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Abstract
Recently, the Haplotype Reference Consortium (HRC) released a large imputation panel that

allows more accurate imputation of genetic variants. In this study, we compared a set of directly

assayed common and rare variants from an exome array to imputed genotypes, that is, 1000

genomes project (1000GP) and HRC. We showed that imputation using the HRC panel improved

the concordance between assayed and imputed genotypes at common, and especially, low-

frequency variants. Furthermore, we performed a genome-wide associationmeta-analysis of ver-

tical cup-disc ratio, a highly heritable endophenotype of glaucoma, in four cohorts using 1000GP
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and HRC imputations. We compared the results of the meta-analysis using 1000GP to the meta-

analysis results using HRC. Overall, we found that using HRC imputation significantly improved

P values (P = 3.07 × 10−61), particularly for suggestive variants. Both meta-analyses were per-

formed in the same sample size, yetwe found eight genome-wide significant loci in theHRC-based

meta-analysis versus seven genome-wide significant loci in the 1000GP-basedmeta-analysis. This

study provides supporting evidence of the new avenues for gene discovery and fine mapping that

the HRC imputation panel offers.

K EYWORDS

association studies, imputation, 1000 Genomes Project reference panel, Haplotype Reference

Consortium, vertical cup-disc ratio

1 INTRODUCTION

Progress in understanding the genetic etiology of complex traits is

largely determined by the success of genome-wide association stud-

ies (GWAS) (McCarthy et al., 2008; Price, Spencer, & Donnelly, 2015).

Imputation, that is, statistical inference of genotypes not directly

assayed by arrays (Li, Willer, Sanna, & Abecasis, 2009), is crucial to the

success of GWAS. Imputation increases the number of variants tested

per study and allows combination of multiple studies assayed in dif-

ferent arrays, boosting the power of GWAS (Hao, Chudin, McElwee, &

Schadt, 2009; Huang et al., 2015; Marchini & Howie, 2010). Recently,

the Haplotype Reference Consortium (HRC) released the first ver-

sion of a panel encompassing 64,976 haplotypes (McCarthy et al.,

2016). This resource combines other widely used panels such as the

1000 Genomes Project (1000GP) (Genomes Project et al., 2015), the

Genome of the Netherlands (GoNL) (Boomsma et al., 2014; Genome

of the Netherlands, 2014), the UK10K (Consortium et al., 2015),

and also includes sequencing data from 17 cohorts (McCarthy et al.,

2016).

Previous studies have shown that larger reference panels consider-

ably increase imputation accuracy, particularly for low-frequency vari-

ants, and that this gain in imputation accuracy results in increased

statistical power (Browning & Browning, 2009; Deelen et al., 2014;

McCarthy et al., 2016). To quantify the advantage of the HRC ref-

erence panel in the imputation of common and rare variants, we

first assessed the concordance rate between directly assayed geno-

types from exome array data and best-guess genotypes from 1000GP

and HRC imputations. Then, we evaluated any difference in statis-

tical power by comparing the meta-analysis of GWAS of vertical

cup-disc ratio (VCDR) using 1000GP imputation versus HRC impu-

tation, in the same samples. VCDR is a well-recognized endophe-

notype of primary open-angle glaucoma (Charlesworth et al., 2010)

and a highly heritable trait (h2 = 0.66) (Charlesworth et al., 2010)

used for clinically assessing glaucoma patients. Here, we assessed the

impact of the imputation panel on a meta-analysis of GWAS of VCDR

by analyzing four cohorts: the Rotterdam Study (RS-I, RS-II, RS-III)

(Hofman et al., 2015) and the Erasmus Rucphen Family (ERF)

(Aulchenko et al., 2004; Pardo, MacKay, Oostra, van Duijn, &

Aulchenko, 2005) study.

2 MATERIALS AND METHODS

2.1 Study descriptions

The description of the participating studies can be found in the

Supporting Information. All studies adhered to the tenets of the

Declaration of Helsinki and were approved by their local Medical

Ethics Committees. Written, informed consent was obtained from all

participants.

2.2 Genotype and imputations

The Rotterdam Study cohorts (RS-I, RS-II, and RS-III) and the ERF

studywere genotyped using commercially available genotyping arrays,

and genotyping quality control (QC) was done for each cohort indi-

vidually. Detailed information about genotyping and imputations

for each study is presented in Supp. Table S1. The genome-wide

arrays were used to impute variants twice, once with the 1000GP

(Genomes Project et al., 2015) and once with HRC (McCarthy et al.,

2016). Imputations with the 1000GP were described previously (van

Leeuwen et al., 2015). For HRC, file preparation was done using

scripts provided online (HRC Imputation preparation and checking:

http://www.well.ox.ac.uk/~wrayner/tools/; v4.2.1). Imputation with

HRC was facilitated by the Michigan Imputation server (Das et al.,

2016). Filtered genotypes were uploaded. The server uses SHAPEIT2

(v2.r790) to phase the data and Minimac 3 for imputation to the HRC

reference panel (v1.0). We used the imputed dosages returned by the

service (McCarthy et al., 2016).

2.3 Genotyping on the exome array

In total 3,159 participants from RS-I were genotyped in the HumanEx-

ome BeadChip v1.0 from Illumina (Illumina, Inc., San Diego, CA). To

increase the quality of the rare variant genotype calls on the exome

array, the genotypes were jointly called with 62,266 samples from 11

studies at theUniversity of TexasHSCatHouston (UTHouston) (Grove

et al., 2013). QC procedures for the genotype data were done both

centrally at UT Houston and locally. The central QC procedures have

been described previously (Grove et al., 2013). Locally, additional QC

included removal of: (1) individuals with low genotype completion rate

http://www.well.ox.ac.uk/~wrayner/tools/
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(<90%), (2) variants with low genotype call rate (<95%), (3) individuals

with sex-mismatches, (4) one individual from duplicate pairs, and (5)

variants not called in over 5% of the individuals and those that devi-

ated significantly form the expected Hardy–Weinberg Equilibrium

proportions (P< 1 × 10−06).

2.4 Variant selection and calculation of

concordance

A total of 236,756 variants on the exome array passed QC. Of these,

we selected variants that fulfilled the following four criteria: (1) were

imputed in both the 1000GP and HRC, (2) were polymorphic, (3)

had non-ambiguous allele coding, and (4) showed no differences in

reference allele frequency. In summary, 82,281 variants on the exome

array were imputed in both 1000GP andHRC panels. Of these, 31,022

did not fulfill our criteria (n = 29,819 monomorphic, n = 1,141 with

ambiguous allele coding, and n = 62 with large differences [>10%] in

reference allele frequency). The final set consisted of 51,259 variants,

for which we calculated either the concordance of the alternate allele

calls (for the low-frequency and rare variants) or the concordance for

both reference and alternate allele (for common variants). Calculation

of concordance was performed using the exome array genotypes

as benchmark and the best-guess genotypes from either 1000GP or

HRC.

For the common variants, the reported concordance is the percent-

age of correctly imputed alleles divided by the number of exome array

alleles according to the following formula (n= number of individuals):

Concordance for common variants =

x = 100 × (b + d + f + h + 2 (a + e + i))
2n

For the rare variants, the reported concordance is the percentage

of correctly imputed alternate alleles divided by the number of exome

array alternate alleles according to the following formula:

Concordance for rare variants = x = 100 × (e + f + h + 2i)
(b + e + h + 2 (c + f + i))

Exome array (benchmark) # of
alternate alleles

0 1 2

HRC/1000GP # of alternate alleles 0 a b c

1 d e f

2 g h i

For comparison purposes, assessed variants were divided into

nine categories based on their minor allele frequency (MAF) (i.e.,

common, MAF > 0.05; low-frequency, 0.01 < MAF < 0.05; rare,

0.001 <MAF < 0.01), and R21000GP (i.e., R
2
1000GP > 0.8; R21000GP 0.3–

0.8;R21000GP <0.3).CommonvariantswithR21000GP <0.3 that showed

a concordance rate <90% (n = 44) were examined in the list of vari-

ants located in inaccessible regions of the genome from the GoNL

(Boomsma et al., 2014).

2.5 Genome-wide association analyses in RS-I-II-III

and ERF

We performed a GWAS in four Dutch cohorts: RS-I, RS-II, RS-III, and

ERF (n = 12,441). GWAS were conducted twice per cohort, once using

1000GP imputations and once using HRC imputations. Association of

directly genotyped and imputed dosages with VCDR was tested using

linear regression under an additive model. All analyses were adjusted

for age, sex, and the first five principal components in RS-I, RS-II, and

RS-III, or family structure in ERF. The1000GP imputationsGWASanal-

yses were conducted using ProbABEL (Aulchenko, Struchalin, & van

Duijn, 2010) software. To account for family relationships in ERF, the

mmscore function implemented in GenABEL (Aulchenko, Ripke, Isaacs,

& van Duijn, 2007) was used. Association analyses with HRC imputa-

tionswereperformed inRvTest–meta scoreoption; to adjust for familial

relationships in ERF, the kinship matrix estimated from the genotyped

data was used. Variants withMAF< 0.01 in 1000GP andMAF≤ 0.001

inHRC, andwith low imputation quality score (R2 < 0.3) were excluded

from the analyses. The EasyQC software was used for QC at the study

level, as described elsewhere (Winkler, et al., 2014). The inflation fac-

tor (𝜆) of each individual study using 1000GP and HRC panels can be

found in the Supp. Table S2.

2.6 Meta-analysis of RS-I-II-III and ERF

Meta-analyses for both 1000GP and HRC association results were

conducted using the inverse variance-weighted fixed-effect method

in METAL (Willer, Li, & Abecasis, 2010). Genomic control was applied

in METAL and heterogeneity was calculated. After meta-analyses, we

excluded the variants that were not present in at least two of the four

cohorts. Given that HRC does not include INDELs, we excluded the

INDELs from the 1000GPmeta-analysis. The remaining variants were

used for comparison of the results between 1000GP and HRC. To cal-

culate the 𝜆 in each meta-analysis we used those variants present in

bothmeta-analysis (n=7,654,440).𝜆 in 1000GPwas1.096, and inHRC

1.102, seeQQ plot in Supp. Figure S1.

2.7 Statistical analysis

To evaluate the change of P values in theHRCmeta-analysis compared

with the 1000GPmeta-analysis, variants from1000GPandHRCmeta-

analyses were divided into four categories: (1) genome-wide associ-

ated in 1000GP or HRC (P < 5.0 × 10−08), (2) suggestively associated

in 1000GP or HRC (5.0 × 10−08 < P≤ 1.0 × 10 −04), (3) nominally asso-

ciated (1.0 × 10−04 < P ≤ 0.05), and (4) not associated (0.05 < P ≤ 1).

We then subtracted the chi-square in HRC meta-analysis from the

chi-square in 1000GP, and calculated the proportion of variants that

showed a positive sign (i.e., larger chi-square in HRC). We then used a

proportion Z test to evaluate if the proportion of variants with a posi-

tive sign was significantly different from 0.5.
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F IGURE 1 Imputation accuracy 1000GP versus HRC. Post-
imputation quality metric based on the R2 value from 1000GP (in
gray) and HRC (in black). MAF, minor allele frequency

3 RESULTS

3.1 Comparison 1000GP versus HRC

We first compared the R2 value derived from the imputation soft-

ware between 1000GP and HRC imputations (see Fig. 1). In this study,

R21000GP refers to the R2 value in 1000GP imputations and R2HRC to

the value inHRC. As reported by theHRC consortium (McCarthy et al.,

2016), we confirmed that the R2HRC was higher than the R
2
1000GP, par-

ticularly for rare (0.001 < MAF < 0.01) and low-frequency variants

(0.01<MAF< 0.05) variants.

In 3,159 individuals from the Rotterdam Study-I (RS-I) assayed on

the HumanExome BeadChip v1.0 (exome array), we determined the

concordance between directly assayed genotypes and imputed geno-

types. Of the 51,259 studied variants (see Materials and Methods sec-

tion), 21,230 were common (MAF > 0.05 in the exome array), 8,006

were low-frequency variants (0.01 < MAF < 0.05) and 11,090 were

rare variants (0.001 < MAF < 0.01). A total of 10,933 very rare vari-

ants (i.e., MAF< 0.001) were excluded as theminor allele count for the

variants were six or less. The concordance rate of very rare variants

can be found in Supp. Table S3 and Supp. Figure S2.

Figure 2 shows the concordance between exome array and 1000GP

in red and the concordance between exome array and HRC in blue

(plots are shown per MAF and R2 bins; for comparison purposes, we

used the R21000GP to define the bins). Supp. Table S4 shows the num-

ber of variants per bin and the concordance rates for both 1000GPand

HRC.

Overall, concordance was better using HRC compared with

1000GP. For common variants with R21000GP 0.3–0.8 (Fig. 2B), the per-

centageof concordant variants (i.e., concordance rate≥90%) improved

from 86% in 1000GP to 99.8% in HRC. In the case of common

variants with R21000GP < 0.3 (N variants = 177; Fig. 2C), the percent-

age of concordant variants improved from 46% in 1000GP to 75% in

HRC.

For low-frequency variants, a remarkable improvement in con-

cordance was observed as shown in Figure 2D–F. Overall (N vari-

ants = 8,006), the concordance increased from 44% in 1000GP to

66% in HRC. For variants with R21000GP > 0.8 (N variants = 3,844),

the percentage of concordance improved from 85% in 1000GP to

98% in HRC. Improvement was most pronounced for variants with

R21000GP 0.3–0.8 (Fig. 2E; N variants = 3,301), in which the percent-

age of concordant variants improved from 7% in 1000GP to 44% in

HRC. Despite the overall improvement, the concordance is relatively

low for variantswithR21000GP < 0.3 (Fig. 2F;N variants= 861); concor-

dance improved from 1% in 1000GP to 5% in HRC (see details in Supp.

Table S4).

Using HRC, we found a similar pattern for rare variants as observed

for low-frequency variants (Fig. 2G–I). Overall (N variants = 11,090)

concordance improved from 14% in 1000GP to 34% using HRC impu-

tations. For rare variants with R21000GP > 0.8 (Fig. 2G), concordance

improved from 65% in 1000GP to 86% in HRC, whereas for rare vari-

antswithR21000GP 0.3–0.8, concordance increased from8% in1000GP

to 35% in HRC (Fig. 2H).

3.2 Impact of HRC imputations on VCDRGWAS

To evaluate the improvement in statistical power, we compared the

results of a meta-analysis of GWAS using 1000GP imputations to a

meta-analysis of GWAS using HRC imputations. Both meta-analyses

included 12,441 individuals from four independent Dutch cohorts

(RS-I, RS-II, RS-III, and ERF). Table 1 describes the baseline charac-

teristics of the study populations. The inflation factor lambda (𝜆), an

indicator of potential population stratification and false positive rate,

was comparable in the two meta-analyses with values of 1.096 in the

1000GPmeta-analysis and 1.102 in the HRCmeta-analysis (Supp. Fig.

S1 and Table S2), suggesting no increase in false positives in the HRC

analyses.

To assess the improvement in P values, we calculated the propor-

tion of variants for which a stronger association was found in the HRC

meta-analysis. 62% of variants that showed suggestive association in

1000GP or HRC meta-analyses (i.e., 5.0 × 10−08 < P < 1.0 × 10−04; n

variants = 4,683) showed smaller P values in the HRC meta-analysis

(P= 3.07× 10−61; Table 2) suggesting improved sensitivity in theHRC-

based meta-analysis. For variants below suggestive significance (i.e.,

1.0 × 10−04 < P < 1), the P values did not improve, suggesting bet-

ter specificity.No statistically significant differenceswereobserved for

the genome-wide significant variants.

Based on the data of the Rotterdam Study and ERF, we confirmed

in our 1000GP meta-analysis seven loci reported by the Interna-

tional Glaucoma Genetics Consortium (IGGC) (Springelkamp et al.,

2014, 2016), which is 2.6 times the size of this study. Using the HRC

imputation, we confirmed one additional common variant (rs6539763,

MAF = 0.46, close to TMTC2), previously reported by the IGGC

(Springelkamp et al., 2014). When comparing the top associated vari-

ants fromboth1000GPandHRCmeta-analyses,we found that in three
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F IGURE 2 Comparison of concordance between exome-array and imputed data (1000GP and HRC). Histograms are presented by bins selected
basedonminor allele frequency (MAF) andR21000GP values. For eachhistogram, the concordance rate is on the x-axis and thepercentageof variants
(N total of variants) is on the y-axis. Concordance between exome-array genotypes and best-guess genotypes from 1000GP are shown in red and
fromHRC in blue.Overlapped regions of the histograms are in dark-red. Panels A–C show comparison of concordance for common variants; panels
D–F show comparison of concordance for low-frequency variants, and panels G–I show comparison of concordance for rare variants. Based on the
R21000GP threshold, panels A, D, and G) show the comparison of concordance for variants with high R21000GP (>0.8), panels B, E, and H show the
comparison of concordance for variantswith R21000GP between 0.3 and 0.8, and panels C, F, and I show the comparison of concordance for variants
with low R21000GP (<0.3)

TABLE 1 Studies characteristics Rotterdam-I-II-III and ERF studies

StudyDescriptives

Study N MeanAge Age SD Age Range %Men Mean VCDR VCDRRange

RS-I 5,573 68.0 8.4 55–99 40.90% 0.50 0.05–0.87

RS-II 1,987 64.7 7.7 55–96 46.10% 0.50 0.10–0.86

RS-III 2,873 57.2 6.6 46–90 43.90% 0.29 0.00–1.00

ERF 2,008 48.3 13.8 18–85 43.97% 0.31 0.00–0.87

SD, standard deviation; VCDR, vertical-cup disc ratio

out of the seven confirmed loci, the top associated variant was the

same (rs1192415 close to TGFBR3, rs7916410 close to ATOH7, and

rs9613667 in CHEK2). For the other four loci, top variants were differ-

ent in each meta-analysis (Supp. Table S5). In all cases, the identified

variantswere in LD (0.74< r2 <1)with the variant previously reported

by the IGGC.

4 DISCUSSION

We showed that the HRC imputations improve the concordance

between directly assayed and imputed genotypes over a large range of

MAFs. In addition, our VCDR analyses show that the P values obtained

with HRC imputations compared with 1000GP imputations are on
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TABLE 2 Improvement in P value in HRCmeta-analysis

GWAS PValue Category NVariants
% of Variants with Smaller PValue
in HRC-Meta-Analysis Z Score* PValue*

Genome-wide significant (P≤ 5.0× 10 −08) 751 52 1.28 0.202

Suggestive (5.0 × 10−08 < P≤ 1.0 × 10 −04) 4,683 62 16.47 3.07 × 10−61

Nominally associated (1.0 × 10−04 < P≤ 0.05) 534,998 49 −16.92 1.53 × 10−64

No associated (0.05< P≤ 1) 7,321,737 48 −119.23 <1.0 × 10−230

Variants from 1000GP andHRCmeta-analyses were divided into four categories, that is, genome-wide associated, suggestive, nominally associated and not
associated.
*Z score and P value from a proportion z test, in whichH0= 50%.

average significantly smaller for suggestive variants. The improve-

ments were also seen with common variants, predicting that HRC

imputations may also be relevant for finding new common variants.

As described by the HRC (McCarthy et al., 2016), the imputation

accuracy (measured by the R2) is higher when using the HRC panel.

In our comparisons, 93.27% (n = 19,802 out of 21,230) of the com-

mon variants imputed with 1000GP had a R2 > 0.8; this percentage

increased to 98.74% in HRC (n = 20,962 out of 21,230; Supp. Table

S6). Despite the overall improvement, there is still a group of com-

mon variants with R2 < 0.3 that showed a low concordance rate (i.e.,

<90%). Of these, about 18% (eight out of 44) are located in inacces-

sible regions of the genome that represent a challenge for short-read

technologies (Deelen et al., 2014; Genome of the Netherlands, 2014;

Genomes Project et al., 2010; Genomes Project et al., 2012) (Supp.

Table S7). Investment in long-read sequencing and single-molecule

mapping, along with improvements in the generation of high-quality

de novo assemblies of genomes, will advance our understanding of

the genome and its variation, and will further improve the accuracy of

genotype imputations (Berlin et al., 2015; Chaisson, et al., 2015).

In this study, we focused on the assessment of genotype concor-

dance rate rather than on the R2 changes as described by the HRC

in McCarthy et al. We calculated and assessed the concordance rate

between high-quality genotypes (Grove et al., 2013) from the exome

array (enriched in low-frequency and rare variants) and imputed geno-

types. The general implication of our study is that for common vari-

ants (MAF > 0.05), improvement in concordance supports the view

that best-guess genotypes, instead of directly assayed data, can be used

for replication of GWAS findings but also for Mendelian Randomiza-

tion studies, particularly when R2 is >0.8. For low-frequency variants

(0.01 < MAF < 0.05), the improvement in concordance is relevant

for gene discovery, as previously highlighted by the HRC (McCarthy

et al., 2016). A marked improvement was observed for variants with

R21000GP 0.3–0.8 (Fig. 2E). Thus, low-frequency variants commonly fil-

tered out in meta-analyses of GWAS at present might be studied reli-

ably using HRC imputations. For rare variants (0.001 < MAF < 0.01),

there is also a relevant improvement in concordance that facilitates in

silico validation of findings of exome array or sequencing results, and

gene discovery. Finally, for rare variationwe observed that the concor-

dance of well-imputed variants increased by 20% (65% in 1000GP vs.

to 86% in HRC).

The HRC panel incorporates 64,976 haplotypes, including 998

Dutch haplotypes from the GoNL (Genome of the Netherlands, 2014;

van Leeuwen et al., 2015); previous studies have shown that sample

size of the reference panel is often more important than population

matching (Huang et al., 2015; Marchini & Howie, 2010). This finding

was also observed in a previous study (Deelen et al., 2014), in which

a combined reference panel including GoNL and 1000GP yielded the

best imputation results. This suggests that the improvement in geno-

type concordance observed in our study is related to the increase

sample size of the HRC.

Our analysis of VCDR in the Rotterdam and ERF cohorts used the

same group of individuals, thus allowing an informative comparison

between meta-analysis results performed with genotypes imputed

with 1000GP versus genotypes imputed with HRC. We showed that

for over a large range of MAFs, including common variants, a signifi-

cant improvement in P values can be achieved with HRC imputations.

The same trend was observed when P values from both meta-analyses

were compared (Supp. Fig. S3). Table 2 shows that the percentage of

genome-wide significant, and particularly, suggestive variants in the

GWAS performed using the genetic data imputed with the HRC refer-

ence panel is larger compared with the GWAS using the 1000GP ref-

erence panel. Given the same sample size (n = 12,441), we confirmed

in the 1000GP meta-analysis seven previously reported VCDR-loci

(Springelkamp et al., 2014, 2016), whereas in the HRC meta-analysis

an additional known VCDR-locus (close to TMTC2) was confirmed.

The main difference between 1000GP and HRC meta-analysis at

the TMTC2 locus is at the regression coefficient and standard error

(𝛽(SE)1000GP = −0.010(0.002) vs. 𝛽(SE)HRC = −0.011(0.0019)). These
loci have been reported in the HapMap and 1000GP GWAS meta-

analyses conducted by the IGGC, which included 27,878 and 32,272

individuals, respectively (Springelkamp et al., 2014, 2016).

A potential limitation in this study is that we used exome array data

as benchmark, and genotype calling may be subject to error. However,

data were jointly called with around 62,000 other samples, thereby

improving the accuracy of our genotype calls (Grove et al., 2013).

Assessment of concordance using exome-array genotypes allowed us

to compare the performance of the both reference panels indepen-

dently of the post-imputation metric (R2) derived from imputation

software. Our sample size limits the assessment of very rare variants

(MAF < 0.001); however, the same trend was observed for these vari-

ants (Supp. Table S3). We analyzed a genetically homogeneous Dutch

population, thus we cannot predict the performance of HRC in non-

Europeans. Assessment in other populations will reveal the perfor-

mance of HRC and 1000GP panels in non-European samples. Our
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findings provide further evidence for the gain in power when a large

reference panel as released by the HRC is used for imputations. We

have shown that concordance between data directly assayed in the

exomearray andHRC imputations is high, particularly, for variantswith

an R2 > 0.8 across a wide range of allele frequencies. Furthermore, our

analyses of VCDR data in 12,441 subjects showed smaller P values for

common and rare variants when using the HRC panel. Thus, imputa-

tions with HRC and other larger reference panels improves the sta-

tistical power to discover both common and low-frequency variants,

opening new avenues for fine-mapping and gene discovery.
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