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Approved CAR T cell therapies: ice
bucket challenges on glaring safety
risks and long-term impacts

Ping-Pin Zheng1,2, p.zheng.1@erasmusmc.nl, Johan M. Kros2 and Jin Li3

Two autologous chimeric antigen receptor (CAR) T cell therapies (KymriahTM and YescartaTM) were

recently approved by the FDA. KymriahTM is for the treatment of pediatric patients and young adults

with refractory or relapse (R/R) B cell precursor acute lymphoblastic leukemia and YescartaTM is for the

treatment of adult patients with R/R large B cell lymphoma. In common, both are CD19-specific CAR T

cell therapies lysing CD19-positive targets. Their dramatic efficacy in the short term has been

highlighted by many media reports. By contrast, their glaring safety gaps behind the miracles remain

much less addressed. Here, we focus on addressing the crucial challenges in relation to the gaps.
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Introduction
Two chimeric antigen receptor (CAR) T cell

therapies (KymriahTM and YescartaTM) were

recently approved by the FDA [1,2]. KymriahTM

(tisagenlecleucel) is for the treatment of pedi-

atric patients and young adults with refractory

or relapse (R/R) B cell precursor acute lym-

phoblastic leukemia (ALL), whereas YescartaTM

(axicabtagene ciloleucel) is for the treatment of

adult patients with R/R large B cell lymphoma.

They are both genetically modified autologous

T cells expressing a CD19-specific CAR, lysing

CD19-positive targets (normal and malignant B

lineage cells). A noted difference is shown in

the vectors used for KymriahTM (lentiviral vec-

tor) and YescartaTM (F-retroviral vector) [3].

The overall response rate (ORR) in the short

term was very high (83%), solely based on a

single infusion of KymriahTM [1], where leuke-

mia could not be cured by any other means,
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and patients went into remission within 3

months of being treated with KymriahTM. The

recipients of YescartaTM had 72% ORR [2]. Ob-

viously, there is no doubt about the lifesaving

potential of the treatments in these hopeless

cases. Numerous media reports have dramati-

cally highlighted the lifesaving potential of

KymriahTM and YescartaTM, and they have been

coined as ‘living drugs’.

Indeed, this is a history-rewriting progress in

cancer medicine and a quintessentially modern

paradigm of clinical oncology, which not only

gives hope but also directly drives innovative

cancer science to patient care and leads to a

paradigm shift from protocol-based treatment

to real-time personalized therapy unprece-

dentedly. However, in the real world, even

though a drug has a greater potency or a

medical technology provides dramatic benefits,

distinct and even serious adverse health risks
AR T cell therapies: ice bucket challenges on glaring safety risks
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can be associated either predictably or unpre-

dictably [4]. It has been evident that many types

of anticancer drugs or modalities including

those modern ones with ‘breakthrough desig-

nation’ have induced life-threatening compli-

cations (e.g. cardiotoxicity) [5]. KymriahTM and

YescartaTM remain therefore not only with seri-

ous patient safety events already noted in the

short term but also with their long-term impacts

(efficacy and safety) lacking. As all the stake-

holders strive to understand the great successes,

in the meantime, we should keep in mind the

real-time challenges and realize gaps in the

dramatic efficacy versus glaring safety concerns.

Here, we analyze the crucial challenges re-

garding the gaps impacting quality-of-life (QOL)

with the therapies, and provoke intensive

debates especially regarding these potentially

long-simmering problems that have not yet

been fully explored.
 and long-term impacts, Drug Discov Today (2018), https://

/licenses/by/4.0/).
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Efficacy versus resistance of KymriahTM

and YescartaTM

Overall, the efficacy versus toxicity and safety of

a treatment manifests as short- and long-term

effects. Despite the excellent clinical responses

of the R/R B ALL patients to KymriahTM [1] and R/

R large B cell lymphoma patients to YescartaTM

[2], a significant number of patients treated by

KymriahTM have relapsed months later [6,7], and

nearly 30% of patients had a partial response

treated by YescartaTM and the therapeutic

effects tended to wane by the 6-month mark in

many [8]. Thus, it remains unknown as to how

long the benefits of KymriahTM and YescartaTM

might last (i.e. there are concerns about long-

term efficacy). Clinical relapse suggests that

cancer cells develop resistance to the destruc-

tion unleashed by the cytotoxic T lymphocytes

[9]. Many biological and biochemical factors

could potentially impact the efficacy and safety

of KymriahTM and YescartaTM (Table 1). However,

the definite causes underlying the immune re-

sistance or partial response are not fully un-

derstood. Some important factors possibly

accounting for the efficacy, resistance or ineffi-

cacy are formulated here.

Challenges in synthetic immunobiology

Expansion and persistence of the CAR-modified T

cells in the body are linked to many factors (Table

1). Any of these factors could collectively or in-

dividually influence the response in the patients

treated by KymriahTM and YescartaTM [7,10–20].

Formulation of T cell subsets

Each T cell subset has a unique cytokine profile,

functional properties and presumed roles in

pathogenesis [21] and holds a specific role in

protective immunity [22]. Functionally, T cells

can be identified as either beneficial tumor-

specific T cells or deleterious counterparts [22].

Thus, controlling the T cell subsets with favor-

able function compositions of a CAR T cell

product is one of the most important aspects for

manufacturing more-effective clinical T cell

products [10,22]. The strategy holds the po-

tential to reduce product variability, improves

the consistency of in vivo proliferation and

provides reproducible potency [11,15,19,22,23].

Moreover, T cell maturation status is important

as well, and it was found that less differentiated,

stem-cell-like T cells possess greater therapeutic

efficacy [24,25].

Immunosuppressive tumor
microenvironment

The immune system has a double-edged role,

being involved in suppressing tumor growth by
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destroying cancer cells and shaping the im-

munogenic phenotypes of tumors to promote

tumor progression by escaping immunosur-

veillance [9,26]. These inhibitory and immuno-

suppressive stimuli can impede the function of

CAR T cells [27] and ‘armored CARs’ could

improve T cell function [28].

CD19� variants (antigen-loss relapses)

CD19� ALL variants are being recognized with

increasing frequency, rendering the CAR T cells

ineffective against B cell tumors and thus repre-

senting a barrier to progress in CD19-directed

immunotherapy [29,30]. Several novel mecha-

nisms associated with CD19� ALL variants have

been discovered [6,31–33] (e.g. alternative mRNA

splicing, CD19 gene deletion or mutation, CD19-

negative clonal evolution, induction of a myeloid

switch). Allogeneic stem cell transplantation (allo-

SCT) and co-targeting of multiple markers on

leukemic cells could be the possible solutions [6].

But tumor-specific antigens are rare, and thus

multipletargetingpotentially increases off-tumor,

on-target toxicities [5] including neoreactivities

(allo-HLA and autoreactive activity) induced by

mixed T cell receptor (TCR) dimers [34].

CAR protein and RNA downregulation

CAR expression is decreased upon repeated

stimulations [24,35,36] or when there is accel-

erated differentiation and exhaustion of the T

cells [24,36]. These problems pose additional

challenges of CAR in CAR T cell therapy. A

possible solution for the problem is to direct a

CD19-specific CAR to the TCR a constant (TRAC)

locus by CRISPR/Cas9 genome editing [35],

which potentially yields some benefits (e.g.

decreased T cell differentiation and exhaustion

[22,37,38], minimizing the risks of insertional

oncogenesis and TCR-induced autoimmunity

and alloreactivity [35]).

High dose of corticosteroids

It is unclear whether tocilizumab has any bene-

ficial effects on neurotoxicities [39], because its

size makes efficient blood–brain barrier (BBB)

penetration unlikely [33,40]. Thus, the first-line

agent to treat severe neurotoxicities is often with

systemic corticosteroids rather than tocilizumab

[33,39]. However, prolonged use of high-dose

corticosteroids results in ablation of the CAR T cell

population [20,41]. Moreover, inappropriate use

of glucocorticoids is associated with risk for early

relapse of primary disease [41].

Extramedullary disease

The central nervous system (CNS) is a well-rec-

ognized reservoir wherein leukemia can escape
AR T cell therapies: ice bucket challenges on glaring safety risks
systemic cytotoxic therapy [42]. The CNS com-

partment is affected in roughly one-third of ALL

relapses [43,44], whereas CNS involvement at

relapse occurs mainly in patients who were CNS-

negative at initial diagnosis [44,45]. Intriguingly,

CD19 CAR T cells have been identified in the

cerebrospinal fluid (CSF) of patients after infu-

sion [46–48], even though many of the patients

(80%) did not have a history of CNS leukemia

[49], suggesting the ability of these cells to cross

the BBB [47,50]. Thus, the therapy might be

considered to replace multiple doses of either

prophylactic or therapeutic, intrathecal che-

motherapy and radiation in leukemia patients.

Theoretically, the replacement could reduce

cognitive impairment and developmental delay

resulting from chemotherapy and radiation in

the patient population, because ALL is most

commonly diagnosed in children under 8 years

of age, a crucial time in brain development [51].

However, a contradictory event in parallel con-

sideration is neurotoxicity – one of the major

complications of KymriahTM and YescartaTM. As a

result, caution should always be taken when

considering the replacement. Furthermore, de-

tection of CD19 expression in the brain paren-

chyma remains controversial [25], and thus the

capacity for clearance of Extramedullary disease

(EMD) by the therapy remains uncertain [22] and

further research in this area is warranted.

Common toxicities of KymriahTM,
YescartaTM and beyond
Given the extreme potency of the CAR-modified

T cells and similar mode of action, the use of

KymriahTM and YescartaTM harbors common

fatal toxic potentials that can be as bad as or

worse than the original condition and even

lethal [1,2,10]. Some higher rates of serious

adverse events manifested in acute or subacute

forms have been demonstrated as immediately

life-threatening [1,2,10] (Table 2). Because the

cellular immune system has been artificially

boosted for an enhanced activation, KymriahTM

and YescartaTM act like ‘immuno-bombs’, remi-

niscent of the atomic bombing in Hiroshima and

Nagasaki in 1945, and the immuno-bombs drop

into the circulation system of the human body

to nonspecifically destroy cancer cells and their

innocent counterparts. Effective prevention of

these acute and subacute toxicities (e.g. CRS:

Cytokine-release syndrome and NT: neurotox-

icity) remains unfeasible, because either the

mechanisms of these toxicities remain poorly

understood (e.g. NT) [22] or CAR T products have

endogenously inherited features (e.g. CRS). To

date, palliative supportive care (PSC) and im-

munosuppression remain the only approaches
 and long-term impacts, Drug Discov Today (2018), https://
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TABLE 1

Potential biological and biochemical factors impacting the efficacy and safety of KymriahTM and YescartaTM

Potential factors Potential mechanisms or causes Major possible effects Possible solutions and remarks Refs

Number of the transduced T cells Transduction efficiency Impact the reproducible potency Control vector copy and CAR expression [7,20]

Cell lineage and differentiation
state

Component variability of the
product

Impact the reproducible potency Improve production method

[7,11,15,20,28,38]

Cell viability Nonviable cells Impact the efficacy and safety profile Improve production method [7,10]

Cellular impurities Non T cells (B lineage cells, blasts
and others)

Impact the efficacy and safety profile Improve production method [7,10]

Excipients (DMSO, dextran 40) Anaphylaxis Impact the safety profile Improve production method [1,7,10]

Manufacturing failures Poor starting autologous
leukapheresis cells

Jeopardize disease control and survival Use universal CAR19 T cells [7,10,18]

Specificity of the scFv domain Determinant for the CAR T cell
safety profile

Off-target activity and B cell aplasia Use therapeutic immunoglobulin, anti-
FcmR CAR T, RNA CARs

[7,14,20]

Affinity of scFv binding CAR T cell activation and effector
functions

Impact the safety and activity Not restricted by MHC (applicable to any
MHC haplotype)

[7]

Functional T cell subsets and
ratios

Component variability of the
product

Impact the reproducible potency Improve production method

[7,11,20,22]

IFN-g production A prerequisite for CAR T cell activity An indicator of T cell activation In vitro data may not correlate to in vivo
efficacy, technical advances

[7]

CAR signaling domains and
spacer variants

Off-target T cell activation Impact the safety and activity (CD19-
independent toxicities)

Biological optimization

[7,12,13,16,17,20]

Decreased CAR expression Repeated stimulations, accelerated
diff/ex

Reduced efficacy TRAC-CAR to decrease differentiation of T
cells, other approaches

[24,35,36]

T cell dose versus tumor burden An inverse correlation Impact the expansion and persistence Bridging therapy to reduce tumor burden
before KymriahTM

[11,28]

Immunosuppressive
environment

Inhibitory and immunosuppressive
stimuli

Impede the function of CAR T cells ‘Armored’ CAR T cells to enhance IS, risk of
cumulative toxicities

[22,30]

CD19-negative variants CD19 del/mut, CD19� clonal
evolution, lineage switch

Inefficacy Target multiple antigens, allo-HSCT, risk of
cumulative toxicities

[23,30–
34,55]

Anti-mCAR19 antibodies Immunogenicity Immunity anaphylaxis, impact the
efficacy and safety profile

Use human anti-CD19 CAR (HuCAR-19) [1,7]

Extramedullary disease (EMD) Sanctuary site relapse (e.g. CNS) Uncertain capacity for clearance of EMD Further studies for confirmation [22,25]

Lymphodepletion chemotherapy Conditioning regimen to reduce
tumor burden

Augment the antitumor effects Risk of cumulative toxicities [7,11,28]

High dose of corticosteroids Impede CAR T cell function Diminished efficacy owing to
immunosuppression

Tocilizumab, uncertain effects for
neurotoxicities

[20]

Abbreviations: IS, immune system; DMSO, dimethyl sulfoxide; MHC, major histocompatibility complex; IFN-g, interferon gamma; TRAC, T cell receptor a constant locus; diff, differentiation; ex, exhaustion; del, deletion; mut, mutation; scFv,
single-chain variable fragment; allo-HSCT, allogeneic stem cell transplantation; CNS, central nervous system.
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TABLE 2

Common acute and subacute toxicities (incidences >50%, 20%, 10% and 2%) and long-term risks of KymriahTM and YescartaTM

Toxicities (T) and risks (R) Category �50% �20% �10% �2% Clinical form Potential mechanisms/
causes

Management
strategies and
comments

Refs

CRS T + Short term Activated T cells produce
high levels of cytokines

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

Neurotoxicities T + Short term Unknown Familiar with FDA labels,
REMS and ETASU

[1,2,7]

Serious infection T + Short term Acquired

hypogammaglobulinemia Familiar with FDA
labels, REMS and
ETASU

[1,2,7]

Prolonged cytopenias T + Short term Miscellaneous causes (e.
g. CRS)

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

Acquired hypogammaglobulinemia T + Short term On-target off-tumor
toxicities (B cell aplasia)

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

Humoral immunogenicity T + Short term Anti-mCAR19 antibodies Familiar with FDA labels,
REMS and ETASU

[1,2,7]

Tachycardia T + Short term Miscellaneous cause (e.g.
CRS)

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

Gastrointestinal disorders T + Short term Miscellaneous causes (e.
g. CRS)

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

Acute kidney injury T + Short term Miscellaneous causes (e.
g. CRS)

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

Acute respiratory distress T + Short term Miscellaneous causes (e.
g. CRS)

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

Musculoskeletal disorders T + Short term Miscellaneous causes (e.
g. CRS)

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

Hypotension T + Short term Miscellaneous causes (e.
g. CRS)

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

Hypertension T + Short term Miscellaneous causes (e.
g. CRS)

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

Cardiac failure or arrest T + Short term Miscellaneous causes (e.
g. CRS)

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

TLS T + Short term Large amounts of tumor
cells lysed

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

DIC T + Short term Miscellaneous causes (e.
g. CRS)

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

MAS T + Short term Uncontrolled activation
of macrophages and T
cells

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

Capillary leak syndrome (bleeding) T + Short term Miscellaneous causes (e.
g. CRS)

Familiar with FDA labels,
REMS and ETASU

[1,2,7]
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TABLE 2 (Continued )

Toxicities (T) and risks (R) Category �50% �20% �10% �2% Clinical form Potential mechanisms/
causes

Management
strategies and
comments

Refs

Coagulopathy T + Short term Miscellaneous causes (e.
g. CRS)

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

Hypofibrinogenemia T + Short term Miscellaneous causes (e.
g. CRS)

Familiar with FDA labels,
REMS and ETASU

[1,2,7]

GVHD R 1% Undefined Residual donor
lymphocytes from prior
HSCT

Warning and intensive
monitoring

[7]

Anaphylaxis R Undefined Excipients (e.g. DMSO,
dextran)

Warning and intensive
monitoring

[1,2,7]

Secondary malignancies R Long term Insertional oncogenesis
and genotoxicity

Warning and lifelong
monitoring

[1,2,7]

Developmental and reproductive toxicity R Long term Miscellaneous causes (e.
g. DAMPs, prolonged
CRS)

Warning and lifelong
monitoring

[1,2,7]

New incidence of neurologic disorders R Long term Miscellaneous causes (e.
g. DAMPs, prolonged
CRS)

Warning and lifelong
monitoring

[1,2,7]

Exacerbation of pre-existing neurologic disorders R Long term Miscellaneous causes (e.
g. DAMPs, prolonged
CRS)

Warning and lifelong
monitoring

[1,2,7]

New incidence of autoimmune disorders R Long term Miscellaneous causes (e.
g. DAMPs, prolonged
CRS)

Warning and lifelong
monitoring

[1,2,7]

Exacerbation of prior autoimmune disorders R Long term Miscellaneous causes (e.
g. DAMPs, prolonged
CRS)

Warning and lifelong
monitoring

[1,2,7]

Incidence and outcome of any pregnancy R Undefined Miscellaneous causes (e.
g. DAMPs, prolonged
CRS)

Warnings and
monitoring during the
pregnancy

[1,2,7]

Abbreviations: CRS, cytokine release syndrome; TLS, tumor lysis syndrome; DIC, disseminated intravascular coagulation; MAS, macrophage activation syndrome; GVHD, graft-versus-host disease; DAMPS, damage-associated molecular
patterns; HSCT, hematopoietic stem cell transplantation; REMS, Risk Evaluation and Mitigation Strategy; ETASU, Elements to Assure Safe Use.
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for treating these common complications [1,2],

even considering the latest new guidelines [52].

Recently, a human study explored the mecha-

nism of NT and suggested that an increased BBB

permeability might explain NT [53]. The study

could lead to further studies for development of

novel treatment on the basis of mechanisms. B

cell aplasia (acquired hypogammaglobulinemia)

is an on-target off-tumor toxicity for CD19-tar-

geted CAR [1,2] (i.e. a specific toxicity of CD19

CAR T) because CD19 is a cell-surface compo-

nent of B cell lineage [3]. There are several

possible solutions to potentially overcoming or

minimizing B cell aplasia: (i) use of anti-FcmR

CAR T [14]; (ii) use of RNA CARs [20]; (iii) infusion

of pooled immunoglobulins [1,2]. Beyond this,

additive side-effects (secondary or tertiary

toxicities) derived from combining or bridging

agents should not be overlooked (e.g. tocilizu-

mab with an FDA warning and precaution labels

[54], ibrutinib to prevent CRS after using anti-

CD19 CART [55] with known cardiac concerns [5]

and other serious complications [56,57]). Fur-

thermore, the use of host lymphodepletion

chemotherapy with immunosuppressive agents

(e.g. cyclophosphamide) before a CAR T ap-

proach is a required step to augment the anti-

tumor effects of this treatment [1,2,5,7].

However, such concomitant therapies can lead

to clinical cardiotoxicity [5]. Consequently, these

combining or bridging agents might increase

some cumulative or synergistic toxicities for the

patients.

Uncertain long-term outcomes of
KymriahTM and YescartaTM

Data were fast-emerging on the early responses

to KymriahTM and YescartaTM, thus most of the

patients participating in the trials have only

been followed for a relatively short period of

time [1,2], limiting the ability to assess the risk

of long-term adverse events and rule them out.

As a result, long-term sequelae and late toxic

effects of KymriahTM and YescartaTM remain

unknown although some are theoretically

predictable (Table 2). Theoretically, the after-

math of the immuno-bombing in the human

body can be just as deadly and far-reaching,

because these cellular and molecular fallouts

from these damaged leukemia cells and their

normal counterparts in the blood circulation

reach as far as any systemic organs. Such

damage to normal cells and tissues might be

long-term and probably permanently toxic

[7,58]. This is in-line with the rationale that the

immune system not only responds to foreign

substances (i.e. pathogens) but also responds

to endogenously derived molecules that are
Please cite this article in press as: Zheng, P.P. et al. Approved C
doi.org/10.1016/j.drudis.2018.02.012
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expressed as a result of tissue damage or

stressed cells, known as damage-associated

molecular patterns (DAMPs) [59], which can

cause various diseases (e.g. autoimmune dis-

eases) [60,61]. Further, late onset of NT is an-

other concern for cognitive dysfunction. Little

is known about timing of the secondary and/or

tertiary toxicities resulting from DAMPs. Re-

ferring to the pathogenesis and long-term

course of many autoimmune diseases and

neurocognitive disorders, a chronic, progres-

sive disease process should be anticipated.

Given the extreme importance to the young

patient population uniquely targeted by Kym-

riahTM, it is worth knowing that classical gen-

otoxicity assays and carcinogenicity assessment

in vivo (rodent models) were not performed for

KymriahTM [7,10]. Developmental and repro-

ductive toxicity studies were not conducted in

the nonclinical studies for KymriahTM either

[7,10]. Thus, detection of long-term problems

as such will not only be dependent on a long-

term follow-up but also enhanced clinical

awareness and sensitive detection algorithms

are required for a goal-oriented evaluation.

Taken together, the safety profiles and the toxic

potential of KymriahTM and YescartaTM cannot

be assessed in isolation for short-term moni-

toring and management but need to be con-

sidered together with a long-term follow-up.

Lifesaving versus QOL-preserving of
KymriahTM and YescartaTM

Immune-cell-based therapies open a new fron-

tier for cancer treatments. But the changing

landscape of medical benefits and risks creates

new challenges for all the stakeholders in

healthcare owing to potentially lethal side

effects of the therapies and uncertain long-term

impacts on QOL. Currently, because the data

about the long-term impacts of KymriahTM and

YescartaTM are not available yet, there is insuf-

ficient voice to claim much more benefits than

medically acknowledged, instead of being in-

creasingly aware of the short- and long-term

risks [58]. Media reports often state dispropor-

tionately on risk by overstating benefits while

understating the harms [4,58]. Nevertheless, the

FDA plays a central part as an authoritative voice

in communicating the benefits and risks of a

drug [4]. It is important for all the stakeholders to

become familiar with the FDA labels containing

a Risk Evaluation and Mitigation Strategy (REMS)

and an Elements to Assure Safe Use (ETASU)

[1,2,7,10]. Lifesaving care and preserving patient

QOL are the tasks of modern medicine, being

especially important for the patient populations

of children and young adults. As more infor-
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mation about treatment options becomes

available, patients, physicians, regulators and

payers are reassessing how they balance the

possible benefits and risks of therapeutic

options [4]. Theoretically, no patients expect any

treatment of procedure that is disproportion-

ately costly, burdensome or painful [62]. How-

ever, practically, when doctors treat patients

with life-threatening conditions (e.g. lethal

cancers), the major focus would often be quickly

directed toward instituting therapeutic mea-

sures to preserve life (lifesaving), and often they

are unable to address the impact of medical care

on QOL until after the lifesaving intervention

[63]. KymriahTM and YescartaTM were regarded

as a lifesaving treatment (a last-resort treatment)

[1,2] and fall within the scope of a formal debate

in this regard. Ironically, where advances in

technology and knowledge have given doctors

an increased capacity to preserve and prolong

life, some fundamental ethical questions could

be raised in parallel: should doctors be con-

cerned only with curing disease (lifesaving)? Do

they have a responsibility to give the patients

the best possible QOL while being physically or

fiscally reasonable [63]? These ethical dilemmas

might have to be addressed at the clinic door

that impacts individual patients by a participa-

tive management involving patients, doctors

and other stakeholders. In this context, an eth-

ical imperative requires classification of the

medical significance of an intervention espe-

cially when the intervention remains contro-

versial and underexamined, which will benefit

from decreasing the uncertainty associated with

the intervention.

Concluding remarks and future
perspectives
KymriahTM and YescartaTM gained ground as

last-resort treatments for R/R pediatric ALL and

R/R adult B cell lymphoma, respectively, owing

to their lifesaving potentials. The broad appli-

cations remain challenging because of acute

lethal toxicities and also uncertain long-term

impacts. Post-approval pharmacovigilance is

crucial as one of the first considerations for risk

mitigation of these known short-term toxicities.

Long-term follow-up for durable efficacy and

safety concerns is pending further progress.

Furthermore, advances in manufacturing pro-

cesses could reveal the better version of T-cell-

based therapies, even beyond cancer therapy, to

extrapolate the approach to treatment of in-

fectious and autoimmune diseases. To this end,

all efforts should be channeled into turning the

ice bucket challenges into solutions and

opportunities.
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