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Abstract

Background: In this study we set out to investigate the clinically observed relationship between chronic obstructive
pulmonary disease (COPD) and aortic aneurysms. We tested the hypothesis that an inherited deficiency of connective tissue
might play a role in the combined development of pulmonary emphysema and vascular disease.

Methods: We first determined the prevalence of chronic obstructive pulmonary disease in a clinical cohort of aortic
aneurysms patients and arterial occlusive disease patients. Subsequently, we used a combined approach comprising
pathological, functional, molecular imaging, immunological and gene expression analysis to reveal the sequence of events
that culminates in pulmonary emphysema in aneurysmal Fibulin-4 deficient (Fibulin-4R) mice.

Results: Here we show that COPD is significantly more prevalent in aneurysm patients compared to arterial occlusive
disease patients, independent of smoking, other clinical risk factors and inflammation. In addition, we demonstrate that
aneurysmal Fibulin-4R/R mice display severe developmental lung emphysema, whereas Fibulin-4+/R mice acquire alveolar
breakdown with age and upon infectious stress. This vicious circle is further exacerbated by the diminished antiprotease
capacity of the lungs and ultimately results in the development of pulmonary emphysema.

Conclusions: Our experimental data identify genetic susceptibility to extracellular matrix degradation and secondary
inflammation as the common mechanisms in both COPD and aneurysm formation.
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Introduction

Chronic obstructive pulmonary disease (COPD) is worldwide

one of the major causes of morbidity and mortality [1]. In addition

to chronic airflow obstruction due to airway inflammation and

alveolar destruction, COPD is associated with extrapulmonary

manifestations, including cardiovascular diseases [2–5]. These

comorbid conditions contribute to the overall disability of patients

and complicate the management of COPD.

Aortic aneurysm (AA) is one of the cardiovascular diseases

related to COPD [6,7]. The nature of this relationship is currently

unknown. Patients with COPD, AA, and/or atherosclerosis share

a number of risk factors, including age, hypertension, and tobacco

smoking [8,9]. Resemblances in risk profiles between these

conditions, most notably smoking, may account for the relation

between AA and COPD. Furthermore, a systemic inflammatory

response has been suggested as a common denominator [10].

The association between COPD and AA prompted us to

investigate the prevalence of COPD in a large cohort of patients
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with aneurysmal or arterial occlusive disease (AOD) in relation to

their clinical risk profiles. Here, we found that COPD is much

more prevalent in patients with AA compared to those with AOD,

irrespective of common clinical risk factors. Since AA [11,12] and

COPD [13] are associated with destruction of the extracellular

matrix (ECM), we hypothesized that a primary ECM defect may

provide a common ground for the combined development of

COPD and aneurysm formation. We previously demonstrated

that mice with reduced expression of the ECM glycoprotein

Fibulin-4 exhibit ECM degradation in the aortic wall and AA

formation [14,15]. We here investigated the role of Fibulin-4

deficiency in the development of lung emphysema.

Results

Clinical study
Patient characteristics. We included 1393 patients; 614

patients (44%) were diagnosed with AA and 779 patients (56%)

with AOD. The majority of AA patients were treated for an

abdominal aortic aneurysm (AAA). None of the patients in this

series were treated for an aneurysm of the ascending aorta; 62/614

(10%) of patients were treated for an aneurysm of the descending

thoracic aorta (TAA). Clinical characteristics of AA and AOD

patients are presented in Table 1. Patients with AA were on

average older and more frequently of male gender. Patients with

AOD had higher rates of diabetes, hypercholesterolemia, and

cerebrovascular disease. In addition, there were differences in

medication use between the two groups: statins and antiplatelet

drugs were more commonly used by patients with AOD, whereas

beta-blockers were more often used by patients with AA.

Importantly, smoking rates were similar in the two patient groups.

A differentiation in clinical characteristics between AAA and TAA

patients is presented in Table S1.

Association between COPD and AA. COPD was more

common in AA patients as compared to AOD patients (42% vs.

26%, p,0.001, Figure 1A). COPD rates did not differ between

TAA and AAA patients (Table S2). Univariate logistic regression

analysis showed a significant association between COPD and AA

(odds ratio 2.08, 95%CI: 1.66–2.61, p,0.001; Table S3). Since

patients with COPD, AA, and AOD shared a number of

cardiovascular risk factors, we subsequently performed a multi-

variable regression analysis. Even after adjustment for potentially

confounding factors the association between COPD and AA

remained significant (odds ratio 1.56, 95%CI: 1.16–2.10,

p = 0.003; Table S3).

As inflammation is involved in aneurysm development, athero-

sclerosis, and COPD, we measured serum levels of the systemic

inflammatory biomarker high-sensitivity C-reactive protein (hs-

CRP). The median serum hs-CRP concentration was higher in

patients with AA compared to AOD (5.9 [IQR 2.9–12.5] vs

4.8 mg/L [IQR 2.1–11.1], p = 0.02). However, there were no

differences in hs-CRP levels between arterial disease patients with

COPD and those without COPD (median 5.4 vs 5.2 mg/L,

p = 0.776; Figure 1B). These data strongly support the association

between AA and COPD in patients independently of smoking and

other cardiovascular risk factors.

Experimental study
Extracellular matrix remodeling in aortas of Fibulin-4

deficient mice. Complete disruption of Fibulin-4 is incompat-

ible with life as targeted disruption of Fibulin-4 abolishes

elastogenesis and causes perinatal lethality in mice [16]. We

previously generated a viable mouse model for Fibulin-4 using a

hypomorphic Fibulin-4 allele (Fibulin4R) which results in reduced

expression by transcriptional interference through placement of a

TKneo targeting construct in a downstream gene (Mus81)[14].

While Mus81 knockout mice, from which the selectable marker

was removed, were born at expected Mendelian frequencies and

were indistinguishable from wild type littermates in terms of

development, growth, immune function and fertility [17], our

Fibulin-4 hypomorphic mice displayed a 2-fold lower expression of

Fibulin-4 in heterozygous Fibulin-4+/R aortas and a 4-fold

downregulation in homozygous Fibulin-4R/R aortas, resulting in

ECM defects and vascular abnormalities, including aortic

aneurysms in the aorta ascendens [14]. Indeed, comparison of

haematoxylin-eosin (HE) and elastin stained aortas of 3-month old

Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R mice showed severe

thickening and decellularization of the medial layer of the

ascending aortic wall in Fibulin-4R/R mice and fragmented and

disorganized elastin laminae resulting in 2–3 fold dilated ascending

aortic aneurysms in all homozygous knockdown animals analyzed

(Figure 2A). While Fibulin-4+/R aortas are not dilated, careful

histological comparison showed an increased medial thickness,

signs of elastin breakage and increased deposition of amorphous

cell material between the elastin layers compared to wild type

animals (Figure 2A). The downregulation of Fibulin-4 leads to

elastin abnormalities in the ascending aorta accompanied by

extensive remodeling of the ECM presumably through activation

of matrixmetalloproteinases (MMPs). The increased activity of

MMPs can be visualized with an MMP-specific activatable near-

infrared (NIRF) probe developed for in vivo imaging (Perkin

Elmer). Fibulin-4+/R and Fibulin-4R/R mice injected with this

protease sensing probe show a gradual increase in NIRF signal in

the thoracic area, indicative of aneurysm formation [14,15]. Here,

we injected this MMP activatable NIRF probe and sacrificed the

mice after 24 hrs after which the hearts with aortas were excised.

When we compared the ex vivo fluorescence in the aortic arch and

descending aorta using the Odyssey imaging system, we measured

a gradual increase of MMP activation in Fibulin-4+/R and Fibulin-

4R/R compared to wild type Fibulin-4+/+ mice (Figure 2B, upper

row). Since this was consistent with the gradual elastin degradation

we noticed histologically, we then used these protease sensing

probes to analyze the abdominal part of the aorta, below the

diaphragm. Ex-vivo analysis confirmed the in vivo observed

gradual increase in MMPs within the aneurysmal lesions in the

thoracic aorta (Th) and showed as well a gradual increased activity

in the abdominal aorta (Ab) in both Fibulin-4+/R and Fibulin-4R/R

mice. Thus, decreased expression of fibulin-4 not only leads to

MMP activation in the thoracic part of the aorta, but equally

affects the abdominal aorta, predisposing the complete aorta for

arterial disease. Since we find extracellular matrix remodeling

activity in both thoracic and abdominal aorta, we conclude that

the Fibulin-4+/R and Fibulin-4R/R mouse models mimics different

stages of both TAA and AAA.

Alveolar airspace enlargement in Fibulin-4 deficient

mice. In the clinical study, we observed a significant association

between COPD and AA. To investigate whether ECM abnor-

malities may provide a common ground for aneurysm formation

and COPD we subsequently analyzed whether fibulin-4 deficiency

also predisposes for lung abnormalities in these Fibulin-4

hypomorfic mice.

To this end, we first tested whether the transcriptional

downregulation of Fibulin-4 also occurs in the lungs of these

mutant mice. Expression levels of Fibulin-4 mRNA in newborn

and adult lungs of Fibulin-4+/R and Fibulin-4R/R mice were

indeed significantly lower compared to Fibulin-4+/+ mice (Fig-

ure 3A). Next, we examined whether Fibulin-4 animals display

lung emphysema. Assessment of respiratory performance by
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whole-body plethysmography showed similar breathing frequen-

cies and Peak Inspiratory Flows (PIF) in adult Fibulin-4 deficient

mice and Fibulin-4+/+ littermates, whereas the Peak Expiratory

Flow (PEF) tended to decrease over time in Fibulin-4R/R mice

(Figure 3B). Significance could not be determined since 2 out of 4

Fibulin-4R/R mice died during the course of the experiment.

Downregulation of Fibulin-4 was accompanied by alveolar

airspace enlargement in adult Fibulin-4+/R and Fibulin-4R/R lungs

(Figure 3C). In newborn mice, reduced pulmonary Fibulin-4

expression levels coincided with clear alveolar airspace enlarge-

ments in Fibulin-4R/R lungs, but not in Fibulin-4+/R lungs

(Figures 3C and 3D, and accompanying Figure S1A and B).

Importantly, analysis of the aortas of the adult mice used for lung

analysis showed a gradual thickening of the medial layers of the

aorta (Figure S1C). Elastin staining showed sites of complete

fragmentation and disarray of the elastin layers in Fibulin-4R/R

aortas and increased deposition of amorphous material between

the elastin layers in Fibulin-4+/R animals (Figure S1D), indicating

that a similar gene-doses decrease in Fibulin-4 expression affects

both lungs and the aortic wall in these mice. Immunohistochem-

istry on lung tissue with antibodies specific for certain lung cell

markers, including thyroid transcription factor 1 (TTF-1), Clara-

cell-specific protein (CC-10), and a-smooth muscle actin (a-SMA)

demonstrated no differences in the presence and relative

distribution of the major cell types in the lungs of Fibulin-4+/R

and Fibulin-4R/R mice (Figure S2), which may exclude altered

airway-cell differentiation.

These results show that in addition to aortic abnormalities, a

decrease in Fibulin-4 expression leads to gene dose-dependent

alterations in the lung. While the emphysematous changes in the

lungs of newborn Fibulin-4R/R mice suggest a developmental

defect, Fibulin-4+/R mice acquired the COPD phenotype with

age.

Transcriptome analysis of Fibulin-4+/R and Fibulin-4R/R

lungs. In order to get an idea of the underlying processes

involved, we performed gene expression analysis on mRNA

isolated from Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R lung

tissue, both newborn as well as adult. Comparison of RNA

expression between newborn Fibulin-4+/+, Fibulin-4+/R and

Fibulin-4R/R lungs with Significance Analysis of Microarrays

[18] revealed a limited set of differentially regulated genes.

Comparison of RNA expression between adult Fibulin-4+/+ and

Fibulin-4R/R lungs using SAM (FDR 10%) revealed 374

deregulated genes (both up- and downregulated), whereas no

deregulated genes were found between Fibulin-4+/+ and Fibulin-

4+/R lungs.

Of the 20 most significantly up-regulated genes in adult Fibulin-

4R/R lungs, 50% were involved in inflammation processes

(Table 2 and Table S4). Network analysis with Ingenuity pathway

analysis (IPA) on the 374 deregulated probes revealed many

significantly changed pathways involved in the immune system

(Table S5). This suggests that the severe airspace enlargement in

adult Fibulin-4R/R lungs coincides with overexpression of genes

involved in inflammatory processes.

Spontaneous inflammation in adult Fibulin-4R/R

lungs. To investigate whether indeed the immune system shows

significant alterations in the lungs of Fibulin-4R/R animals, we did

flow cytometric analysis of broncho-alveolar lavage (BAL) samples.

This analysis showed more inflammatory cells, in particular

granulocytes (Gr-1+) and B-cells (CD19+), in lungs of adult

Table 1. Clinical characteristics of patients with aortic aneurysm (AA) or arterial occlusive disease (AOD).

AA AOD P-value

n = 614 n = 779

Baseline characteristics

Male gender (%) 525 (85.5) 521 (66.9) ,0.001

Age (years 6 SD) 71.467.8 65.6611.0 ,0.001

Body mass index (kg/m2, mean 6 SD) 26.163.9 26.264.3 0.540

Cardiovascular comorbidities (%)

Congestive heart failure 66 (10.7) 89 (11.4) 0.692

Ischemic heart disease 272 (44.3) 306 (39.3) 0.059

Cerebrovascular disease 89 (14.5) 366 (47.0) ,0.001

Cardiovascular risk factors (%)

Kidney disease 94 (15.3) 106 (13.6) 0.368

Diabetes mellitus 103 (16.8) 225 (28.9) ,0.001

Hypertension 408 (66.4) 524 (67.2) 0.761

Hypercholesterolemia 534 (87.0) 706 (90.6) 0.030

Smoking – current 236 (38.4) 338 (43.3) 0.068

Smoking – ever 473 (77.0) 613 (78.7) 0.459

Medication (%)

Statins 446 (72.6) 633 (81.2) ,0.001

Beta-blockers 531 (86.4) 592 (75.9) ,0.001

Renin-angiotensin system inhibitors 271 (44.1) 369 (47.3) 0.247

Diuretics 138 (22.4) 211 (27.0) 0.052

Antiplatelets 353 (57.4) 581 (74.5) ,0.001

doi:10.1371/journal.pone.0106054.t001
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Fibulin-4R/R compared to Fibulin-4+/+ and Fibulin-4+/R mice

(Figure 4A). Cell suspensions of Fibulin-4R/R lungs contained

significantly more macrophages (F4/80+) compared to Fibulin-4+/

+ and Fibulin-4+/R lungs (Figure 4B), and tended to contain more

T-cells (CD3+) and dendritic cells (CD11c+). Immunohistochem-

ical analysis showed focal infiltrations of inflammatory cells around

veins and bronchi in adult Fibulin-4R/R lungs (Figure 4C), mainly

consisting of T-cells and dendritic cells. Cytokine analysis of BAL

samples showed significantly higher levels of IL-1b in Fibulin-4R/R

but not in Fibulin-4+/R as compared to Fibulin-4+/+ mice

(Figure 4D) Interestingly, IL-1b is a pro-inflammatory cytokine

which is mainly produced by activated macrophages and which is

increased in patients with COPD [19,20]. These data indicate that

the severe airspace enlargement observed in lungs of adult Fibulin-

4R/R mice was accompanied by up-regulation of inflammatory

pathways, whereas the milder lung abnormalities in Fibulin-4+/R

animals were not associated with an explicit inflammation process.

Disturbed TGF-b signaling in Fibulin-4 deficient

lungs. Since degradation of the vascular wall in aortic

aneurysms is related to disturbances in the TGF-b signaling

pathway [14,21], we next investigated the role of TGF-b signaling

in alveolar wall degradation in Fibulin-4 deficient mice. Although

the gene expression analysis in lung mRNA samples only gave rise

to a limited set of deregulated genes in newborn Fibulin-4R/R

animals, it did reveal downregulation of the Pias4 gene in Fibulin-

4R/R compared to Fibulin-4+/+ lungs (1.2-fold, p,0.05, Table S6).

In adult Fibulin-4R/R lungs we identified up-regulation of TGF-b2

and downregulation of the type 2b activin A receptor. In adult

Fibulin-4+/R lungs the ‘SMAD specific E3 ubiquitin protein ligase

1’ (Smurf1) gene was significantly downregulated compared to

Fibulin-4+/+ lungs.

Figure 1. Prevalence and severity of COPD in patients with an
aortic aneurysm (AA) or arterial occlusive disease (AOD). (A)
The prevalence of COPD in all GOLD classes was higher in AA (n = 614)
compared to AOD patients (n = 779, ***p,0.001). (B) Serum high-
sensitivity CRP levels according to severity of COPD in patients with AA
or AOD. There was no significant difference between patients with and
without COPD (p for trend = 0.123).
doi:10.1371/journal.pone.0106054.g001

Figure 2. Degenerative arterial wall changes and increased
MMP activity in Fibulin-4 animals. (A) Comparison of the
architecture of the aortic wall in Fibulin-4+/+, Fibulin-4+/R, and Fibulin-
4R/R mice. Top: Haematoxylin- eosin (HE) staining of cross-sections from
120 day-old mice. Bottom: Aberrations in elastic laminae in Fibulin-4R/R

mice, consisting of a fragmented and disorganized appearance of
elastin in the medial layers of the aorta. In heterozygous Fibulin-4+/R

mice, interrupted elastin layers and areas in the aortic wall with a
granular appearance of elastic laminae are present, albeit milder,
indicating a gene dosage effect. Scale bar indicates 100 mm (B) Ex-vivo
analysis shows a gradual increase in active MMPs as detected with the
activatable NIRF probe MMPSense 680. Within the aneurysmal lesions in
the thoracic aorta (Th), as well as in the abdominal aorta (Ab) of Fibulin-
4+/R and Fibulin-4R/R mice, a graded increase in MMP activity is
detected.
doi:10.1371/journal.pone.0106054.g002
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Figure 3. Enlarged alveolar airspaces in lungs of Fibulin-4 knockdown mice. (A) Expression levels of Fibulin-4 in lungs isolated from
newborn (n = 4, n = 4, n = 3) and adult (n = 4, n = 4, n = 4) Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R mice relative to Fibulin-4+/+ lungs (**p,0.01). (B)
Mean peak inspiratory flow (PIF) and peak expiratory flow (PEF) values for Fibulin-4+/+ (n = 4), Fibulin-4+/R (n = 4) and Fibulin-4R/R mice (observed for
n = 4, but two animals died during the procedure) at 3-minute intervals. After a 9 minute adaptation period (the first three time intervals), PIF follows
similar trends in Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R mice, while Fibulin-4R/R mice show a decrease in PEF. (C) HE stained sections of formalin
fixed lungs of male mice. Enlarged alveolar airspaces are observed in Fibulin-4+/R (middle, n = 3) and Fibulin-4R/R lungs (right, n = 3), with the latter
being more pronounced, compared to Fibulin-4+/+ (n = 3). Enlarged alveolar airspaces are already present in Fibulin-4R/R newborn lungs (n = 3), while
lungs of Fibulin-4+/R littermates (n = 5) show no difference compared to Fibulin-4+/+ lungs (n = 4). Scale bar 100 mm. Magnification 10x. (D) D2

quantification (see methods and Figure S1 for further explanation) of the alveolar airspaces revealed a significant difference between adult Fibulin-4+/

+ and Fibulin-4+/R (*p,0.05) and between adult Fibulin-4+/+ and Fibulin-4R/R lungs (**p,0.01) as well as between newborn Fibulin-4+/+ and Fibulin-4R/

R lungs (*p,0.05).
doi:10.1371/journal.pone.0106054.g003

Extracellular Matrix Defects Cause Aortic Aneurysms and COPD

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e106054



To check at the protein level whether changes in the TGF-b
system occurred, we performed immunoblot analysis for phos-

phorylation of Smad2 (pSmad2), an intracellular mediator of the

TGF-b pathway. These blots showed a gradual increase in

pSmad2 in adult Fibulin-4 deficient lungs, indicating increased

TGF-b activity (Figure 5A). In Fibulin-4+/R lungs we observed a

1.32-fold change for pSmad2 relative to total Smad and a 1.23-

fold change relative to actin when compared to Fibulin-4+/+ lungs.

In Fibulin-4R/R lungs we observed a 1.67-fold and 1.5-fold

change, respectively (Figure 5A and data not shown). Accumula-

tion of phosphorylated smad2 is a general read out of activity for

the TGF-b signaling pathway. Smad4 binding to phosphorylated

Smad2 is necessary for translocation to the nucleus Subsequently

the smad2/3/4 complex can then bind to the DNA after which

transcription is initiated. We therefore also determined phosphor-

ylation of pSmad3 in protein extracts of the lungs of Fibulin-4+/+,

Fibulin-4+/R and Fibulin-4R/R mice and find a gradual increase of

pSmad3 in the mutant animals confirming the activation of the

central TGF-b transcription factor Smad2/3/4 (Figure 5B).

Immunohistochemistry confirmed increased pSmad2 expression

in Clara cells lining the bronchioles of the lungs as well as in

inflammatory cell infiltrates (Figure 5C). Together these data show

that TGF-b activity is mildly increased in adult Fibulin-4+/R and

Fibulin-4R/R lungs, which may contribute to the breakdown of

alveolar walls in adult Fibulin-4 deficient mice. This upregulation

of TGF-b signaling is reminiscent of the upregulation that has

been observed in the aortas of both mouse models of aortic

aneurysms as well as in patients [14,15,27].

Overlapping downregulation of SERPINA1 in lungs of

Fibulin-4 deficient mice and COPD patients. To investigate

a potential common underlying mechanism of the observed lung

emphysema phenotype in our Fibulin-4 animals and that in

COPD patients, we compared our mouse dataset to gene lists

related to COPD that we derived from IPA and gene expression

datasets from lung emphysema patients. A search in IPA with the

search term ‘chronic obstructive pulmonary disease’ gave 248

records, which we refer to as ‘COPD-related genes’. Next, gene

expression data from the comparison between Fibulin-4+/+ and

Fibulin-4R/R lungs (374 genes) were compared to this list of

COPD-related genes derived from IPA, where we found an

overlap of 6 genes: PDE3B (1.28 q), HCK (1.55 q), PRF1 (1.47

q), SERPINA1 (1.38 Q), FGFR3 (1.28 Q), and EFEMP2 (i.e.

Fibulin-4, 3.57 Q). In a second analysis, we compared the 374

deregulated mouse genes to a list of 125 deregulated genes from

the comparison of GEO dataset GSE8581 (1.5-fold, FDR 30%),

consisting of 15 COPD cases (predicted FEV1,70%, FEV1/

FVC,0.7) and 18 control cases (predicted FEV1.80%, FEV1/

FVC.0.7). This comparison showed an overlap of ITPKC (1.28

Q), KIAA1377 (1.45 Q), and SERPINA1 (1.38 Q). Remarkably,

these two independent methods both identified SERPINA1 as an

overlapping downregulated gene. SERPINA1 encodes for the

serine protease inhibitor a-1 antitrypsin, whose targets include

elastase. Interestingly, deficiency in a-1 antitrypsin in patients is

associated with lung emphysema [22,23].

In the mouse lung mRNA gene expression analysis SERPINA1

was significantly downregulated in both Fibulin-4R/R lungs (1.38-

fold, p,0.01) as well as in Fibulin-4+/R lungs (1.59-fold, p,0.01)

compared to Fibulin-4+/+ lungs. We used Path explorer in IPA

that identifies pathways between differentially expressed genes, in

order to determine the relation between Fibulin-4 and SER-

Table 2. The most significantly up-regulated genes in adult Fibulin-4R/R lungs. Genes are indicated with their ratios compared to
Fibulin-4+/+ lungs and the process involved.

Top up-regulated genes

Genes Ratio Function

Arg1 3.68 Urea cycle

Slpi 3.37 Inhibitor serine proteases

Ms4a4b 2.38 T-cell regulation

Wisp2 2.26 Inhibits proliferation of vascular smooth muscle cells

Prkcb 2.03 B-cell activation, apoptosis

Emr4 1.98 Mediate between myeloid- and B-cells

Cd300a 1.92 Leukocyte cell surface proteins

Gzma 1.93 Cytotoxic T-cell and natural killer cell specific serine proteases

Klra4 1.91 Natural killer cell receptor

Nkg7 1.90 Natural killer cell granule protein

Ctsw 1.84 Regulation of T-cell cytolytic activity

Wisp1 1.83 Matrix remodeling

Lrat 1.64 Retinoid cycle

Plac8 1.81 Defense response to bacterium

Ccl5 1.78 Chemotactic cytokine and plays active role in recruiting leukocytes

Tspan32 1.73 Tumor suppressing fragment

Cyp51a1 1.70 Production of sterols

Rbm3 1.68 Temperature induced

Bcl2 1.66 Apoptosis regulator

Mef2c 1.65 Transcription factor important for vascular development

doi:10.1371/journal.pone.0106054.t002
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Figure 4. Increased inflammation in Fibulin-4R/R lungs compared to Fibulin-4+/+ and Fibulin-4+/R lungs. (A) Flow cytometric analysis
revealed more Gr1+ granulocytes and CD19+ B-cells in BAL samples from Fibulin-4R/R (n = 4) compared to Fibulin-4+/+ mice (n = 4, *p,0.05) and (B)
increased numbers of F4/80 macrophages in Fibulin-4R/R lungs (n = 4, *p,0.05). (C) HE stained sections from adult (n = 4, n = 4, n = 4) Fibulin-4+/+,
Fibulin-4+/R and Fibulin-4R/R lungs showing focal infiltrations around vessels and airways in Fibulin-4R/R lungs (black arrows). (D) Staining for T-cells
(CD3+) and (E) dendritic cells (CD11c+) points to the presence of inflammatory cells within the focal infiltrations. Magnification 20x. Scale bar 50 mm.
(F) ELISA analysis showing increased IL-1b levels in Fibulin-4R/R lungs (n = 4, *p,0.05).
doi:10.1371/journal.pone.0106054.g004
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PINA1. By calculating the shortest path between Fibulin-4

(EFEMP2) and SERPINA1, an indirect connection of Fibulin-4

to MMP9 and a direct connection of MMP9 to SERPINA1 was

revealed, as indicated by the black arrows in Figure 5D

[14,24,25]. Surprisingly, by connecting Fibulin-4, MMP9 and

SERPINA1 (both direct and indirect) to the significantly

Figure 5. Increased TGF-b signaling in Fibulin-4+/R and Fibulin-4R/R lungs. Immunoblot analysis of pSmad2 in lung homogenates shows an
increase in the amount of pSmad2 (A) and pSmad3 (B) in Fibulin-4+/R (n = 3) and Fibulin-4R/R (n = 3) lungs, compared to the total amount of Smad, and
to their Fibulin-4+/+ control (n = 3). (C) Increased pSmad2 staining of inflammatory and endogenous cells on Fibulin-4+/R (n = 3) and Fibulin-4R/R (n = 3)
lung sections. Magnification 2.5x (scale bar 1 mm) upper panel and 20x (scale bar 200 mm) lower panel. (D) Ingenuity pathway explorer showed
MMP9 as the shortest connection between Fibulin-4 and SERPINA1. SERPINA1 inhibits neutrophil elastase, which affects elastin. MMP9 itself was not
deregulated in Fibulin-4R/R lungs (n = 4), but could be connected to 16 deregulated genes in Fibulin-4R/R compared to Fibulin-4+/+ lungs (n = 4, red,
up-regulated; green, downregulated), suggestion altered MMP9 activity. Black arrows indicate the connection between Fibulin-4 (EFEMP2), MMP9,
SERPINA1, elastase and ELN. Grey arrows indicate the connection of these genes with deregulated genes between Fibulin-4+/+ and Fibulin-4R/R lungs.
doi:10.1371/journal.pone.0106054.g005
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deregulated genes identified in the SAM comparison between

Fibulin-4+/+ and Fibulin-4R/R lungs (grey arrows), we found an

interaction between 16 of those significantly deregulated genes and

our dataset with MMP9 (Figure 5C). Importantly, MMPs are

proteins involved in remodeling of the ECM, and play a role in

aneurysm formation. As we hypothesized that ECM defects

provide the link between the relation between AA and COPD,

MMPs could very well be part of the underlying mechanism. Since

our gene expression analysis did not show a deregulation of

MMP9 at the mRNA level, yet the pathway analysis pointed

towards involvement of MMP9, we next investigated MMP9

protein activity in Fibulin-4R/R and Fibulin-4+/R lungs.

Increased MMP and neutrophil elastase activity in

Fibulin-4 deficient lungs. Fluorescent imaging using protease

activatable probes showed increased pulmonary MMP activity in

adult Fibulin-4 deficient mice (Figure 6A). The observed decrease

in the elastase inhibitor SERPINA1 and the increased MMP

activity, which is also associated with cleavage of a-1 antitrypsin

[24], might lead to increased activity of neutrophil elastase (NE)

(also see Figure 5C for this relation). Indeed, we observed a graded

increase in NE activity in adult Fibulin-4+/R and Fibulin-4R/R

lungs compared to Fibulin-4+/+ lungs (Figures 6B and C). In line

with this, pulmonary elastin staining demonstrated interruptions in

the elastin layers in Fibulin-4+/R lungs and even more in Fibulin-

4R/R lungs compared to those of Fibulin-4+/+ animals (Figure 6D),

as previously found in the aortas of these mice [14]. Newborn

Fibulin-4R/R lungs also displayed elastin abnormalities, while

newborn Fibulin-4+/R lungs were comparable to those of Fibulin-

4+/+ mice (data not shown).

Increased and prolonged inflammatory response in

lipopolysaccharide (LPS) exposed Fibulin-4+/R

mice. Fibulin-4+/R mice developed alveolar airspace enlarge-

ment with age together with increased MMP9 and NE activity in

the absence of inflammation. However, when adult Fibulin-4+/R

lungs were triggered by LPS administration, which mimics

bacterial infection in mice by initiating the infiltration of

inflammatory cells into the pulmonary alveoli similar to patients

with COPD exacerbation [26,27], flow cytometric analyses of

BAL samples and pulmonary cell suspensions showed an increased

and prolonged inflammatory response as compared to Fibulin-4+/

+ mice. There was a significantly greater influx of macrophages

(F4/80+) in the lungs 18 hours after LPS exposure and

significantly higher numbers of dendritic cells (CD11c+), T-cells

(CD3+), and granulocytes (GR1+) 72 hours after LPS exposure

(Figure 7 and Figure S3). Moreover, opposite dynamics were

observed; in the Fibulin-4+/+ lungs the amount of GR1+ cells

decreased after 18 hours, while an increase was observed in

Fibulin-4+/R lungs 72 hours after LPS exposure. The increase of

inflammatory cells after LPS exposure was significantly higher

when compared to PBS. The levels of pro-inflammatory cytokines

released upon LPS exposure, including IL-1b, TNF-a, and

keratinocyte-derived chemokine, were not different between

groups (data not shown). These data indicate that Fibulin-4+/R

mice exhibit an intensified inflammatory response in the lungs.

Discussion

In this study we show that COPD is more common in patients

with AA than in patients with atherosclerotic arterial disease. This

relationship was independent of cigarette smoking and other

known risk factors. Furthermore, there was no difference in serum

hs-CRP levels between patients with and without COPD,

indicating that inflammation per se is unlikely to account for the

observed relation between COPD and AA. The findings in this

large patient cohort are in line with previous observations of

reduced respiratory function in smaller series of AAA patients

[6,7,10]. Although some previous studies concluded that the

association between COPD and aneurysm formation was related

to smoking, medication use or presence of other cardiovascular

risk factors, these associations became non-significant after

correction in multivariable analyses. [28,29]. Our findings suggest

that factors other than cardiovascular risk profiles or systemic

inflammation contribute to the association between COPD and

AA.

Since both diseases, COPD and AA, are characterized by

breakdown of the ECM in the airways and –spaces and in the

aortic wall, we investigated whether a primary ECM defect

provides the pathogenic link between these two diseases.

Analogous to the observed degradation of the aortic wall, up-

regulation of MMP activity both thoracic as well as abdominal,

and previously observed formation of AAs in mice deficient in the

ECM component Fibulin-4, we found that gradual downregula-

tion of Fibulin-4 in the lungs correlated with destruction of

alveolar walls and airspace enlargement that is characteristic for

lung emphysema. Similar to embryonically lethal, complete

Fibulin-4 knockout mice [16], alveolar breakdown was already

present in lungs of newborn Fibulin-4R/R mice, and became

progressive with age. In contrast, Fibulin-4+/R mice, which have

only a 2-fold reduction in the amount of Fibulin-4, had normal

elastin structures and alveolar airspaces at birth, but acquired

alveolar breakdown with ageing.

Analogous to the activation of the TGF-b pathway in the aortas

of Fibulin-4 deficient mice [14], we here demonstrate enhanced

activation of the TGF-b pathway in the lungs of Fibulin-4+/R and

Fibulin-4R/R mice. The co-occurrence of lung emphysema and

vascular abnormalities in association with deregulated TGF-b
signaling has also been shown in another mouse model with a

deficiency in an ECM protein, Fibrillin-1, which is a model for

Marfan syndrome [30]. Moreover, the combination of pulmonary

emphysema and aortic aneurysms coinciding with upregulation of

TGF-b signaling has also been observed in autosomal recessive

cutis laxa syndrome caused by Fibulin-4 mutations [31–33]. The

role for TGF-b in this process is further supported by the

development of progressive airspace enlargement in Smad3

knockout mice, which are deficient for an intracellular regulator

of the TGF-b pathway [34]. Overall, these data point to

deregulated TGF-b signaling and ECM defects as common

underlying factors for aortic and pulmonary abnormalities.

Expression analysis further revealed downregulation of the

SERPINA1 gene, encoding for the serine protease inhibitor a-1

antitrypsin whose targets include elastase. Interestingly, overlap-

ping gene expression profiles of our Fibulin-4 deficient mice with

those of COPD patients revealed downregulation of SERPINA1

as a common denominator. As it is known that patients with a-1

antitrypsin deficiency develop COPD [22,35] we explored the link

between SERPINA1 and Fibulin-4. Pathway exploration in IPA

revealed a direct link to MMP9, TGF-b deregulation and 15 other

deregulated genes from our dataset. Although MMP9 itself was

not overexpressed, molecular imaging showed that the MMP

activity was gradually higher in Fibulin-4+/R and Fibulin-4R/R

lungs. In line with the observed downregulation of SERPINA1,

fluorescent imaging showed a gradual up-regulation of elastase in

Fibulin-4+/R and Fibulin-4R/R lungs, which correlated with elastin

fragmentation. The decreased expression of SERPINA1 may

either be a direct effect of Fibulin-4 deficiency, or an indirect effect

through its cleavage by MMP9[24]. This combination of increased

protease activity and decreased antiprotease activity may account

for the breakdown of alveolar walls, resulting in emphysema.
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Another hallmark of adult Fibulin-4 mice was the inflammatory

response in the lungs. Lungs of adult Fibulin-4R/R mice already

displayed pulmonary inflammation in a specific pathogen free

environment, including influx of a wide range of inflammatory

cells with elevated levels of the pro-inflammatory cytokine IL-1b,

which coincided with the overexpression of genes involved in

inflammatory pathways. In contrast, adult Fibulin-4+/R animals

did not exhibit pulmonary inflammation under baseline condi-

tions, but displayed an enhanced respiratory inflammatory

response upon LPS inhalation. These findings indicate that

although inflammation may contribute to the progressive break-

down of alveolar walls in adult Fibulin-4R/R mice, it is unlikely to

be the primary causative factor in Fibulin-4+/R mice. Conversely,

ECM degradation by proteases is known to induce the release of

Figure 6. Higher MMP and NE activity in Fibulin-4+/R and Fibulin-4R/R lungs. In (A) and (C) ex vivo imaging of excised lungs using Odyssey
shows increased activity of MMP and NE respectively in Fibulin-4+/R (n = 7) and Fibulin-4R/R lungs (observed for n = 5, but two animals died during the
procedure) as compared to Fibulin-4+/+ lungs (n = 5), with a significant upregulation for Fibulin-4R/R lungs (**p,0.01). (B) Open-chest registration of
NE activity with Neutrophil Elastase FAST 680 probes shows increased activity in Fibulin-4+/R and Fibulin-4R/R lungs as compared to Fibulin-4+/+ lungs.
(D) Elastin staining of Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R lungs (n = 3, n = 3, n = 3) shows fragmented elastin layers in Fibulin-4+/R and Fibulin-4R/R

lungs, indicated by arrows. Magnification 40x. Scale bar 10 mm.
doi:10.1371/journal.pone.0106054.g006
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bioactive fragments that may act as chemo-attractants for

leukocytes and modulate the activity of resident immune cells

[36]. Our data suggest that a mild Fibulin-4 deficiency induces

disruption of the ECM, which subsequently predisposes to an

enhanced inflammatory response with further breakdown of

alveolar walls. This vicious circle is further exacerbated by the

diminished antiprotease capacity of the lungs and ultimately results

in the development of pulmonary emphysema. The Fibulin-4R/R

mouse can therefore provide as a model for adverse lung

development, while the heterozygous Fibulin-4+/R mouse may

serve as a postnatal challenge model.

The traditional inflammatory model of COPD proposes that in

susceptible patients cigarette smoking leads to inflammation,

which subsequently induces loss of ECM and alveoli, resulting in

airspace enlargement. We propose that genetic ECM defects are

one of the initiating events contributing to this susceptibility, which

are associated with a heightened inflammatory response to

environmental triggers, such as microorganisms and smoking.

Such a generalized genetic susceptibility to ECM degradation and

secondary inflammation in combination with increased protease

activity and decreased anti-protease activity might be the common

pathophysiologic mechanism underlying the tissue destruction in

both COPD and aneurysm formation. Genetic screening for

mutations related to ECM defects may be a new strategy to

identify people at risk for developing both aneurysms and COPD

with age.

Materials and Methods

Clinical study
Patients. Consecutive patients undergoing elective open or

endovascular surgery for aortic aneurysm, peripheral arterial

disease, or carotid artery disease between 2002 and 2011 in the

Erasmus MC, Rotterdam, were included. Patients with an aortic

aneurysm (AA) were classified as aneurysmal disease. Patients with

atherosclerotic peripheral arterial or carotid artery disease were

classified as arterial occlusive disease (AOD). Patients treated with

combined AA and symptomatic AOD, and patients with a genetic

aneurysm syndrome like Marfan, Loeys-Dietz or vascular Ehlers-

Danlos syndrome were excluded. The study complies with the

declaration of Helsinki and was approved by the Institutional

Review Board of the Erasmus Medical Center (permit number

MEC-2011-510) in accordance with national and international

guidelines. Our institutional review board waived the need for

written informed consent from the participants since the data was

obtained for clinical purpose, there was no intervention and there

was a retrospective study design. Patient data were de-identified

prior to analysis.

Clinical characteristics. Medical history was obtained from

every patient, including the cardiovascular risk factors age, gender,

body mass index (BMI), smoking status, hypertension (blood

pressure $140/90 mmHg in non-diabetics, $130/80 mmHg in

diabetics, or use of antihypertensive medication), hypercholester-

olemia (low-density lipoprotein [LDL] cholesterol $3.5 mmol/L

or use of lipid lowering medication), diabetes mellitus (fasting

plasma glucose $7.0 mmol/L, non-fasting glucose $11.1 mmol/

L, or use of anti-diabetic medication), and kidney disease (serum

creatinine $2.0 mg/dl). Cardiovascular comorbidities were re-

corded, including congestive heart failure (defined as history of

congestive heart failure), ischemic heart disease (defined as a

history of angina pectoris, myocardial infarction, coronary

revascularization, or presence of pathologic Q-waves on the

electrocardiogram), cerebrovascular disease (defined as a history of

ischemic/hemorrhagic stroke or transient ischemic attack). Pre-

scription medications were recorded and included the use of

statins, beta-blockers, renin-angiotensin system inhibitors, diuret-

ics, and antiplatelet drugs. Serum concentrations of the inflam-

matory biomarker high-sensitivity C-reactive protein (hs-CRP)

were measured prior to surgery using immunochemistry (Beckman

Coulter, Woerden, the Netherlands).

Chronic obstructive pulmonary disease. The diagnosis

and classification of COPD was made using spirometry, which was

part of the routine preoperative workup and was obtained in 92%

of COPD patients. COPD was defined as the presence of a forced

expiratory volume in one second (FEV1) to forced vital capacity

(FVC) ratio (FEV1/FVC) ,0.70. In the presence of a FEV1/FVC

ratio of ,0.70, mild COPD was defined as a FEV1.80% of the

predicted FEV1 (GOLDI), moderate COPD was defined as a

Figure 7. Increased and prolonged inflammatory response in
LPS exposed Fibulin-4+/R mice. Quantification of immune cells
shows significantly increased F4/80+ cells after 18 hours of LPS
exposure in Fibulin-4+/R lungs (n = 4) and a significantly higher number
of Gr1+, CD11c+, and CD3+ cells after 72 hours of LPS exposure as
compared to Fibulin-4+/+ lungs (n = 4, *p,0.05).
doi:10.1371/journal.pone.0106054.g007
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FEV1 of 50–80% of the predicted FEV1 (GOLDII), and severe

COPD was defined as a FEV1,50% of the predicted FEV1

(GOLDIII/IV)[37]. Patients without spirometry were classified

based on the presence of pulmonary symptoms (i.e. cough,

dyspnea, sputum) and the use of pulmonary medication.

Statistical analysis. Dichotomous data are presented as

numbers and percentages. Continuous variables are presented as

mean 6 standard deviation or median and IQR when not

normally distributed. Categorical data were analyzed with chi-

square tests and continuous variables with ANOVA or Kruskal-

Wallis tests. Multivariable binary logistic regression analysis was

used to calculate odds for having COPD between AA and AOD.

Adjustments were made for age, gender, BMI, congestive heart

failure, ischemic heart disease, cerebrovascular disease, kidney

disease, diabetes mellitus, hypertension, hypercholesterolemia,

smoking, statins, beta-blockers, renin-angiotensin system inhibi-

tors, diuretics, antiplatelets, and hs-CRP. Furthermore, we

performed a propensity score to adjust for the possibility of

receiving a pulmonary function test prior to surgery. Covariates

were chosen on the bases of biological plausibility. For all tests, a

p-value ,0.05 (two-sided) was considered significant. All analyses

were performed using IBM SPSS Statistics version 20.0 (SPSS

Inc., Chicago, IL, USA).

Experimental study
Animals. Fibulin-4 animals were generated as previously

described [14]. All mice used were bred in a C57BI/6J

background and were kept in individually ventilated cages to

keep animals consistently micro-flora and disease free. To avoid

stress-related vascular injury, mice were earmarked and genotyped

4 weeks after birth. Mice used were either newborn or adult

(110610 days). Adult mice were challenged by a single intratra-

cheal injection with either 80 ml ultra-pure, sterile Lipopolysac-

charide (LPS) 1 mg/ml from E. coli Serotype R515 (Alexis

Corporation Switzerland) or 80 ml PBS (Lonza). Animals were

housed at the Animal Resource Centre (Erasmus University

Medical Centre), which operates in compliance with the ‘‘Animal

Welfare Act’’ of the Dutch government, using the ‘‘Guide for the

Care and Use of Laboratory Animals’’ as its standard. As required

by Dutch law, formal permission to generate and use genetically

modified animals was obtained from the responsible local and

national authorities. An independent Animal Ethics Committee of

the Erasmus Medical Center (Stichting DEC Consult) approved

these studies (permit number 139-10-12 and 139-12-02), in

accordance with national and international guidelines.

Quantitative real time PCR. RNA was isolated using the

RNeasy minikit from Qiagen according to the provided protocol

and synthesized to cDNA with the RevertAid H Minus First

Strand cDNA Synthesis Kit according to the provided instruc-

tions. Quantitative Real-Time PCR was performed using Maxima

SYBR Green qPCR Master Mix 2x (Fermentas) also according to

the provided protocol. Reactions were performed in triplicates per

gene for each sample. The primers used for Fibulin-4, Gapdh and

Hprt (Invitrogen) are indicated in Table S7. Product specificity

was determined by melting curve analysis and gel electrophoresis.

The average Ct values of the triple reactions were calculated for

each gene according to cell type. The relative gene expression level

was calculated by the following formula for each gene:

Relative gene expression level = 2(Ct control–Ct sample) gene/2(Ct

control–Ct sample) housekeeping gene.

The levels of fold-change for each gene were calculated by

dividing the relative gene expression levels in Fibulin-4+/R or

Fibulin-4R/R lungs to the relative gene expression levels in wild

type lungs.

Whole body plethysmography. Conscious mice were

placed in a single-chamber, whole body, plethysmograph (Emka

Technologies, Paris, France) as described previously [38]. After an

adaptation period of 9 minutes (acclimatization), Peak Inspiration

Flow (PIF) and Peak Expiration Flow (PEF) were measured in 6

time blocks of 3 minutes. Differences in PIF and PEF indicate

differences in inspiration and expiration strength.

Lung morphometry. A random selection of images of HE

stained alveoli were obtained with the Leica DFC280DFC480

(Aristoplan) with a magnification of 10x. Large airways and vessels

were generally avoided. Next, alveolar airspace size quantification

was performed according to the fully automated D2 method as

described in Jacob RE et. al, where it was compared to the semi-

automated mean linear intercept measurements, and turned out to

be more sensitive and specific for subtle airspace enlargement

expected to be found in mild or early stage emphysema [39]. All

images were converted to grayscale before performing the analysis.

Fuzzy-c-means clustering with simultaneous correction of potential

luminance inhomogeneity was applied to each image for pre-

segmenting it into two classes: the foreground and the background.

The final segmentation was obtained by the graph-cut method

with the energies given by the class membership functions

calculated on the previous step. The resulting foreground was

split into separate compartments corresponding to the connected

components belonging to this class; see Figure S1 and the

accompanying legend for an illustration. Vector of the compart-

ment sizes obtained in such a way was converted from pixels to

micrometers. For each of the vectors we calculated the D2 measure

[33], an index based on the equivalent diameters of airspaces and

by incorporating higher moment factors from the airspace

diameter distributions, where enlarged airspaces are weighed

more heavily. This measure is useful to detect early or mild

emphysema. The compartments whose sizes were less than

138 mm were disregarded according to the threshold previously

reported in [39].

Histological analysis and immunohistochemistry. For

the lung morphometry procedure, mice were euthanized with a

lethal dose of pentobarbital (60 mg/ml, 0.1–1.5 ml per mouse

according to weight). Lung lobes were excised and the left lobe was

pressure fixed through the bronchi at a pressure of 25 cm H2O

with 4% paraformaldehyde (PFA), and fixed overnight at 4uC
before paraffin embedding. Lungs from newborn mice were

immersion fixed. The 5-mm sections were prepared from the

paraffin embedded lungs and put on Superfrost Ultra plus slides

(Menzel-Glaser). For the morphometric analysis paraffin sections

of the lungs were stained with Haematoxylin-Eosin (HE).

For histological analysis 100-day-old female mice were dissect-

ed. Mice were euthanized by CO2-inhalation. After opening

thorax and abdomen, mice were fixed by perfusion fixation

through the left ventricle, with PBS and 4% paraformaldehyde

(PFA). Organ weights were determined and macroscopic abnor-

malities noted. Organs and tissues were fixed in 4% PFA. Lungs

and aortas were dehydrated through the histokinette processor

(Microm), and paraffin embedded, after which 5-mm sections were

prepared.

Lungs and aortas were stained with HE for general pathology

and Resorcin-Fuchsin (Elastin von Gieson) for elastin structure.

For immunohistochemical analyses, sections were emerged in 3%

H2O2 in PBS to inhibit endogenous peroxidase. Antigen retrieval

was performed by boiling slides in 10 mM citrate buffer, pH 6.0,

at 600 W for 15 minutes in a microwave for TTF-1 and CC10

staining, 100 mM Tris 10 mM EDTA buffer, pH 9.0, at 300 W

for 20 minutes for pSmad-2 staining, or with pronase treatment

for a-SMA. Slides were first blocked in 5% Bovine Serum
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Albumin (BSA) in PBS and 0.5% Tween (and 5% Protifar in PBS

and 0.025% Triton X-100 for pSmad-2), and incubated with the

primary antibodies overnight at 4uC; TTF-1 (1:250 mouse

monoclonal Ab-1 Clone 8G7G3/1 Thermo Fisher Scientific),

CC10 (1:100 goat Ab (T-18): sc-9772 Santa Cruz Biotechnology),

Anti-Human Smooth Muscle Actin (1:250 mouse, clone 1A4

Biogenex Laboratories Inc.), and pSmad-2 (1:100 monoclonal

Rabbit anti-pSmad2 (S465|467 (138D4) Cell Signaling). The next

day slides were incubated with Horse Radish Peroxidase (HRP)

labelled secondary antibodies (1:100 DAKO) and avidin-biotiny-

lated secondary antibodies (Vectastain Universal Elite ABC kit

Vector Laboratories) for pSmad-2. DAB chromogen (DAKO

Liquid Dab substrate-chromogen system) was used as substrate

and slides were counterstained with haematoxylin.

Immunohistochemical stainings for inflammatory cells were

performed in a half-automatic stainer (Sequenza, Amsterdam, the

Netherlands). Acetone-fixed slides were blocked in diluted normal

goat serum (CLB, Amsterdam, the Netherlands) and stained

against mouse CD3 (1:10 rat monoclonal antibodies KT3 AbD

Serotec) and against mouse CD11c (1:20 hamster antibodies N418

Ebioscience). Primary antibodies were revealed by incubation with

diluted appropriate secondary antibodies coupled to alkaline

phosphatase for 30 min. Slides were subsequently incubated with

New Fuchsin substrate for alkaline phosphatase conjugates.

Finally, the sections were counterstained with Gills triple-strength

haematoxylin and mounted in VectaMount (Brunschwig, Am-

sterdam).

Micro-array hybridizations. RNA was isolated using the

RNeasy minikit from Qiagen with the provided protocol and

delivered to the department of Biomics, Erasmus MC. Synthesis of

double stranded cDNA and biotin labelled cRNA was performed

according to the instructions of the manufacturer (Affymetrix).

Fragmented cRNA was hybridized to Mouse Genome 430 V2.0

arrays, using a hybridization Oven 640 (Affymetrix), washed and

subsequently scanned on a GeneChip Scanner 3000 (Affymetrix).

To examine the quality of the various arrays, several bioinformatic

R packages (including affyQCreport and affyPLM) were run

starting from the raw CEL data files. All created plots, including

RNA degradation, RLE and NUSE plots indicated a high quality

of all samples and an overall comparability, except for one sample

(Fibulin-4R/R newborn lung), which was excluded from further

analysis. Raw intensity values of all samples were normalized by

robust multichip analysis normalization (background correction

and quantile normalization) using Partek version 6.4 (Partek Inc.,

St. Louis, MO). The normalized data file was transposed and

imported into OmniViz version 6.0.1 (Biowisdom, Ltd., Cam-

bridge, UK) for further analysis. For each probe set, the geometric

mean of the hybridization intensities of all samples was calculated.

The level of expression of each probe set was determined relative

to this geometric mean and 2log transformed. The geometric mean

of the hybridization signal of all samples was used to ascribe equal

weight to gene expression levels with similar relative distances to

the geometric mean. Differentially expressed genes were identified

using ANOVA (Partek) and SAM (Omniviz). The cut-off value for

significantly expressed genes was FDR 10% for adult Fibulin-4R/R

lungs compared to Fibulin-4+/+ lungs. Functional and network

analysis was done using Ingenuity Pathway Analysis (IPA;

Ingenuity Systems, www.ingenuity.com, Mountain View, CA).

Ingenuity pathway analysis is a web-based software application

that enables to analyze and integrate data derived from gene

expression microarrays into biological networks and pathways. All

Ingenuity products leverage the Ingenuity Knowledge Base, which

houses biological and chemical relationships extracted from the

scientific literature.

Significantly expressed genes from the adult Fibulin-4R/R to

Fibulin-4+/+ lungs comparison were compared to COPD-associ-

ated genes in Ingenuity and a list of literature based genes

associated with COPD. CEL files from GEO dataset GSE8581

were obtained and were analyzed following the above described

procedures. The GEO dataset GSE8581 consisted of 15 COPD

cases, with a predicted FEV1,70% and FEV1/FVC,0.7, and 18

control cases, with a predicted FEV1.80% and FEV1/FVC.0.7.

Subjects were undergoing surgical resection of a suspected lung

tumor and tissue for this dataset was derived from histologically

normal lung tissue distant from the tumor margin [40]. Cut-off

values for significantly expressed genes were FDR 30% and 1.5-

fold. Comparison to significantly expressed genes from the adult

Fibulin-4R/R to Fibulin-4+/+ lungs comparison was done using

IPA.

Preparation of cell suspensions, flow cytometry and
ELISA. Broncho Alveolar Lavage (BAL) was performed with 3

times 1 ml of Ca2+- and Mg2+-free PBS, containing 10 mM

EDTA. Furthermore, lungs were enzymatically digested using

collagenase type III (Worthington) for 1 hour at 37uC, followed by

washing and filtering. Cell suspensions were stained with

antibodies specific for F4/80-Fitc, MHC class II-PE, CD11c-

PeTexasRed, CD3-PECy5, CD19-APCCy7, CD25-APC and

GR-1-PECy7 (Becton Dickinson or eBiosciences). Nonspecific

binding to Fc-receptors was blocked by incubation with 2.4G2

antibodies, and DAPI (Invitrogen) was used as life/dead marker.

Acquisitions were performed on an LSRII flow cytometer (Becton

Dickinson) and data were analyzed by FlowJo (Treestar, Costa

Mesa, CA) software. Supernatants of BAL fluid were stored for

ELISA. BAL fluid cytokines were measured by commercially

available specific ELISA systems for IL-6, KC, MCP-1, TARC,

IL-10, IL-12, IL-1b, TNF-a, IFN-gamma and IL-17 according to

the manufacturers’ instructions. In a separate set of experiments,

flow cytometric analyses of BAL samples and pulmonary cell

suspensions were performed 18 or 72 hours after a single

intratracheal injection with either sterile lipopolysaccharide (LPS)

1 mg/ml in PBS or PBS alone in adult (100-days-old) Fibulin-4+/R

and Fibulin-4+/+ mice.

Western blot analysis. Western blot analysis was performed

as described before [41]. In short, equal amounts of lung tissue

homogenates (40 ug) were separated under reducing conditions on

10% SDS-PAGE. Proteins were transferred to nitrocellulose

membranes (Whatman, Germany) and blocked with 5% milk.

After washing, membranes were incubated with rabbit anti-

phosphorylated Smad2 (Cell Signaling Technologies, USA) and

rabbit anti-phosphorylated Smad3, kindly provided by Dr. E.

Leof, Mayo Clinic, Rochester, MN, USA followed by HRP

labelled secondary antibodies (GE Healthcare) and detection with

a chemiluminiscent substrate (Pierce). Afterwards membranes

were stripped and reprobed with anti Smad2/3 antibodies (BD

biosciences), b-actin (Sigma) or GAPDH (Millipore) as a loading

control.

Fluorescence imaging. We used vascular fluorescent medi-

ated tomography (FMT) imaging with near-infrared fluorescent

protease activatable probes as previously described [15,42]. Open

chest FMT imaging of fibulin-4 mice was performed using an

FMT 2500 system (Perkin Elmer Inc.) at 680- and 750-nm

excitation and emission wavelengths, respectively, at five hours

after tail vein injection of 4 nmol of Neutrophil Elastase 680 FAST

and 2 nmol of MMPsense 750 FAST (Perkin Elmer Inc.). Mice

with open chests were fixed into the portable animal imaging

cassette that lightly compressed the mouse between optically

translucent windows. The FMT 2500 quantitative tomography

software was then used to calculate 3D fluorochrome concentra-
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tion distribution of Neutrophil Elastase 680 FAST and MMPsense

750 FAST.

After open chest fluorescence imaging, complete lungs were

harvested and fluorescence was quantified using the FMT 2500 or

Odyssey imaging systems (LI-COR Inc.). Near-infrared images

were obtained in the 680- and 700-nm channels, respectively.
Statistical analysis. Data are presented as mean 6 SEM.

Statistical analysis for lung morphometry was performed using the

Kolmogorov-Smirnov test. The Kruskal-Wallis one-way ANOVA

was used to determine any significant differences between groups.

The nonparametric Mann-Whitney U-test was performed to

analyze the specific sample pairs for significant differences. A p-

value of ,0.05 was considered to indicate a significant difference

between groups. All analyses were performed using IBM SPSS

Statistics version 20.0 (SPSS Inc., Chicago, IL, USA).

Supporting Information

Figure S1 Larger alveolar airspaces in newborn Fibulin-
4R/R lungs (A) and adult Fibulin-4+/R and Fibulin-4R/R

lungs (B). To quantify and compare the sizes of the alveolar

airspaces, the compartments from the different alveolar airspaces

were segmented on the HE images according to the method

described in the ‘‘Lung morphometry’’ section of the Material and

Methods section. Each segmented compartment was given a

different color as shown and subsequently quantified as described.

Magnification 10x. Scale bar 100 mm. (C, D) Comparison of the

architecture of the aortic wall in Fibulin-4+/+, Fibulin-4+/R, and

Fibulin-4R/R mice used for alveolar airspace analysis in Figure 3C.

Haematoxylin- eosin (HE) staining of cross-sections from 120 day-

old mice (C). Aberrations in elastic laminae in Fibulin-4R/R mice,

consisting of a fragmented and disorganized appearance of elastin

in the medial layers of the aorta (D).

(TIF)

Figure S2 Similar cell structures in wild type and
Fibulin-4 knockdown lungs. Stainings for (A) respiratory

epithelial cells with TTF-1, (B) Clara cells with CC10 and (C)

smooth muscle cells with a-SMA show similar cell structures in

Fibulin-4+/+ (n = 3), Fibulin-4+/R (n = 3) and Fibulin-4R/R (n = 2)

lungs. Magnification 10x. Scale bar 100 mm.

(TIF)

Figure S3 LPS infection induces infiltration of inflam-
matory cells in the alveolar compartments. Quantification

of immune cells in alveolar compartments shows increased CD3+
cells after 72 hours of LPS exposure in Fibulin-4+/R (n = 4) as

compared to Fibulin-4+/+ lungs (n = 4, *p,0.05).

(TIF)

Table S1 Clinical characteristics of patients with de-
scending thoracic aortic aneurysm (TAA) or abdominal
aortic aneurysm (AAA).
(DOCX)

Table S2 COPD in patients with descending thoracic
aortic aneurysm (TAA) or abdominal aortic aneurysm
(AAA).
(DOCX)

Table S3 Association between COPD and aneurysmal
disease.
(DOCX)

Table S4 The most significantly down-regulated genes
in lungs of adult Fibulin-4R/R mice.
(DOCX)

Table S5 Over-expressed canonical pathways, based on
IPA, in lungs of adult Fibulin-4R/R mice (p,0.05).
(DOCX)

Table S6 Deregulated TGF-b pathway genes in adult
and newborn Fibulin-4 deficient lungs compared to
Fibulin-4+/+ lungs (p,0.05).
(DOCX)

Table S7 Primers used for quantitative real time PCR.
Forward and reverse primers are displayed for each
gene from 59 to 39.
(DOCX)
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