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ABSTRACT

Background Coronary heart disease (CHD) risk inversely associates with levels of high-density lipoprotein
cholesterol (HDL-C). The protective effect of HDL is thought to depend on its functionality, such as its ability to
induce cholesterol efflux.

Materials and methods We compared plasma cholesterol efflux capacity between male familial hyperc-
holesterolaemia (FH) patients with and without CHD relative to their non-FH brothers, and examined HDL
constituents including sphingosine-1-phosphate (S1P) and its carrier apolipoprotein M (apoM).

Results Seven FH patients were asymptomatic and six had experienced a cardiac event at a mean age of
39 years. Compared to their non-FH brothers, cholesterol efflux from macrophages to plasma from the FH
patients without CHD was 16 � 22% (mean � SD) higher and to plasma from the FH patients with CHD was
7 � 8% lower (P = 0�03, CHD vs. non-CHD). Compared to their non-FH brothers, FH patients without CHD
displayed significantly higher levels of HDL-cholesterol, HDL-S1P and apoM, while FH patients with CHD dis-
played lower levels than their non-FH brothers.

Conclusions A higher plasma cholesterol efflux capacity and higher S1P and apoM content of HDL in
asymptomatic FH patients may play a role in their apparent protection from premature CHD.

Keywords Apolipoprotein M, cholesterol efflux, familial hypercholesterolaemia, high-density lipoprotein,
sphingolipids, sphingosine-phosphate.
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Introduction

Familial hypercholesterolaemia (FH), predominantly caused

by mutations in the low-density lipoprotein (LDL) receptor

gene, is characterized by a severely increased risk of coro-

nary heart disease (CHD) [1]. FH patients with high levels of

high-density lipoprotein cholesterol (HDL-C) are relatively

protected from early development of CHD comparable to the

effect of high HDL-C in the general population [2,3]. It is

known that the atheroprotective effect of HDL is not simply

related to absolute HDL-C levels. For instance, genetic vari-

ants or drugs that raise plasma HDL-C levels not always lead

to CHD risk reduction [4,5]. One of the key roles of HDL is

in reverse cholesterol transport by facilitating cholesterol

efflux from macrophages and returning cholesterol to the

liver for clearance [6,7]. In two large population-based stud-

ies with around 3000 participants each, cholesterol efflux

capacity was inversely associated with the incidence of car-

diovascular events [8,9]. Evidence from epidemiological

studies suggests that the protective role of HDL in the

development of atherosclerosis might be due to its content of

the bioactive sphingolipid sphingosine-1-phosphate (S1P)

[10–15]. S1P as well as its carrier apolipoprotein M (apoM)

mediate many of the beneficial effects of HDL [10,14,16–18].
ApoM is important for the formation of nascent HDL and for

HDL-mediated cholesterol efflux [19,20]. Both HDL S1P levels

and polymorphisms in APOM have been correlated with

CHD risk [19–21].
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In the present study, we investigated whether the capacity of

plasma to induce cholesterol efflux from macrophages is asso-

ciated with residual CHD risk in FH patients. To minimize

variability of genetic and environmental factors, we selected

sib-pairs, consisting of an FH patient and his non-FH brother.

In addition, we investigated whether differences in HDL com-

position are associated with different CHD risk among these

FH patients.

Materials and methods

Study population
Heterozygous male FH patients with a known mutation in the

LDLR or APOB-100 gene, not participating in an intervention

study and having at least one brother without FH were selected

for this study. Twenty FH patients were approached, of whom

five patients and two brothers refused to participate because of

logistic reasons. A total of 13 sib-pairs were included, of whom

seven FH patients had no symptoms of CHD while the other six

had developed symptomatic CHD. Therefore, the final selection

was as follows: seven sib-pairs consisted of an FH patient

without CHD and a brother with neither FH nor CHD; the

other six pairs consisted of an FH patient with CHD and a

brother with neither FH nor CHD (Fig. 1). To reduce the

influence of environmental factors, we asked all participants to

quit their medication six weeks prior to blood sampling and to

refrain from smoking in the week before blood sampling [22].

Blood was sampled after fasting overnight and was placed on

ice immediately; plasma was prepared as soon as possible and

stored at �80 °C until further experiments.

The medical ethical committee of the Erasmus MC approved

the protocol and all participants gave written informed consent.

Cholesterol efflux experiments
Cholesterol efflux experiments were performed as described

previously [23]. THP-1 cells, a human monocyte-cell line, were

cultured in RPMI 1640 medium supplemented with 10% foetal

calf serum, 2 mmol/L glutamine and 100 IU/L penicillin/

streptomycin at 37 °C and 5%CO2 in air. Cells were plated into

24-wells plates (250 000 cells/well) and differentiation into

macrophages was induced by treatment for 72 hwith 50 ng/mL

phorbol 12-myristate 13-acetate. Subsequently, cells were incu-

bated for 24 h with 0�5 lCi/mL [3H]cholesterol in RPMI med-

ium supplemented with 0�2% fatty acid free bovine serum

albumin (BSA). Then, cells werewashed three timeswith 0�3 mL

phosphate-buffered saline supplemented with 0�2% BSA. [3H]-

cholesterol efflux was determined by incubating cells for 4 h at

37 °C in acceptor medium, which consisted of RPMI supple-

mented with heparin (1�25 units/mL) and 2% (v/v) plasma.

Plasma from an unrelated healthy volunteer without FH and

CHD was used as reference, and medium supplemented with

0�2% (w/v) BSAwas used as a control for basal efflux. At the end

of the incubation, cell-free medium was collected and cells were

dissolved in 0�1 M NaOH. Radioactivity in medium and cells

was counted by liquid scintillation spectrometry. The ratio

between radioactivity in medium and radioactivity in cells plus

medium was taken as cholesterol efflux capacity. The mean of

four wells treated with the same plasma or control medium was

taken. All experiments were repeated three times.

Cholesterol, triglyceride and pre-b HDL levels
Plasma cholesterol, HDL-C and triglyceride levels were mea-

sured using a COBAS Mira analyzer (Roche Diagnostics,

Indianapolis, IN, USA). LDL-C was calculated using the

Friedewald formula. Pre-b HDL levels were measured using

the commercially available ELISA kit by Daiichi Pure Chemi-

cals (Tokyo, Japan).

Lipoprotein profiles and apolipoprotein levels
Lipoprotein profiles were obtained using density gradient

ultracentrifugation [24]. KBr (0�35 g/mL plasma) was added to

plasma to obtain a density of 1�26 g/mL. Of this plasma, 1 mL

was placed in an ultracentrifuge tube and 1�9 mL of KBr solu-

tions of 1�21, 1�10, 1�063, 1�04 and 1�02 g/mL in physiological salt

were layered successively on top, followed by 1 mL of water.

Samples were centrifuged at 207 000 g for 18 h at 4 °C using a

SW41 rotor in a L-70 Beckman ultracentrifuge (Beckman

Instruments, Indianapolis, IN, USA). Thereafter, the density

gradient was fractionated from the bottom into 250 lL fractions.

Fractions with densities ranging from 1�125–1�21 g/mL and

1�062–1�125 g/mL were considered to constitute HDL3 and

HDL2, respectively [25]. Cholesterol, triglyceride, apoA-I and

apoA-II in the fractions were measured using a Selectra E (DDS

Figure 1 Study design. Seven sib-pairs consisted of one FH
and one non-FH brother, both without CHD. Six pairs consisted
of one brother with FH and CHD, the other without FH and CHD.
FH, familial hypercholesterolaemia; CHD, coronary heart
disease.

644 ª 2016 The Authors. European Journal of Clinical Investigation published by John Wiley & Sons Ltd
on behalf of Stichting European Society for Clinical Investigation Journal Foundation.

J. VERSMISSEN ET AL. www.ejci-online.com



Diagnostic system). ApoM was measured by a specific human

apoM ELISA [26].

Sphingosine-1-phosphate levels
Sphingosine-1-phosphate levels in the density gradient fractions

were quantified by a modified LC-MS/MS method described in

detail previously [27]. In brief, 50 lL methanol containing C17-

S1P (113 nmol/L; Avanti Polar Lipids, Alabaster, AL, USA) was

added to 25 lL fraction (from the 250 lL fractions derived from

ultracentrifugation as described above), or to S1P standards

(Avanti Polar Lipids) in KBr solution (density of 1�02 and

1�21 g/mL). The mixture was incubated on ice for 30 min and

centrifuged for 30 min at 18 000 g at 4 °C. Of the clear super-

natant, 15 lL was injected onto an Agilent 1200SL system (Agi-

lent Technology, Amstelveen, the Netherlands) and run through

a Xterra C18 column (2�1 9 10 mm, 3�5 lm, Waters Chro-

matography, Etten-Leur, the Netherlands) at 40 °C. The elution

started with 1 min of 50% mobile phase B (10% water, 0�25%
formic acid, 2�5 mM ammoniumformate in methanol) in mobile

phase A (10% methanol, 0�25% formic acid, 2�5 mM ammonium

formate in water), followed by a linear gradient from 50% to 90%

B in A for 6 min, and finally 100% B for 3 min. The flow rate was

set at 0�25 mL/min and total run time was 14 min.

The effluent was directed to an Agilent 6410 triple quadruple

mass spectrometer and analysed in positive ion mode following

electrospray ionization. The MS/MS transitions of S1P m/z 380

? 264, and of C17-S1P m/z 366 ? 250 were quantified by taking

the ratios of the integrated peaks.

Statistical analyses
General characteristicswere analysedusingANOVA and chi square

test. Cholesterol efflux experiments were normalized according

to results with plasma from the unrelated healthy volunteer. The

percentage difference between the FH patient and his non-FH

brother was compared between sib-pairs with andwithout CHD

using an independent t-test. The differences in lipid levels, sph-

ingolipid levels and apolipoprotein levels between FH patients

with and without CHDwere analysed by linear regression

adjusted for the value in the brother without FH.

Results

All brothers with FH had a confirmed pathogenic LDL-receptor

or apoB100 gene mutation while all brothers without FH tested

negative (Table S1). At the moment of blood sampling, the

average age of the FH patients without CHD was 41 years

(range 23–65) and of FH patients with CHD was 51 years

(range 49–63). However, the average age of the FH patients

without CHD was similar to the mean age at which the FH

patients with CHD had their first cardiac event (39 years; range

27–52; P = 0�85). Six out of seven FH patients without CHD

were current or former smokers; three of them had refrained

from smoking for at least 10 years at the time of sampling

(Table 1). Five out of the six FH patients with CHD smoked at

the time of event and all but one quitted at least 10 years before

sampling. All current smokers admitted that they had smoked

a few cigarettes the week prior to blood sampling even though

they were asked not to. The FH patients used cholesterol-low-

ering medication ranging from simvastatin 40 mg to atorvas-

tatin 80 mg with ezetimibe 10 mg. This medication was

stopped for 6 weeks prior to blood sampling.

As expected, the FHpatients had significantly higher total and

LDL-cholesterol (LDL-C) levels than their non-FH sibs (Table 1).

Levels of HDL-C and triglyceride were not significantly differ-

ent between the FH subjects and their respective non-FH sibs.

There was a trend towards higher HDL-C levels in FH patients

without CHD than in FH patients with CHD compared to their

respective non-FH brothers (paired analysis P = 0�076). The
mean pre-bHDL level in FH subjects was 49 lg/mL (SD 15) and

in non-FH subjects 40 lg/mL (SD 13; P = 0�13). In paired anal-

yses, the difference between FH patients without and FH

patients with CHD was not significant (P = 0�20).

Cholesterol efflux experiments
Plasma from six out of seven FH patients without CHD

induced more cholesterol efflux from cholesterol-loaded

macrophages than plasma from their non-FH sibs. In contrast,

plasma from four out of six FH patients with CHD induced less

efflux than that of their non-FH sibs (Fig. 2a). The mean paired

difference in cholesterol efflux between FH patient and his non-

FH brother was +16% (SD 22%) for the pairs without CHD and

�7% (SD 8%) in the pairs with an affected FH patient (analysis

of pairs without vs. with CHD, P = 0�03; Fig. 2b). These dif-

ferences in efflux were independent of baseline values and

within-pair differences of HDL-C, LDL-C levels, as these dif-

ferences remained statistically significant when these co-vari-

ables were included in a multiple linear regression analysis

(data not shown). Overall cholesterol efflux was slightly, but

non-significantly, higher in the pairs with CHD in comparison

with those without.

Lipoprotein profiles
Analyses of the full lipoprotein profiles revealed differences in

the distribution of cholesterol within the HDL subfractions and

within the LDL subfractions (full profiles shown in Fig. S1a).

In comparison with their non-FH brothers, the FH subjects

without CHD had significantly higher HDL-C in the HDL

fractions of medium and low density (Fig. 3a). Levels of apoA-I

were highest in HDL of all FH patients without CHD (FH

patients without CHD 1�2 g/L, their non-FH brothers as well as

the FH patients with CHD 0�9 g/L, their brothers without FH

1�0 g/L), while levels of apoA-II were not different between FH
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Table 1 General characteristics

Sib-pair of FH patient without CHD

(n = 7) Sib-pair of FH patient with CHD (n = 6)

FH� FH+CHD� FH� FH+CHD+

Age 41 � 13 41 � 16 46 � 8 51 � 8

Age at event 39 � 10

Smoking ever 2 6 4 5

Current smoking 1 2 1 1

Total cholesterol [mmol/L] 5�5 � 0�9† 7�7 � 2�0† 5�9 � 0�7* 8�3 � 1�8*
LDL-C [mmol/L] 3�9 � 0�8¶ 6�0 � 2�1¶ 4�5 � 0�7* 6�9 � 1�9*
HDL-C[mmol/L] 1�39 � 0�33 1�42 � 0�38 1�19 � 0�26 1�15 � 0�12
Triglycerides [mmol/L] 1�12 � 0�53 1�24 � 0�45 1�35 � 0�32 1�05 � 0�38
Pre-b HDL [lg/mL] 43 � 1�9 51 � 2�1 38 � 4�5‡ 47 � 4�7‡

HDL3-C (mmol/L) 1�05 � 0�14 0�87 � 0�13 0�70 � 0�09 0�74 � 0�09
HDL2-C (mmol/L) 0�47 � 0�06 0�43 � 0�04 0�25 � 0�02 0�34 � 0�02
HDL3 S1P (AU/L) 7�17 � 1�06 8�27 � 1�77 7�33 � 0�56 6�90 � 0�83
HDL2 S1P (AU/L) 2�17 � 0�97 2�76 � 1�05 1�13 � 0�21 1�26 � 0�43
FH, familial hypercholesterolaemia; CHD, coronary heart disease; AU, arbitrary units.

All FH patients were ‘off’ statin treatment.

Values are mean � SD.
†P = 0�035, ¶P = 0�008, *P = 0�025, ‡P = 0�006.
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Figure 2 Difference in cholesterol efflux
from cholesterol-labelled macrophages to
plasma. (a) Individual differences in
cholesterol efflux to plasma from an FH
patient and his non-FH brother as a
percentage of the efflux to plasma of the
non-FH sib taken as 100%. Some lines (No
CHD two, CHD four) almost completely
overlap. (b) Percentages difference in
cholesterol efflux when compared to the
brother without FH. FH, familial
hypercholesterolaemia; CHD, coronary
heart disease.
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patients without CHD and their non-FH sibs (since fractions

were pooled per group, no P-value for paired analysis avail-

able; pooled data shown in Fig. S1b,c).

S1P and apoM
Sphingosine-1-phosphate levels in plasma were not different

between the groups. Upon density gradient centrifugation, S1P

was predominantly present in the HDL3 subfractions (Fig. 3b).

Among the four groups, HDL3-S1P levels were highest in the

FH patients without CHD; HDL3-S1P levels were comparable

in the other three groups. Plasma apoM levels were 30% higher

in FH patients without CHD than in their non-FH sibs

(P = 0�015; Fig. 3d), whereas there was no significant difference

between FH patient with CHD and their brothers. When mea-

sured in the HDL3 subfractions from the density gradient with

pooled fractions per group, apoM was much higher in FH

patients without than with CHD (Fig. 3c); HDL3-apoM was

comparable among the three other groups.

Correlation of HDL composition and cholesterol
efflux capacity
Cholesterol efflux capacity was not significantly correlated with

pre-b HDL levels (Pearson correlation coefficient �0�4, P = 0�2).
Similarly, no correlation was found between cholesterol efflux

capacity and HDL-C, HDL2-C, HDL3-C or apoA-I levels, nor

with plasma apoM levels or HDL3–S1P levels.

Discussion

Compared to their non-FH brothers, the cholesterol efflux

capacity of plasma from FH patients without CHD was higher

than that of patients who already had experienced a cardiac

event. In addition, HDL composition differed with more S1P

and apoM in HDL3 of the FH patients without CHD. Our data

suggest that FH patients with relatively higher cholesterol

efflux capacity of plasma and higher levels of HDL3-bound S1P

and apoM are relatively protected from a cardiac event.

Two recent large population-based studies in 2924 partici-

pants of the Dallas Heart Study and 3494 participants of the

EPIC-Norfolk study [8,9] reported cholesterol efflux capacity

being an independent risk indicator of cardiovascular events.

Earlier smaller studies did not all confirm this association [28–
30]. Differences in outcome may be explained by the methods

used. In the first two large studies, J774 macrophages were used

with stimulatedABCA1 expression, while the other studies used

other cell types with or without regulated ABCA1 expression.

Because we used THP-1 cells with a low ABCA1 expression, we

cannot directly compare our data with these studies.

(a)

(d)

(b) (c)

Figure 3 Levels of cholesterol (a), S1P in high-density lipoprotein (HDL) (b) and apoM (c), and apoM in plasma (d). In c, apoM was
measured in all separate HDL density fractions that were pooled from all individuals in each group. In d, apoM plasma
concentrations were measured in each individual, and values in each familial hypercholesterolaemia patient were connected to his
respective brother. Data are expressed as % of an unrelated control pool plasma.
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In our study, differences in cholesterol efflux capacity among

all individuals did not correlate with differences in HDL-C,

HDL-apoA-I or pre-b-HDL levels. This is in line with earlier

studies showing that cholesterol efflux capacity of plasma not

merely depends on the amount of HDL cholesterol [5,8,31,32],

but may be due to additional differences in composition of

HDL. A previous study in normocholesterolaemic subjects

undergoing coronary angiography suggested that HDL2 is

most important for cholesterol efflux capacity of plasma.

Interestingly, in a study comparing young (13–29 years) FH

patients without symptomatic CHD with healthy individuals,

HDL2 from FH patients appeared to be less efficient in induc-

ing cholesterol efflux [33,34]. One could argue that the higher

amount of HDL2 in the FH patients without CHD in our study

might compensate for this lower functionality. We chose to use

whole plasma in order to reflect the in vivo situation as closely

as possible while net cholesterol efflux from tissues also

depends on the presence of apoB-containing lipoproteins. We

cannot exclude the possibility that differences in cholesterol

efflux we identified were due to differences in cholesterol efflux

to LDL or very-low-density lipoprotein VLDL.

The higher, although nonsignificantly, levels of apoB-con-

taining lipoproteins may explain the higher overall cholesterol

efflux capacity of the brother from the families with CHD [35].

However, additional experiments on a limited number of

samples using apoB-depleted plasma showed similar results as

using whole plasma (data not shown).

Evidence from epidemiological studies indicates that the

protective role of HDL in the development of atherosclerosis is

largely due to its content of the bioactive sphingolipid, S1P

[13–18]. HDL of FH patients without CHD contained higher

amounts of S1P and its carrier molecule apoM, particularly in

HDL3. In a recent study in gestational diabetes mellitus,

cholesterol efflux capacity was shown to be decreased in par-

allel with plasma apoM [36]. This is in line with our finding and

together suggests a link between apoM and cholesterol efflux

capacity and CHD risk. However, we did not find a significant

correlation of cholesterol efflux capacity and differences in

levels of HDL-bound S1P and apoM between FH patients

without and with CHD.

Differences in HDL-S1P as well as apoM might also reflect

functional differences not related to the cholesterol efflux

pathway. S1P and apoM mediate many of the beneficial car-

diovascular effects attributed to HDL such as vascular integrity

and vasorelaxation [10,14,16–18,21]. We did not study these

additional pathways.

The strength of the current study design is that by including

non-FH brothers, molecular and genetic heterogeneity were

diminished as far as possible. Comparable HDL-C levels

between brothers suggest we succeeded in this aim [37].

Limitations of this study include, firstly, the limited number

of subjects, thereby limiting statistical power. However, this

also led to the advantage that all samples could be tested in a

single efflux experiment, eliminating inter-experiment vari-

ability. Secondly, two of the FH patients in the non-sympto-

matic group may have been too young to have had a cardiac

event. However, they were in the age range in which one of the

symptomatic FH patients developed his first event. Moreover,

as a group the nonsymptomatic FH patients were at the mean

age of first event in the symptomatic group. Lastly, due to

recent developments, we chose to focus on S1P and apoM, out

of all components and apolipoproteins present in HDL. To

further unravel mechanisms underlying the differences in

cholesterol efflux reflecting differences in HDL dynamics, it

would be interesting to measure activity of, for example, cho-

lesteryl ester transfer protein (CETP), ATP-binding cassette

transporter A1 (ABCA1) and scavenger receptor class B mem-

ber 1 (SR-BI) in the subfractions. We measured CETP levels in

serum but did not find significant differences (data not shown).

However, it would be of interest to separate HDL2 and HDL3

here as well.

In conclusion, we have shown that plasma from FH patients

without CHD has a higher cholesterol efflux capacity than

plasma from FH patients with CHD, in comparison to their

respective non-FH brothers. This may explain why these FH

patients appear to be protected against CHD despite their

high LDL-cholesterol levels. The observed higher efflux

capacity may involve differences in composition of HDL

including cholesterol, S1P and apoM levels. Increased S1P

levels in HDL might also point at differences in HDL func-

tionality other than cholesterol efflux capacity. These data

suggest that CHD risk in FH patients is modulated by familial

factors not related to the LDL-receptor locus that modulate

the composition of HDL and the effectiveness of reverse

cholesterol transport.
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Figure S1. Complete lipoprotein density profiles and apoA-I

and apoA-II content of HDL. On the X-axis fraction number, on

the Y axis concentration of cholesterol (a), apoA-I (b) and apoA-

II (c).

Table S1. Age and mutation for each brother.
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