368 0.382

(0.844) (0.977) (3.253) (0.536) (0.867) (0.572)
EBIV 0.200 0.199 0.201 0.399 0.404 0.398

(0.040) (0.086) (0.651) (0.036) (0.112) (0.049)

Skewt2 BSIV 0.188 0.183 0.193 0.331 0.334 0.342
MFIV 0.190 0.187 0.200 0.366 0.346 0.369

(0.840) (0.810) (0.054) (0.486) (0.812) (0.546)
EBIV 0.193 0.196 0.198 0.389 0.393 0.390

(0.542) (0.253) (0.316) (0.163) (0.102) (0.175)

Note: This table reports the estimated implied volatility calculated from 14 or 6 options with
one-year maturity by the Black-Scholes formula (BSIV), the model-free method (MFIV) and the
maximum entropy method (EBIV) under different risk neutral distributions. The first row provides
the true volatilities of the underlying risk neutral distribution. The second row presents number
of options used in calculating implied volatilities. The moneynesses of the 14 options range from
0.85 to 1.15 and the moneynesses of the 6 options range from 0.95 to 1.05, both with equal interval
0.025. The degree of freedom of the Student-t and the two skewed Student-t distributions is 5. For
the two skewed Student-t distributions, the skewness parameters are -0.3 and -0.7, for “Skew1”
and “Skew2” respectively. The estimation improvements of the MFIV and the EBIV compared

to the BSIV are presented in parenthesis, which is defined as |XXIV−TrueV olatility|
|BSIV−TrueV olatility| , where XXIV

is either EBIV or MFIV.
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Table 6: Implied moments for the stochastic volatility and jump (SVJ) model

Parameter set I Parameter set II

volatility skewness kurtosis volatility skewness kurtosis
true value 0.203 -0.401 3.179 true moments 0.453 -0.554 3.53

BSIV 0.2 - - BSIV 0.445 - -
MFIV 0.205 -0.274 2.924 MFIV 0.427 -0.059 1.76
EBIV 0.203 -0.404 3.207 EBIV 0.454 -0.543 3.435

Note: This table provides a comparison between the three methods, the Black-Scholes formula
(BSIV), the model-free (MFIV) method and the entropy-based (EBIV) method, when the option
prices are simulated from the stochastic volatility and jump (SVJ) model (for details, see Section
3.4). For the two sets of parameters given in Section 3.4, the true moments of the underlying
distribution are presented in the first row and the implied moments calculated from the three
methods are presented in the second to fourth rows. The true moments of the risk neutral distri-
butions are determined by pre-simulating 100, 000 monthly returns from the SVJ model. Option
prices and the true moments are calculated based on the simulated monthly returns. There are
14 options in total, with one-month maturity. The moneynesses of the options range from 0.85 to
1.15 with equal interval 0.025.
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Table 7: Descriptive statistics of the S&P500 index options with 1 month expiration

(a) Panel A: Call options

Kc/S 1 1.025 1.05 1.075 1.1 1.125 1.15

Mean 24.62 11.38 4.78 2.23 1.28 0.93 0.77
Variance 80.02 65.66 33.11 15.39 7.36 4.35 2.28
Skewness 1.11 1.66 3.15 5.26 7.17 8.66 9.73

Maximum 7.69 1.28 0.40 0.40 0.40 0.40 0.40
Minimum 64.85 53.25 45.20 36.80 29.30 24.50 19.30

obs. 222 222 222 196 123 57 33

(b) Panel B: Put options

Kp/S 0.85 0.875 0.9 0.925 0.95 0.975 1

Mean 1.96 2.69 3.91 5.78 8.92 14.38 24.10
Variance 9.06 13.37 20.66 30.97 47.59 66.61 80.86
Skewness 4.57 4.12 3.41 2.83 2.25 1.66 0.99

Maximum 0.40 0.40 0.40 0.53 1.33 3.65 8.25
Minimum 25.20 30.05 34.45 40.35 47.35 55.25 62.65

obs. 222 190 216 220 221 221 222

Note: This table reports descriptive statistics of the S&P500 call and put options with 1 month
expiration from January 1996 to August 2014. The options are selected by the procedure illustrated
in Section 4.1. The first row in Panel 7a (Panel 7b) shows moneynesses of the out-of-the-money
call (put) options, where Kc (Kp) are exercise prices of the call (put) options, S is the current
price of the S&P500 index. The last row labelled “obs” shows the number of observations in each
moneyness category.
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Table 8: Descriptive statistics of different measures of volatility

Mean Median Std. Dev. Skewness Kurtosis Maximum Minimum

RV 0.172 0.145 0.101 2.739 14.158 0.784 0.055
VIX 0.217 0.200 0.093 2.460 13.122 0.809 0.102

BSIV 0.219 0.204 0.078 2.994 17.341 0.765 0.130
MFIV 0.209 0.195 0.085 2.460 13.349 0.758 0.103
EBIV 0.210 0.194 0.089 2.257 11.343 0.745 0.097

Note: This table reports the descriptive statistics for the volatility measures: RV, VIX, BSIV,
MFIV and EBIV. RV is the realized volatility of the preceding 30 days defined in 12. VIX
is the volatility index provided by CBOE. BSIV is the average Black-Scholes implied volatility
calculated from all available option prices. MFIV is calculated based on Appendix 6.1. The
details of calculating EBIV are given in Section 2.1 and 4.1. Statistics are reported for the full
sample from January 1996 to August 2014. The volatility measures are annualized and given in
decimal form.

Table 9: Correlation matrix of different measures of volatilities

RV VIX BSIV MFIV EBIV

RV 1.000 0.734 0.735 0.735 0.735
VIX 0.734 1.000 0.994 0.998 0.998

BSIV 0.735 0.994 1.000 0.996 0.993
MFIV 0.735 0.998 0.996 1.000 0.998
EBIV 0.735 0.998 0.993 0.998 1.000

Note: This table reports the correlation coefficients across the volatilities measures: RV, VIX,
BSIV, MFIV and EBIV. RV is the realized volatility of the preceding 30 days defined in 12. VIX
is the volatility index provided by CBOE. BSIV is the average Black-Scholes implied volatility
calculated from all available option prices. MFIV is calculated based on Appendix 6.1. The details
of calculating EBIV are given in Section 2.1 and 4.1. The volatility measures are annualized and
given in decimal form. The sample period is from January 1996 to August 2014.
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Table 10: Predict the realized volatility: volatility regressions

Panel A: Univariate regressions of the 5 volatility measures
α β1 β2 adj.R2

RV 0.050*** 0.680*** - 0.486
(3.681) (7.544) -

BSIV -0.024 0.917*** - 0.554
-(1.428) (9.982) -

VIX -0.003 0.805*** - 0.554
-(0.221) (9.929) -

MFIV -0.006 0.823*** - 0.559
-(0.419) (9.879) -

EBIV 0.005 0.787*** - 0.564
(0.397) (10.401) -

Panel B: Bivariate regressions (volatility measures and uncorrelated EBIV residuals)
α β1 β2 adj.R2

RV + εEBIV,RV 0.050*** 0.679*** 0.655*** 0.571
(6.285) (11.873) (5.944)

BSIV + εEBIV,BSIV -0.029*** 0.926*** 1.675* 0.570
-(2.631) (15.179) (1.570)

VIX + εEBIV,V IX -0.003 0.803*** 1.424** 0.570
-(0.292) (16.099) (2.332)

MFIV + εEBIV,MFIV -0.006 0.822*** 1.082* 0.567
-(0.596) (15.026) (1.722)

Panel C: Bivariate regressions (EBIV and uncorrelated residuals of other measures)
α β1 β2 adj.R2

EBIV + εRV,EBIV 0.006 0.785*** 0.136 0.571
(0.641) (14.952) (1.124)

EBIV + εBSIV,EBIV 0.006 0.785*** -0.941 0.570
(0.637) (14.760) -(0.804)

EBIV + εV IX,EBIV 0.006 0.785*** -0.662 0.570
(0.643) (15.850) -(1.074)

EBIV + εMFIV,EBIV 0.006 0.785*** -0.313 0.567
(0.629) (14.791) -(0.486)

Note: This table reports the results for predicting future realized volatility using different measures
of volatility. All regressions are based on monthly non-overlapping observations. The dependent
variable is the realized volatility in the next month defined in equation (12). Robust t-statistics are
reported in parentheses taking into account the heteroscedastic and autocorrelated error structure.
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Table 11: Out-of-sample Diebold-Mariano-West test

Panel A: Full sample Panel B: Low volatility period
BSIV VIX MFIV EBIV BSIV VIX MFIV EBIV

RV 0.928 0.922 0.915 0.890 RV 0.342*** 0.317*** 0.316*** 0.317***
(0.754) (0.858) (0.963) (1.229) (5.284) (5.589) (5.676) (5.845)

BSIV 0.993 0.986 0.959 BSIV 0.926*** 0.925** 0.927
(0.263) (0.485) (1.154) (2.996) (2.187) (1.573)

VIX 0.993 0.966* VIX 0.999 1.001
(0.924) (1.678) (0.032) (-0.040)

MFIV 0.973* MFIV 1.002
(1.779) (-0.051)

Panel C: Medium volatility period Panel D: High volatility period
BSIV VIX MFIV EBIV BSIV VIX MFIV EBIV

RV 0.986 0.956 0.961 0.959 RV 0.975 0.986 0.971 0.928
(0.163) (0.539) (0.505) (0.503) (0.165) (0.093) (0.196) (0.474)

BSIV 0.970*** 0.975 0.973** BSIV 1.011 0.996 0.952
(2.269) (1.486) (1.919) (-0.292) (0.082) (0.899)

VIX 1.005 1.003 VIX 0.985 0.942**
(-0.456) (-0.364) (1.170) (2.101)

MFIV 0.998 MFIV 0.956**
(0.219) (2.006)

Note: This table reports the MFSE ratio (
MFSEj

MFSEi
) and DMW statistics in the parenthesis, where

i represent the implied volatility measures on the first column and j represent those on the first
row. Diebold and Mariano (1995) and West (1996) (DMW) statistics are computed to test the
null of equal predictive ability) (MFSEj = MFSEi) against the alternative that the competing
model has a lower MSFE than the baseline model (MFSEj > MFSEi).

Table 12: Diebold-Mariano-West test: nested models

RV BSIV VIX MFIV

MFSE({X}, {X, εEBIV,X}) 0.894*** 0.983*** 0.986*** 1.052

(3.956) (2.231) (2.061) (-0.383)

MFSE({EBIV }, {EBIV, εX,EBIV }) 1.005 1.024 1.021 1.082

(0.506) (1.196) (-0.382) (-0.335)

Note: This table reports the MFSE ratio and the DMW statistics for nested models. The MFSE ra-

tio is defined as MFSE(Xi, Xj) =
MFSE(Xj)
MFSE(Xi)

and the DMW statistics is calculated after adjusting

for nested models suggested in Clark and West (2007).
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Table 13: Predict the realized volatility: log volatility regressions

Panel A: Univariate regressions of the 5 volatility measures
α β1 β2 adj.R2

RV -0.617*** 0.690*** - 0.461
(-5.237) (11.817) -

BSIV -0.038 1.169*** - 0.587
(-0.379) (19.924) -

VIX -0.293*** 0.996*** - 0.589
(-2.849) (17.583) -

MFIV -0.271*** 1.008*** - 0.593
(-2.652) (17.860) -

EBIV -0.305*** 0.969*** - 0.593
(-3.146) (18.550) -

Panel B: Bivariate regressions (volatility measures and uncorrelated EBIV residuals)
α β1 β2 adj.R2

RV + εEBIV,RV -0.617*** 0.690*** 0.924*** 0.596
(-6.286) (14.800) (9.510)

BSIV + εEBIV,BSIV -0.038 1.169*** 1.131* 0.596
(-0.344) (18.404) (1.744)

VIX + εEBIV,V IX -0.293 0.996*** 1.366 0.596
(-3.106) (19.116) (1.544)

MFIV + εEBIV,MFIV -0.271 1.008*** 0.461 0.596
(-2.708) (18.262) (0.345)

Panel C: Bivariate regressions (EBIV and uncorrelated residuals of other measures)
α β1 β2 adj.R2

EBIV + εRV,EBIV -0.305*** 0.969*** 0.042 0.596
(-3.209) (18.874) (0.471)

EBIV + εBSIV,EBIV -0.305*** 0.969*** -0.197 0.596
(-3.085) (18.212) (-0.255)

EBIV + εV IX,EBIV -0.305*** 0.969*** -0.410 0.596
(-3.220) (18.975) (-0.454)

EBIV + εMFIV,EBIV -0.305*** 0.969*** 0.529 0.596
(-3.078) (18.133) (0.382)

Note: This table reports the results for predicting future log realized volatility using different
measures of log volatility. All regressions are based on monthly non-overlapping observations. The
dependent variable is the realized volatility in the next month defined in equation (12). Robust
t-statistics are reported in parentheses taking into account the heteroscedastic and autocorrelated
error structure.
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Table 14: Out-of-sample Diebold-Mariano-West test: log volatility regressions

Panel A: Full sample Panel B: Low volatility period
BSIV VIX MFIV EBIV BSIV VIX MFIV EBIV

RV 0.772*** 0.762*** 0.760*** 0.751*** RV 0.513*** 0.491*** 0.493*** 0.485***
(3.330) (3.387) (3.468) (3.601) (4.435) (4.592) (4.559) (4.727)

BSIV 0.986 0.984 0.973 BSIV 0.000 0.957 0.962 0.945
(0.639) (0.657) (1.060) (1.605) (1.005) (1.401)

VIX 0.998 0.986 VIX 1.005 0.987
(0.261) (1.242) -(0.216) (0.528)

MFIV 0.988 MFIV 0.982
(1.394) (1.039)

Panel C: Medium volatility period Panel D: High volatility period
BSIV VIX MFIV EBIV BSIV VIX MFIV EBIV

RV 0.863 0.830* 0.833* 0.830* RV 0.867 0.920 0.905 0.881
(1.343) (1.695) (1.779) (1.745) (0.924) (0.456) (0.549) (0.669)

BSIV 0.961* 0.964 0.962 BSIV 1.061 1.043 1.016
(1.693) (1.303) (1.450) (-1.058) (-0.700) (-0.224)

VIX 1.003 1.001 VIX 0.983 0.957*
(-0.227) (-0.056) (1.237) (1.771)

MFIV 0.997 MFIV 0.974
(0.236) (1.611)

Note: This table reports the MFSE ratio (
MFSEj

MFSEi
) and DMW statistics in the parenthesis, where

i represent the implied volatility measures on the first column and j represent those on the first
row. Diebold and Mariano (1995) and West (1996) (DMW) statistics are computed to test the
null of equal predictive ability) (MFSEj = MFSEi) against the alternative that the competing
model has a lower MSFE than the baseline model (MFSEj > MFSEi).

Table 15: Diebold-Mariano-West test: nested models

RV BSIV VIX MFIV

MFSE({X}, {X, εEBIV,X}) 0.894*** 0.983** 0.986** 1.052
(3.956) (2.231) (2.061) (-0.383)

MFSE({EBIV }, {EBIV, εX,EBIV }) 1.005 1.024 1.021 1.082
(0.506) (1.196) (-0.382) (-0.335)

Note: This table reports the MFSE ratio and the DMW statistics for nested models. The MFSE

ratio is defined as MFSE(Xi, Xj) =
MFSE(Xj)
MFSE(Xi)

and the DMW statistics is calculated after ad-

justing for nested models suggested in Clark and West (2007).
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Table 16: Predict the monthly returns using variance risk premium

In-Sample Estimation Out-of-sample MFSE
α β1 adj.R2 All days Low Medium High

V RPBS 0.002 0.353*** 0.051 2.421E-03 6.325E-04 2.236E-03 4.409E-03
(0.427) (3.916)

V RPMF 0.000 0.411*** 0.065 2.385E-03 6.620E-04 2.243E-03 4.242E-03
-(0.040) (4.430)

V RPEB 0.000 0.425*** 0.071 2.389E-03 6.589E-04 2.242E-03 4.259E-03
(0.046) (4.273)

Note: This table reports the results for predicting future monthly return using different variance
risk premia. V RPBS is the variance risk premium calculated by the difference between BSIV 2

and realized variance in the last month RV 2, as defined in equation (12). V RPMF and V RPEB are
variance risk premium calculated based on MFIV and EBIV in a similar way. The sample period
extends from January 1996 to August 2014. In the panel In-sample Estimation, all regressions
are based on monthly non-overlapping observations. The dependent variable is S&P500 index
return in the next month. Robust t-statistics are reported in parentheses taking into account
the heteroscedastic and autocorrelated error structure. In the panel Out-of-sample MFSE, the
forecasting are conducted based on a moving window of 100 observations preceding to the period
to be forecasted. Besides the results for “All Days” in the forecasting period, the whole sample is
further split into three sub-samples by sorting the BSIV in the month preceding to the forecasting
period in ascending order, which results in three regimes: “Low”, “Medium” and “High”. The
RMSEs are then calculated within each sub-sample.
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Figure 1: Comparing the estimated risk neutral distribution to the true distribution

(a) Standard normal (b) Student-t

(c) Skewt1 (d) Skewt2

Note: This figure compares the estimated risk neutral distribution to the true distribution from the data
generating process. The blue bars show the histogram of the simulated true distribution. The red lines show
the estimated risk neutral densities using the Maximum Entropy method. The distributions are estimated
from 14 options. Their moneynesses range from 0.85 to 1.15 with an equal interval 0.025. The degree of
freedom of the Student-t and the two skewed Student-t distributions is 5. For the two skewed Student-t
distributions, the skewness parameters are -0.3 and -0.7, for “Skew1” and “Skew2” respectively.
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Figure 2: Comparison between the MFIV and the EBIV

(a) EBIV and MFIV

(b) Difference between EBIV and MFIV

(c) BSIV and MFIV-EBIV

Note: This figure shows the comparison between the MFIV and the EBIV from January 1996 to August 2014.
In 2a, the blue and red lines represent the MFIV and the EBIV respectively. Figure 2b shows the spread
between EBIV and MFIV. Figure 2c shows the scatter plot between the BSIV (horizontal axis) and the spread
between MFIV and EBIV (vertical axis). 42



Figure 3: Confidence interval using the maximum entropy method

(a) Confidence interval for EBIV

(b) Length of the confidence interval

Note: This figure shows the confidence interval obtained from the maximum entropy method. In Figure 3a,
the red lines show the upper and lower bounds of the 95% confidence interval around the point estimate of the
EBIV (indicated by the blue line). Figure 3b shows the time series of the lengths of the confidence intervals.
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Figure 4: Estimated risk neutral distributions on four selected dates

(a) June 18th, 1998 (b) September 20th, 2001

(c) October, 23rd, 2008 (d) June 19th, 2014

Note: This figure shows the estimated risk neutral distributions using the maximum entropy method on four
selected dates.
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