
Hemostasis and Cardiovascular Disease 

H
em

ostasis and
 C

ard
iovascular D

isease
Paul Stefan

 d
e Vries

Paul Stefan de Vries

a molecular epidemiology approach





Hemostasis and Cardiovascular Disease
a molecular epidemiology approach

Paul Stefan de Vries



Acknowledgments

The work presented in this thesis was conducted at the Cardiovascular Group of the 
Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.
All of the studies described in this thesis involved the Rotterdam Study, which is sup-
ported by the Erasmus MC and the Erasmus University Rotterdam, the Netherlands 
Organization for Scientific Research (NWO), the Netherlands Organization for Health 
Research and Development (ZonMw), the Dutch Heart Foundation, the Research 
Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture, and 
Science, the Ministry of Health Welfare and Sports, the European Commission (DG 
XII), and the municipality of Rotterdam. 
The contribution of the inhabitants, general practitioners and pharmacists of the 
Ommoord district to the Rotterdam Study are gratefully acknowledged.

Publication of this thesis was kindly supported by the Department of Epidemiology 
and the Erasmus University Rotterdam. Financial support by the Dutch Heart Foun-
dation for the publication of this thesis is gratefully acknowledged. 

Cover design by Remco Wetzels | remcowetzels.nl
Layout and printing by Optima Grafische Communicatie | www.ogc.nl

ISBN 978-94-6169-799-8

© Paul S. de Vries 2015. 
The copyright is transferred to the respective publisher upon publication of the 
manuscript. No part of this thesis may be reproduced or transmitted in any form or 
by any means without prior permission from the author or, when appropriate, from 
the publishers of the publications.



Hemostasis and Cardiovascular Disease 
a molecular epidemiology approach

Hemostase en hart- en vaatziekten
een moleculaire epidemiologie aanpak

Proefschrift

ter verkrijging van de graad van doctor aan de
Erasmus Universiteit Rotterdam

op gezag van de
rector magnificus

Prof.dr. H.A.P. Pols

en volgens besluit van het college voor promoties.
De openbare verdediging zal plaatsvinden op

woensdag 20 januari 2016 om 9:30 uur 

Door

Paul Stefan de Vries

geboren te Amsterdam



Promotiecommissie

Promotor:	 prof.dr. O.H. Franco
	
Overige leden:	 prof.dr. A.G. Uitterlinden
		  Dr. M.P.M. de Maat
		  prof.dr. H. Snieder
	
Copromotor:	 Dr. A. Dehghan

Paranimfen:	 Symen Ligthart
		  Ivo van Wijk



To Lised

And to my parents





Table of contents

Chapter	 1 General introduction 9

Chapter	 2 Genetic association studies of hemostatic factors 21

	 2.1 Genome-wide association study of circulating fibrinogen 
concentration

23

	 2.2 Comparison of HapMap and 1000 genomes imputation 41

	 2.3 Exome array study of hemostatic factors 65

	 2.4 Whole-exome sequencing study of hemostatic factors 89

	 2.5 Genome-wide association study of ADAMTS13 activity 107

Chapter	 3 ADAMTS13: association with cardiovascular risk factors 125

	 3.1 ADAMTS13 activity and decline in kidney function 127

	 3.2 ADAMTS13 activity and incident type 2 diabetes 141

Chapter	 4 Genetic risk of coronary heart disease 155

	 4.1 Genetic risk prediction of coronary heart disease 157

	 4.2 Association of miR-4513 with cardiovascular disease and its risk 
factors

171

	 4.3 Transcriptome-wide association study of carotid intima media 
thickness

191

Chapter	 5 General discussion 205

Chapter	 6 Summary & Samenvatting 221

Chapter	 7 Appendices 231

	 7.1 Acknowledgements 233

	 7.2 PhD portfolio 237

	 7.3 List of publications 239

	 7.4 About the author 243





Chapter 1
General introduction





11

General introduction

Despite improvements in prevention and treatment, coronary heart disease (CHD) 
remains the leading cause of death.1 CHD refers to the buildup of atherosclerotic 
plaques in the coronary arteries and the accompanying narrowing of the arteries, 
which may result in a myocardial infarction. Whether or not a myocardial infarction 
actually occurs depends on many factors: the extent of atherosclerotic plaques,2-4 
the stability of the plaques,4,5 the narrowing of the artery,6 and the intensity of the 
thrombotic response to plaque rupture.7 The larger the blood clot, the higher the 
chance of obstructing the fl ow of blood through the coronary arteries. Indeed, sev-
eral types of antithrombotic medication, including aspirin, are effective at reducing 
the risk and severity of myocardial infarctions.8 

The formation of pathogenic blood clots resulting in myocardial infarctions is 
driven by the same mechanisms that work to stop bleeding: damaged blood ves-
sels are constricted to limit blood fl ow, a platelet plug forms, and the coagulation 
cascade is set off, resulting in the formation of a fi brin mesh. Together, these three 
mechanisms cooperate to stop bleeding, achieving hemostasis. The coagulation cas-
cade is an intricate pathway involving many proteins (Figure 1). Fibrin is formed when 
fi brinogen is cleaved by thrombin. Thrombin, in turn, fi rst needs to be formed from 
prothrombin through cleavage by factor X. Factor X can be activated either through 
the intrinsic pathway by factor VIII or the extrinsic pathway by factor VII. Platelet 
adhesion and aggregation in turn depends mainly on von Willebrand factor (VWF) 
and fi brinogen (Figure 2). More recently, another protein called ADAMTS13 has been 
found to decrease the activity of VWF in platelet adhesion and aggregation.9,10 
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figure 1. The coagulation cascade
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CliniCAl imPliCAtionS of HemoStAtiC fACtorS

Differences among individuals in the level and activity of the proteins involved in 
hemostasis partly determine differences in their ability to provoke clotting or stop 
bleeding. While abnormally low levels of many of these proteins can cause bleeding 
disorders such as von Willebrand’s disease,11-14 high levels may promote thrombosis 
and thereby contribute to cardiovascular events such as myocardial infarction and 
stroke.15,16 Fibrinogen, VWF, factor VII, and factor VIII are all associated with an in-
creased risk of incident coronary heart disease according to large population-based 
cohort studies.17-22 On the other hand, ADAMTS13 levels and activity have been as-
sociated with a reduced risk of coronary heart disease in case-control studies.23,24 
Whether these associations refl ect causation is unclear, partly because the levels 
of these proteins in the blood can change in response to a diverse set of factors. 
Fibrinogen, for example, is highly increased during the acute-phase response.25 
Thus, regardless of its essential function in hemostasis it is more closely correlated 
to infl ammatory markers such as C-reactive protein as to other hemostatic factors. 
Another example is VWF, whose levels are higher in individuals with endothelial dys-
function.26 In the case of ADAMTS13, there is evidence supporting its antithrombotic 
effect, but its association with other risk factors of CHD remains unexplored.

genetiCS of HemoStAtiC fACtorS

Over the past decade the standard approach to identify genetic variants that affect 
phenotypes has been large-scale genome-wide association (GWA) studies.27 The 
strength of GWA studies lies in their hypothesis-free approach, interrogating mil-
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figure 2. Platelet aggregation and adhesion.
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lions of genetics variants rather than a select few. Different studies use different ge-
notyping arrays to measure hundreds of thousands to a few million single nucleotide 
polymorphisms (SNPs) in their participants. The number of overlapping SNPs among 
different arrays is generally low, making it difficult to simply combine the results of 
several GWA studies. This challenge was overcome by using the correlation struc-
ture between SNPs to impute a set of 2.5 million SNPs, regardless of which SNPs 
were genotyped. A reference panel from which these correlations can be obtained 
was made available by the HapMap project.28 GWA studies based on HapMap have 
discovered 23 genetic loci for fibrinogen,29-31 5 loci for factor VII, 5 loci for factor VIII, 
and 8 loci for VWF.32 No previous GWA studies of ADAMTS13 have been performed, 
but several variants within the ADAMTS13 gene are known to affect ADAMTS13 levels 
and activity.33

Genetics of CHD

Similarly, the largest GWA study of CHD identified 46 susceptibility loci.34 Further-
more, the authors of the study put forward a set of 152 variants independently associ-
ated with CHD at a false discovery rate of 5%. While for many phenotypes, such as 
hemostatic factors, the primary aim of performing a GWA study is to uncover new 
biology, for GWA studies of clinical outcomes an additional aim is to improve risk 
prediction. This is particularly relevant for CHD, as across the world risk prediction 
programs are implemented to identify individuals at a high risk of CHD so that pre-
ventive strategies can be initiated, including lifestyle interventions such as smoking 
cessation, and ultimately drug interventions with lipid-lowering, antihypertensive, 
or antithrombotic medication. Many studies have thus been performed testing 
whether genetic variants for CHD found through GWA studies improve risk predic-
tion of incident CHD.35-39 So far, these studies indicate that genetic variants are of 
little or no benefit to CHD risk prediction.

Progress in genetic epidemiology

One limitation of HapMap-based GWA studies is that they only investigate common 
SNPs.40 They do not cover low-frequency and rare variants, and they do not cover 
variants other than SNPs, such as large structural variants and small indels. The cre-
ation of improved reference panels is thus the first of several developments that are 
underway that could potentially transform the field of genetic epidemiology. These 
include population-specific reference panels such as Genomes of the Netherlands 
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and UK10K,41 but also cosmopolitan reference panels such as the 1000 Genomes 
Project.42 These reference panels are based on sequences of hundreds to thousands 
of individuals, and thus provide more information on rare variants than HapMap.

Second, new genotyping arrays have been designed that measure mainly non-
synonymous variants in the protein-coding exonic regions of the genome.43 While 
exonic regions comprise only a small percentage of the genome, these genotyping 
arrays are based on the assumption that variants within them have the highest poten-
tial for inducing phenotypic variation.

Third, rather than genotyping known variants, it is now feasible to sequence the ex-
ons or even the whole genome.44 The main advantage is that sequencing also allows 
access to rare variants not covered in the reference panel, including population-
specific variants. Additionally, even when low-frequency variants are accessible 
through imputation, they often have a low imputation quality. Effectively this is a 
type of measurement error that reduces the power to detect associations. This is not 
an issue with sequencing as all variants are directly measured.

Fourth, studies are increasingly measuring dynamic aspects of genomics, such as 
gene expression. While the amino acid sequence of a protein is encoded by genetic 
variants that do not change, gene expression levels are regulated by transcription 
factors, microRNAs, methylation, DNA accessibility, and other epigenetic fac-
tors. The levels of these factors, and hence gene expression levels, can change in 
response to the environment. Vitamin D, for example, is either obtained through 
the diet or produced in response to sun exposure. Vitamin D then activates Vitamin 
D receptor, a transcription factor that regulates the expression of over 200 genes.45 
Genetic variants can also affect gene expression levels, for example by affecting the 
level or activity of transcription factors or microRNAs.46,47 Thus, besides measuring 
expression levels themselves, these interactions can also be captured by studying 
genetic variants known or suspected to affect gene expression levels. 

Aim of this thesis

The aim of this thesis was to study hemostatic and genetic risk factors of cardiovas-
cular disease. To improve our understanding of how hemostatic factors are related 
to cardiovascular disease we studied the genetic epidemiology of these factors 
using several novel approaches. For ADAMTS13 we also studied associations with 
cardiovascular risk factors, given that these associations remain largely unexplored 
for this new marker.



15

General introduction

Outline of this thesis

Chapter 2 focuses on genetic association studies of proteins involved in hemostasis. 
In Chapter 2.1 we perform a GWA study, based on 1000G imputation, of circulating 
fibrinogen concentration in over 120,000 individuals. To be able to adequately ex-
amine the benefit of using 1000G imputation over HapMap imputation, in Chapter 
2.2 we perform a head to head comparison of these two methods using circulating 
fibrinogen concentration as an example phenotype. We then further examine the 
genetics of fibrinogen, but also factor VII, factor VIII, and VWF, using study designs 
especially suited for the identification of rare variants. In Chapter 2.3 we performed 
an exome-wide study using genotypes obtained from the Ilumina Exome Chip. In 
Chapter 2.4 we performed a similar study using exome sequencing. In Chapter 2.5 
we combine the GWA study and exome chip approaches to study both common 
and rare genetic variants associated with ADAMTS13 activity.

In Chapter 3 we further characterize the novel hemostatic factor ADAMTS13 by 
examining its association with cardiovascular risk factors. In Chapter 3.1 we explored 
the association of ADAMTS13 activity with kidney function decline, and in Chapter 
3.2 we examine the association of ADAMTS13 activity with incident type 2 diabetes. 

In Chapter 4 we investigate coronary heart disease and the underlying atheroscle-
rosis directly. In Chapter 4.1 we evaluate the incremental predictive value of genetic 
risk scores in the risk prediction of incident coronary heart disease. In Chapter 4.2 
we systematically investigate the association of microRNA seed sequence variants 
with cardiovascular risk factors and disease. The seed sequence is the region of mi-
croRNAs that is used to bind to target genes. Genetic variants in the seed sequence 
of a microRNA can therefore lead to a loss or gain of target genes, and alter the 
expression of these genes. In Chapter 4.3 we perform a transcriptome-wide as-
sociation study of carotid intima media thickness, aiming to identify genes that are 
differentially expressed in the presence of atherosclerosis.

Finally, in Chapter 5 we give an overview of the main findings of this thesis, examine 
the implications of the results, and discuss methodological issues that came to light.
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Abstract

Background: Genome-wide association studies have previously identified 23 genetic 
loci associated with circulating fibrinogen concentration. These studies used 
HapMap imputation and did not examine the X chromosome. 1000 Genomes 
imputation provides better coverage of uncommon variants, and includes indels. 

Methods: We conducted a genome-wide association analysis of 34 studies imputed 
to the 1000 Genomes Project reference panel and including ~120,000 partici-
pants of European ancestry (95,806 participants with data on the X chromosome). 
Approximately 10.7 million SNPs and 1.2 million indels were examined. 

Results: We identified 41 genome-wide significant fibrinogen loci of which 18 were 
newly identified. There were no genome-wide significant signals on the X chro-
mosome. The lead variants of 5 significant loci were indels. We further identified 
6 additional independent signals, including 3 rare variants, at two previously 
characterized loci: FGB and IRF1. 

Conclusions: The new loci emphasize the importance of STAT3 to fibrinogen regula-
tion, and highlight new inflammatory pathways.
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GWAS of fibrinogen

Introduction

Fibrinogen is a coagulation factor crucial to clot formation, and an active regulator of 
the inflammatory response.1 It is a strong and established predictor of cardiovascular 
disease, autoimmune disorders, and cancer.1-5 Circulating fibrinogen concentration 
has a moderate heritability of 34% to 46%.6-8 Previous genome-wide association stud-
ies (GWAS) have highlighted genetic loci involved in inflammatory pathways such as 
the acute-phase response and interleukin 1 and 6 signaling as main determinants of 
fibrinogen concentration.9-13 

The variance in fibrinogen concentration explained by genetic loci identified in 
these previous GWAS is less than one tenth of its estimated heritability.11 It is there-
fore likely that part of the heritability stems from genetic variants that are not well 
tagged by the single nucleotide polymorphisms (SNPs) found in HapMap, including 
further common, uncommon, and rare SNPs, and other types of variants such as in-
sertions or deletions (indels). Additionally, part of the heritability could be explained 
by variants on the X chromosome, which has not previously been interrogated.

To better interrogate the full range of genetic variants, including those with low 
minor allele frequency that may have been poorly tagged by HapMap variants, 
we performed a meta-analysis of 34 GWAS imputed using 1000 Genomes Project 
reference panels,14 including the X chromosome. We performed a joint/conditional 
analysis to identify additional independent signals within known and new loci as-
sociated with plasma fibrinogen concentration.

Methods

Study sample

This meta-analysis was conducted within the framework of the Cohorts for Heart and 
Aging Research in Genetic Epidemiology (CHARGE) consortium.15 The study sample 
consists of 34 studies with 120,246 individuals of European ancestry. 12 studies with 
25,453 participants were not included in the previous fibrinogen GWAS.11 Fibrinogen 
concentration was measured in citrated or EDTA plasma samples using a variety of 
methods including the Clauss method, immunonephelometric methods, immu-
noturbidimetric methods, and prothrombin time derived methods as described in 
Supplemental Table 1 and the Supplemental Methods, which further describe the 
studies. All studies were approved by appropriate research ethics committees and 
all respondents signed informed consent prior to participation.
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Genotyping and imputation

Genotyping, pre-imputation quality control, imputation, and analysis methods 
are presented in Supplemental Table 2. All studies imputed variant dosages using 
reference panels from the 1000 Genomes Project using MACH or IMPUTE.14,16-18 The 
phase I version 3 reference panel was used by all studies except two, which used the 
phase I version 2 reference panel. Before meta-analysis, we excluded variants with 
MACH imputation quality < 0.3 or IMPUTE imputation quality < 0.4, and variants 
with effective minor allele count (minor allele count × imputation quality) < 10. These 
filters were applied at the level of individual studies. Because we wanted to focus 
only on those variants that passed these filters in a large proportion of the studies, 
we additionally excluded variants with a total sample size of less than half of the 
maximum sample size at the meta-analysis level.

Autosomal association analysis

Plasma fibrinogen concentration was converted to g/L and natural-log transformed. 
All studies adjusted for age and sex. When necessary, analyses were also adjusted 
for study-specific covariates, such as center or case/control status. In family stud-
ies, linear mixed models were used to account for family structure. Analyses were 
adjusted for principal components to account for population structure and cryptic 
relatedness. These adjustments are shown in Supplemental Table 2. To account for 
remaining stratification, we applied a genomic control correction to the results of 
each of the studies before meta-analysis. We used an inverse-variance model with 
fixed effects implemented in METAL to meta-analyze association results.19 Heteroge-
neity was assessed using I2 and corresponding P-values.

As proposed by Huang et al, variants with P-values lower than 2.5×10-8 were con-
sidered genome-wide significant (based on a Bonferroni correction for 2,000,000 
tests).20 Significant variants were assigned to loci in order of ascending P-value. A 
variant was assigned to a new locus when there were no significant variants within 
500 kb of it belonging to a previously defined locus. Variants were annotated to 
genes using ANNOVAR version 2013Mar07.21

X-chromosome association analysis

Of the 120,246 participants, 95,806 had imputed data on the X chromosome. Dos-
ages of variants on the X chromosome were coded as [0,2] in men and [0,1,2] in 
women. This way one allele in men has the same value as two alleles in women. Thus, 
we assume full inactivation of one of the two X chromosomes in women. Variants in 
the pseudo-autosomal region were excluded. Analyses of the X chromosome were 
stratified by sex in each study, and the studies then were meta-analyzed separately 
for men and women using an inverse-variance model with fixed effects.19 We then 
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combined the sex-specific meta-analysis results for variants on the X chromosome 
using both an inverse variance weighted model with fixed effects and a sample-size 
weighted model based on P-values and effect direction. The sample-size weighted 
model does not take the effect size into account, and thus may work better when 
there are different effects in men and women,22,23 as can happen when there is in-
complete inactivation in women. 

Conditional analysis

Some loci may harbor multiple independent variants that affect fibrinogen.11,24 To pu-
tatively identify these jointly significant variants, we used an approximate method for 
conditional and joint analysis using meta-analysis summary statistics implemented in 
GCTA.25,26 The method consists of a genome-wide stepwise selection procedure se-
lecting variants according to their conditional P-values and, after the model has been 
optimized, the estimation of the joint effects of the selected variants. This method 
depends on a reference panel to estimate linkage disequilibrium patterns between 
variants. We used best-guess imputation for variants with imputation quality > 0.3 
in 5,733 unrelated individuals from the Rotterdam Study as the reference panel.27 A 
description of the Rotterdam Study is given in the Supplemental Methods.

Functional annotation

For each locus, we searched the National Human Genome Research Institute GWAS 
catalog for genome-wide significant associations with other traits within 100kb of 
the lead variant.28 We used the Blood eQTL browser, a publicly available database, 
to examine whether any lead variants, or their most correlated HapMap proxy (with 
R2 > 0.8), were associated with expression levels of nearby genes in blood. Results 
from the blood eQTL browser are based on non-transformed peripheral blood 
samples from 5,311 individuals with replication in 2,775 individuals.29 For each lead 
SNP and its highly correlated neighbors (with R2 > 0.9), we used HaploReg V2 to 
determine the level of conservation, association with gene expression in a range of 
tissues including the liver, and any overlap with ENCODE transcription factor bind-
ing sites, and DNAse-hypersensitive, promoter , and enhancer regions in various cell 
types.30,31 Furthermore, we determined the overlap of these SNPs with microRNAs 
and microRNA binding sites (see Supplemental Methods).32-34 

Variance explained

In the Women’s Genome Health Study, the largest contributor to the meta-analysis, 
we computed a weighted genetic risk score based on the lead variants at each 
genome-wide significant locus, as well as any jointly significant variants identified 
in the conditional analysis.35 A description of the Women’s Genome Health Study is 
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given in the Supplemental Methods. Beta coefficients from the genome-wide asso-
ciation meta-analysis including all studies were used as weights, except in loci with 
multiple jointly significant variants. For variants at these loci, joint beta coefficients 
were obtained from the conditional analysis. The genetic risk score was computed 
as the sum of the weighted variants dosages. The variance in fibrinogen concentra-
tion explained was estimated using a linear regression model. Additionally, for any 
loci with jointly significant variants we compared the variance explained by the lead 
variant to the variance explained by the jointly significant variants. We were not able 
to directly compare our estimate of the variance explained to previous estimates, as 
these had been computed in different populations and were adjusted for age and 
sex. Thus, we re-calculated the variance explained without adjustment for age and 
sex. For this we used HapMap-imputed dosages of the independently associated 
SNPs reported by Sabater-Lleal et al.11 Since the variance explained is estimated on 
the basis of imperfectly imputed dosages, we expect our estimates to be slightly 
lower than if they were based on measured genotypes.

Results

Autosomal meta-analysis

Participant characteristics in each study are shown in Supplemental Table 1, covariates 
adjusted for by each study are shown in Supplemental Table 2, and genomic infla-
tion factors are shown in Supplemental Table 3. The meta-analysis of the autosomes 
included 9,492,263 SNPs and 841,128 indels, of which 4,354 SNPs and 420 indels at 41 
loci were genome-wide significant. Of these, 18 loci are new signals (Table 1), while 
23 have been associated with fibrinogen concentration by previous GWAS (Table 2). 
Among genome-wide significant variants, 14 of 4,354 were rare (MAF ≤ 0.01), and a 
further 477 were uncommon (0.01 < MAF ≤ 0.05). The lead variants of known locus 
SNX13, and novel loci ATXN2L, GYS2, GIMAP4, and IFT122 were indels. Separate QQ 
plots of all autosomal variants, common variants, uncommon variants, rare vari-
ants, SNPs, and indels are shown in Supplemental Figure 1. A Manhattan plot of all 
autosomal variants is shown in Supplemental Figure 2. Additionally, a Manhattan 
plot highlighting rare and uncommon variants is shown in Supplemental Figure 3. 
Heterogeneity I2 and P-values are shown in Supplemental Table 4. Only rs7439150 
at the fibrinogen gene cluster showed significant heterogeneity (I2: 50.0, P-value: 
0.0004). Regional plots are shown in Supplemental Figure 4, and forest plots are 
shown in Supplemental Figure 5. Associations with rare variants were found at 
the two most robust fibrinogen loci: the fibrinogen gene cluster and the IRF1 locus 
(lead variant annotated to C5orf56). Associations with uncommon variants were also 
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found at these loci, as well as at SPPL2A and HNF4A. At one known locus (SNX13) and 
four new loci (IFT122, GIMAP4, GYS2, and ATXN2L) the lead variant was an indel. At 
each of these loci there were also SNPs in linkage disequilibrium with the indel that 
reached genome-wide significance. CD300LF was the only previously identified lo-
cus that was not represented among our significant results. The previously reported 
lead variant in CD300LF, rs10512597 (P-value: 1.8×10-7), had a smaller effect size (β: 
-0.006 ln(g/L)) than was previously reported (β: -0.008 ln(g/L)). There was no strong 
evidence of heterogeneity (I2: 22.7, P-value: 0.11).

Conditional analysis

Two loci (fibrinogen gene cluster and IRF1) harbored multiple jointly significant 
variants (Table 3). Forest plots of the additional variants discovered through condi-
tional analysis are shown in Supplemental Figure 6, and their heterogeneity I2 and 
P-values are shown in Supplemental Table 4. At the fibrinogen gene cluster, five 
variants were jointly significant: the lead variant rs7439150, an additional common 
variant rs76289367, and three rare variants, rs150768229, rs6054, and rs148685782. 
rs148685782 showed significant heterogeneity (I2 = 65.0, P-value = 0.0004). At the 
IRF1 locus three variants were jointly significant: the lead variant, rs2057655, and two 
uncommon variants, rs12777 and 5:131786964. Of the secondary signals, rs12777 is 
in strong linkage disequilibrium with a previously associated SNP, rs1242111 (R2=0.8), 
while 5:131786964 is a new independent signal (R2 = 0.0). The uncommon variants 
near SPPL2A were not significant in the conditional analysis. The uncommon lead 
variant rs141272690 was only marginally significant in the primary analysis (P-value = 
1.89×10-8), so that even a small correlation with the lead common variant rs12913259 
(R2 = 0.02) raised the P-value above the threshold in the conditional analysis.

X-chromosome meta-analysis

The meta-analysis of the X chromosome included 251,747 SNPs and 26,448 indels. 
There were no genome-wide significant variants detected on the X chromosome. 
This was true in both sex-specific meta-analyses, and in the combined meta-anal-
yses, irrespective of whether the sex-specific results were combined using inverse-
variance weighted meta-analysis or sample size based meta-analyses. QQ plots and 
Manhattan plots for the X chromosome are shown in Supplemental Figure 7 and 8.

Functional annotation

Genome-wide significant associations with other traits were found for 28 out of the 
41 loci, of which 10 were associated with cholesterol levels, 7 were associated with C-
reactive protein, and 5 were associated with platelet count (Supplemental Table 5). 
Out of the 41 lead variants, 20 were associated with blood expression levels of one 
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or more neighboring genes (Supplemental Table 6). Notably, rs1035559 at 16q22.2 
was exclusively associated with HP expression levels (P = 9.8×10-198), and rs7224737 at 
17q21.2 was exclusively associated with STAT3 expression levels (P = 5.4×10-12). Out of 
the 41 lead variants, 36 were available in HaploReg V2. Detailed annotation of these 
variants as well as 457 correlated SNPs is shown in Supplemental Table 7. Eight of 
these SNPs are predicted to influence the binding of miRNAs to transcripts of their 
host gene. Further information about these SNPs and their effect on miRNA binding 
is shown in Supplemental Table 8. Of these eight SNPs, two were lead variants. First, 
the fibrinogen decreasing minor allele of lead variant rs715 in the 3’-UTR of CPS1 
is predicted to create a miRNA binding site for miR-3154. Second, the fibrinogen 
increasing minor allele of lead variant rs6224634 in the 3’-UTR of LHFPL4 is pre-
dicted to disrupt the binding site of miR-6761-3p. In both cases predicted successful 
miRNA-target gene binding is associated with lower fibrinogen concentration. 

Variance explained

In the Women’s Genome Health Study, the lead variant at the fibrinogen gene clus-
ter explained 0.8% of the variance, and all five jointly significant variants together 
explained 1.6% of the variance. At 5q31.1 the lead variant explained 0.2% of the 
variance, while all three jointly significant variants together explained 0.3% of the 
variance. The 47 independently significant variants at 41 loci explained 3.0% of the 
variance in circulating fibrinogen concentration. The variance explained by the 23 
previously identified loci was 2.6%.

Discussion

We identified 18 new autosomal loci associated with circulating fibrinogen con-
centration in individuals of European ancestry, increasing the variance explained 
from 2.6% to 3.0%. The small increase in the variance explained relative to the 
large number of new loci is suggestive of a highly polygenic genetic architecture. 
At two loci (fibrinogen gene cluster and IRF1 locus) rare or uncommon variants were 
jointly significant alongside common lead variants. In five cases the lead variant at 
an associated locus was an indel. There were no significant associations on the X 
chromosome: this may be result of issues specific to the X chromosome rather than 
the absence of relevant signals. The most important issue is that the X chromosome 
is generally poorly covered by genotyping arrays.36 

Four of the 18 new loci implicate inflammatory pathways not previously linked to 
fibrinogen. First, the septin gene family is represented at two significant loci: SEPT7 at 
7p14.2 and SEPT2 at 2q37.3. Proteins from the septin gene family form cage-like struc-
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tures around bacteria to facilitate autophagy.37 The link between these processes and 
fibrinogen concentration is unclear. Second, our results also implicate genes from the 
GIMAP family, which are structurally similar to septins.38 The signal at 7q36.1 appears 
to be driven by one or more genes from a cluster of eight GIMAP genes, and the 
lead variant is associated with blood expression levels of four of these. Through their 
involvement in lymphocyte maturation, these genes influence lymphocyte counts 
and diversity, and thereby also the inflammatory response.39 Finally, the lead variant 
at 16q22.2 is strongly associated with blood expression levels of the neighboring HP 
(P-value ≤ 9.8×10-198), the gene encoding haptoglobin. Like fibrinogen, haptoglobin 
is an acute-phase reactant. The association of rs1035560 with fibrinogen suggests 
that besides sharing upstream regulators, haptoglobin itself may be involved in the 
regulation of circulating fibrinogen. 

Six of the new loci appear to be closely related to STAT3, a transcription factor 
working downstream of IL-6 that upregulates the expression of fibrinogen and other 
acute-phase proteins.40 At 17q21.2, lead variant rs7224737 (175 kb from STAT3) was 
associated with STAT3 blood expression levels (P = 5.4×10-12). At 9q22.2, the lead vari-
ant rs3138493 lies upstream of GADD45G. This gene is expressed in the liver, where 
it has been shown to inhibit the Tyr705 phosphorylation of STAT3.41 As Tyr705 phos-
phorylation of STAT3 allows it to dimerize and move into the nucleus, it is essential 
for the upregulation of STAT3 targets like the fibrinogen genes. At 10q26.13, the lead 
variant rs2420915 is an intergenic SNP close to FGFR2. Over-expression of FGFR2, or 
the related FGFR1 is required for the Tyr705 phosphorylation of STAT3.41 At 19q13.33, 
the lead variant rs73058052 is associated with blood expression levels of IRF3. After 
activation in response to viral infection, IRF3 enables the expression of type I in-
terferons INFA and INFB, leading to the upregulation of STAT3.42,43 Furthermore, our 
results point towards two SH2B adaptor proteins implicated in STAT3 signaling. At 
12q24.12, the lead variant rs7310615 was associated with blood expression levels of 
SH2B3. Using immortalized B lymphoblastoid cell lines, a loss of the SH2B3 protein 
was accompanied by increased STAT3 phosphorylation.44 At 16p11.2, lead variant 
16:28845027 lies close to SH2B1. The β variant of SH2B1 appears to form a complex 
with STAT3, allowing STAT3 to cross through the membrane into the nucleus as an 
alternative to STAT3 dimerization.45 Collectively, these findings suggest that a wide 
range of disturbances to STAT3 may affect circulating fibrinogen concentration. 

In addition to STAT3, our results highlight HNF4A, another transcription factor 
known to regulate fibrinogen gene expression. The association between lead variant 
rs1800961 and circulating fibrinogen has been previously been described by Wassel 
et al and Hufman et al.12,46 rs1800961 is a nonsynonymous coding variant that has 
been shown to decrease HNF4A expression in vitro.47
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The majority of rare and uncommon variants associated with fibrinogen concen-
tration were found at loci with common variant signals. Only the signal at HNF4A was 
led by an uncommon variant, and no signals were led by rare variants. Conditional 
analysis suggests that there are two secondary signals at the IRF1 locus led by uncom-
mon variants, and three secondary signals near the fibrinogen gene cluster led by 
rare variants. The uncommon variants that were significant near SPPL2A were not 
significant in the conditional analysis, but the linkage disequilibrium with the lead 
common variant was very low. Our results suggest that common and rare variant 
signals are often independent of each other, and do not support the hypothesis that 
associations with common variants are synthetic associations merely reflecting link-
age disequilibrium with rare variants.48,49 

Absolute effect sizes of significant variants ranged from 0.005 to 0.033 ln(g/L) 
among common variants, 0.013 to 0.087 ln(g/L) among uncommon variants, and 
0.036 to 0.254 ln(g/L) among rare variants. Despite their small effect size, common 
variants have helped discover biologically relevant fibrinogen loci. Therefore, the 
complete lack of overlap between the effect sizes of significant common and rare 
variants suggests that further rare variants with smaller effect sizes are likely to exist at 
important and possibly unknown fibrinogen loci. While the rare variants with large 
effects we found were limited to the two most important fibrinogen loci, rare variants 
with moderate effects may be more widespread. 

When considering not only the primary signal at the fibrinogen gene cluster, but 
also the four additional signals the variance explained by the locus doubles from 
0.8% to 1.6%. Two of these additional signals are driven by rare non-synonymous 
exonic variants (rs6054 and rs148685782) with very large effect sizes (β=-0.12 and 
β =-0.21 ln(g/L) respectively). The association between rs6054 and fibrinogen has 
been described earlier in a candidate gene stud,12 and rs148685782 (also known 
as γAla82Gly) has previously been reported as a causal variant for mild congenital 
hypofibrinogenaemia.50-52 Furthermore, in a previous study we examined exome-
wide genotypes using exome arrays and identified independent associations of 
both rs6054 and rs148685782 with fibrinogen.46 In the present study, however, two 
further variants, rs140473879 and rs149234484, are in strong linkage disequilibrium 
with rs148685782 and tag this signal. These variants are intergenic, but each changes 
several regulatory motifs. Thus, the identification of rs148685782 as a causal variant 
is not conclusive.

Strengths of this study include the use of a large ethnically homogenous sample, 
and coverage of previously unexamined uncommon and rare variants, indels, and 
variants on the X chromosome. At the same time, the lack of ethnic heterogeneity 
may also be a limitation, as including different ethnicities can help narrow down the 
association signal to a smaller region.53 This study has other limitations that should 
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be acknowledged. To most effectively use the available data, we used all 34 studies 
in the discovery sample.54 The results have thus not been replicated. Nevertheless, 
the consistent association of these loci across the 34 studies and the strict Bonferroni 
correction enforcing a 5% false discovery rate ensure that essentially all of the loci 
represent true associations. A second limitation is that an approximation based on 
meta-analysis summary data was used to identify additional independently associ-
ated variants at the identified loci rather than a stepwise conditional analysis using 
individual-level data. Different methods were used to measure plasma fibrinogen 
across the studies: EDTA or citrate plasma samples were used, and a variety of assays 
were used.55 While the association between fibrinogen and cardiovascular disease 
has previously been shown to be independent of assay type, the genetic etiology 
of fibrinogen may differ across assay types.56 However, to minimize the impact on 
our results, studies that used multiple assays to measure fibrinogen performed their 
analyses stratified by the assay. 

Finally, our ability to attribute these signals to causal genes remains limited. For 
each locus we reported the gene closest to the lead variant, but proximity alone is 
not strong evidence that a gene is the underlying causal gene. Thus, we also reported 
the genes whose expression levels in blood were most strongly associated with the 
lead variant, and we reported genes with nonsynonymous exonic variants in high 
linkage disequilibrium with the lead variant. Based on blood expression levels, some 
signals were characterized by a single promising candidate causal gene, but other 
signals were associated with either no candidate causal genes, or more than one. 
Furthermore, genetic variants can have effects on the expression of multiple genes 
across different tissues, and these effects can be tissue specific. 

We identified 41 loci that collectively explain 3% of the variance in plasma fi-
brinogen concentration. Of these loci, 18 had not been identified previously through 
GWAS. The new loci emphasize the importance of STAT3 to fibrinogen regulation, 
and highlight several new potential pathways that should be experimentally con-
firmed. The use of 1000 Genomes Project imputation increased our ability to assess 
the role of uncommon variants, resulting in an in depth characterization of the two 
most important fibrinogen loci.

Supplement available online at: 
http://hmg.oxfordjournals.org/
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Abstract

Background: Many consortia conducting genome-wide association (GWA) studies 
are now using the more computationally intensive 1000 Genomes Project refer-
ence panel (1000G) for imputation with the expectation that this will lead to the 
discovery of additional associated loci that would have remained undetected 
with the HapMap project reference panel (HapMap). This expectation has not 
yet been tested in any large-scale GWA dataset comprising the same set of indi-
viduals. 

Methods: In order to assess the performance improvement of 1000G imputation 
over HapMap in identifying associated loci, we compared the results derived 
from the two reference panels using our GWA study of circulating fibrinogen 
concentration comprising 91,953 individuals. 

Results: While 29 loci were identified in both the HapMap and 1000G GWA studies, 
we identified six additional signals using 1000G imputation. However, one locus 
identified in the HapMap GWA study was not significant in the 1000G GWA 
study. Furthermore, among the loci that were significant in both the HapMap and 
1000G GWA studies, five loci were over one order of magnitude more significant 
in the 1000G GWA study, compared to two in the HapMap GWA study. When us-
ing a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5×10-8), 
there were 4 loci significant only in the HapMap GWA study, 5 loci significant 
only in the 1000G GWA study, and 26 overlapping loci. 

Conclusions: 1000G imputation enables the identification of additional loci com-
pared to HapMap imputation, but this may be accompanied by a higher type 
1 error rate. When the significance threshold is adjusted accordingly, the differ-
ence between the two reference panels is less pronounced. 
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Introduction

Most genome-wide association (GWA) studies to date have used their genotyped 
single nucleotide polymorphisms (SNPs) to impute about 2.5 million SNPs detected 
in the HapMap Project (HapMap),  including mostly common SNPs with a minor 
allele frequency (MAF) of over 5%.1-13 HapMap imputation made the meta-analysis 
of studies that used different genotyping arrays with low overlap, and the interroga-
tion of most common SNPs possible.1 However, low-frequency and rare variation is 
generally not covered.14 Similarly, genetic variation other than SNPs, such as small 
insertion-deletions (indels) and large structural variants are not included in HapMap-
based imputed projects, contributing to possible sources of missing heritability. 

In contrast, the more recently released Phase 1 version 3 of the 1000 Genomes 
Project (1000G) is based on a larger set of individuals, and comprises nearly 40 
million variants including 1.4 million indels.15 1000G allows the interrogation of 
most common and low-frequency variants (MAF > 1%), and some rare variants (MAF 
< 1%) that were previously not covered.16 1000G imputation thus has several per-
ceived benefits, but given that the denser 1000G imputation comes at the cost of 
an increased computational and analytical burden, it is important to examine the 
observed benefits. While several GWA studies using 1000G imputation have been 
published or are in progress, their sample size differs from the previous GWA stud-
ies using HapMap imputation, making comparison difficult. Therefore, with the aim 
of evaluating the benefits of using 1000G imputation in GWA studies compared to 
HapMap imputation, we carried out a GWA study of a quantitative trait, circulating 
fibrinogen concentration, using both HapMap and 1000G imputed data on a single 
set of the same 91,953 individuals.

Methods

Population

The sample for both the HapMap and 1000G GWA studies consists of 22 studies 
including the same 91,953 European-ancestry participants. The sample is largely a 
subset of the sample used in our previous work, and when possible the same analy-
ses were used in this project.17,18 However, to ensure that only the same individuals 
were used, one or both of the analyses was rerun using only overlapping individuals 
when necessary. All studies were approved by appropriate research ethics commit-
tees and all respondents signed informed consent prior to participation.
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Genotyping and imputation

Studies imputed dosages of genetic variants using reference panels from the 1000 
genomes project with MACH19,20 or IMPUTE.21 Studies imputed variant dosages using 
phase 2 reference panels from the HapMap project with MACH,19,20 IMPUTE,21 or 
BIMBAM.22 We excluded variants with MACH imputation quality < 0.3, IMPUTE/
BIMBAM imputation quality < 0.4, or MAF < 0.01 from each study.

Fibrinogen measurement

Fibrinogen concentration was measured in citrated or EDTA plasma samples using a 
variety of methods including the Clauss method, immunonephelometric methods, 
immunoturbidimetric methods, and other functional methods. Fibrinogen concen-
tration was measured in g/L and natural-log transformed. 

Genome-wide association analysis

All analyses were adjusted for age and sex, and study specific covariates such as 
center or case/control status. In family studies, linear mixed models were used to 
account for family structure. Some studies adjusted the analysis for principle compo-
nents to account for population structure and cryptic relatedness. Some studies used 
a different number of principle components in the HapMap and 1000G analyses. 
We applied a genomic control correction to the results of each of the studies before 
meta-analysis to remove any remaining genomic inflation. The genomic inflation 
factor used in this correction was calculated separately in the HapMap and 1000G 
analyses for each study. We meta-analyzed the results using an inverse-variance 
model with fixed effects implemented in METAL.23 Loci were defined as the 500 
Kb area on either side of lead variants (the variant with the smallest P-value). Build 
36 positions of HapMap SNPs were converted to build 37 using the UCSC genome 
browser (http://genome.ucsc.edu/cgi-bin/hgLiftOver). Variants were annotated to 
genes using ANNOVAR version 2013Mar07. At the meta-analysis level, the imputation 
quality of each variant was defined as the sample-size weighted mean imputation 
quality across the studies, not including studies where the variant was filtered out.

Comparison of HapMap and 1000G

When a locus was significant in both the HapMap and 1000G GWA studies we 
defined it as an overlapping locus. When a locus was significant in only one of the 
two analyses we defined it as a non-overlapping locus. To compare the strength of 
association in the HapMap and 1000G GWAS, we identified loci with P-value dif-
ferences of 1 order of magnitude or greater (for example: from 5×10-8 compared to 
5×10-9 or less).
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For each significant locus we used two approaches to assess the relationship be-
tween lead variants from HapMap and 1000G. First, we determined whether or not 
the more significant of the two lead variants or a good proxy (linkage disequilibrium 
R2 > 0.8) was included in the analysis of the other reference panel. If so, we examined 
its association in the other reference panel. Thus, if a locus was more significant in 
the 1000G GWA study, we checked whether the 1000G lead variant or a proxy was 
included in the HapMap GWA study. Second, we examined the correlation R2 be-
tween HapMap and 1000G lead variants in the form of imputed genotype dosages. 
This was done in 5966 individuals from the Rotterdam Study. 

Sensitivity analysis

First, we compared the results of the HapMap and 1000G GWA studies when apply-
ing a stricter Bonferroni-corrected P-value threshold of 2.5×10-8 to the 1000G GWA 
study. This threshold was suggested by Huang et al to keep the type 1 error rate at 5% 
when using 1000G data.24 Second, we repeated the analysis without using genomic 
control corrections. Third, we repeated the analysis in 34,098 participants using only 
the 10 studies that used the same imputation and analysis software as well as the 
same covariates for the HapMap and 1000G GWA studies. 

Results

Baseline characteristics of the participants for each of the included studies are shown 
in Supplemental Table 1. The HapMap GWA study included 2,749,429 SNPs, and the 
1000G GWA study included 10,883,314 variants. Using a genome-wide significance 
threshold of 5×10-8, a total of 1,210 SNPs across 30 loci were associated with circu-
lating fibrinogen concentration in the HapMap GWA study compared with 4,096 
variants across 35 loci in the 1000G GWA study (Supplemental Figures 1 and 2). Of 
these loci, six were associated only in the 1000G GWA study and one was associated 
only in the HapMap GWA study, while 29 were overlapping (Figure 1A). The main re-
sults for both overlapping and non-overlapping loci are summarized in Figure 1. The 
HapMap and 1000G lead variants of non-overlapping loci are described in Table 1, 
and leads variants of overlapping loci are described in Table 2. Among significant 
loci, the correlation coefficient of the beta coefficients, P-values, and imputation 
qualities of HapMap and 1000G lead variants were 0.925, 0.998, and 0.435 respec-
tively (Supplemental Figure 3).
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non-overlapping loci

The lead variants for non-overlapping loci always differed between the HapMap and 
1000G GWA studies, and all P-value differences were greater than 1 order of magni-
tude (for example: from 5×10-8 to 5×10-9 or less). Differences between HapMap and 
1000G imputation for the seven non-overlapping loci are summarized in figure 2.

Regional plots of the six loci signifi cant only in the 1000G GWA study are shown 
in figure 3. For four of these six loci, the correlation R2 between imputed dosages of 
HapMap and 1000G lead variants was less than 0.8 (Supplemental table 2). None of 
the 1000G lead variants among these four loci were included in the HapMap GWA 
study, and neither were any good proxies. 

A regional plot of the 6p21.3 locus, which was signifi cant only in the HapMap 
GWA study, is shown in figure 4. The lowest P-value at the locus was 8.5×10-9 in the 
HapMap GWA study compared to 7.9×10-6 in the 1000G GWA study. The correlation 
R2 between imputed dosages of the HapMap and 1000G lead variants was 0.07. The 
HapMap lead SNP was included in the 1000G GWA study under a different name, 
rs114339898, but the imputation quality was only high enough for inclusion in 7 of 
the studies.

overlapping loci

The lead variants of eight of the 29 overlapping loci were the same for the HapMap 
and 1000G GWA studies. P-value differences between the HapMap and 1000G 
GWA studies were often small: they were smaller than or equal to one order of 
magnitude for 22 loci. P-values differed by more than one order of magnitude for 
seven loci. Five of these loci were more signifi cant in the 1000G GWA study (2q37.3, 
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4q31.3, 10q21.3, 12q24.12, and 21q22.2), while two of these loci were more significant 
in the HapMap GWA study (5q31.1 and 8q24.3). 

Among the five overlapping loci with lower P-values in the 1000G GWA study, 
the correlation R2 between imputed dosages of lead variants from HapMap 
and 1000G was higher than 0.8 for 4 loci, but was 0.68 for the 12q24.12 locus 
(Supplemental Table 4). There was no good proxy of the 1000G lead variant at the 
12q24.12 locus included in the HapMap GWA study.

The 5q31.1 and 8q24.3 loci had lower P-values in the HapMap GWA study. The cor-
relation R2 between imputed dosages from HapMap and 1000G was almost perfect 
for 5q31.1, but was 0.75 for 8q24.3. The HapMap lead variant of the 8q24.3 locus was 
also included in the 1000G GWA study. These differences between HapMap and 
1000G imputation for the 29 overlapping loci are summarized in Figure 5.

Sensitivity analyses

Because more independent variants are included in the 1000G GWA study, it may 
not be fair to use the conventional genome-wide significance threshold of 5×10-8.24,25 
When we restricted the significant loci from the 1000G GWA study to just those with 
a P-value below 2.5×10-8, there were 4 loci significant only in the HapMap GWA study, 
5 loci significant only in the 1000G GWA study, and 26 overlapping loci (Figure 1B). 
Three loci that were significant using both HapMap and 1000G imputation thus 
became non-significant when the stricter significance threshold was applied to the 
1000G results.

Table 1. Non-overlapping loci that were significant in either the HapMap or 1000G GWA studies

Locus

HapMap 1000G

Lead 
Variant Beta P-value MAF

Imputa-
tion
Quality

Lead 
Variant Beta P-value MAF

Imputa-
tion
Quality

Significant in 1000G

1q42.13 rs10489615 0.0052 8.3×10-07 0.38 0.97 rs10864726 0.0059 1.1×10-08 0.40 0.96

3q21.1 rs16834024 0.0173 1.4×10-07 0.03 0.79 rs1976714 0.0064 7.5×10-09 0.35 0.89

4p16.3 rs2699429 0.0060 1.3×10-07 0.43 0.87 rs59950280 0.0080 2.5×10-11 0.34 0.80

7p15.3 rs1029738 0.0057 3.2×10-07 0.30 1.00 rs61542988 0.0065 3.1×10-08 0.25 0.98

8p23.1 rs7004769 0.0062 1.4×10-06 0.20 1.00 rs7012814 0.0061 8.0×10-09 0.47 0.91

11q12.2 rs7935829 0.0056 5.6×10-08 0.40 0.99 rs11230201 0.0060 3.0×10-09 0.41 0.99

Significant in HapMap

6p21.3 rs12528797 0.0095 8.5×10-09 0.11 0.98 rs116134220 0.0082 7.9×10-06 0.49 0.89

Abbreviations: HapMap refers to the GWA study using imputation based on the HapMap project. 
1000G refers to the GWA study using imputation based on the 1000 Genomes Project. Variants were 
coded according to the fibrinogen increasing allele. MAF refers to minor allele frequency. 
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Genomic infl ation factors to correct for genomic control were calculated sepa-
rately for the HapMap and 1000G analyses of each study. Thus, differences in the ge-
nomic infl ation factors could explain some of the differences between the HapMap 
and 1000G results. When we repeated the HapMap and 1000G GWA study without 
applying genomic control corrections, 2 loci were associated only with circulating 
fi brinogen concentration in the HapMap GWA study, 6 were only associated in the 
1000G GWA study, and 30 were associated in both GWA studies (figure 1C). 

For practical reasons, not all of the studies used the same imputation software, 
analysis software, or covariates for the HapMap and 1000G analyses. Specifi cally, 
fewer studies used principal components in the HapMap GWA study. When we 
restricted the analysis to those studies that used the same imputation software, 
analysis software, and covariates in the HapMap and 1000G GWA studies, 3 loci 
were associated only in the 1000G GWA study, and 6 were associated in both the 
HapMap and the 1000G GWA studies (figure 1D). No loci were associated only in 
the HapMap GWA study.

 

Correlation R2 between 
imputed dosages of HapMap 
and 1000G lead variants < 0.8 

7 non-overlapping 
loci 

1 only significant in 
HapMap 

6 more significant in 
1000G 

1 with R2 < 0.8  4 with R2 < 0.8  

Presence of lead variant (or 
proxy) in other reference 
panel 

4 with no proxy 1 with no proxy 

Difference in significance 
between HapMap and 1000G 
(>1 order of magnitude) 

figure 2. Summary of the differences between HapMap and 1000G imputation for the seven non-
overlapping loci.
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figure 3. Regional plots of non-overlapping loci that were more signifi cantly associated with fi brino-
gen in the 1000G GWA study, including variants from both the HapMap (red) and 1000G (green) 
GWA studies.
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Table 2. Overlapping loci that were significant in both the HapMap and 1000G GWA studies

Locus

HapMap 1000G

Lead 
Variant Beta P-value MAF

Imputa-
tion
Quality

Lead 
Variant Beta P-value MAF

Imputa-
tion
Quality

1p31.3 rs4655582 0.0069 4.8×10-11 0.38 0.98 rs2376015 0.0075 5.1×10-12 0.35 0.91

1q21.3 rs8192284 0.0115 8.9×10-29 0.40 0.97 rs61812598 0.0114 1.8×10-28 0.39 0.99

1q44 rs12239046 0.0103 9.7×10-21 0.38 0.99 rs12239046 0.0102 9.8×10-22 0.38 0.99

2q12 rs1558643 0.0066 5.8×10-10 0.40 0.99 rs1558643 0.0063 6.0×10-10 0.40 0.98

2q13 rs6734238 0.0106 1.7×10-23 0.41 0.99 rs6734238 0.0106 3.7×10-24 0.41 1.00

2q34 rs715 0.0092 9.1×10-14 0.32 0.92 rs715 0.0082 1.7×10-13 0.32 0.89

2q37.3 rs1476698 0.0075 4.2×10-12 0.36 1.00 rs59104589 0.0081 2.4×10-14 0.34 0.98

3q22.2 rs548288 0.0113 6.6×10-21 0.24 0.99 rs150213942 0.0117 3.1×10-21 0.23 0.95

4q31.3 rs2227401 0.0311 4.7×10-134 0.21 0.95 rs72681211 0.0313 1.3×10-142 0.20 0.99

5q31.1 rs1012793 0.0208 4.4×10-60 0.21 0.98 rs1012793 0.0207 1.0×10-58 0.20 0.98

7p21.1 rs10950690 0.0071 9.9×10-12 0.48 0.94 rs12699921 0.0071 1.3×10-12 0.47 0.98

7q14.2 rs2710804 0.0061 9.3×10-09 0.38 0.98 rs2710804 0.0057 4.3×10-08 0.38 0.99

7q36.1 rs13226190 0.008 2.2×10-10 0.21 0.99 rs13234724 0.0076 1.6×10-09 0.21 0.99

8q24.3 rs7464572 0.0066 2.4×10-09 0.40 0.98 rs11136252 0.0056 4.6×10-08 0.42 0.96

9q22.2 rs7873907 0.006 5.4×10-09 0.50 0.96 rs3138493 0.006 3.5×10-09 0.48 0.98

10q21.3 rs10761756 0.0093 5.4×10-20 0.48 1.00 rs7916868 0.0097 1.2×10-21 0.49 0.97

11p12 rs7937127 0.0083 2.3×10-10 0.18 0.99 rs7934094 0.0081 2.9×10-10 0.22 0.90

12q13.12 rs1521516 0.0072 3.0×10-11 0.36 1.00 12:51042486 0.0073 4.9×10-12 0.36 0.98

12q24.12 rs3184504 0.0066 1.1×10-10 0.49 0.97 rs4766897 0.009 3.8×10-12 0.34 0.64

14q24.1 rs194741 0.0092 8.3×10-14 0.25 0.95 rs194714 0.0086 3.7×10-13 0.25 0.97

15q15.1 rs1703755 0.0088 1.8×10-09 0.14 0.96 rs8026198 0.009 5.9×10-10 0.15 0.93

15q21.2 rs12915052 0.0069 2.4×10-10 0.31 1.00 rs11630054 0.0067 3.3×10-10 0.34 0.99

16q12.2 rs12598049 0.0074 3.0×10-11 0.32 0.99 rs6499550 0.007 8.2×10-11 0.32 0.98

16q22.2 rs11864453 0.0057 4.6×10-08 0.40 0.99 rs1035560 0.0058 1.2×10-08 0.40 0.99

17q21.2 rs7224737 0.0073 2.2×10-09 0.23 0.99 rs7224737 0.0068 5.2×10-09 0.24 1.00

17q25.1 rs10512597 0.0078 2.2×10-08 0.18 0.94 rs35489971 0.0077 1.6×10-08 0.18 0.94

20q13.12 rs1800961 0.0183 6.8×10-09 0.03 0.95 rs1800961 0.0178 1.7×10-09 0.03 0.99

21q22.2 rs4817986 0.0091 1.9×10-14 0.28 0.95 rs9808651 0.0093 5.4×10-16 0.28 0.94

22q13.33 rs6010044 0.0074 2.5×10-08 0.20 0.89 rs75347843 0.0082 4.3×10-08 0.19 0.76

Abbreviations: HapMap refers to the GWA study using imputation based on the HapMap project. 
1000G refers to the GWA study using imputation based on the 1000 Genomes Project. Variants were 
coded according to the fibrinogen increasing allele. MAF refers to minor allele frequency.
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DiSCuSSion

In our fi brinogen GWA study of 91,953 individuals, using 1000G imputation instead 
of HapMap imputation led to the identifi cation of six additional fi brinogen loci, sug-
gesting an improvement in the detection of associated signals. Nevertheless, there 
was also one locus that was only identifi ed when using HapMap imputation, and 
the advantage of 1000G imputation was attenuated when using a more stringent 
Bonferroni correction for the 1000G GWA study The inclusion of indels in the 1000G 
GWA study did not lead to the identifi cation of any new loci. Only one locus in our 

 

 

 

 

29 overlapping loci 

2 more significant in 
HapMap 

5 more significant in 
1000G 

22 equally significant 

Correlation R2 between 
imputed dosages of HapMap 
and 1000G lead variants < 0.8 

1 with R2 < 0.8  1 with R2 < 0.8 
 

1 with R2 < 0.8 

Presence of lead variant (or 
proxy) in other reference 
panel 

1 with lead variant 
present 

1 with lead variant 
present 

1 with no proxy 

Difference in significance 
between HapMap and 1000G 
(>1 order of magnitude) 

figure 5. Summary of the differences between HapMap and 1000G imputation for the 29 overlapping 
loci.

figure 4. Regional plot of 6p21.3, a non-over-
lapping locus that was more signifi cantly as-
sociated with fi brinogen in the HapMap GWA 
study, including variants from both the Hap-
Map (red) and 1000G (green) GWA studies.
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1000G GWA study was led by an indel, and it was in strong linkage disequilibrium 
with a SNP present in HapMap. 

While this is the first study of the impact of HapMap and 1000G imputation on 
genome-wide associations using the exact same individuals at the level of a large-
scale consortium, four previous studies have addressed this question on a smaller 
scale. In the Wellcome Trust Case Control Consortium, Huang et al re-analyzed GWA 
studies of 7 diseases (bipolar disorder, coronary artery disease, Crohn’s disease, 
hypertension, rheumatoid arthritis, type 1 and 2 diabetes) with 1000G imputation, 
and found two novel loci: one for type 1 diabetes and one for type 2 diabetes.24 
For each disease the sample consisted of 2000 cases and 3000 controls. A more 
conservative genome-wide significance threshold of 2.5×10-8 was used in the 1000G 
GWA studies, while the MAF threshold was the same at 1%. The second study was a 
1000G imputed GWA study of around 2000 cases of venous thrombosis and 2400 
controls.26 Using a conservative P-value threshold of 7.4×10-9, but no MAF threshold, 
Germain et al identified an uncommon variant at a novel locus that was not identi-
fied in the HapMap GWAS.26 Third, the National Cancer Institute Breast and Prostate 
Cancer Cohort Consortium found no new loci by applying 1000G imputation to their 
existing dataset of 2800 cases and 4500 controls.27,28 The conventional genome-wide 
significance threshold of 5×10-8 was used, but no MAF threshold was used. Fourthly, 
Wood et al compared HapMap and 1000G imputation for a total of 93 quantitative 
traits in 1210 individuals from the InCHIANTI study.29 Using a significance threshold 
of 5×10-8 for both the HapMap and 1000G GWA studies, they found 20 overlapping 
associations, 13 associations that were only significant using 1000G imputation, and 
1 association that was only significant using HapMap imputation. For the association 
only significant in HapMap, the P-value difference between HapMap and 1000G 
lead variants was less than 1 order of magnitude. When the authors lowered their 
significance threshold to 5×10-11 to reflect the number of tests being done in analyses 
multiple traits, 9 associations remained significant based on HapMap imputation 
and 11 associations remained significant based on 1000G imputed. 

All four of these comparison studies used an earlier 1000 genomes reference 
panel. The present study adds further to the literature as it is based on the widely 
implemented Phase 1 Version 3 of 1000G. Crucially, the large sample size allowed us 
to examine differences at many non-overlapping and overlapping loci, and improved 
the generalizability of our results, as ongoing GWA studies are often also large. 

Two further studies with different approaches also provide insight. First, Spring-
elkamp et al found a novel locus using 1000G imputation even though the sample 
size was smaller than the previous HapMap GWA study.30,31 The same genome-wide 
significance (5×10-8) and MAF (1%) thresholds were used. The lowest P-value at the lo-
cus was 1.9×10-8. Because different individuals were included in these GWA studies, 
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the difference between HapMap and 1000G may partially be explained by sampling 
variability. Second, Shin et al identified 299 SNP-metabolite associations based on 
HapMap imputation, and reexamined the associated loci using 1000G imputation 
in the same individuals.32 They found that HapMap and 1000G imputation yielded 
similar P-values and variance explained for all loci but one. For that locus, 1000G 
imputation led to a much stronger association, increasing the variance explained 
from 10% to 16%, and decreasing the P-value from 8.8×10-113 to 7.7×10-244. Although 
Shin et al did not compare loci identified using HapMap and 1000G, their results do 
support our finding that large differences in association are possible, albeit not pres-
ent at every locus. These studies, along with the present study, suggest that signals 
not previously found in HapMap GWA studies can be found in 1000G GWAS using 
the same sample size.

In this study we demonstrate that, although 1000G imputation was more effective 
at identifying associated loci overall, HapMap imputation can outperform 1000G 
imputation for specific loci. The 6p21.3 locus, corresponding to the major histo-
compatibility complex (MHC), was significant in the HapMap GWA study but not in 
the 1000G GWA study. The MHC is highly polymorphic and hosts many repetitive 
sequences, making it difficult to genotype and sequence.33-35 The HapMap reference 
panel was based largely on the genotyping of variants that were known at that time, 
whereas the 1000G reference panel is based entirely on low-coverage sequencing. 
This may explain the rather large discrepancy between HapMap and 1000G at this 
locus. 

Differences in associations when GWA studies are based on different participants 
can be explained by sampling variability, even with the same sample size. Thus, by 
using exactly the same participants in the HapMap and 1000G comparisons in the 
present project, we rule out both statistical power and sampling variability as pos-
sible explanations for differences between the HapMap and 1000G GWA studies. 
Nevertheless, some differences were not controlled for and thus remain as potential 
alternative explanations. 

First, genomic control corrections were applied to the results of each of the stud-
ies before meta-analysis, separately for the HapMap and 1000G GWA studies. As 
a result, for any given study, there could be differences between the correction 
applied to the HapMap GWA analysis and to the 1000G GWA analysis. As these 
differences do not appear to differ systematically between the HapMap and 1000G 
GWA analyses in our study, the genomic control corrections are unlikely to explain 
our results. The results from our sensitivity analysis were concordant with this in-
terpretation: when no genomic control corrections were applied there were 6 loci 
only significant in the 1000G GWA study compared to 2 loci only significant in the 
HapMap GWA study. 
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The second difference between the HapMap and 1000G GWA studies that may ex-
plain our results is that in the 1000G GWA study more studies adjusted for principal 
components. This difference reflects common practice, as population stratification 
is suspected to have a stronger influence on variants with lower MAF, and 1000G 
includes more of these.36 However, the adjustments are applied to variants across 
the spectrum of minor allele frequencies, which may have influenced our results. 
Thirdly, some studies used different software for HapMap and 1000G imputation 
(Supplemental Table 1). The imputation quality metrics used by IMPUTE and MACH 
are different, and this has traditionally been dealt with by applying different imputa-
tion quality thresholds: 0.3 for MACH and 0.4 for IMPUTE.5,37 Thus, in studies that 
used different imputation software for the HapMap and 1000G GWA studies, the 
filtering of variants can be expected to differ. There may, additionally, be real differ-
ences in imputation quality. Finally, some studies used different analysis software. 
When we restricted our analysis to only those studies that used the same covariates, 
analysis software, and imputation software for the HapMap and 1000G GWA stud-
ies, we found similar differences between the HapMap and 1000G GWA studies: 3 
loci were only significant in the 1000G GWA study, while all loci significant in the 
HapMap GWA study were also significant in the 1000G GWA study. This suggests 
that differences in imputation software, analysis software, and covariates do not fully 
explain the observed difference between the HapMap and 1000G GWA studies. 

1000G GWA studies may include more independent statistical tests than HapMap 
GWA studies.24,25 Thus, while a P-value threshold of 5×10-8, correcting for 1 million 
independent tests, maintains the type I error rate at 5% for HapMap GWA studies, 
this may not be the case for 1000G GWA studies. Using 1000G pilot data, Huang et 
al estimated that 2 million independent tests were being done, and thus suggested 
a P-value threshold of 2.5×10-8.24 In this study we used a P-value threshold of 5×10-8 
for both the HapMap and 1000G GWA studies, in accordance with the majority of 
published 1000G GWA studies.30,38-41 When we used the threshold of 2.5×10-8, the 
difference between the HapMap and 1000G GWA studies became smaller. Thus, 
while we expect 1000G imputation may lead to novel findings using the conven-
tional genome-wide significance threshold, the same thing may not be expected 
when using stricter, and perhaps more appropriate thresholds. In other words, using 
the traditional significance threshold also for 1000G may increase the power, but 
also the type 1 error rate. 

In this study we only examined variants with a MAF of greater than 1%. This restric-
tion was common practice for HapMap GWA studies, but given the improved cover-
age of rare variants in 1000G, this may not remain the case for 1000G GWAS. Differ-
ent MAF thresholds have been used in published 1000G GWAS, but many have used 
1%.24,26,27,30,31,38-42 Therefore, an advantage of 1000G not illustrated by this study may 
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be the identification of rare variants, at new loci or as secondary signals at known 
loci. The advantage of 1000G imputation will then in part depend on the importance 
and impact of rare variants in the trait being studied, as well as the distribution of 
these variants. Rare and uncommon variants are often clustered in genes with previ-
ously associated common variants, limiting the new biology accessed through their 
identification.43 This appears to be the case for fibrinogen concentration as well.17,44 

In conclusion, we show that the reference panel used in GWA studies can have a 
large impact on the statistical power for common variants, although our results do 
not support the expectation that 1000G imputation always outperforms HapMap 
imputation, as we found one locus that appeared to be better covered in HapMap. 
Using 1000G imputation did lead to more associated loci than using HapMap impu-
tation, but this advantage was attenuated when using a stricter P-value threshold for 
the 1000G GWA study. This may have broader implications: while more extensive 
reference panels have improved coverage, the penalty to the significance threshold 
for including further variants may outweigh these gains, especially if the additional 
variants are poorly or moderately imputed.
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Supplemental Table 1. Characteristics of the included studies and their participants.

Study N

Age - 
Mean 
(SD)

Male 
(%)

Fibrino-
gen-  Mean 
(SD), g/l

BMI 
(kg/m2) - 
Mean (SD)

Current 
Smoker 
(%)

Coronary 
Heart 
Disease 
(%)

Venous 
Throm-
bosis 
(%)

Type 2 
Dia-
betes 
(%)

ARIC 8801 54.2 (5.7) 46.9% 3.0 (0.6) 26.97 (4.82) 24.6% 4.9% 2.0% 8.6%

B58C 6085 45.2 (0.4) 49.7% 3.0 (0.6) 27.35 (4.85) 23.5% NA NA 1.5%

BMES 2446 66.9(9.2) 42.9% 3.6 (0.9) 25.5 (9.5) 9.6% NA NA 10.5%

CHS 3224 72.3 (5.4) 38.9% 3.2 (0.6) 26.3 (4.4) 11.4% 0.0% 4.3% 13.7%

FHS 7022 46.6 (11.5) 46.1% 3.2 (0.7) 27.0 (5.2) 18.9% 10.8% NA 4.8%

GHS I 2743 55.6 (10.9) 51.0% 3.6 (0.8) 27.20 (4.76) 18.4% 4.5% 4.2% 7.4%

GHS II 1148 55.0 (10.9) 50.0% 3.6 (0.8) 27.26 (4.90) 21.0% 4.5% 3.5% 7.9%

GOYA-Male 1447 45.6 (7.9) 100.0% 3.1 (0.8) 30.4 (6.6) 51.0% 2.6% NA 5.3%

HCS 2108 66.3 (7.5) 50.0% 3.3 (0.6) 28.78(4.9) 7.7% 10.3% NA 10.4%

InCHIANTI 1196 68.4 (15.4) 44.4% 3.5 (0.8) 27.17 (4.14) 18.8% 15.6% NA 11.2%

LBC1921 486 76.1 (0.6) 42.4% 3.6 (0.9) 26.19 (4.11) 6.6% NA NA 4.9%

LBC1936 989 69.6 (0.8) 50.8% 3.3 (0.6) 27.83 (4.42) 12.6% NA NA 7.7%

LURIC 3057 62.7 (10.6) 70.0% 4.0 (1.1) 27.46 (4.03) 23.1% 79.1% 6.1% 40.4%

NTR 3348 48.0 (14.4) 37.8% 2.8 (0.7) 25.46 (4.04) 30.0% NA NA 2.9%

PROCARDIS 3489 61.9 (7.4) 75.5% 3.9 (0.9) 28.3 (4.87) 50.3% 100.0% NA 15.2%

PROSPER-PHASE 5096 75.3 (3.3) 48.1% 3.6 (0.7) 26.82 (4.19) 26.5% 44.6% 0.0% 10.3%

RS-I-1 2430 70.5 (8.8) 36.3% 2.8 (0.7) 26.5 (3.9) 22.9% 8.4% NA 11.5%

RS-I-3 2074 71.8 (7.0) 46.0% 4.0 (0.9) 26.8 (3.9) 15.9% 10.8% NA 14.0%

RS-II 2102 64.8 (8.0) 45.5% 3.9 (0.9) 27.24 (3.98) 19.6% 6.5% NA 11.7%

SardiNIA 4543  43.2 (17.7) 43.8% 3.3 (0.7) 25.32 (4.61) 19.5% 3.3% NA 4.5%

SHIP 3841 48.8 (16.1) 48.5% 3.0 (0.7) 27.23 (4.76) 31.4% 5.1% 1.0% 8.2%

TwinsUK 1198 49.1 (12.6) 4.7% 3.0 (0.8) 26.06(4.95) 3.8% 1.2% NA 31.9%

WGHS 23080 54.2 (7.1) 0.0% 3.6 (0.8) 25.9 (5.0) 11.6% NA 2.7% 2.5%
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Supplemental Table 2. Correlation between the lead variants from the HapMap and 1000G GWA 
studies.

Locus Lead VariantHapMap Lead Variant1000G Overlapping Correlation of Imputed Dosages

1p31.3 rs4655582 rs2376015 Yes 0.97

1q21.3 rs8192284 rs61812598 Yes 1

1q42.13 rs10489615 rs10864726 No 0.95

1q44 rs12239046 rs12239046 Yes 1

2q12 rs1558643 rs1558643 Yes 0.97

2q13 rs6734238 rs6734238 Yes 1

2q34 rs715 rs715 Yes 0.91

2q37.3 rs1476698 rs59104589 Yes 0.96

3q21.1 rs16834024 rs1976714 No 0.02

3q22.2 rs548288 rs150213942 Yes 0.82

4p16.3 rs2699429 rs59950280 No 0.18

4q31.3 rs2227401 rs72681211 Yes 0.97

5q31.1 rs1012793 rs1012793 Yes 0.99

6p21.3 rs12528797 rs116134220 No 0.07

7p21.1 rs10950690 rs12699921 Yes 0.95

7p15.3 rs1029738 rs61542988 No 0.11

7q14.2 rs2710804 rs2710804 Yes 1

7q36.1 rs13226190 rs13234724 Yes 0.99

8p23.1 rs7004769 rs7012814 No 0.16

8q24.3 rs7464572 rs11136252 Yes 0.75

9q22.2 rs7873907 rs3138493 Yes 0.92

10q21.3 rs10761756 rs7916868 Yes 0.9

11p12 rs7937127 rs7934094 Yes 0.38

11q12.2 rs7935829 rs11230201 No 0.96

12q13.12 rs1521516 12:51042486 Yes 1

12q24.12 rs3184504 rs4766897 Yes 0.68

14q24.1 rs194741 rs194714 Yes 0.98

15q15.1 rs1703755 rs8026198 Yes 0.93

15q21.2 rs12915052 rs11630054 Yes 0.81

16q12.2 rs12598049 rs6499550 Yes 0.99

16q22.2 rs11864453 rs1035560 Yes 0.99

17q21.2 rs7224737 rs7224737 Yes 1

17q25.1 rs10512597 rs35489971 Yes 1

20q13.12 rs1800961 rs1800961 Yes 1

21q22.2 rs4817986 rs9808651 Yes 0.99

22q13.33 rs6010044 rs75347843 Yes 0.93
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Supplemental Figure 1. Quantile-Quantile (QQ) plots comparing the HapMap and 1000G GWA stud-
ies.
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nificant loci.
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Abstract

Background: Fibrinogen, coagulation factor VII (FVII), factor VIII (FVIII), and its carrier 
von Willebrand factor (VWF) play key roles in hemostasis. Previously identified 
common variants explain only a small fraction of the trait heritabilities and ad-
ditional variation may be explained by associations with rarer variants with larger 
effects. 

Methods: The aim of this study was to identify low-frequency (minor allele frequency 
[MAF] ≥0.01 and <0.05) and rare (MAF <0.01) variants that influence plasma 
concentrations of these 4 hemostatic factors by meta-analyzing exome chip data 
from up to 76,000 participants of 4 ancestries. 

Results: We identified 12 novel associations of low-frequency (n=2) and rare (n=10) 
variants across the fibrinogen, FVII, FVIII, and VWF traits that were independent 
of previously identified associations. Novel loci were found within previously 
reported genes and had effect sizes much larger than and independent of pre-
viously identified common variants. In addition, associations at KCNT1, HID1, 
and KATNB1 identify new candidate genes related to hemostasis for follow-up 
replication and functional genomic analysis. 

Conclusions: Newly identified low-frequency and rare-variant associations accounted 
for modest amounts of trait variance and therefore are unlikely to increase pre-
dicted trait heritability but provide new information to understanding individual 
variation in hemostasis pathways.
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Introduction

Fibrinogen, coagulation factor VII (FVII), factor VIII (FVIII) and its carrier protein 
von Willebrand factor (VWF) play key roles in hemostasis. Plasma levels of these 
hemostatic factors are associated with risk of arterial and venous thrombosis, and 
fibrinogen is also a marker of inflammation.1-6 Previous genome-wide association 
studies (GWAS) interrogated mainly common genetic variation and identified vari-
ants of modest effect across these phenotypes4, 7-14 with the largest studies identifying 
23 loci for fibrinogen,9 5 each for FVII13 and FVIII13 and 8 for VWF13. Nonetheless, 
the associated variants still explain little of the trait heritabilities.9, 12, 15 An additional 
proportion of the missing heritability may be attributed to association with rare vari-
ants, which are not captured by the conventional genome-wide marker arrays or 
imputation panels that have been used for GWAS.15 In addition, the investigation of 
rare genetic variation is important to understanding individual variation in the biol-
ogy underlying hemostasis pathways.

The aim of this study was to identify low-frequency and rare variants, analyzed 
individually or at the level of the gene, that influence plasma concentrations of fi-
brinogen, FVII, FVIII, and VWF. To this end, we meta-analyzed phenotype-genotype 
associations of low-frequency (minor allele frequency [MAF] = 0.01-0.05) and 
rare (MAF<0.01) exonic variants within 76,000 individuals of European, African, 
Hispanic, or East-Asian ancestry from 16 studies within the Cohorts for Heart and 
Aging Research in Genomic Epidemiology (CHARGE) Consortium.16 We restricted 
our analyses to variants which were predicted to alter the coding sequence of the 
gene product in order to enhance the likelihood of identifying causal variants and to 
reduce the multiple testing burden. 

Methods

Setting and participating cohorts

This study was organized within the CHARGE Consortium Hemostasis Working 
Group and included 16 cohorts of European (EUR), African (AFR), East-Asian (ASI), 
or Hispanic (HIS) ancestry. Descriptions and ancestry composition of participating 
cohorts are found in the Supplemental Information (Sections I&II).

Hemostatic factors 

Hemostasis phenotypes included plasma measures of fibrinogen, FVII, FVIII, and 
VWF. Fibrinogen (g/l) was available in all 16 studies; FVII activity (% or IU/ml*100) 
and FVII antigen (% or IU/ml*100) were available in 7 studies; FVIII activity (% or IU/
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Table 1. Study participant characteristics and phenotype assay or measure.

Cohort Ancestry N % Female
Age (yrs), 

mean
Trait mean 

(SD)
Assay/ Measure

Fibrinogen (g/l)

ARIC49
EUR 10,757 53.1 54.3 2.90 (1.21)

Clauss
AFR 3,643 61.9 53.5 3.13 (1.23)

CARDIA50
EUR 2,041 52.5 30.5 2.51 (1.23)

immunonephelometry
AFR 1,709 56.9 29.4 2.66 (1.23)

CHS51
EUR 4,034 56.2 72.8 3.13 (1.22)

Clauss
AFR 757 62.2 72.7 3.35 (1.23)

FHS52, 53 EUR 6,711 54.3 46.0 3.24 (0.68) Clauss

GeneSTAR54
EUR 1,091 51.2 41.2 3.51 (0.98)

modified Clauss
AFR 641 61.9 40.6 3.80 (1.12)

KORA S455, 56 EUR 2,687 53.1 47.9 2.60 (0.58) immunonephelometry

Korcula57 EUR 748 64.3 56.4 4.55 (1.52) Clauss

LBC192158, 59 EUR 466 57.4 79.1 3.59 (0.86) Clauss

LBC19358, 60 EUR 973 49.2 69.6 3.27 (0.63) Clauss

MESA61

EUR 2,483 52.1 62.7 3.35 (0.7)
immunonephelometry 

on the BNII 
nephelometer

AFR 1,638 53.8 62.2 3.60 (0.79)

ASI 764 50.8 62.4 3.29 (0.61)

HIS 1,431 51.5 61.0 3.59 (0.75)

PROCARDIS62 EUR 1,404 36.8 60.9 4.06 (0.96) immunonephelometric

RS-I-163-65 EUR 1,114 59.0 70.2 2.70 (1.26) Prothrombin time

RS-I-363-65 EUR 972 46.7 72.4 3.96 (0.89) Prothrombin time

SCARF66 EUR 697 17.5 53.2 3.47 (0.79) immunonephelometric

SHIP67 EUR 5,940 52.3 47.9 2.99 (0.71) Clauss

WGHS7, 68 EUR 22,411 100 54.7 3.59 (0.78)
Mass-based 

immunoturbidimetric 
assay

WHI69-71 EUR 1,204 100 69.6 3.06 (0.86) Clauss

Factor VII

ARIC
EUR 10,544 52.9 54.3 118.3(26.7)

clotting assay (% activity)
AFR 3,574 61.9 53.6 116.7 (28.4)

CARDIA
EUR 997 52.5 30.6 83.7 (21.5)

clotting assay (% activity)
AFR 637 55.6 29.2 84.2 (26.2)

CHS
EUR 4,063 56.2 72.8 125.9 (29.5)

clotting assay (% activity)
AFR 760 62.1 72.6 113.0 (26.4)

FHS EUR 2,620 55.3 53.9 100.3 (16.3) ELISA (% antigen)

RS-I EUR 670 59.0 70.6 107.5 (19.1) clotting assay (% activity)

SCARF EUR 698 17.5 53.2 139.9 (35.8) ELISA (% antigen)

WHI EUR 809 100 69.9 146.0 (52.5) clotting assay (% activity)
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Table 1. (continued)

Cohort Ancestry N % Female
Age (yrs), 

mean
Trait mean 

(SD)
Assay/ Measure

Factor VIII

ARIC
EUR 10,708 53.0 54.3 124.1 (30.6)

clotting assay (% activity)
AFR 3,618 61.7 53.5 144.8 (41.7)

CARDIA
EUR 998 52.6 30.6 89.8 (31.7)

clotting assay (% activity)
AFR 632 55.6 29.2 103.5 (38.7)

CHS
EUR 4,009 56.2 72.8 120.8 (36.7)

clotting assay (% activity)
AFR 191 63.9 72.6 138.3 (43.9)

MESA

EUR 2,483 52.1 62.7 156.9 (64.6)

clotting assay (% activity)
AFR 1,638 53.8 62.2 178.0 (74.6)

ASI 764 7.7 62.4 157.9 (57.2)

HIS 1,418 51.5 61.0 161.8 (63.4))

RS-I EUR 1,832 52.0 68.6 115.7 (46.1) clotting assay (% activity)

von Willebrand Factor

ARIC
EUR 10,736 53.1 54.3 110.7 (39.1)

ELISA (% antigen)
AFR 3,625 61.8 53.5 131.4 (51.1)

CARDIA
EUR 1,002 52.6 30.6 89.9 (36.4)

ELISA (% antigen)
AFR 636 55.7 29.2 94.3 (44.4)

FHS EUR 2,621 55.3 53.9 125.3 (45.0) ELISA (% antigen)

GeneSTAR
EUR 991 52.5 42.6 78.7 (46.1)

ELISA (% antigen)
AFR 582 62.2 42.6 76.8 (42.5)

LBC1921 EUR 150 57.3 86.6 149.7 (45.9) ELISA (% antigen)

LBC1936 EUR 706 47.9 72.5 122.6 (37.8) ELISA (% antigen)

MESA
EUR 443 54.7 62.7 135.2 (54.5)

ELISA (% antigen)
AFR 193 64.8 62.2 156.1 (64.8)

RS-I EUR 1,587 49.9 73.1 135.9 (54.1) ELISA (% antigen)

EUR=European; AFR=African; ASI = East-Asian; HIS=Hispanic; SD=standard deviation. Full cohort de-
scriptions can be found in the Supplemental Material. FVII was measured as % antigen for FHS and 
SCARF and % activity for all other studies.
ARIC = Atherosclerosis Risk in Communities Study; CARDIA = The Coronary Artery Risk Development 
in Young Adults Study; CHS = Cardiovascular Health Study; FHS = Framingham Heart Study; GeneSTAR 
= Genetic Study of Atherosclerosis Risk; KORA S4 = Kooperative Gesundheitsforschung in der Region 
Augsburg; Korcula = CROATIA-Korcula Study; LBC1921 = Lothian Birth Cohort 1921; LBC1936 = Lothian 
Birth Cohort 1936; MESA = Multi-Ethnic Study of Atherosclerosis; PROCARDIS = Precocious Coro-
nary Artery Disease Study; RS-I = Rotterdam Study; SCARF =  Stockholm Coronary Artery Risk Factors; 
SHIP = The Study of Health in Pomerania; WGHS = Women’s Genome Health Study; WHI  = Women’s 
Health Initiative.
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ml*100) was available in 5 studies; and VWF antigen (% or IU/ml*100) was available 
in 8 studies. Methods used by each study are noted in Table 1.

Genotype calling and quality control

Fourteen studies were genotyped using the HumanExome BeadChip v1.0 (Illumina, 
Inc., San Diego, CA) whereas one was genotyped using v1.1 and another using v1.2 
of the BeadChip. Variant calling and quality control procedures are described in 
the Supplemental Information (Section IIIa) and in previously published articles.17, 

18 Prior to analysis, individual studies recoded variants to additive coding using the 
minor allele derived from the CHARGE joint calling. 

Statistical analysis

Each study natural-log transformed fibrinogen measures. For untransformed FVII, 
FVIII, or VWF, participants with values 3 standard deviations above or below the 
population mean were removed prior to cohort-level analysis. Study-specific regres-
sion analyses were adjusted for sex, age, study design variables, and population 
substructure using principal components. MAF thresholds (described below) were 
defined using the ancestry-specific allele frequencies derived from the CHARGE 
joint calling.17 Variant annotation was performed centrally within CHARGE using 
dbNSFP v2.0.19, 20 All association analyses were performed using the R package 
seqMeta (http://cran.r-project.org/web/packages/seqMeta/index.html). A table 
detailing the genotyping chip and version of statistical software used by each study 
is found in Supplemental Table S1.

We investigated low-frequency and rare variants individually using standard 
single-variant association analyses. From among the functional variants on the ar-
ray (defined as missense, stop-gain, stop-loss, or splice site changes), we selected 
variants with a MAF <5% and an expected minor allele count (eMAC) of greater than 
or equal to 5 in the total meta-analysis sample for single-variant association of auto-
somal chromosomes. Since commonly occurring variation on the X chromosome 
had not previously been investigated for some of the phenotypes, no upper MAF 
threshold was used when testing for associated variants on this chromosome. The 
Y and mitochondrial chromosomes were not interrogated. Bonferroni-corrected 
P-value thresholds of statistical significance were based on the number of single-
variant tests performed and varied by ancestry: 2.5×10-7 (all cohorts - ALL), 2.6×10-7 
(EUR+AFR cohorts), 2.9×10-7 (EUR-only), 3.3×10-7 (AFR-only), 1.7×10-6 (ASI-only) and 
4.7×10-7 (HIS-only) (see Supplemental Information Section IIIb).

Analytical methods that aggregate the effect of multiple rare variants across a gene 
were used to test for association. This resulted in a P-value for a gene rather than for 
a single-variant. Both unidirectional and random effects tests were used; the former 
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is more powerful when rare variant effects within a region are in the same direction 
and the latter is more powerful when rare variants affect a phenotype in opposite 
directions or when many variants have null effects.

All gene-based tests were again restricted to include only functional single 
nucleotide variants. Random effects (Sequence Kernel Association Test [SKAT]21) and 
unidirectional22 (T5) gene tests were performed using only variants with a MAF <5%. 
The T5 burden was defined as the total number of rare alleles among variants in the 
gene with a MAF <5%.23 All genes were required to contain more than 1 variant to 
be included in the analysis and have a cumulative minor allele frequency greater 
than the frequency such that the meta-analysis sample size would have an eMAC 
of 5. A Bonferroni-corrected, gene-based P-value threshold of 1.9×10-6 was used for 
gene-based tests (0.05/26,965 genes). 

Meta-analyses of single-variant and gene-based analyses were performed using 
seqMeta v1.3. The primary analysis was to meta-analyze all ancestries together with 
a secondary set of ancestry-specific analyses performed to complement and inform 
the results of the primary analysis. All significant non-synonymous variants were re-
annotated using an updated version of dbNSFP (v.3.0).19, 20, 24, 25 

To test for independence of the new discoveries from variants previously demon-
strated to be associated with the phenotype at that locus, conditional analyses were 
performed and meta-analyzed. These analyses were undertaken by EUR and AFR 
ancestry cohorts only and in some cases, the SNPs conditioned on differed between 
ancestry groups, generally due to the conditional SNP being monomorphic in 1 
population. A description of conditional analyses undertaken is included in Supple-

mental Table S3.

Results

Single-variant and gene-based tests for all 4 hemostatic factors identified signifi-
cantly associated loci for all phenotypes. The Q-Q plots for all association analyses 
are found in Supplemental Figures S1-S3. Functional annotations for all significant 
non-synonymous single variants can be found in Supplemental Table S2.

Fibrinogen

Exome array genotyping and fibrinogen measures were available from 76,316 partici-
pants across 16 cohorts and 4 ancestry groups. 
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Table 2. Single-Variant Meta-Analysis Results for Hemostatic Factors Fibrinogen, Factor VII, Factor VIII 
and von Willebrand Factor*.

Variant AA Change Gene Ancestry N MAF BETA P-value

Fibrinogen

rs201909029
(new)

K178N
(K148N)

FGB

ALL 76,316 7.7×10-04 -0.139 3.2×10-13

EUR 65,733 8.8×10-04 -0.139 5.2×10-13

AFR 8,388 6.0×10-05 -0.163 4.3×10-01

ASI 764 0 NA NA

HIS 1,431 3.5×10-04 -0.117 5.5×10-01

rs6054
P265L

(P235L)
FGB

ALL 76,316 4.2×10-03 -0.111 1.8×10-43

EUR 65,733 4.7×10-03 -0.111 3.7×10-42

AFR 8,388 1.2×10-03 -0.104 2.6×10-02

ASI 764 1.3×10-03 -0.130 3.0×10-01

HIS 1,431 0 NA NA

rs145051028
(new)

S245F
(S219F)

FGG

ALL 76,316 1.6×10-04 -0.239 4.8×10-09

EUR 65,733 0 NA NA

AFR 8,388 1.5×10-03 -0.239 4.8×10-09

ASI 764 0 NA NA

HIS 1,431 0 NA NA

rs148685782
A108G
(A82G)

FGG

ALL 76,316 3.3×10-03 -0.238 9.2×10-152

EUR 65,733 3.8×10-03 -0.239 2.3×10-150

AFR 8,388 4.2×10-04 -0.165 3.4×10-02

ASI 764 0 NA NA

HIS 1,431 3.5×10-04 -0.347 7.7×10-02

rs10479001 A225V PDLIM4

ALL 76,316 5.5×10-02 0.013 1.3×10-08

EUR 65,733 4.5×10-02 0.018 4.3×10-11

AFR 8,388 1.4×10-01 -0.001 8.3×10-01

ASI 764 0 NA NA

HIS 1,431 5.5×10-02 0.019 2.3×10-01

rs1800961
T117I
T139I
T169I

HNF4A

ALL 76,316 2.7×10-02 -0.020 2.3×10-10

EUR 65,733 3.0×10-02 -0.020 5.5×10-10

AFR 8,388 5.9×10-03 0.012 5.5×10-01

ASI 764 1.1×10-02 -0.031 4.8×10-01

HIS 1,431 4.2×10-02 -0.038 4.0×10-02

rs151272083
(new)

R865Q
R877Q
R891Q
R910Q

KCNT1

ALL 76,316 2.2×10-03 0.007 5.3×10-01

EUR 65,733 2.4×10-03 0.017 1.3×10-01

AFR 8,388 7.2×10-04 -0.330 2.7×10-07

ASI 764 0 NA NA

HIS 1,431 0 NA NA
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Table 2. (continued)

Variant AA Change Gene Ancestry N MAF BETA P-value

rs141869748
(new)

I193T
I421T

HID1

ALL 76,316 1.6×10-04 -0.216 4.2×10-07

EUR 65,733 0 NA NA

AFR 8,388 1.3×10-03 -0.252 4.0×10-08

ASI 764 0 NA NA

HIS 1,431 1.1×10-03 0.008 9.4×10-01

Factor VII

rs150525536
(new)

R117Q
R70Q
R139Q

F7

ALL 25,372 9.5×10-04 -31.44 1.8×10-17

EUR 20,401 9.8×10-05 -13.92 2.2×10-01

AFR 4,971 4.4×10-03 -33.56 9.7×10-18

rs121964926
(new)

R342Q
R295Q
R364Q

F7

ALL 25,372 1.2×10-03 -25.02 1.3×10-14

EUR 20,401 4.2×10-04 -0.52 9.3×10-01

AFR 4,971 4.4×10-03 -38.08 2.8×10-21

rs3093248
(new)

E423K
E376K
E445K

F7

ALL 25,372 7.5×10-04 -22.00 2.8×10-07

EUR 20,401 2.5×10-05 -62.77 2.3×10-02

AFR 4,971 3.7×10-03 -20.99 1.3×10-06

Factor VIII

rs7962217 G2705R VWF

ALL 28,291 4.6×10-02 5.16 2.5×10-13

EUR 20,030 5.5×10-02 4.84 4.0×10-11

AFR 6,079 1.6×10-02 8.58 7.9×10-03

ASI 764 7.2×10-03 17.63 3.0×10-01

HIS 1,418 5.8×10-02 10.21 2.7×10-02

rs41276738
(new)

R854Q VWF

ALL 28,291 4.0×10-03 -16.89 2.2×10-13

EUR 20,030 5.3×10-03 -15.96 9.2×10-12

AFR 6,079 9.9×10-04 -49.57 3.8×10-04

ASI 764 0 NA NA

HIS 1,418 1.1×10-03 -19.47 5.5×10-01

rs141041254
(new)

E2377K STAB2

ALL 28,291 8.7×10-04 26.81 2.1×10-08

EUR 20,030 1.2×10-03 28.06 7.6×10-09

AFR 6,079 2.5×10-04 -11.70 6.6×10-01

ASI 764 0 NA NA

HIS 1,418 0 NA NA

rs1800291 D1260E F8

ALL 28,291 2.7×10-01 -1.73 8.2×10-08

EUR 20,030 1.7×10-01 -2.15 5.0×10-09

AFR 6,079 3.5×10-01 -0.54 4.5×10-01

ASI 764 4.7×10-02 7.29 1.8×10-01

HIS 1,418 2.5×10-01 0.28 8.9×10-01
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Fibrinogen: single-variant testing
Associations for 6 rare or low-frequency variants that exceeded array-wide signifi-
cance were observed within 4 genes: 2 fibrinogen structural genes, (FGB and FGG) 
and 2 other genes, PDLIM4 and HNF4A (Table 2, Supplemental Figure S4). 

Two rare variants within FGB, rs6054 (Pro235Leu, MAF=0.0042, p=1.8×10-43) and 
rs201909029 (Lys148Asn, MAF=0.00077, p=3.2×10-13) were associated with lower fi-
brinogen levels. Both variants had similar effect sizes (-0.111 and -0.139 ln(g/l)) and the 
magnitude and direction of the association was similar for both variants in all ancestry 
groups (Table 2). Fibrinogen levels were lower by 10.5% and 13.0%, respectively, per 
copy of the minor allele when other model factors are fixed (see Supplemental In-

formation [Section IIIc]). The rs6054 association has been previously reported10 but 
the rs201909029 variant association is new. Two rare variants within FGG were also 
associated with fibrinogen levels: rs148685782 (Ala82Gly, MAF=0.0033, p=9.2×10-152) 
and rs145051028 (Ser219Phe, MAF=0.00016, p=4.8×10-09). In this study, rs148685782 
had an effect size of -0.238 ln(g/l), which translates to a 21.1% lower fibrinogen level 
per copy of the minor allele. The direction and magnitude of the effect was similar 
across all ancestry groups where it was polymorphic (Table 2). The FGG Ala82Gly 
variant has previously been associated with low plasma fibrinogen levels.26-28 The 
rs145051028 variant has an effect size of -0.239 ln(g/l) or a 21.3% lower level of fi-
brinogen per copy of the minor allele and was only polymorphic in AFR-ancestry 
cohorts. This association has not been previously reported.

Table 2. (continued)

Variant AA Change Gene Ancestry N MAF BETA P-value

rs142508811
(new)

D413D
D410D

(predicted 
to alter 

splicing)

KATNB1

ALL 28,291 2.7×10-04 39.36 4.8×10-04

EUR 20,030 1.8×10-04 1.08 9.4×10-01

AFR 6,079 6.6×10-04 86.35 2.8×10-07

ASI 764 0 NA NA

HIS 1,418 0 NA NA

von Willebrand Factor

rs141041254
(new)

E2377K STAB2

ALL 23,272 8.2×10-04 33.65 2.4×10-07

EUR 18,236 9.9×10-04 35.21 1.1×10-07

AFR 5,036 2.0×10-04 -11.56 7.5×10-01

*Table reports only SNPs that were still significant after conditional analyses. AA Change = amino 
acid change of SNP; amino acid position in brackets is for the mature protein for FGB (position-30) 
and FGG (position-26) ** ALL = all ancestries (only EUR+AFR for FVII and vWF); EUR=European-on-
ly; AFR=African-only; ASI = East-Asian-only; HIS=Hispanic-only; MAF = minor allele frequency from 
CHARGE joint calling. SNPs achieving genome-wide significance threshold (p= 2.50×10-07 (ALL), 
2.88×10-07 (EUR), 3.30×10-07 (AFR), 1.70×10-06 (ASI) and 4.67×10-07 (HIS)) are bolded.
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In order to determine if the newly and previously identified associations within the 
fibrinogen gene cluster were independent of one another, 3 separate conditional 
analysis were undertaken: (1) adjustment for previously associated common variants 
in FGB (rs4220 and rs6056),10 (2) adjustment for the significant rare variants in FGG 
(rs148685782 and rs145051028 (AFR-only)) and (3) adjustment for the most sig-
nificant rare variant in FGB (rs6054) (Supplemental Table S3). Results demonstrated 
independence of all variants from one another (Table 4). In total, the rare variants 
within the fibrinogen gene cluster explained ~1.3% and ~0.12% of the trait variance in 
the EUR and AFR populations, respectively. The majority of the variance in the EUR 
population (~0.9%) was attributed to FGG rs148685782. 

The association of low-frequency variants within the PDLIM4 and HNF4A genes 
support prior reported associations. The PDLIM4 SNP was in high linkage disequilib-
rium (LD) with a previously reported IRF1 SNP rs11242111 (R2=0.85, D’=1 within 1000Ge-
nomes Map Pilot 1 v.3, CEU) on chromosome 59 and the HNF4A SNP, rs1800961, has 
been previously reported although it was just below the genome-wide significance 
threshold in that study.10 The effect size for each was 10-fold smaller than those for 
FGB and FGG.

Single variants in KCNT1 and in HID1, located in regions not previously reported 
to be associated with fibrinogen levels, reached array-wide significance in the 
exploratory AFR-only analysis of fibrinogen (Table 2, Supplemental Figure S4). 
KCNT1 rs151272083 (MAF=0.00072, p=2.7×10-07) codes for an Arg891Gln change 
(also reported as the same amino acid change at position 865, 877, or 910 due to 
transcriptional variation) and was predicted to decrease fibrinogen by 0.330 ln(g/l) 
or approximately 28.1% per copy of the minor allele in the AFR population. This SNP 
was also polymorphic in EUR populations but did not reach statistical significance 
and the estimated effect was 20-fold smaller (β=0.017, p=0.13). HID1 rs141869748 
(Ile421Thr / Ille193Thr, MAF=0.0013, p=4.0×10-08) was associated with 0.252 ln(g/l) 
lower fibrinogen (22.3% decrease per copy of the minor allele) in the AFR popula-
tion. This SNP was monomorphic in the EUR and ASI populations and its estimated 
effect in the HIS population, although small, was not in the same direction despite a 
similar MAF (MAF=0.0011, β=0.008, p=0.94).

When we further explored these characteristics of the novel associations in the 
AFR population we found no evidence for heterogeneity across studies (pHET=0.07 
(rs151272083) and 0.91 (rs141869748), Supplemental Figure S5) and we confirmed 
that carriers of the variant allele in AFR cohorts had lower mean plasma fibrinogen 
levels than non-carriers (Supplemental Table S5). The variants explained approxi-
mately 0.7% (rs151272083) and 0.4% (rs141869748) of the trait variance.
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Table 3. Gene-Based Test Meta-Analysis Results for Hemostatic Factors Fibrinogen, Factor VII, Factor 
VIII and von Willebrand Factor.

Gene Ancestry N

P-value

SKAT5 T5

Fibrinogen

FGB

ALL 76,316 1.25×10-45 5.59×10-32

EUR 65,733 2.03×10-44 1.16×10-36

AFR 8,388 4.50×10-01 5.60×10-01

ASI 764 3.00×10-01 2.98×10-01

HIS 1,431 9.37×10-01 9.39×10-01

FGG

ALL 76,316 6.90×10-99 7.25×10-31

EUR 65,733 2.49×10-111 1.35×10-61

AFR 8,388 2.82×10-09 3.18×10-04

ASI 764 NA NA

HIS 1,431 5.65×10-01 8.18×10-01

Factor VII

F7

ALL 25,372 6.24×10-35 2.36×10-37

EUR 20,401 6.71×10-05 8.21×10-07

AFR 4,971 1.83×10-35 3.03×10-32

Factor VIII

ABO

ALL 28,291 5.10×10-18 5.71×10-30

EUR 20,030 1.90×10-13 1.61×10-17

AFR 6,079 1.91×10-03 3.44×10-04

ASI 764 8.37×10-01 9.56×10-01

HIS 1,418 3.48×10-01 2.89×10-02

VWF

ALL 28,291 5.21×10-21 1.61×10-06

EUR 20,030 2.20×10-07 1.47×10-04

AFR 6,079 8.13×10-03 4.09×10-01

ASI 764 1.41×10-01 8.01×10-01

HIS 1,418 2.27×10-01 4.07×10-01

STAB2

ALL 28,291 3.49×10-07 2.56×10-03

EUR 20,030 6.49×10-07 5.83×10-03

AFR 6,079 1.44×10-01 8.23×10-02

ASI 764 1.78×10-01 9.55×10-02

HIS 1,418 9.13×10-01 3.09×10-01

von Willebrand Factor

ABO

ALL 23,272 4.07×10-19 3.69×10-29

EUR 18,236 2.84×10-13 4.17×10-18

AFR 5,036 2.89×10-03 3.01×10-04

STAB2

ALL 23,272 2.99×10-07 8.07×10-03

EUR 18,236 1.53×10-06 1.66×10-01

AFR 5,036 7.24×10-04 6.46×10-02

Genes achieving genome-wide significance (p<1.85×10-06) are bolded. N=number of participants 
included in analysis; ALL = all ancestries (only EUR+AFR for FVII and vWF); EUR=European-only; 
AFR=African-only; ASI = East-Asian-only; HIS=Hispanic-only. 



77

Exome array study of hemostatic factors

Fibrinogen: gene-based testing 
SKAT and T5 tests yielded gene-level associations with all 4 genes described above: 
FGB, FGG, PDLIM4, and HNF4A (Table 3). Gene-based testing did not identify other 
genes contributing to plasma-level variation in fibrinogen. 

Factor VII

Exome array genotyping and coagulation FVII measures were available from 25,372 
participants across 7 studies comprised of EUR and AFR participants. 

FVII: single-variant testing
Five exome-wide significant coding rare-variant associations were observed in F7 as 
well as nearby genes MCF2L and PROZ. When conditioning on a common, previ-
ously-reported coding variant rs6046 in F7,13 3 previously unreported rare variants 
within F7 remained exome-wide significant whereas the variants in MCF2L and PROZ 
were no longer significant (Table 4). The minor alleles of F7 variants rs150525536 
(Arg117Gln, MAF=0.0010, pcond= 1.0×10-22), rs121964926 (Arg342Gln, MAF=0.0015, 
pcond= 1.5×10-14), and rs3093248 (Glu423Lys, MAF=0.00085, pcond = 1.4×10-07) were all 
associated with significantly lower plasma FVII levels (Table 2, Supplemental Figure 

S4). The three variants explained ~0.06% of the trait variance in EUR participants and 
4.5% of the trait variance in AFR participants. For all identified variants, the MAF was 
lower in EUR than in AFR population but the direction of effect was the same even if 
the magnitude varied (Table 2). Sensitivity analyses that removed the 2 studies with 
FVII antigen rather than activity measured did not impact the findings.

FVII: gene-based testing 
SKAT and T5 tests yielded gene-level associations with F7 (Table 3). No other gene 
was associated with plasma levels of FVII. 

Factor VIII and von Willebrand factor

As reported by our prior GWAS, association results for plasma levels of FVIII and 
VWF were similar so will be presented together.13 FVIII measures were available from 
28,291 participants from 5 cohorts across all ancestry groups while VWF was avail-
able in 23,272 EUR and AFR participants from 8 cohorts. 

FVIII and VWF: single-variant testing
Genome-wide significant rare and low-frequency variants are presented in Table 2 
and cluster plots for the associated SNPs are found in Supplemental Figure S4. Five 
novel low-frequency and rare variant associations were found for FVIII and VWF 
levels, most within loci with previous FVIII/VWF associations.13 
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Low-frequency variant rs7962217 (Gly2705Arg, MAF=0.046, p = 2.5×10-13) and 
rare variant rs41276738 (Arg854Gln, MAF=0.0040, p = 2.2×10-13) in VWF were signifi-
cantly associated with lower plasma levels of FVIII but not VWF (p = 0.96, p = 0.03, 
respectively). Only the association of rs7962217 has been reported previously29 and 
conditioning on the most significant common VWF variants associated with FVIII 
levels (rs1063856 and rs6264363513) did not materially alter these results (Table 4). 
Ancestry-specific analyses yielded effects with the same direction and similar magni-
tudes although the MAF varied by up to 2 orders of magnitude (Table 2).

A single rare variant in STAB2, rs141041254 (Glu2377Lys, MAF=0.00087), was sig-
nificantly associated with FVIII (p=2.1×10-08) and VWF levels (p=2.4×10-07) and the new 
signal remained unchanged when adjusting for rs2271637, the most highly associated 
STAB2 common-variant on the array. In the 2 ancestries in which the variant was 
polymorphic (AFR and EUR), the direction and the magnitude of the effect diverged 
(Table 2). This association has not been reported previously.

For FVIII and VWF levels, 11 significant single-variant associations were observed 
with rare or low-frequency variants within ABO and surrounding genes on chromo-
some 9. However, after conditioning on common variants tagging the major ABO 
blood types (A1, A2, B, & O), none of the 11 associations identified in this region 
remained. A description of these conditional analyses is presented in the Supple-

mental Information (Section IIId) and Supplemental Table S4. 
In exploratory analyses and for the FVIII phenotype only, there was a significant 

association with a common variant on the X-chromosome in F8, the gene encoding 
FVIII. This coding variant, rs1800291 (Asp1260Glu, MAF=0.27, p=8.2×10-08) had a MAF 
and effect direction that varied across ancestry groups (Table 2). 

For the FVIII phenotype only, a rare variant in KATNB1, a gene not previously as-
sociated with FVIII levels, achieved array-wide significance in the AFR population. 
This variant, rs142508811, was rare in both EUR and AFR populations and monomor-
phic in ASI and HIS; the estimated effect size was 80-fold larger in AFR than EUR 
populations. Across the studies with AFR populations, there was no evidence of 
heterogeneity (pHET=0.74) and a forest plot for these associations are presented in 
Supplemental Figure S5. Levels of FVIII in carriers of the variant allele had a higher 
mean FVIII than non-carriers (Supplemental Table S5).

For the FVIII phenotype, the 5 variants explained approximately 0.9% of the 
phenotype variation in both EUR and AFR populations. For the VWF phenotype, the 
STAB2 variant explained 0.2% and 0% in EUR and AFR populations, respectively.

FVIII and VWF: gene-based testing 
For FVIII levels, ABO, VWF, and STAB2 yielded gene-wide significant associations with 
SKAT testing while ABO and VWF were significant with T5 testing (Table 3). For VWF 
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Table 4. Single-Variant Test Meta-Analysis Results for Conditional Analyses of Hemostatic Factors Fi-
brinogen, Factor VII, Factor VIII and von Willebrand Factor.

Variant (Gene) Ancestry N

P-value

UNCOND COND1 COND2 COND3

Fibrinogen

rs201909029
(FGB)

ALL 46,841 1.97×10-10 1.35×10-09 2.27×10-10 3.44×10-10

EUR 40,091 2.69×10-10 1.83×10-09 3.10×10-10 4.68×10-10

AFR 6,750 4.25×10-01 4.24×10-01 4.21×10-01 4.25×10-01

rs6054
(FGB)

ALL 46,841 1.00×10-41 6.72×10-39 2.67×10-42

EUR 40,091 4.86×10-41 3.40×10-38 5.46×10-42

AFR 6,750 7.66×10-02 7.25×10-02 1.97×10-01

rs145051028
(FGG)

ALL 46,841 2.93×10-06 2.67×10-06 2.90×10-06

EUR 40,091 NA NA NA NA

AFR 6,750 2.93×10-06 2.67×10-06 2.90×10-06

rs148685782
(FGG)

ALL 46,841 3.24×10-144 6.52×10-137 2.49×10-143

EUR 40,091 1.03×10-143 2.16×10-136 8.02×10-143

AFR 6,750 9.46×10-02 9.52×10-02 9.43×10-02

Factor VII

rs150525536 (F7)

ALL 20,549 8.29×10-20 1.02×10-22

EUR 16,338 2.23×10-01 1.20×10-01

AFR 4,211 3.45×10-20 7.56×10-23

rs121964926 (F7)

ALL 20,549 5.71×10-14 1.49×10-14

EUR 16,338 9.25×10-01 5.80×10-01

AFR 4,211 1.75×10-20 1.95×10-20

rs3093248
(F7)

ALL 20,549 2.54×10-06 1.35×10-07

EUR 16,338 NA NA

AFR 4,211 2.54×10-06 1.35×10-07

Factor VIII

rs7962217
(VWF)

ALL 25,477 6.60×10-11 1.64×10-09

EUR 20,030 8.69×10-10 1.39×10-08

AFR 5,447 1.18×10-02 2.35×10-02

rs41276738 (VWF)

ALL 25,477 1.56×10-11 9.85×10-14

EUR 20,030 1.52×10-10 1.41×10-12

AFR 5,447 5.96×10-03 3.47×10-03

rs141041254 (STAB2)

ALL 25,477 7.37×10-09 4.11×10-09

EUR 20,030 4.03×10-09 2.22×10-09

AFR 5,447 9.17×10-01 9.20×10-01

von Willebrand Factor

rs141041254 (STAB2)

ALL 22,636 6.82×10-08 3.29×10-08

EUR 18,236 2.85×10-08 1.34×10-08

AFR 4,400 7.46×10-01 7.49×10-01

SNPs achieving genome-wide significance threshold (p= 2.57×10-07 (ALL), 2.88×10-07 (EUR), 3.30×10-07 
(AFR)) are bolded. N*=number of participants included in analysis, only EUR and AFR cohorts were 
asked to run conditional analyses and not all cohorts participated; ** UNCOND = unadjusted 
analyses; description of conditional analyses are found in Supplemental Table S3. ALL = EUR+AFR; 
EUR=European-only; AFR=African-only. SNPs where results are shaded grey were conditioned on for 
that analysis.
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levels, ABO and STAB2 yielded gene-wide significant associations with SKAT testing 
while ABO was significant with T5 testing; VWF gene did not achieve significance for 
VWF. No new associations were identified through gene-based testing. 

Discussion

We identified 12 novel associations of low-frequency (n=2) and rare (n=10) variants 
across the fibrinogen, FVII, FVIII, and VWF traits that were independent of previously 
identified associations. Nine of the variants were within genes previously established 
as associated with the trait; findings for associations in 3 new candidate loci were 
detected in those of AFR ancestry, possibly due to monomorphic or much lower fre-
quency characteristics of these variants in all other ancestries. These newly identified 
associations accounted for modest amounts of the variance explained and suggest 
that at most a small proportion of the missing heritability can be attributable to them. 
The gene-based tests did not reveal new loci.

Associations of rare variants with fibrinogen levels were found in gene regions 
previously associated with fibrinogen by common variant GWAS. The association 
of FGB rare variant rs6054 with lower fibrinogen has been previously reported.10 
While the association of FGB rs201909029 is a novel finding in this context, it has 
been reported in mild hypofibrinogenaemia cases26 in clinical databases (MERIVALE 
II)30 although it has not been reported to cause haemorrhage or thrombosis.30 
The rare FGG variant rs148685782 was associated with hypofibrinogenaemia and 
haemorrhage26-28 in multiple affected individuals. FGG rs145051028, which was as-
sociated with fibrinogen levels in AFR cohorts only, has not been reported in clinical 
databases or population studies. This may be due to the low MAF but also a lack of 
studies including AFR participants. Conditional analyses showed that the common 
and rare variant associations across the fibrinogen gene cluster were independent, 
an observation supported by their low R2 for the pairwise LD. Within the fibrinogen 
gene cluster, the 4 significant FGB and FGG rare variants explained 2 to 4-fold more 
trait variance than the common FGB rs4220 variant,7, 9, 10, 14, 31 which had an effect size 
of 0.029 ln(g/l), or a 2.9% higher levels of fibrinogen per copy of the minor allele, 
in this study.

In exploratory ancestry-stratified analyses, the associations of KCNT1 and HID1 with 
fibrinogen in AFR participants were the only findings that identify new candidate loci 
influencing fibrinogen regulation. These findings can only be considered hypothesis 
generating and require replication. 

We identified 3 rare coding variants in the FVII protein structural gene (F7) as-
sociated with plasma levels of FVII, none of which were previously reported in 



81

Exome array study of hemostatic factors

the epidemiologic literature. rs150525536 was rare in the AFR population and had 
a 10-fold lower frequency in the EUR population. A previous case-report of this 
variant was found in a male, EUR ancestry homozygote, with severe FVII deficiency 
who also carried another F7 mutation (Arg212Gln).32 Both mutations were thought 
to contribute to the phenotype. The mutation reported here is found in the first 
epidermal growth factor-like domain and is required for binding to tissue factor, its 
cofactor. It causes reduced binding to tissue factor and reduced clotting ability in a 
concentration-dependent manner as well as slower activation.32 Variant rs121964926 
was also more common among the AFR population than in the EUR population. It 
has been observed clinically in both asymptomatic and symptomatic individuals 
with FVII activity <5% from Germany and France as well as patients with reduced 
FVII activity from Costa Rica, Venezuela, and the USA.33 Nothing has been reported 
regarding clinical consequences of the rs3093248 variant. 

The findings for the VWF trait consisted of a subset of the FVIII results. None of 
the associations between variants within the ABO gene region and FVIII/VWF were 
independent of established ABO blood group alleles. Two rare variants in VWF were 
associated with plasma FVIII levels, rs7962217 and rs41276738. rs7962217 was associ-
ated with higher FVIII levels whereas rs41276738 was associated with lower levels 
and had a similar effect size as that of the strongest genetic predictor of FVIII levels, 
the O-deletion tagging SNP (rs657152). rs41276738 has been reported in patients 
with von Willebrand disease type 134, 35 and type 2N.36-43 but the association with VWF 
levels did not reach exome-wide significance, although its direction was consistent 
with the direction of effects on FVIII. The STAB2 variant rs141041254 was associated 
with higher plasma levels of both FVIII and VWF. The effect size was over 10-fold 
larger than that reported for the more common STAB2 variant rs2271637 (βFVIII=1.95%, 
βVWF=2.47%). A common F8 coding variant rs1800291 was associated with a much 
smaller effect on FVIII compared with the ABO O-deletion variant. It has been re-
ported previously29, 44, 45 and in the EAHAD Coagulation Factor Variants Database is 
annotated as unlikely to be pathogenic. The KATNB1 rs142508811 variant and FVIII 
association was restricted to the AFR population, although MAF and direction of 
effect was similar across the 2 polymorphic populations.

Inferring causality of uncommon and rare variants with a phenotypic expression 
is challenging and requires strong statistical evidence combined with experimental 
data.46 Inferring clinical implications from the causal variants requires additional 
evidence47 not available in our approach. In this article, we identified rare variants 
associated with higher or lower phenotype levels in 4 hemostasis measures. Some 
of the variants have been found in patients with diseases related to blood clotting 
and suggest that these genes and their uncommon and rare genetic variation may 
play a role in a clinical phenotype.26-28, 32-43 The distribution of the phenotypes within 
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our research populations were within the extremes of a clinically important range 
(range = 0.80-11.40 g/l (fibrinogen); 26-441% activity & 2-297% antigen (FVII); 14-
500% activity (FVIII); 2-374% antigen (VWF)). Further, the magnitude of difference in 
the phenotype associated with the variant was mostly modest, although some were 
larger and were associated with a change equivalent to half the size of the estimated 
population mean for the phenotype of interest. Therefore, the magnitude of any 
clinically relevant effects of these variants would be expected to be small to modest. 
The findings from our study suggest that the contribution of the uncommon and rare 
variants to complex clinical phenotypes, such as arterial or venous thrombosis or 
hemorrhagic stroke, should be evaluated in large populations. This article identifies 
several variants which may be good potential candidates.

We decided a priori to use all the phenotype-genotype association data for discov-
ery in order to reduce false negative findings48 but this approach provided us with 
no replication setting. Although these candidate variants are now well characterized, 
the rare allele frequencies will create challenges for replication in the absence of 
additional large phenotyped populations. However, our findings provide strong 
rationale for further functional genomic follow-up and some of our observations 
confirm associations for several rare variants that have been reported in patients with 
the corresponding congenital clotting factor deficiencies. This investigation of low-
frequency and rare variants on the 4 phenotypes was limited to the variants included 
on the BeadChip. Differing sample sizes of the meta-analysis between phenotypes 
likely affected our power to detect associations, but this may also be influenced 
by biological differences. Further, we did not have the statistical power to test for 
differences in associations across the 4 ancestries. While not an aim of our study, a 
subsequent effort with this objective would be worthwhile to better understand the 
genetic architecture of the phenotypes. Lastly while we enriched our variant popula-
tion with those predicted to be causal, we cannot attribute causality to the variants 
with novel associations. 

The quality of rare variant genotype calling was maximized by the joint clustering 
performed within CHARGE on thousands of samples.17 By incorporating individuals 
of non-European ancestry in the primary analysis, we increased our power to detect 
association where variants may be more frequent or genetic diversity greater in one 
ancestry group than another. It also allowed us to broadly look at ancestry-specific 
gene and rare-variant associations but was vastly underpowered to draw any strong 
conclusions. 

In meta-analyses of 4 hemostatic factors and functionally enriched exonic variants, 
novel associations of low-frequency and rare variants were identified in 16 studies 
that included 4 ancestries. Novel variant-associations were found within previously 
reported genes and had effect sizes that were often independent of and much larger 
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than previously reported common variants. In addition, rare variant associations at 
KCNT1, HID1, and KATNB1 identify new candidate genes related to hemostasis for 
follow-up replication and functional genomic analysis.

Supplement available online at: 
http://www.bloodjournal.org/content/126/11/e19
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Abstract

Background: Circulating plasma hemostatic factors, such as fibrinogen, coagulation 
factors VII and VIII, and von Willebrand factor (VWF), are heritable intermediate 
phenotypes associated with the risk of clinical thrombotic events. 

Methods: To identify rare and low-frequency variants associated with these factors, 
we conducted whole exome sequencing in 10,860 individuals of European an-
cestry (EA) and 3,529 African Americans (AA) from the Cohorts for Heart and Ag-
ing Research in Genomic Epidemiology (CHARGE) consortium and the National 
Heart, Lung, and Blood Institute Exome Sequencing Project (ESP). 

Results: We identified single nucleotide variants with genome-wide significant as-
sociations for fibrinogen (FGG, p=2×10-28), factor VII (F7, p=2×10-261), factor VIII 
(ABO, p=4×10-94), and VWF (ABO, p=9×10-115). Gene-based tests demonstrated 
significant associations with rare variation in FGG (with fibrinogen, p=9×10-13; two 
novel variants), F7 (with factor VII, p=1×10-72; six novel variants), and VWF (with 
factor VIII and/or VWF; p=3×10-14; two novel variants). These ten novel rare vari-
ant associations were independent of the known common variants in the same 
genes and tended to have much larger effect sizes. 

Conclusions: These efforts represent the largest integration of whole exome se-
quence data from two national projects to identify genetic variation associated 
with plasma hemostatic factors.
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Introduction

Fibrinogen, factor VII (FVII), factor VIII (FVIII) and von Willebrand factor (VWF) are 
circulating plasma hemostatic factors that have been associated with the develop-
ment of venous thrombosis or athero-thrombotic cardiovascular disease in human 
populations.1,2 Estimates of heritability range from 0.28 to 0.44 for fibrinogen,3-5 0.33 
to 0.63 for FVII,3-5 0.29 to 0.61 for FVIII,3-5 and 0.32 to 0.75 for VWF.4,5 Character-
ization of common and low-frequency variation influencing inter-individual and 
inter-population differences in circulating fibrinogen, FVII, FVIII, and VWF may lead 
to improved understanding of the role of hemostasis in inflammation and athero-
thrombotic risk, and potentially reveal novel biologic pathways influencing these 
hemostatic factors.

Recent genome-wide association studies (GWAS) have demonstrated that com-
mon polymorphisms with minor allele frequencies (MAF) greater than 0.05 contrib-
ute to the heritability of all of these traits6-11 and that the variants underlying variation 
in FVIII and VWF heavily overlap.7 However, the common polymorphisms identified 
to-date explain only a small proportion of the heritability,7,12 and the amount of 
variation that they explain is modest: 12.8% for VWF, 7.7% for FVII, 10.0% for FVIII and 
<2.0% for fibrinogen.6,7 This suggests that additional loci or variation within known 
genes may account for inter-individual variability in these hemostatic factors.

The aim of this study was to characterize rare and low-frequency variants as-
sociated with plasma levels of fibrinogen, FVII, FVIII, and VWF by analyzing whole 
exome sequence data in individuals of European and African ancestry from two 
large, coordinated exome sequencing projects.

Methods

Study subjects and hemostatic factor measurements

Exome sequence data for individuals of European ancestry (EA) and African ancestry 
(AA) came from the Cohorts for Heart and Aging Research in Genomic Epidemiol-
ogy (CHARGE) Consortium13 and from the National Heart, Lung, and Blood Insti-
tute Exome Sequencing Project (ESP). Individuals from CHARGE came from four 
population-based cohorts: the Atherosclerosis Risk in Communities Study (ARIC), 
the Cardiovascular Health Study (CHS), the Framingham Heart Study (FHS), and the 
Rotterdam Study (RS). Participants in ESP were sampled from six population-based 
cohorts – ARIC, CHS, FHS, Coronary Artery Risk Development In Young Adults (CAR-
DIA), the Multi-Ethnic Study of Atherosclerosis (MESA), and the Women’s Health 
Initiative (WHI) – and do not overlap the CHARGE participants.
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Detailed descriptions of each of the seven cohorts and the techniques used to 
measure hemostatic factor levels are provided in previous publications.14-26 Fibrino-
gen was available in all seven cohorts, FVII activity in six, and FVIII activity or VWF 
antigen in five. Plasma levels of fibrinogen were measured in g/L, and FVII, FVIII, and 
VWF were measured in international units (IU/dL, which are sometimes denoted as 
a percentage). All participants provided written informed consent as approved by 
local human-subjects committees. 

Exome sequencing and variant calling 

DNA from ARIC, CHS and FHS participants from CHARGE were all prepared using 
the HGSC VCRome 2.1 design27 (42Mb, NimbleGen), sequenced, and called to-
gether. DNA from RS participants were prepared using Roche NimbleGen SeqCap 
v2 (44Mb), and DNA from ESP participants were prepared using either Roche Nim-
blegen SeqCap EZ or Agilent SureSelect Human All Exon 50Mb. All samples were 
paired end sequenced (2×100bp for the CHARGE cohorts and 2×76bp for ESP) using 
Illumina GAII or HiSeq instruments. After taking into account available hemostatic 
factor measures, there were 8,859 EA and 2,664 AA from CHARGE and 2,001 EA and 
865 AA from ESP. Analyses were conducted using a total of 14,389 unique individuals 
(10,860 EA and 3,529 AA) across CHARGE and ESP.

Annotation of whole exome sequence variants 

To facilitate meta-analysis between CHARGE and ESP, we created a combined vari-
ant annotation file including all quality-controlled variant sites observed in CHARGE 
or ESP. Variants were annotated using ANNOVAR28 and dbNSFP v2.0 (https://sites.
google.com/site/jpopgen/dbNSFP) according to the reference genome GRCh37 
and National Center for Biotechnology Information RefSeq. The combined variant 
information file contained 6,605,975 unique sites, including the 2,706,509 sites that 
were polymorphic in the samples with hemostatic factors.

Association analyses

Samples with extreme values for hemostatic factors (>3 standard deviations from 
the mean) were excluded from analyses to prevent spurious associations with rare 
variants. Final sample sizes for each of the four traits are summarized in Table 1. All 
four traits were natural-log (ln) transformed, and the distributions for all studies was 
approximately normal following this transformation. Cohort-level analyses were 
carried out using the seqMeta R package (http://cran.r-project.org/web/packages/
seqMeta/). Data from the CHARGE cohorts (ARIC, CHS, FHS, and RS) were each ana-
lyzed separately, while the five cohorts that make up ESP were included in a single 
pooled analysis. Fixed effect inverse-variance weighted meta-analyses of single 
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variant and gene-based tests were conducted using seqMeta for ancestry-specific 
results as well as trans-ethnic analyses.

Single variant testing was done for individual variants where the minor allele count 
(MAC) was at least 40 across cohorts (MAC=40 translates into MAF>0.0014 for this 
meta-analysis). This was an a priori determined threshold that was designed to re-
duce the chance for false positive associations caused by extreme phenotypic values 
as well as to reduce the number of tests performed, thereby increasing power to 
detect true associations. Within each meta-analysis group (trans-ethnic, EA, AA) we 
tested for single variant association with hemostatic factor levels by linear regression 
with an additive genetic model adjusting for age, sex, and race-specific principal 
components (PCs). The trans-ethnic analysis was the primary approach and an as-
sociation was considered to be study-wide significant at p<1.9×10-7 for single variants 
given a Bonferroni correction for testing as many as 270,221 single variant sites with 
MAC≥40. Conditional analyses were conducted to establish statistical indepen-
dence among identified variants using a Bonferroni correction for the number of 
variants in each gene region (p<0.05 / # of polymorphic variants tested). Since the 
goal of conditional analyses is to establish allelic heterogeneity in genes known to be 
associated with the trait, the MAC requirement was dropped to >5 for all conditional 
analyses.

Table 1. Number of samples for each study with whole exome sequencing data listed by hemostatic 
factor

Study Race Fibrinogen FVII FVIII vWF Maximum

Atherosclerosis Risk in Communities 
Study (ARIC)

EA 5,652 5,527 5,658 5,682 5,682

Cardiovascular Health Study (CHS) EA 737 742 734 - 742

Framingham Heart Study (FHS) EA 741 667 - 667 741

Rotterdam Study (RS) EA 987 263 906a 788a 906+788a

NHLBI Exome Sequencing Project (ESP)b EA 2,001 1,204 1,282 1,181 2,001

EA Subtotal: 10,118 8,403 8,580 8,318 10,860

Atherosclerosis Risk in Communities 
Study (ARIC)

AA 2,655 2,602 2,659 2,664 2,664

NHLBI Exome Sequencing Project (ESP)b AA 865 644 598 439 865

AA Subtotal: 3,520 3,246 3,257 3,103 3,529

Total: EA+AA 13,638 11,649 11,837 11,421 14,389

a These subsets of individuals are mutually exclusive 
b ESP consists of non-overlapping samples from ARIC, CHS, FHS, Coronary Artery Risk Development 
In Young Adults (CARDIA), the Multi-Ethnic Study of Atherosclerosis (MESA), and the Women’s Health 
Initiative (WHI)
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We performed gene-based tests that included only rare and low-frequency vari-
ants (MAF<0.05) annotated as stop-gain, stop-loss, splicing, missense, or small inser-
tion or deletion sites (indels). Using the seqMeta package, two gene-level tests were 
performed. The first was a “T5” test where all variants passing the above mentioned 
filters were summed together to generate a gene burden score.29,30 The second test 
was the Sequence Kernel Association Test (SKAT),31 which analyzes the same variants 
as the T5 test, but has greater power when effects are in both directions and up-
weights the contribution of rarer variants. All gene-level tests were adjusted for the 
same covariates as the single variant test and required the gene to have a cumulative 
minor allele count of at least 40, similar to the single variant tests. The trans-ethnic 
analysis was the primary approach, and an association was considered to be signifi-
cant at p<1.5×10-6, which is the Bonferroni-corrected significance threshold for two 
gene-based tests and the 16,848 qualifying genes (i.e., MAC>40).

Results 

Participant characteristics

Characteristics of the participating cohorts are summarized in Supplemental Table 1. 
Taking into account sample size, the mean age was 58.2±6.2 years and 56.8% were 
female. The means (standard deviations) for the hemostatic factors were: 3.1 (0.7) 
g/L for fibrinogen, 116 (27) IU/dL for FVII, 129 (38) IU/dL for FVIII, and 118 (46) IU/dL 
for VWF.

Single variant associations with fibrinogen

In single variant analyses, we did not observe significant inflation or deflation of the 
meta-analysis P-values (0.96≤lambdas≤1.06), indicating that there was no serious 
overcorrection or confounding by any covariate, population substructure, or lab 
effects. Table 2 summarizes the significant loci in the trans-ethnic meta-analysis and 
lists the index variant (the variant with the smallest P-value). 

Single variant associations with fibrinogen

There were two loci significantly associated with fibrinogen levels, one within the 
fibrinogen gene cluster (FGA, FGB, and FGG) and the other at IRF1 (Table 2). There 
were five study-wide significant variants within the fibrinogen gene cluster (Ala82Gly 
in FGG; Tyr345Tyr, Arg448Lys, and Ser159Ser in FGB; and Thr312Ala in FGA; variants 
in the gene cluster are annotated using the sequence of the mature, circulating 
protein). The three FGB variants were all in high linkage disequilibrium with one 
another (R2=0.99), but all other combinations were not (R2≤0.01). A rare variant in 
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FGG, Ala82Gly (EA MAF=0.0036; AA MAF=0.0006; EA+AA p=2.4×10-28), was associ-
ated with -0.70 g/L lower levels, on average, for each copy of the minor allele, which 
is more than one standard deviation from the trait mean. A known common variant 
within IRF1 (EA+AA p=4.2×10-9) also reached genome-wide significance (-0.06 g/L 
per allele). The index variants (the marker with the smallest P-value) for IRF1 and each 
of the genes in the fibrinogen cluster demonstrated at least a trend (p<0.05 in the 
same direction of effect) in both races.

Conditional analyses involved the 5 variants identified at the fibrinogen gene 
cluster that met our study-wide significance threshold (Ala82Gly, Tyr345Tyr, Ar-
g448Lys, Ser159Ser, and Thr312Ala). Additionally, a sub-threshold rare variant in 
FGB, Pro176Leu (rs6054; EA MAF=0.004; AA MAF=0.0009; EA+AA p=4.6×10-6) was 
also included because it was shown to be significantly associated with fibrinogen 
in a previous study.12 When the two rare variants (Ala82Gly and Pro235Leu) were 
included as covariates in the analysis model, the common variants in FGB and FGA 
maintained their level of significance (Tyr345Tyr p<2.1×10-10, Thr312Ala p<2.4×10-9). 
Similarly, when the common variants in FGB were included as covariates, the rare 
variants maintained a similar level of significance (Ala82Gly p=9.3×10-26; Pro235Leu 
p=1.2×10-5), indicating that the effects are independent. The common Thr312Ala vari-
ant in FGA represents a third independent effect, as it remained significant when 
conditioning on either the common FGB variants or the rare variants. No additional 
variation was significantly associated at the IRF1 locus.

Single variant associations with FVII

There were five loci significantly associated with FVII levels, encompassing known 
genes GCKR, ADH4, MS4A6A, PROCR, and F7. All of the index variants in these re-
gions were common. The variant at the F7 locus had the largest effect, where the 
index variant, Arg413Gln, decreased FVII values by an average of 17 IU/dL (0.68 stan-
dard deviation units) for each copy of the minor allele (EA MAF=0.11; AA MAF=0.12; 
EA+AA p=1.8×10-261). In addition, there were six rare (MAF<1%) missense variants in F7 
significantly associated with FVII levels. All variants demonstrated significant associa-
tion within EAs. In AAs, suggestive association in the same direction was observed 
for variants in ADH4, PROCR, and F7 (p<0.003), but not for variants in GCKR and 
MS4A6A (p>0.20). See Table 2 for full results.

Conditional analyses were conducted at the F7 locus in order to better understand 
the contribution of common and rare variation. When the Arg413Gln index variant 
in F7 was included as a covariate in the model, signals for two additional common 
variants in strong linkage disequilibrium with the index SNP (R2=0.78-0.90) were 
severely attenuated but not abolished. In contrast, all six rare variants maintained 
their level of significance (1.8×10-25<p<5×10-6) and were associated with lower FVII 
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levels between 17 and 50 IU/dL. Minor allele counts for these variants ranged from 
11 to 49. Four of these variants were present almost exclusively in AAs (AA MAC≥20; 
EA MAC≤2), while one was present only in EAs (EA MAC=11), and one was present in 
both (EA MAC=9; AA MAC=19).

Single variant associations with FVIII

Three loci were significantly associated with FVIII: multiple variants in ABO (index 
variant=rs8176749; EA MAF=0.07; AA MAF=0.16; EA+AA p=4.3×10-94), a variant in 
VWF common only in AAs (His817Gln; rs57950734; EA MAF=0.0001, EA p=0.39; 
AA MAF=0.10, AA p=6.0×10-15) and a variant in STAB2 that is more common in EAs 
(rs7296626; EA MAF=0.06, EA p=1.3×10-10; AA MAF=0.01, AA p=0.07). The index vari-
ant at the ABO locus tags the O deletion. See Table 2 for more detail.

When the O deletion at the ABO locus was included as a covariate in the model, 
the P-value for a variant that tags the A2 blood type (Pro156Leu) became more 
extreme (EA conditional model 1 p=1.4×10-13). Pro156Leu was not significant in AAs 
before (p=0.13) or after (p=0.55) despite being more common in AAs (EA MAF=0.07; 
AA MAF=0.22). When both variants (Type O and Type A2) were included in the 
model, then a variant that tags the B blood type that was significant in the uncon-
ditional results (Leu266Met; EA MAF=0.07, EA unconditional model p=1.0×10-44; AA 
MAF=0.16, AA unconditional model p=4.0×10-52) regained significance in AAs (EA 
conditional model 2 p=0.10; AA conditional model 2 p=4.8×10-7). When all three 
blood types were included, an uncommon missense variant that tags the O2 blood 
group haplotype gained significance in EAs (Gly268Arg; EA MAF=0.02, EA p=2.9×10-

25; AA MAF=0.0003, AA p=0.03).
When the His817Gln variant in VWF was included as a covariate in the model, a 

variant common in both AAs and EAs remained significant (Thr789Ala; EA MAF=0.36, 
EA p=1.1×10-8; AA MAF=0.41, AA p=3.9×10-6). When conditioning on Thr789Ala, 
a third independent signal that was common only in AAs remained (Arg2185Gln; 
AA MAF=0.19, AA p=2.6×10-13). In addition, three rare missense variants (MAF<0.01) 
also remained significant in the trans-ethnic analyses after conditioning on each 
of the three common variants (Tyr1584Cys p=3.2×10-13; Arg854Gln p=8.6×10-8; and 
Arg2287Trp p=8.7×10-6). When conditioning on rs7296626 near STAB2, several syn-
onymous variants remained nominally significant (p<0.001) after serial conditional 
analysis, but did not achieve study-wide significance (Asn1113Asn, Ala1996Ala, Leu-
80Leu).

Single variant associations with VWF

Five loci were significantly associated with VWF. Three of these variants, the ABO O 
deletion tag (rs8176749), the common VWF variant (Thr789Ala) and a synonymous 
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variant in STAB2 (Ala1996Ala), were also significantly associated with FVIII (see 
Table 2 for a comparison). Two variants associated with VWF but not FVIII were in 
STXBP5 (Asn436Ser) and STX2 (Ser42Thr). See Table 2 for more detail.

The same pattern of associations with ABO blood types found to be significant for 
FVIII was also significant for VWF, with the O deletion having the strongest effect, the 
A2 group tagged by Pro156Leu (EA p=6.1×10-12; AA p=0.31), the B group tagged by Leu-
266Met (EA p=5.0×10-4; AA p=1.8×10-6), and the O2 group tagged by Gly268Arg (EA 
p=1.2×10-26; AA p=0.11). Conditional analyses in STX2 revealed no secondary signal (all 
26 variants with MAC>10 had p≥0.08).

After conditioning on the common variant in VWF (Thr789Ala), the variant with the 
next smallest P-value was Arg2185Gln (EA MAF=0.002, EA p=0.13; AA MAF=0.19, AA 
p=2.7×10-17). Despite the high correlation between FVIII and VWF, the variant signifi-
cantly associated with FVIII after conditioning on both Thr789Ala and Arg2185Gln 
(His817Gln) was not significant for VWF (p=0.72). Similar to FVIII, additional rare mis-
sense variants (Tyr1584Cys, Arg2287Trp, and Ser1486Leu) remained significant after 
conditioning on the common variants.

Gene-based test results

Results for the gene-based tests (T5 and SKAT) are summarized in Table 3. Burden 
testing revealed significant gene-level associations between fibrinogen levels and 
FGG, as well as between factor VII level and the F7 gene. Factor VIII and VWF levels 
were both significantly associated with VWF and several genes at the ABO locus 
(REXO4, ADAMTS13, SURF2, C9orf96). However, the burden tests for these other 
genes surrounding ABO were no longer significant when conditioning on the variants 
tagging the common ABO blood types, indicating no evidence of rare functional 
variants in the region with an independent association with either factor VIII or VWF. 

Table 3. Results for gene-based tests of association

Trait Gene #variants EA+AA

T5
P-values

EA AA EA+AA

SKAT
P-values

EA AA

Fibrinogen FGG 78 0.0001 4.7×10-10 0.001 9.1×10-13 3.0×10-18 3.0×10-06

Factor VII F7 115 1.3×10-72 1.1×10-19 1.2×10-55 2.3×10-46 6.0×10-19 3.9×10-39

Factor VIII REXO4 (ABO locus) 58 9.7×10-07 0.03 5.3×10-06 9.9×10-12 0.24 5.7×10-12

Factor VIII VWF 640 0.0009 1.9×10-06 0.04 3.2×10-14 4.3×10-06 1.1×10-05

vWF REXO4 (ABO locus) 58 0.0002 0.08 0.0004 8.8×10-11 0.15 1.9×10-09

vWF VWF 640 3.7×10-05 4.9×10-07 2.1×10-05 1.0×10-07 0.0002 5.7×10-10

EA=European/European Americans; AA=African Americans; EA+AA=the combine multi-ethnic meta-
analysis; T5=Gene burden test including all functional variants with a minor allele frequency less than 
5%; SKAT=Sequence Kernel Association Test; vWF=von Willebrand factor
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Discussion

Analysis of exome sequence data allows for the opportunity to identify and analyze 
coding variation across the full allele frequency spectrum (from common to rare) and 
to distinguish independent signals from common and rare coding variation within 
significant loci. Analysis of these four hemostatic factors in a large (n=10,860 EA 
individuals and 3,529 AA individuals) meta-analysis of multiple multiethnic human 
population studies indicates that there are new independent signals in known loci 
that are detectable with sequence data. This study complements a parallel effort that 
has meta-analyzed the same four hemostatic factors in a larger sample but that was 
limited to the 250,000 markers on the Illumina HumanExome Beadchip (“exome 
chip”).32

Single variant analyses identified associations with fibrinogen at the FGA, FGB, and 
FGG gene cluster on chromosome 4 that overlap the exome chip study, including 
the rare FGG Ala82Gly mutation that has been reported in a pair of case reports with 
hypofibrinogenemia.33,34 In addition, assessment of the significant gene-based test 
for FGG revealed that there were a large number of rare missense or nonsense vari-
ants (n=51), including two that were gene-wide significant: the rare Ala82Gly variant 
identified in the single variant analyses and Ser219Phe, which is only polymorphic 
in AAs (AA MAF=0.001, AA MAC=8, AA p=7.4×10-6) and which was also significant 
in the exome chip meta-analysis. The current study also showed that there are 
independent signals from common (FGB Tyr345Tyr and FGA Thr312Ala) and rare 
variation (FGG Ala82Gly and FGB Pro235Leu) at this locus. Importantly, common 
and rare variation at this locus may either increase (Tyr345Tyr) or decrease (Ala82Gly, 
Pro235Leu, Thr312Ala) fibrinogen levels, substantiating the fact that these variants 
each have important independent contributions to the trait. The contribution from 
FGA (Thr312Ala, not present on the exome chip) is also independent of the common 
and rare variation in FGB and FGG. The signal at the IRF1 gene has also been observed 
in previous studies.6,11 In sum, this study identified two novel rare variants in FGG 
(Ala82Gly and Ser219Phe) that have not been previously associated with fibrinogen 
levels in a population-based study.

This study detected associations between FVII levels and common variation in 
genes (GCKR, ADH4, MS4A6A, PROCR, and F7) identified in prior a GWAS7 and also 
identified six rare variants in F7 (all MAF<0.0025) that were independent (1.8×10-

25<p<5×10-6) from the common index variant (Arg413Gln). These variants are not in 
linkage disequilibrium with each other (R2<0.001) and have not been reported in 
previous studies. One rare variant is not present on the exome chip (Arg375Trp). 
These novel rare variants have race-specific contributions: four in AAs (Arg139Gln, 
Arg364Gln, Ile200Ser, Glu445Lys), one in EAs (Ala354Val), and one in both (Arg-
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375Trp). Assessment of the significant gene-based test for F7 revealed that there were 
a large number of rare missense or nonsense variants (n=63), including 10 that were 
gene-wide significant. These include very rare variation not tested in single variant 
analyses due to their low minor allele count (MAC<40), including an in-frame dele-
tion of three bases present in only five AAs (chr13:113771790:CTGT:C; AA p=5.8×10-6). 
Only 6 of these 10 significant rare variants and 9 of the 27 variants showing a trend 
and contributing to the gene-based test are on the exome chip. None of these rare 
functional variants have been previously associated with FVII levels in a population-
based study;7,8 however, some of these variants are present in the F7 mutation data-
base (http://www.umd.be/F7/W_F7/index.html) and a subset of those have been 
noted in individuals with FVII deficiency.

The signal for FVIII at the ABO locus can be fully explained after taking into ac-
count variants tagging the major ABO blood types (A2, B, O, & O2); however, novel 
variation was identified at the VWF and STAB2 loci. A previous study35 reported an 
association with Pro2039Thr in STAB2 (chr12:104139034), and here we report an 
unlinked (R2=0.003 in the ARIC EAs) novel intronic variant near a splice site of STAB2 
(rs7296626; EA MAF=0.06, EA p=1.3×10-10; AA MAF=0.01, AA p=0.07). Conditional 
analyses revealed several independent signals at VWF, including His817Gln and 
known common variants Thr789Ala and Arg2185Gln.36 Importantly, this study identi-
fied three rare independent missense variants in VWF, two of which are novel (Tyr-
1584Cys and Arg854Gln). Both variants were on the exome chip; however, while Arg-
854Gln reached genome-wide significance in the exome chip analyses, Tyr1584Cys 
failed genotyping. The Try1584Cys and Arg854Gln signals are driven by the EAs and 
decreased FVIII levels by 32 and 16 IU/dL, respectively. Assessment of the significant 
gene-based test for VWF revealed that there were a large number of rare functional 
variants (n=353). These included the four gene-wide significant rare variants driving 
the gene-based finding: Tyr1584Cys, Arg854Gln, Arg2287Trp (which was only seen in 
AAs), and Gly2705Arg (which is more common in EAs). In sum, this study confirmed 
the rare variant associations identified in Johnsen et al.36 and identified two novel as-
sociations with rare variants in VWF (Tyr1584Cys, and Arg854Gln) that are associated 
with FVIII levels.

Among the five loci significantly associated with VWF, there were two common 
variants that were not associated with FVIII. The Ser42Thr variant in STX2 is near an 
intronic STX2 variant (rs7978987) reported to be associated with VWF in Smith et al.7 
Similarly, Asn436Ser in STXBP5 is located near synonymous rs9390459 in STXBP5 in 
Smith et al.7 As with FVIII, the association at the ABO locus for VWF can be explained 
after taking into account variants tagging the major ABO blood types. Conditional 
analyses at VWF revealed independent significant variants, all of which are known36 
except for the novel rare missense variant Tyr1584Cys that was also associated with 
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FVIII. Assessment of the significant gene-based test for VWF revealed that there 
were a large number of rare functional variants (n=349), including three that were 
gene-wide significant: Tyr1584Cys, Arg2287Trp, and Ser1486Leu which is only seen in 
AAs. Associations with Arg2287Trp and Ser1486Leu have been reported previously,36 
while Tyr1584Cys is novel.

In order to maximize power to identify new associations, we used all available 
samples with whole exome sequencing and these phenotypes in the primary 
analyses. As a result, there is no available independent replication set. As the cost 
of sequencing continues to drop, it is likely that other studies with these hemostasis 
phenotypes will generate sequence data and collaborate. The inclusion of a large 
number of African Americans has allowed us to identify race-specific variants that 
would not have been possible with European samples alone. This is one particular 
advantage over analyses of the exome chip, which was designed primarily using data 
from white, non-Hispanic samples. In the future, sequencing Asian and Hispanic 
samples will likely identify additional rare variants associated with hemostatic fac-
tors.

Using the largest sample of individuals of both EA and AA descent reported with 
whole exome sequencing data (total n of over 14,000), we have extended prior stud-
ies and identified ten novel associations between rare variants in FGG, F7 and VWF 
and hemostatic factors. While these variants are in genes where common variation 
is known to be associated with the same trait, the discoveries herein from whole 
exome sequencing identifies novel independent signals with generally much larger 
effect sizes than previously reported. This study validates the use of exome sequenc-
ing to identify novel variation associated with disease endophenotypes.
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Supplemental Table 1. Sample demographics

Study Race Age (SD) %Female
Fibrinogen 
in g/L (SD)

FVII in IU/dL 
(SD)

FVIII in IU/dL 
(SD)

vWF in IU/dL 
(SD)

ARIC EA 54.4 (5.7) 52.5% 2.96 (0.63) 118.98 (28.72) 124.47 (33.08) 111.24 (41.13)

ARIC AA 53.2 (5.8) 63.7% 3.18 (0.67) 117.52 (28.91) 146.42 (44.91) 133.7 (55.48)

CHS EA 72.9 (5.8) 52.5% 3.24 (0.69) 126.35 (28.61) 124.84 (38.01)

FHS EA 53.5 (9.7) 53.5% 3.10 (0.63) 101.24 (16.24) 125.36 (43.72)

RS-I-1 EU 69.2 (4.7) 59.4% 2.74 (0.62) 108.55 (18.55) 116.50 (50.83)

RS-I-3 EU 71.5 (4.8) 52.5% 3.85 (0.85) 133.25 (72.05)

ESP EA 59.9 (11.8) 57.2% 3.29 (0.82) 119.45 (32.50) 129.03 (48.36) 116.52 (47.59)

ESP AA 58.7 (10.3) 69.7% 3.39 (0.82) 120.14 (31.42) 160.35 (67.52) 135.91 (58.35)

Weighted Average 58.22 (6.18) 56.8% 3.09 (0.68) 115.85 (27.15) 128.65 (38.4) 117.71 (46.16)
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Abstract

Background: ADAMTS13 cleaves von Willebrand factor, reducing its prothrombotic 
activity. The genetic determinants of ADAMTS13 activity remain unclear. 

Methods: We performed a genome-wide association study of ADAMTS13 activity in 
the Rotterdam Study, a population-based cohort study. We used imputed geno-
types of common variants in a discovery sample of 3,443 individuals and replica-
tion sample of 2,025 individuals. We examined rare exonic variant associations in 
ADAMTS13 in 1,609 individuals using an exome array. 

Results: rs41314453 in ADAMTS13 was associated with ADAMTS13 activity in both 
our discovery (Beta: -20.2%, P-value: 1.3×10-33) and replication sample (P-value: 
3.3×10-34), and explained 3.6-6.5% of the variance. In the combined analysis of 
our discovery and replication samples, there were two further independent as-
sociations at the ADAMTS13 locus: rs3118667 (Beta: 3.0, P-value: 9.6×10-21) and 
rs139911703 (Beta: -11.6, P-value: 3.6×10-8). Additionally, rs10456544 in SUPT3H 
was associated with a 4.2 increase in ADAMTS13 activity (P-value: 1.13.6×10-8). 
Finally, we found three independent associations with rare coding variants in AD-
AMTS13: rs148312697 (Beta: -32.2%, P-value: 3.7×10-6), rs142572218 (Beta: -46.0%, 
P-value: 3.9×10-5), and rs36222275 (Beta: -13.9%, P-value: 2.9×10-3).

Conclusions: We identified rs41314453 as the main genetic determinant of ADAMTS13 
activity, and present preliminary for further associations at the ADAMTS13 and 
SUPT3H loci.
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Introduction

ADAMTS13 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 13) 
cleaves ultra large von Willebrand Factor (VWF) into smaller multimers.1-3 ADAMTS13 
thereby greatly reduces the activity of VWF in its role in platelet adhesion and ag-
gregation. Through this effect on VWF, ADAMTS13 has antithrombotic properties. 

The role of ADAMTS13 in thrombosis is especially evident in patients with throm-
bocytopenic thrombotic purpura (TTP), a disorder resulting from a severe deficiency 
of ADAMTS13: patients with TTP have a wide range of symptoms, including thrombo-
cytopenia and microangiopathy, which may result in stroke, and myocardial infarc-
tion.4 Beyond patients with TTP, we and others recently showed that low ADAMTS13 
activity and levels within the normal range are also associated with increased risk of 
cardiovascular outcomes.5-9 

These associations between ADAMTS13 activity and arterial thrombosis raise the 
question of how ADAMTS13 activity is regulated. Several rare single nucleotide poly-
morphisms (SNPs) in the ADAMTS13 gene causing TTP have been identified along 
with a few common variants with more modest effects on ADAMTS13.10,11 However, 
it is not known whether these associations are independent of each other, or even 
whether they exhibit the strongest associations at the locus. Furthermore, the role 
of genetic variation outside of the ADAMTS13 locus remains unknown. The optimal 
method to identify genetic determinants is a genome-wide association (GWA) study, 
with a hypothesis-free approach. To date, no studies on the genetics of ADAMTS13 
using this approach have been reported.

Thus, in the Rotterdam Study, a large population-based cohort study, we conduct-
ed a GWA study of ADAMTS13 activity, including a conditional analysis to identify 
multiple independent signals. Additionally, we characterized the ADAMTS13 gene 
and any other genes with associated common variants by examining the role of rare 
variants. 

Methods

Study description and population

The Rotterdam Study is a prospective, population-based cohort study of determi-
nants of several chronic diseases in older adults.12,13 The first cohort (RS-I), includes 
7,983 inhabitants of Ommoord, a district of Rotterdam in the Netherlands, who were 
55 years or older. The baseline examination took place between 1990 and 1993. The 
third visit took place between March 1997 and December 1999, and included 4,797 
participants. A second cohort (RS-II) was established between February 2000 and 
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December 2001, including another 3,011 inhabitants of Ommoord who reached the 
age of 55 years after the baseline examination of RS-I, and individuals aged 55 years 
or older who had migrated into the research area. The study was approved by the 
Medical Ethics Committee of Erasmus University, Rotterdam, the Netherlands, and 
all included participants gave their written informed consent. 

ADAMTS13 measurement

Citrated plasma samples were collected at the third visit of RS-I and the baseline 
examination of RS-II, and stored at -80°C. Between June and October 2013, we mea-
sured ADAMTS13 activity using a kinetic assay based on the Fluorescence Resonance 
Energy Transfer Substrate VWF 73 (FRETS-VWF73) assay.14 This assay uses a peptide 
containing the ADAMTS13 cleavage site of VWF, and thus captures variation in the 
VWF cleavage rate determined by ADAMTS13 levels and structure, but not by altera-
tions in VWF. 

Plasma samples were measured against a reference curve of serial dilutions of 
normal human plasma defined to have an ADAMTS13 activity of 1 IU/ml, and we 
express ADAMTS13 activity as a percentage of this. In total, the ADAMTS13 activity of 
6,258 participants was measured: 3,791 from RS-I, and 2,467 from RS-II. 

Genotyping and imputation

We used two sources of genetic variants: genome-wide SNPs genotyped by the 
Illumina Infinum II HumanHap550 array or 610 quad array and exome-wide SNPs 
genotyped by the Illumina HumanExome BeadChip v1.0. We genotyped 6,291 
participants from RS-I and 2,157 participants from RS-II using the Illumina Infinium 
II HumanHap550 or 610 quad arrays. All genotyped participants were of European 
ancestry based on their self-report. Prior to imputation, genotyped SNPs with a call 
rate below 98%, a minor allele frequency (MAF) below 1%, or a hardy-weinberg 
equilibrium P-value of less than 1×10-6 were excluded. In RS-I 512,849 SNPs remained 
after filtering and these were used for imputation. In RS-II, 537,405 SNPs were used 
for imputation. Dosages of 19,537,258 SNPs were imputed in both studies using the 
Genomes of the Netherlands (GoNL) version 4 reference panel.15-17 MACH version 
1.0.15 was used to perform the imputations. The imputation quality of each SNP 
defined as the estimated squared correlation of imputed and true genotypes, and 
ranged from 0 to 1. After imputation, SNPs with a MAF below 0.01 or an imputation 
quality below 0.3 were excluded. The overlap between participants with ADAMTS13 
activity measurements and genotypes was 3,423 in RS-I, and 2,025 in RS-II.

Exonic variants of 3,163 individuals from RS-I were successfully genotyped using 
the Illumina HumanExome BeadChip v1.0. In 1,609 of these individuals ADAMTS13 
was measured. Genotype calling was performed at the University of Texas Health 
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Science Center in Houston, together with ten other cohorts from the Cohorts for 
Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.18 This 
joint calling in a total of 62,000 individuals was done to improve the calling of rare 
variants compared to what could be accomplished in RS-I alone. A total of 108,678 
SNPs were included after filtering out monomorphic SNPs and SNPs with low call 
rate. 

Common variant analysis

We performed a discovery GWA analysis in RS-I. In the discovery, linear regression, 
as implemented in ProbABEL version 0.4.3, was used to examine the association of 
each SNP with ADAMTS13 activity, adjusted for age and sex.19 SNPs were analysed 
in the form of genotype dosages (ranging from 0 to 2) using an additive model. A 
genome-wide significance threshold of 5×10-8 was used. Regional plots were created 
using LocusZoom.20

Replication analyses in RS-II were also performed using ProbABEL version 0.4.3. 
The significance threshold was determined using a Bonferroni correction for the 
number of SNPs. The variance of ADAMTS13 activity explained by replicating SNPs 
was examined, with R version 3.1.1. We used HaploReg V2 to browse ENCODE 
resource to examine the functional implication of these SNPs, along with any cor-
related SNPs (correlation R2 > 0.8).21,22 

Lastly, to maximize our power and the accuracy of our effect estimates, we also 
performed a meta-analysis of RS-I and RS-II. We used an inverse-variance model with 
fixed effects as implemented in METAL.23 We applied a genomic control correction 
to the combined results to account for genomic inflation. To identify secondary sig-
nals at significant loci, we then performed a stepwise conditional analysis repeating 
the GWA analysis adjusted for the most significant variant in each locus (defined as 
+/- 250KB of the top SNP). This approach was repeated with additional adjustment 
for secondary signals until no further genome-wide significant signals remained.

Rare variant analysis

In a subset of RS-I participants, we used the exome chip to examine the effect of 
rare variants. To maximize our power, we included only SNPs within genes that were 
highlighted in the common variant analysis. Additionally, we only included SNPs 
that were functional according to the dbNSFP database (missense, stop-gain, stop-
loss or splice site) with a MAF below 0.01.24 We then used the seqMeta package 
implemented in R to determine the association between the rare variant burden in 
selected genes and ADAMTS13 activity, and to examine the association of individual 
SNPs.
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This package has previously been described in further detail.25 Rare variant burden 
analysis was performed using both a T1 test, and a sequence kernel association test 
(SKAT).26 In T1 tests, the sum of rare variant dosages is created for each gene, and 
associated with the traits of interest. T1 tests are unidirectional: they are more power-
ful when, within a gene, the effect sizes of rare variants are consistently in the same 
direction. SKAT is a bidirectional test and is more powerful when the effect direction 
of rare variants within a gene varies. Single variant analysis was done using score 
tests. All analyses were adjusted for age, sex, and the independently significant com-
mon variants. Additionally, the analyses were adjusted for four ancestry-informative 
principal components, as rare variants are more susceptible population stratifica-
tion.27 Finally, we performed stepwise conditional analysis to determine whether 
rare variant associations were independent from each other.

Estimation of the heritability

In RS-I, we estimated the proportion of variance of ADAMTS13 activity explained 
by all SNPs together. First, we constructed a matrix of pairwise genetic relationships 
based on common (MAF ≥ 0.01) well-imputed (imputation quality > 0.3) SNPs. We 
excluded one individual from each pair with a pairwise relationship larger than 0.025, 
reducing the number of included individuals to 2455. We then used a restricted 
maximum likelihood model to estimate the proportion of variance explained by the 
genetic relationships. The result can be interpreted as the lower bound of the heri-
tability.28 The estimated heritability is expected to be lower than the true heritability 
because it is based on imperfectly imputed SNPs that may in turn be only partially 
correlated to the underlying causal variants. 

We then calculated the variance explained by the combination of independently 
significant variants using the adjusted R-squared resulting from a linear regression 
model in R. We did this separately for RS-I and RS-II.

Additionally, to place genetic determinants of ADAMTS13 into a wider context, we 
estimated the variance of ADAMTS13 activity explained by genome-wide significant 
SNPs, as well as by baseline characteristics including age, sex, total and high density 
lipoprotein (HDL) cholesterol, prevalent type 2 diabetes, current smoking, body 
mass index (BMI), and systolic and diastolic blood pressure. We used the partial.R2 
function from the asbio package in R. All variables were included in a single linear 
regression model, and the resulting partial coefficients of determination indicate the 
variance explained on top of the other variables in the model.
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Results

Discovery in RS-I and replication in RS-II

Participant characteristics are shown in Table 1. Participants in RS-I were older (mean 
age = 72.4 years old, standard deviation = ±7.0) than participants in RS-II (mean age 
= 64.6 years old, standard deviation = ±7.9). The mean ADAMTS13 was 89.5% in RS-I 
and 95.0% in RS-II, with a range of 5% to 198% across the two cohorts. After remov-
ing rare and poorly imputed SNPs, 8,237,900 SNPs were included in the discovery 
GWA analysis, of which 329 were significantly associated with ADAMTS13 activity 
(Supplemental Figure 1 and 2). All of these SNPs mapped to the ADAMTS13 locus. 
The minor allele of the lead SNP, rs41314453, was associated with a 20.2% decrease in 
ADAMTS13 activity (P-value = 1.3×10-33). The signal was successfully replicated in RS-II: 
the minor allele of rs41314453 was associated with a 23.5% decrease in ADAMTS13 
activity (P-value = 3.3×10-34). 

Combined analysis of RS-I and RS-II

In the combined analysis of RS-I and RS-II rs41314453 was also the lead variant at the 
ADAMTS13 locus (Table 2 and Figure 1A). There was one genome-wide significant 
SNP outside of the ADAMTS13 locus: rs10456544, an intronic SNP in the SUPT3H 
gene (Table 2 and Figure 1B). The minor allele was associated with a 4.2% increase 
in ADAMTS13 activity. After adjustment for rs41314453 and rs10456544, there were 
no significant variants remaining at the SUPT3H locus, but there was a second signal 
at the ADAMTS13 locus. The minor allele of lead variant rs3118667 was associated 

Table 1. Characteristics of the participants included in the discovery in the Rotterdam Study I (RS-I) and 
in the replication in the Rotterdam Study II (RS-II).

RS-I RS-II

Sample Size 3423 2025

Age (years) 72.4 ±7.0 64.6 ±7.9

Sex (% males) 41.3 45.1

ADAMTS13 activity (%) 89.5 ±17.4 95.0 ±17.6

BMI (kg/m2) 26.8 ±3.9 27.2 ±4.0

Current smoking (%) 15.8 19.5

Total cholesterol (mmol/L) 5.8 ±1.0 5.8 ±1.0

HDL cholesterol (mmol/L) 1.4 ±0.4 1.4 ±0.4

Systolic blood pressure (mmHg) 143.3 ±21.0 143.1 ±21.3

Diastolic blood pressure (mmHg) 75.2 ±11.2 78.9 ±10.8

Prevalent Type 2 Diabetes (%) 14.1 11.5

Abbreviations: BMI refers to body mass index, and HDL refers to high-density lipoprotein. Continu-
ous variables are summarized by their mean ± standard deviation. 
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with 3.0% increase in ADAMTS13 activity (Table 2). When additionally adjusting for 
rs3118667, there was a third genome-wide significant signal at the ADAMTS13 locus. 
The minor allele of the lead variant, rs139911703, was associated with an 11.6% de-
crease in ADAMTS13 activity (Table 2).

Rare variant analyses

There were 11 functional SNPs with MAF < 0.01% in ADAMTS13 and 4 in SUPT3H. For 
single variant analysis, we thus used a P-value threshold of 0.0033. Three rare vari-
ants were associated with ADAMTS13 activity: rs148312697 (Beta = -32.8, P-value = 
3.6×10-6, Frequency = 0.16%), rs142572218 (Beta = -46.0, P-value = 3.9×10-5, Frequency 
= 0.06%), and rs36222275 (Beta = -14.7, P-value = 2.2×10-3, Frequency = 0.34%). The 
association of these variants was independent of the three associated common 
variants in ADAMTS13 (Table 3), and stepwise conditional analysis suggests that the 
associations are also independent of each other (Supplemental Table 1). 

The spread across the functional domains of ADAMTS13 of these associated rare 
nonsynonymous variants, as well as the associated common nonsynonymous variant 
(rs41314453), is shown in Figure 2. None of the rare variants in SUPT3H was signifi-
cantly associated to ADAMTS13 activity.

Although we only examined two genes, we used a P-value threshold of 0.013 to 
adjust for doing both SKAT and T1 tests. The 11 variants in ADAMTS13 had a cumula-
tive minor allele frequency of 1.1%. Rare variant burden in ADAMTS13 was associated 
with ADAMTS13 activity according to both the T1 (P-value = 5.7×10-8) and SKAT test 
(P-value = 1.5×10-6). These associations remained significant after adjusting for the 

Table 2. Association of common variants with ADAMTS13 activity in the combined analysis of RS-I and 
RS-II. 

SNP Name
Chromo-
some Position* Gene

Effect / 
Other 
Allele Frequency

Imputation 
Quality Beta P-value

Adjusted for age, sex, and principal components 1-4

rs41314453 9 136,307,825 ADAMTS13 T/C 1.88% 0.84 -21.7 1.2×10-63

rs10456544 6 45,181,694 SUPT3H A/T 7.11% 0.69 4.2 1.1×10-8

Additional adjustment for rs41314453 and rs10456544

rs3118667 9 136,291,063 ADAMTS13 C/T 47.09% 0.93 3.0 9.6×10-21

Additional adjustment for rs3118667

rs139911703 9 136,081,887 OBP2B A/G 1.10% 0.52 -11.6 3.6×10-8

Abbreviations: SNP refers to single nucleotide polymorphism. Frequency refers to the frequency of 
the effect allele as a percentage. Beta refers to the beta coefficient, and should be interpreted as the 
change in ADAMTS13 activity (%) per 1 allele increase in the effect allele. *The DNA position is coded 
according the build 37.
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three associated common variants in ADAMTS13 (Supplemental Table 2). When we 
additionally adjusted the burden tests for the three rare SNPs in a stepwise man-
ner, the association diminished with each step, and finally lost significance upon 
adjustment for all three rare SNPs (Supplemental Table 2). The rare variant burden in 
SUPT3H was not associated to ADAMTS13 activity according to the T1 (P-value = 0.5) 
and SKAT tests (P-value = 0.7).

Estimation of the heritability

The variance of ADAMTS13 activity explained by all SNPs in RS-I was 35.2% (P-
value = 0.009), which can be interpreted as the lower bound of the heritability. 
The variance explained by the four independently significant common SNPs was 
5.8-8.2%. The variance of ADAMTS13 activity explained by each of the four indepen-
dently significant common SNPS on top of other baseline characteristics is shown 
in Supplemental Table 3. This table also shows the variance explained by other 
baseline characteristics. The variance explained by rs41314453 (3.6-6.5%) is compa-
rable to the variance explained by age (3.9-6.5%) as well as the variance explained 
by sex (4.5-6.7%). The variance explained by rs3118667 (1.3-2.1%) is comparable to 
the variance explained by current smoking (1.5-1.7%). Because the estimates for SNPs 
are based on imputed dosages rather than directly measured genotypes, the actual 
variance explained by the SNPs is likely to be higher.

Discussion

In this first-ever GWA study of ADAMTS13 activity, we robustly identified rs41314453 
within the ADAMTS13 gene as the main genetic determinant of ADAMTS13 activity in 
both our discovery and replication cohort, explaining between 3.6 and 6.5 percent 

Table 3. Association of rare non-synonymous exonic variants in the ADAMTS13 gene with ADAMTS13 
activity, adjusted for common variants rs41314453, rs3118667, and rs139911703. 

SNP Name Amino Acid Change Position* Exon
Effect / Other 
Allele Frequency Beta P-value

rs148312697 Asp187His 136,291,338 6 C/G 0.16% -32.1 3.3×10-6

rs142572218 Arg1060Trp 136,319,670 24 T/C 0.06% -46.7 1.8×10-5

rs36222275 Gly982Arg 136,314,986 23 A/G 0.34% -13.3 4.4×10-3

Abbreviations: SNP refers to single nucleotide polymorphism. Frequency refers to the frequency of the 
effect allele. Beta refers to the beta coefficient, and should be interpreted as the change in ADAMTS13 
activity (%) per 1 allele increase in the effect allele. *The DNA position is coded according the build 37, 
and refers to the position on chromosome 9. 
Adjustments: Age, sex, principal components 1-4, rs41314453, rs3118667, and rs139911703.



Chapter 2.5

116

Figure 1. Regional plots of the association between ADAMTS13 activity and A) the ADAMTS13 locus 
and B) the SUPT3H locus in the combined GWA analysis. 
Linkage disequilibrium of variants is shown with A) rs41314453, B) rs10456544.
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of the variance. Through the combined analysis of our discovery and replication 
samples, we present preliminary evidence of independent associations with two fur-
ther SNPs in ADAMTS13 (rs3118667 and rs139911703), and with a SNP in the SUPT3H 
gene (rs10456544). Furthermore, in a subset of our discovery sample, we found 3 
independently associated rare variants in ADAMTS13 (rs148312697, rs142572218, and 
rs36222275). Finally, we established a lower bound for the heritability of ADAMTS13 
activity at 35%.

The most signifi cant SNP, rs41314453, is a nonsynonymous exonic variant in the 
thrombospondin type 1 repeat 2 domain that is also known as Ala732Val. It is in link-
age disequilibrium with several intronic SNPs in ADAMTS13, as well as to SNPs in 
regulatory regions of neighbouring genes. However, rs41314453 remains the most 
promising candidate causal SNP, because it has previously been shown, in vitro, to 
reduce ADAMTS13 levels by 40% and ADAMTS13 activity by 29%.29 The decrease 
in activity appeared to be mediated completely by the decrease in protein con-
centration rather than a decrease in the specifi c activity (activity per milligram of 
ADAMTS13), and the decrease in levels was not linked to decreased synthesis.29 This 
suggests that the underlying mechanism is a decreased secretion of ADAMTS13. 

The secondary signal at the ADAMTS13 locus, rs3118667, is a synonymous SNP that 
has not previously been reported to be associated with ADAMTS13. It is not in strong 
linkage disequilibrium with other SNPs. Thus, the mechanism behind this signal is 
unclear. The third signal at the ADAMTS13 locus, rs139911703, is an intronic SNP in 
OBP2B. It is not strongly correlated to any variant in the ADAMTS13 gene, but it is 
in perfect linkage disequilibrium with rs36218903, an intronic variant in ABO. The 
underlying mechanism may thus involve the ABO gene although we cannot exclude 
an effect on the regulation of the ADAMTS13 gene, or correlation with an unknown 
coding variant. It is unclear how ABO could regulate ADAMTS13 activity. Variation 
in the glycan structures attached to VWF that are encoded by the ABO gene has 
been linked to the cleavage rate: cleavage was faster with VWF originating from indi-
viduals with blood group O than with VWF originating from individuals with non-O 

figure 2. Location of the independently associated nonsynomymous variants across the functional 
domains of ADAMTS13.
Asp187His is rs148312697, Ala732Val is rs41314453, Gly982Arg is rs36222275, and Arg1060Trp is 
rs142572218. Thrombospondin type 1 repeats 1-8 are shown as circles. Cys-rich indicates the cysteine 
rich domain, and CUB indicates the C1r-C1s, urinary epidermal growth factor, and bone morphoge-
netic protein domains.
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blood groups.30,31 However, this effect on the cleavage rate is not reflected in the 
ADAMTS13 activity measurements in this study, as the measurements are based on 
an introduced peptide spanning the VWF cleavage site.

Only one SNP outside of the ADAMTS13 locus was associated with ADAMTS13 ac-
tivity: rs10456544 in SUPT3H, which encodes the protein Spt3.32 As a part of the SPT3-
TAF9-GCN5 acetyltransferase (STAGA) complex, Spt3 is involved in transcription 
activation.33 The STAGA complex acetylates histones, reconfiguring the DNA around 
the histones into a more accessible structure, allowing for increased transcription.34 
In yeast, around 3% of the genome is dependent on Spt3 for expression.35 The main 
role of the Spt3 subunit in STAGA is to recruit the transcription factor II D complex 
(TFIID), which then binds to TATA box motifs in promoters, enabling RNA polymerase 
II to position itself appropriately for transcription.36 The ADAMTS13 promotor does 
not have a known TATA box motif, but it does have an Sp1 binding site, which can 
allow TFIID to bind to TATA-less promoters.37,38 We thus hypothesize that rs10456544 
is associated to ADAMTS13 activity through a disturbance to these basal transcrip-
tion activation processes. As ADAMTS13 does not appear to be heavily regulated 
by transcription factors, the sensitivity to these processes might be increased.37 The 
possible relationship between Spt3 and ADAMTS13 activity should be confirmed 
through replication of the association and functional work. 

Of the three associated rare SNPs, rs148312697 (Asp187His), located in the metal-
loprotease domain, has been shown in mice to reduce ADAMTS13 activity and se-
cretion and to cause TTP.39 Another variant at the same position (Asp187Ala) has also 
been shown to reduce proteolytic function.40 rs142572218 (Arg1060Trp) has been 
identified as a causal mutation for late-onset adult TTP, and has been shown to pro-
foundly decrease secretion, but not the specific activity.41 rs36222275 (Gly982Arg) 
has not previously been associated to ADAMTS13 activity. The effect size is smaller 
than that of the other two rare variants and rs41314453, the lead common variant. 
We were able to identify this rare variant with an intermediate effect size because of 
our hypothesis driven approach, but it will need to be confirmed either in vitro or 
through replication in other association studies.

Nonsynonymous variant rs28647808, or Pro618Ala, has previously been used as a 
genetic proxy of ADAMTS13 activity.42 Indeed, several lines of experimental evidence 
support a causal role for Pro618Ala.29,43 In the combined analysis of our discovery 
and replication samples, Pro618Ala was well-imputed (imputation quality > 0.9), and 
was associated with ADAMTS13 activity (Beta = -4.5, P-value = 7.3×10-16, Frequency 
= 9.8%). However, this association disappeared after adjusting for the lead variant, 
rs41314453, with which it is in modest linkage disequilibrium (R2 = 0.18). In line with 
our results, studies by Miyata et al and Kokame et al have found no association 
between Pro618Ala and ADAMTS13 activity in the Japanese general population.43,44 
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Our results therefore do not support a causal role of rs28647808 in the regulation 
of ADAMTS13 activity, and suggest that rs41314453 may be a more suitable genetic 
proxy for future studies.

Similarly, another polymorphism that has been associated to ADAMTS13 activity in 
the literature,44 rs2301612 or Gln448Glu, was not strongly associated with ADAMTS13 
activity in our study (Beta = 1.6, P-value = 1.4×10-6, Frequency = 43.6%). The effect 
direction was consistent with the literature. Interestingly, the association became 
stronger upon adjustment for ADAMTS13 lead variant rs41314453 (Beta = 2.6, P-value 
= 1.1×10-15), but was again attenuated when further adjusted for secondary variant 
rs3118667 (Beta = 1.3, P-value = 1.4×10-3). 

In the discovery GWA analysis, we only found associations with SNPs within the 
ADAMTS13 gene itself. In the combined analysis of the discovery and replication 
samples only one SNP at another locus was genome-wide significant. While this is 
likely related to the small sample size, the unbalanced genetic architecture is not 
surprising. ADAMTS13 is constantly synthesized and secreted in its active form. 
Previous work suggests that ADAMTS13 transcription is stable and not significantly 
regulated by transcription factors.37 This leaves little room for strong regulators. Fur-
thermore, while several factors are known to influence the rate at which ADAMTS13 
cleaves VWF, these are not captured by the measurement of ADAMTS13 activity. 
The measurement is based on the rate at which an introduced peptide similar to 
VWF is cleaved. However, in vivo, alterations to VWF that disrupt its interactions with 
ADAMTS13 may also affect the cleavage rate. For example, mutations involved in 
type 2A von Willebrand disease have been shown to increase the cleavage rate.45 

Apart from synthesis and secretion, ADAMTS13 activity is further determined by 
degradation, and the specific activity. ADAMTS13 degradation is known to occur in 
the presence of thrombin and plasmin.46 However, the level of ADAMTS13 degrada-
tion is minimal, since coagulation and fibrinolysis are normally only occurring at a 
very low level. We therefore expect the regulation of ADAMTS13 degradation to 
explain a very small part of the genetic associations with ADAMTS13 activity. 

In patients with congenital ADAMTS13 deficiency, who often suffer from TTP, the 
main underlying mechanisms are changes in secretion and specific activity.11 This is 
in line with our results in this population based study. Functional work has previously 
been done for three of the variants associated with ADAMTS13 activity in our study, 
and two of these reduce secretion, while one reduces the specific activity.29,40,41 

The strengths of this study include our genome-wide hypothesis-free approach, 
which, in contrast to the targeted genotyping of a few candidate SNPs, allowed us to 
systematically examine the ADAMTS13 locus. Secondly, the use of GoNL as a refer-
ence panel for the imputation of unmeasured SNPs was particularly appropriate, 
as this reference panel is based specifically on the Dutch population. Thirdly, we 
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were able to replicate our common variant results in a non-overlapping sample that 
was ethnically similar to the discovery sample and used the same assay to measure 
ADAMTS13 activity. Finally, the rare variant and conditional analyses we performed 
allowed us to gain a detailed view of the ADAMTS13 locus. 

However, while two of the rare variant associations were backed up by previous 
functional work, we were not able to replicate our rare variant associations because 
participants in RS-II were not genotyped using the exome chip. Neither were we 
able to replicate the associations with rs3118667 and rs139911703 in ADAMTS13 nor 
rs10456544 in SUPT3H, as these associations were identified by combining our 
discovery and replication samples. Additionally, the limited sample size allowed 
us to detect only the strongest associations with ADAMTS13 activity. This will be 
improved as more studies with genome-wide SNP array data measure ADAMTS13 
activity or levels. Although we replicated our results in a non-overlapping sample, 
both samples were from the Rotterdam Study and were measured together. Thus, 
the samples were not completely independent from one another. Finally, our esti-
mate of the heritability should be interpreted as the lower bound of the heritability 
for two reasons. First, it is based on imperfectly imputed SNPs that may in turn be 
only partially correlated to the underlying causal variants. Second, it is only based on 
common SNPs, while a portion of the heritability is likely to stem from rare variants. 
Estimates from twin and family studies are required for further precision.

In conclusion, in our study we robustly identified a strong association between 
rs41314453 in the ADAMTS13 gene and ADAMTS13 activity, and we present prelimi-
nary evidence of association with another five genetic variants in ADAMTS13 and one 
variant in the SUPT3H gene. Explaining between 3.6 and 6.5 percent of the variance, 
rs41314453 appears to be the main genetic determinant of ADAMTS13 activity.

Supplement available online at: 
http://www.bloodjournal.org/content/125/25/3949 
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Abstract

Background: Altered levels of von Willebrand factor and ADAMTS13 can promote 
thrombosis and disturb blood flow in kidney microcirculations. 

Methods: In this study, we investigated the association of serum von Willebrand 
factor antigen, ADAMTS13 activity, and the von Willebrand factor-to-ADAMTS13 
ratio in relation to decline in kidney function. The annual decline in estimated 
GFR, doubling of creatinine, halving of estimated GFR, and new onset chronic 
kidney disease (estimated GFR < 60 ml/min/1.73m2) were assessed during a 
median follow up of 11 years. 

Results: Higher von Willebrand factor-to-ADAMTS13 ratio was associated with 
steeper annual decline in estimated GFR (0.05 ml/min; 95% confidence interval: 
0.01, 0.09) and higher risk of new onset chronic kidney disease (odds ratio: 1.14; 
95% confidence interval: 1.01, 1.29). Likewise, higher von Willebrand factor-to-
ADAMTS13 ratio was associated with higher risk of doubling of creatinine (odds 
ratio: 2.16; 95% confidence interval: 1.24, 3.76) and halving of estimated GFR 
(odds ratio: 1.44; 95% confidence interval: 1.01, 2.04). All these associations were 
independent of age, sex, cardiovascular risk factors and blood group. 

Conclusions: In this population-based study, we observed that higher von Willebrand 
factor-to-ADAMTS13 ratio is associated with decline in kidney function over time. 
This finding suggests a role of elevated prothrombotic factors in the development 
and progression of kidney disease.
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Introduction

Von Willebrand factor (VWF) is a multimeric glycoprotein which mediates platelet 
adhesion and aggregation.1 VWF function is partly regulated by the VWF protease, 
ADAMTS13.1 ADAMTS13 cleaves ultra-large VWF multimers into smaller multimers 
that are less procoagulant.1,2 Therefore, the imbalance between VWF and ADAMTS13 
is an important indicator of a prothrombotic state.3 The significance of deficiency in 
ADAMTS13 is most apparent in thrombotic thrombocytopenic purpura (TTP) patients. 
Due to severe ADAMTS13 deficiency, TTP patients have higher loads of ultralarge 
VWF multimers, resulting in microthrombi formation and subsequent circulation 
disturbances. Given the dependency of kidney function on the adequate blood flow 
to the glomerulus, the kidney is one of the most susceptible organs to thrombotic 
events in its microcirculation.4 The imbalance between VWF and ADAMTS13 may 
promote thrombosis in kidney vessels, leading to disturbances in kidney circulation 
and thereby contributing to the decline in kidney function and to the development 
of chronic kidney disease (CKD).5 In fact, renal insufficiency is one of the hallmark 
clinical characteristics of TTP patients.6 While previous animal studies4 and studies 
in patient groups3,5 suggest a link between VWF and ADAMTS13 with kidney func-
tion, whether this link extends to individuals from general populations remains to 
be elucidated. We investigated the association of VWF-to-ADAMTS13 ratio, VWF, 
and ADAMTS13 activity with decline in kidney function in the population-based 
Rotterdam study. 

Methods

Study population 

The present study is embedded within the framework of the population-based Rot-
terdam Study. The design of the Rotterdam study has been described previously.7 In 
brief, the cohort started in 1990, consisting of 7,983 participants aged 55 years or older 
living in Ommoord, a district of Rotterdam in the Netherlands (RS-I). In 2000, the 
first extension of the Rotterdam Study (RS-II) started, adding 3,011 new participants. 
VWF:Ag and ADAMTS13 activity were evaluated at the third visit of RS-I (1997-1999) 
and the first visit of RS-II (2000-2001). Among individuals with both VWF:Ag and 
ADAMTS13 activity measurements, 2,479 participants had repeated measurements 
of creatinine for the evaluation of longitudinal kidney function. The median time 
elapsed between the two creatinine measurements was 11 years (range: 7.8-13.6). 

The Rotterdam Study has been approved by the medical ethics committee accord-
ing to the Population Study Act Rotterdam Study, executed by the Ministry of Health, 
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Welfare and Sports of the Netherlands. A written informed consent was obtained 
from all participants.

Measurement of VWF:Ag and ADAMTS13 activity

Fasting venous blood samples were taken at the research center and collected in 
citrated tubes. Samples were stored at -80°C. VWF:Ag was determined with an in-
house ELISA with polyclonal rabbit antihuman VWF antibodies (DakoCytomation, 
Glostrop, Denmark) for catching and tagging.8 The intra-assay coefficient of variation 
was 5.8% and the interassay coefficient of variation was 7.8%.8 ADAMTS13 activity 
was measured using the Fluorescence Resonance Energy Transfer Substrate VWF 
73 kinetic assay (FRETS-VWF73).9 Samples of VWF and ADAMTS13 were measured 
against a reference curve of serial dilutions of normal human plasma, calibrated 
against the international standard (Siemens, Germany).9

Measurement of estimated glomerular filtration rate (eGFR) 

Serum creatinine was determined using an enzymatic assay method. Creatinine 
values were standardized to isotope-dilution mass spectrometry–traceable (IDMS) 
measurements. In order to calibrate, we aligned the mean values of serum cre-
atinine with serum creatinine values of the participants of the Third National Health 
and Nutrition Examination Survey (NHANES III) in different gender and age groups 
(<60, 60-69, ≥70).10 eGFR was calculated according to the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) formula.11 To calculate the annual eGFR de-
cline, we first subtracted the eGFR values of the follow-up examination from the eGFR 
values at baseline and then divided by the time, in years, between the two visits. New 
onset CKD cases were defined among the individuals with eGFR >60 ml/min/1.73 m2 

at baseline, who had a decline in eGFR to less than 60 ml/min/1.73 m2 between the 
two periodical examinations.11 Doubling of creatinine and halving of eGFR between 
the two periodical visits were also defined to assess the kidney function over time.12 

Covariates

Body mass index was calculated by dividing weight in kilograms by height in meters 
squared. Information on smoking and alcohol consumption was acquired from 
questionnaires. Participants were asked for the average daily consumption of alcohol 
and data is presented as grams per day. Smoking was categorized in never, former 
and current smoking. Blood pressure was measured twice by an oscillometric device 
after five minutes of rest and the mean was taken as the subject’s reading. Information 
on medication use was based on home interview. Serum total cholesterol and high- 
density lipoprotein cholesterol levels were determined using an automated enzy-
matic method. Coronary heart disease was considered as experiencing myocardial 
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infarction or coronary revascularization procedures. Diabetes mellitus was defined 
by the use of blood glucose lowering drugs and/or a fasting serum glucose level 
greater than or equal to 7.0 mmol/l at baseline or a non-fasting serum glucose level 
greater than or equal to 11.1 mmol/l. Blood group was defined based on rs687289 
variant, which discriminates blood group O from non-O status.13

Statistical analysis 

The association of VWF-to-ADAMTS13 ratio, VWF:Ag, and ADAMTS13 activity with 
annual decline in eGFR was evaluated using linear regression models. Logistic regres-
sions were used to estimate the odds ratios for the association of VWF-to-ADAMTS13 
ratio, VWF:Ag, and ADAMTS13 activity with new onset CKD, doubling of creatinine 
and halving of eGFR. Betas were estimated per SD increase for VWF:Ag, ADAMTS13 
activity and VWF-to-ADAMTS13 ratio. Since measures of VWF-to-ADAMTS13 ratio 
and VWF:Ag were not normally distributed, they were natural-log transformed. We 
performed analyses using two models. In the first model analyses were adjusted for 
age, sex, cohort (Rotterdam Study 1 or Rotterdam Study 2), and baseline eGFR (only 
for longitudinal analyses). In the second model, we further adjusted the analyses 
for systolic and diastolic blood pressure, body mass index, alcohol consumption, 
smoking, high-density lipoprotein cholesterol, total cholesterol, history of diabetes 
mellitus and coronary heart disease, blood group (O or non-O), and antihyperten-
sive and antithrombotic medications. All analyses with new onset CKD, doubling of 
creatinine and halving of eGFR as an outcome were adjusted for the follow-up time 
elapsed between the two measurements of creatinine. We divided participants into 
tertiles of VWF-to-ADAMTS13 ratio and compared participants from the second and 
third tertile with participants from the first tertile (reference category). To investigate 
whether the association of prothrombotic factors and decline in kidney function dif-
fers based on gender, age, and blood group, we assessed the interaction of the pro-
thrombotic factors and the aforementioned characteristics by adding an interaction 
term in the model. The interaction term was the product of the interacting factor and 
prothrombotic factors. In addition, we performed a series of stratified analyses by 
separately studying the association of prothrombotic factors and decline in kidney 
function in participants with blood group O and non-O, in men and women and in 
participants younger and older than 65 years. Evaluating linearity assumption, there 
was neither departure from linearity for the linear regression models and nor for 
logistic regressions, using fractional polynomials. We performed multiple imputa-
tion for missing data in the covariates (< 8% for all covariates), using a Markov Chain 
Monte Carlo method. The calibration of GFR measurements and the evaluation of 
linearity assumptions were done using R version 2.15.0. All other analyses were car-
ried out using SPSS 20.0.2 for windows.
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Results

The characteristics of 2479 study participants are presented in Table 1. The average 
age of the participants was 65±6 years and 43% were male. The mean eGFR based 
on creatinine measurements was 78.5±13 mL/min/1.73 m2. Participants had average 
VWF antigen (VWF:Ag) level of 112% and average ADAMTS13 activity of 94.3 %. The 
correlation between VWF:Ag and ADAMTS13 activity was minimal (r= -0.08, p <0.01). 

The median time elapsed between the two eGFR estimates was 11 years (range: 
7.8-13.6). The association of VWF-to-ADAMTS13 ratio, VWF:Ag, and ADAMTS13 
activity with annual decline in kidney function is presented in Table 2. Higher VWF-
to-ADAMTS13 ratio, in model I was associated with steeper annual decline in eGFR 
(0.06 mL/min/year; 95%CI: 0.02, 0.09) and a higher risk of developing CKD (1.13; 
95%CI: 1.01, 1.27). Similarly, higher VWF-to-ADAMTS13 ratio, in model I was associ-
ated with higher risk of doubling of creatinine (1.90; 95%CI: 1.15, 3.13) and halving of 
eGFR (1.40; 95%CI: 1.02, 1.93). Adjustment for potential confounders did not change 
the associations. Each SD higher VWF:Ag, in model I, was associated with 0.05 mL/

Table 1. Baseline characteristics of study participants

Characteristics n= 2479

Age, years 65.1 (5.8)

Men 1056 (42.6)

Systolic blood pressure, mmHg 139.8 (19.9)

Diastolic blood pressure, mmHg 77.1 (10.5)

Body mass index, kg/m2 26.9 (3.7)

Alcohol, g/day 5.7 (0.7-20.0)

Current smoker 433 (17.5)

Total cholesterol, mmol/l 5.8 (0.9)

HDL cholesterol, mmol/l 1.4 (0.3)

Blood group O 1185 (43.8)

History of diabetes mellitus 210 (8.5)

History of coronary heart disease 145 (5.8)

Antithrombotic agents 311 (12.5)

Antihypertensive medication 645 (26.0)

Estimated glomerular filtration rate (creatinine), mL/min/1.73 m2 78.5 (13.1)

Von Willebrand factor antigen, % 112 (88-146)

ADAMTS13 activity, % 94.3 (16.8)

vWF-to-ADAMTS13 ratio 1.2 (0.9-1.6)

Categorical variables are presented as numbers (percentages), continuous variables as means (stan-
dard deviations) and von Willebrand factor antigen, vWF-to-ADAMTS13 ratio and alcohol intake are 
presented as medians (interquartile ranges).
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min/year (95%: 0.01, 0.08) unit steeper annual decline in eGFR and 14% (95%CI: 1.01, 
1.28) higher risk of new onset CKD. The associations were not present after adjust-
ments for potential confounders. There was no association between VWF:Ag and 
risk of doubling of creatinine or halving of eGFR (all p>0.05).

Each SD lower ADAMTS13 activity was associated with 0.05 ml/min unit steeper 
annual decline in eGFR (95% CI: 0.01, 0.09), after adjusting for potential confound-
ers in model II. There was no association between ADAMTS13 and risk of new onset 
CKD, or halving of eGFR. 

Analyses of the tertiles of the VWF-to-ADAMTS13 ratio and measures of decline in 
kidney function are presented in Figure 1. Participants in the third tertile of the VWF-
to-ADAMTS13 ratio compared to participants in the first tertile had steeper decline 
in eGFR and higher risk of developing new onset CKD and doubling of creatinine. 

In the stratified analyses, there was no statistically significant difference in the 
strength of the association of VWF-to-ADAMTS13 ratio, VWF:Ag, and ADAMTS13 
activity with decline in kidney function in subgroups of participants based on their 
blood group, gender, and age (Supplemental Figure 1). 

Table 2. Association of von Willebrand factor antigen, ADAMTS13 activity, and VWF- to-ADAMTS13 
ratio with decline in kidney function. 

Annual eGFR decline
N= 2479

New onset CKD
N (case) =2272 (500)

Doubling of creatinine
N (case) =2479 (18)

Halving of eGFR
N (case) =2479 (43)

Beta 95% CI P-value OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value

VWF-to-ADAMTS13 ratio

Model I 0.06 0.02, 0.09 <0.01 1.13 1.01, 1.27 0.03 1.90 1.15, 3.13 0.01 1.40 1.02, 1.93 0.04

Model II 0.05 0.01, 0.09 <0.01 1.14 1.01, 1.29 0.04 2.16 1.24, 3.76 <0.01 1.44 1.01, 2.04 0.04

VWF:Ag

Model I 0.05 0.01, 0.08 0.01 1.14 1.01,1.28 0.02 1.54 0.95, 2.51 0.08 1.32 0.96, 1.81 0.09

Model II 0.03 -0.01, 0.07 0.07 1.12 0.98, 1.27 0.08 1.62 0.94, 2.80 0.09 1.30 0.91, 1.84 0.15

ADAMTS13 activity

Model I -0.04 -0.07, 0.00 0.08 0.98 0.87, 1.11 0.78 0.60 0.36, 1.02 0.06 0.82 0.58, 1.16 0.26

Model II -0.05 -0.09, -0.01 0.01 0.92 0.81, 1.04 0.19 0.49 0.28, 0.84 <0.01 0.74 0.52, 1.05 0.09

Betas/odds ratios and 95% CI are calculated per standard deviation measures of log transformed 
VWF:Ag, ADAMTS13 activity and  log transformed VWF-to-ADAMS13 ratio.
Model I: Adjusted for age, sex, cohort, and baseline eGFR.
Model II: Additionally adjusted for systolic blood pressure, diastolic blood pressure, antihypertensive 
medication, antithrombotic agents, alcohol intake, smoking, total cholesterol, high density lipopro-
tein cholesterol, lipid-lowering medication, diabetes mellitus, history of coronary heart disease, and 
body mass index, blood group (O and non-O), and follow up time (for analyses with new onset CKD, 
doubling of creatinine, and halving of eGFR).
Abbreviations: CI: confidence interval, eGFR: creatinine based estimated glomerular filtration rate, 
VWF:Ag: von Willebrand factor antigen, CKD: chronic kidney disease, OR: odds ratio.
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Discussion

In this population-based study, we found that higher VWF-to-ADAMTS13 ratio, 
higher VWF:Ag, and lower ADAMTS13 activity are associated with steeper decline in 
kidney function independent of potential confounders. 

A limited number of studies investigated a potential role for VWF and ADAMTS13 
in relation to kidney function.14-17 Previous cross-sectional studies reported higher 
levels of VWF and lower ADAMTS13 activity in patients with chronic kidney disease 
and end stage renal disease.14,16,17 Apart from the cross-sectional observations, few 
studies reported an association between higher levels of VWF:Ag and progression 
of CKD.18-22 Regarding the role of ADAMTS13, the link between its activity and CKD 
development has been investigated only in small groups of patients.3,5,23,24 Ono et 
al., found that lower ADAMTS13 activity was associated with higher serum creatinine 
levels and future risk of kidney injury.5 This study was performed in patients with 
sepsis and severe deficiency in ADAMTS13 activity. In the current large population-
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Figure 1. Association of VWF- to-ADAMTS13 ratio tertiles with A) annual decline in eGFR, B) new onset 
CKD, C) halving of eGFR and D) doubling of creatinine.
VWF-to-ADAMTS13 ratio tertiles (reference: < 0.1, second: 0.01-0.02, third: ≥0.02).
*represents a P-value<0.05 when a tertile was compared to the reference category (first tertile).
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based study we observed a clear association between VWF-to-ADAMTS13 ratio, 
VWF:Ag, and ADAMTS13 activity and decline in kidney function. Of note, although 
the effect estimates indicate a slight increase in kidney disease risk, previous studies 
showed that even trivial declines in eGFR are associated with considerable risk of 
future end stage renal disease.25 

The plasma concentration of VWF and ADAMTS13 has been shown to be influ-
enced by cardiovascular risk factors and differ based on certain characteristics.3,8,26-29 
For example, individuals with type O blood group have 25 percent lower VWF than 
those with non O blood group.26 It is reported that VWF level and ADAMTS13 activ-
ity differs between men and women,28 and in different age ranges.30 It is also well-
known that cardiovascular risk factors can influence the kidney function.31 Therefore, 
the association of VWF:Ag, ADAMTS13 activity and their ratio with decline in kidney 
function may be confounded or mediated by these factors. In this study, adjust-
ments for cardiovascular risk factors, medications and blood group did not change 
our findings. In addition, we did not observe any differences in the association of 
prothrombotic factors and decline in kidney function in different subgroups of 
participants, indicating that the associations of VWF-to-ADAMTS13 ratio, VWF:Ag, 
and ADAMTS13 activity with decline in kidney function are independent of cardio-
vascular risk factors and blood group. 

VWF is known as an endothelial function marker.1 Patients with CKD are more 
prone to endothelial damage and hence higher levels of VWF.25 Therefore, it could 
be speculated that the steeper kidney function decline is a reflection of existing en-
dothelial dysfunction at baseline. However, the prospective nature of our findings, 
adjustment of longitudinal analyses for baseline eGFR, as well as excluding partici-
pants with baseline eGFR less than 60 mL/min/1.73 m2 rule out this conjecture. 

Further evidence to support the etiologic role of ADAMTS13 on progression of 
kidney function can be provided by genetic variants in the ADAMTS13 gene. Severe 
deficiency in ADAMTS13 caused by auto-antibodies or defects in the ADAMTS13 
gene is the cause of TTP and, in fact, acute kidney injury occurs in over 50% of TTP 
patients.6,23,32 Furthermore, a Pro618Ala polymorphism in ADAMTS13 is shown to be 
predictive of renal events in normoalbuminuric type 2 diabetic patients.24 In addi-
tion, in a porcine model of Escherichia coli sepsis, decreased ADAMTS13 activity and 
increased large VWF multimers, was reported along with glomerular microthrombi 
enriched with platelets and VWF, and acute kidney injury.4 Taken together, this 
suggests a potential causal role for VWF, ADAMTS13 and particularly the imbalance 
between them in relation to decline in kidney function. 

We observed a stronger association between VWF-to-ADAMTS13 ratio and decline 
in kidney function compared to levels of VWF:Ag or ADAMTS13 activity, separately. It 
is known that ultra-large VWF multimers are more procoagulant; however, measur-
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ing ultra-large VWF is technically difficult and laborious.3 In line with our observation, 
several studies have indicated that the imbalance between VWF concentration and 
ADAMTS13 activity, rather than levels of VWF:Ag or ADAMTS13 activity, may allow a 
better evaluation of the prothrombotic state.3,33,34 

The population-based design of this study, the large sample size, prospective 
setting, and the availability of extensive data on various socio-demographic and car-
diovascular risk factors that enabled us to control for several potential confounders, 
can be marked as the main strengths of this study. Limitations of this study should 
also be acknowledged. No data on albuminuria were available, which is an impor-
tant element in defining CKD. In addition, although the definition of CKD based on 
KDIGO criteria requires two values of eGFR less than 60 ml/min/1.73m2 at least 90 
days apart, we only had a single measurement of eGFR. However, CKD definition 
based on eGFR < 60 ml/min /1.73 m2 has been used previously in the population-
based research setting.35 

In conclusion, we observed that VWF-to-ADAMTS13 ratio, VWF:Ag, and ADAMTS13 
activity are independently associated with decline in kidney function in the general 
population setting. Future studies are needed to explore whether the prediction of 
kidney function decline could be improved by monitoring VWF, ADAMTS13 and 
more specifically the imbalance between them. 
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Supplemental Figure 1. Association of von Willebrand factor antigen, ADAMTS13 activity, and VWF- 
to-ADAMTS13 ratio with decline in eGFR, stratified based on blood group, gender, and age.
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Abstract

Background: ADAMTS13 is a protease that breaks down von Willebrand factor 
(VWF) multimers into smaller, less active particles. Because of VWF’s previously 
reported association with an increased risk of incident type 2 diabetes, we aimed 
to examine the association of ADAMTS13 activity and VWF antigen with incident 
diabetes. 

Methods: The study included 5,176 participants of the Rotterdam Study, a prospective 
population-based cohort study. All participants were free of diabetes at baseline. 
The median follow up time was 11.2 years. Cox proportional hazard models were 
used to examine the association of ADAMTS13 activity and VWF antigen with 
incident diabetes.

Results: ADAMTS13 activity was associated with an increased risk of incident diabetes 
(HR: 1.17; 95%CI: 1.08 to 1.27) after adjustment for known risk factors and VWF 
antigen. Although ADAMTS13 activity was positively associated with fasting glu-
cose and insulin, the association with incident diabetes did not change when 
we adjusted for these covariates. VWF antigen was associated with incident 
diabetes, but this association was attenuated when adjusted for known risk 
factors. ADAMTS13 activity was also associated with incident prediabetes after 
adjustment for known risk factors (HR: 1.11; 95%CI: 1.03, 1.20), while VWF antigen 
was not. 

Conclusions: ADAMTS13 activity is thus an independent risk factor for incident type 2 
diabetes and this association is unlikely to be the consequence of reverse causa-
tion. As the association between ADAMTS13 and diabetes did not appear to be 
explained by its cleavage of VWF, ADAMTS13 may have an independent role in 
the development of diabetes. 
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Introduction

ADAMTS13 is a protease that reduces the activity of von Willebrand factor (VWF) in 
platelet adhesion and aggregation by cleaving prothrombotic VWF multimers into 
smaller particles.1,2 This is ADAMTS13’s only known function. Low ADAMTS13 levels 
and activity are associated with an increased risk of various thrombotic diseases, 
including ischemic stroke and myocardial infarction.3-8 Additionally, low ADAMTS13 
activity may contribute to renal and cardiovascular complications of diabetes,9-11 
but the association of ADAMTS13 with diabetes itself remains unexplored. Elevated 
levels of VWF have been associated with an increased risk of type 2 diabetes.12-16 This 
association has been attributed primarily to VWFs role as a marker of endothelial 
dysfunction rather than its role in thrombosis.17 

VWF may also be associated with diabetes through its prothrombotic effect. This 
would be in line with emerging evidence that vascular disease may contribute to 
the development of diabetes.18 Low ADAMTS13 activity and high VWF levels may 
exacerbate small vessel disease, which in turn may contribute to the development 
of diabetes.19-21 If VWF is associated with diabetes through its prothrombotic func-
tion, then we expect ADAMTS13, with its antithrombotic function, to be inversely 
associated with the risk of diabetes. On the other hand, still little is known about the 
regulation of ADAMTS13 and its role as a marker of other physiological processes.22 

Further investigation of the association of ADAMTS13 and VWF with diabetes may 
therefore clarify the role of both factors in the development of diabetes. In this study, 
we thus aimed to examine the association between ADAMTS13 activity and VWF 
antigen with incident diabetes in a large prospective population-based cohort study. 

Methods

Study description and population

The Rotterdam Study is a prospective population-based cohort study initiated in 
1990 to study the determinants of several chronic diseases in older adults.23 The first 
cohort (RS-I) includes 7,983 inhabitants of Ommoord, a district of Rotterdam in the 
Netherlands, who were 55 years or older. The first examination took place between 
1990 and 1993. The third visit, including 4,797 participants, took place between 
March 1997 and December 1999, and was used as the baseline in this study. The 
second cohort (RS-II), established between February 2000 and December 2001, 
includes another 3,011 inhabitants of Ommoord who either reached the age of 55 
years after the recruitment phase of RS-I or who had migrated into the research area. 
Thus, there is no overlap in participants across the two cohorts. There were no eli-
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gibility criteria to enter the Rotterdam Study except age and residential area (postal 
code). The Rotterdam Study has been approved by the Medical Ethics Committee 
of the Erasmus MC and by the Ministry of Health, Welfare and Sport of the Nether-
lands, implementing the Wet Bevolkingsonderzoek: ERGO (Population Studies Act: 
Rotterdam Study). All included participants provided written informed consent to 
participate in the study and to obtain information from their treating physicians. 

Ascertainment of prediabetes and diabetes

Diabetes and prediabetes at baseline and during follow-up was ascertained us-
ing records kept by general practitioners, hospital discharge letters, and glucose 
measurements from Rotterdam Study visits, which take place approximately every 
4 years.24 Diabetes, prediabetes and normoglycemia were defined according to 
the most recent World Health Organization guidelines.25 Prediabetes was defined 
as a fasting blood glucose between 6.0 mmol/L and 7.0 mmol/L or a non-fasting 
blood glucose between 7.7 mmol/L and 11.1 mmol/L (when fasting samples were 
absent); diabetes was defined as a fasting blood glucose higher than 7.0 mmol/L, 
a non-fasting blood glucose ³ 11.1 mmol/L (when fasting samples were absent), or 
the use of blood glucose lowering medication. Information regarding the use of 
blood glucose lowering medication was derived from both home interviews and 
pharmacy records.24 At baseline, more than 99% of the Rotterdam Study population 
was covered by the pharmacies in the study area. All potential events of prediabetes 
and diabetes were independently adjudicated by two study physicians, and in the 
case of disagreement consensus was sought with the help of an endocrinologist. We 
used follow-up data until January 1st 2012. 

ADAMTS13 activity and VWF antigen measurements

Citrated plasma samples were collected at the third visit of RS-I and the baseline 
examination of RS-II, and stored at -80°C. Between June and October 2013, we mea-
sured ADAMTS13 activity using a kinetic assay based on the Fluorescence Resonance 
Energy Transfer Substrate VWF 73 (FRETS-VWF73) assay.26 Plasma samples were mea-
sured against a reference curve of serial dilutions of normal human plasma defined 
to have an ADAMTS13 activity of 1 IU/ml, and we express ADAMTS13 activity as a 
percentage of this. The ADAMTS13 activity of 6,258 participants was measured: 3,791 
from RS-I, and 2,467 from RS-II. 

Between July and October of 2008, VWF antigen was determined in IU/ml with 
an in-house ELISA with polyclonal rabbit antihuman VWF antibodies (DakoCytoma-
tion, Glostrop, Denmark) for catching and tagging.27 The intra-assay coefficient of 
variation was 5.8% and the inter-assay coefficient of variation was 7.8%. VWF antigen 
was measured in 3,968 individuals from RS-I, and 2,561 individuals from RS-II.
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In total, 5,176 participants with VWF and ADAMTS13 measurements also had a fast-
ing glucose measurement and were free of diabetes at baseline.

Covariates

Body mass index (BMI) was calculated by dividing weight in kilograms by height in 
meters squared. Information on current smoking was acquired from questionnaires. 
Lipid-lowering (statins, fibrates, and other lipid modifying agents), antihyperten-
sive (diuretics, beta-blocking agents, ACE-inhibitors, calcium channel blockers), 
and antithrombotic medication use was assessed during a structured interview. 
Blood pressure was measured twice by an oscillometric device after five minutes 
of rest and the mean was taken as the subject’s reading. Serum total cholesterol 
and high- density lipoprotein (HDL) cholesterol levels were determined using an 
automated enzymatic method. Blood glucose and insulin levels were quantified 
using standard laboratory techniques. Serum alanine-aminotransferase (ALAT) lev-
els were measured using a Merck Diagnostica kit on an Elan Autoanalyzer (Merck, 
Whitehouse Station, NJ, USA). White blood cell count was assessed in citrate plasma 
with a Coulter Counter T540 (Coulter Electronics, Hialeah, Florida, USA). C-reactive 
protein (CRP) was measured using CRPL3, an immunoturbidometric assay (Roche 
Diagnostics, Indianapolis, IN, USA). Prevalent coronary heart disease (CHD) was 
defined as having a history of myocardial infarction or coronary revascularization 
procedures, as previously described.24 

Statistical analysis

Statistical analyses were performed in SPSS version 21 (IBM Corp, Armonk, NY, USA) 
and R version 3.1.3 (R Foundation for Statistical Computing, Vienna, Austria). Missing 
values forcovariates were imputed in SPSS using single imputation based on expec-
tation maximization. Each of the covariates had missing values for less than 5% of 
the participants. VWF antigen, HDL cholesterol, CRP, ALAT, and fasting insulin were 
natural-log transformed. We used linear regression models to test the association of 
ADAMTS13 activity and VWF antigen with baseline fasting glucose and fasting insulin. 
Individuals with prevalent diabetes were excluded in all analyses. 

The association of ADAMTS13 activity and VWF antigen with incident diabetes was 
examined using Cox proportional hazards models. The assumption of proportional 
hazards was met. Three adjustment models were used. Model 1 was adjusted for age, 
sex, and cohort. Model 2 was additionally adjusted for HDL and total cholesterol, 
lipid-lowering medication, BMI, CRP, current smoking, antithrombotic medication, 
ALAT, white blood cell count, systolic blood pressure, antihypertensive medication, 
and prevalent CHD. Model 3 was additionally adjusted for fasting glucose and insulin. 
In Model 1 ADAMTS13 activity and VWF antigen were tested separately, whereas in 
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Table 1. Baseline characteristics of the study population.

Mean (SD) or Percentage
N = 5,176

Age (years) 69.0 (8.1)

Sex (female) 57.7

Body mass index (kg/m2) 26.7 (3.8)

High-density lipoprotein cholesterol (mmol/L) 1.4 (0.4)

Total cholesterol (mmol/L) 5.9 (1.0)

Lipid-lowering medication use 11.4

Systolic blood pressure (mmHg) 142.1 (21.0)

Antihypertensive medication use 20.8

Alanine aminotransferase (U/L) 22.6 (13.0)

Current smoking 12.5

C-reactive protein (mg/L) 3.1 (5.6)

White blood cell count (109 cells/L) 6.7 (1.9)

Prevalent coronary heart disease 7.3

Prevalent prediabetes 18.2

Fasting glucose (mmol/L) 5.5 (0.5)

Fasting insulin (pmol/L) 74.3 (42.3)

Antithrombotic medication use 17.4

ADAMTS13 activity (%) 91.0 (17.2)

VWF antigen (IU/ml) 1.3 (0.6)

Both ADAMTS13 activity and VWF antigen were positively associated with baseline 
fasting insulin, and ADAMTS13 activity was positively associated with baseline fasting 
glucose (Supplemental Table 1). Nevertheless, when adjusting for fasting glucose 
and insulin in Model 3, the effect sizes did not change. These associations were 
robust to the exclusion of participants with prevalent CHD and baseline, and the 
exclusion of users of lipid-lowering, antihypertensive, and antithrombotic medica-
tion (Supplemental Table 2).  
There was a significant interaction between ADAMTS13 activity and VWF antigen with 
incident diabetes (P-value: 0.01). As shown in Figure 1, the association of ADAMTS13 
activity with incident diabetes was strongest in the fourth quartile of VWF antigen 
(HR: 1.49: 95%CI: 1.27 to 1.75). 
Furthermore, ADAMTS13 activity was also associated with an 11% (HR: 1.11; 95%CI: 
1.03 to 1.19) increased risk of prediabetes per SD in Model 1, and this association was 
similar in Model 2 and 3 (Figure 2). In contrast, VWF antigen was not associated with 
incident prediabetes.
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Models 2 and 3 the analysis of ADAMTS13 activity was adjusted for VWF antigen and 
vice versa. We examined the interaction between ADAMTS13 activity and VWF antigen 
on incident diabetes using a multiplicative interaction term, and adjusting for age, sex, 
and cohort. Results are shown per SD of VWF antigen and ADAMTS13 activity. 

To test whether associations with incident diabetes were driven by participants with 
prevalent CHD, or users of lipid-lowering, antihypertensive, and antithrombotic medi-
cation, we excluded participants in each of these subgroups in a sensitivity analysis. 

Figure 1. Hazard ratios of ADAMTS13 activity (per SD) for incident diabetes across quartiles of VWF 
antigen: interaction between ADAMTS13 and VWF.

Figure 2. Hazard ratios of ADAMTS13 activity and log transformed VWF antigen (per SD) for incident 
prediabetes excluding participants with prediabetes at baseline (862 events in 4,232 participants).
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Finally, to explore the association of ADAMTS13 activity and VWF antigen with the early 
stages of dysglycemia, we examined incident prediabetes using the same models as for 
incident diabetes, but additionally excluding participants with prevalent prediabetes. 

Results

Baseline characteristics are shown in Table 1. Among the 5,176 participants without 
prevalent diabetes at baseline, the mean (SD) age was 69.0 (8.1), and 57.7% were 
women. In a median follow-up time of 11.2 years (IQR: 9.8, 12.6), 638 participants out 
of 5,176 participants developed diabetes. 

Associations of ADAMTS13 activity and VWF antigen with incident diabetes are 
shown in Table 2. ADAMTS13 activity was associated with a 19% increased risk of 
incident diabetes per SD in Model 1 (Hazard ratio [HR]: 1.19; 95% confidence inter-
vals [95%CI]: 1.10 to 1.30), and this association remained unchanged in Model 2. As 

Table 2. Hazard ratios of ADAMTS13 activity and log transformed VWF antigen (per SD) on incident 
diabetes (638 events in 5176 participants).

ADAMTS13 activity VWF antigen

Hazard Ratio (95%CI) P-value Hazard Ratio (95%CI) P-value

Model 1 1.19 (1.10, 1.30) 0.00003 1.12 (1.03, 1.21) 0.008

Model 2 1.17 (1.08, 1.27) 0.0001 1.06 (1.00, 1.15) 0.2

Model 3 1.17 (1.08, 1.27) 0.0001 1.07 (0.99, 1.17) 0.1

Adjustments: Model 1: Adjusted for age, sex, and cohort. Model 2: Additionally adjusted for HDL and 
total cholesterol, lipid-lowering medication, body-mass index, CRP, current smoking, antithrombotic 
medication, ALAT, white blood cell count, systolic blood pressure, antihypertensive medication, and 
prevalent CHD. The analysis of VWF antigen was adjusted for ADAMTS13 activity and vice versa. Mod-
el 3: Additionally adjusted for glucose and insulin levels. HDL cholesterol, CRP, ALAT, and insulin were 
natural-log transformed when used.

Table 3. Hazard ratios of ADAMTS13 activity quartiles on incident diabetes.

Model 1 Model 2 Model 3

Hazard Ratio (95%CI) P-value Hazard Ratio (95%CI) P-value Hazard Ratio (95%CI) P-value

Quartile 1 Reference Reference Reference

Quartile 2 1.12 (0.89, 1.42) 0.3 1.10 (0.87, 1.40) 0.4 1.12 (0.88, 1.42) 0.4

Quartile 3 1.26 (1.00, 1.60) 0.05 1.31 (1.04, 1.65) 0.02 1.36 (1.08, 1.72) 0.01

Quartile 4 1.47 (1.16, 1.86) 0.001 1.46 (1.15, 1.85) 0.002 1.48 (1.17, 1.87) 0.001

Adjustments: Model 1: Adjusted for age, sex, and cohort. Model 2: Additionally adjusted for VWF an-
tigen, HDL and total cholesterol, lipid-lowering medication, body-mass index, CRP, current smoking, 
antithrombotic medication, ALAT, white blood cell count, systolic blood pressure, antihypertensive 
medication, and prevalent CHD. Model 3: Additionally adjusted for glucose and insulin levels. HDL 
cholesterol, CRP, ALAT, and insulin were natural-log transformed when used.
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shown in Table 3, participants in the highest quartile of ADAMTS13 activity had a 46% 
increased risk compared to participants in the lowest quartile (HR: 1.46; 95%CI: 1.15, 
1.85). VWF antigen was associated with a 12% (HR: 1.12; 95%CI: 1.03 to 1.21) increased 
risk of incident diabetes per SD in Model 1. However, the association was attenuated 
to 6% (HR: 1.06; 95%CI: 1.00 to 1.15) increased risk per SD after adjustment for ad-
ditional covariates in Model 2. 

Discussion

In our study, ADAMTS13 activity was associated with an increased risk of incident 
diabetes, even after adjustment for other known risk factors, including VWF antigen, 
fasting glucose, and fasting insulin. Furthermore, ADAMTS13 activity was also associ-
ated with the incidence of prediabetes among participants with normoglycemia at 
baseline. VWF antigen was also associated with an increased risk of diabetes, but this 
association was attenuated after adjustment for known risk factors.

To our knowledge, the association of ADAMTS13 with diabetes has not previ-
ously been studied with diabetes as the primary outcome, and we are the first to 
examine this association in a large prospective population-based cohort study. One 
cross-sectional study reported the association between ADAMTS13 and prevalent 
diabetes.11 The researchers did not observe a statistically significant difference in AD-
AMTS13 levels between 86 cases of diabetes and 26 healthy controls.11 Our results 
for VWF are consistent with previous studies. VWF has been associated with incident 
diabetes in a range of studies,12-16 but in general the association weakened after 
adjustment for confounder and became non-significant. In the Framingham Heart 
Study, however, VWF remained significantly associated after adjustment for a wide 
range of potential confounders, including insulin resistance.13 VWF is a marker of 
endothelial dysfunction, and this is thought to explain the association between VWF 
and diabetes.17 We report an interaction between ADAMTS13 activity and VWF, with 
the largest effect of ADAMTS13 activity among participants in the highest quartile 
of VWF. This interaction suggests that the effect of ADAMTS13 is mainly present in 
individuals with advanced endothelial dysfunction.

The mechanism underlying the association of ADAMTS13 activity with diabetes 
remains unclear. Because the association was robust to the adjustment for baseline 
fasting glucose and insulin, and because ADAMTS13 activity was also associated with 
incident prediabetes, the possibility of reverse causation is limited. However, the as-
sociation between ADAMTS13 activity and diabetes is unlikely to be explained by its 
only known function as a cleaving protease of VWF, because in that case we would 
expect VWF (prothrombotic) and ADAMTS13 activity (antithrombotic) to be associ-
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ated with diabetes in opposite directions. An alternative hypothesis is an additional 
functionality of ADAMTS13 beyond VWF cleavage. ADAMTS13 is part of the ADAMTS 
family of enzymes, which are metalloendopeptidades with a diversity of functions 
in vascular biology.28 Finally, the association could be explained by pathways that 
respond to ADAMTS13. For example, there is preliminary evidence that ADAMTS13 
regulates the expression and phosphorylation of vascular endothelial growth fac-
tor, which is known to contribute to microvascular complications of diabetes.29,30 
However, ADAMTS13 was only discovered in 2001, and since then most research has 
focused on its interactions with VWF and its role in TTP.1,2 Therefore, we believe that 
further research is required to elucidate such pathways.

We measured ADAMTS13 activity using the FRETS assay, which is based on an 
introduced peptide spanning the VWF cleavage site.26 ADAMTS13 antigen is an al-
ternative measurement, which corresponds to the abundance of ADAMTS13. Future 
studies should investigate whether ADAMTS13 activity or antigen is most strongly 
associated to diabetes. If the association with diabetes is strongest with ADAMTS13 
antigen, then the association of markers of ADAMTS13 gene expression, synthesis, 
secretion, and degradation with diabetes should be explored. Alternatively, a stron-
ger association with ADAMTS13 activity points towards a downstream implication of 
VWF cleavage, albeit not the decreased activity of VWF itself.

The strengths of our study include the comprehensive assessment of incident dia-
betes and prediabetes, using medical records, linkage with pharmacies in the study 
area, and standardized blood glucose measurements at each of the follow up visits. 
Additionally, we used data from a well-characterized prospective population-based 
cohort study, which allowed us to correct for a wide range of covariates. We used a 
long follow up period, and adjusted for baseline fasting glucose and insulin to reduce 
the possibility of reverse causation. By also examining associations with incident pre-
diabetes, we provide insight into the early development of subclinical disease. 

The main limitation of our study is that, as in all epidemiological studies, we cannot 
rule out residual confounding. Furthermore, our results were found in individuals of 
European ancestry, and may not be generalizable to other populations. In addition, 
we included individuals aged 55 years and older and effect estimates might not be 
generalizable to younger ages.

In conclusion, we identified ADAMTS13 activity as a novel independent marker of 
incident diabetes, associated with both diabetes and prediabetes. Future research is 
necessary to confirm this association and to elucidate the biology underlying this as-
sociation. Exploration of alternative mechanisms of ADAMTS13 beyond VWF cleavage 
is warranted as the association may not be explained by its antithrombotic function. 
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Supplemental Table 1. Cross-sectional association of ADAMTS13 activity and VWF antigen (per SD) 
with fasting glucose and natural-log transformed fasting insulin.

ADAMTS13 activity VWF antigen

β coefficient (95%CI) P-value β coefficient (95%CI) P-value

Glucose

Model 1 0.03 (0.01, 0.04) 0.001 0.01 (-0.00, 0.03) 0.08

Model 2 0.02 (0.01, 0.04) 0.003 -0.01 (-0.02, 0.01) 0.4

Insulin

Model 1 0.06 (0.04, 0.07) 6×10-15 0.07 (0.05, 0.08) 1×10-19

Model 2 0.05 (0.04, 0.06) 3×10-15 0.03 (0.02, 0.05) 2×10-8

β coefficient refers to the 1 unit increase in fasting glucose (mmol/L) or insulin (natural-log transformed 
pmol/L) per 1 standard deviation increase in VWF antigen or ADAMTS13 activity.
Adjustments: Model 1: Adjusted for age, sex, and cohort. Model 2: Additionally adjusted for HDL and 
total cholesterol, lipid-lowering medication, body-mass index, CRP, current smoking, antithrombotic 
medication, ALAT, white blood cell count, systolic blood pressure, antihypertensive medication, and 
prevalent CHD. The analysis of VWF antigen was adjusted for ADAMTS13 activity and vice versa. HDL 
cholesterol, CRP, and ALAT were natural-log transformed.

Supplemental Table 2. Association of ADAMTS13 activity and VWF antigen (per SD) with incident 
diabetes after exclusions based on disease and medication use at baseline*.

ADAMTS13 Activity VWF antigen

Hazard Ratio (95%CI) P-value Hazard Ratio (95%CI) P-value

Excluding cases of prevalent CHD:  565 events in 4,674 participants

Model 1 1.20 (1.10, 1.30) 0.00007 1.14 (1.05, 1.25) 0.002

Model 2 1.17 (1.07, 1.27) 0.0004 1.09 (1.00, 1.19) 0.06

Model 3 1.18 (1.08, 1.28) 0.0002 1.09 (1.00, 1.20) 0.05

Excluding antithrombotic medication users: 490 events in 4,062 participants

Model 1 1.20 (1.09, 1.32) 0.0001 1.14 (1.04, 1.25) 0.006

Model 2 1.15 (1.05, 1.27) 0.002 1.07 (0.98, 1.18) 0.1

Model 3 1.16 (1.06, 1.27) 0.001 1.09 (0.99, 1.20) 0.08

Excluding lipid-lowering medication users: 526 events in 4,372 participants

Model 1 1.18 (1.08, 1.29) 0.0005 1.12 (1.03, 1.23) 0.01

Model 2 1.15 (1.05, 1.26) 0.002 1.05 (0.96, 1.15) 0.3

Model 3 1.15 (1.05, 1.25) 0.002 1.07 (0.98, 1.17) 0.2

Excluding antihypertensive medication users: 415 events in 3,837 participants

Model 1 1.19 (1.07, 1.32) 0.001 1.12 (1.01, 1.24) 0.03

Model 2 1.20 (1.08, 1.33) 0.0005 1.06 (0.96, 1.18) 0.2

Model 3 1.20 (1.08, 1.33) 0.0005 1.11 (1.00, 1.23) 0.05

*Exclusions were based on non-imputed variables.
Adjustments: Model 1: Adjusted for age, sex, and cohort. Model 2: Additionally adjusted for HDL and 
total cholesterol, lipid-lowering medication, body-mass index, CRP, current smoking, antithrombotic 
medication, ALAT, white blood cell count, systolic blood pressure, antihypertensive medication, and 
prevalent CHD. The analysis of VWF antigen was adjusted for ADAMTS13 activity and vice versa. Mod-
el 3: Additionally adjusted for glucose and insulin levels. HDL cholesterol, CRP, ALAT, and insulin were 
natural-log transformed when used. 
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Abstract

Background: The aim of this study was to examine the incremental predictive value 
of genetic risk scores of coronary heart disease (CHD) in the 10-year risk predic-
tion of incident CHD.

Methods: In 5,899 subjects, we used 152 single nucleotide polymorphisms (SNPs) as-
sociated with coronary artery disease by the CARDIoGRAMplusC4D consortium 
to construct three weighted genetic risk scores: 1) GRSgws based on 49 genome-
wide significant SNPs, 2) GRSfdr based on 103 suggestively associated SNPs, and 
3) GRSall based on all 152 SNPs. We examined the changes in discrimination and 
reclassification of incident CHD when adding the genetic risk scores to models 
including traditional risk factors. We repeated the analysis for prevalent CHD. 

Results: The genetic risk scores were associated with incident CHD despite adjust-
ment for traditional risk factors and family history: participants had a 13% higher 
rate of CHD per standard deviation increase in GRSall. GRSall improved the C-sta-
tistic by 0.006 (CI95%: 0.000, 0.013) beyond age and sex, 0.003 (CI95%: -0.001, 
0.008) beyond traditional risk factors and 0.003 (CI95%: -0.001, 0.007 beyond 
traditional risk factors and family history. The genetic risk scores did not improve 
reclassification. GRSall strongly improved both discrimination and reclassification 
of prevalent CHD, even beyond traditional risk factors and family history, with a 
C-statistic improvement of 0.009 (0.003, 0.015).

Conclusions: Although the genetic risk scores based on 152 SNPs were associated 
with incident CHD, they did not improve risk prediction. This discrepancy may 
be the result of SNP discovery for prevalent rather than incident CHD, since the 
SNPs do improve prediction for prevalent disease.
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Introduction

Primary and secondary prevention programs are widely performed using risk predic-
tion models based on traditional risk factors to identify individuals at high risk for 
coronary heart disease (CHD). Optimizing these risk prediction models could there-
fore directly translate into improved prevention and management of CHD-related 
morbidity and mortality. As CHD has a strong heritable component,1,2 adding genetic 
markers to prediction models could improve risk prediction. This assumption has 
been tested in studies using genetic risk scores based on single nucleotide poly-
morphisms (SNPs).3-13 Overall, the studies show that prediction is not meaningfully 
improved by currently validated CHD SNPs.3-13 Nevertheless, the set of CHD SNPs 
is growing through the efforts of international consortia, and a recent genome-wide 
association study (GWAS) by the CARDIoGRAMplusC4D consortium raised the 
number of independent CHD SNPs from 31 to 153.14 Collectively these SNPs explain 
around 10% of the genetic variance,14 which suggests that we are now in a better 
position to implement SNPs in risk prediction of CHD. 

These SNPs, however, were identified using case-control and cross-sectional de-
signs. In these study designs SNPs associated with a favorable prognosis after CHD 
events may be overrepresented in cases. As a consequence, the association of these 
SNPs may not fully translate to incident CHD, leading to markers that are spuriously 
associated with CHD. 

We hypothesized that adding genetic risk scores based on CHD SNPs would im-
prove 10 year CHD risk prediction when added to traditional risk factors. To evaluate 
our hypothesis we constructed three genetic risk scores based on CHD SNPs found 
by the CARDIoGRAMplusC4D consortium. We then examined whether risk predic-
tion improved when we added the genetic risk scores to three models including: 1) 
age and sex, 2) age, sex and traditional risk factors, 3) age, sex, traditional risk factors 
and family history. To examine differences between incident and prevalent CHD, we 
repeated the analysis for prevalent CHD. 

Methods

Study population

This study was conducted within the Rotterdam Study, an ongoing prospective 
population-based cohort study of inhabitants of Ommoord, a district of Rotterdam 
in the Netherlands. The Rotterdam Study has been described in detail elsewhere.15,16 
In the year 1990, inhabitants of Ommoord who were 55 years old or over were 
invited to participate. Baseline examination lasted from 1990 to 1993 and included 



Chapter 4.1

160

7,983 participants, of whom 7,758 gave their informed consent for follow-up data 
collection. Follow-up examinations were carried out every 3 to 5 years. The study 
was approved by the Medical Ethics Committee of Erasmus University, Rotterdam, 
the Netherlands, and all included participants gave their written informed consent. 

Genotyping and imputation

Genotyping was successfully conducted in 5,899 participants who agreed to be fol-
lowed-up using the Illumina 550K. Imputation was done with reference to HapMap 
release 22 CEU using the maximum likelihood method implemented in MACH.17-19 
The imputation quality of the SNPs is presented in Supplemental Table 1.

Genetic risk scores

To construct genetic risk scores we used 153 uncorrelated SNPs associated with CHD 
by the CARDIoGRAMplusC4D consortium, of which 49 attained genome-wide 
significance and the remaining 104 had a false discovery rate of less (FDR) than 10% 
in an FDR analysis.14 Out of the 153 SNPs, 152 were either genotyped or imputed in 
the Rotterdam Study. We calculated weighted dosages by multiplying the risk al-
lele (the allele previously reported to increase the risk of CHD) dosage of each SNP 
with its previously reported effect size (lnOR)14. GRSgws was constructed using the 49 
genome-wide significant SNPs, GRSfdr using the 103 additional SNPs that were found 
in the FDR analysis, and GRSall using all 152 SNPs. Genetic risk scores were computed 
using the PredictABEL package in R version 2.15.1 (R Foundation for Statistical Com-
puting, Vienna, Austria).20

Coronary heart disease

CHD events included myocardial infarctions, all CHD mortality, and revasculariza-
tion. Cardiovascular outcome definitions as well as data collection methods are 
presented in detail elsewhere.21 In brief, participants with general practitioners in 
the district of Ommoord were continuously monitored for fatal and nonfatal car-
diovascular events through automated linkage with files from general practitioners 
and hospitals. Participants with general practitioners outside of Ommoord were 
monitored through annual checks of their medical records. All reported events were 
independently reviewed and coded by two research physicians. Codes on which 
the research physicians disagreed were discussed to reach consensus, and a medical 
expert in cardiovascular disease subsequently reviewed all events. 

Traditional risk factors and family history

Serum total and high density lipoprotein (HDL) cholesterol concentrations were 
determined at baseline within 2 weeks after sampling by an automated enzymatic 
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procedure in non-fasting blood samples (Kone Specific Analyzer, Kone Instruments). 
Blood pressure was measured while seated using a random-zero sphygmomanom-
eter at the right brachial artery. The average of two consecutive measurements 
was used. Diabetes was defined as fasting plasma glucose levels ≥ 7 mmol/L or 
non-fasting plasma glucose ≥ 11.1 mmol/L, or use of medications indicated for the 
treatment of diabetes. Current smoking status (yes/no), family history of myocardial 
infarction in first degree relatives (yes/no), lipid-lowering medication use (yes/no), 
and antihypertensive medication use (yes/no) were assessed during a structured 
interview at baseline by trained research assistants.

Statistical analyses

Statistical analyses were done using SPSS version 20 (IBM Corp., Armonk, NY) and 
R version 2.15.1. Missing values for all covariates were imputed using expectation 
maximization in SPSS. Participants with prevalent CHD at baseline were excluded, 
and hazard rates were computed using cox proportional hazards models. Three 
adjustment models were used. Model 1 was adjusted only for age and sex. Model 2 
was further adjusted for total and HDL cholesterol, systolic blood pressure, preva-
lent type 2 diabetes, antihypertensive medication, lipid-lowering medication, and 
current smoking. Model 3 was additionally adjusted for family history of myocardial 
infarction. In addition to standard P-values, we computed Bonferroni corrected P-
values for the associations of the genetic risk scores with incident CHD using the 
p.adjust function in R. We applied a correction for 9 statistical tests (the 3 genetic risk 
scores were each tested in 3 models). All models met the assumption of proportional 
hazards, which was tested for each model using the “cox.zph” function in R. Absolute 
10-year risk was estimated as explained by Wilson et al.22 These predicted risks were 
used to classify participants into low (< 5%), intermediate-low (5-10%), intermediate-
high (10-20%), and high (> 20%) risk categories. Changes in C-statistic were used 
to assess improvements in discrimination, and the categorical net reclassification 
improvement (NRI) was used to assess improvements in reclassification.23 NRIs were 
calculated using the prospective form applicable to survival data as introduced by 
Pencina et al.24 We used 10,000 bootstrap resamples to generate 95% confidence 
intervals for changes in C-statistic and prospective NRI. We performed several 
additional analyses. First, improvements in prediction were also calculated in the 
subgroup of 2082 participants who were under 65 years old at baseline. Secondly, 
we examined the association of the genetic risk scores with myocardial infarction 
and estimated the corresponding improvements in prediction. Furthermore, we 
used cox proportional hazard models to examine the association between family 
history and incident CHD using different adjustments: age and sex adjusted, further 
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adjusted for traditional risk factors, and further adjusted for each of the genetic risk 
scores. 

The genetic risk scores used SNPs that were identified for prevalent rather than 
incident CHD. To examine whether this affects their predictive value, we repeated 
the analysis separately for prevalent cases. For prevalent CHD, odds ratios were 
computed using logistic regression, and both the predicted risks and NRIs were 
calculated using PredictABEL.20 Nagelkerke’s R2 was used to estimate the variance 
in incident and prevalent CHD explained by different combinations of risk factors.25

Results

Out of 5,899 participants, 485 participants had prevalent CHD at baseline. During a 
mean follow up period of 12.8 years, 964 CHD events (460 myocardial infarctions) 
occurred among the remaining 5,414 individuals. Of these events, 571 (270 myocar-
dial infarctions) occurred within 10 years. Baseline characteristics of the study popu-
lation are shown in Table 1, and baseline characteristics by CHD status are shown in 
Supplemental Table 2).

All three genetic risk scores were associated with incident CHD. The associations 
were attenuated when adjusting for traditional risk factors, and further attenuated 
when additionally adjusted for family history. These associations are shown in Table 2. 
The association between family history and incident CHD largely remained stable 
when the genetic risk scores were added to the model (Supplemental Table 3). 

Improvements in discrimination and reclassification of incident CHD are shown in 
Table 3. The largest improvement in risk prediction was achieved by GRSall beyond 
age and sex (ΔC = 0.006, 95%CI: 0.000, 0.013); however, it did not improve reclas-
sification. Furthermore, improvements in discrimination or reclassification beyond 
traditional risk factors or traditional risk factors + family history were very modest. In 
participants under the age of 65 the genetic risk scores lead to greater improvements 
in prediction than in the entire sample, although these were accompanied by larger 
confidence intervals (Supplemental Table 4). The associations and improvements 
in prediction were considerably weaker for incident MI than for prevalent CHD 
(Supplemental Tables 5 and 6).

All three genetic risk scores were associated with prevalent CHD 
(Supplemental Table 7), and these associations were stronger than the associa-
tions with incident CHD. Improvements in the prediction of prevalent CHD were 
almost always markedly higher than improvements in prediction of incident CHD 
events (Supplemental Table 8). All three genetic risk scores improved discrimina-
tion beyond the three models. GRSall improved discrimination the most (ΔC 0.009 
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beyond traditional risk factors and family history, 95%CI: 0.003, 0.015). GRSall also 
improved reclassification beyond the three models, while GRSgws only improved 
reclassification beyond age + sex and traditional risk factors. GRSfdr did not improve 
reclassification beyond any of the models.

Discussion

In this study we showed that genetic risk scores based on up to 152 SNPs so far identi-
fied for prevalent CHD are associated with incident CHD, though they do not lead to 
clinically relevant improvements in 10-year risk prediction of CHD. 

SNPs could be used in CHD risk prediction in two different settings. The first is to 
use genetic data in adults and elderly subjects to improve risk prediction beyond 
current CHD risk prediction models. Our results show that currently available SNPs 
are not sufficient for this application. A second use of SNPs is to estimate the future 
risk of CHD earlier in life. This could be in the form of lifetime risk, or in the form of 
10 year risk at different ages. In this setting SNPs are already useful if they improve 

Table 1. Baseline characteristics of the 5,899 participants included in this study.

Mean (SD) or percentage

Age (years) 69.3 (9.0)

Sex (% males) 40.9

Total cholesterol (mmol/L) 6.6 (1.2)

HDL cholesterol (mmol/L) 1.34 (0.4)

Lipid lowering medication use 2.5

Antihypertensive medication use 13.3

Systolic blood pressure (mmHg) 139.2 (22.3)

Diastolic blood pressure (mmHg) 73.7 (11.5)

Prevalent Type 2 Diabetes 10.6

Current smoking 23.1

Abbreviations: BMI: Body mass index; HDL: High-density lipoprotein

The percentage of variance in incident and prevalent CHD explained by the genetic 
risk scores, risk factors, and their combinations are shown in Supplemental Table 9. 
Genetic risk scores consistently explained a larger proportion of the variance of 
prevalent CHD than of incident CHD: GRSall explained 1.5% of the variance of preva-
lent CHD, but only 0.7% of the variance of incident CHD. In both cases, only 0.1% of 
the variance was also explained by family history. GRSall explained a larger proportion 
of the variance of both incident and prevalent CHD than family history, age, total 
cholesterol, systolic blood pressure, smoking, and lipid lowering medication use. 
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Table 3. Improvements in discrimination and reclassification of incident CHD when adding genetic 
risk scores to 10 year risk prediction models.

C ΔC NRI

Model 1 0.684

GRSgws 0.004 (-0.001, 0.009) 0.023 (-0.021, 0.067)

GRSfdr 0.004 (-0.001, 0.008) 0.003 (-0.04, 0.046)

GRSall 0.006 (0.000, 0.013) 0.034 (-0.014, 0.081)

Model 2 0.716

GRSgws 0.002 (-0.001, 0.006) 0.014 (-0.019, 0.047)

GRSfdr 0.002 (-0.001, 0.005) 0.01 (-0.024, 0.044)

GRSall 0.003 (-0.001, 0.008) 0.022 (-0.018, 0.061)

Model 3 0.716

GRSgws 0.002 (-0.001, 0.006) 0.016 (-0.019, 0.051)

GRSfdr 0.002 (-0.001, 0.004) 0.007 (-0.026, 0.04)

GRSall 0.003 (-0.001, 0.007) 0.017 (-0.025, 0.058)

Abbreviations: CHD: Coronary heart disease; C: C-statistic before adding genetic risk scores to the 
model; ΔC: Improvement in C-statistic when adding the genetic risk score to base models; NRI: Net 
reclassification improvement when adding the genetic risk score to base models; GRSgws: Genetic risk 
score including only CHD SNPs significant according to genome-wide significance; GRSfdr: Genetic 
risk score including only CHD SNPs significant according to false discovery rate analysis; GRSall: Ge-
netic risk score including all significant CHD SNPs.
Adjustments: Model 1: includes age and sex; Model 2: Further includes total and HDL cholesterol, 
systolic blood pressure, prevalent type 2 diabetes, antihypertensive medication, lipid-lowering medi-
cation, and current smoking; Model 3: Further includes for family history of myocardial infarction.

Table 2. Hazard ratios (95% confidence intervals) per SD change of genetic risk scores for incident 
CHD.
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GRSgws 1.13 (1.06, 1.20) 0.00014 0.0013 1.12 (1.05, 1.19) 0.00054 0.0049 1.11 (1.05, 1.19) 0.00076 0.0068

GRSfdr 1.09 (1.03, 1.17) 0.0051 0.046 1.08 (1.01, 1.15) 0.02 0.18 1.07 (1.01, 1.14) 0.032 0.29

GRSall 1.15 (1.08, 1.23) 1.1×10-5 9.9×10-5 1.13 (1.06, 1.21) 0.00012 0.0011 1.13 (1.06, 1.20) 0.00022 0.0020

*Bonferroni-corrected P-values are corrected for 9 statistical tests.
Abbreviations: CHD: Coronary heart disease; GRSgws: Genetic risk score including only CHD SNPs sig-
nificant according to genome-wide significance; GRSfdr: Genetic risk score including only CHD SNPs 
significant according to false discovery rate analysis; GRSall: Genetic risk score including all significant 
CHD SNPs.
Adjustments: Model 1: age and sex adjusted; Model 2: Further adjusted for total and HDL cholesterol, 
systolic blood pressure, prevalent type 2 diabetes, antihypertensive medication, lipid-lowering medi-
cation, and current smoking; Model 3: Further adjusted for family history of myocardial infarction.
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prediction over age and sex. Our study suggests that current GWAS findings may be 
more useful for this setting.

Several studies have shown that genetic risk scores based on SNPs for prevalent 
CHD are associated with incident CHD though improvements in prediction are 
generally very small.3-7 Ganna et al have previously tested a genetic risk score similar 
to GRSgws,7 and they found slightly larger improvements in discrimination and reclas-
sification. In contrast to our study, they recalculated the weight of each included SNP 
in an independent prospective cohort. This step may partly explain the differences 
between our studies. Another study suggested that SNPs might be especially useful 
in specific subgroups such as middle aged men.4 Our study was not sufficiently pow-
ered to examine predictive improvements in this subgroup, but we did find greater 
improvements in prediction when we limited our analysis to participants under 65 
years old. 

Our genetic risk scores were based on GWA studies. Given that collecting the large 
number of cases needed for adequate statistical power is easier in a case-control 
setting with prevalent cases, a large proportion of studies included in these GWA 
studies are composed of case-control studies. Such a design, though statistically 
more powerful, may lead to the identification of SNPs that are related to improved 
survival after events rather than SNPs that increase the risk of event. This is known 
as Neyman’s bias or incidence-prevalence bias.26 If so, the identified SNPs for CHD, 
and hence the genetic risk score herewith evaluated, might represent a mixture of 
SNPs associated with CHD risk and SNPs associated with an improved survival after a 
CHD event. Indeed, we found a striking rise in the incremental value of the genetic 
risk scores when we used prevalent CHD as the outcome instead of incident CHD. 
Furthermore, a previous study of prevalent CHD also found a large C-statistic im-
provement beyond traditional risk factors (0.008) in contrast to the small improve-
ments found by studies of incident CHD.8 This difference suggests that the inability 
of SNPs to contribute to risk prediction is in part explained by the cross-sectional 
discovery panel. This is also supported by our findings as percentage of variance 
explained. For instance the variance explained by GRSall in prevalent CHD was twice 
as large as in incident CHD. This bias may hamper the ability of genetic risk scores 
to improve prediction of first CHD events in populations free of CHD.27 We present 
only preliminary evidence that this is influencing risk prediction: prevalent events 
occurred earlier in life than incident events, and this may partly explain the observed 
differences in risk prediction. Individuals experiencing CHD events at a younger age 
may be genetically enriched for CHD SNPs. In line with this, the percentage of in-
dividuals with a family history of myocardial infarction is slightly higher in prevalent 
cases than in incident cases.
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A potential solution may be to recalculate the weight of each included SNP in 
an independent prospective cohort as done by Ganna et al.7 Nevertheless, this ap-
proach still assumes that important SNPs for prevalent CHD are also important for 
incident CHD, and did not lead to substantially higher indices of discrimination and 
reclassification. Instead, it may be necessary to conduct a GWAS on incident CHD 
restricted to prospective cohort studies.

Conducting large-scale genetic studies in prospective cohort studies is likely to 
lead to more clinically relevant SNPs for prediction, but there are further develop-
ments that may also achieve this goal. First, increasing the discovery GWAS sample 
size will continue to lead to more effective genetic risk scores, by identifying new 
SNPs and by refining the effect estimates of known SNPs. Chatterjee et al. projected 
that the predictive performance of genetic risk scores for CHD may keep improving 
as GWAS samples increase to as much as ten times their current size.28 Our study 
also supports intensifying the discovery effort: the most effective risk score not only 
included SNPs robustly associated with CHD, but also 103 further SNPs suggestively 
associated with CHD. Second, denser genotyping arrays, denser imputation panels, 
exome and whole-genome sequencing studies may yield low-frequency and rare 
variants for CHD that were hidden from GWAS. While common variants usually 
have small effect sizes due to evolutionary constraints, rarer variants may also have 
intermediate to large effect sizes. Therefore, while a single rare variant only explains 
a small proportion of variance in the general population, it can explain a large pro-
portion of variance in families where it is present. 

Family history only overlapped slightly with the genetic risk scores in the variance 
of CHD explained, providing largely independent information. Our results suggest 
that family history largely tags genetic variants that are not well covered by GWAS, 
or aspects of the shared environment that are independent of traditional risk fac-
tors. These hidden risk factors appear to affect CHD risk by increasing the burden of 
subclinical atherosclerosis.29 

This study has certain strengths and limitations. Firstly, we examined the associa-
tion between the genetic risk scores and both incident and prevalent CHD in the 
same population, allowing us to compare these associations. Since associated SNPs 
were identified using the largest available GWAS of CHD, a relatively large set of 
CHD SNPs with well-estimated weights was used, including multiple independently 
associated SNPs per locus when known. Previous studies have focused on genome-
wide significant SNPs to include only the most robustly associated SNPs. This was 
also our approach for GRSgws, but by including both genome-wide significant SNPs 
and suggestively associated SNPs in GRSall, we were able to create a stronger genetic 
instrument than GRSgws. In addition, this study included individuals of 55 years and 
older, which corresponds well with the target population for prediction. On the 
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other hand, our population consisted entirely of Caucasians, and our results may 
not be generalizable to other populations. Furthermore, we used a crude measure 
of family history. First, family history was only available for myocardial infarction and 
not for CHD in general. Second, family history was obtained during an interview, and 
may not always be complete. Third, participants were only asked about first degree 
relatives. However, these limitations reflect difficulties in measuring family history 
that also arise in clinical practice.

While our results do not support a role for currently available common SNPs in 
CHD risk prediction in the traditional setting, they do suggest that it could already 
improve prediction of future CHD earlier in life, when other variables used in pre-
diction are not yet available. Our results also suggest that SNPs identified through 
GWAS of prevalent disease may not be optimally suited for the prediction of inci-
dent disease. This mismatch may extend to other diseases with high mortality rates.

Supplement available online at: 
http://ije.oxfordjournals.org/content/44/2/682/suppl/DC1
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Abstract

Background: MicroRNAs (miRNA) play a crucial role in the regulation of diverse 
biological processes by post-transcriptional modulation of gene expression. 
Genetic polymorphisms in miRNA-related genes can potentially contribute to 
a wide range of phenotypes. The effect of such variants on cardiometabolic 
diseases has not yet been defined. 

Methods: We systematically investigated the association of genetic variants in the 
seed regions of miRNAs with cardiometabolic phenotypes, using the thus far 
largest genome wide association studies on 17 cardiometabolic traits/diseases. 

Results: We found that rs2168518:G>A, a seed region variant of miR-4513, associates 
with fasting glucose, LDL-cholesterol and total cholesterol, systolic and diastolic 
blood pressure and risk of coronary artery disease. We experimentally showed 
that miR-4513 expression is significantly reduced in presence of the rs2168518 
mutant allele. We sought to identify miR-4513 target genes that may mediate these 
associations and revealed five genes (PCSK1, BNC2, MTMR3, ANK3 and GOSR2) 
through which these effects might be taking place. Using luciferase reporter as-
says we validated GOSR2 as a target of miR-4513 and further demonstrated that 
the miRNA mediated regulation of this gene is changed by rs2168518. 

Conclusions: Our findings indicate a pleiotropic effect of miR-4513 on cardiometa-
bolic phenotypes and may improve our understanding of the pathophysiology 
of cardiometabolic diseases.
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Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNAs spanning 20-24 nucleo-
tides that function as crucial regulators in a broad range of biological processes.1 
Since the first miRNA was discovered in the early 1990s, over 1500 miRNAs have 
been identified with confidence in humans.2,3 These miRNAs together can regulate 
expression levels of approximately 60% of all human protein-coding genes.4 In 
recent years miRNAs have been widely studied as potential diagnostic biomarkers 
and therapeutic targets in complex disorders.5 Furthermore, miRNAs have gained 
attention as important modulators of cardiovascular diseases such as myocardial 
infarction,6,7 cardiac hypertrophy,8 and heart failure,9 as well as various metabolic 
processes such as insulin production,10 glucose homeostasis,11 lipid metabolism,12 
and obesity.13 

MiRNAs are post-transcriptional regulators of gene expression by interacting 
with the 3’ untranslated region (3’UTR) of the target mRNAs.1 Thereby they repress 
translation and to a lesser extent accelerate the decay of target transcripts.14 Given 
the central role of miRNAs in gene expression, genetic polymorphisms in the cor-
responding sequences of a miRNA may contribute to a wide range of phenotypic 
variation and disease susceptibility.15,16 The core of a mature miRNA, called the “seed 
region”, includes nucleotides 2-8 from the 5’ end, and plays a critical role in target 
gene recognition and interaction.17 Genetic variation within this critical region of 
miRNA may both disrupt the interaction of a miRNA with target transcripts and create 
illegitimate miRNA targets.18,19 Therefore, miRNA seed polymorphisms are expected 
to alter the expression profile of target genes and subsequently affect corresponding 
phenotypes; however, so far only very few pathogenic variants have been evidenced 
in cardiovascular disease and metabolic syndrome. 

In the present study, we aimed to systematically investigate the association be-
tween miRNA seed polymorphisms and a number of cardiometabolic traits and 
diseases. In addition, we sought to determine whether any of the target genes of the 
identified miRNAs may mediate their effects on cardiometabolic phenotypes.

Methods

Identification of miRNA seed polymorphisms

A flow chart of our approach to retrieve single nucleotide polymorphisms (SNPs) in 
miRNA seed regions is shown in Figure 1. We systematically screened all known hu-
man miRNAs to identify variants in their seed regions, by reviewing the literature and 
searching the following online databases: microSNiPer,20 PolymiRTS,21 Patrocles,22 
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and miRvar.23 We included variants with minor allele frequency (MAF) > 0.01. Since 
previous genome-wide association (GWA) meta-analysis on cardiometabolic traits/
diseases have been performed using HapMap imputed data, we focused on SNPs 
that were present in the international HapMap project (release 22) (http://www.
hapmap.org/).24 For SNPs that were not present in the HapMap, we used the SNAP 
web tool to find proxy SNPs in high Linkage Disequilibrium (LD) (R2 > 0.8 and dis-
tance <200 kb) (http://www.broadinstitute.org/ mpg/snap/id).25 

Association of miRNA seed polymorphisms with cardiometabolic 
phenotypes

We examined the association of miRNA seed SNPs with cardiometabolic pheno-
types using the thus far largest available GWA meta-analyses of 17 cardiometabolic 
traits and diseases. Table 1 shows a description of cardiometabolic phenotypes and 
consortia that we used in this study.

Data on glycemic traits have been contributed by the Meta-Analyses of Glucose 
and Insulin-related traits Consortium (MAGIC) investigators, including fasting glu-
cose, serum glucose after 2hr, fasting insulin, fasting pro-insulin, HbA1c, HOMA-B, 
and HOMA-IR from up to 133,000 individuals (http://www.magicinvestigators.
org).26-30 The DIAbetes Genetics Replication and Meta-analysis (DIAGRAMv3) con-

Figure 1. Identification of polymorphisms within the miRNA seed regions.
The flow chart describes the selection process to retrieve SNPs in the seed regions of miRNAs. 
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sortium has done a GWA meta-analysis in 12,171 T2D cases and 56,862 controls.31 The 
Global Lipid Genetics Consortium (GLGC) has carried out GWA studies of plasma 
concentrations of total cholesterol, low-density lipoprotein cholesterol (LDL), high-
density lipoprotein cholesterol (HDL) and triglycerides for approximately 100,000 
individuals.32 The Genetic Investigation of ANthropometric Traits (GIANT) consor-
tium has performed GWA studies on anthropometric traits including body mass 
index (BMI) of over 120,000 and waist/hip ratio (WHR) adjusted for BMI of 77,000 
individuals.33,34 The Global BPgen consortium has done GWA studies on systolic and 
diastolic blood pressure in over 71,000 individuals. Individuals under treatment for 
hypertension were imputed to have 15 mm Hg higher systolic blood pressure and 
10 mm Hg higher diastolic blood pressure than the observed measurements.35 The 
CARDIoGRAMplusC4D consortium conducted a GWA study in 63,746 CAD cases 
and 130,681 controls. In this study, they have assessed 79,138 important related SNPs 
with CAD on the Metabochip.36

Table 1. Description of publicly available GWA meta-analysis on cardiometabolic phenotypes. 

Phenotype Consortium Sample Size Reference

Glycemic indices  

Fasting glucose MAGIC 133,010 26

Fasting  insulin MAGIC 108,557 26

Glucose after2h MAGIC 42,854 27

Pro-insulin MAGIC 10,701 28

HbA1c MAGIC 46,368 29

HOMA-B MAGIC 46,186 30

HOMA-IR MAGIC 46,186 30

Type 2 diabetes DIAGRAM 12,171 cases/56,862 controls 31

Lipid traits

Total Cholesterol GLGC 100,184 32

Triglycerides GLGC 96,598 32

HDL Cholesterol GLGC 99,900 32

LDL Cholesterol GLGC 95,454 32

Anthropometric  measures 

BMI GIANT 123,764 33

WHR GIANT 77,105 34

Blood pressure

Systolic BP Global BPGen 71,225 35

Diastolic BP Global BPGen 71,225 35

Coronary artery disease CARDIoGRM 63,746 case/130,681 control 36

Shown are 17 cardiometabolic phenotypes and publicly available GWAS meta-analysis on these 
traits/disease that we used for the association studies.
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Effect of miRNA seed variants on miRNA processing and expression

When a miRNA seed variant was associated with cardiometabolic phenotypes, we 
used the Vienna RNAfold algorithm to predict the effect of variant on the secondary 
structure and processing of the primary miRNA sequence.37 Furthermore, we exam-
ined whether the SNP affects mature miRNA expression. We cloned the pre-miRNA 
sequence containing wild type or mutant alleles behind the gene encoding green 
fluorescent protein (GFP) in the expression plasmid MSCV-BC,38 resulting in GFP-
miRNA fusion transcripts. HEK293 cell transfection, total RNA isolation and quantita-
tive PCRs were performed as previously described.38 

Association of miRNA target genes with cardiometabolic phenotypes

To explore the putative mediatory role of the target genes of miRNA associated 
with cardiometabolic phenotypes, we investigated the association of genetic vari-
ants in the target genes with the associated phenotypes. The significance threshold 
for this analysis was set by using a Bonferroni correction based on the number of 
independent SNPs. We calculated the number of independent SNPs using of Link-
age disequilibrium based SNP pruning in PLINK with R2 > 0.5 (http://pngu.mgh.
harvard.edu/~purcell /plink/). The TargetScan database was used to identify target 
gene information, including their context score, and evolutionary conserved sites of 
miRNAs (release 6.2) (http://www.TargetScan.org/). 

Expression quantitative trait loci (eQTL)

We examined the effect of miRNA seed SNPs on the expression levels of miRNA 
target genes using whole blood trans-eQTL and on their host genes expression using 
cis-eQTL data from the Rotterdam Study (n=762). We further replicated the eQTL 
analyses in two other cohorts; SHIP-TREND (n=963) and InCHIANTI (n=611). The 
designs of these cohorts have been described in detail elsewhere.39-41

Association of SNPs or their proxies, based on an R2 > 0.7, were assessed with 
gene expression levels in whole blood cells. Whole-blood cells were collected in 
PAXgene-tubes (Becton Dickinson). Total RNA was isolated using PAXgene Blood 
RNA kits (Qiagen), and to ensure a constant high quality of the RNA preparations, all 
RNA samples were analyzed using the Labchip GX (Calliper) according to the manu-
facturer’s instructions. Samples with an RNA Quality Score>=7 were amplified and 
labelled (AmbionTotalPrep RNA), and hybridized to the Illumina Whole-Genome 
Expression Beadchips (HumanHT-12 v4). Processing of the samples was performed 
at the Genetic Laboratory of Internal Medicine, Erasmus University Medical Cen-
ter Rotterdam. The RS-III expression dataset is available at GEO (Gene Expression 
Omnibus) public repository under the accession GSE 33828. For normalization, 
raw intensity data generated with the expression arrays were exported from Illu-
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mina’s GenomeStudio V 2010.1 Gene Expression Module to the R environment and 
quantile normalized and log2-transformed, as well as probe-centered, and sample-
standardized.

We used the eQTL mapping pipeline called MegaQTL. eQTLs were deemed cis 
when the distance between the SNP chromosomal position and the probe midpoint 
was less than 250 kb; eQTLs were deemed trans when the distance between the 
SNP chromosomal position and the probe midpoint position was larger than 5 
Mbp. eQTLs were mapped using Spearman’s rank correlation, using the imputation 
dosage values as genotypes. Resultant correlations were then converted to P-values 
and their respective z-scores weighted with the square root of the sample size. The 
model was adjusted for 40 principal components, of which 18 components capture 
different blood count parameters.42

Luciferase reporter assay

We used luciferase reporter assay system to validate the predicted interaction of 
a miRNA with its identified target genes and also to determine the functional con-
sequence of the miRNA seed SNP on the binding of miRNA to the target genes. To 
amplify the mature miR-4513 sequence, we used a forward primer containing XhoI 
restriction site (AACTCGAGAGGATGTGGTCTTTGCATCT TC) and a reverse primer 
containing EcoRI restriction site (AAGAATTCCCTCCAGTCTCCCCACCTAG). The 
miRNA sequences with major or minor alleles were cloned in the MSCV-BC vector. 
In addition, the 3’UTR sequence of GOSR2 was amplified with the forward primer 
(AATCTAGAGTGATCCCAGCGACTCTTCA) containing the restriction enzyme site 
XbaI and the reverse primer (AAGGGCCCCCGTAGAGATGGCAGGGACT), contain-
ing an ApaI restriction site. The 3’UTR fragment of GOSR2, containing the putative 
target site of miR-4513, was cloned in the pGL3 Luciferase reporter vector.38 All 
constructs were confirmed by Sanger sequencing. HEK293 cells were plated into 12-
well plates and co-transfected with MSCV-wild type miR-4513 (contain major allele) 
or MSCV-mutant miR-4513 (contain minor allele) and pGL3 containing the 3’UTR 
fragment of GOSR2. Luciferase activity was measured with the Dual-Glo Luciferase 
Assay System according to manufacturer’s protocol (Promega). Renilla luciferase 
activity was normalize to the corresponding firefly luciferase activity and plotted as a 
percentage of the control. The experiments were performed in triplicate. 

Potential functional roles and pathway analysis for the identified 
miRNA target genes

To explore the pathways and networks in which the identified miRNA’s target genes 
play a role, we performed Ingenuity Pathway Analysis (IPA). IPA is a knowledge 
database generated from peer-reviewed scientific publications that enables the 
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discovery of highly represented biological mechanisms, pathways or functions most 
relevant to the genes of interest from large, quantitative datasets (http://www.inge-
nuity.com/products/ipa/). We uploaded lists of target genes of miRNAs found to be 
associated with cardiometabolic phenotypes, and performed a core analysis with 
the default settings in IPA. We mapped these target genes to biological functions or 
canonical pathways. We looked at each gene separately to identify the associated 
pathways and biological networks. We further sought to determine whether the 
highlighted target genes of a miRNA that were found to be associated with cardio-
metabolic phenotypes are correlated together. 

Results

Genetic variants in the miRNA seed regions 

We retrieved all possible SNPs in the miRNA corresponding sequences, of which a 
total number of 275 SNPs selected in the miRNA seed regions (Supplemental Table 1). 
We included SNPs with MAF > 0.01 (n=26) and focused on the SNPs present in the 
HapMap project (n=5). Using the SNAP web tool, we found 2 proxy SNPs in high LD 
(R2 > 0.8 and distance < 200 kb) with 2 further miRNA seed variants that were not 
present in HapMap (Figure 1). Thus, we examined 7 SNPs pertaining to 7 different 
miRNAs, including miR-146a-3p, miR-548a, miR-1178-5p, miR-1269b, miR-4513, miR-
4741, and miR-6499-5p (Table 2).

Table 2. MiRNA seed variants with MAF > 0.01 and present in the HapMap project. 

SNP ID Chr.
Coded
allele

Non-coded
allele

MAF
(Coded allele)

SNP
proxy

miRNA
ID

miRNA
location

rs2910164 5 C G 0.24 - miR-146a-3p Intergenic

rs3734050 5 T C 0.098 - miR-6499-5p FAT2

rs7210937 4 C G 0.074 - miR-1269b ARHGAP44

rs7311975 12 C T 0.028 - miR-1178-5p CIT

rs515924 6 G A 0.15 rs676103* miR-548a Intergenic

rs2168518 15 A G 0.31 rs1378942** miR-4513 CSK

rs7227168 18 T C 0.12 rs7239066*** miR-4741 RBBP8

Shown are 7 miRNA seed SNPs with minor allele frequency (MAF) > 0.01 which are present in the 
HapMap project (release 22). For those SNPs that were not present in HapMap imputed data, we used 
their proxies in high linkage disequilibrium (LD), marked by star. 
* R2=1.0 and distance =189bp (A/G) 
** R2=1.0 and distance =928bp (A/C) 
*** R2=1.0 and distance = 1351bp (A/G)
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A miR-4513 seed variant associates with multiple cardiometabolic phenotypes

The genetic association analysis of 7 miRNA seed SNPs with 17 cardiometabolic 
traits/ diseases are shown in Supplemental Table 2. We used a Bonferroni cor-
rection to compensate for 119 tests (7×17=119), resulting in a P-value of 4.2×10-4 as a 
threshold of study-wide significance. We found rs1378942:G>T, a proxy in full LD 
(R2= 1.0) with rs2168518:C>T in the seed region of miR-4513 (Supplemental Figure 1), 
to be significantly associated with multiple cardiometabolic phenotypes. Among 
glycemic traits, rs1378942 was significantly associated with increased levels of fast-
ing glucose (effective allele: A, P-value=2.5×10-4, β= 1.2×10-2). For lipid traits, the A 
allele of rs1378942 was significantly associated with higher LDL (P-value = 5.6×10-5, 
z-score=4.03) and total cholesterol (P-value= 5.7×10-5, z-score= 4.02). This allele was 
also significantly associated with higher systolic (P-value=3.4×10-10) and diastolic 
blood pressure (P-value=3.5× 10-12). Moreover, the A allele of rs1378942 showed a 
suggestive association with increased risk of CAD (P-values=9.2×10-4). Additionally, 
we generated regional association plots of the related genomic region of this SNP for 
the identified traits using LocusZoom web tool (Version 1.1.).15 Supplemental Figure 2 
illustrates the association of rs1378942 with these traits in regional association plots, 
showing that this SNP either has the strongest association with the trait in the given 
genomic region or is one of the strongest ones.

rs2168518 affects the miR-4513 processing and expression 

We observed 0.49 kcal/mol difference in the free energy of the thermodynamic 
ensemble of the mutant versus the wild type primary miR-4513 sequence, which may 
affect the processing of the primary miRNA (Supplemental Figure 3). We cloned the 
pre-miR-4513 sequence (containing the wild type or mutant alleles) behind the GFP 
in the expression plasmid to examine the effect of rs2168518 on the level of mature 
miR-4513 expression. Transient transfection experiments in HEK293 cells showed a 
significant reduced level of miR-4513 from the mutant allele relative to GFP com-
pared to the wild type allele (P-value =0.0048) (Figure 2).

miR-4513 target genes are associated with cardiometabolic phenotypes  

We examined the association of all 109 predicted target genes of miR-4513 with 
the cardiometabolic traits to identify their putative mediatory roles in our findings 
(Supplemental Table 3). After applying a Bonferroni correction to compensate for 
the multiple testing, we found five target genes to be significantly associated with the 
identified traits, including PSCK1 with fasting glucose (P-value = 8.1×10-6), BNC2 with LDL 
(P-value=7.6×10-6) and total cholesterol (P-value=6.6×10-6) , MTMR3 with total choles-
terol (P-value =3.6×10-5), GOSR2 with systolic blood pressure (P-value=7.3×10-7 ) and CAD 
(P-value= 1.5×10-6), and ANK3 with systolic blood pressure (P-value=3.9 × 10-5) (Figure 3 ).
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Figure 2. The effect of rs2168518 on miR-
4513 expression containing the wild type 
or mutant alleles. This figure illustrates a 
significant reduced level of mature miR-
4513 from the mutant allele relative to 
GFP compared to the wild type allele.

Figure 3. Association of miR-4513 target genes with the identified cardiometabolic traits.
This figure shows the association of 2,261 SNPs in the 109 predicted target genes of miR-4513 with 
17 cardiometabolic traits. Dashed line indicates the significance threshold set at P-value < 2.2×10-5 
(Bonferroni adjusted for 2,261tests). We highlighted the target genes which are most suspected to be 
influenced by the significantly associated SNPs. F.G, Fasting glucose; G2H, Glucose after 2hours; F.In, 
Fasting insulin; Pro.In, Pro-Insulin; HB, Homa-B; HIR, Homa-IR; HbA1c; TC, Total cholesterol; TG, Tri-
glycerides; HDL, High density lipoprotein; LDL, Low density lipoprotein; SBP, Systolic blood pressure; 
DBP, Diastolic blood pressure; T2D, Type 2 diabetes; CAD, Coronary artery disease; BMI, Body mass 
index; WHR, Waist to hip ratio. 
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Association of rs2168518 with miR-4513 target genes and CSK expression

We examined the effect of SNP rs2168518 in miR-4513 on the expression levels of five 
identified genes using blood trans-eQTL data in 2,336 individuals. We did not find a 
statistically significant difference in the expression levels of target genes PSCK1, BNC2, 
MTMR3, GOSR2, and ANK3 across different alleles of rs2168518. However, there was 
a positive trend in the mean RNA-expression levels of GOSR2 in individuals carrying 
the risk allele of rs2168518 (Supplemental Table 4). Our cis-eQTL analysis showed 
a significant association between rs2168518 and expression of miR-4513’s host gene 
CSK (z-score=16.2, P-value=5.1×10-59 ).

rs2168518 affects miR-4513 controlled expression of GOSR2 

Next, we investigated whether the rs2168518 in miR-4513 effects on the expression 
level of GOSR2 in-vitro. Therefore, we generated expression vectors with either the 
wild type (containing the major allele) or mutant miR-4513 (containing the minor 
allele) and co-transfected these constructs with Luciferase reporters containing the 
3’ UTR of GOSR2. Overexpression of miR-4513 significantly decreased the Luciferase 
activity of GOSR2 3’UTR fragment by 45% (P-value=0.04), indicating GOSR2 is a direct 
miR-4513 target (Figure 4). In addition, the rs2168518 SNP caused a reduced miR-
4513 activity compared to the wild type miRNA, when the miRNA was overexpressed 
at lower levels, suggesting that the target repression efficiency, but not the specificity 
is changed by this SNP (Figure 4). 

Figure 4. Luciferase reporter assays of the GOSR2 3’UTR in presence of miR-4513 containing the wild 
type or mutant alleles of rs218518.
This figure illustrates Luciferase reporter assays of cells transfected with pGL3 vector coupled to the miR-
4513 (wild type and mutant) and 3’UTR regions of GOSR2. A significance differences of the mean relative 
luciferase activity between cells transfected with pGL3 vector coupled to 3’UTR region of GOSR2 with or 
without miR-4513 (wild types) marked by * sign. This figure further shows rs2168518 mutant allele in miR-
4513 affects the repression of GOSR2 when overexpressed at lower levels (25% of normal).
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Potential roles of the identified miR-4513 target genes in 
cardiometabolic phenotypes

The IPA core analysis was performed to determine the canonical pathways and 
networks that link the five identified miR-4513 target genes with the associated 
phenotypes. In agreement with our findings in the association study, there was a 
link between PCSK1 and the insulin biosynthesis pathway and hyperglycemia. In 
addition, MTMR3 and BNC2 were correlated with lipid metabolism, GOSR2 was as-
sociated with CAD and myocardial infarction and ANK3 was linked with pulmonary 
and renal hypertension (Supplemental Figure 4). We further generated interaction 
networks between these five target genes of miR-4513 and their associated pheno-
types. Supplemental Figure 5 illustrates a potential pleiotropic effect of miR-4513 on 
cardiometabolic traits and diseases. 

Discussion

We found that rs2168518, a variant in the seed region of miR-4513, associates with 
fasting glucose, LDL and total cholesterol, and systolic and diastolic blood pressure. 
We identified five miR-4513 target genes, GOSR2, ANK3, PCSK1, BNC2, and MTMR3, 
as potential mediators of these associations. We then experimentally showed two 
mechanisms through which rs2168518 affects miR-4513 function. First, the rs2168518 
mutant allele decreases miR-4513 expression. Second, rs2168518 reduces the ability 
of miR-4513 to repress the target genes (GOSR2) expression compared to the wild 
type in a concentration dependent manner. 

In recent years numerous studies have provided strong evidence showing miRNAs 
as major players in complex disorders.43,44 In addition, large advances have been 
made to identify the regulatory role of miRNAs in the pathophysiology of cardiomet-
abolic diseases.4,45,46 Since each miRNA regulates the expression of a large number 
of genes, genetic polymorphisms in miRNA corresponding sequences are expected 
to contribute to phenotypic variation and subsequently disease susceptibility.47,48 
Previous studies have reported an appreciable level of variation at miRNA binding 
sites and associated some of them with complex disorders.49 However, since genetic 
variation in miRNA seed regions has important phenotypic consequences, they are 
not expected to be common. Polymorphisms in the seed of miRNAs have a strong 
effect on miRNA interaction with its target genes. For instance, a variant in the miR-
96 seed region results in non-syndromic progressive hearing loss, and variants in the 
seed regions of miR-146a-3p and miR-499a-3p are associated with an increased risk 
of cancer.19,50,51 Although variants on the miRNA target sites have previously linked 
with metabolic disorders,52 the association of miRNA seed polymorphisms with 
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cardiometabolic phenotypes were not defined yet. Here we applied a systematic 
approach to investigate the association of miRNA seed SNPs with different cardio-
metabolic phenotypes. In agreement with previous studies, we show that common 
variants do not frequently occur within the seed region of miRNAs, and because of 
that many of the SNPs are not present in HapMap imputed data and are of negligible 
population genetic importance.49 

However, we found that the SNP rs2168518 in miR-4513 is associated with fasting 
glucose, LDL and total cholesterol, blood pressure, and CAD. This is the first finding 
concerning the role of miR-4513 in disease since its discovery by deep sequencing 
in 2010.53 We showed that the mature miR-4513 expression from the minor allele of 
rs2168518 is significantly reduced. The lower miR-4513 levels may be explained two 
possible mechanisms, which are not mutually exclusive. First, this variant could affect 
the expression of mature miRNA by interfering with miRNA processing efficiency 
and components such as the RNA-induced silencing complex (RISC) assembly and 
Dicer cleavage.54,55 Second, the stability of rs2168518 containing miR-4513 may be 
reduced due to aberrant RISC loading and RNA degradation mechanisms.56 

We highlighted five predicted target genes of miR-4513, PCSK1, BNC2, MTMR3, ANK3 
and GOSR2, as potential mediators of this effect on cardiometabolic phenotypes. 
We revealed a significant association between PCSK1 and fasting glucose. This gene 
has previously been associated with obesity,57 glucose metabolism, insulin secretion 
and risk of T2D.58 BNC2 is associated with HbA1c and glucose in type 1 diabetes.58,59 
Our results here indicate that this gene is also a regulator of cholesterol metabolism. 
MTMR3 is an inositol lipid 3-phosphatase which is involved in lipid metabolism.60 
In agreement with our study, a recent large-scale meta-analysis of GWA studies of 
lipid traits has reported MTMR3 to be associated with LDL cholesterol.61 Our findings 
further showed an association between ANK3 and higher systolic blood pressure. 
This gene has been previously highlighted to be involved in cardiac arrhythmia62 and 
psychological disorders like bipolar disorders.63 In addition, our pathway analysis 
using Ingenuity showed ANK3 to be linked to pulmonary and renal hypertension. 
Finally, we report GOSR2 to be associated with blood pressure and CAD by use of 
GWA study data. Previous studies of other investigators have also shown it to be as-
sociated with increased hypertension64 and pulse pressure.65 These findings indicate 
that our approach is valid to identify miRNA target genes that may mediate the effect 
of a miRNA on the studied traits. Since each miRNA regulate a large number of target 
genes, miRNAs have the potential to play a pleiotropic role in biological pathways. 
We demonstrate the pleiotropic effect of miR-4513 on cardiometabolic traits may be 
through its highlighted target genes.

Gene expression patterns are highly variable across tissues. Therefore, although 
we did not find an association between rs2168518 and blood expression levels of 
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the highlighted target genes, this does not rule out an effect in other tissues. Accord-
ingly, previous studies have shown that trans-regulatory effects of gene expression 
are highly complex and with small effect size.66 However, we identified a positive 
trend in the RNA-expression levels of GOSR2 in individuals carrying the risk allele of 
rs2168518 in blood. Therefore, to have higher priority about the functional effect of 
rs2168518 on the expression of GOSR2, we employed the luciferase reporter assay 
system. We experimentally validated GOSR2 as target genes of miR-4513, which is the 
first report of a validated target gene for this miRNA. We then showed that miR-4513 
mediated regulation of GOSR2 was only significantly affected by SNP rs2168518 at 
lower concentration. This dose-dependent effect of the miRNA concentrations can 
be explained by the minimal concentration that is necessary for a miRNA to regulate 
the target gene.67 Alternatively, this may further indicates that rs2168518 changes the 
expression levels of mature miR-4513 rather than impairing the targeting. We found 
an association between rs2168518 and the expression of its host gene CSK in blood. 
Several reports demonstrate that the expression profiles of intragenic miRNAs are 
highly correlated with their corresponding host genes.68-70 Therefore, it is possible 
to use the miRNA host gene expression as a proxy to monitor the expression of its 
embedded miRNA.71 The identified association of rs2168518 with expression levels 
of CSK may subsequently indicate an altered expression of miR-4513 in individual 
carrying the mutant allele. 

Previous GWA studies reported rs1378942, the SNP we used as a proxy for 
rs2168518, to be significantly associated with systolic and diastolic blood pressure 
and annotated that to CSK.72 However, our results indicate that rs1378942 is tagging 
the altered function of miR-4513 caused by rs216518, and the resulting up-regulation 
of GOSR2. Furthermore, GOSR2 has been robustly associated with blood pressure 
traits: in our study with systolic blood pressure, and previously with hypertension 
and pulse pressure.64,65 Our findings further indicate that GOSR2 is significantly 
associated with CAD. This may suggests miR-4513 as a candidate miRNA for blood 
pressure and CAD. Thus, it would be interesting to do further research on miR-4513 
including expression levels of this miRNA in hypertensive and CAD patients. 

To our knowledge, this is the first study to systematically investigate the association 
of genetic variations in the seed regions of miRNAs with cardiometabolic pheno-
types. We demonstrate that a cardiometabolic-associated variant in the miR-4513 
region seed affects the miRNA expression and activity. We provide data supporting 
a pleiotropic role for miR-4513 in cardiometabolic traits and highlight a number 
of its target genes including GOSR2 as potential mediators. This may improve our 
understanding of the pathophysiology of cardiometabolic disorders. Moreover, our 
work introduces the investigation of miRNA variants as a novel approach to study 
the putative role of miRNAs in complex disorders. Given that the first phase of GWA 
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studies is complete, and information on the association of millions of SNPs with 
complex disorders is available, the time is ripe to apply this kind of approach to a 
wide range of traits and diseases to detect miRNA involved in complex disorders.

Supplement available online at: 
http://onlinelibrary.wiley.com/doi/10.1002/humu.22706/suppinfo
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Abstract

Background: Carotid intima media thickness (cIMT) is a marker of atherosclerosis and 
a predictor of cardiovascular disease. Whole blood gene expression levels may 
provide insights into the etiology and consequences of atherosclerosis.

Methods: We measured cIMT and genome-wide gene expression levels in whole 
blood of 5,647 individuals from four population-based cohort studies: KORA, 
LIFE-Adult, SHIP, and the Rotterdam Study. We examined the association of over 
50,000 gene expression probes with cIMT adjusted for age, sex, batch effects, 
cell counts, RNA quality, fasting, and smoking status. In a sensitivity analysis, 
we further adjusted the model for traditional cardiovascular risk factors, and 
excluded participants with prevalent coronary heart disease. Finally, we explored 
whether probes mapping to genes identified for coronary heart disease were 
enriched for association with cIMT.

Results: After a Bonferroni correction (P-value < 9.2×10-7), four probes mapping to 
three genes (TNFAIP3, CEBPD, and METRNL) were inversely associated with cIMT. 
Effect sizes and significance levels of the probes decreased after adjustment for 
traditional cardiovascular risk factors and exclusion of participants with prevalent 
coronary heart disease, but all remained nominally significant. Expression levels 
of genes that were previously implicated in coronary heart disease by genome-
wide association studies were not enriched for association with cIMT.

Conclusions: Our results highlight the importance of inflammation in atherosclerosis 
as TNFAIP3 and METRNL are anti-inflammatory genes, and CEBPD can be both 
pro and anti-inflammatory. Further research is needed to clarify whether the as-
sociation between these genes and cIMT can indeed be explained through their 
anti-inflammatory properties.
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Introduction

As a marker of atherosclerosis, carotid intima media thickness (cIMT) is a strong 
predictor of coronary heart disease (CHD) and stroke.1,2 cIMT evaluates the full range 
of atherosclerosis: from early subclinical to full-blown clinical disease. Like CHD and 
stroke, cIMT has a moderate heritability,3-7 and numerous loci have been identified 
through genetic association studies.8-12 However, the genetic variants at these loci 
collectively explain only a small fraction of the heritability of cIMT. Furthermore, the 
ability of these genetic variants to predict incident cardiovascular disease remains 
limited.13-16 Besides genetic association studies, alternative approaches harnessing 
genomic data may yield new loci associated with atherosclerosis. 

One such approach is the transcriptome-wide association study, based on gene 
expression levels instead of genetic variants. Whole-blood is often used as it is fea-
sible to measure on a large scale in a non-invasive manner, and also because it is a 
relevant tissue for atherosclerosis. Although several transcriptome-wide association 
studies have already identified genes whose expression is associated with cardiovas-
cular disease, the overlap between the results of the different studies is very low.17-23 
No large-scale study has been performed on cIMT specifically. 

Hence, within the framework of the Cohorts for Heart and Aging Research in 
Genomic Epidemiology (CHARGE) consortium,24 we aimed to robustly identify 
genes whose expression is associated with atherosclerosis. To this end, we profiled 
genome-wide gene expression levels in whole blood of 5,647 individuals with cIMT 
measurements available from four population-based cohort studies. We then repli-
cated our findings in two further independent cohort studies. 

Methods

Study population

Individuals from four population-based cohort studies were included in the discov-
ery analysis: 836 from KORA,25,26 2,973 from LIFE-Adult,27 856 from the Rotterdam 
Study,28 and 982 from the Study of Health in Pomerania (SHIP).29 The total sample 
size was 5,647. All studies were approved by appropriate research ethics committees 
and all participants signed informed consent prior to participation.

Measurement of carotid intima media thickness

cIMT of the common carotid artery was measured with high-resolution B-mode 
ultrasonography. cIMT was calculated as the mean of the maximum cIMT of the near 
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and far walls of the right and left common carotid arteries. When the intima media 
thickness of the near walls was unavailable, only the far walls were used. 

Measurement of gene expression levels

Genome-wide gene expression levels in whole blood of up to 49,618 probes cover-
ing more than 25,000 genes were measured using the Ilumina HumanHT-12 Gene 
Expression BeadChip v3.0 or v4.0. In all four studies gene expression levels were 
measured based on blood that was drawn around the same time as cIMT was mea-
sured. 

Statistical analysis

cIMT was natural-log transformed. We used a linear mixed model, adjusting for batch 
effects (examples: array ID and position on array) as random effects, and for further 
technical covariates (examples: RNA quality and storage time between sampling and 
RNA isolation), cell types (examples: granulocytes, lymphocytes, monocytes), age, 
sex, fasting state, and smoking status as fixed effects. We ran a separate model for 
each gene expression probe, using cIMT and the covariates as independent vari-
ables, and gene expression levels as the dependent variable. These analyses were 
done in R. Meta-analysis of the four studies was performed using inverse-variance 
fixed effects meta-analysis implemented in METAL.30 We used a Bonferroni correc-
tion to adjust for multiple testing.

We performed additional analyses including further covariates relevant to athero-
sclerosis: total / high density lipoprotein (HDL) cholesterol ratio, systolic blood pres-
sure, body mass index (BMI), prevalent type 2 diabetes, lipid-lowering medication 
and antihypertensive medication (Model 2). We also repeated the original model in 
only those individuals with data available on all of the additional covariates (Model 1). 
Finally, we reran the full model excluding individuals with prevalent CHD (Model 3).

We also examined whether the expression levels of genes related to CHD, as 
described by the CARDIoGRAMplusC4D consortium,10 were enriched for asso-
ciations with cIMT. For each genome-wide significant locus, we selected genes that 
the top variant or one of its proxies (R2 > 0.8) were located in as exonic or intronic 
variants, and genes whose expression levels were associated with the top variant 
or one of its proxies. Associations between expression levels and genetics variants 
were examined using a publicly available dataset based on whole blood (http://
genenetwork.nl/bloodeqtlbrowser/), and associations with a false discovery rate of 
less than 5% were considered significant.31 A total of 48 genes were selected because 
they contained a top variant in-gene, and a total of 40 were selected because their 
expression levels were associated with one of the top variants, leading to a set of 74 
unique CHD-related genes. We examined the association of expression levels of the 
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individually CHD-related genes with cIMT as described above, and we examined 
their collective enrichment for association with cIMT using Fisher’s combined prob-
ability test.32

Results

Clinical characteristics

Baseline characteristics of the studies included in the discovery analysis are shown in 
Table 1. The mean age of the participants across the four studies was 58.5 years, and 
50.6% of participants were women. The mean BMI was 27.7 kg/m2.

Transcriptome-wide association analysis

A total of 54,124 probes were included in the analysis, resulting in a Bonferroni 
corrected P-value threshold of 9.2×10-7. There were 4 probes that were significantly 
associated with cIMT: ILMN_1780861 and ILMN_1688775 mapping to METRNL, 
ILMN_1702691 mapping to TNFAIP3, and ILMN_1782050 mapping to CEBPD 
(Table 2). All four probes were inversely associated with cIMT (Figure 1). The correla-
tion between the 4 significant probes was low (Figure 2). 

Table 1. Baseline characteristics of the four participating population-based cohort studies.

  KORA LIFE-Adult
Rotterdam 
Study

SHIP

Sample size 836 2,973  856 982

Age 70.20 (5.34) 57.55 (12.48) 59.70 (8.02) 50.07 (13.74)

Sex (% women) 50.48 48.13 53.39 56.01

BMI (kg/m2) 28.99 (4.52) 27.43 (4.60) 27.71 (4.62) 27.28 (4.49)

HDL cholesterol (mmol/l) 1.44 (0.36) 1.58 (0.45) 1.40 (0.42) 1.48 (0.37)

Total cholesterol (mmol/l) 5.71 (1.03) 5.57 (1.07) 5.54 (1.08) 5.51 (1.07)

Lipid-lowering medication use (% yes) 24.28 15.2 27.0 7.33

Systolic blood pressure (mmHg) 128.48 (19.09) 128.97 (16.80) 134.53 (20.06) 124.33 (16.91)

Diastolic blood pressure mmHg) 73.93 (9.81) 75.46 (9.88) 82.92 (11.56) 76.50 (9.66)

Antihypertensive medication use (%yes) 56.82 44.50 27.27 29.33

Type 2 diabetes (% yes) 13.88 14.52 9.23 0.2

Current smoking (% yes) 6.22 20.92 27.10 18.43

Prevalent cardiovascular disease (% yes) 5.38 4.81 6.04 0.61

cIMT 0.97 (0.13) 0.75 (0.15) 0.96 (0.19) 0.73 (0.17)

Values are mean (SD) of percentages.
Abbreviations: BMI refers to body-mass index. HDL refers to high density lipoprotein. cIMT refers to 
carotid intima media thickness.
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Table 2. Association of significant probes with cIMT in 5,647 individuals.

Probe ID Locus Gene Effect Size P-value

ILMN_1702691 6q23.3 TNFAIP3 -0.46 1.2×10-7

ILMN_1782050 8q11.21 CEBP -0.39 2.8×10-7

ILMN_1688775 17q25.3 METRNL -0.49 2.8×10-8

ILMN_1780861 17q25.3 METRNL -0.57 4.8×10-10

Abbreviations: cIMT refers to carotid intima media thickness.

Figure 1. Volcano plot showing the –log10(P-value) of each probe plotted against the effect size, distin-
guishing between non-significant (black) and significant probes (red).

Figure 2. Correlation R2 between the four probes that were significantly associated with cIMT.
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Figure 3A and 3B. Correlation of effect sizes between A) Model 1 and Model 2, and B) Model 2 and 
Model 3.
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Additional Adjustments

As shown in Figure 3A, in general effect sizes and did not change substantially when we 
adjusted for total / high density lipoprotein (HDL) cholesterol ratio, systolic blood pres-
sure, BMI, prevalent type 2 diabetes, lipid-lowering medication and antihypertensive 
medication (correlation R2 = 0.92). As shown in Figure 3B, effect sizes also remained 
stable when we repeated the analysis excluding participants with prevalent CHD (corre-
lation R2 = 0.98). For the four significant probes in particular, effect sizes decreased when 
adjusted for additional covariates, though all probes remained nominally significant 
(Table 3). When participants with prevalent CHD were excluded, effect sizes remained 
stable or slightly increased. Of the four probes, the probe mapping to TNFAIP3 was the 
most stable with effect estimates changing by less than 10% after adjustment.

CHD-related genes

68 of the 74 CHD-related genes had one or more probes that were included in the 
analysis. A total of 104 probes representing these genes were analysed. Collectively, 
the 104 probes of CHD-related genes were not enriched for association with cIMT 
(Fisher combined probability P-value = 0.75). None of the probes of CHD-related 
genes were associated with cIMT according to a less strict significance threshold 
corrected only for CHD genes (0.05 / 104 = 4.8×10-4).

Discussion

We performed the first large-scale transcriptome-wide association study meta-anal-
ysis of cIMT including over 5,600 participants. We identified four gene expression 
probes mapping to three genes to be differentially expressed according to cIMT: 
TNFAIP3, CEBPD, and METRNL. The associations were robust to further adjustment 
for potential confounders, and excluding individuals with prevalent CHD did not 

Table 3. Additional adjustment analyses of significant probes.

Probe ID Gene

Model 1 Model 2 Model 3

Effect Size P-value Effect Size P-value Effect Size P-value

ILMN_1702691 TNFAIP3 -0.43 1.1×10-6 -0.39 1.1×10-5 -0.40 1.6×10-5

ILMN_1782050 CEBP -0.41 1.4×10-7 -0.32 2.8×10-5 -0.36 7.6×10-6

ILMN_1688775 METRNL -0.47 2.4×10-7 -0.38 2.2×10-5 -0.39 2.2×10-5

ILMN_1780861 METRNL -0.54 6.6×10-9 -0.43 1.6×10-6 -0.45 1.9×10-6

Adjustments: Model 1: batch effects, technical covariates, cell types, age, sex, fasting state, and smok-
ing status. Only including individuals with data available on all of the additional Model 2 covariates. 
Model 2: Model 1 + total / HDL cholesterol ratio, systolic blood pressure, BMI, prevalent type 2 dia-
betes, lipid-lowering medication and antihypertensive medication. Model 3: Model 2 excluding par-
ticipants with prevalent CHD.
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change the results. Probes at the three genes were not correlated to each other, sug-
gesting that they represent separate mechanisms.

Expression levels of genes identified for CHD in the largest genome-wide associa-
tion study were not associated with cIMT. Several possible explanations may explain 
the absence of associations. First, despite the predictive value of cIMT for CHD, cIMT 
and CHD may be too distinct as phenotypes to produce an overlap in associations 
with genes. In agreement, only one locus was found in genome-wide association 
studies of both cIMT and CHD.8,33 Second, the genetic background of atheroscle-
rosis and CHD may be differentially reflected through polymorphisms and gene 
expression levels. In a large-scale transcriptome-wide association study of blood 
pressure only two out of 34 genes were previously reported in relation to hyperten-
sion, and none were identified through genome-wide association studies.34 Third, 
while blood is a relevant tissue for atherosclerosis, it may not be the tissue in which 
the genes identified by genome-wide association studies are primarily expressed. 

TNFAIP3 encodes tumor necrosis factor α-induced protein-3, also known as A20, a 
protein involved in several inflammatory pathways. Most notably TNFAIP3 is involved 
in the negative feedback regulation of NF-kappaB,35 but it may also inhibit IFNγ/
STAT1 signalling.36 It is thus an anti-inflammatory protein, and low expression levels 
of TNFAIP3 have been associated with inflammatory disorders such as rheumatoid 
arthritis.37 In a small case-control study, genetic variants in TNFAIP3 were associated 
both with increased odds of CHD and lower TNFAIP3 expression in blood.38 How-
ever, neither the association with CHD nor the association with expression levels 
was replicated in larger hypothesis-free studies.10,31 The proposed anti-inflammatory 
properties of TNFAIP3 are in line with our study, in which expression of TNFAIP3 was 
inversely associated with cIMT.

CEBPD encodes CCAAT/Enhancer Binding Protein Delta (C/EBP-Delta), a tran-
scription factor regulating several inflammatory genes.39 Depending on the situation 
C/EBP-Delta can be both pro-inflammatory and anti-inflammatory: on the one 
hand, C/EBP-Delta may amplify the NF-kappaB response,40,41 but on the other hand, 
C/EBP-Delta has been shown to have an anti-inflammatory role in pancreatic β-cells 
and brain pericytes,42,43 while inhibiting the accumulation of amyloid plaques in 
Alzheimer’s disease.44 In our study, increased expression of CEBPD in blood is as-
sociated with less atherosclerosis as measured by cIMT. 

The remaining two probes mapped to METRNL, which for meteorin-like protein 
(Metrnl). Metrnl increases thermogenesis in brown and beige adipocytes, and in-
creases the expression of anti-inflammatory genes.45 Brown and beige adipocytes 
may play a role in metabolic disease by inhibiting weight gain through thermogen-
esis.46 Both the potential effects on adiposity and inflammation could explain the 
inverse association of METRNL expression with cIMT in our study.



Chapter 4.3

200

All three genes identified in the transcriptome-wide association analyses thus 
appear to be related to inflammation. This is not surprising, given the importance 
of inflammation in atherosclerosis,47,48 and the fact that expression levels were mea-
sured in whole blood, in which we expect most mRNA to originate from white blood 
cells. TNFAIP3 and METRNL are both reported to have anti-inflammatory properties, 
which is consistent with the direction of the association in this study. CEBPD, on the 
other hand, is reported to have both inflammatory and anti-inflammatory proper-
ties. None of the three genes was reported to be significantly associated in a recent 
transcriptome-wide association study of interleukin-6 levels.49 There has been no 
previous large-scale transcriptome-wide association study of cIMT, but several stud-
ies of CHD have been carried out. None of the three genes we report were significant 
in these previous studies.17-23 

Strengths of this study include the large sample size, the hypothesis-free approach, 
and the strict correction for multiple testing. The main limitation of this study is the 
lack of replication. Although we consider whole blood to be a relevant tissue for the 
expression of genes associated with atherosclerosis, the use of only whole blood 
could be considered a limitation of this study. As gene expression is highly tissue 
specific, investigating other tissues, may yield important genes for atherosclerosis 
that remained hidden in this study. 

Furthermore, the interpretation of the results is challenging because it is difficult to 
distinguish between genes whose expression influences atherosclerosis and genes 
whose expression is influenced by atherosclerosis. Although a longitudinal design 
could be used to focus on one of these two directions, reverse causation cannot be 
ruled out. Finally, the associations described in this study may be affected by residual 
confounding. We attempted to reduce the chance of confounding by correcting for 
batch effects, cell types, and, in an additional analysis, traditional cardiovascular 
risk factors. Nevertheless, other variables not covered in these models, as well as 
measurement error in the included variables may affect the results.

We identified novel three genes that were associated with atherosclerosis as 
measured by cIMT. All three genes are reported to be involved in inflammation, 
with TNFAIP3 and METRNL having well described anti-inflammatory properties. Our 
results thus highlight the importance of inflammation in atherosclerosis, but further 
research is needed to clarify whether the association between these genes and cIMT 
can indeed be explained through their anti-inflammatory properties.
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Main findings and interpretation

Genetics of hemostatic factors

In Chapter 2.1 we used the framework of the CHARGE consortium to identify 19 new 
loci for fibrinogen in a genome-wide association (GWA) study based on 1000 Ge-
nomes imputation. At the two most strongly associated loci we detected additional 
low-frequency (minor allele frequency [MAF] < 5%) and rare (MAF < 1%) variants 
independently associated with fibrinogen. In Chapter 2.2 we also compared 1000 
Genomes imputation to HapMap imputation in an identical sample, and found that 
1000 Genomes imputation led to the discovery of roughly 20% more loci.

In Chapter 2.3, we used exome arrays to identify 2 low-frequency and 10 rare vari-
ants associated with fibrinogen, factor VII, factor VIII, and VWF that were indepen-
dent of known associations.1 In Chapter 2.4 we used exome sequencing in a smaller 
sample to identify rare variants associated with fibrinogen, factor VII, factor VIII, and 
VWF. There was a large overlap between the findings of the exome array and exome 
sequencing studies, but both studies had unique findings. In the exome sequencing 
study we identified 3 new rare variants for factor VII and 2 new rare variants for factor 
VIII that were not discovered in the exome array study. For fibrinogen, there was also 
an overlap between the GWA study and the two exome studies.

Furthermore, in Chapter 2.5, we carried out a GWA study based on Genomes 
of the Netherlands imputation in the Rotterdam Study.2 We identified 6 variants 
at the ADAMTS13 locus and 1 variant at the SUPT3H locus that were independently 
associated with ADAMTS13 activity. Of the 6 variants at the ADAMTS13 locus 1 was 
common, 2 were low-frequency, and 3 were rare variants.

ADAMTS13: association with cardiovascular risk factors

ADAMTS13 has so far primarily been investigated in relation to stroke and CHD. AD-
AMTS13 acts on VWF, and VWF has been associated with kidney function decline and 
type 2 diabetes.3,4 In Chapter 3.1 we found that VWF-to-ADAMTS13 ratio was related 
to kidney function decline, an important direct cause of morbidity and mortality, 
and a strong risk factor for cardiovascular disease. A higher ADAMTS13 activity was 
protective, as it was associated with a lower decline in kidney function. This finding 
was consistent with what we know about thrombotic thrombocytopenic purpura, a 
condition caused by a severe lack of ADAMTS13 that often results in kidney failure.

In contrast, in Chapter 3.2 we found that ADAMTS13 activity was associated with a 
higher risk of incident type 2 diabetes. This association persisted despite adjustment 
for potential confounders, and for fasting glucose and insulin. ADAMTS13 activity 
was also associated with an increased risk of incident prediabetes. Thus, while AD-
AMTS13 may decrease the risk of cardiovascular disease through its antithrombotic 
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effects and its association with chronic kidney disease, it appears to increase the risk 
of cardiovascular disease through its association with diabetes.

Genetic risk of coronary heart disease

In Chapter 4.1 we found that a genetic risk score using 152 genetic variants was not 
able to meaningfully improve risk prediction of incident coronary heart disease 
(CHD).5 However, when we performed the analysis for prevalent CHD the improve-
ments in prediction were considerably larger. 

In Chapter 4.2 we investigated the association of SNPs in the seed sequence of 
microRNAs with cardiovascular risk factors and disease.6 The seed sequence con-
sists of 5-6 nucleotides in every microRNA that determine to which target genes 
it can bind. We found that rs2168518, a variant in the seed sequence of miR-4513, 
was associated with fasting glucose, LDL-cholesterol and total cholesterol, systolic 
and diastolic blood pressure, and the risk of CHD. We experimentally showed that 
miR-4513 expression is significantly reduced in the presence of the rs2168518 mutant 
allele, and we highlighted five target genes that may mediate these associations. 
Using luciferase reporter assays we validated one of these genes, GOSR2, as a target 
of miR-4513. Additionally, we demonstrated that the microRNA mediated regulation 
of this gene is changed by rs2168518. This study highlights miR-4513 as a regulator 
of a range of cardiovascular risk factors and, ultimately, CHD. We were the first to 
implicate miR-4513 in human disease. In a second study Li et al investigated the as-
sociation of the same variant, rs2168518, with clinical outcomes in CHD.7 In 1,004 
patients with angiographic CHD, they found that miR-4513 was associated with 
event-free survival and mortality, confirming the importance of this microRNA in 
cardiovascular disease. 

In Chapter 4.3, we used a new type of omics, transcriptomics, to identify 3 genes 
(TNFAIP3, CEBPD, and METRNL) whose gene expression levels in blood were inversely 
associated with carotid intima media thickness, a measure of subclinical atheroscle-
rosis. All three genes have previously been implicated in inflammation, with TNFAIP3 
and METRNL being described in the literature as anti-inflammatory genes, whereas 
CEBPD appears to have both pro and anti-inflammatory properties.8-10 

Methodological considerations

Genome-wide association studies

While traditional GWA studies are no longer novel, there are two key factors that 
ensure that they will keep delivering further results in the future. First, as more in-
dividuals are genotyped, the sample sizes available for GWA studies, and therefore 
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the statistical power, will keep increasing. This will lead to the discovery of further 
genetic associations that may be biologically informative or collectively useful in 
prediction.11 Second, as more individuals are sequenced around the world, and the 
coverage those individuals are sequenced at increases, reference panels will keep 
improving. During the writing of this thesis, for example, both the HapMap and 1000 
Genomes reference panels were updated,12,13 and the Genomes of the Netherlands 
and UK10K reference panels were released.14,15 

Whereas a significance threshold of 5×10-8, correcting for one million independent 
tests, ensured a type I error rate of 5% for GWA studies based on HapMap impu-
tation, the same might not be true for GWA studies based on 1000G imputation. 
As the imputation process is improved, further genetic variants are added to the 
analysis. Imputed variants are by definition correlated to directly genotyped variants; 
otherwise, the imputation process could not occur. Yet by combining information 
from multiple measured variants, an imputed variant can provide information that 
is independent from any one measured variant. This is also why GWA studies using 
HapMap imputation are corrected for one million tests even though genotyping 
arrays usually contain fewer variants than this. Several estimates for the number of 
tests being done using newer reference panels have been put forward,16,17 but there  
is not yet a consensus. Thus, when using imputation based on new reference panels 
in GWA studies, extra care should be taken to limit the number of false positives. 
Deciding on a standard threshold for each reference panel is complicated by the 
large number of reference panels and the speed at which new versions of these 
reference panels are produced. 

The associated variants found in future studies are likely to be either rarer or have 
smaller effect sizes, since most common variants with moderate to large effects have 
already been identified. Each of these variants individually will thus contribute less 
to heritability of the trait. However, the effect size of an associated variant discov-
ered through a GWA study does not necessarily correspond to the importance of the 
gene underlying the association to the phenotype. Two relevant examples from the 
literature are HMGCR (coding for 3-hydroxy-3-methyl-glutaryl-CoA reductase) and 
PCSK9 (coding for proprotein convertase subtilisin/kexin type 9).18 Variants in both 
of these genes are associated with low-density lipoprotein (LDL) cholesterol with 
small effect sizes.19 However, statins, drugs targeting HMGCR, are now the primary 
form of lipid-lowering medication. PCSK9 was discovered more recently, but PCSK9 
inhibitors have shown great promise in clinical trials as alternative or complementary 
lipid-lowering agents.20 In this thesis, STAT3 was among the new loci discovered in 
our GWA study of circulating fibrinogen. While the effect size of the most significant 
variant at the locus was small, this gene is thought to play a central role in regulat-
ing gene expression of fibrinogen genes as part of the acute phase response, and 
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many of the other associated loci appear to interact with it.21 In the above examples 
the loci was already known to be related to the phenotype from previous research. 
There may, however, be other important genes remaining to be discovered with 
larger samples sizes that have not yet been highlighted using other research. 

To identifying new important genes, however, an association from a GWA study is 
usually not enough.  GWA studies do not directly identify genes but instead identify 
loci spanning hundreds of thousands of base pairs, and sometimes harboring many 
genes. Definitively identifying the gene underlying the association is usually not 
possible, and candidate genes are usually selected based on their distance to the 
lead variant. This approach is pragmatic but has severe limitations. Even if the true 
causal variant lies within a gene, the mechanism underlying the association may be 
completely independent of that gene. A high-profile example that recently came 
to light is the association between variants in the FTO gene and obesity. While the 
variants associated with obesity are located within the FTO gene, there is functional 
evidence that they regulate the expression of a gene called IRX3, and not the FTO 
gene itself.22 Although IRX3 and FTO are separated by over 500 million base pairs, 
the three dimensional structure of the DNA brings them closer together so that they 
can interact. While a causal role for FTO is not yet excluded,23 this example illustrates 
the difficulty in using the location of associated variants to propose causal genes. In 
our GWA of fibrinogen, we also used associations with gene expression to provide 
information on the likely causal gene. For example, although we annotated the signal 
at 17q21.2 to RAB5C based on distance, we also found that the top variant was associ-
ated with expression levels of STAT3 in blood. Even incorporating extra information 
such as gene expression may not always lead to a single plausible candidate. In some 
cases the top variant is associated with the expression of more than one gene, or 
none. Furthermore, blood is not always the relevant tissue to examine, and many 
databases of other tissues are limited by their small sample sizes. 

Exome-wide association studies

The exome-wide association studies we performed, firstly using exon genotyping 
arrays and secondly using sequencing, also provide methodological insights. These 
new study designs were largely driven by the hypothesis that rare non-synonymous 
protein-coding variants are more likely to affect phenotypic variation. Thus, the de-
signs reflect a balance between costs and anticipated benefits at a time when whole-
genome sequencing was not yet affordable at a large scale. The major limitation of 
exome-based analyses is that noncoding regions are excluded, whilst they are also 
important for the genetic architecture of complex traits.24 Although non-synonymous 
protein-coding variants are indeed enriched for associations with phenotypes, so are 
several other regulatory elements.25,26 Furthermore, coding regions only comprise 
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a small percentage of the genome, so that despite their enrichment, most findings 
from GWA studies are still located in non-coding regions.27 

As illustrated by the exome-based studies in this thesis, the bulk of the results 
from exome-based studies are rare variants in genes that were already known to be 
related to the phenotype. This still serves a purpose: in the case of hemostasis, for 
example, these rare variants may predispose individuals to bleeding disorders.28,29 
Nevertheless, many of these rare variants may also be identified using standard ge-
notyping arrays and imputation. This is exemplified in our GWA study of circulating 
fibrinogen, in which we identify, among others, two rare variants with strong effects.

Above all, exome-based analyses in epidemiological studies should be seen as an 
intermediate step between traditional GWA studies and whole-genome sequenc-
ing studies. The scientific community has used these datasets as an opportunity to 
develop new analytical methods focused on rare variants that are now ready to be 
applied to whole-genome sequencing. 

Genetic risk prediction

Genetic risk prediction studies of CHD, including our own, have been largely disap-
pointing.30-34 Nevertheless, this does not necessarily mean that genetic risk prediction 
of CHD will remain unfeasible in the future, as there are several ways how genetic 
risk prediction could still be improved. 

The 152 genetic variants were identified in a large GWA study of CHD including a 
mix of incident and prevalent cases from cohort studies, case-control studies, and 
cross-sectional studies.35 This GWA study may have been affected by a bias known 
as prevalence-incidence bias or Neyman’s bias.36 For example, in a cross-sectional 
study, certain factors can affect the chance of individuals with CHD being recruited: 
individuals with fatal CHD are not included, and individuals with severe CHD are 
less likely to participate. In such a cross-sectional study, the group of individuals 
with CHD will be enriched with individuals that suffered from non-fatal and mild 
CHD. Factors associated with a decreased severity of CHD may thus erroneously 
be associated with the risk of CHD itself. In a GWA study, this means that variants 
that reduce the severity of CHD are expected to be present at a higher frequency 
among cases than controls, and may be picked up as significant results. Additionally, 
variants associated with severe acute events may be biased towards the null. The 
susceptibility of different study designs to Neyman’s bias is summarized in Table 1. In 
short, many of the study designs used in the GWA study of CHD are susceptible to 
Neyman’s bias, and some of the proposed CHD variants may instead be variants that 
reduce the severity of CHD.  

This could explain why the genetic risk score was more effective in predicting 
prevalent than incident CHD. If so, the implications for genetic risk prediction ex-
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tend beyond CHD to other diseases with a high mortality rate, such as cancer. Basing 
GWA studies on incident rather than prevalent cases is likely to be most beneficial 
for diseases involving acute events such as myocardial infarctions and strokes. 

Thus, a first way how genetic risk prediction of CHD could be improved is by con-
ducting large-scale GWA studies on incident CHD, rather than prevalent CHD, and 
using the variants and effect sizes from these studies to construct genetic risk scores. 
A second way to improve genetic risk prediction is to keep increasing the sample 
sizes of GWA studies. As sample size of GWA studies increase, the ability of the 
resulting genetic variants to predict disease will keep improving.11 Although the new 
genetic variants will have smaller effect sizes, collectively they may still make a large 
contribution to the heritability, because as shown in Figure 1, variants with smaller 
effect sizes are much more numerous than variants with large effect sizes. Given that 
a limited number of studies have already found clinically relevant improvements in 
prediction using currently identified genetic variants,37 it seems likely that further 
developments will lead to genetic risk scores that robustly improve prediction.

Table 1: Susceptibility of different study designs to Neyman’s bias.

Study design Susceptibility to Neyman’s bias

Prospective cohort studies

	 Incident cases Not susceptible to Neyman’s bias, because individuals with the 
disease are included regardless of survival.

	 Prevalent cases Highly susceptible to Neyman’s bias, because 1) individuals with fatal 
disease, whether sudden or not, are not included, and 2) individuals 
with non-fatal disease, especially when severe, are less likely to 
participate. The degree of Neyman’s bias will depend on age-based 
inclusion criteria: a study of the elederly will be highly susceptible 
whereas a study of young adults will not.

Case-control studies

	 Incidence-density sampling Incident cases are included in the study as they occur. When nested in 
a cohort study the exposure and covariates have often been measured 
before the event occurs. Thus, even sudden fatal cases can be 
included. If not nested in a cohort study, they may still be susceptible 
to Neyman’s bias for diseases that sometimes present themselves as 
sudden fatal events. 

	 Cumulative incidence sampling Prevalent cases available at the time of study initiation are included 
in the study. See explanation of prevalent cases in Prospective cohort 
studies.

Cross-sectional studies Prevalent cases available at the time of study initiation are included in 
the study. These studies are highly susceptible to Neyman’s bias. See 
explanation of prevalent cases in Prospective cohort studies.
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Transcriptome-wide association 
studies

In the past transcriptomics has been 
applied primarily to small sample 
sizes. The resulting genes from these 
studies often did not replicate in 
independent studies. For example, 
there was not a single overlapping 
gene among the results of 3 indepen-
dent transcriptome-wide association 
studies of CHD, despite the fact that 
each study identified more than 20 
genes.39-42 Yet it is unclear whether this 

heterogeneity is entirely attributable to the small sample sizes of previous studies. In 
this thesis, some of the findings were characterized by a high degree of heterogene-
ity. Gene expression levels are highly variable, with large changes occurring over 
small time spans. This variability may partially explain the heterogeneity and lack 
of robust, replicating findings. Lastly, confounding and effect modification may be 
an issue, as gene expression levels are highly dependent on environmental factors 
such as diet and lifestyle. Furthermore, gene expression levels are tissue specific, and 
measurements in the Rotterdam Study and other cohort studies are done on whole 
blood, including a variety of cell types. If the abundance of a specific cell type is 
associated with the phenotype of interest, then any probe associated with this cell 
type is likely to be associated with the phenotype through confounding. Although 
we adjust for counts of a selected number of cell types, this does not address the full 
range of cell types.

Besides introducing heterogeneity, these issues also make it difficult to interpret 
the results. Assuming there is a causal relationship between expression levels of a 
gene and the phenotype, the question remains what the direction of effect is: does 
the phenotype affect the expression levels or vice versa? In theory this can be ad-
dressed using a Mendelian randomization approach: if genetic variants associated 
with expression levels of the gene of interest are also associated with the phenotype 
of interest this suggests that gene expression levels influence the phenotype.43 On 
the other hand, if genetic variants known to be associated with the phenotype are 
also associated with gene expression levels this suggests that the phenotype influ-
ences gene expression levels. Both directions can be explored, but there are two 
key limitations: 1) genetic variants may have pleiotropic effects and thereby influ-
ence the outcome through a pathway not involving the exposure and 2) the power 
needed to detect an association is much greater than in a normal association study, 

Figure 1: Absolute effect sizes of SNPs in the latest 
GWA study of height.38
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and depends on the strength of the association between the genetic variants and 
the exposure. Applying Mendelian randomization to any trait thus requires careful 
consideration. While the approach can suggest causality or a lack thereof, it only 
rarely provides a definitive conclusion.

Future research

Molecular epidemiology

Despite the challenges associated with dynamic data such as transcriptomics, the 
field of molecular epidemiology is moving towards incorporating more of it. New 
dynamic omics approaches include microRNA profiling, epigenetics, metabolo-
mics, proteomics, and microbiomics. The main features that these new approaches 
have in common with GWA studies is the use of large sample sizes, a hypothesis-
free approach, and a strict Bonferroni-correct P-value threshold to define significant 
associations. Yet unlike GWA studies they suffer from many of the same issues as 
transcriptomics. The greatest challenge of the coming years will be to establish a 
set of guidelines for the conduct of these studies that will ensure that they produce 
robust, valid, and reliable results. 

The other major change in the field will be the move from genotyping arrays and 
imputation to whole-genome sequencing.44 While many epidemiological studies 
are now in the process of sequencing their participants, it is unclear how long it will 
take before new findings arising from whole-genome sequencing are widespread. 
The genotyping-imputation approach is estimated to capture 97% of the variation 
of common variants and 68% of the variation of rare variants.45 One of the main 
advantages of whole-genome sequencing is thus likely to be the improved access 
to rare and population-specific variants, whereas the analysis of common variants 
will be improved to a smaller extent. The study of rare variants, however, requires 
large sample sizes that will initially be unavailable. Thus, as long as samples sizes 
using the genotyping-imputation approach are higher, the benefit of whole-genome 
sequencing is likely to be limited. For example, in our GWA study of circulating fi-
brinogen concentration we used 1000 genomes imputation, and we identified some 
of the same rare variants identified using whole-exome sequencing. 

Although better access to rare and population specific variants is one of the objec-
tives of whole-genome sequencing, the largest impact of whole-genome sequenc-
ing may be improvements in fine-mapping. In a traditional GWA study, the variant 
with the lowest P-value at a locus is selected as the lead variant and is reported in 
the results. All other things being equal this may be the optimal approach. However, 
all other things are often not equal: the imputation quality and sample size differ 
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among variants, and to make matter worse, some variants are not included at all. 
With whole-genome sequencing these issues can be avoided. All variants are di-
rectly measured and not imputed, so there are no differences in imputation quality. 
Sample sizes should be more consistent, since variants with poor imputation quality 
are no longer filtered out. Finally, although some QC filtering will still occur, more 
variants will be included. 

Coming closer to the causal variant does not, by itself, guarantee the identifica-
tion of the causal gene. However, the functional annotation of the genome is now 
rapidly evolving, spearheaded by large-scale efforts such as the ENCODE and 
Roadmap consortia.24,26 These consortia have identified promotors, enhancers, 
DNAse hypersensitive regions, among other regulatory elements in a variety of cell 
types. Together, the identification of the correct causal variant and the availability of 
accurate functional annotation of the variant will increase the chance of selecting 
the correct causal gene. These developments may finally allow GWA studies to fully 
deliver on their aim of uncovering new biology. 

Hemostasis and cardiovascular disease

We expect that the developments described above will continue to lead to new dis-
coveries in the genetics of complex traits. For hemostasis factors and cardiovascular 
disease, these discoveries may help to define the association between the two. The 
Mendelian randomization approach described above, may in the future provide 
evidence for a causal relationship between hemostatic factors and cardiovascular 
disease, or a lack thereof. If there is a causal relationship, using a bi-directional 
Mendelian randomization approach may clarify the direction of the relationship. So 
far the use of genetic evidence to identify a causal relationship between hemostatic 
factors and cardiovascular disease has been only partially successful. Variants as-
sociated with VWF, including a variant in the VWF gene, are associated with venous 
thrombosis.46 

On the contrary, there is evidence for a lack of a causal relationship between 
fibrinogen concentration and prevalent CHD and stroke. Variants found for fibrino-
gen concentration are not associated with these diseases.47 A variant in one of the 
genes encoding fibrinogen, FGG, has been identified to be associated with venous 
thrombosis in GWA studies of venous thrombosis.48 Interestingly, this is not one of 
the variants most associated with fibrinogen concentration, and also at the genome-
wide level variants associated with fibrinogen level do not appear to be associated 
with venous thrombosis.47 Instead of affecting fibrinogen concentration, the FGG 
variant might affect other aspects like fibrinogen activity or the proportion of differ-
ent fibrinogen isoforms. Therefore, while fibrinogen concentration does not appear 
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to be causally related to venous thrombosis in the general population, fibrinogen 
might be. 

Going beyond the hemostatic factors studied in this thesis, genes encoding several 
other hemostatic factors have been associated with CHD (plasminogen) and venous 
thrombosis (factor II, factor V, and factor XI).35,48 Additionally, variants in the ABO 
gene, which are strongly associated with VWF, are associated with CHD and venous 
thrombosis.35,48 The ABO gene codes for blood group, and thus its association with 
CHD and venous thrombosis might be explained by mechanisms not involving VWF. 

One important limitation of the Mendelian randomization work done so far is the 
use of prevalent rather than incident CHD, stroke, and venous thrombosis. Genetic 
variants in hemostatic factors are likely to influence the severity of the thrombotic 
response to plaque rupture, rather than earlier stages of cardiovascular events. They 
thereby affect the risk of an event, but also the severity of the event, which can cause 
Neyman’s bias (see Table 1). Associations of such variants with prevalent cardiovas-
cular disease may be bias towards the null, and remain hidden. Large-scale Mende-
lian randomization studies using incident CHD, stroke, and venous thrombosis are 
thus needed to provide a conclusive answer regarding the causal role of hemostatic 
factors in cardiovascular disease.  

Conclusions

In this thesis we identified many new genetic associations with hemostatic factors 
fibrinogen, factor VII, factor VIII, VWF, and ADAMTS13, providing new insight into 
their etiology. Additionally, we explored the association of ADAMTS13 with car-
diovascular risk factors and uncovered a complex scenario where low ADAMTS13 
activity is a risk factor for kidney function decline, but a protective factor for type 
2 diabetes. We implicated miR-4513 in the etiology of several cardiovascular risk 
factors and CHD, and found expression levels of three genes to be associated with 
atherosclerosis.  
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English Summary

Hemostasis, the processes causing bleeding to stop, and thrombosis, the formation 
of blood clots, are essential processes in the development of coronary heart disease 
(CHD). Many proteins are involved in hemostasis and thrombosis, and understand-
ing their biology and genetic background could lead to insights relevant to cardio-
vascular disease. In this thesis we explored five of these proteins, and also studied 
other genetic influences on atherosclerosis and CHD.

Chapter 2 focuses on genetic association studies of proteins involved in hemosta-
sis: fibrinogen, factor VII, factor VIII, von Willebrand factor (VWF), and ADAMTS13. In 
traditional genetic association studies, millions of variants are tested for association 
with a trait of interest. However, only a few hundred thousand variants are directly 
measured: the remaining variants are estimated, or imputed, using a reference panel 
that provides information about the correlation structure between the variants. 
The first widely used reference panel was the HapMap project, which provided 
information on around 2.5 million genetic variants. Recently, new reference panels 
such as the 1000 genomes project (1000G) have been released that are expected 
to improve the imputation process. In Chapter 2.1 we performed a genome-wide 
association study, based on 1000G imputation, of circulating fibrinogen concentra-
tion in over 120,000 individuals. We identify 18 new loci for fibrinogen, and at the 
two most strongly associated loci we detected additional low-frequency variants 
independently associated with fibrinogen. 

The use of 1000G imputation as opposed to HapMap imputation was not the 
only difference between our study and previous studies: our study was also larger. 
Therefore, to be able to adequately examine the benefit of using 1000G imputation 
over HapMap imputation, in Chapter 2.2 we performed a comparison of these two 
methods in exactly the same individuals, using circulating fibrinogen concentration 
as a quantitative example trait. We found that all other things remaining the same, 
using 1000G imputation lead to the discovery of 20% more loci. On the other hand, 
one locus that was found using HapMap imputation was not found using 1000G 
imputation. 

We then further examined the genetics of fibrinogen, but also factor VII, factor 
VIII, and VWF, using study designs especially suited for the identification of rare vari-
ants. In Chapter 2.3 we performed an exome-wide study using genotypes obtained 
from the Ilumina Exome Chip. We identified two low-frequency and ten rare variants 
associated with fibrinogen, factor VII, factor VIII, and VWF that were independent 
of known associations. In Chapter 2.4 we performed a similar study using exome 
sequencing data. We identified three new rare variants for factor VII and two new 
rare variants for factor VIII that were not discovered in the exome array study. For 
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fibrinogen, there was also an overlap between the genome-wide association study 
and the two exome studies.

In Chapter 2.5 we combined the genome-wide association study and exome chip 
approaches to study both common and rare genetic variants associated with AD-
AMTS13 activity. Using the genome-wide association study approach we identified 
two variants at the ADAMTS13 locus and one variant at the SUPT3H locus that were 
independently associated with ADAMTS13 activity. Using the exome chip approach, 
we identified a further three rare variants that were independently associated with 
ADAMTS13 activity. 

ADAMTS13 has so far primarily been investigated in relation to stroke and CHD. 
In Chapter 3 we further characterized ADAMTS13 by examining its association with 
cardiovascular risk factors. In Chapter 3.1 we explored the association of ADAMTS13 
activity with kidney function decline. We found that VWF-to-ADAMTS13 ratio was 
related to kidney function decline, an important direct cause of morbidity and 
mortality, and a strong risk factor for cardiovascular disease. A higher ADAMTS13 
activity was protective, as it was associated with a lower decline in kidney function. 
This finding was consistent with what we know about thrombotic thrombocytopenic 
purpura, a condition caused by a severe lack of ADAMTS13 that often results in 
kidney failure.

In Chapter 3.2 we examined the association of ADAMTS13 activity with incident 
type 2 diabetes. In contrast to our findings with kidney function decline, we found 
that high ADAMTS13 activity was associated with a higher risk of incident type 2 dia-
betes. This association persisted despite adjustment for potential confounders, and 
for fasting glucose and insulin. High ADAMTS13 activity was also associated with an 
increased risk of incident prediabetes. Thus, while ADAMTS13 activity may decrease 
the risk of cardiovascular disease through its antithrombotic effects and its asso-
ciation with chronic kidney disease, it appears to increase the risk of cardiovascular 
disease through its association with diabetes.

In Chapter 4 we investigated CHD and the underlying atherosclerosis directly. In 
Chapter 4.1 we evaluate the incremental predictive value of genetic risk scores in 
the risk prediction of incident coronary heart disease. We found that a genetic risk 
score using 152 genetic variants was not able to meaningfully improve risk predic-
tion of incident CHD. However, when we performed the analysis for prevalent CHD 
the improvements in prediction were considerably larger. We theorized that this 
discrepancy may be caused by the use of genetic variants discovered for prevalent 
rather than incident CHD.

In Chapter 4.2 we investigated the association of SNPs in the seed sequence of 
microRNAs with cardiovascular risk factors and disease. The seed sequence consists 
of 5-6 nucleotides in every microRNA that determine to which target genes the 
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microRNA can bind. We found that rs2168518, a variant in the seed sequence of 
miR-4513, was associated with fasting glucose, LDL-cholesterol and total cholesterol, 
systolic and diastolic blood pressure and the risk of CHD. The direction of the effects 
was consistent across the different phenotypes, with the mutant allele of rs2168518 
leading to an unfavorable cardio-metabolic profile. We experimentally showed 
that miR-4513 expression is significantly reduced in the presence of the rs2168518 
mutant allele, and we highlighted five target genes that may mediate the association 
between miR-4513 and these cardio-metabolic phenotypes. We validated one of 
these genes, GOSR2, as a target of miR-4513, and demonstrated that the regulation 
of GOSR2 by miR-4513 varies according to rs2168518. 

In a transcriptome-wide association expression levels of genes across the genome 
are associated with a trait of interest. In Chapter 4.3 we performed a transcriptome-
wide association study of carotid intima media thickness, a measure of atheroscle-
rosis. We identified 3 genes (TNFAIP3, CEBPD, and METRNL) with gene expression 
levels in blood that were associated with carotid intima media thickness. All of these 
genes were inversely associated with carotid intima media thickness: high expres-
sion levels were associated with less atherosclerosis. TNFAIP3 and METRNL have 
been described in the literature as anti-inflammatory genes, and CEBPD has been 
described as both pro and anti-inflammatory.

Finally, Chapter 5 contains an overview of the main findings of this thesis as well as 
their implications, discusses methodological issues, and explores future directions 
in molecular epidemiology in general, and in the molecular epidemiology of CHD 
and hemostasis in particular.
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Nederlandse samenvatting

Hemostase, het stoppen van bloeden, en trombose, de formatie van bloedproppen, 
zijn essentiële processen in de ontwikkeling van hart- en vaat ziekten zoals coronaire 
hartziekten. De breuk van atherosclerotische plaques leidt immers tot een hartaanval 
door het uitlokken van bloedstolling: het zijn de bloedproppen in de slagaders van 
het hart die de bloedtoevoer naar het hart blokkeren. Vele eiwitten spelen een rol 
in hemostase en trombose. Door de biologie en genetische achtergrond van deze 
eiwitten beter te begrijpen, kunnen we meer te weten komen over het ontstaan 
van hart- en vaat ziekten. In deze thesis hebben we vijf hemostase-eiwitten alsook 
genetische risicofactoren van atherosclerose en coronaire hartziekten bestudeerd.

Hoofdstuk 2 bestaat uit genetische associatie studies van de hemostase-eiwitten 
fibrinogeen, factor VII, factor VIII, von Willebrand factor (VWF), en ADAMTS13. Ge-
netische associatie studies testen de associatie tussen miljoenen genetische varian-
ten en een fenotype. Echter, enkel een paar honderdduizend van deze varianten zijn 
direct gemeten: de rest van de varianten wordt geïmputeerd met behulp van een 
referentie populatie. Op basis van deze referentie populatie kan men de correlatie 
tussen de genetische varianten schatten. Het HapMap project was de eerste referen-
tie populatie die het mogelijk maakte om de correlatie tussen genetische varianten 
te schatten en  niet-direct gemeten varianten te imputeren. Sinds kort zijn er nieuwe 
referentie populaties beschikbaar die het imputatieproces naar verwachting verbe-
teren. Het “1000 genomes project” (1000G) is zo een nieuwe referentie populatie. 
In Hoofdstuk 2.1 hebben we een genoomwijde associatiestudie van fibrinogeen uit-
gevoerd in meer dan 120.000 mensen, gebaseerd op 1000G imputatie. Met gebruik 
van deze nieuwe referentie populatie vonden we 18 nieuwe genetische loci voor 
fibrinogeen. Bovendien vonden we dat in de twee sterkste loci voor fibrinogeen 
meerdere genetische varianten, waaronder zeldzame varianten, onafhankelijk van 
elkaar geassocieerd waren met fibrinogeen.

Het gebruik van 1000G imputatie was niet het enige verschil tussen onze studie 
naar genetische factoren voor fibrinogeen levels en voorgaande studies: onze studie 
was ook groter in vergelijking met eerdere studies. Om het voordeel van het gebruik 
van 1000G imputatie ten opzichte van HapMap imputatie nader te bekijken, heb-
ben we in Hoofdstuk 2.2 beide methoden vergeleken in exact dezelfde mensen.
We vonden dat 1000G imputatie 20% meer loci identificeert in vergelijking met 
HapMap imputatie, aannemende dat alle andere factoren hetzelfde blijven. Echter, 
een locus die we in de HapMap studie vonden, was niet significant geassocieerd in 
de 1000G geïmputeerde studie.

Vervolgens hebben we de genetica van fibrinogeen, alsook die van factor VII, 
factor VIII en VWF, bestudeerd met gebruik van een speciaal ontworpen studie 
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methode voor de identificatie van zeldzame genetische varianten. In Hoofdstuk 

2.3 beschrijven we een exoomwijde studie uitgevoerd met gebruik van de Illu-
mina Exome Chip. We vonden twee varianten met een lage allel frequentie en tien 
zeldzame varianten die geassocieerd waren met fibrinogeen, factor VII, factor VIII 
en VWF, onafhankelijk van gekende associaties. In Hoofdstuk 2.4 hebben we een 
zelfde soort studie verricht met gebruik van exoom sequencing data. In deze studie 
vonden we drie nieuwe varianten voor factor VII en twee nieuwe varianten voor 
factor VIII. Deze varianten waren nieuw ten opzichte van de exome array studie. We 
vonden een overlap tussen de genoomwijde associatie studie gebaseerd op 1000G 
imputatie en de twee exoom studies van fibrinogeen.  

In Hoofdstuk 2.5 hebben we de genoomwijde associatie studie methode samen 
met de exoom chip methode gebruikt om frequente en zeldzame genetische varian-
ten voor ADAMTS13 activiteit te vinden. De genoomwijde associatie studie methode 
vond twee varianten op de ADAMTS13 locus en een variant in de SUPT3H locus die 
onafhankelijk van elkaar geassocieerd waren met ADAMTS13 activiteit. De exoom 
chip methode resulteerde in drie extra varianten voor ADAMTS13 activiteit. 

In het verleden hebben onderzoekers vooral de associatie tussen ADAMTS13 en 
cardiovasculaire ziekte bestudeerd. In Hoofdstuk 3 hebben we de rol van ADAMTS13 
met betrekking tot cardiovasculaire risicofactoren onderzocht. We hebben de 
associatie tussen ADAMTS13 activiteit en nierfunctie achteruitgang in Hoofdstuk 

3.1 beschreven. We vonden dat de VWF/ADAMTS13 ratio geassocieerd was met 
nierfunctie achteruitgang, een sterke risicofactor voor cardiovasculair ziekte en een 
belangrijke directe oorzaak van morbiditeit en mortaliteit. Een hogere ADAMTS13 
activiteit was beschermend gezien het geassocieerd was met een tragere nierfunctie 
achteruitgang. Deze bevinding is in lijn met wat we weten van trombotische trom-
bocytopenische purpura, een ziekte veroorzaakt door een laag ADAMTS13 die zich 
vaak presenteert met nierfalen.

In Hoofdstuk 3.2 hebben we de associatie tussen ADAMTS13 activiteit en de 
incidentie van type 2 diabetes bestudeerd. In tegenstelling tot de bevindingen 
met nierfunctie achteruitgang vonden we dat hoger ADAMTS13 geassocieerd was 
met een hoger risico op type 2 diabetes. De associatie veranderde nauwelijks na 
adjusteren voor mogelijke confounders en vastende glucose en insuline waarden. 
We concluderen dat ADAMTS13 activiteit het risico op cardiovasculaire ziekte kan 
verlagen door een mogelijk antitrombotisch en dus protectief effect op nierinsuffici-
ëntie. Tevens kan ADAMTS13 activiteit het risico op cardiovasculaire ziekte verhogen 
door de associatie met diabetes.

In Hoofdstuk 4 hebben we cardiovasculaire ziekte zelf bestudeerd, alsook de on-
derliggende atherosclerose. In Hoofdstuk 4.1 hebben we de toegevoegde waarde 
van een genetische risico score voor het voorspellen van een toekomstig hartinfarct 
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onderzocht. We vonden geen noemenswaardige verbetering in het voorspellen 
van een toekomstig hartinfarct met een genetische risico score opgebouwd uit 152 
genetische varianten. Desalniettemin, de predictie voor prevalente coronaire hart-
ziekte verbeterde wel substantieel. De discrepantie tussen prevalente en incidente 
predictie van coronaire hartziekte kan het gevolg zijn van het gebruik  van gene-
tische varianten gevonden in studies voor prevalente hartziekte, en niet incidente 
hartziekte.  

In Hoofdstuk 4.2 hebben we de associatie tussen SNPs in de zogenoemde “seed” 
sequentie van microRNAs en cardiovasculaire ziekte en zijn risicofactoren onder-
zocht. Deze “seed” sequentie bestaat uit vijf tot zes nucleotiden en bepaalt aan 
welke genen het microRNA kan binden. We vonden dat rs2168518, een variant in 
de sequentie van miR-4513, geassocieerd was met vastende glucose waarden, LDL-
cholesterol en totaal cholesterol, alsook systolische en diastolische bloeddruk en 
het risico op coronaire hartziekte. De richting van het effect was overeenkomstig 
met de andere fenotypes: het zeldzame allel van rs2168518 was geassocieerd met 
een slechter cardio-metabool profiel. Middels experimenteel onderzoek toonden 
we aan dat het zeldzame allel van rs2168518 de expressie van miR-4513 significant 
verminderde. Daarnaast konden we vijf genen aanwijzen die de associatie tus-
sen miR-4513 en deze cardio-metabole fenotypes zouden kunnen mediëren. We 
valideerden een van deze genen (GOSR2), en we toonden aan dat de regulerende 
werking van miR-4513 op GOSR2 varieerde op basis van het genotype van rs2168518.

In transcriptoomwijde associatie studies associeert men expressie levels van alle 
genen in het genoom met een phenotype. In Hoofdstuk 4.3 hebben we en trans-
criptoomwijde associatie studie uitgevoerd op carotis intima media dikte, een maat 
van atherosclerose. De expressie van drie genen (TNFAIP3, CEBPD en METRNL) was 
geassocieerd met carotis intima media dikte. Deze drie genen waren alle negatief 
geassocieerd met carotis intima media dikte: hogere expressie was geassocieerd met 
minder atherosclerose. TNAIF3 en METRNL zijn beschreven als anti-inflammatoire 
genen in de literatuur, daar waar CEBPD zowel pro- als anti-inflammatoire effecten 
kan hebben.

Tenslotte bespreken we in Hoofdstuk 5 de hoofdbevindingen van deze thesis 
alsook de implicaties en methodologische aspecten. Tevens bespreken we de 
toekomstige mogelijkheden in de moleculaire epidemiologie, meer specifiek de 
moleculaire epidemiologie van coronaire hartziekte en hemostase.
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