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GENERAL INTRODUCTION 

Infectious diarrhea 

Diarrhea, also written as diarrhoea, is the situation of exhibiting at least three liquid or 

loose bowl movements per diem. It often lasts for a couple of days and can provoke 

dehydration as a consequence of fluid loss. In its essence diarrhea is an altered 

movement of ions and water that follows an osmotic gradient (2). Consequently, 

diarrhea is caused either by increased secretion or by decreased absorption of fluids 

and electrolytes. The molecular elements related to the dysregulation of ion transport 

processes during diarrhea prominently include the cystic fibrosis transmembrane 

conductance regulator (CFTR, which serves as a chloride channel) and the calcium 

activated chloride channel (CLCA, which is a Na+/H+ exchanger isoform), the NHE3 

(involved in Na+ absorption), alterations in tight junctions (which create a shuntuing 

pathway for the movement of both ions and water into the lumen), downregulated in 

adenoma (DRA, which is responsible for chloride absorption and is associated with 

congenital chloride diarrhea), aquaporins (contributes to diarrhea) and the sodium-

dependent glucose transporter (SGLT-1, which is responsible for transporting sodium 

and glucose, and it is tightly coupled with water movement and it is the basis for oral 

rehydration using glucose to enhance sodium absorption) (Figure 1) (2). 

 

 

Figure 1. The schematic diagram of general mechanisms causing diarrhea (2). 
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Infectious diarrhea is defined as the diarrhea caused by infectious pathogens (2). 

Infectious diarrhea still causes a heavy burden to public health causing high morbidity 

and mortality throughout the world (3). Pathogens causing infectious diarrhea mainly 

include bacterial, viruses, and parasites (2). With respect to the latter, rotavirus and 

norovirus are two of major causative agents of severe infectious diarrhea. Rotavirus 

is one of the most important causative factors of diarrhea hospitalization for those 

infants younger than five years old (4). This virus mainly infects villus of intestine to 

result in serious diarrhea (2). Similar to the rotavirus, the norovirus often causes the 

epidemic of gastroenteritis (5). The the norovirus often causes sporadic 

gastroenteritis irrespective to ages. Clinical symtomes of norovirus infection 

represent themselves as vomiting at first, followed by abdominal cramps, fever, 

diarrhea, and some constitutional symptoms (5). Until now, there are still no specific 

treatments in response to rotavirus and norovirus gastroenteritis (5). Hereto, the 

effective and the high cost-performance medicines are desiderate for the reduction of 

the burden of diarrhea brought by these two viruses.  

 

The discovery, pathogenesis, and virology of rotavirus  

Rotavirus was discovered by Dr Ruth Bishop and colleagues from the royal children’s 

hospital (RCH), Australia in 1970. But at that time, the name of this virus was not 

determined yet. These investigators found, however, that there were numerous viral 

particles in the epithelial cells of the intestine. By using electron microscopy, these 

investigators observed the virus to be reovirus-like or orbivirus-like but it was different 

from known viruses, and the particle size of the virus is 70 nm. Bishop et al 

suggested that those viruses might be orbiviruses (6). In 1974, Thomas Henry 

Flewett from east Birmingham hospital suggested that the rotavirus should be named 

as “rotavirus” based on a Latin word “rota” that means wheel, since the viral particle 

seems like a wheel (Figure 2). Rotavirus was officially defined in 1978 (7).  

Rotavirus belongs to the family Reoviridae, and it is considered as a major factor 

of hospitalizations for acute gastroenteritis in infants younger than five years old. The 

mature virus particles of the rotavirus are non-enveloped, and the genome of the 

virus is surrounded by multilayered icosahedral protein capsids, the diameter of the 

viral particle is around 75 nm. The genome of rotavirus is a double-stranded RNA, 

and it consists of 11 segments encoding 12 proteins including six viral and six non-
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structural proteins (8). For VP1, it is one of components of the core of viral particle, 

and it is the RNA-dependent RNA polymerase (RdRP) of rotavirus to catalyze viral 

RNA synthesis (9). VP2 is formed to the single layered particle (SLP= core shell, also 

called innermost capsid) that consists of 120 molecules (10). VP3 is the guanylyl 

transferase (the capping enzyme) (11). VP4 is the 84 KDa spike protein containing 

775 or 776 amino acids, and it is involved in the outer capsid (12). VP4 is the 

protease cleaved protein, and can be cleaved into VP5* and VP8*, respectively, 

which can promote activation of the virus to increase virus infectivity and allow the 

virus to penetrate into the cell (12). As a main capsid protein, VP6 comprises around 

51% of total viral protein, and it oligomerizes into trimers that constitute the 

intermediate shell of the virions. VP7 is the rotavirus outer capsid that forms an 

icosahedral lattice and a trimer (13). As one target of protective antibodies, VP7 also 

exerts an important role in uncoating of the virus when it enters host (13).  

 

 

Figure 2. The morphology of the rotavirus looks like a wheel (x 296, 000) (7). 

 

Compared with these VPs, the functions of NSPs are less well defined. Among 

them, NSP1 is localized throughout the cytoplasm and concentrates in viroplasms, 

and it is associated with the cytoskeleton but not required for rotavirus replication. 

Furthermore, NSP1 was reported to be vital for modulating the efficiency of viral gene 

expression or in regulating host cell responses (14). As a homo-octomer, NSP2 

exerts helix-destabilizing activities (15), and it is very abundant in cytoplasmic 

inclusions (viroplasms) (16). NSP2 plays a vital role in viral genome replication (16). 

NSP3 has two main domains, one domain is a considerable conserved basic region, 

and this domain has one α-helical structure. Functionally it can specifically bind to 
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dsRNA. For the second domain, it has heptapeptide repeats, and this domain is 

situated in the carboxy-half of the NSP3 protein. NSP3 plays an important role in 

replicating genome and the early process of assembling virus (17). NSP4 is the viral 

enterotoxin being related to the viral pathogenesis and morphogenesis. NSP4 

causes diarrhea, because extracellular NSP4 could stimulate phospholipase C 

activation, which causes the increase of the Ca2+ amount and the release of Cl- in the 

cells (18). Similar to NSP2, NSP5 is also located in viroplasms, and it is changed into 

various isoforms by a complicated phosphorylation procedure (19). NSP2 might also 

play an important role in posttranslational modification of the NSP5 protein (16). 

NSP2 is able to cooperate with NSP5 to form virolasm-like structures, and the 

structure can regulate RNA packaging and replication (16). Compared to other VPs 

and NSPs of the rotavirus, there is paucity limited of information about NSP6. NSP6 

is a 12 kDa protein that can be capable of interacting with the C-terminal region of 

NSP5 protein (20). NSP6 might be involved in a non-essential monitory effect upon 

viral infections (20).  

There are multiple mechanisms to cause diarrhea by rotaviruses (21). The viruses 

are able to destroy the intestinal enterocytes, resulting in the shorten of intestinal 

villus, the augment of depth of crypts, and the reduction of some enzymes including 

sucrose, lactase, and Na+, K+-ATPase in mucus of intestinal villus (22). NSP4 of 

rotavirus is an enterotoxin; it is very different from bacterial enterotoxins (23). NSP4 

is synthesized in villus enterocytes upon virus infections, subsequently it is split into 

cleavage products NSP4-(112-175), and then these cleavage products are secreted 

into the outside of cells, further to lumen of intestine. In addition, NSP4 protein and 

some of its peptides can cause diarrhea without damaging any intestinal mucosa (23). 

It is plausible that activation of the ENS by rotavirus infection results in the secretion 

of the fluid/electrolytes to cause diarrhea upon rotavirus infections (21).  

Although, numerous investigations have been executed to study the virology of 

rotavirus and the associated pathogenesis, there are still considerable issues of 

unclarity remaining, especially about subtle aspects of VPs and NSPs  biochemistry 

(e.g. about NSP6 much remains obscure at best), the nature of virus-host 

interactions, and how the virus causes diarrhea. The lack of effective antivirals 

represents an urgent need for further investigation. 

 

Clarification of rotavirus 
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Rotaviruses are the members of Reoviridae. Currently, there are several 

classification systems for rotaviruses. Based on serology, rotavirus was classified into 

six different groups (A, B, C, D, E, and F) (8). Among, groups including A, B and C 

were reported to infect humans and animal, while group D to F rotaviruses were 

found to only infect animals (8). Among them, group A is most often reported to 

cause serious diarrhea with quite considerable morbidity/mortality in children less 

than five years old globally (24). A binary classification system was developed based 

on plaque reduction or fluorescent-focus reduction neutralization assays (8). This 

method is based on purification of virus particles by utilizing antisera (8), which 

categorizes rotaviruses to be G-serotypes and P-serotypes (25). With this method, G-

serotypes are corresponding to VP7, while P-serotypes are corresponding to VP4 

based on their antigenic properties (25). Subsequently, it was reported one full 

genome-based classification of rotavirus by determining gene sequences for group A 

rotavirus strains to refine the genome of individual rotavirus strain to be the complete 

descriptor of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx (26). Based on this conception, 

the Rotavirus Classification Working Group (RCWG) proposed a uniformity of 

rotavirus strain nomenclature as rotavirus group/species of origin/country of 

identification/common name/year of identification/G- and P-type. With this approach, 

until April 2011, there were 51 completely new genotypes including VP7 (G20-G27), 

VP4 (P[28]-P[35]), VP6 (I12-I16), VP1 (R5-R9), VP2 (C6-C9), VP3 (M7-M8), NSP1 

(A15-A16), NSP2 (N6-N9), NSP3 (T8-T12), NSP4 (E12-E14), and NSP5/6 (H7-H11) 

for rotavirus strains recovered from humans, cows, pigs, horses, mice, South 

American Camelids (guanaco), chickens, turkeys, pheasants, bats, and a sugar 

glider being ratified (25).  

 

The burden of rotavirus infection 

To date, the burden of rotavirus infection remains considerable. Based on findings 

from the WHO, in 2008, diarrhea caused by the rotavirus infections leads to around 

half million deaths in children < 5 years old globally, and mainly in non-developed 

countries (above half of total deaths caused by the rotavirus are from five countries 

including the Democratic Republic of the Congo, Ethiopia, India, Nigeria, and 

Pakistan) (27), among these countries, 25% of the deaths come from India (Figure 3) 

(1). Rotavirus infections are frequently transmitted from person to person, and 
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improvements in hygiene and sanitation are not effective to prevent this pathogen, 

which is very important reason for causing the augment of the etiology of serious 

diarrhea in children caused by rotavirus infections (1). Rotavirus infections have the 

characteristics of seasonality, implying that winter and spring are prevalent seasons 

for rotavirus caused diarrhea, whilst the risks for the rotavirus causing enterogastritis 

in the summer are minimum, and higher temperature and humidity were reported to 

benefit the decrease of rotavirus infection (28). Besides in developing countries, 

rotavirus infections bring a large burden for many developed countries. Since the 

environmental interventions including sanitation and purifying water preventing 

infections of many bacterial and parasites whilst they were reported to be ineffective 

for preventing rotavirus infection, which might be the reason why the proportion of 

rotavirus causing serious diarrhea admissions is higher in industrialized countries 

compared to developing countries (29). In America, it was reported that there were 

~55,000 – 70,000 hospitalizations being caused by rotavirus and ~600,000 rotavirus 

related physician visits in infants younger than five years old annually (29). In the 

European Union, there were 231 deaths due to rotavirus infections, more than 

87,000 hospitalizations and around 700,000 outpatient visits being caused by 

rotavirus infections annually (30). In Canada, rotavirus infections were estimated to 

result in between 4500 and 10000 hospitalizations (31). In fact, a limited number of 

patients are routinely tested for rotavirus in the clinic, which sometimes results in 

underestimating rotavirus caused hospitalizations in administrative databases (31). 

Hereto, more attentions should be paid to rotavirus infections to accumulate 

comprehensive databases to increase understanding of rotavirus infections, which 

will attribute to minimizing the burden of this pathogen.  
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Figure 3. The distribution of deaths caused by rotavirus infections in infants younger than 
five years old in the world. 1000 rotavirus corresponding deaths per dot (1). 

 

Rotavirus infection in organ transplanted and IBD patients  

Normally, the rotavirus does not infect adults or is asymptomatic, while organ 

transplantation patients were reported to be sensitive to a rotavirus infection 

irrespective of their ages (32). It was confirmed that the average incidence of 

rotavirus infections in organ recipients was 3.03%, and intestinal transplant patients, 

live transplant patients, as well as hematopoietic stem cell transplantation (HSCT) 

recipients are most susceptible to rotavirus infection (32). Rotavirus caused diarrhea 

is often acute and self-limiting, while it is capable of resulting in chronic diarrhea even 

organ transplantation fail in organ transplantation patients (32). Eight deaths caused 

by rotavirus infection were reported out of 6176 organ recipients (32). The clinical 

consequences caused by a rotavirus infection in particular after organ transplantation 

still remain unclear, since very less cohorts are reported in developing countries and 

most rotavirus infected organ transplantation cares are from industrialized countries 

(32), which hampers the understanding of pathogenesis of a rotavirus infection in 

organ recipients and development of effective treatments to heal this disease. 

Additionally, it is plausible that the rotavirus is one of causal agents resulting 

inflammatory bowel disease (33).  

 

The models of studying rotavirus 
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Valid and proper models are vital if we hope to increase our understanding of the 

pathogenesis and virology of any virus for developing novel effective antiviral therapy 

against viruses’ infections. The models for investigating viruses include immortalized 

cells, primary cells, and animals. The advantages of immortalized cells include (i) 

they can be passaged for quite long time; (ii) they are more sensitive for virus 

infection compared to other models to make it easier to investigate virus-host 

interactions. However, these cell lines have many unsatisfied features such as (i) 

they are cancer cells that cannot exactly represent in vivo situation; (ii) they only 

consist of a single cell population, which makes them difficult to mimic complicated 

context in the body. For rotavirus investigations, the most commonly used cell model 

is Caucasian colon adenocarcinoma cell line (Caco2) that has been utilized as a 

classical model for studying the physiological functions of the intestine since 1989, 

since Caco2 cells retain the features of permeability and mucosal transport of 

intestine in vivo (34). However, it was pointed out that there were numerous sub-

cloned derivatives of Caco2 cells, they displayed a large difference of protein 

expression and localization, and these derivatives caused uniform results in different 

laboratories (34). Animal models are often considered to be an optimal model for 

investigating pathogens, since they are thought to be closest to mimic complex 

physiological context in the human body. Nevertheless, animal models themselves 

have many unsatisfied aspects, because they often cannot reflect human physiology, 

for instance, it has a great difference in human population based on the results of 

preclinical testing (35). Animal right activists are appealing to reduce the number of 

animals used in the research. Furthermore, as a dsRNA virus, the rotavirus contains 

11 considerably variable segments representing more than 110,000 strains, even the 

distinct strains are continuously emerging (36). Until now, only a few well-adapted 

laboratory strains are utilized as experimental platforms, this means that current 

using models for studying rotavirus are unsatisfied (36). Thus, a model with features 

that include the potential for long-term culture and encapsulating the presence of 

multiple cell types as are present in vivo while being non-transformed and having the 

possibility to easily capture interindividual differences would be of great value.  

In 2009, the group of Prof. dr. Hans Clevers from Hubrecht institute (Utrecht, 

Netherlands) generated a primary intestinal organoids from the intestinal stem cells 

(ISCs) (37). They utilized features that epithelial cells of small intestine have higher 

self-renewal rates to culture intestinal organoids those are called MIMI-gut. Four well-
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characterized signaling pathways are involved in intestinal homeostasis (Figure 4) 

including: (i) Wnt factors engage frizzled-lrp5/6 co-receptors to stabilize its 

downstream target β-catenin, subsequently trigger stimulation of the transcription 

factor Tcf4 to support stemness; (ii) Notch plays a vital role in maintaining the 

undifferentiated state. For intestinal stem cells, their Notch1/2 is able to augment 

neighboring Dll1+Dll4+ Paneth cells to initiate Notch signaling to prevent these cells 

from secretory differentiation. The ligand of Notch ligand Dll1/4 is capable of 

engaging Notch, which results in releasing Notch intracellular domain, then trigger 

the inhibition of the gene expression to monitor secretory differentiation under 

involvement of the nuclear effector RBP-J; (iii) EGF is engaged by its receptor (EGFR) 

to activate cellular Ras/Raf/Mek/Erk pathways to promote stemness; (iv) BPM is 

engaged by its receptor (BMPR) to drive the generation of Smad1/5/8 and Smad4 to 

suppress stemness. Inhibition of BMP by Noggin to benefit for stemness (38). This 

organoid model has many advantages compared with immortalized cancer cells and 

animal models, (i) it is considered to recapitulate the various cell types of the in vivo 

epithelium of the intestine, which can circumvention many shortcomings of tumor 

cells; (ii) it is more time saving and more cost-effective for developing novel 

medicines; (iii) it reduces the use of animals, which can circumvent issues of animal 

welfare (34). The organoids model has promising implementations as the platform for 

the experiments, diagnosing diseases and novel therapies for serious diseases (38). 

It has not, however, been assessed as a potential tool in rotavirus research.  

 

The current treatments and antivirals of rotavirus infection 

Until now, there has no specific medicine treating a rotavirus infection except 

supportive care including rehydration, maintenance of fluid and electrolyte balance 

(36, 39). Currently, there are two effective vaccines approved by the FDA named 

RotaTeq (RV5) and Rotarix (RV1), respectively. These vaccines indeed reduced the 

burden of a rotavirus infection, since the deaths caused by rotavirus infections 

globally for infants less than five years old was reduced to approximately 200,000 

from half a million deaths in 2008 (40). Nevertheless, vaccines are not fully effective 

and new episodes may occur even in vaccinated children (41). For most non-

developed countries, the protective efficiency from the vaccines is still less than 
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optimal (42). Hence, antiviral therapy represents an important complement to combat 

rotavirus infection that cannot be substituted by vaccines. For those resource-limited 

regions, it is more accessible and cost-effective to identify effective treatment with the 

existing approved medications. 

 

 

Figure 4. EFG, Notch, and Wnt signaling pathways are mainly involving in regulating the 
stemness of intestinal epithelium. For BMP, it is a negative regulator of stemness. R-
spondin-Lgr4/5 signal plays a vital role in stimulating Wnt in the epithelial cells of intestine. R-
spondin protein is the activator in the signaling (38). 

 

AIM AND OUTLINE OF THIS THESIS 

Rotavirus infection still brings a serious burden for infants below five years old 

especially in developing countries, and has been recognised as an important 

complication in organ transplantation patients irrespective of their ages. Current 

models including immortalized cancer cells and animal models are far from 
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satisfaction and the lack of proper models hampers the understanding of virus-host 

interactions and development of effective vaccines and antivirals. Many cellular 

signaling pathways are essential for regulating the course of viral infections, and 

many genes of particular signaling might be a target for development of novel 

antivirals.  

 

Aims 

The aims of the work presented in this thesis were to highlight the importance of 

rotavirus infection in organ transplantation, to increase our understanding of 

rotavirus-host interactions, to investigate the effects of various common 

immunosuppressants with respect to a rotavirus infection and characterize the 

potency of widely used antivirals, including interferon and ribavirin on most common 

gastrointestinal viruses including rotavirus and norovirus. Furthermore, I aim to get 

further insight in the effects of some important cellular signalings including PI3K-Akt-

mTOR pathway and Rac1 signaling in the biology of rotavirus, as also with a view to 

their suitability for therapeutic targeting.  

 

Focus 

The work is focused on two aspects that have received relatively little attention 

hitherto in the field: the importance of rotavirus and norovirus on organ 

transplantation patients, to this end intestinal primary intestinal organoids are used as 

novel platforms for the study rotavirus infections and antiviral therapies, and how 

PI3K-Akt-mTOR pathway and Rac1 signaling regulates a rotavirus infection.  

 

Outline 

In this thesis, data are presented on the importance of rotavirus in organ 

transplantation patients and the investigation of intestinal organoids model as a 

potent novel platform for rotavirus infection and for discovering antiviral therapy 

(Figure 5). The thesis also describes how commonly used immunosuppressive 

medicines and several cellular signaling pathways regulates the course of infection of 

enteric viruses including rotavirus and norovirus (Figure 5). In chapter 2, it describes 

that rotavirus infection could cause serious gastroenteritis complications and 

occasionally result in the loss of grafts in organ transplantation settings, and it was 
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found an average incidence of 3% (there are in total 187 rotavirus infections being 

found from 6176 transplantation patients). The aim of this chapter is to 

comprehensively evaluate the impact from a rotavirus infection in a particular group 

of organ recipients and to gain understanding about rotavirus-host-

immunosuppressants. In chapter 3, both primary organoids models from two species 

including mouse and human were successfully cultured, and they were confirmed to 

be easily infected by rotavirus. It was also demonstrated that human organoid models 

are considerably sensitive for the infection of patient-derived rotavirus strains. Human 

primary intestinal organoids might bring insight in individualized assessment of the 

efficacy of antiviral drugs and be potentially useful for developing novel antivirals. In 

chapter 4, we profiled the effect of different immunosuppressive medicines on 

laboratory and patient-derived rotavirus strains, and found that mycophenolic acid 

(MPA) resulted in a potent inhibitory effect on both rotavirus strains with a high barrier 

to drug resistance development. We proposed that the choice of MPA as an 

immunosuppressive agent appears rational. In chapter 5, a commonly used drug as 

an immunosuppressive medicine in organ transplantation patients and for treating 

inflammatory bowel disease (IBD) patients, 6-TG was demonstrated to potently inhibit 

the rotavirus infection with a high barrier for drug resistance emergence. 

Mechanistically, as the cellular target of 6-TG, Rac1 is essential in supporting 

rotavirus infection. 6-TG could effectively inhibit the active form of Rac1 (GTP-Rac1), 

which was involved in antiviral machinery. Chapter 6 describes an important cellular 

signaling pathway, PI3K-Akt-mTOR-4EBP1 signaling is essential for regulating the 

infection course of the rotavirus. This effect involves 4E-BP1 mediated induction of 

autophagy, which in turn exerts anti-rotavirus effects. This study reveals new insight 

on rotavirus-host interaction and provides new avenues for antiviral drug 

development. In Chapter 7, three components of the eIF4F including eukaryotic 

translation initiation factor 4A (eIF4A), eukaryotic translation initiation factor 4E 

(eIF4E) and eukaryotic translation initiation factor 4G (eIF4G) exert anti-rotavirus 

activities, which implies that targeting substantial components of eIF4F might bring 

bright sights in developing creative antivirals against rotavirus. Chapter 8 describes 

the direct effects of immunosuppressants on norovirus and underlying mechanism-of-

action. Calcineurin inhibitors including cyclosporine A (CsA) and tacrolimus (FK506) 

moderately inhibit human norovirus replication through calcineurin. Mycophenolic 
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acid (MPA) could potently inhibit norovirus infection via suppressing IMPDH1 and 

IMPDH2 with high drug resistance development.  

 

 

Figure 5. The outline of this thesis.  
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Abstract: 

Although rotavirus is usually recognized as the most common etiology of diarrhea in 

young children, it can in fact cause severe diseases in organ transplantation 

recipients irrespective of pediatric or adult patients. This comprehensive literature 

analysis revealed 199 cases of rotavirus infection with 8 related deaths in the setting 

of organ transplantation been recorded. Based on published cohorts studies, an 

average incidence of 3% (187 infections out of 6176 organ recipients) was estimated. 

Rotavirus infection often causes severe gastroenteritis complications and 

occasionally contributes to acute cellular rejection in these patients. 

Immunosuppressive agents, universally used after organ transplantation to prevent 

organ rejection, conceivably play an important role in such a severe pathogenesis. 

Interestingly, rotavirus can in turn affect the absorption and metabolism of particular 

immunosuppressive medications via several distinct mechanisms. Even though 

rotaviral enteritis is self-limiting in general, infected transplantation patients are 

usually treated with intensive care, rehydration and replacement of nutrition, as well 

as applying preventive strategies. This article aims to properly assess the clinical 

impact of rotavirus infection in the setting of organ transplantation and to disseminate 

the interactions among the virus, host and immunosuppressive medications. 

Key words: rotavirus; organ transplantation; incidence; immunosuppressive agents; 

pathogenesis 
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Introduction: 

Rotavirus is a member of the Reoviridae family. It is a non-enveloped double 

stranded RNA (dsRNA) virus containing 11 genomic segments, which are 

surrounded by three concentric protein layers (1). The structure of the virus particle is 

constituted of six structural proteins (VP1 to VP4, VP6 and VP7), and its lifecycle in 

the host is supported by six non-structural proteins (NSP1 to NSP6) (2). 

Rotavirus infection is the main cause of severe dehydrating enteritis diarrhea in 

infants and young children under age five and is characterized by acute vomiting, 

diarrhea and fever (3). Based on an estimation by the WHO, rotavirus-related severe 

diarrhea leads annually to approximately 2 million hospitalizations and 600,000 

deaths, mainly in developing countries (4). In contrast, infections in adults are often 

asymptomatic or mild (5). However, emerging evidence indicates that organ 

transplantation patients, both with respect to pediatric and adult organ recipients, are 

particularly sensitive to rotavirus infection. In adult recipients, even, severe 

gastroenteritis and related morbidity and mortality have been reported (6, 7).  

Although the etiologic agents of infectious diarrhea in transplantation patients 

have already been aware of, which include bacteria, parasites and viruses as such 

cytomegalovirus, norovirus, adenovirus and rotavirus, these causative agents are 

largely underestimated and poorly investigated in this particular setting (7). Given the 

limited information available about the epidemiology, etiology, clinical consequence 

as well as management of gastroenteritis caused by rotavirus in organ recipients, we 

have endeavored to extract from the literature all available information. To this end, 

we performed a comprehensive analysis by collecting information from series of case 

and cohort studies, allowing us to properly assess its clinical impact of rotavirus 

infection in organ transplantations and understand its pathogenesis. We feel more 

attention for this important health issue is warranted.  

Incidence of rotavirus infection in organ transplantation patients  

Severe gastrointestinal symptoms, comprising mainly of diarrhea, were reported to 

be frequent complications (up to 50%) in organ transplantation patients (7-9). Viruses 

are the most common underlying pathogens and are associated with 70% of cases (7, 

9). Given that rotavirus infection is the leading cause of diarrhea in children, we 

performed systematic analysis to first assess its incidence in organ recipients. 
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Data were collected and extracted from published cohort and case studies dated 

back from 1982 until recently and originated from Australia (10), Austria (6, 8, 11-15), 

Canada (16), France (17, 18), Germany (19-21), India (22), Iran (23), Italy (24), 

Japan (25, 26), Netherlands (27), Turkey (28, 29), UK (9), (30), and USA (31-40) 

(Table 1). These patients were ranged in different age categories from very young to 

very old. Rotavirus infection was diagnosed in both solid organ transplant (SOT) 

recipients (6) and bone marrow (9, 38) or hematopoietic stem cell transplantation 

(HSCT) recipients (6, 19, 31, 34). In total, 199 cases with 8 related deaths were 

reported. Based on cohort studies only, an average incidence of 3.03% (187 

infections out of 6176 organ recipients) was estimated (Table 1). Such infection can 

occur at any stage as early as 1 month following transplantation to as late as 8 years 

after the operation (41). Intestine transplant patients (12.95%), liver transplant 

patients (4.44%) and HSC transplant patients (4.40%) were more susceptible to 

rotavirus infection compared with other types of transplantation (Figure 1), although 

the reason behind this discrepancy remains unclear. 

In analog to the burden of rotavirus infection in children, organ transplantations 

are mainly implemented in industrialized countries and thus data reporting rotavirus 

infection in organ recipients are predominately from the Western world. Intriguingly, 

epidemics of rotavirus infection in young children have seasonality and often occur in 

winter and spring (42, 43). It is inconclusive whether this is similar in organ transplant 

patients, although five studies observed a preferential incidence in winter and spring 

in their cohorts (9, 17, 18, 26, 40). It is still a mystery how these patients get infected. 

Fecal-oral infection is the most common transmission route and poor hygiene 

accounts for spreading of the virus among children in developing world (44). In the 

setting of transplantation, it is possible that the virus is transmitted from infected 

children or healthcare workers to organ transplant patients during an outbreak, since 

rotavirus easily presents with nosocomial infection (20, 45). Indeed, hospitalization 

and frequent hospital visiting may be important risk factors (15, 17, 45). Overall, the 

incidence of rotavirus infection in transplantation setting is considerably high 

according to these reported cohort studies (Table 1). This may be due to the 

relatively low number of reported infections or unawareness and under-diagnosis of 

rotavirus infection in transplantation patients. Furthermore, the use of 

immunosuppressive agents is conceivably an important risk factor, which will be 

extensively emphasized in the following sections.  
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Figure 1. Rotavirus prevalence in various types of transplantation patients. HTx: heart 
transplantation; KTx: kidney transplantation; Lung Tx: lung transplantation; HTx: heart 
transplantation; LTx: live transplantation; ITx: intestinal transplantation; HSCTx: 
hematopoietic stem cell transplantation; including bone marrow transplantation, cord blood 
transplantation and peripheral blood stem cell transplantation. 

 

Diagnosis of rotavirus infection in organ recipients 

The cause of diarrhea in transplantation patients may not be so straightforward to be 

diagnosed. In HSCT patients, rotavirus caused diarrhea is difficult to differentiate 

from graft-versus-host disease (GVHD) (9). Thus, multiple approaches are used for 

rotavirus diagnosis, including an enzyme-linked immunosorbent assay (ELISA) (6, 12, 

26, 41), (transmission) electron microscopy (EM) (9), a latex agglutination test (22), 

immunochromatography (6) and quantitative polymerase chain reaction (qPCR) (12, 

40). ELISA is the most widely used assay for rapidly detecting rotavirus antigens in 

stool samples (Table 1). However, PCR has much higher specificity and sensitivity 

(7), which can even be used for strain identification to provide more detailed 

virological characterization (19, 46). Therefore, it is probably a viable option for 

routine diagnosis in transplantation patients (7). An urgent unresolved issue though is 

who should be evaluated: pediatric, adult, or all organ recipients with diarrhea? As a 

starting point, all stool specimens from organ recipients with diarrhea, irrespective of 

whether they are children or adults, probably should be routinely tested for rotavirus 
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to avoid underestimation and to take appropriate measures to prevent spreading of 

this highly contagious disease, especially in the context of hospitalization (15). 

 

Pathogenesis  

Rotaviruses are further classified into seven serogroups (A - G) based on their 

antigenic profiles (47). Group A is the most common cause of gastroenteritis in young 

children (48) and in transplantation patients (12). With respect to the mechanism, a 

non-structural protein, NSP4, is an essential enterotoxin causing diarrhea (49). 

Rotavirus can alter organization of the enterocyte cytoskeleton, trigger structural and 

functional alterations of the tight junctions, and induce cell injury and cell death by 

apoptosis (50). Especially, rotavirus infects superficial mature enterocytes close to 

the villi’s tips of the small intestine, and replicates inside these cells, which results in 

functional alteration of the epithelial lining, thereby causing diarrhea (1, 4, 44). The 

severity in organ recipients was associated with lymphopenia, immunosuppression, 

GVHD and co-infection of other viruses, in particular in HSCT patients (9, 51). 

In addition to severe diarrhea, rotavirus may also promote acute cellular rejection 

(ACR), especially in intestinal transplant patients (21, 40, 41, 52). In a cohort of 23 

rotavirus-infected patients with small bowel transplantation (including 2 patients with 

multiple organ transplant), 16 patients (70%) developed ACR (41). It occurred late 

after transplantation at an average of 562 days after surgery (41). The possible 

explanation is that rotavirus infection may stimulate the host immune system. This is 

probably related to cellular infiltration of gut-associated lymphoid tissue (GALT). And 

the infiltrated GALT areas are sites of intense immune activation (52). Many viruses 

including hepatitis C virus, measeles virus and HIV are known to cause diseases by 

nonspecific immune dysregulation, although it is still unclear whether rotavirus 

causes ACR via similar mechanisms (41). On the other hand, episodes including 

vomiting and diarrhea can result in poor immunosuppressant absorption and an 

associated drop in the efficacy of the immunosuppressive medication (41). Rotavirus 

caused ACR may lead to graft loss and requirement of re-transplantation (40, 41, 52).  

 

The unique role of immunosuppressive agents  

Immunosuppressive agents with distinct mechanism-of-action include corticosteroids 

(prednisolone and dexamethasone), calcineurin inhibitors (cyclosporine A (CsA) and 
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tacrolimus), mammalian target of rapamycin (mTOR) inhibitors (rapamycin and 

everolimus), selective antiproliferative agents (mycophenolate mofetil (MMF), 

mycophenolate acid (MPA) and azathioprine) and biological agents (monoclonal or 

polyclonal antibodies). It is not surprising that suppression of the immune system to 

prevent organ rejection will facilitate virus infection in general, since immune 

surveillance plays an essential role in defense against infection. In terms of rotavirus, 

T cells (CD8 and/or CD4) play crucial role in clearance of the virus (26, 53). In an 

infant with Severe Combined Immunodeficiency (SCID), successful T-cell 

engraftment after HSCT was reported to be associated with the clearance of rotavirus 

despite absent donor B cells (54). Since T cells are the primary targets of 

immunosuppressants, it is conceivable that these agents are associated with the 

severe pathogenesis of rotavirus infection in transplant patients. Although MMF (55) 

and tacrolimus (12, 29) were reported to be associated with a high risk of rotavirus-

related enteritis among organ transplant recipients, caution still should be taken to 

interpret these clinical data because of limited patient number and other potential 

biases. 

Apart from the general immunosuppressive consequences favoring infection, 

immunosuppressive agents could also directly affect the viral life cycle. The 

establishment of cell culture and small animal-based models has enabled 

investigation of these immunosuppressive agents on rotavirus infection (56, 57). CsA 

binds to cyclophilin to form a complex that can inhibit calcineurin, resulting in 

immunosuppression. Many viruses take the advantage of cyclophilins as host factors 

to support their infections (58). In contrast, cyclophilin was reported to suppress the 

infections of some other viruses, including rotavirus (59). Still, inhibition of cyclophilin 

by CsA has been shown to be antiviral against rotavirus in vitro and in mouse model, 

which was thought to be associated with restoration of the antiviral interferon 

signaling (60, 61). Other immunosuppressants including MPA, steroids and mTOR 

inhibitors have been implicated in modulating the infection of many viruses (58, 62, 

63), although these have not been studied in rotavirus infection so far. Understanding 

such direct effects on a virus life cycle by different immunosuppressive agents is 

certainly relevant to the management of infected transplantation patients, as well as 

to the development of potential new antivirals. Thus, such type of translational 

research on rotavirus is urgently needed, because of the limited clinical data 

available to draw irrefutable conclusion.  
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The interaction between rotavirus and particular immunosuppressive agents 

Symptoms of rotavirus infection like vomiting and diarrhea can cause poor 

immunosuppressant absorption (41). However, rotavirus infection is known to 

enhance the serum level of particular immunosuppressive agents in organ transplant 

recipients, which subsequently induces severe side effects including nephrotoxicity 

and neurotoxicity, and over immunosuppression with risk of infections (8, 64). The 

trough serum level of tacrolimus has been reported to be boosted by rotavirus 

infection in multiple settings of transplantation including liver transplant (12, 29, 64), 

kidney transplant (12) and lung transplantation (12). Substantial evidence suggests 

that the trough level in liver transplant recipients is more susceptible to be influenced 

by rotavirus infection compared with other organ transplantation (6). Although 

enhanced trough serum level of CsA was also observed in pediatric liver 

transplantation, it was found out that bacterial but not rotavirus related enteritis 

caused such an elevation of CsA level (64). 

Four possible mechanisms have been proposed regarding the effects on 

tacrolimus trough level by rotavirus: 1) increased intestinal permeability (8, 12, 29, 

65); 2) reduced hepatic metabolism (8, 13, 29, 65, 66); 3) decreased gastrointestinal 

transit time (12); 4) decreased activity of cytochrome p450 3A (CYP3A, a major 

phase I xenobiotic enzyme) and P-glycoprotein (P-gp) (12, 29, 66) (Figure 2).  

Increased intestinal permeability by rotavirus is thought to be caused by 

diminished mitochondrial energy production (12). Decreased hepatic metabolism 

includes hepatic dysfunction and reduced hepatic blood flow due to sub-acute 

dehydration (8, 29, 65, 66), which may lead to decreased hepatic clearance of 

tacrolimus (66).  
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Figure 2. Rotavirus infection affects the absorption and metabolism of immunosuppressive 
agents in organ transplant recipients. Upon oral administration of immunosuppressive agents, 
rotavirus induced vomiting and diarrhea can cause poor absorption, resulting in potentially 
insufficient immunosuppression. On the other hand, rotavirus can increase epithelial 
permeability, impair pharmacokinetic enzymes/transporters such as CYP3A4 and P-gp, 
decrease transit time in small intestine, and attenuate hepatic metabolism, which eventually 
enhance the trough level of particular immunosuppressive agents. 

 

Metabolite formation within the gastrointestinal track descends in the following 

order: duodenum > jejunum > ileum > colon > stomach (66). This means that a 

decreased gastrointestinal transit time caused by rotavirus infection forces the 

metabolism of tacrolimus in lower intestinal tissue (12, 66). Oxidation of 50-60% of 

clinical drugs is through CYP3A4 enzyme (67). CYP3A4 is highly expressed at the 

apex of the villus enterocytes adjacent to the microvillus border, whereas the crypt 

cells have null expression. Rotavirus severely destroys the tip of the villi in small 
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intestine, thereby diminishing activity of CYP3A4 (65). As a multidrug transporter, P-

gp activity is also lessened following destruction of small intestinal epithelial cells by 

rotavirus (66). Both CYP3A4 and P-gp are barriers to drug absorption in small 

intestine and both tacrolimus and CsA are dual substrates for CYP3A and P-pg (64). 

Experimental evidence has confirmed the notion that the enhancement of tacrolimus 

trough level is mediated by a rotavirus-induced reduction of CYP3A4 enzymatic 

activity in conjunction with reduced P-gp function (64). Taken together, rotavirus 

infection increases small intestinal permeability, destroys pharmacokinetic elements, 

decreases gastrointestinal transit time and disturbs hepatic mechanisms to increase 

the amount of immunosuppressive agents entering the circulatory system in organ 

transplant recipients (Figure 2). Of note, the definitive proof of this notion still requires 

prospective studies in patients in which the factors involved are measured and are 

related to incidental rotavirus infection. Until such time other possibilities should be 

kept in mind. Since acute rejection is as mentioned earlier, a serious complication of 

rotavirus infection in some transplant patients, the balance between poor absorption 

and metabolic changes leading to increased serum levels requires further 

confirmation from additional experimental and clinical investigations.  

 

Management of rotavirus infection in organ recipients 

Preventive strategies such as rigorous hand washing and disinfectants with proven 

virucidal activity according to the manufacturer’s specification have been implied to 

avoid nosocomial transmission (6, 7, 9, 15, 27). Effective vaccines, such as RotaTeq 

(RV5) and Rotarix (RV1), were recommended to be used prior to transplantation for 

pediatric transplantation patients in particular cases (6, 7, 68, 69), since vaccine is 

often poorly immunogenic after transplantation. But for adult recipients, little data is 

available (68, 69). The Centers for Disease Control and Prevention (CDC) 

recommends caution of using rotavirus vaccine in immunodeficient patients; whereas 

the WHO contraindicates it in severely immunosuppressed patients (68). Thus, more 

studies are needed to determine safety and immunogenicity of these live rotavirus 

vaccines in this immunocompromised population.  

In general, diarrhea caused by rotavirus is often self-limiting and lasts only for 

several days. Therefore specific treatment is not necessary (41). Nevertheless, when 

confronted with rotavirus-infected transplantation patients, treatment with intensive 
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care, rehydration, and replacement of nutrition and electrolytes is indicated (6, 8, 14), 

precisely because of the absence of specific therapy (7-9). Loperamide (one to two 

tablets and another tablet after every bowel movement) has been suggested for 

diarrhea control in adult organ transplant patients (6, 15). Enteral immunoglobulins 

(IVIG) have been reported to improve rotaviral diarrhea in HSCT patients (9, 37), 

although others reported failure of using IVIG prior to transplantation to eliminate 

rotavirus (54). The persistence and severity of rotaviral diarrhea was also thought to 

be associated with GVHD, although no clear correlation between rotavirus infection 

and the conditioning regimen was observed (9, 26). Co-infection with other viruses 

could result in prolongation of symptomatic period and secretion of the virus. These 

patients often require prolonged hospitalization and nutritional supplementation (9). 

ACR caused by rotavirus should be promptly diagnosed and treated (40), since 

ACR is refractory and can cause allograft loss, and even death (25). Prompt and 

accurate therapies are necessary for successful treatment of ACR, and ribavirin and 

intravenous immunoglobulin were recommended to be administrated following 

discontinuation of ACR therapy (40). It was worthwhile to analyze the specimens and 

discuss each case with transplant pathologists for patients with ACR (25). The 

immunosuppressant OKT3, a monoclonal antibody targeting the CD3 receptor, was 

suggested to be used when rejection is steroid-resistant (25, 40, 41). In addition, 

these rejections are characterized by a rich plasmacytic component in lamina propria 

inflammation, therefore antilymphocytes regimen was implemented in one-third of 

rejecting patients (41).  

In case one encounters an increase in the trough level of immunosuppressants, 

and particularly in the case of tacrolimus, during rotavirus-induced diarrhea (15), this 

may result in nephrotoxicity, neurotoxicity and over immunosuppression (8, 12). Thus, 

lowering dosage of immunosuppressants is an option (6, 15, 66), although low dose 

should only be maintained until the infection is resolved (66). Alternatively, switching 

immunosuppressants might be a better choice to rehabilitate trough level (8, 12, 13).  

 

Conclusions 

Although rotavirus has been well-recognized as an important cause of severe 

enteritis in young children, its clinical consequences in the setting of organ 

transplantation remain largely under recognized, despite an estimated prevalence or 
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incidence of 3% in organ recipients with several related deaths as its consequence 

having been identified. The infection and subsequently caused pathology include 

severe diarrhea and ACR that can occur in patients irrespective of whether they are 

pediatric or adult recipients. Disease course, however, may vary substantially among 

different patients.  

A unique feature of transplantation patients is an immunocompromised condition 

as a consequence of the use of immunosuppressive medication. This is presumably 

the most important reason why rotavirus causes such severe disease in these 

patients. In turn, rotavirus could affect the absorption and metabolism of certain 

immunosuppressive agents, which causes other complications. However, the 

interactions between rotavirus with immunosuppressive agents are likely to depend 

on the particular types of drug and exact elucidation of the interactions involved 

remains a compelling subject for experimental and clinical research. 

Finally, we feel that enhanced moment to call awareness of the clinical issues at 

hand is called for. We hope that the transplantation community will soon reach 

consensus on the diagnosis and management of rotavirus infected organ recipients.  
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Abstract 

Despite the introduction of oral vaccines, rotavirus still kills over 450,000 children 

under five years of age annually. The absence of specific treatment prompts research 

aiming at further understanding of pathogenesis and the development of effective 

antiviral therapy, which in turn requires advanced experimental models. Given the 

intrinsic limitations of the classical rotavirus models using immortalized cell lines 

infected with laboratory-adapted strains in two dimensional cultures, our study aimed 

to model infection and antiviral therapy of both experimental and patient-derived 

rotavirus strains using three dimensional cultures of primary intestinal organoids. 

Intestinal epithelial organoids were successfully cultured from mouse or human gut 

tissues. These organoids recapitulate essential features of the in vivo tissue 

architecture, and are susceptible to rotavirus. Human organoids are more permissive 

to rotavirus infection, displaying an over 10,000-fold increase in genomic RNA 

following 24 hours of viral replication. Furthermore, infected organoids are capable of 

producing infectious rotavirus particles. Treatment of interferon-alpha or ribavirin 

inhibited viral replication in organoids of both species. Importantly, human organoids 

efficiently support the infection of patient-derived rotavirus strains and can be 

potentially harnessed for personalized evaluation of the efficacy of antiviral 

medications. Therefore, organoids provide a robust model system for studying 

rotavirus-host interactions and assessing antiviral medications.  

Key words: Rotavirus, Intestinal organoids, Interferon, Ribavirin 
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1. Introduction 

Rotavirus, a member of the Reoviridae family, is a leading cause of severe 

gastroenteritis in young children worldwide. It yearly causes 1.4 billion diarrhea 

episodes and over 450,000 deaths of children under five years of age (1). Although 

infections in adults are often asymptomatic or mild, emerging evidence indicates that 

organ transplantation patients, both pediatric and adult organ recipients, are 

particularly sensitive to rotavirus infection with severe gastroenteritis as well as other 

complications (2). Unfortunately, no specific antiviral drug against rotavirus is 

available except supportive care (3). The potential off-label use of general antiviral 

drugs, such as interferon-alpha (IFN-α) and ribavirin, have been poorly investigated 

(4). 

The absence of a robust experimental in vitro system allowing investigation of 

rotavirus infection is a bottleneck hampering development of novel rational strategies 

aiming at combating rotavirus-associated diseases. It is well-known that rotavirus 

primarily infects complexly organized epithelium of the small intestine (5), while 

currently used cell culture models based on simple two dimensional (2D) cultures of 

immortalized cell lines (6-8) that do not capture the dynamics nor individual variation 

existing in the patient mucosa (6, 8). Complicating further is the genomic diversity in 

patient-derived rotavirus strains. Because rotavirus is a double stranded RNA 

(dsRNA) virus containing eleven highly variable segments (9). In total, more than 

110,000 strains have been genotyped originating from 100 different countries and 

relative prevalence of different strains is continuously evolving (10). In contrast, the 

difficulty in setting up in vitro models has led to the situation that only a limited 

number of well-adapted laboratory strains are almost exclusively used for 

experimental research. Therefore, current approaches for modeling rotavirus 

infection are far from satisfactory (6), which prompts development of novel 

experimental avenues.  

Three dimensional (3D) cultured primary intestinal organoids are currently 

innovating research of intestinal physiology and pathology. They contain various 

types of cells and recapitulate most if not all aspects of in vivo tissue architecture (11-

13). Accordingly, organoids have been successfully used to model a plethora of 

diseases including cystic fibrosis (CF, an intestinal disease that has been usually 

difficult with respect to in vitro investigation) (14) and cancer (15). In the present 
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study, we explored the feasibility of using primary intestinal organoids to model 

rotavirus infection and antiviral therapy. We demonstrated that organoids, in 

particular of human origin, effectively support rotavirus infection of both laboratory-

adapted and patient-derived strains, as well as production of infectious virus particles. 

Most interestingly, human organoids were able to assess the responsiveness of 

patient-derived rotavirus to different antivirals on an individual basis. 

 

2. Materials and methods 

2.1. Viruses 

Simian rotavirus SA11, a well-characterized and broadly used laboratory strain was 

used (16). SA11 rotavirus used in the study was prepared as described previously (6). 

Stool samples (stored at -80⁰C freezer) from nine rotavirus patients were obtained 

from the Erasmus MC biobank, Department of Viroscience, Erasmus Medical Center 

Rotterdam. These samples were taken during diarrhea period and tested for 

enterovirus, parechovirus, norovirus genogroups I and II, rotavirus, adenovirus, 

astrovirus and sapovirus by qRT-PCR described by previous studies (10, 17, 18). 

 

2.2. Cell culture 

Caco2 cell line (Human Caucasian colon adenocarcinoma; ECACC) was cultured in 

Dulbecco’s modified Eagle’s medium (DMEM; Lonza, Verviers, Belguim) 

supplemented with 20% (vol/vol) heat-inactivated fetal calf serum (FCS; Sigma-

Aldrich, St. Louis USA) and 100 U/mL of Penicillin-Streptomycin (Gibco, Grand Island, 

USA) solution. Cells were maintained in 5% CO2 at 37⁰C in a humidified incubator. 

Cell genotyping analysis was performed at the department of Pathology, Erasmus 

Medical Center Rotterdam. Mycoplasma was routinely examined in our laboratory by 

the MycoAlert™ Mycoplasma Detection Kit (Lonza, Rockland, ME USA) according to 

the manufacturer’s instruction. All cells were confirmed to be mycoplasma negative. 

 

2.3. Culture of primary mouse intestinal organoids  

Mice were sacrificed by cervical dislocation following euthanasia with sodium 

pentobarbital (100 mg per kilogram body weight; IP injection). Subsequently, mouse 
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small intestine (jejunum and ileum) was harvested. Stool was flushed out with ice-

cold PBS. The small intestine was dissected and cut longitudinally and washed with 

ice-cold PBS. Villus was scraped off with a coverslip and the remaining parts of fat 

were removed. Small intestine was then cut into small pieces (0.2 cm~0.5 cm) and 

transferred to a 50 ml tube, and washed 3 times with ice-cold PBS. Then, the tissues 

were rocked with 2 mM EDTA for 30 min at 4⁰C. Afterwards, the tissues were 

thoroughly suspended by pipetting up and down for 10 times with a 10 ml tip in order 

to loosen crypts, and then were filtered through a 70 µm cell strainer. Crypt 

suspension was added with 10% (vol/vol) FCS and spin down at 300 g for 5 min. 

Supernatant was discarded and crypts were re-suspended in 10 ml complete medium 

growth factor (GF)- (CMGF-, advanced DMEM/F12 was supplemented with 1% 

(vol/vol) of GlutaMAX™ Supplement (Gibco, Grand island, USA), 10 mM of Hepes 

and 100 U/mL of Penicillin-Streptomycin), and then crypts were collected by 

centrifugation at 150 g for 2 min at 4⁰C. Approximately 500 crypts were suspended in 

40 µl growth factor reduced phenol-red free Matrigel (Corning, Bedford, USA). 

Afterwards, a 40 µl droplet of Matrigel/crypts mix was placed in the center of each 

well of a 24-well plate, and was subsequently incubated at 37⁰C with 5% CO2 for 15 

min. 500 µl of culture medium was added per well after Matrigel got solidification. The 

culture medium was supplemented with CMGF-, 2% (vol/vol) of B-27® Supplements 

(Gibco, Grand Island, USA), 1% (vol/vol) of N2® Supplements (Gibco, Grand Island, 

USA), 500 pg/L of epidermal growth factor (EGF), 20% (vol/vol) of R-Spondin 1 

(conditioned medium), and 10% (vol/vol) of Noggin (conditioned medium). The 

medium was maintained until passaging organoids (it depends on the density of 

organoids whether medium should be refreshed during culture). To this aim, 

organoids were removed from Matrigel and broken up mechanically by passing 

through a 5 ml tip inserting a 200 µl tip, and then were transferred to fresh Matrigel. 

The passaging was performed every 5~6 days with a 1:3 split ratio. Each well 

contains 10 or more organoids.  

 

2.4. Culture of primary human intestinal organoids 

Intestinal biopsies or surgically resected intestinal tissues were transferred into a 15 

ml tube containing 10 ml complete chelating solution (CCS, MilliQ H2O was 

supplemented with 1.0 g/L of Na2HPO4-2H2O, 1.08 g/L of KH2PO4, 5.6 g/L of NaCl, 
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0.12 g/L of KCl, 15 g/L of Sucrose, 10 g/L of D-Sorbitol and 80 µg/L of DL-

dithiotreitol). Biopsies/tissues were washed three times by pipetting up and down 

8~10 times and then were rocked with 8 mM EDTA for 15 min at 4⁰C. Supernatant 

with EDTA was discarded and 5 ml fresh CCS solution was added. It was thoroughly 

suspended by pipetting up and down with 10 ml tip for 8~10 times to loosen crypts, 

and 2 ml FCS was added. Supernatant with crypts was transferred into a 50 ml tube 

and biopsies were re-used for repeatedly collecting more crypts (2~3 times). Then, 

crypt suspension was centrifuged at 300 g for 5 min. Supernatant was discarded and 

crypts were re-suspended in 2 ml CMGF-, and then crypts were collected by 

centrifugation at 130 g for 5 min at 4⁰C. Crypts were finally suspended in 40 µl 

growth factor reduced phenol-red free Matrigel (Corning, Bedford, USA). Then, a 40 

µl droplet of Matrigel/crypt mix was placed in the center of each well of a 24-well 

plate, and was subsequently incubated at 37⁰C with 5% CO2 for 15 min. 500 µl of 

culture medium was added per well after Matrigel got solidification. The culture 

medium was supplemented with CMGF-, 2% (vol/vol) of B-27® Supplements (Gibco, 

Grand Island, USA), 1% (vol/vol) of N2® Supplements (Gibco, Grand Island, USA), 

500 pg/L of EGF, 1 mM n-Acetyl Cysteine, 10 mM Nicotinamide, 0.5 µM A83-01 

(TGF-β inhibitor), 3 µM SB202190 (p38 inhibitor), 20% (vol/vol) of R-Spondin 1 

(conditioned medium), 10% (vol/vol) of Noggin (conditioned medium) and 50% 

(vol/vol) of Wnt3a (conditioned medium). Culture medium was refreshed every 2~3 

days, and organoids were passaged every 6~7 days. Passaging human organoids 

was done as described for the mouse intestinal organoids. Each well contains 10 or 

more organoids.  

 

2.5. Inoculation of SA11 rotavirus  

Caco2 cells in T75 flask were washed and suspended, and subsequently seeded into 

a 48-well plate (5*104 cells/well). When cell confluence was approximately 80%, 

culture medium was discarded and cell monolayers were washed twice with PBS. 

100 µl of serum-free DMEM medium supplemented with 5 µg/mL of Trypsin (Gibco, 

Paisley, UK) and SA11 rotavirus were added and incubated at 37⁰C with 5% CO2 for 

60 min for infection, followed by washing with PBS to remove free viruses (washed 4 

times). Then, cells were added with culture medium containing 5 µg/mL of trypsin 

and incubated at 37⁰C with 5% CO2. 
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For organoids, SA11 rotavirus (contain 5,000 genome copies) was activated with 

5 µg/mL of trypsin (Gibco, Paisley, UK) at 37⁰C with 5% CO2 for 60 min, and 

subsequently inoculate for 60 min at 37⁰C with 5% CO2, followed by washing with 

PBS to remove free virus (four times). Then, organoids were re-embedded in Matrigel, 

maintained in culture medium without trypsin at 37⁰C with 5% CO2. 

 

2.6. Inoculation of patient rotavirus  

Suspensions (10% [vol/vol]) of stool were prepared in CMGF- medium and subjected 

to low-speed centrifugation to pellet debris. Supernatants were then filtered through 

0.45-µm-pore-size filters. Inoculation protocol is similar to inoculation of SA11 

rotavirus. 

 

2.7. Viral production assay  

To investigate virus replication and production in 2D culture of Caco2 cell line, cells 

were inoculated with SA11 rotavirus (contain 5,000 genome copies). Culture medium 

was harvested at indicated time points to detect and quantify secreted rotavirus.  

In parallel, human primary intestinal organoids were infected with SA11 rotavirus 

(contain 5,000 genome copies), followed by washing with PBS to remove free virus 

(four times). Afterwards, organoids were adhered on the bottom of 24-well plate 

coated with Collagen R solution (SERVA, Heidelberg, Germany) by spin down at 500 

g for 10 minutes. Organoids culture medium was gently added and organoids were 

subsequently incubated at 37⁰C with 5% CO2. Culture medium was harvested at 

indicated time points to detect and enumerate secreted rotavirus.  

To confirm the infectivity of secreted rotavirus, medium harvested from infected 

human organoids at 1 hr, 24 hr, and 48 hr were used to inoculate Caco2 cells. The 

infection was determined by qRT-PCR.  

 

2.8. Neutralization assay 

Neutralizing monoclonal antibody (MAb) named HS1 was gifted by Professor Harry 

Greenberg from Stanford University School of Medicine, USA. Neutralization assay 

was performed according to previous study (19). Briefly, rotavirus were activated by 5 

μg/mL of trypsin, followed by adding a series of diluted MAb (1:1000, 1:250, 1:100, 

1:50) from stock in the virus and keeping neutralization for 2 h at 37⁰C and overnight 
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at 4⁰C. After 24 h inoculation of MAb treated and non-treated SA11 rotavirus, 

rotavirus genomic RNA in Caco2 cells or human organoids was detected by qRT-

PCR.  

 

2.9. qRT-PCR 

Total RNA was isolated using a Machery-NucleoSpin RNA II kit (Bioke, Leiden, 

Netherlands) and quantified using a Nanodrop ND-1000 (Wilmington, DE, USA). 

cDNA was prepared from total RNA using a cDNA Synthesis kit (TAKARA BIO INC) 

with random hexamer primers. Real-time PCR reactions (50⁰C for 2 min, 95⁰C for 10 

min, followed by 50 or 60 cycles of 95⁰C for 15 s and 58⁰C for 30 s and 72⁰C for 10 

min) were performed with SYBRGreen-based real-time PCR (Applied Biosystems®, 

Austin, USA) according to the manufacturer’s instruction. Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) gene was used as reference. Relative gene 

expressions were normalized to GAPDH using the formula 2-ΔΔCT (ΔΔCT=ΔCTsample-

ΔCTcontrol). The SA11 rotavirus sense primer and anti-sense primers are targeting 

564-585 and 719-699 of the SA11 genome, respectively. Human rotavirus sense and 

anti-sense primers are targeting 963-982 and 1046-1027 of group A rotavirus 

genome, respectively. All primers are listed in supplementary Table S1. 

 

2.10. Quantification of rotavirus genome copy numbers 

In order to generate a template for quantifying rotavirus genome copy number, an 

amplicon of the SA11 was cloned into the pCR2.1-TOPO vector (Invitrogen, San 

Diego, CA). The plasmid was extracted by Qiuck Plasmid Miniprep Kit (Invitrogen, 

Lohne, Germany) following manufacturer’s instructions. A series of dilutions, from 10-

2 to 10-10, were prepared and then were amplified and quantified by qRT-PCR to 

generate a standard curve. Standard curve was generated by plotting the log copy 

number versus the cycle threshold (CT) value (Supplementary Figure 1). Copy 

numbers were calculated by using the following equation: 

Copy number (molecules/µL) = [concentration (ng/µL) x 6.022 x 1023 

(molecules/mol)]/ [length of amplicon x 640 (g/mol) x 109 (ng/g)].  

 

2.11. Immunohistochemistry  



Chapter 3 

48 | P a g e  

Organoids were transferred in a 15 ml tube and suspended in ice-cold PBS, followed 

by spinning down at 150 g for 5 min at 4⁰C. Supernatant was discarded and pellet 

was added 500 μl of 4% formalin to fix for 0.5 to 1 hr at 4⁰C. Organoids were then 

treated with 70% of ethanol containing some eosin for 30 min, followed by 

dehydration with 96% ethanol - 96% ethanol - 100% ethanol - 100% ethanol – xylene 

- xylene, with each step for 5 min. Xylene was carefully removed and paraffin was 

added on the organoids, maintaining for 2 hrs at 62⁰C, and cooled down at room 

temperature. Sections were cut and incubated at 37⁰C overnight.  

For immunohistochemistry analysis, organoid sections (4 µm) were deparaffinized 

(xylene – xylene - 100% ethanol - 100% ethanol - 70% ethanol with each step for 5 

min), followed by washing with 0.05% Tween20 (MERCK, Hohenbrunn, Germany). 

Antigen was retrieved by boiling sections in Tris/EDTA buffer (ph= 9) for 14 min, and 

then the sections were cooled down by tap water. The sections were rinsed with 0.05% 

Tween20, and blocked by incubation with 5% skimmed milk solution for 1 hr at room 

temperature. Sections were incubated with primary antibody (mouse monoclonal 

antibody named HS-2 against SA11 rotavirus VP4; gifted by Professor Harry 

Greenberg from Stanford University School of Medicine, USA) diluted in 5% milk 

solution (1:100) at 4⁰C overnight. Subsequently the sections were incubated with 

secondary antibody, using the Dako EnVision + System-HRP Labelled Polymer Anti-

mouse antibody (Dako, Carpinteria, USA) and the sections were counterstained with 

hematoxylin for 15 seconds, followed by rinsing slides with tap water. Staining was 

visualized by the Nikon light microscope (Nikon, Amsterdam, The Netherlands).  

 

2.12. Statistics 

Data are presented as Mean ± SEM. Comparisons between groups were performed 

with Mann-Whitney test, except for the analysis of ISG expression, which was 

analyzed with t test (with data of normal distribution) using GraphPad Prism 

(GraphPad Software Inc). Differences were considered significant at a p value less 

than 0.05.  

 

2.13. Study approval 

Animal study was approved by the institutional animal ethics committee (Dier 

Experimenten Commissie). 
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Human biopsies from the colon were completed with forceps and collected from 

healthy adult volunteers. Other human intestinal tissues were obtained during 

surgical resection. The volunteers or patients agreed to participate by written 

informed consent, and the study was approved by the Medical Ethical Committee of 

the Erasmus Medical Center (Medisch Ethische Toetsings Commissie Erasmus MC). 

 

3. Results 

3.1. Primary mouse intestinal organoids support rotavirus infection  

Before embarking on human experimentation, we first attempted to set up a rotavirus 

infection model using 3D cultured mouse intestinal organoids employing the 

laboratory rotavirus strain SA11. To this end, murine intestinal organoids were 

cultured from isolated mouse crypts. Upper openings of crypts rapidly sealed, and 

swelling and budding events occurred within few days of culture. As expected, 

organoids were composed of a single layer of polarized epithelial cells. Murine 

organoids require passaging after five days of culture. We therefore opted to use 

organoids for rotavirus infection within four days of the primary culture or use the 

passaged organoids (Figure 1A).  

Upon inoculation of SA11 rotavirus for 1 hour (hr), organoids were thoroughly 

washed to remove the residual virus particles and subsequently re-embedded in 

Matrigel for an additional 24 hrs. As shown by positive immunohistochemical (IHC) 

staining against the viral protein VP4, viral infection was observed in organoids as 

early as 24 hrs post-inoculation (Figure 1B). To further confirm active infection, qRT-

PCR was performed to detect viral genomic RNA. As expected, no signal was 

detected in un-infected samples, but viral RNA expression was readily detected in 

virus-inoculated samples. By normalizing to the housekeeping gene GAPDH, viral 

RNA was significantly increased by more than 70-fold (n = 5, P < 0.05) after 24 hrs of 

infection as compared to 1 hr inoculation (Figure 1C). Thus murine intestinal 

organoids are susceptible to the SA11 rotavirus infection, which prompts further 

investigation into the susceptibility of human intestinal organoids to rotavirus. 
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Figure 1. Mouse intestinal organoids support infection of the SA11 rotavirus strain. (A) The 
procedure of culturing primary mouse intestinal organoids and their infection with rotavirus. 
(B) Immunohistochemical staining of SA11 rotavirus VP4 protein in un-infected (CTR) and 
infected (24 hrs post-infection) organoids (magnification: 400×). (C) Detection and 
quantification of rotavirus RNA by qRT-PCR at indicated time points after rotavirus 
inoculation. Mouse GAPDH was used as a reference gene. *P < 0.05, Mann-Whitney test; n 
= 5. 

 

3.2. Primary human intestinal organoids are more permissive for rotavirus infection  
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For testing rotavirus infection in primary human intestinal organoids, intestinal 

biopsies or surgically resected tissues were used as a source of human intestine 

(Figure 2A). Organoids were successfully cultured and expanded from isolated crypts. 

These organoids usually need passaging after seven days of culture (Figure 2A). 

Thus, human organoids within five days of primary culture or passaged organoids 

were used for rotavirus infection (Figure 2A).  

Similar to infecting mouse organoids with rotavirus, human organoids were 

inoculated with SA11 rotavirus for 1 hr and subsequently thoroughly washed to 

remove the residual virus particles, followed by being re-embedded in Matrigel and 

incubated for 24 hrs. An IHC assay showed strong immunoreactivity towards viral 

protein VP4 in these organoids (Figure 2B). Remarkably, qRT-PCR results revealed 

that 24 hrs infection resulted in a more than 15,000-fold (n = 5, P < 0.01) increase in 

viral RNA compared to 1 hr infection (Figure 2C). These data convincingly 

demonstrate that human intestinal organoids, compared to mouse organoids, are 

much more permissive for rotavirus infection.  

 

3.3. Kinetics of viral replication and production in organoids  

To further characterize the kinetics of rotavirus infection in human organoids, we 

quantified intracellular viral RNA and secreted virus at consecutive time points to 

profile the dynamics of viral replication and production, in comparison to the infection 

in Caco2 cell line. Genome copy number of secreted rotavirus was quantified by 

qRT-PCR referring to a plasmid template using a standard curve calculation method 

(Supplementary Figure S1). Similar to the infection of Caco2 cells (Figure 3A), 

intracellular viral RNA in organoids and the production of rotavirus were increased 

drastically overtime. Of note, the kinetics of viral replication appears different that it is 

slower and less efficient in human organoids compared to Caco2 cells (Figure 3B). 

Furthermore, these secreted viruses are capable of infecting naïve Caco2 cells 

(Figure 3C). As shown in Figure 3B, the medium collected from 24 or 48 hr post-

inoculation of human organoids contained much abundant amount of infectious 

viruses, compared to the sample collected at 1 hr post-infection. Taken together, 

human organoids are highly permissive for rotavirus infection comparable to 

conventional 2D culture of Caco2 cells, and support robust viral replication and 

infectious virus particle production.  
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Figure 2. Human intestinal organoids are highly permissive for the infection of the SA11 
rotavirus strain. (A) The procedure of culturing primary human intestinal organoids and their 
infection with rotavirus. (B) Immunohistochemical staining of SA11 rotavirus VP4 protein in 
un-infected (CTR) and infected (24 hrs post-infection) organoids (magnification: 400×). (C) 
Detection and quantification of rotavirus RNA by qRT-PCR at indicated time points after 
rotavirus inoculation. Human GAPDH was used as a reference gene. **P < 0.01, Mann-
Whitney test; n = 5. 
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Figure 3. Production of infectious rotavirus by human organoids. (A) Genome copy number 
per mL of medium harvested from SA11 rotavirus infected organoids at indicated time points. 
(B) Secondary infection of Caco2 cell line with culture medium corrected at 1 hr, 24 hr, and 
48 hr post-infection of SA11 rotavirus-inoculated human organoids. Rotavirus genome RNA 
and GAPDH were quantified by qRT-PCR. 

 

3.4. Neutralization of SA11 by MAb 

To investigate whether rotavirus infection in organoids can be neutralized by antibody, 

we tested a MAb targeting VP7 (19). It was depicted that 100 and 50-time diluted this 

antibody can effectively neutralize SA11 rotavirus in Caco2 cells, resulting in 44 ± 10% 

(Mean ± SEM, n = 5, P < 0.01) and 94 ± 1% (Mean ± SEM, n = 6, P < 0.001) 

inhibition of viral infection (Figure 4A), respectively. Similarly, different concentrations 

of this MAb (1000, 250, 100 and 50-time diluted) significantly inhibited SA11 rotavirus 

infection by 56 ± 8% (Mean ± SEM, n = 4, P < 0.01), 38 ± 28% (Mean ± SEM, n = 4, 

P < 0.05), 90 ± 3% (Mean ± SEM, n = 4, P < 0.01) and 94 ± 3% (Mean ± SEM, n = 5, 

P < 0.01), respectively, in 3D culture of human primary intestinal organoids (Figure 

4B). 

 

 

Figure 4. Neutralization of SA11 rotavirus by neutralizing MAb in Caco2 cells and Human 
intestinal organoids. Trypsin-treated SA11 rotavirus was mixed with four different 
concentrations (1000, 250, 100 and 50-time diluted) MAb from stock. Neutralization was 
performed at 37⁰C for 2 h and at 4⁰C overnight. Virus-antibody cocktail was inoculated onto 
Caco2 cells and human primary intestinal organoids in 48-well plate. After 24 h post infection, 
viral genomic RNA in Caco2 cells (A) and organoids (B) were examined by qRT-PCR and 
normalized to the reference gene GAPDH. **P < 0.01, ***P < 0.001, Mann-Whitney test; n = 
5~6. 

 

3.5. Induction of ISG expression in organoids in response to rotavirus 
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IFN signaling is a first-line of antiviral defense mechanism and exerts the action 

through the induction of a variety of interferon-stimulated genes (ISGs) that mediate 

the subsequent antiviral response (4, 20). Many viruses can trigger the activation of 

this pathway, but conversely viruses have also developed strategies to corrupt this 

intracellular defense mechanism (4). As knowledge about interaction of rotavirus 

infection with the interferon system is urgent, we investigated the effects of rotavirus 

on ISG induction in our experimental system. We selected a panel of ISGs that are 

well-known for playing important roles in antiviral defense (21). These ISGs include 

interferon regulatory factor (IRF) 1, IRF7, IRF9, interferon-induced transmembrane 

protein (IFITM) 1, IFITM2, IFITM3, signal transducer and activator of transcription 

(STAT) 1, protein kinase R (PKR) and ISG15. We first investigated in the Caco2 cell 

line that is widely used for rotavirus infection. Inoculation of the SA11 strain indeed 

triggered the up-regulation of several ISGs, in particular IRF9 at 24 hrs post-infection 

(Figure 5A). Induction of ISGs in both mouse and human organoids was also 

observed at 24 hrs after infection, although the induction patterns were different 

among these models (Figure 5B and 5C). These results indicate that active virus-host 

interactions occur in organoids upon rotavirus infection. 

 

3.6. Modeling the anti-rotavirus activity of IFN-α and ribavirin 

IFN-α, a type I IFN, is a potent activator of the JAK-STAT cascade to induce antiviral 

ISG expression. Clinically, this cytokine is used successfully for treating chronic 

hepatitis B (HBV) and C (HCV) virus (17, 22). Treatment of Caco2 cells with 

recombinant human IFN-α (1000 IU/ml) for 48 hrs induced the expression of a panel 

of ISGs and exerted potent anti-rotavirus (SA11 strain) activity (87 ± 3% inhibition, 

Mean ± SEM, n = 5, P < 0.05, Figure 6A and 6B). Similarly, treatment with human 

IFN-α (1000 IU/ml) for 48 hrs in human organoids led to induction of ISG expression 

with anti-rotavirus activity (73 ± 8% inhibition, Mean ± SEM, n = 5, P < 0.05, Figure 

6C and 6D).  
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Figure 5. Rotavirus infection induced the expression of Interferon-stimulated genes (ISGs). 
Upon inoculation of SA11 rotavirus in the Caco2 cell line (n ≥ 4) (A), mouse organoids (n ≥ 5) 
(B) and human organoids (n ≥ 5) (C), the relative expression of ISGs, including IRF1, IRF7, 
IRF9, IFITM1, IFITM2, IFITM3, STAT1, PKR, and ISG15, was quantified by qRT-PCR and 
normalized to the reference gene GAPDH. Statistic comparison was performed between un-
infected and 24 hr post-infection groups. *P <0.05, **P < 0.01, ***P < 0.001, t test. 
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Figure 6. Anti-rotaviral effects of IFN-a. Treatment IFN-a (1000 IU/ml) induced the 
expression of ISGs (A) in Caco2 cells and inhibited SA11 rotavirus infection (B). *P < 0.05, 
Mann–Whitney test; n = 5. IFN-a (1000 IU/ml) induced the expression of ISGs (C) in human 
organoids and inhibited SA11 rotavirus infection (D) *P < 0.05, Mann–Whitney test; n = 5. 
The expression of ISGs and the level rotavirus RNA were quantified by qRT-PCR and 
normalized to reference gene GAPDH. 
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Ribavirin has a broad antiviral activity against a spectrum of viruses (23), and is 

used for treating chronic HCV in combination with IFN-α (18, 24). Treatment with 

ribavirin (1, 5, 10 µg/mL) for 48 hrs on Caco2 cells infected with SA11 rotavirus dose-

dependently inhibited viral RNA. At concentrations of 5 and 10 µg/mL, ribavirin 

significantly decreased viral RNA by 81 ± 7% (Mean ± SEM, n = 6, P < 0.01) and 85 

± 7% (Mean ± SEM, n = 6, P < 0.01), respectively (Figure 7A). In mouse and human 

organoids, ribavirin (10 µg/mL) reduced rotavirus RNA levels by 48 ± 17% (Mean ± 

SEM, n = 5, P < 0.05, Figure 7B) and 44 ± 8% (Mean ± SEM, n = 4, P < 0.05, Figure 

7C), respectively. Thus, 3D organoid cultures appear to display a different sensitivity 

compared with conventional 2D immortalized cell line model.  

 

 

Figure 7. Antiviral effects of ribavirin against SA11 rotavirus. (A) Relative levels of rotavirus 
RNA in the Caco2 cells treated with different concentrations (0, 1, 5, 10 µg/mL). **P < 0.01, 
Mann-Whitney test; n = 6. (B) Relative levels of rotavirus RNA in mouse organoids treated 
with 10 µg/mL of ribavirin. *P < 0.05, Mann-Whitney test; n = 5. (C) Relative levels of 
rotavirus RNA in human organoids treated with 10 µg/mL of ribavirin. *P < 0.05, Mann-
Whitney test; n = 4. Rotavirus RNA was quantified by qRT-PCR and normalized to reference 
gene GAPDH. 

 

3.7. Modeling infection and antiviral therapy using patient-derived rotavirus strains 

Since SA11 is a well-adapted laboratory strain that has high infectivity, we further 

explored whether our system can model patient-derived rotavirus infection. In total, 

fecal samples from 9 infected individuals were used to infect human organoids. All 

samples were positive for group A rotavirus (Table 1). Patient 7 was also sapovirus 

positive, and patient 1 was also adenovirus positive (Table 1). Seven of these 

inoculation provoked sustained infection of rotavirus as detected using our qRT-PCR 
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assay (Table 1, Figure 8 and Supplementary Figure 2). The increase of viral RNA 

after 24 hrs inoculation differed substantially among patients (Figure 8). These results 

were similar to the infection of Caco2 cell line (Supplementary Figure 2).  

Next, we examined whether it is feasible to evaluate the responsiveness of each 

sample to antiviral therapy of IFN-α and ribavirin. Experiments using 6 out of 7 

infectious fecal samples succeeded with respect to these antiviral tests (Figure 8). 

Interestingly, patient 2 did neither respond to IFN-α nor ribavirin. Patient 3 and 4 were 

sensitive to IFN-α but not to ribavirin. Patient 5, 6 and 7 responded to both IFN-α and 

ribavirin (Figure 8). Among all the responders, the sensitivity to IFN-α or ribavirin 

substantially varied (Figure 8 and Table 1). These data demonstrated that intestinal 

organoids are capable of individualized modeling rotavirus infection and antiviral 

therapy. 
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Figure 8. Human organoids support the infection of patient-derived rotavirus and might be 
utilized for individualized assessment of the antiviral activities of IFN-α and ribavirin. All 
samples of seven patients successfully infected human organoids. 6 out those 7 samples 
were able to model the antiviral activity of IFN-α and ribavirin. Distinct responsiveness was 
observed among these samples. The level rotavirus RNA was quantified by qRT-PCR and 
normalized to reference gene GAPDH. ND, not detectable. (Also see Table 1). 
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4. Discussion 

The successful introduction of oral vaccines has dramatically reduced the burden of 

rotavirus gastroenteritis in some developed countries. However, in many developing 

countries from one third to one half of all vaccinated children failed to prevent 

infection, probably due to high prevalence and diversity of the virus (25). Thus, there 

is a clear need of developing specific antiviral therapy, considering the over 2 million 

severe ill and 450,000 deaths yearly of children under five years of age (1). Given 

that the burden predominantly exists in developing countries and vaccines are 

available, pharmaceutical companies appear to have less interest in developing 

specific anti-rotavirus therapies. A cost-effective scenario is thus to properly evaluate 

whether currently available antivirals, such as IFN-α and ribavirin, will be effective for 

treating rotavirus. 

Although some early studies have explored the potential anti-rotavirus efficacy of 

IFN-α or ribavirin in experimental models (19, 23, 26-28), the results remain 

inconclusive. Limitations of these classical rotavirus models, which produced 

inconsistent results, hampered further clinical evaluation. We now report the 

application of a 3D culture model of primary intestinal organoids for modeling 

infection of patient-derived rotavirus strains and assessing antiviral therapy. 

Compared to the conventional 2D culture system of immortalized (intestinal 

carcinoma) cell lines and even primary intestinal epithelial cells (25), primary 

organoids are better in recapitulating the essential features of the in vivo intestinal 

tissue architecture. They maintain multiple cell types with similar functions as in the 

organ/tissue of origin (12, 29-31). Although human embryonic stem cell lines were 

also shown to be able to differentiate into intestinal organoids-like structure, it often 

requires 1-2 months to generate “mature” organoids that can be used for 

experimentation (7). In contrast, culturing mouse or human mature intestinal 

organoids from tissue or biopsy only requires a few days (12). Although there is no 

functional comparison yet available, primary cultures when compared to stem cell 

line-derived organoids would conceivably replicate and resemble in vivo intestinal 

tissue more accurately.  

We demonstrated that both mouse and human intestinal organoids readily support 

infection of the laboratory-adapted SA11 rotavirus strain. As expected, human 

organoids are much more permissive to infection resulting in over 10,000-fold 
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increase of genomic RNA at 24 hrs of viral replication than at 1 hr of viral replication, 

and are capable of producing infectious virus particles, although it seems that the 

replication of rotavirus in human organoids is somewhat slower and less efficient 

compared with Caco2 cells. Interestingly, active virus-host interactions occurred as 

demonstrated by ISG induction. ISGs are key antiviral effectors induced by the 

activation of IFN signaling (32) and are crucial in regulating rotavirus infection (33). 

Treatment of IFN-α significantly inhibited rotavirus infection in both cell line and 

organoids models. Similarly, antiviral activity was also observed in both models upon 

treatment of ribavirin. However, organoids models are less sensitive to antivirals 

compared to the cell line model, which appears to be more consistent with 

experiences in in vivo models (18, 34).  

More importantly, human organoids are even permissive for patient-derived 

rotavirus and the virus can efficiently replicate. The organoids model therefore 

circumvents one of the major limitations of using laboratory-adaptive strains that are 

not representative for the circulating 110,000 strains (10). However, two out of nine 

samples were not successful with inoculation in human intestinal organoids, which 

was probably due to low viral titters is these two stool samples (data not shown). 

Therefore, a possible solution is to increase the virus input, for instance, by 

concentrating viruses from fecal samples. Interestingly, virus samples derived from 

different patients have distinct sensitivities to IFN-α or ribavirin. A subset of patient 

samples are very sensitive to IFN-α, ribavirin or both, suggesting the potential of 

clinical application of these existing antiviral medications, at least for a selective 

population of rotavirus-infected patients. Given that primary organoids can be easily 

frozen and re-established in culture, results of antiviral assays in organoids can be 

obtained within 24-48 hrs after obtaining a fecal sample from the patient, giving 

clinicians sufficient time for decision making. Of note, our organoids models do not 

make the conventional models superfluous. In fact, these cell line and laboratory 

strain-based 2D culture models are still useful, in terms of pilot exploration or rough 

assessment. Thus, the combinatory use of both types of models will be necessary for 

particular projects.  

In summary, we have reported the establishment and application of 3D cultures of 

primary intestinal organoids for modeling the infection by laboratory-adapted and 

patient-derived rotavirus strains. This system is robust and applicable in hospital, 

academic or industry laboratories. It bears broad implications for studying rotavirus-
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host interactions and antiviral drug development, as well as potential for patient 

stratification and personalized medicine. 
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Supplementary Table & Figures 

Supplementary Table 1 Primers used in the study 

Sequence of rotavirus primers 

 SA11 Rotavirus Human Patient Rotavirus 

Sense  TGGTTAAACGCAGGATCGGA ACCATCTACACATGACCCTC 
Anti-sense AACCTTTCCGCGTCTGGTAG CACATAACGCCCCTATAGCC 

 

Primer sequences of GAPDH and ISGs 

Primers Human Mouse 

GAPDH-F GTCTCCTCTGACTTCAACAGCG TTCCAGTATGACTCCACTCACGG 

GAPDH-R ACCACCCTGTTGCTGTAGTAGCCAA TGAAGACACCAGTAGACTCCACGAC 

IRF1-F GAGGAGGTGAAAGACCAGAGCA TCCAAGTCCAGCCGAGACACTA 

IRF1-R TAGCATCTCGGCTGGACTTCGA ACTGCTGTGGTCATCAGGTAGG 

IRF7-F CCACGCTATACCATCTACCTGG CCTCTGCTTTCTAGTGATGCCG 

IRF7-R GCTGCTATCCAGGGAAGACACA CGTAAACACGGTCTTGCTCCTG 

IRF9-F CCACCGAAGTTCCAGGTAACAC CAACATAGGCGGTGGTGGCAAT 

IRF9-R GTCTGCTCCAGCAAGTATCGG GTTGATGCTCCAGGAACACTGG 

IFITM1-F GCTTCATAGCATTCGCCTACTC GCCACCACAATCAACATGCCTG 

IFITM1-R AGATGTTCAGGCACTTGGCGGT ACCCACCATCTTCCTGTCCCTA 

IFITM2-F GGCTTCATAGCATTCGCGTACTC CACTCTTCTTCAACGCCTGCTG 

IFITM2-R AGATGTTCAGGCACTTGGCGGT GGAGCTGATATTCAGGCACTTGG 

IFITM3-F CTGGGCTTCATAGCATTCGCCT TTCTGCTGCCTGGGCTTCATAG 

IFITM3-R AGATGTTCAGGCACTTGGCGGT ACCAAGGTGCTGATGTTCAGGC 

STAT1-F ATGGCAGTCTGGCGGCTGAATT GCCTCTCATTGTCACCGAAGAAC 

STAT1-R CCAAACCAGGCTGGCACAATTG TGGCTGACGTTGGAGATCACCA 

PKR-F GAAGTGGACCTCTACGCTTTGG AGGTGTCACCAAACAGGAGGCA 

PKR-R TGATGCCATCCCGTAGGTCTGT GCTGCTGGAAAAGCCACTGAATG 

ISG15-F CTCTGAGCATCCTGGTGAGGAA CATCCTGGTGAGGAACGAAAGG 

ISG15-R AAGGTCAGCCAGAACAGGTCGT CTCAGCCAGAACTGGTCTTCGT 
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Supplementary Figures 

 

 

Figure S1. Standard curve for quantifying rotavirus genome copy numbers. An amplicon of 
the SA11 was cloned into the pCR2.1-TOPO vector. The plasmid was extracted, followed by 
a series of dilutions, from 10-2 to 10-10, were prepared and then were amplified and quantified 
by qRT-PCR. Standard curve was generated by plotting the cycle threshold (CT) value with 
regard to the log copy number. 
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Figure S2. Human organoids and Caco2 cells support the infection of patient-derived 
rotavirus. Fecal samples from 9 infected individuals were used to infect human organoids 
and Caco2 cells. qRT-PCR was performed to quantify the infection (Norm. Fluoro.). The left 
and right two columns indicate infection in human organoids and Caco2 cells, respectively. 
Green line, uninfected; orange line, 1 hr post-infection; blue line, 1 day post-infection.  
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Abstract 

Rotavirus infection has emerged as an important cause of complications in organ 

transplantation recipients. Immunosuppressants used to prevent alloreactivity can 

also interfere with virus infection, but the direct effects of the specific type of 

immunosuppressants on rotavirus infection are still unclear. Here we profiled the 

effects of different immunosuppressants on rotavirus using a 2D culture model of 

Caco2 human intestinal cell line and a 3D model of human primary intestinal 

organoids inoculated with laboratory and patient-derived rotavirus strains. We found 

that the responsiveness of rotavirus to Cyclosporine A treatment was moderate and 

strictly regulated in an opposite direction by its cellular targets cyclophilin A and B. 

Treatment with mycophenolic acid (MPA) resulted in a 99% inhibition of viral RNA 

production at the clinically relevant concentration (10 µg/mL) in Caco2 cells. This 

effect was further confirmed in organoids. Importantly, continuous treatment with 

MPA for 30 passages did not attenuate its antiviral potency, indicating a high barrier 

to drug resistance development. Mechanistically, the antiviral effects of MPA act via 

inhibiting the IMPDH enzyme and resulting in guanosine nucleotide depletion. Thus 

for transplantation patients at risk for rotavirus infection, the choice of MPA as an 

immunosuppressive agent appears rational. 

Keywords: Rotavirus, Immunosuppressants, Mycophenolic acid, Intestinal organoids  
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1. Introduction 

Rotavirus infects the enterocytes of the small intestine and is one of the major 

causative agents of gastroenteritis. Although rotavirus infection is usually 

asymptomatic or mild in adults (1), it yearly causes 1.4 billion diarrhea episodes and 

over 450,000 deaths of children younger than five years old (2). However, emerging 

evidence from organ transplantation patients indicate that both pediatric and adult 

organ recipients receiving immunosuppressants are at risk of rotavirus infection. 

Severe gastroenteritis with considerable morbidity and mortality has been reported in 

these organ transplantation recipients (3-5).  

Immunosuppressants are universally used after organ transplantation to prevent 

graft rejection. It is not surprising that chronic use of these medications can increase 

the susceptibility to rotavirus infection due to inhibition of the host immune system 

that plays an important role in surveillance against infection (3, 4). Clinical evidence 

however appears to support this notion that early reduction of immunosuppression 

resulted in diminishing prolonged diarrheal illness caused by rotavirus (6). Apart from 

the general immunosuppressive property that favors infection, some 

immunosuppressants could also directly modulate viral infections (7, 8). By using 

experimental models, a previous study has reported that CsA, a calcineurin inhibitor, 

can inhibit rotavirus replication associated with restoration of the host antiviral 

signaling (9). However, to our knowledge, the direct effect of other types of 

immunosuppressants on rotavirus infection has not been documented.  

Understanding such direct effects on rotavirus by different immunosuppressive 

agents is certainly relevant to the management of infected transplantation patients, 

as well as to the development of potential new antivirals. Therefore, we aimed to 

comprehensively profile the effects and mode-of-action of different types of 

immunosuppressants on rotavirus including corticosteroids (prednisolone (Pred) and 

dexamethasone (Dex)), calcineurin inhibitors (CsA and tacrolimus (FK506)) and 

selective antiproliferative agent (e.g. MPA). In vitro cell culture systems that do not 

contain immune cells are the ideal models for studying such direct effects of 

immunosuppressants on viral replication. Thus, we first employed models of 2D cell 

culture of immortalized cell lines. Secondly, we exploited 3D cultures of primary 

human intestinal organoids developed by us recently for modeling rotavirus infection 

(10). These organoids recapitulate most if not all aspects of in vivo tissue architecture 
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of intestinal epithelium (11). Therefore, key findings obtained from the 2D system 

were subsequently validated in these primary organoids either infected with 

laboratory or patient-derived rotavirus strains. 

 

2. Materials and methods 

 

2.1. Immunosuppressants, IMPDH inhibitors, uridine and guanosine 

CsA and FK506 were purchased from Abcam (Cambridge, MA). Dex, Pred and MPA 

were purchased from Sigma (St Louis, MO). All reagents were dissolved in 

dimethylsulfoxide (DMSO) and clinically achievable concentrations were used (12-15). 

Uridine and guanosine were purchased from Sigma (St Louis, MO). 23 IMPDH 

inhibitors were synthesized at the Center for Drug Design, University of Minnesota, 

Minneapolis, USA, and their IMPDH1/2 inhibitory constant (Ki) were indicated in 

Table S1. 

 

2.2. Viruses 

Simian rotavirus SA11 was used and prepared as described previously (1). Five stool 

samples were obtained from the Erasmus MC biobank, Department of Viroscience, 

Erasmus Medical Center Rotterdam. These samples were taken from rotavirus-

infected patients during diarrhea period and examined for parechovirus, enterovirus, 

norovirus genogroups I and II, rotavirus, astrovirus, adenovirus and sapovirus by 

qRT-PCR described in previous studies (16-18). 

 

2.3. Cell and human primary intestinal organoid culture 

Caco2 cells and human primary intestinal organoid culture were performed as 

described previously (10). Briefly, Caco2 cells were grown in DMEM (Lonza, Verviers, 

Belguim), containing 20% FCS (Sigma-Aldrich, St. Louis USA) and 100 P/S (Gibco, 

Grand Island, USA) solution at 37⁰C in a humidified 5% CO2 incubator. For 

organoids, tissues were vigorously shaken in 8 mM EDTA for 15 min at 4⁰C, followed 

by removing the EDTA solution. Subsequently loosened crypts were collected by 

pipetting the solution up and down through a 10 ml pipette for 8-10 times. The crypt 

suspension was transferred into a 50 ml centrifuge tube (Greiner bio-one, the 
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Netherlands) and biopsies were re-used for repeated collection of crypts (2-3 times). 

Crypt suspensions were pooled and centrifuged at 300 g for 5 min. Pelleted crypts 

were re-suspended in 2 ml complete medium with growth factors CMGF-: advanced 

DMEM/F12 supplemented with 1% (vol/vol) GlutaMAX™ Supplement (Gibco, Grand 

island, USA), 10 mM HEPES, and collected by centrifugation at 130 g for 5 min at 

4⁰C. Crypts were finally suspended in Matrigel (Corning, Bedford, USA), and placed 

in the center of a well of a 24-well plate (40 µL per well). After the Matrigel had 

solidified (15 min at 37⁰C), organoids were cultured in culture medium at 37⁰C, 5% 

CO2. Culture medium was refreshed every 2-3 days, and organoids were passaged 

every 6-7 days. 

 

2.4. Inoculation of SA11 and patient rotavirus and treatment of drugs 

The protocol of inoculation of SA11 and patient rotavirus was described previously 

(10). Briefly, cell monolayers of Caco2 cells were incubated with SA11 rotavirus at 

37⁰C with 5% CO2 for 60 min for infection, followed by removing free virus. Then, 

cells were added with culture medium (FCS free) containing 5 µg/ml of trypsin and 

indicative drugs, followed by incubation at 37⁰C in a humidified 5% CO2 incubator. 

For organoids, which were inoculated to activated virus (5,000 genome copies) for 

60 min at 37⁰C with 5% CO2, followed by removing free virus. Then, organoids were 

aliquoted in wells of a 48-well plate coated with 20% (vol/vol) Collagen R Solution 

(SERVA, Heidelberg, Germany) and culture medium containing drugs of interest was 

added. Subsequently, the 48-well plate containing organoids was spin down at 500 g 

for 5 minutes to promote the adherence on the bottom of the wells, followed by 

maintaining them at 37⁰C with 5% CO2. 

Preparation of patient-derived rotavirus was performed as described earlier (10), 

and protocols of viral inoculation and treatment of drugs are similar to SA11 rotavirus. 

 

2.5. RNA isolation, cDNA synthesis and qRT-PCR 

Total RNA was extracted using a NucleoSpin® RNA kit (MACHEREY-NAGEL, Düren, 

Germany), and the concentration was quantified with a Nanodrop ND-1000 

(Wilmington, DE, USA). 500 ng of RNA was used as template for cDNA preparation 

with the reverse transcription system from TAKARA (TAKARA BIO INC). Real-time 

PCR reactions were performed with SYBR Green (Applied Biosystems®, Austin, 



Chapter 4 

77 | P a g e  

USA) according to the manufacturer’s instruction. Quantitative PCR was performed in 

an IQ5 cycler PCR machine (Bio-Rad). The levels of glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) mRNA were used as an endogenous reference to 

normalize the quantities of target mRNA by using the formula 2-ΔΔCT 

(ΔΔCT=ΔCTsample-ΔCTcontrol). All primer sequences were indicated in Table S2. 

 

2.6. Gene silencing assays 

Lentiviral shRNA vectors, targeting CypA, CypB, the type II isoform of inosine 

monophosphate dehydrogenase (IMPDH2) or non-targeted control lentivirus were 

produced in 293T cells as described previously (19, 20).  

Caco2 cells were transduced with lentiviral vectors in order to generate stable 

gene knockdown cells. Transduced cells were subsequently selected with 5 μg/ml 

puromycin (Sigma). After pilot study, the shRNA vectors exerting optimal gene 

knockdown were selected. Knockdown and control Caco2 cells were incubated with 

rotavirus as described in the foregoing. 

 

2.7. Western blot assay 

Cell lysates were subjected to SDS-PAGE, and proteins were transferred to PVDF 

membrane (Immobilon-FL). IMPDH2 (1:1000, rabbit polyclonal; Abcam), CypA 

(1:5000, rabbit polyclonal; Abcam), CypB (1:7500, rabbit polyclonal; Abcam) and 

SA11 rotavirus VP4 (1:1000, HS-2, mouse monoclonal; provided by professor Harry 

Greenberg, Stanford University School of Medicine, USA) were detected by Western 

analysis and Detection of β-actin served as loading control (1:1000, mouse 

monoclonal; Santa Cruz). The intensity of the immunoreactive bands of blotted 

protein was quantified by the Odyssey V3.0 software.  

 

2.8. MTT assay 

Caco2 cells were seeded 1 x 104 cells per well of a 96-well plate and viable cells 

were detected at indicated time points through adding 10 μl 5 mg/ml MTT per well, 3 

h incubation at 37⁰C and replacement of the medium by 100 μl dimethyl sulfoxide 

(DMSO) (Sigma). Absorbance (490 nm) was analyzed. The effects of 

immunosuppressants on host cell viability were determined by MTT assay (Figure 

S1).  
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2.9. Serial passaging of rotavirus with MPA treatment 

Caco2 cells were infected with SA11 strain rotavirus in three wells of 24-well plate in 

the presence of MPA at concentration of 0.5 µg/mL (two wells) or control (one well). 

One of infected cultures with MPA treatment and control were analyzed viral RNA by 

qRT-PCR for evaluating antiviral effect of MPA 48 h post-incubation. Another infected 

culture with MPA treatment were frozen, thawed once, and centrifuged. The 

supernatant containing passaged virus were stored at -80⁰C. Virus was serially 

passaged by using 1 aliquot of viral stock from the preceding passage to infect fresh 

Caco2 cells.  

 

2.10. IC50 and CC50 calculation  

50% inhibition concentration (IC50) value and 50% cytotoxic (CC50) were calculated 

based on model Y=Bottom + (Top-Bottom)/(1+10^((LogIC50-X)*HillSlope)) by using 

GraphPad Prism 5 software (GraphPad Prism 5; GraphPad Software Inc., La Jolla, 

CA).  

 

2.11. Study approval 

Human intestinal tissues were obtained during surgical resection. The volunteers or 

patients agreed to participate by written informed consent, and the study was 

approved by the Medical Ethical Committee of the Erasmus Medical Center (Medisch 

Ethische Toetsings Commissie Erasmus MC). 

 

2.12. Statistics  

All numerical results are reported as Mean ± SEM. The statistical significance of 

differences between means was assessed with the Mann-Whitney test (GraphPad 

Prism 5; GraphPad Software Inc., La Jolla, CA). The threshold for statistical 

significance was defined as P≤0.05.  

 

3. Results  

3.1. Glucocorticosteroids and FK506 did not affect rotavirus replication  
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As the first generation of immunosuppressants, Pred and its close analogue Dex 

remain widely used in organ transplantation recipients to prevent graft rejection (21). 

To examine their possible effects on rotavirus, the human intestinal Caco2 cell line 

was infected with SA11 rotavirus and treated with Pred or Dex for 48 h. As shown in 

Figure 1, Pred and Dex had no significant effect on rotavirus replication.  

We next tested FK506, a calcineurin inhibitor, which inhibits calcineurin by binding 

to FK506-binding protein (FKBP) (22). Similar to steroids, FK506 had no significant 

effect on rotavirus infection in Caco2 cell line (Figure 2). 

 

 

Figure 1. Effect of steroids on SA11 rotavirus in Caco2 cells. Dex (A) and Pred (B) do not 
influence SA11 rotavirus replication in Caco2 cells (48 h, n = 4-8, means ± SEM, Mann-
Whitney test). The rotavirus RNA was quantified by qRT-PCR and normalized to reference 
gene GAPDH. 

 

Figure 2. Effect of FK506 on SA11 rotavirus in Caco2 cells. FK506 (48 h treatment) does not 
affect SA11 rotavirus replication in Caco2 cells. The data represent medians and SEM from 
three independent experiments in triplicates. The rotavirus RNA were quantified by qRT-PCR 
and normalized to reference gene GAPDH. 
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3.2. The cellular targets of CsA, CypA inhibits but CypB promotes rotavirus 

replication 

CsA is another type of calcineurin inhibitor, which binds to the cytosolic proteins 

cyclophilin A and B to inhibit calcineurin and, consequently, T cell proliferation (23). 

Treatment of SA11 rotavirus infected Caco2 cells with 1, 5, 10 μg/ml of CsA resulted 

in moderate inhibition of rotavirus replication without a clear dose dependence. 

Significant inhibition was only observed at 5 μg/ml, resulting in a 58 ± 9% (n = 7; P < 

0.05) reduction of viral RNA (Figure 3A). 

The variability of rotavirus response to CsA inspired us to gain further its 

mechanistic insights. In an effort to characterize these, Caco2 cells were transduced 

with integrating lentiviral vectors expressing both shRNA and puromycin gene to 

silence CypA and CypB, the cellular targets of CsA. After puromycin selection, the 

effects of gene knockdown were quantified by western blot. Both of the shRNA 

clones targeting CypA (Figure 3B) and CypB (Figure 3D) showed potent gene 

knockdown. Caco2 cells with CypA and CypB knockdown or scrambled shRNA (as a 

control) were inoculated with SA11 rotavirus. The viral genomic RNA was quantified 

by qRT-PCR assay 24 h post inoculation. Surprisingly, silencing of CypA led to 7.35 

± 2.38-fold (n = 8; P < 0.001) increase of rotavirus RNA (Figure 3C). In contrast, 

silencing of CypB resulted in 63 ± 15% (n = 4; P < 0.05) inhibition of viral genomic 

RNA (Figure 3E). Interestingly, the expression of CypA or CypB critically regulates 

the responsiveness of rotavirus to CsA treatment (Figure 3F). Taken together, the 

cellular targets of CsA, CypA and CypB have opposing effects on rotavirus infection, 

which together determine the responsiveness to CsA.  
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Figure 3. CypA inhibits, and CypB promotes rotavirus replication, which tightly regulates 
responsiveness of rotavirus to CsA treatment. (A) CsA moderately inhibits rotavirus 
replication in Caco2 cells without a clear dose dependence (24 h, n = 7, means ± SEM, **P < 
0.01, Mann-Whitney test). (B) Western blot analysis revealed potent knockdown of CypA in 
Caco2 cells. Silencing of CypA remarkably promoted rotavirus replication (n = 10, means ± 
SEM, ***P < 0.001, Mann-Whitney test). Viral genomic RNA was quantified by qRT-PCR. (C) 
Silence of CypA significantly increased the level of rotavirus protein VP4 (n = 4, means ± 
SEM, **P < 0.01, Mann-Whitney test). (D) Western blot analysis indicates potent knockdown 
of CypB in Caco2 cells. Silencing of CypB potently inhibited rotavirus replication in Caco2 
cells (n = 4, means ± SEM, *P < 0.05, Mann-Whitney test). Viral genomic RNA was 
quantified by qRT-PCR. (E) Silence of CypB significantly decreased the level of rotavirus 
protein VP4 (n = 4, means ± SEM, **P < 0.01, Mann-Whitney test). (F) The expression of 
CypA or CypB critically regulates the responsiveness of rotavirus to CsA treatment (n = 3, 
means ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001, Mann-Whitney test). 
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3.3. MPA potently inhibited the multiplication of SA11 and patient-derived rotavirus 

strains in both cell line and organoids models 

MPA and its prodrug, mycophenolate mofetil (MMF), are widely used in solid organ 

transplantation and are often administrated in combination with other 

immunosuppressive agents (24). SA11 rotavirus infected Caco2 cells were incubated 

with different concentrations of MPA (0, 0.1, 0.3, 0.5, 1, 5, 10, 20 and 50 μg/ml), 

indicating that MPA could potently inhibit rotavirus replication (Figure 4A). 50% 

inhibition concentration (IC50) value and 50% cytotoxic (CC50) were calculated 

based on model Y=Bottom + (Top-Bottom)/(1+10^((LogIC50-X)*HillSlope)) by using 

GraphPad Prism 5 software. IC50 value of MPA against SA11 rotavirus was 0.885 

μM (Figure 4A), CC50 of MPA to Caco2 cells was 438.07 μM (Figure S2A) and 

selectivity index (SI, CC50/IC50) was 495.05. Western blot analysis also indicated 

that treatment with 1 and 10 μg/ml of MPA (24 and 48 h) potently inhibited rotavirus 

infection (Figure 4B). To further validate these effects in untransformed cultures more 

close resembling the physiological situation, we employed a 3D culture model of 

human primary intestinal organoids infected with SA11 rotavirus (Figure 4C). 

Treatment of organoids for 24 h with 1 and 10 μg/ml of MPA reduced cellular viral 

RNA by 40 ± 6% (n = 5; P < 0.001) and 63 ± 3% (n = 5; P < 0.001), respectively 

(Figure 4D). The Consistently, MPA also significantly inhibited virus production by 

organoids (Figure 4E), and the viral titer was determined by standard curve approach 

that was described previously (10). 

Next, we examined whether MPA could also inhibit the infection of patient-derived 

rotavirus strains in these two models. Hereto, Caco2 cells or human intestinal 

organoids were incubated with stool samples from five rotavirus-infected patients 

(Table S3). Treatment of infected Caco2 cells with 1 or10 μg/ml of MPA for 24 h 

profoundly inhibited virus replication in all five instances (Figure 4F). The IC50 value 

and selectivity index of MPA against patient derived rotavirus in Caco2 cells are 

0.583 μM (Figure S2B) and 751.41, respectively. This inhibitory effect was further 

confirmed in the organoid model, although the level of inhibition attained was smaller 

than for Caco2 cells (Figure 4G), since the 3D organoids system is a more stringent 

model as we have described previously (10). Thus, we have demonstrated that MPA 

could effectively inhibit infection by the SA11 and patient-derived rotavirus stains in 

both a cell line and in the organoid model. 



Chapter 4 

83 | P a g e  

 

 

Figure 4. MPA effectively inhibits the replication of SA11 and patient-derived rotavirus 
strains in both Caco2 cell line and organoid models. (A) MPA potently inhibits SA11 rotavirus 
replication in Caco2 cells (24 h, n = 3-12, means ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001, 
Mann-Whitney test). Viral genomic RNA was quantified by qRT-PCR. IC50 of MPA against 
SA11 rotavirus in Caco2 cells was calculated by using GraphPad Prism 5 software. (B) 
Western blot analysis indicates potent inhibitory effect of 1 µg/mL and 10 µg/mL of MPA 
against rotavirus infection. (C) Morphology of human small intestinal organoid on day 4 post 
embedding in Matrigel, which shows clear crypt domain and villus domain. (D) MPA 
significantly inhibits SA11 rotavirus genomic RNA in organoids (24 h, n = 4-5, means ± SEM, 
*P < 0.001, Mann-Whitney test). (E) MPA significantly inhibits SA11 rotavirus production in 
organoids (24 h, n = 4-5, means ± SEM, *P < 0.05, **P < 0.01, Mann-Whitney test). (F) MPA 
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inhibits patient-derived rotavirus replication in Caco2 cells. (G) MPA inhibits patient-derived 
rotavirus replication in human primary intestinal organoids. 

 

3.4. MPA, an IMPDH inhibitor, inhibits rotavirus replication through depletion of the 

cellular guanosine nucleotide pool 

An important mechanism of MPA to inhibit T cell proliferation is to deplete the 

guanine nucleotides (GTP and dGTP) pools by targeting IMPDH enzymes, in 

particular IMPDH2, which catalyze the biosynthesis of GTP/dGTP (25). To 

understand whether it exerts a similar mode-of-action against rotavirus infection, we 

first used an RNAi-based loss-of-function assay to study the role of IMPDH2. Caco2 

cells were transduced with integrating lentiviral vectors expressing a shRNA targeting 

IMPDH2 and puromycin resistance gene. The shRNA clone with the highest 

knockdown of IMPDH2 was selected (Figure 5A). Silencing of IMPDH2 resulted in 60 

± 9% (n = 6; P < 0.01) inhibition of rotavirus genomic RNA (Figure 5B). To further 

verify the effect of IMPDH2 on rotavirus, IMPDH2 was overexpressed by transducing 

an integrating lentiviral vector expressing both GFP and IMPDH2 in Caco2 cells, and 

the expression of the IMPDH2-GFP fusion protein was detected by flow cytometric 

analysis of green fluorescence (Figure 5C). Consistently, forced expression of 

IMPDH2 increased viral genomic RNA by 3.62 ± 0.93-fold (n = 7; P < .05) (Figure 5D). 

To further explore the potential of targeting IMPDH enzymes, we have developed a 

panel of new IMPDH inhibitors. 22 out of 23 tested compounds showed significant 

inhibitory effects against rotavirus (Figure 5E).  

To further validate whether the anti-rotavirus effect of MPA is via depleting 

guanosine nucleotides pool, exogenous guanosine (100 μg/ml) was supplemented. 

Indeed, supplementation of guanosine almost completely abolished the anti-rotavirus 

effects of MPA in both Caco2 (Figure 5F) and human intestinal organoids (Figure 5G) 

models. In addition, supplementation of exogenous guanosine also remarkably 

restored the inhibitory effect of MPA on rotavirus production in the organoids model 

(Figure S3). Taken together, these data indicate that MPA exerts anti-rotavirus effect 

by targeting IMPDH enzymes to deplete the cellular nucleotide pool. 
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Figure 5. Inhibition of MPA on rotavirus is via depletion of cellular guanosine nucleotide pool 
by targeting IMPDH enzyme. (A) Western blot analysis shows knockdown of IMPDH2 in 
Caco2 cells. (B) Knockdown of IMPDH2 significantly inhibits SA11 rotavirus replication in 
Caco2 cells (n = 6, means ± SEM, **P < 0.01, Mann-Whitney test). (C) Expression of the 
IMPDH2-GFP fusion protein in LV-IMPDH2 transduced Caco2 cells could be detected by 
flow cytometric analysis of green fluorescence. (D) Over-expression of IMPDH2 facilitates 
SA11 rotavirus replication in Caco2 cells (n = 7, means ± SEM, *P < 0.05, Mann-Whitney 
test). (E) 22 out of 23 tested IMPDH inhibitors show significant inhibitory effects against 
rotavirus (24 h, n = 3, means ± SEM, *P < 0.05, Mann-Whitney test) (F) Supplementation of 
exogenous guanosine attenuates the anti-rotavirus effect of MPA in either Caco2 cells (24 h, 
n = 8-12, means ± SEM, ***P < 0.001, Mann-Whitney test) or (G) in the human primary 
intestinal organoids (24 h, n = 4-9, means ± SEM, **P < 0.01, ***P < 0.001, Mann-Whitney 
test). 
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3.5. MPA has a high barrier to drug resistance development 

For optimal antiviral efficacy, a medication should display a high barrier to resistance 

development, since viruses are prone to mutagenesis and thus drug resistance easily 

emerges. To characterize MPA in this respect, we employed a well-established multi-

passaging experiment in which SA11 rotavirus was constantly kept under selection 

pressure by exposure to MPA. Interestingly, MPA retained its anti-rotavirus activity 

even after 30 passages (Figure 6A). Furthermore, the viruses of passage 0, 5, 10, 15, 

20, 25 and 30 remain sensitive and dose-dependent in responding to MPA treatment 

(0.3, 0.5, 1, 5 and 10 μg/ml), suggesting that MPA has a high barrier to the 

development of drug resistance (Figure 6B). 

 

 

Figure 6. MPA has a high barrier to drug resistance development. (A) MPA retains its anti-
rotavirus activity even with continuous treatment for 30 passages. (B) The viruses of passage 
0, 5, 10, 15, 20, 25 and 30 remain sensitive and dose-dependent in responding to MPA 
treatment (0.3, 0.5, 1, 5 and 10 μg/ml). 

 

4. Discussion  

Rotavirus has been recently recognized as an emerging cause of complications in 

organ transplantation patients, which was generally thought to be associated with the 

use of immunosuppressants (5, 26). However, apart from clinically effective in 

preventing graft reaction, immunosuppressants could also directly affect viral 

infection (7). By profiling different types of immunosuppressants, this study identified 

MPA as a potent inhibitor of rotavirus infection. 
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To dissect such direct effects of immunosuppressants on viruses, in vitro models 

that do not contain immune cells are useful, as they avoid troublesome interpretation 

as a consequence of diminished anti-viral immunity per se. Since rotavirus infects the 

intestinal epithelium, 2D culture systems of intestinal carcinoma cell lines are widely 

used to study rotavirus infection. Although these are convenient and valid model 

systems, they do not capture the dynamics and architectures of the intestinal 

epithelium. Thus, we have recently developed 3D culture of human primary intestinal 

organoids for modeling rotavirus infection (10), to circumvent some intrinsic 

limitations of the classical models (11). Of note, primary organoids represent more 

stringent models and thus are less sensitive to antivirals compared to cell line 

systems (10), and thus can serve as a valuable tool for validation of results obtained 

from conventional models. Secondly, only a limited number of well-adapted 

laboratory rotavirus strains are used for experimental research, which clearly do not 

fully recapitulate the diversity of the over 110,000 strains that are circulating over the 

world (17). Another strength of the present study is the use of both laboratory and 

patient-derived strains. Hence, we feel our setup appropriate for characterizing the 

direct effects of immunosuppressive medication on rotavirus infection.  

The debate on the possible differential impact of immunosuppressants on viral 

infection post-transplantation was sparked by the observation of a direct antiviral 

effect of CsA in HCV cell culture models (27). Further mechanistic studies revealed 

that CsA acts via inhibition of cyclophilins, including CypA and CypB, which are 

required for efficient replication of HCV (28, 29). In contrast, we recently have 

demonstrated that CsA can promote HEV replication, as basal CypA and CypB are 

suppressing HEV (8). Although previous studies have reported anti-rotavirus effect of 

CsA (9, 30), we found only moderate inhibitory effects in Caco2 cells and no clear 

effect in the intestinal organoid model (Figure S4). Interestingly, we found opposing 

effects of CypA and CypB on rotavirus, inhibiting and promoting infection respectively. 

In our model system, as in many other cell types examined (31), CypA and CypB are 

concurrently and abundantly expressed, which may explain the moderate effect of 

CsA on rotavirus infection. More interestingly, the expression levels of CypA and 

CypB tightly regulate the responsiveness to CsA (Figure 3F). Gene silencing of CypA 

facilitated rotavirus infection but resulted in better response to CsA. In contrast, 

silencing of CypB inhibited rotavirus but led to further enhancement by CsA treatment 

(Figure 3F). If translating these results into clinical practice, it will be critical to first 
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determine the expression levels of CypA and CypB in the intestinal tissue of the 

patients, before applying CsA for these rotavirus infected organ recipients.  

MPA has also been reported to have a broad antiviral activity against including 

dengue virus (32), West Nile virus (33), yellow fever virus (34) Chikungunya virus 

(35), HEV (8) and HCV (33, 36, 37), although studies also reported its pro-viral effect 

for hepatitis B virus (38, 39). In the present study, we have demonstrated that 

clinically achievable concentrations of MPA could profoundly inhibit the infection of 

both laboratory and patient-derived rotavirus stains in Caco2 cells. These inhibitory 

effects on both virus replication and production were further confirmed in the 

organoid model. Importantly, we found a high barrier to drug resistance development, 

which potentially enables a long-term treatment of MPA for rotavirus infected organ 

recipients without big concerns with respect to the emergence of innate resistance in 

viral strains.  

As an uncompetitive inhibitor of the IMPDH enzymes, MPA preferentially binds to 

the IMPDH2 isoform to suppress purine nucleotide synthesis, resulting in depletion of 

intracellular guanosine nucleotide pools (36). This is thought to be the general 

mechanism of immunosuppressive and antiviral actions of MPA (7), although there 

are exceptions, such as the anti-HCV effect that is largely independent of nucleotide 

depletion (7). Using gain- and loss-of-function assays, we have demonstrated that 

IMPDH2 plays an important role in supporting rotavirus infection. Targeting IMPDH 

by MPA or a panel of other IMPDH inhibitors have resulted in potent anti-rotavirus 

effects. Consistently, supplementation of exogenous guanosine could almost 

completely abrogate the anti-rotavirus activity of MPA. Thus, the anti-rotavirus action 

of MPA occurs via the classical cascade of targeting IMPDH enzymes to deplete 

nucleotides.  

In summary, by profiling different immunosuppressants, we have found that the 

responsiveness of rotavirus to CsA treatment is largely determined by the relative 

expression levels of its cellular targets, CypA and CypB. Importantly, we have 

identified MPA as a potent inhibitor of rotavirus infection with a high barrier to 

resistance development. It acts via the inhibition of the IMPDH enzymes to deplete 

cellular nucleotide to restrict rotavirus infection. Thus, understanding the distinct 

effects and their mode-of-actions of different immunosuppressants on rotavirus 

infection bears important implications for transplant clinicians to design optimal 

protocols of immunosuppression for infected organ recipients. 
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Supplementary Figures 

 

Figure S1. Effect of immunosuppressants on host cell viability determined by MTT assays. 
(A) Effect of CsA on viability of Caco2 cells (24 h). (B) Effect of MPA on viability of Caco2 
cells (24 h). 

 

 

Figure S2. 50% cytotoxic (CC50) of MPA against Caco2 cells and 50% inhibition 
concentration (IC50) of MPA against patient-derived rotavirus in Caco2 cells. (A) CC50 of MPA 
against Caco2 cells. Caco2 cells were incubated with indicated doses of MPA (0, 0.001, 0.01, 
0.1, 0.3, 0.5, 1, 5, 10, 20, 50, 100, 1000, 5000 and 10000 μg/mL) for 24 h, and effect of MPA 
on host cell viability determined by MTT assay. (B) IC50 of MPA against patient-derived 
rotavirus in Caco2 cells. Five patient rotavirus isolates infected Caco2 cells were incubated 
with indicated doses of MPA (0, 0.001, 0.01, 0.1, 1 and 10 μg/mL) for 24 h, and viral RNA 
was quantified by qRT-PCR. 
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Figure S3. Supplementation of exogenous guanosine restores anti-rotavirus effects of MPA 
in the organoids. Rotavirus infected human primary intestinal organoids were treated with 
MPA (10 μg/mL), guanosine (100 μg/mL) and both MPA and guanosine (10 μg/mL and 100 
μg/mL, respectively). Rotavirus genome copies were determined by qRT-PCR referring to a 
plasmid template using a standard curve calculation method described previously (1) (n = 4, 
means ± SEM, *P< 0.05, Mann-Whitney test).  

 

 

Figure S4. Effect of CsA on SA11 rotavirus replication and production in organoids. CsA 
dose not influence SA11 rotavirus replication (A) (n = 4-10, means ± SEM, Mann-Whitney 
test) and rotavirus particles production (B) (n = 4-10, means ± SEM, Mann-Whitney test) in 
human primary intestinal organoids.  
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Abstract 

Rotavirus has emerged as an important cause of complications in organ 

transplantation recipients, and might be associated with inflammatory bowel disease 

(IBD). 6-thioguanine (6-TG) has been used as an immunosuppressive drug for organ 

recipients and treatment of IBD in the clinic. 6-TG has been reported to exert antiviral 

effects on particular viruses, but its effect on rotavirus infection remains unclear. To 

investigate the effects and mode-of-action of 6-TG on rotavirus infection. Caco2 cell 

line, 3D model of human primary intestinal organoids, laboratory rotavirus strain 

(SA11) and patient-derived rotavirus isolates were used. 6-TG potently inhibits 

rotavirus RNA replication and VP4 protein synthesis in Caco2 cell model. This effect 

was further confirmed in primary organoids model with both laboratory and patient-

derived isolates. Importantly, continuous treatment with 6-TG for 20 passages did not 

attenuate its antiviral potency, indicating a high barrier to drug resistance 

development. Mechanistically, we find that Rac1, the cellular target of 6-TG, is 

essential in supporting rotavirus infection that gene knockdown or knockout of Rac1 

significantly inhibited its infection. We further demonstrated that 6-TG can effectively 

inhibit the active form of Rac1 (GTP-Rac1). Consistently, ectopic over-expression of 

GTP-Rac1 facilitates but an inactive Rac1 (N17) or a specific Rac1 inhibitor 

(NSC23766) inhibits rotavirus infection. We have identified 6-TG as a potent inhibitor 

of rotavirus infection via the inhibition of Rac1 activation. Thus for transplantation 

patients or IBD patients infected or at risk of rotavirus infection, the choice of 6-TG as 

a treatment appears rational.  
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Introduction 

Rotavirus, a member of family Reoviridae, is a double stranded RNA virus mainly 

infecting infants younger than 5 years old, resulting in severe gastroenteritis 

disorders. This virus causes 114 million diarrhea episodes, 2.4 million 

hospitalizations, and an estimated half million deaths annually (1). Although rotavirus 

infection mainly occurs in developing countries, it has been reported to result in over 

200 deaths and more than 87,000 hospital admissions in infants in European Union 

(2). Besides young children, organ transplantation patients were found to be 

susceptible to rotavirus infection irrespective to ages, which caused long-term 

diarrhea even death due to graft failure (3). Nowadays, two licensed rotavirus 

vaccines including RotaTeq (Merck and Co, PA, USA) and Rotarix (GSK Biologicals, 

Rixensart, Belgium) have been confirmed to be useful to reduce rotavirus epidemic 

(4). But for most middle-income and low-income countries, the protective 

effectiveness of vaccines is still suboptimal (5). No specific antiviral medicines are 

currently available to treat rotavirus infection, except for supportive cares including 

rehydration and maintenance of fluid and electrolyte balance (6). Hereto, antiviral 

therapy represents an important complement to combat rotavirus infection that 

cannot be substituted by vaccines. For those resource-limited regions, it is more 

accessible and cost-effective to identify effective treatment from the existing 

approved medications. 

6-thioguanine (6-TG) is a thio analogue of the naturally occurring purine base 

quinine, and it has been used in the clinic since the early 1950s (7). 6-TG was initially 

developed to treat cancer; whereas currently it is widely used as an 

immunosuppressive agent in organ transplantations and as treatment for acute 

lymphoblastic leukemia in children and for rheumatic diseases (8). In particular, 6-TG 

is more often used to treat inflammatory bowel disease (IBD) (9). IBD including 

Crohn’s disease (CD), ulcerative colitis (UC) and indeterminate colitis (IC) represents 

a heavy burden in western countries (10). Although the causes of exacerbations of 

IBD remain poorly characterized, gastrointestinal infections including rotavirus might 

induce flares in IBD (11).  

Upon entry into the host, 6-TG is metabolized into 6-thioguanosine 

monophosphate (6-TGMP), followed by being metabolized into 6-thioguanosine 

diphosphate (6-TGDP), and subsequently 6-thioguanosine triphosphate (6-TGTP) 
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(12). Among these metabolites, 6-TGDP and 6-TGTP are able to competitively bind 

to Rac1 to form 6-TGNPRac1 complex to inhibit the activation of Rac1 (13). As a 

member of the Ras superfamily of Rho GTPases, Rac1 involves in various cellular 

signaling and regulates a spectrum of cellular processes including actin 

reorganization and gene transcription. The cycling between the inactive GDP-bound 

(GDP-Rac1) and active GTP-bound states (GTP-Rac1) has been implicated in 

regulating viral infections (13). Silence of the active form of Rac1 (GTP-Rac1) has 

been reported to inhibit hepatitis C virus (HCV) replication, viral protein synthesis and 

production of infectious viral particles (14). Rac1 also regulates viral entry of many 

viruses including African swine fever virus, dengue virus, adenovirus and Ebola virus 

(15). The inhibitors of Rac1, 6-TG and NSC23766, were reported to inhibit middle 

east respiratory syndrome coronavirus (16) and influenza virus (15), respectively. 

These accumulating evidence indicate that Rac1 could be an potential target for 

developing antiviral drugs against a broad spectrum of viruses.  

Given the clinical relevance of rotavirus infection in organ transplantation and IBD 

patients and the common use of 6-TG in these patient, we aim to investigate the 

effects and mechanism-of-action of 6-TG on rotavirus infection. We used rotavirus 

infection models based on the conventional 2D cell culture and 3D culture of human 

primary intestinal organoids, which are more resemble of the in vivo architecture of 

intestine. We have demonstrated that 6-TG potently inhibits the infection of both 

experimental strain and patient-derived rotavirus isolates with a high barrier to drug 

resistance development. We further dissect that the anti-rotavirus effect of 6-TG is via 

the inhibition of the activation of Rac1, an essential host factor supporting rotavirus 

infection.  

 

Materials and methods 

Viruses and reagents 

Simian rotavirus SA11 and patient-derived rotavirus isolates were prepared as 

described previously (17, 18).  

Stocks (0.1 mg/mL) of 6-TG (Sigma-Aldrich) was dissolved in alkali solution (1M 

NaOH, 50 mg/ml), and NSC23766 (Merck Millipore) was dissolved in H2O (2 mM). 

All chemicals were stored in 25 µL aliquots and frozen at -80 ºC.  
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Cells and human primary intestinal organoids culture 

Human colon cancer cell line Caco2 and human embryonic kidney cell line 293T 

(HEK 293T) cells were grown in Dulbecco's modified Eagle medium (DMEM) 

(Invitrogen-Gibco, Breda, The Netherlands) supplemented with 20% (vol/vol) heat-

inactivated fetal calve serum (FCS) (Hyclone, Lonan, Utah) and penicillin (100 

IU/mL)/streptomycin (100 mg/mL) (Invitrogen-Gibco) at 37 °C in a humidified 5% 

CO2 incubator. Rac1 knockout mouse embryonic fibroblast (MEF) cells were cultured 

in DMEM supplemented with 10% FCS, Penicillin (100 IU/mL)/streptomycin (100 

mg/mL), L-Glutamine (Gibco® by Life Technologies), non-essential amino acids 

(Gibco® by Life Technologies) and sodium-pyruvate (Gibco® by Life Technologies). 

Caco2 Cells with stable knockdown of Rac1 were generated by transduction of 

lentiviral shRNA (produced in HEK293T cells) targeting Rac1, and selected with 

puromycin (6 µg/mL) as described previously (18). The shRNA targeting sequences 

used in this work were listed in supplementary table 1.  

3D model of human intestinal organoids were generated as previously described (17). 

 

Rotavirus inoculation and drug treatments 

Inoculation of Caco2 cells and human intestinal organoids with SA11 and patient-

derived rotavirus were performed as previously described 18.  

 

Viability assay of cells or organoids 

The viability of cells or organoids was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyl-tetrazolium bromide (MTT) assay. Briefly, Caco2 cells (1x104 cells/well ) or 

organoids were seeded into a 96-well culture plate and incubated with various 

concentrations of 6-TG or NSC23766 for 48 hrs, followed by adding 500 µg/mL of 

MTT solution to each well and incubation at 37 °C for 3 hrs. Subsequently, the 

medium was removed, and replaced with 100 µL DMSO and incubated at 37 °C for 

50 min. Then, the absorbance was measured at 490 nm in an enzyme-linked 

immunosorbent assay reader (BIO-RAD).  

 

Transfection of plasmids  
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A constitutively active Rac1 (V12) and a dominant inactive Rac1 (N17) plasmids were 

prepared as previously described (19). HEK 293 cells were seeded into 6-well plates 

for Rac activation assay or 48-well plates for cell infection assay. When the 

confluence reached around 70%, the cells were washed with PBS, followed by 

adding 500 µL of Opti-MEM® reduced serum medium (Thermo Fisher Scientific) with 

2 µg Rac1 (V12) or Rac1 (N17) plasmids and 10 µg polyethylenimine (PEI) (Sigma-

Aldrich) per well of a 6-well plate, or 100 µL of Opti-MEM® reduced serum medium 

with 0.25 µg Rac1 (V12) or Rac1 (N17) plasmids and 1.25 µg PEI per well of a 48-

well plate. After 4 to 5 hrs of incubation, 2 mL or 0.5 mL of DMEM containing 10% 

FCS was added to each well of 6-well plate or 48-well plate. After 24 hrs transfection, 

cells were infected with rotavirus for 48 hrs, following by being performed Rac 

activation assay or qRT-PCR. 

 

Quantitative real-time PCR (qRT-PCR) 

Total cellular RNA was isolated using a NucleoSpin® RNA kit (MACHEREY-NAGEL, 

Düren, Germany) following the manufacturer’s protocol, and quantified with a 

Nanodrop ND-1000 (Wilmington, DE, USA). cDNA was synthesized using the 

reverse transcription system from TAKARA according to manufacturer’s instructions 

(TAKARA BIO INC). The resulting cDNA was diluted 1:10, and 2 µL of the diluted 

cDNA was used for qRT-PCR with primers listed in Supplementary Table 1. All qRT-

PCR experiments were performed by SYBR-Green-based (Applied Biosystems 

SYBR Green PCR Master Mix; Thermo Fisher Scientific Life Science) real-time PCR 

with the StepOnePlus System (Thermo Fisher Scientific Life Sciences). The 

expression of target mRNAs was normalized to the glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) mRNA. Gene expression analysis was performed by the 

ΔΔCT method (17, 18).  

 

Rac activation assay 

The levels of Rac1-bound GTP were detected using Rac interactive binding domain 

of PAK (aa56-272) as described previously (20). In brief, GST-PAKcrib protein was 

pre-coupled to glutathione-Sepharose beads (Sigma-Aldrich) for 45 min at 4 °C. 

Caco2 cells treated with various concentrations of 6-TG or NSC23766 (48 hrs, 

seeded in 6-well-plate) were lysed for 10 min in lysis buffer (50 mM Tris, pH 7.4, 10% 
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glycerol, 200mM NaCl, 1% NP-40, 2mM MgCl2, 2 mM sodium orthovanadate, and 

protease inhibitors). Cell lysates were incubated with pre-coupled beads for 45 min. 

Then, agarose beads were washed 3 times with 1x lysis buffer, followed by boiling in 

Laemmli buffer, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE, 15%) analysis.  

 

Western blotting 

Cell lysates were subjected to SDS-PAGE, and proteins were transferred to PVDF 

membrane (Immobilon-FL). Rac1 monoclonal antibody (1:1000, rabbit; cell signaling), 

SA11 rotavirus VP4 (1:1000, HS-2, a mouse monoclonal antibody; provided by 

professor Harry Greenberg, Stanford University School of Medicine, USA) were 

detected by western blot analysis and detection of β-actin served as loading control 

(1:1000, mouse monoclonal; Santa Cruz).  

 

Serial passaging of rotavirus with 6-TG treatment  

To investigate whether rotavirus can develop resistant to 6-TG treatment, viruses 

were passaged in Caco2 cells in the absence of drug (as control) or in the presence 

of gradually increasing levels of the drug (1000 ng/mL of 6-TG for passage 1-10 and 

2000 ng/mL of 6-TG for passage 11-20). In brief, Caco2 cells in 24-well plate were 

inoculated 200 µL virus at 37°C for 1 hr, followed by adding 6-TG or without drug (as 

control). After 48 hrs, both cells and supernatant were harvested, followed by being 

frozen, thawed once, and centrifuged. The supernatant containing passaged viruses 

were stored at -80°C until used for the next passage. Viruses were serially passaged 

by using 1 aliquot of viral stock from the preceding passage to infect fresh Caco2 

cells. Effect of each passage of virus (same titer) was quantified by qRT-PCR. After 

harvesting all 20 passages of virus (control and 6-TG treated), the effect of 6-TG on 

each passage of virus was determined by qRT-PCR. 

 

IC50 and CC50 calculation  

IC50 and CC50 calculation were described as previously (18).  

 

Statistics 
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Data are presented as means, and statistical comparison between different groups 

was performed by Mann-Whitney test using GraphPad Prism 5. Error bars represent 

the SEM, and P value <0.05 was considered statistically significant.  

 

Results 

6-TG potently inhibits rotavirus 

To test the effect of 6-TG on rotavirus infection, we treated SA11 rotavirus infected 

Caco2 cells with various concentrations (0.001 – 10000 ng/mL) of 6-TG for 48 hrs. 

This resulted in significant reduction of rotavirus RNA in a dose-dependent manner 

(Figure 1A, n = 6-17, *P<0.05, ***P<0.001). The IC50 value of 6-TG against SA11 

rotavirus was 3.0 x10-4 nM (Figure S2A), CC50 of 6-TG to Caco2 cells was 9847.6 nM 

(Figure S3A) and selectivity index (SI, CC50/IC50) was 3.3 x 107. It was further 

confirmed that 6-TG vigorously inhibited rotavirus VP4 protein in a dose-dependent 

manner (Figure 1B). The effect of this drug was further validated in human primary 

intestinal organoids, which contain villus domain and crypt domain (Figure 1C), and 

have been considered to be more resemble the in vivo architecture of intestine (21). 

6-TG significantly inhibited SA11 rotavirus replication and virus production in these 

organoids (Figure 1D,E n = 6, *P<0.05, **P<0.01). This was further validated in five 

patient-derived rotavirus isolates by inoculation of Caco2 cells or human intestinal 

organoids with stool samples from the rotavirus-infected patient (Supplementary 

Table S2). Treatment with 100 ng/mL 6-TG inhibited patient-derived isolates in both 

Caco2 cells (Figure 1F) and human intestinal organoids (Figure 1G). Thus, we have 

demonstrated that 6-TG is a potent antiviral drug against rotavirus.  
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Figure 1. 6-TG potently inhibits rotavirus infection. (A) Treatment with 6-TG (48 hrs) potently 
inhibited viral genomic RNA in SA11 rotavirus infected Caco2 cells in a dose-dependent 
manner (n = 6-17, means ± SEM, *P < 0.05, ***P < 0.001, Mann-Whitney test). (B) Treatment 
with 6-TG (48 hrs) potently inhibited viral VP4 protein in SA11 rotavirus infected Caco2 cells 
in a dose-dependent manner. (C) The morphology of human primary small intestinal 
organoids with clear villus domain and crypt domain. (D) Treatment with 6-TG (48 hrs) 
significantly inhibited genomic RNA in SA11 rotavirus infected human intestinal organoids (n 
= 6, means ± SEM, *P < 0.05, Mann-Whitney test). (E) Treatment with 6-TG (48 hrs) 
significantly inhibited viral production in SA11 rotavirus infected human intestinal organoids 
(n = 6, means ± SEM, **P < 0.01, Mann-Whitney test). (F) Treatment with 100 ng/mL of 6-TG 
(48 hrs) inhibited viral RNA of patient-derived rotavirus isolates in Caco2 cells. (G) Treatment 
with 100 ng/mL of 6-TG (48 hrs) inhibited viral RNA of patient-derived rotavirus isolates in 
human intestinal organoids. 
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6-TG has a high barrier of drug resistance in inhibiting rotavirus 

Rotavirus was serially passaged in the presence of escalating concentrations of 6-TG 

to assess the barrier of drug resistance development towards of 6-TG. As a control, 

wild-type virus was passaged in the absence of the drug. During initial ten passages, 

virus was exposure to 1000 ng/mL of 6-TG, while the drug concentration was 

increased to 2000 ng/mL during the course of the selection of later passages. After 

20 passages, no reduction of the antiviral effect of 6-TG was found (Figure 2). 

Therefore, it is clearly indicated that 6-TG can potently inhibit rotavirus infection and 

has a high barrier of drug resistance development.  

 

 

Figure 2. 6-TG has a high barrier to drug resistance development. 6-TG retains its anti-
rotavirus activity even with continuous exposure to 6-TG for 20 passages. 

 

Rac1, the drug target of 6-TG, sustains rotavirus infection 

We next explored the underlying mechanism-of-action of the effect of 6-TG on 

rotavirus. We investigated the role of Rac1, an important cellular target of 6-TG, in 

regulating rotavirus infection. Firstly, we performed lentiviral RNAi-mediated loss-of-

function assay to silence Rac1 gene. Two (no. 9689 and 9691) out of five RNAi 

vectors showed potent knockdown (Figure 3A). Importantly, these two RNAi vectors 

resulted in 65.0 ± 8.7% (n = 10, P < 0.001) and 61.8 ± 15.6% (n = 6, P < 0.05) 

reduction of SA11 rotavirus viral RNA, respectively (Figure 3B). To further confirm, 

we obtained Rac1 knockout mouse embryonic fibroblasts cells (MEFs), and a bona 
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fide knockout was confirmed by western blot assay (Figure 3C). Consistently, 

rotavirus infection in Rac1 knockout MEFs (-/-) is significantly less efficient (79.8 ± 

9.0%; n = 10; P < 0.001), compared with the infection in wild type MEF (lf/lf) (Figure 

3D). 

 

 

Figure 3. Rac1, the drug target of 6-TG, sustains rotavirus infection. (A) Western blot assay 
detected Rac1 in transduced Caco2 cells transduced lentiviral RNAi vectors against Rac1. (B) 
Three (No. 9687, 9689 and 9690) out of five lentiviral shRNA vectors inhibited rotavirus 
genomic RNA (n = 6-10, means ± SEM, *P < 0.05, ***P < 0.001, Mann-Whitney test). (C) 
Western blot assay confirmed knockout of Rac1 in Rac1 knockout (-/-) MEF cells. (D) SA11 
rotavirus replication was significantly attenuated in Rac1 knockout (-/-) MEF cells (n = 10, 
means ± SEM, ***P < 0.001, Mann-Whitney test). 
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The activation form of Rac1 is required for supporting rotavirus infection 

Rac1 regulates various cellular signaling mainly through the active GTP-bound form 

(GTP-Rac1) (13). NSC23766, a specific GTP-Rac1 inhibitor, was able to effectively 

inhibit GTP-Rac1 in Caco2 cells shown by a Rac activation pull-down assay (Figure 

4A, B). Importantly, treatment with 5 and 25 µM NSC23766 for 48 hrs resulted in 58.8 

± 11.6% (n = 8; P < 0.05) and 77.48 ± 6.2% (n = 10; P < 0.001) reduction of viral 

RNA, respectively (Figure 4C). The IC50 value of NSC23766 against SA11 rotavirus 

was 1.1 x10-2 µM (Figure S2B), CC50 of NSC23766 to Caco2 cells was 312.8 µM 

(Figure S3B) and SI was 2.8 x 104. The inhibitory effect of NSC23766 on rotavirus 

was further verified by western blot assay, as showing that treatment with 1, 5 and 25 

µM NSC23766 could potently inhibit rotavirus VP4 protein synthesis in Caco2 cells 

(Figure 4D). The effect of this drug was further validated in human primary intestinal 

organoids, indicating 91.1 ± 0.1% (n = 6; P < 0.05) reduction of viral RNA in the 

organoids (Figure 4E).  

To further verify, we obtained two Rac1 mutant forms including a constitutively 

Rac1 active Rac1 (V12) and a Rac1 dominant inactive Rac1 (N17) plasmid. We have 

demonstrated the successful transfection of Rac1 (V12) and Rac1 (N17) plasmids 

into cells by flow cytometry (Figure 4F). Rac1 (V12) showed higher level of GTP-

Rac1 while Rac1 (N17) showed lower level of GTP-Rac1 determined by Rac 

activation pull-down assay (Figure 4G). Importantly, Rac1 (V12) promotes rotavirus 

infection, but Rac1 (N2) inhibits rotavirus infection (Figure 4H). Taken together, these 

data have demonstrated that the active Rac1 (GTP-Rac1) has a supportive role in 

rotavirus infection.  
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Figure 4. The activation form of Rac1 is required for supporting rotavirus infection. (A) 
Schematic depicting the pull-down assay. Caco2 cells were treated with NSC23766 for 48 
hrs. (B) Activated Rac1 was precipitated using a pulldown assay and visualized by Western 
blotting with Rac1 antibody, total Rac1 and β-actin (as loading control) were detected by 
Western blotting. (C) Treatment with NSC23766 (48 hrs) potently inhibited viral genomic 
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RNA in SA11 rotavirus infected Caco2 cells in a dose-dependent manner (n = 8-10, means ± 
SEM, *P < 0.05, ***P < 0.001, Mann-Whitney test). (D) Treatment with NSC23766 (48 h) 
potently inhibited viral VP4 protein in SA11 rotavirus infected Caco2 cells in a dose-
dependent manner. (E) Treatment with NSC23766 (48 hrs) significantly inhibited viral RNA in 
SA11 rotavirus infected human intestinal organoids (n = 6, means ± SEM, *P < 0.05, Mann-
Whitney test). (F) Flow cytometric analysis of green fluorescence indicated successful 
transduction of Rac1 (V12) and Rac1 (N17) plasmids. (G) Pull-down and western blot assays 
showed higher level of GTP-Rac1 with transduction of Rac1 (V12) but lower level of GTP-
Rac1 with Rac1 (N17) plasmids. (H) Rac1 (V12) transduction facilitates but Rac1 (N17) 
inhibits rotavirus infection (n = 10, means ± SEM, *P < 0.05, Mann-Whitney test). 

 

6-TG inhibits rotavirus via suppression of Rac1 activation 

6-TG was reported to inhibit the activation of Rac1 protein in many cell types (13, 20, 

22). By the Rac activation pull-down assay (Figure 4A), we have demonstrated that 

6-TG effectively inhibits GTP-Rac1 (the active form) but not the total Rac1 level in 

Caco2 cells (Figure 5A). Functionally, we verified that 6-TG or NSC23766 has lost 

their anti-rotavirus effects in Rac1 knockdown Caco2 cells (Figure 5B and 5C). 

Similar results were observed in Rac1 knockout MEF cells (Figure 5D). Herein, we 

confirm that 6-TG inhibits rotavirus via suppression of Rac1 activation. 

 

6-TG has additive effect with IFNα, but moderate antagonistic effect with 

ribavirin on rotavirus infection 

IFNα and ribavirin are widely used general antivirals, being confirmed to potently 

inhibit rotavirus infection in vitro (17). Consistently, we again demonstrated the 

inhibitory effects of IFNα and ribavirin on rotavirus RNA (Figure 6A, E) and viral 

protein (Figure 6B, F) in a dose-dependent manner. The IC50 value of IFNα against 

SA11 rotavirus was 3.1 x10-5 IU (Figure S2C), CC50 of IFNα to Caco2 cells was 

18706 IU (Figure S3C) and SI was 6.0 x 108. The IC50 value of ribavirin against SA11 

rotavirus was 1.6 x10-4 µM (Figure S2D), CC50 of ribavirin to Caco2 cells was 30.2 

µM (Figure S3D) and SI was 1.9 x 105. Next, we assessed the combinatory antiviral 

effects of 6-TG and IFNα, as well as 6-TG and ribavirin in Caco2 cells infected with 

rotavirus of the SA11 strain. The combination of 6-TG and IFNα resulted in an 

additive antiviral effect, with a synergy volume of -2.8 µM2% (Figure 6C, D). However, 

the combination of 6-TG and ribavirin resulted in moderately synergistic antiviral 

effect, with a synergy volume of -26.02 µM2% (Figure 6G, H).  
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Figure 5. 6-TG inhibits rotavirus via suppression of Rac1 activation. (A) 6-TG inhibits GTP-
Rac1 detected by pull-down assay. Activated Rac1 was precipitated using a pulldown assay 
and visualized by Western blotting with Rac1 antibody, total Rac1 and β-actin (as loading 
control) were detected by Western blotting. (B) Anti-rotavirus effect of 6-TG (100 ng/mL) was 
attenuated in Rac1 knockdown Caco2 cells. (C) Anti-rotavirus effect of NSC23766 (25 μg 
ng/mL) was attenuated in Rac1 knockdown Caco2 cells. (D) The anti-rotavirus effect of 6-TG 
(100 ng/mL) was attenuated in Rac1 knockout (-/-) MEF cells (n = 6-8, means ± SEM, *P < 
0.05, **P < 0.01, Mann-Whitney test. 

 



Chapter 5 

115 | P a g e  

 

Figure 6. The effects of the combination of 6-TG with IFNα, or ribavirin on rotavirus infection. 
(A) Treatment with IFNα (48 hrs) potently inhibited viral genomic RNA in SA11 rotavirus 
infected Caco2 cells in a dose-dependent manner (n = 4, means ± SEM, **P < 0.01, Mann-
Whitney test). (B) Treatment with IFNα (48 hrs) potently inhibited viral VP4 protein in SA11 
rotavirus infected Caco2 cells in a dose-dependent manner. (C) Effect of the combination of 
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various concentrations of 6-TG and IFNα on rotavirus infection in Caco2 cells. (D) Synergy 
plot representing the percentage of antiviral activity above/below the expected activity for the 
6-TG-IFNα combination based on the data shown in left panel. (E) Treatment with ribavirin 
(48 hrs) potently inhibited viral genomic RNA in SA11 rotavirus infected Caco2 cells in a 
dose-dependent manner (n = 4-7, means ± SEM, *P < 0.05, **P < 0.01, Mann-Whitney test). 
(F) Treatment with ribavirin (48 hrs) potently inhibited viral VP4 protein in SA11 rotavirus 
infected Caco2 cells in a dose-dependent manner. (G) Effect of the combination of various 
concentrations of 6-TG and ribavirin on rotavirus infection in Caco2 cells. (H) Synergy plot 
representing the percentage of antiviral activity above/below the expected activity for the 6-
TG-ribavirin combination based on the data shown in left panel. 

 

Discussion 

Besides young children, accumulating evidence indicate that organ transplantation 

patients irrelevant to their ages are vulnerable to rotavirus infection (3). Rotavirus 

infection might also be one of the causative agents of IBD (9). This study has 

demonstrated the potent anti-rotavirus effects of 6-TG and dissected its underling 

mechanism-of-action. These results, highlight the potential of using 6-TG to treat or 

prevent rotavirus infection, in particular organ recipients or IBD patients who are 

infected or at risk of rotavirus infection.  

6-TG has been used in the clinic since the 1950’s (16). It has been reported to 

treat various diseases including acute lymphoblastic leukaemia (23), and IBD (12). It 

is also used as immunosuppressive drug in organ transplantation patients to prevent 

graft rejection (24). Interestingly, increasing evidence have indicated an antiviral 

effect of 6-TG. It has been reported that 6-TG can potently inhibit the papain-lie 

protease of the middle east respiratory syndrome coronavirus, which is vital for viral 

maturation and antagonizing interferon response of the host (16). It was also 

reported to inhibit viral DNA synthesis of Simian virus 40 (25). Consistently, we 

demonstrate that 6-TG is capable of vigorously inhibiting both laboratory adapted and 

patient-derived rotavirus isolates in Caco2 cells and human primary intestinal 

organoids (Figure 1). 

As a 6-thiopurine (6-TP) prodrug, 6-TG is converted into pharmacologically active 

deoxy-6-thioguanosine phosphate (also called 6-thioguanine nucleotide) and 6-

thioguanosine phosphate (6-TGNP). 6-TGNP can bind to Rac1 to form the 6-

TGNPRac1 complex to inactivate Rac1 activity (13). We confirmed that 6-TG could 

inhibit GTP-Rac1 in Caco2 cells (Figure 1A). As a major player of the Rho family of 

small GTPases, Rac1 plays a vital role in various cellular signaling pathways to 
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regulate a wide variety of cell functions including gene transcription, cell proliferation, 

apoptosis, motility, and redox signaling (26). The expression of Rac1 is ubiquitous, 

but it has two conformational states including an inactive GDP-bound form and an 

active GTP-bound form (27). It exerts biological functions mainly through activation of 

Rac1 (i.e. GTP-bound form) (27). Many viruses interfere with or employ the 

conformational states of Rac1 to regulate their infection. At early stages of African 

swine fever virus (ASFV) infection, Rac1 is activated, and inhibition of Rac1 is able to 

suppress production of this virus (28). Rac1 is found to be activated during 

intracellular mature virus (MV) of Vaccinia virus entry (29).  

Although rotavirus infection per se does not affect the activation of Rac1 (Figure 

S4), it is an important host factor in regulating its infection. We have demonstrated 

that loss-of-function of Rac1 by gene knockdown or knockout significantly impairs 

rotavirus infection. More specifically, the activation of Rac1 is required as shown by 

the opposing effects of ectopic over-expression of the active or inactive forms of 

Rac1 on rotavirus infection. This mechanistically supports the potent anti-rotavirus 

effects of the GTP-Rac1 inhibitors, 6-TG and NSC23766. Of not, NSC23766 has 

been shown to inhibit the replication of several influenza viruses including a human 

virus strain from the 2009 pandemic and the highly pathogenic avian virus strains 

(15).  

Despite the absence of approved medications for treating rotavirus, the widely 

used general antivirals including ribavirin and IFNα have been studied on rotavirus in 

experimental models (17). Here, we have evaluated the combinatory effects of 6-TG 

with IFNα or ribavirin. Consistently, we confirmed that ribavirin and IFNα could inhibit 

rotavirus replication at both RNA and protein levels (Figure 6A, B, E, F). We further 

demonstrated that 6-TG had additive effect with IFNα while moderate antagonistic 

effect with ribavirin (Figure 6C, D, G, H).  

In conclusion, this study has demonstrated that 6-TG could potently inhibit 

rotavirus infection with a high barrier to drug resistance development. We further 

identified the active form Rac1 as an important host factor supporting rotavirus 

infection. 6-TG exerts its anti-rotavirus effects via the specific inhibition of Rac1 

activation. Herein, this study provided important references for clinicians to optimize 

medications for organ recipients and IBD patients who are infected or at risk of 

rotavirus infection. These results may also help the development of new anti-rotavirus 

therapies. 
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Supplementary tables and figures 

 

Table S1. Primers and shRNA sequences used in the study 

Sequence of rotavirus primers 

 SA11 Rotavirus Human Patient Rotavirus 

Sense  TGGTTAAACGCAGGATCGGA ACCATCTACACATGACCCTC 
Anti-sense AACCTTTCCGCGTCTGGTAG CACATAACGCCCCTATAGCC 

 

Primer sequences of GAPDH 

Primers Human Mouse 

GAPDH-
F 

GTCTCCTCTGACTTCAACAGCG TTCCAGTATGACTCCACTCACGG 

GAPDH-
R 

ACCACCCTGTTGCTGTAGTAGCCAA TGAAGACACCAGTAGACTCCACGAC 

 

shRNA targeting sequences of Rac1 

No. Sequence 

9687 CCTTCTTAACATCACTGTCTT 

9688 GCTAAGGAGATTGGTGCTGTA 

9689 CGCAAACAGATGTGTTCTTAA 

9690 CGTGAAGAAGAGGAAGAGAAA 

9691 CCCTACTGTCTTTGACAATTA 
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Supplementary Figures 

 

Figure S1. Effect of 6-TG (a), NSC294002 (b), IFNα (c) and ribavirin (d) on host cell viability 
determined by MTT assays. Caco2 cells treated with all four drugs for 48 h.   
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Figure S2. 50% inhibition concentration (IC50) of 6-TG (a), NSC23766 (b), IFNα (c) and 
ribavirin (d) against patient-derived rotavirus in Caco2 cells.  
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Figure S3. 50% cytotoxic (CC50) of MPA against Caco2 cells 6-TG (a), NSC23766 (b), IFNα 
(c) and ribavirin (d) in Caco2 cells. 
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Figure S4. The effect of inactive rotavirus by UV treatment, rotavirus and mock infection (1 
and 8 h) on the expression of GTP-Rac1. (a) Western blot assay detected the expression of 
GTP-Rac1 after 1 and 8 h post-infection by inactive rotavirus (UV treatment), rotavirus and 
mock infection in Caco2 cells. (b) Quantification of the intensity of the immunoreactive bands 
of Rac1 (n = 4, means ± SEM, Mann-Whitney test) using Odyssey V 3.0 software.  
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Abstract 

Rotavirus infection is a major cause of severe dehydrating diarrhea in infants younger 

than five years old and in particular cases of immunocompromised patients 

irrespective to the age of the patients. Although vaccines have been developed, 

antiviral therapy is an important complement that cannot be substituted. Because of 

the lack of specific approved treatment, it is urgent to facilitate the cascade of further 

understanding of the infection biology, identification of druggable targets and the final 

development of effective antiviral therapies. PI3K-Akt-mTOR signaling pathway plays 

a vital role in regulating the infection course of many viruses. In this study, we have 

dissected the effects of PI3K-Akt-mTOR signaling pathway on rotavirus infection 

using both conventional cell culture models and a 3D model of human primary 

intestinal organoids. We found that PI3K-Akt-mTOR signaling is essential in 

sustaining rotavirus infection. Thus, blocking the key elements of this pathway, 

including PI3K, mTOR and 4E-BP1, has resulted in potent anti-rotavirus activity. 

Importantly, a clinically used mTOR inhibitor, rapamycin, potently inhibited both 

experimental and patient-derived rotavirus strains. This effect involves 4E-BP1 

mediated induction of autophagy, which in turn exerts anti-rotavirus effects. These 

results revealed new insights on rotavirus-host interactions and provided new 

avenues for antiviral drug development.   
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Introduction 

Rotavirus is a member of the Reoviridae family (1). As the leading cause of severe 

dehydrating diarrhea, it mainly attacks children younger than five years old, resulting 

in approximate 114 million diarrheal episodes and 453,000 infant deaths annually (2, 

3). Besides children, accumulating evidences indicate that rotavirus could also cause 

chronic infection in organ transplantation patients, irrespective to the age of the 

patients (4-6). Although two safe licensed vaccines named RotaTeq (Merck and Co., 

PA, USA) and Rotarix (GSK Biologicals, Rixensart, Belgium) are available (1), the 

implementation of these vaccines in many developing countries remains challenge 

due to high cost and logistic issues (7). Since no approved medication is available, 

the development of effective antiviral therapies is indispensable to combat this 

pathogen. 

Numerous signaling pathways play important roles in regulating virus infection 

either by supporting or defending the infection of virus (8). Phosphatidylinositol 3-

kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) axis 

takes a vital part in regulating various cellular functions and biological processes, 

including protein synthesis, cell cycle progression, cell survival, apoptosis, 

angiogenesis and drug resistance (9). In this signaling, PI3K serves as a key node, 

which is capable of monitoring panels of biological processes via phosphoryl transfer 

(10). PI3K could be activated by many types of cellular stimuli, which subsequently 

phosphorylates the inositol PIP2 to PIP3 that recruits Akt to the plasma membrane by 

binding to its N-terminal pleckstrin homology (PH) domain in which Akt gets activation 

via phosphorylation (11). As a serine/threonine kinase, phosphorylated Akt is able to 

stimulate mTOR which belongs to a member of the serine/threonine phosphatidyl 

inositol 3’ kinase-related kinase family (PIKK) (10).  

mTOR is an evolutionarily conserved Serine/Threonine kinase playing 

indispensable roles in regulating mRNA translation, autophagy machinery and cell 

proliferation (12). Furthermore, mTOR can directly activate a variety of cellular 

effectors such as p70S6 kinase (p70S6K) and eukaryotic translation initiation factor 

4E-binding protein 1 (4E-BP1) to control cell growth through integrating nutritional 

information and receptor tyrosine kinase signaling (13). For instance, mTOR controls 

capped-dependent translation of both cells and viruses via inducing phosphorylation 

of 4E-BP1 to promote the formation of a functional eukaryotic initiation factor 4F (eIF-
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4F) complex (12, 14). The eIF-4F complex comprises three subunits including a RNA 

helicase eIF4A, a cap-binding protein eIF4E and a scaffolding protein eIF4G (15). 

Most of the 4E-BPs share a canonical eIF4E-binding motif (4E-BM) of sequence 

YX4LΦ with eIF4G (where Y denotes Tyr, X denotes any amino acid, L denotes Leu, 

and Φ denotes a hydrophobic residue). But some 4E-BPs contain non-canonical 4E-

BMs connected by a linker (15-30 residues), and the motifs are not conserved and 

not required for eIF4G binding (15). Autophagy machinery, as another important 

downstream element of the mTOR signaling, is a cellular non-specific, bulk 

degradation process involved in removing damaged macromolecules and organelles 

to defend nutrient and environmental stress (16, 17), which is also involved in 

regulating virus infection (18).  

PI3K-Akt-mTOR pathway as a potential antiviral target is involved in the infection 

of a broad spectrum of viruses including lymphocytic choriomeningitis virus (LCMV) 

(19), Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (20), HIV (21) 

and human cytomegalovirus (22). In this study, we comprehensively studied the role 

of PI3K-Akt-mTOR signaling in rotavirus infection and explored the avenues of 

therapeutic targeting. Besides conventional two dimension (2D) culture based 

immortalized cells, we also employed three dimension (3D) cultures of primary 

human intestinal organoids for modeling rotavirus infection (23). These organoids can 

recapitulate most if not all aspects of in vivo tissue architecture of intestinal 

epithelium (24). We found that PI3K-Akt-mTOR pathway is crucial in sustaining 

rotavirus infection via its downstream effector 4E-BP1 and the induction of autophagy. 

Importantly, targeting this pathway by pharmacological inhibitors/FDA approved 

drugs potently inhibited rotavirus infection, providing novel therapeutic approaches 

for combating this virus. 
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Results 

Inhibition of PI3K signaling potently inhibits rotavirus. 

Since PI3K serves as a key node in the PI3K-Akt-mTOR pathway, its effect on 

rotavirus was tested. LY294002 is a potent inhibitor of PI3K. In human Caco2 cells, 

treatment with 5 μM LY294002 potently inhibited phosphor-Ser-240/244 S6 and 

phosphor-4E-BP1 (T70) but not the corresponding total proteins (as controls) (Figure 

1A and Figure S1A). Importantly, treatment with 1 and 5 μM LY294002 for 48 h 

resulted in 93.5 ± 1.7% (n = 4; P < 0.05) and 81.0 ± 6.8% (n = 4; P < 0.05) reduction 

of viral RNA, respectively (Figure 1B). LY294002 could also significantly suppress 

rotavirus RNA secretion (Figure S2B). The inhibitory effect of this compound was 

further verified by TCID50 method, demonstrating that it could remarkably inhibit the 

production of infectious viral particles (Figure 1C). Western blot assay further 

confirmed that treatment with 0.1, 1 and 5 μM LY294002 could vigorously inhibit 

rotavirus protein synthesis in Caco2 cells (Figure 1D). The effect of this drug was 

also validated in human primary intestinal organoids. Immunofluorescent staining 

showed that phosphor-Ser-240/244 S6 was potently inhibited by treatment of 5 μM 

LY294002 (Figure 1E), supporting that human intestinal organoid is also a PI3K 

signaling proficient model. Consistently, LY294002 inhibited rotavirus infection in 

organoid model. For instance, 5 μM LY294002 resulted in 86.0 ± 6.4% (n = 4; P < 

0.05) reduction of viral RNA in human intestinal organoids (Figure 1F). Thus, blocking 

PI3K by LY294002 potently inhibits rotavirus infection in both Caco2 cells and human 

intestinal organoids.  
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Figure 1. Inhibition of PI3K signaling potently inhibits rotavirus infection. (A) Western blot 
analysis of p-mTOR (S2448), t-mTOR, p-Akt (S473), p-S6 (S240/244) and p-4E-BP1 (T70) 
protein levels and the corresponding total protein levels under the treatment of indicated 
concentrations of LY294002 (48 h) in Caco2 cells. (B) Treatment with LY294002 (48 h) 
potently inhibited viral genomic RNA in SA11 rotavirus infected Caco2 cells measured by 
qRT-PCR (n = 4, mean ± SEM, *P < 0.05, Mann-Whitney test). (C) Effects of LY294002 on 
the production of infectious viral particles determined by TCID50 method. Each bar 
represents the TCID50/mL (mean ± SEM) (n = 5, *P< 0.05, **P< 0.01, Mann-Whitney test). 
(D) Treatment with LY294002 (48 h) potently inhibited viral VP4 protein in SA11 rotavirus 
infected Caco2 cells determined by western blot assay. (E) Representative confocal 
immunostainings of p-S6 (S240/244) (Green) after 48 h incubation with 0 (as control) and 5 
μM LY294002 in human intestinal organoids. Nuclei were visualized by DAPI (blue). (F) 
Treatment with LY294002 (48 h) significantly inhibited viral genomic RNA in SA11 rotavirus 
infected human intestinal organoids examined by qRT-PCR (n = 4, mean ± SEM, *P < 0.05, 
Mann-Whitney test). 
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mTOR sustains rotavirus infection and the mTOR inhibitor rapamycin inhibits 

its infection.  

mTOR is a central element of the PI3K-Akt-mTOR signaling pathway, we thus 

investigated its effect on rotavirus infection. To address this, Caco2 cells were 

transduced with integrating lentiviral vectors expressing shRNA to silence mTOR. 

One (No 8198) out of three clones showed potent knockdown based on western blot 

results (Figure 2A), which was also confirmed by qRT-PCR (Figure 2B). Caco2 cells 

with mTOR knockdown or scrambled shRNA (as control) were inoculated with SA11 

rotavirus and viral genomic RNA was quantified by qRT-PCR 48 h post inoculation. 

Silencing of mTOR led to a significant reduction of rotavirus RNA (Figure 2C), 

suggesting a supportive role of mTOR for rotavirus infection. Rapamycin is a clinically 

used mTOR inhibitor, and it was approved by FDA to treat/prevent transplant allograft 

rejection (25). Phosphorylation of Ser-2448 mTOR, Ser-240/244 S6 and 4E-BP1 

(T70) but not for the corresponding total proteins (as controls) were inhibited by 

treatment with 1, 5 and 10 nM rapamycin for 48 h in Caco2 cells (Figure 3A and 

Figure S1B), except for phosphorylation of Ser-473 Akt. mTOR/S6K inhibition by 

rapamycin was reported to trigger a negative feedback loop to activate Akt signaling 

(26), which might be the reason that rapamycin had minor inhibitory effect on 

phosphorylated Akt. Furthermore, treatment of 5 and 10 nM rapamycin significantly 

inhibited viral genomic RNA by 80.0 ± 5.5% (n = 8; P < 0.01) and 79.9 ± 5.8% (n = 9; 

P < 0.01) in Caco2 cells, respectively (Figure 3B). Rotavirus RNA secretion (Figure 

S2C) and infectious virus production (Figure 3C) were also significantly inhibited by 

treatment of rapamycin. Consistently, western blot assay indicated that rotavirus VP4 

protein synthesis was potently inhibited by rapamycin treatment (Figure 3D). In 

contrast, rapamycin lost its anti-rotavirus activity in mTOR silenced Caco2 cells 

(Figure 3E), supporting its specificity in inhibiting its biological target to exert the 

antiviral action.  

To verify the anti-rotavirus effect of rapamycin, human intestinal organoids 

infected with SA11 rotavirus were treated with 10 or 100 nM rapamycin for 48 h, 

which led to vigorous inhibition of phosphor-Ser-240/244 S6 (Figure 3F). Importantly, 

10 nM rapamycin resulted in a significant reduction (75.9 ± 5%, n = 5; P < 0.01) of 

viral RNA replication (Figure 3G). This was further validated in five patient-derived 

strains by inoculation of Caco2 cells or human intestinal organoids with stool samples 
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from rotavirus-infected patients (Table S2). Treatment with 10 nM rapamycin inhibited 

patient-derived isolates in both Caco2 cells (Figure 3H) and human intestinal 

organoids (Figure 3I). These results have demonstrated that efficient infection of 

rotavirus requires mTOR, but the infection can be effectively inhibited by rapamycin. 

 

 

Figure 2. Silence of mTOR inhibits rotavirus replication. (A) Western blot analysis of t-mTOR, 
p-S6 (S240/244), t-S6, p-4E-BP1 (T70) and t-4E-BP1 (53H11) protein in lentiviral RNAi 
against mTOR transduced Caco2 cells. (B) One (No. 8198) of three lentiviral shRNA vectors 
showed successful knockdown determined by qRT-PCR (n = 9, means ± SEM, ***P < 0.001, 
Mann-Whitney test). (C) mTOR knockdown inhibited rotavirus genomic RNA determined by 
qRT-PCR (n = 7, means ± SEM, *P < 0.05, Mann-Whitney test). 
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Figure 3. Rapamycin inhibits replication of SA11 and patient-derived rotavirus replication. (A) 
Western blot analysis of p-mTOR (S2448), t-mTOR, p-Akt (S473), t-Akt, p-S6 (S240/244), t-
S6, p-4E-BP1 (T70) and t-4E-BP1 (53H11) protein levels with the treatment of indicated 
concentrations of rapamycin in Caco2 cells. (B) Treatment with rapamycin (48 h) significantly 
inhibited SA11 rotavirus replication in Caco2 cells (n = 7-9, mean ± SEM, **P < 0.01, Mann-
Whitney test). (C) Effects of rapamycin on the production of infectious viral particles 
determined by TCID50 method. Each bar represents the TCID50/mL (mean ± SEM) (n = 5, 
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*P< 0.05, **P< 0.01, Mann-Whitney test). (D) Treatment with rapamycin (48 h) inhibited viral 
VP4 protein determined by western blot assay in Caco2 cells. (E) Anti-rotavirus effect of 
rapamycin was abolished in mTOR knockdown Caco2 cells (n = 10, mean ± SEM, *P < 0.05, 
Mann-Whitney test). (F) Representative confocal immunostainings of p-S6 (S240/244) 
(Green) after 48 h treatment with 10 and 100 nM rapamycin in human intestinal organoids. 
Nuclei were visualized by DAPI (blue). (G) Treatment with rapamycin (48 h) inhibited SA11 
rotavirus genomic RNA in human intestinal organoids determined by qRT-PCR (n = 5, mean 
± SEM, *P < 0.01, Mann-Whitney test). (H) Treatment with 10 nM rapamycin (48 h) inhibited 
patient-derived rotavirus (isolate 1-5) genomic RNA in Caco2 cells determined by qRT-PCR. 
(I) Treatment with rapamycin (48 h) inhibited patient-derived rotavirus (isolate 1-5) genomic 
RNA in human intestinal organoids determined by qRT-PCR. 

 

Dual inhibition of PI3K and mTOR inhibits rotavirus infection.  

BEZ235 is a pharmacological dual inhibitor of PI3K and mTOR. Western blot 

confirmed that this compound could potently inhibit phosphorylation of Ser2448 

mTOR, 70S6K (T389), Ser473 Akt, Ser240/244 S6 and 4E-BP1 (T70) but not for the 

corresponding total proteins (as controls) in Caco2 cells (Figure 4A and Figure S1C). 

Importantly, BEZ235 dose-dependently inhibited viral RNA (Figure 4B) and RNA 

secretion in Caco2 cells (Figure S2D). Using the TCID50 method, we have 

demonstrated that it remarkably inhibits the production of infectious viral particles 

(Figure 4C). BEZ235 was also capable of inhibiting synthesis of rotavirus VP4 protein 

(Figure 4D). This effect was also confirmed in human intestinal organoids of inhibiting 

phosphorylation of Ser240/244 S6 (Figure 4E) and rotavirus infection (Figure 4F). 

Although rotavirus infection did not directly affect the expression levels of the key 

components the PI3K-Akt-mTOR pathway (Figure S3), this pathway itself intrinsically 

sustained rotavirus infection. 

 

 



Chapter 6 

138 | P a g e  

 

Figure 4. Dual inhibition of PI3K and mTOR inhibits rotavirus infection. (A) Western blot 
assay detected p-mTOR (S2448), p-p70S6K (T389), p-Akt (S473) and p-S6 (S240/244) and 
the corresponding total proteins after 48 h incubation with indicated concentrations of 
BEZ235 in Caco2 cells. (B) Treatment with BEZ235 (48 h) significantly inhibited SA11 
rotavirus genomic RNA in dose-dependent-manner determined by qRT-PCR in Caco2 cells 
(n = 5, mean ± SEM, *P < 0.05, Mann-Whitney test). (C) Effects of BEZ235 on the production 
of infectious viral particles determined by TCID50 method. Each bar represents the 
TCID50/mL (mean ± SEM) (n = 5, *P< 0.05, **P< 0.01, Mann-Whitney test). (D) Western blot 
showed that treatment with BEZ235 (48 h) significantly inhibited SA11 rotavirus VP4 protein 
in Caco2 cells. (E) Representative confocal immunostainings of p-S6 (S240/244) (Green) 
after 48 h incubation with 0 (as a control) and 10 nM BEZ235 in human intestinal organoids. 
Nuclei were visualized by DAPI (blue). (F) Treatment with BEZ235 (48 h) significantly 
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inhibited SA11 rotavirus genomic RNA in human intestinal organoids quantified by qRT-PCR 
(n = 11, mean ± SEM, **P < 0.01, Mann-Whitney test). 

 

4E-BP1 is a downstream effector of mTOR in sustaining rotavirus infection.  

4E-BP1 is one of the important downstream elements of PI3K-Akt-mTOR signaling. 

We first studied its potential involvement by lentiviral RNAi mediated loss-of-function 

assay (Figure 5A and Figure S1D). Caco2 cells with the best knockdown of 4E-BP1 

(no 6463) resulted in 62.4 ± 6.1% (n = 5, P <0.01) reduction of SA11 rotavirus viral 

RNA 48 h post-inoculation (Figure 5B). Consistently, the anti-rotavirus effect of 

rapamycin was abolished in 4E-BP1 knockdown cells confirmed by both qRT-PCR 

assay (Figure 5C) and western blot assay (Figure 5D). To further verify, we obtained 

4E-BP1 knockout mouse embryonic fibroblasts (MEFs), and bona fide knockout was 

confirmed by western blot assay (Figure 5E). Consistently, rotavirus infection in 4E-

BP1 knockout MEFs (-/-) is significantly less efficient (75.1 ± 17.2%; n = 4; P < 0.05), 

compared with the infection in wild type MEFs (+/+) (Figure 5F). Furthermore, the 

anti-rotavirus effect of rapamycin was attenuated in 4E-BP1 knockout MEFs (Figure 

5G). Consistently, rapamycin could inhibit rotavirus replication in 4E-BP1 KO MEFs 

transfected with 4E-BP1 wild-type (4E-BP1-WT) plasmids; while this antiviral effect 

was abolished in 4E-BP1 KO MEFs transfected with 4E-BP1 plasmids having five 

mutations of the phosphorylation sites (4E-BP1-5A) (Figure 5H). Of note, the inhibitor 

of S6K did not affect rotavirus infection (Figure S4). Collectively, these data suggest 

that 4E-BP1 but not S6K is a downstream effector of the PI3K-Akt-mTOR signaling in 

sustaining rotavirus infection. 
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Figure 5. 4E-BP1 is a downstream effector of PI3K-Akt-mTOR signaling in sustaining 
rotavirus infection. (A) Western blot assay detected t-Akt and t-4E-BP1 (53H11) in lentiviral 
RNAi against 4E-BP1 transduced Caco2 cells. (B) Knockdown of 4E-BP1 significantly 
inhibited SA11 rotavirus genomic RNA quantified by qRT-PCR (n = 5, mean ± SEM, *P < 
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0.05, Mann-Whitney test). (C) Anti-rotavirus effect of rapamycin (10 nM) was abolished in 
4E-BP1 knockdown Caco2 cells (n = 5, mean ± SEM, *P < 0.05, **P < 0.01, Mann-Whitney 
test). (D) Western blot assay confirmed that anti-rotavirus effect of rapamycin (10 nM) was 
abolished in 4E-BP1 knockdown Caco2 cells. (E) Western blot indicated bona fide 
knockdown of 4E-BP1 in knockout (-/-) MEF cells. (F) SA11 rotavirus replication was potently 
restricted in 4E-BP1 knockout (-/-) MEF cells (n = 4, mean ± SEM, *P < 0.05, Mann-Whitney 
test). (G) Anti-rotavirus effect of rapamycin (10 nM) was attenuated in 4E-BP1 knockout (-/-) 
MEF cells (n = 8, mean ± SEM, *P < 0.05, Mann-Whitney test). (H) Rapamycin inhibited 
rotavirus replication in 4E-BP1 KO MEFs transfected with 4E-BP1-WT plasmids; while this 
antiviral effect was abolished in 4E-BP1 KO MEFs transfected with 4E-BP1-5A plasmids (n = 
5, mean ± SEM, *P < 0.05, Mann-Whitney test). 

 

4E-BP1 mediates rapamycin-induced autophagy that inhibits rotavirus 

infection.  

Previous studies have reported that rapamycin or 4E-BP1 may affect type I IFN 

signaling (27-29), in particular the downstream antiviral proteins including interferon 

regulatory factor 1 (IRF1) and IRF7. Furthermore, we previously have reported the 

anti-rotavirus effect of IFNα (23). We thus investigated whether these antiviral 

proteins may play a role in this setting. We found that rapamycin treatment did not 

affect the protein expression of IRF1 or IRF7 in Caco2 cells and MEFs (Figure S5A 

and B). Although the deficiency of 4E-BP1 appears to slightly increase IRF7 but not 

IRF1 protein synthesis (Figure S5B). Thus, these results indicate that these antiviral 

proteins are likely not essential in the anti-rotavirus action of the PI3K-Akt-mTOR 

signaling. 

We therefore redirected our attention to autophagy, a cellular metabolism process 

functioning in orderly degradation and recycling of cellular components, which has 

been implicated in regulating many types of virus infections (30). mTOR is the main 

inhibitor of autophagy. Rapamycin, as a specific inhibitor of mTOR, is a potent 

inducer of autophagy formation (31). We firstly confirmed that starvation (EBSS 

medium containing 1mM pepstatin A and E-64-d solution, as a positive control) 

stimulated the autophagy process in Caco2 cells (Figure 6A). Consistently, the ratio 

of LC3-II to LC3-I (hallmark of autophagy induction) was up-regulated by rapamycin 

treatment (Figure 6B and Figure S1E) or treatment with starvation (Figure 6C and 

Figure S1F). Similar to rapamycin treatment (Figure 3B and D), starvation also 

significantly inhibited rotavirus mRNA (Figure 6D) and viral protein synthesis (Figure 

6E and Figure S1G). Interestingly, induction of autophagy by rapamycin and 

starvation was confirmed to be via 4E-BP1. Because the autophagy is equally 
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increased by rapamycin treatment, in which 4E-BP1 is not phosphorylated at all in 

the mutant (Figure 6F). Consistently, the up-regulation of LC3-II/LC3-I ratio by 

rapamycin or starvation was blocked in 4E-BP1 knockout MEFs cells (-/-) (Figure 6G 

and H).  

To demonstrate the role of autophagy in rotavirus infection, we applied RNAi 

knockdown of key components of the autophagy machinery. To this aim, LC3 gene 

that is associated with the autophagosome membrane was silenced with 10 

integrating lentiviral RNAi vectors. Five (no 10177, 10178, 10180, 10182 and 10184) 

out of them showed potent knockdown (Figure 7A). Significant increase of rotavirus 

genomic RNA was found in all of the five knockdown Caco2 cell lines as quantified by 

qRT-PCR (Figure 7B). It was further confirmed that viral protein synthesis was 

increased in these five knockdown Caco2 cell lines (Figure 7C). Beclin1 plays an 

important role in localization of autophagic proteins to a pre-autophagosomal 

structure (32). Similarly, knockdown of Beclin1 also favored rotavirus infection (Figure 

7D, E and F). Of note, the three optimal knockdown (no 7865, 7866 and 7867) clones 

were found to increase rotavirus genomic RNA by 27.3 ± 11.9 (n = 11; P < 0.01), 

12.8 ± 3.0 (n = 13; P < 0.001) and 8.2 ± 2.1 (n = 17; P < 0.001) fold, respectively 

(Figure 7E). The viral protein synthesis was further confirmed to be increased in 

Beclin1 knockdown Caco2 cells (Figure 7F). Thus, we conclude that 4E-BP1 

mediates rapamycin-induced autophagy machinery in inhibiting rotavirus infection.  
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Figure 6. 4E-BP1 mediates rapamycin-induced autophagy that inhibits rotavirus infection. (A) 
Caco2 cells transduced with lentiviral particles carrying a construct of TagGFP2-LC3 driven 
by the elongation factor-1 promotor were cultured at 37 ⁰C for 48 h in DMEM medium 
containing EBSS medium containing 1mM pepstatin A and E-64-d solution (for starvation) 
and 10 nM rapamycin. LC3-positive puncta was observed by confocal laser microscopy. (B) 
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LC3-I and LC3-II protein levels were examined by western blot analysis. Protein samples 
were extracted from Caco2 cells treated with indicated concentrations of rapamycin (48 h). 
Quantification of the intensity of the immunoreactive bands of both LC3-I and LC3-II was 
carried out using Odyssey V3.0 software. Densitometric analysis of immunoblots of LC3 was 
expressed as the ratio of LC3-II to LC3-I, and the ratio of LC3II/LC3I was expressed in 
arbitrary units. (C) Western blot visualized LC3-I and LC3-II protein levels in starvation 
(EBSS medium containing 1mM pepstatin A and E-64-d solution) treated Caco2 cells. The 
ratio of LC3II/LC3I was expressed in arbitrary units. (D) Starvation significantly inhibited 
rotavirus RNA in Caco2 cells (n = 6, mean ± SEM, *P < 0.05, Mann-Whitney test). (E) 
Starvation dramatically inhibited rotavirus protein VP4 synthesis in Caco2 cells. (F) 
Rapamycin induced autophagy in 4E-BP1 KO MEFs transfected with 4E-BP1-WT plasmids; 
while the induction was abolished in 4E-BP1 KO MEFs transfected with 4E-BP1-5A plasmids. 
(G) Western blot demonstrated that up-regulated ratio of LC3-II to LC3-I by rapamycin was 
abolished in 4E-BP1 knockout (-/-) MEFs (n = 6, mean ± SEM, *P < 0.05, **P < 0.01, Mann-
Whitney test). (H) Western blot detected that up-regulated ratio of LC3-II to LC3-I by 
starvation (EBSS medium containing 1mM pepstatin A and E-64-d solution) was abolished in 
4E-BP1 knockout (-/-) MEFs (n = 5, mean ± SEM, *P < 0.05, Mann-Whitney test). 

 

 

Figure 7. Silence of autophagy related genes, LC3-II and beclin1, inhibits rotavirus 

replication. (A) Western blot detected LC3-II protein in lentiviral RNAi against LC3-II 

transduced Caco2 cells. (B) LC3-II knockdown increased rotavirus genomic RNA determined 

by qRT-PCR (n = 4-10, mean ± SEM, *P < 0.05, **P < 0.01, Mann-Whitney test). (C) LC3-II 

knockdown increased rotavirus VP4 protein synthesis detected by western blot assay. (D) 

Western blot detected beclin1 protein in lentiviral RNAi against beclin1 transduced Caco2 

cells. (E) Beclin1 knockdown increased rotavirus genomic RNA determined by qRT-PCR (n = 

11-17, mean ± SEM, ***P < 0.001, Mann-Whitney test). (F) Beclin1 knockdown increased 

rotavirus VP4 protein synthesis detected by western blot assay. 

 



Chapter 6 

145 | P a g e  

Discussion  

Many viruses interfere with or employ PI3K-Akt-mTOR pathway to regulate their 

infection (19). Vesicular stomatitis virus (VSV) infection and replication have been 

reported to lead to dephosphorylation and inactivation of Akt (33). In contrast, 

influenza A virus replication activates Akt phosphorylation by the viral NS1 protein. It 

directly binds to the PI3K regulatory subunit (p85β), allowing the catalytic domain 

(p110) to phosphorylate Akt (34). Recent structural study has provided insights into 

the mechanism by which NS1 activates the PI3K (P85beta:P110) holoenzyme (35). 

White spot syndrome virus (WSSV) stimulates phosphorylation of 4E-BP1, the 

downstream element of PI3K-Akt-mTOR pathway (36). Semliki Forest virus (SFV) 

and human papillomavirus type 16 (HPV16) have also been reported to 

phosphorylate the mTOR targets S6 kinase and 4E-BP1 (37, 38). In fact, PI3K-Akt-

mTOR pathway serves as a pro- or antiviral double-edged sword depending on the 

types of viruses. The pathway itself has been demonstrated to exert inhibitory effect 

on hepatitis E virus (HEV) replication via 4E-BP1 (13). In contrast, it is also involved 

in promoting the infection of a broad-spectrum of viruses. Thus, blocking PI3K by its 

inhibitor could vigorously inhibit infection of numerous viruses including LCMV (19) 

and coxsackievirus (39). Over-expression of p70S6K or Akt stimulates mRNA 

expression of coxsackievirus B3 (CVB3) (40). Rotavirus infection has been reported 

to activate phosphorylation of p70S6K in piglets (41). However, we did not found 

evidence that rotavirus infection induced phosphorylation of 4E-BP1, S6, Akt or 

p70S6K in our system (cells of human origin). The underlying discrepancy might 

derive from the differences of the species and distinct physiological situation, since 

animal models in some cases are of limited relevance to human physiology (42). 

However, this pathway is essential in sustaining rotavirus infection, and inhibition of 

PI3K-Akt-mTOR signaling resulted in potent anti-rotavirus activity (Figure 1, 2, 3, 4 

and 5). 

PI3K-Akt-mTOR pathway functions by phosphorylation of its downstream 

effectors including ribosomal protein S6 Kinase 1 (S6K1) and 4E-BP1 to upregulate 

cap-dependent mRNA translation (43). Merkel cell polyomavirus (MCV) stirs 

phosphorylation of 4E-BP1. Subsequently, it disassociates from eIF4E to form the 

eIF4F complex to induce mRNA translation (44). Rift valley fever virus (RVFV) 

induces decay of 5’-TOP mRNAs via 4E-BP1 to restrict virus replication (45). We 
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have demonstrated that the anti-rotavirus effect by inhibition of PI3K-Akt-mTOR 

pathway is predominantly via 4E-BP1 but not S6K. It has been reported that 4E-BP1 

mediates the inhibitory effect of mTOR on autophagy formation (46). In this study, we 

confirmed that autophagy was induced by inhibiting mTOR with treatment of 

rapamycin in our system, and this process is mediated by 4E-BP1.  

The process of autophagy induction has been implicated in regulating many types 

of virus infection with various mechanism-of-action (31, 47). We have functionally 

demonstrated that autophagy machinery exerts antiviral effect against rotavirus 

(Figure 6D and E). Some viruses including human cytomegalovirus (48), hepatitis B 

virus-X (HBx) (49) and chikungunya virus (50) have been reported to lure autophagy 

machinery in host. Rotavirus was also reported to induce autophagy in piglet intestine 

(51). However, we did not observe changed ratio of LC3-II to LC3-I upon rotavirus 

infection. The key autophagy related genes have been well studied in regulating virus 

infections with different model-of-actions. During Sindbis virus infection, beclin 1 

expression was upregulated that may result in xenophagy (a selective autophagy) of 

Sindbis virus to defend the infection (52). Several autophagy related genes can 

promote both innate and adaptive immune response to combat viral infection (53). 

We demonstrated that silence of LC3-II and beclin1 led to potent increase of rotavirus 

infection (Figure 7).  

In the clinic, organ transplantation patients irrespective to their age are very 

sensitive to rotavirus infection. Long-term use of immunosuppressants is an 

important risk factor causing persistent infection in these patients (4). Rapamycin as 

a potent mTOR inhibitor has been used as immunosuppressant in transplant patients 

for decades (54). It has been well documented that different types of 

immunosuppressants may differentially affect virus infection (4, 55). Antiviral effects 

of rapamycin have been demonstrated in models of herpes simplex virus (56), 

coxsackievirus (39) and HIV-1 infections (21). Our data demonstrating potent anti-

rotavirus effect of rapamycin favor the clinical application of this immunosuppressant 

in rotavirus-infected organ recipients.  

In summary (Figure 8), we have dissected the effects of PI3K-Akt-mTOR signaling 

on rotavirus infection, and demonstrated that blocking this pathway can potently 

inhibit rotavirus replication. Importantly, the mTOR inhibitor, rapamycin, induced 

autophagy machinery to inhibit rotavirus infection via 4E-BP1. Thus, this study 

revealed new insights on rotavirus-host interactions and provided new avenues for 
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antiviral drug development. Furthermore, it provides important references for 

transplant clinicians to design optimal immunosuppression protocols for rotavirus 

infected organ transplant patients.  

 

 

Figure 8. Schematic depicting the PI3K-Akt-mTOR signaling involved in regulating rotavirus 
replication. Pharmaceutical blocking PI3K-Akt-mTOR pathway inhibits phosphorylation and 
activation of its downstream targets including p70S6K and 4E-BP1. 4E-BP1 mediates 
inhibition of mTOR on autophagy machinery via 4E-BP1. Autophagy itself exerts anti-
rotavirus effect. 
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Materials and methods  

Reagents.  

Stocks of LY294002, an inhibitor of PI3K-Akt (Sigma-Aldrich), BEZ235, a dual 

inhibitor of PI3K-Akt and mTOR (Selleck Chemicals), rapamycin, a mTOR inhibitor 

(Merk, Schiphol-Rijk, The Netherlands) and PF-4708671, an inhibitor of p70S6K 

(Selleck Chemicals) were dissolved in dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St 

Louis, MO). All reagents were stored in 25 μL aliquots and frozen at -80 ºC. Other 

reagents including Earle's Balanced Salt Solution (EBSS) (Lonza), E-64-d (Santa 

Cruz Biotech, Santa Cruz, CA) and pepstatin A (Santa Cruz Biotech, Santa Cruz, CA) 

were also used. 

 

Viruses. 

Simian rotavirus SA11 was used and prepared as described previously.(22) Patient-

derived rotavirus isolates were isolated from stool samples of rotavirus-infected 

patients during diarrhea period as described previously (22).  

 

Cell and human primary intestinal organoid culture. 

Caco2 (Caucasian colon adenocarcinoma) cells are the heterogeneous human 

epithelial colorectal adenocarcinoma cells, representing numerous characteristics of 

enterocytes. They are commonly used for in vitro modelling rotavirus infection. Caco2 

cells were maintained in culture in T25/T75 flask with Dulbecco's modified Eagle 

medium (DMEM) (Invitrogen-Gibco, Breda, The Netherlands) as previously described 

(23). Immortalized mouse embryonic fibroblasts (MEFs) derived from 4E-BP1 wild-

type (+/+) and 4E-BP1 knock-out (-/-) mice (gifts from E.N. Fish’s lab) were cultured 

in DMEM (Invitrogen-Gibco, Breda, The Netherlands) containing 10% vol/vol fetal calf 

serum (FCS) (Hyclone, Lonan, Utah), 100 IU/mL penicillin, 100 mg/mL streptomycin 

and 2 mM L-glutamine (Invitrogen-Gibco).  

3D cultures of human intestinal organoids were performed as previously 

described (23). Briefly, intestinal tissues were vigorously shaken in 8 mM EDTA for 

15 min at 4 ⁰C, followed by removing the EDTA solution. Subsequently loosened 

crypts were collected by pipetting the solution up and down through a 10 mL pipette 

for 8-10 times. The crypt suspension was transferred into a 50 mL centrifuge tube 
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(Greiner bio-one, the Netherlands) and biopsies were re-used for repeated collection 

of crypts (2-3 times). Crypt suspensions were pooled and centrifuged at 300 g for 5 

min. Pelleted crypts were re-suspended in 2 mL complete medium with growth 

factors CMGF-: advanced DMEM/F12 supplemented with 1% (vol/vol) GlutaMAX™ 

Supplement (Gibco, Grand island, USA), 10 mM HEPES, and collected by 

centrifugation at 130 g for 5 min at 4 ⁰C. Crypts were finally suspended in Matrigel 

(Corning, Bedford, USA), and placed in the center of a well of a 24-well plate (40 µL 

per well). After the Matrigel had solidified (15 min at 37 ⁰C), organoids were cultured 

in culture medium at 37 ⁰C, 5% CO2. Culture medium was refreshed every 2-3 days, 

and organoids were passaged every 6-7 days. 

 

TCID50 assay. 

Reed and Muench method was applied to determine infectious virus titration with a 

standard TCID50 protocol by means of MA104 cells (57).  

 

Virus infections and treatment of drugs.  

The protocols of inoculation of Caco2 cells with SA11 and patient-derived rotavirus 

were described previously (23). Briefly, cell monolayers of Caco2 cells were 

incubated with SA11 rotavirus at 37 ⁰C with 5% CO2 for 60 min for infection, followed 

by removing free virus particles. Subsequently, cells were added with culture medium 

(FCS free) containing 5 µg/mL of trypsin and indicative drugs, followed by incubation 

at 37 ⁰C in a humidified 5% CO2 incubator. 

Organoids were inoculated with activated virus (5,000 genome copies) for 60 min 

at 37 ⁰C with 5% CO2, followed by removing free viral particles. Then, organoids 

were aliquoted in wells of a 48-well plate coated with 20% (vol/vol) Collagen R 

Solution (SERVA, Heidelberg, Germany) and culture medium containing drugs of 

interest was added. Subsequently, the 48-well plate containing organoids was spin 

down at 500 g for 5 minutes to promote the adherence on the bottom of the wells, 

followed by maintaining them at 37 ⁰C with 5% CO2. 

Preparation of patient-derived rotavirus was performed as described earlier (23), 

and protocols of viral inoculation and treatment of drugs are similar to SA11 rotavirus. 

48 h post-infection was used to determine viral replication levels, since it is the 

optimal time point for viral replication without lysis of the cells.  
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RNA isolation, cDNA synthesis and qRT-PCR.  

Total RNA was extracted using a NucleoSpin® RNA kit (MACHEREY-NAGEL, Düren, 

Germany) and quantified with a Nanodrop ND-1000 (Wilmington, DE, USA). 500 ng 

of RNA was used as template for cDNA preparation with the reverse transcription 

system from TAKARA (TAKARA BIO INC). Quantitative real-time PCR (qRT-PCR) 

reactions were performed with SYBR Green (Applied Biosystems®, Austin, USA) 

according to the manufacturer’s instruction. qRT-PCR was performed in an IQ5 

cycler PCR machine (Bio-Rad). The levels of glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) mRNA were used as an endogenous reference to 

normalize the quantities of target mRNA by using the formula 2-ΔΔCT 

(ΔΔCT=ΔCTsample-ΔCTcontrol). All primer sequences were indicated in Table S1. 

 

Gene silencing assays.  

Lentiviral pLKO knockdown vectors (Sigma-Aldrich) targeting mTOR, 4E-BP1 and 

non-targeted control lentivirus were obtained from the Erasmus Biomics Center and 

produced in human embryonic kidney cell-line 293T (HEK293T) cells.  

Caco2 cells were transduced with lentiviral vectors in order to generate stable 

gene knockdown cells. Transduced cells were subsequently selected with 6 μg/mL 

puromycin (Sigma). After pilot study, the shRNA vectors exerting optimal gene 

knockdown were selected. Knockdown and control Caco2 cells were incubated with 

rotavirus as described in the foregoing. 

 

Transient transfection 

The plasmids including 4E-BP1-WT and 4E-BP1 5A were transfected in 4E-BP1 

knockout MEFs. Cells were seeded in 6-well plates till ~70% confluence, followed by 

adding 200 µL of Opti-MEM® reduced serum medium (Thermo Fisher Scientific) with 

2 µg 4E-BP1-WT and 4E-BP1-5A plasmids and 6 µL Fu-GENE 6 transfection reagent 

(Roche Applied Science, Inc.). Transfected cells were incubated in complete medium 

for 24 h, followed by refreshing with 100 nM rapamycin or control medium for 48 h. 

The cells were analyzed by western blot after treatment. The experiments were 

executed in triplicate.  

 

Cell lysis, SDS-PAGE and western blotting.  
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After treatment and washing with PBS, cells in six-well plates were lysed with 400 μL 

of laemmli buffer (20% [vol/vol] glycerol, 4% [wt/vol] SDS and 120 mM Tris-HCl, PH 

6.8) containing 100 mM DTT, and boiled for 10 min at 95 ºC. Then, cell lysates were 

subjected to SDS-PAGE, and proteins were transferred to a polyvinylidene difluoride 

(PVDF) membrane (Immobilon-FL). Subsequently, the membrane was blocked with 

2.5 mL blocking buffer and 2.5 mL PBS containing 0.05% Tween 20 (PBS-T) for 1 

hour at room temperature. It was followed by incubation with P-mTOR (1:1000, rabbit; 

cell signaling), t-mTOR (1:1000, rabbit; cell signaling), p-Akt (1:1000, rabbit; cell 

signaling) , t-Akt (1:1000, rabbit; cell signaling), p-S6 (1:1000, rabbit; cell signaling), t-

S6 (1:1000, rabbit; cell signaling), p-4E-BP1 (1:1000, rabbit; cell signaling), t-4E-BP1 

(1:1000, rabbit; cell signaling), LC3-I/II (1:1000, rabbit; cell signaling) and SA11 

rotavirus VP4 (1:1000, HS-2, mouse monoclonal (provided by professor Harry 

Greenberg, Stanford University School of Medicine, USA) overnight in 5 mL of 

blocking buffer/PBST (1:1) cocktail at 4ºC. After three more washes with PBST, the 

immunoreactive bands were detected by western blot analysis and detection of β-

actin served as loading control (1:1000, mouse monoclonal; Santa Cruz). 

 

Cytospin preparations and Confocal Laser Scanning Microscopy (CLSM) for 

organoids.  

Organoids were harvested from Matrigel using cold PBS, followed by fixing in 4% 

paraformaldehyde in PBS at 4 ºC for 10 min. Fixed organoids were added into the 

appropriate wells of the CytoSpin II Cytocentrifuge (Shandon Scientifi Ltd, Runcorn, 

England), and spin down at 1000 rpm for 2 min. The slides containing organoids 

were rinsed in PBS-baths 3x5 min, followed by treatment with 0.1% (vol/vol) Triton-

x100 for 4 min. Then, the slides were rinsed in PBS-baths 2x5 min, followed by being 

incubated with milk-tween-glycine medium (0.05% tween, 0.5% skim milk and 0.15% 

glycine) to block background staining for 30 min. The slides were incubated in a 

humidity chamber with p-S6 antibodies (1:100, rabbit; cell signaling) diluted in milk-

tween-glycine medium at 4 ºC overnight. The slides were washed 3x5 min in PBS-

baths prior to 1 h incubation with 1:1000 dilutions of the anti-rabbit IgG (H+L), F(ab')2 

Fragment (Alexa Fluor® 488 Conjugate) secondary antibody. Nuclei were stained 

with DAPI (4, 6-diamidino-2-phenylindole; Invitrogen). Images were detected using 

confocal electroscope. 
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Lentiviral expression of green fluorescence protein bound to LC3 and live 

imaging.  

Caco2 cells were cultured on cover slide on the bottom of wells of a 6-well-plate with 

culture medium and transduced with lentiviral particles carrying a construct of 

TagGFP2-LC3 driven by the elongation factor-1 promoter (Millipore LentiBrite) at a 

multiplicity of infection (MOI) of 50 for 48 h. Then, the medium was changed into the 

pharmacological treatment for indicated time period. Live images were obtained by 

using confocal electroscope. 

 

Cytotoxicity assays in cells and organoids.  

The effects of chemical reagents on cell viability were determined by MTT assay (see 

Figure S1). Briefly, Caco2 cells were seeded 1 x 104 cells per well of a 96-well plate 

and viable cells were detected at indicated time points by adding 10 μL 5 mg/mL 

MTT per well, 3 h incubation at 37 ⁰C and replacement of the medium by 100 μL 

DMSO (Sigma). Absorbance (490 nm) was analyzed.  

Intestinal organoids were embedded in Matrigel and cultured in wells of 24-well-

plate with organoids culture medium containing relevant chemical reagents. The 

effects of related chemical reagents on intestinal organoids viability were determined 

by morphology of organoids observed by light microscope (see Figure S2) 

 

Statistical analyses.  

All numerical results are expressed as Mean ± SEM. Statistical comparisons were 

analyzed by Mann-Whitney test for the data without normal distribution or t test for 

the data with normal distribution. P-values less than 0.05 were considered to be 

statistically significant. Analysis was performed using GraphPad Prism Version 5 

(GraphPad Software Inc., La Jolla, CA).  
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Supplementary Tables & Figures 

Table S1. Primers used in the study 

Sequence of rotavirus primers 

 SA11 Rotavirus Human Patient Rotavirus 

Sense  TGGTTAAACGCAGGATCGGA ACCATCTACACATGACCCTC 
Anti-sense AACCTTTCCGCGTCTGGTAG CACATAACGCCCCTATAGCC 

 

Primer sequences of other genes 

Primers Human Mouse 

GAPDH-
F 

GTCTCCTCTGACTTCAACAGCG TTCCAGTATGACTCCACTCACGG 

GAPDH-
R 

ACCACCCTGTTGCTGTAGTAGCCAA TGAAGACACCAGTAGACTCCACGAC 

mTOR-F AGCATCGGATGCTTAGGAGTGG  

mTOR-
R 

CAGCCAGTCATCTTTGGAGACC  

4E-BP1-
F 

CACCAGCCCTTCCAGTGATGAG  

4E-BP1-
R 

CCTTGGTAGTGCTCCACACGAT  
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Supplementary Figues 

 

 

Figure S1. Quantification of the intensity of the immunoreactive bands of p-mTOR, p-Akt, p-
S6 and p-4E-BP1 with treatments of (A) LY294002 (n = 4, mean ± SEM, *P< 0.05, t test), (B) 
rapamycin (n = 4-7, mean ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001, t test) or (C) BEZ235 
(n = 4, mean ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001, t test) at indicated concentrations 
using Odyssey V3.0 software. (D) Quantification of the intensity of the immunoreactive bands 
of t-Akt and t-4E-BP1 (53H11) in 4E-BP1 knockdown Caco2 cells using Odyssey V3.0 
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software (n = 4, mean ± SEM, *P< 0.001, t test) (E) Effect of rapamycin on autophagy (n = 3, 
means ± SEM, *P < 0.05, t test). Quantification of the intensity of the immunoreactive bands 
of both LC3-I and LC3-II was carried out using Odyssey V3.0 software. Densitometric 
analysis of immunoblots of LC3 was expressed as the ratio of LC3-II to LC3-I, and the ratio 
of LC3II/LC3I was expressed in arbitrary units. (F) Effect of starvation on autophagy (n = 3, 
means ± SEM, *P < 0.05, t test). Quantification of the intensity of the immunoreactive bands 
of both LC3-I and LC3-II was carried out using Odyssey V3.0 software. The ratio of 
LC3II/LC3I was expressed in arbitrary units. (G) Quantification of the intensity of the 
immunoreactive bands of VP4 with treatment of starvation using Odyssey. Data were 
presented as means ± SEM, *P< 0.05, **P< 0.01, **P< 0.001.  

 

 

Figure S2. Effects of (B) LY294002 (n = 6), (C) rapamycin (n = 6) and (D) BEZ235 (n = 5) on 
rotavirus secretion calculated by (A) a standard curves described previously (1). Caco2 cell 
monolayers were infected by trypsin activated rotavirus for 1 h, followed by removing free 
viral particles by washing with PBS for four times. Then, culture medium with indicative drugs 
was added for 48 h incubation, followed by that secreted viral particles in the medium were 
detected by qRT-PCR. Data were presented as means ± SEM, *P< 0.05, **P< 0.01. 
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Figure S3. Rotavirus infection did not affect the key elements of PI3K-Akt-mTOR pathway. 
Western blot detects phosphorylated 4E-BP1 (T70), S6 (S240/244), Akt (S473), p70S6K 
(T389) and LC3-I/II proteins in mock and rotavirus infected Caco2 cells at indicated time 
points. 

 

 

Figure S4. Effect of PF-4708671 (p70 ribosomal S6 kinase inhibitor) on rotavirus replication 
in Caco2 cells. Rotavirus infected Caco2 cells were treated with 1, 5 and 25 μM PF-4708671 
for 48 h. Viral genomic RNA was quantified by qRT-PCR.  
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Figure S5. Effects of rapamycin (A) and 4E-BP1 knock out (B) on IRF1 and IRF7 protein 

systhesis detected by western blot assay.  

 

 

Figure S6. Effects of LY294002, BEZ235 and rapamycin on host cell viability determined by 
MTT assays. (A) Effect of LY294002 on viability of Caco2 cells (48 h) (n = 6, means ± SEM, 
**P< 0.01, Mann-Whitney test). (B) Effect of rapamycin on viability of Caco2 cells (48 h) (n = 
6, means ± SEM, *P< 0.05, **P< 0.01, Mann-Whitney test). (C) Effect of BEZ235 on viability 
of Caco2 cells (48 h).  
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Figure S7. Effects of LY294002, BEZ235 and rapamycin on growth of human intestinal 
organoids. (A) Effect of LY294002 on growth of organoids (48 h). (B) Effect of BEZ235on 
organoids growth (48 h). (C) Effect of rapamycin on organoids growth (48 h).  
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Abstract 

Viral protein synthesis often completely relies on the translational machinery of the 

host due to the lack of the machinery for mRNA translation from the virus. eIF4F 

complex is a tripartite complex composed of three components including a cap-

binding subunit (eIF4E), an RNA helicase (eIF4A) anchored to a large molecular 

scaffold (eIF4G) being able to associate with eIF3-bound 40S ribosome subunits. 

eIF4F closely monitors translation in response to a multitude of environmental 

conditions including viral infection. Rotavirus infection is a leading causative agent of 

severe diarrhea in infants younger than five years old, which has also emerged as 

important complications in organ transplant patients irrespective to their age. How 

translation initiation factors regulate rotavirus infection remains obscure. In this study, 

we have demonstrated that blocking the three components of eIF4F including eIF4A, 

eIF4E and eIF4G remarkably promote rotavirus infection, although rotavirus infection 

per se does not affect the expression level of the eIF4F complex. Consistently, the 

negative regulator of eIF4F, PDCD4, supports rotavirus infection. These results have 

demonstrated that the eIF4F complex is an essential host factor in defending 

rotavirus infection, thus revealing new insight on rotavirus-host interactions.  

Keywords: Rotavirus; eIF4F complex; knockdown; crispr/cas9 
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Introduction 

There are three phases in protein synthesis including initiation, elongation, and 

termination (1); whereas initiation determines translation rates (2). Most of the 

eukaryotic mRNAs are characterized by the m7GpppX structure (where X is any 

nucleotide), termed as a cap, at their 5’ ends or the poly (A) tail at the 3’ end (3). 

These mRNA are translated in a cap-dependent manner (2). The cap structure is 

bound by the eukaryotic translation initiation factor 4F (eIF4F) that is a protein 

complex containing three constituent proteins: an eukaryotic translation initiation 

factor 4A (eIF4A), an eukaryotic translation initiation factor 4E (eIF4E), and an 

eukaryotic translation initiation factor 4G (eIF4G) (4). The eIF4F complex plays a vital 

role in cap-dependent mRNA protein translation initiation by recognizing an RNA 

helicase that unwinds the secondary structure of the 5’ region (eIF4A), the mRNA 5’ 

cap structure (eIF4E), and bridging of the mRNA and the ribosome (eIF4G), and 

circularization of the mRNA via interaction with poly (A)-binding protein (eIF4G) (3). 

The end-independent binding of ribosomes to an internal ribosome entry site (IRES) 

in the 5’ untranslated region is able to initiate the translation of a subset of cellular 

and viral mRNAs (5). The ribosome binding is facilitated by that eIF4F is directed to 

the 5’ end of the mRNA via eIF4E, which is achieved via eIF4A along with eIF4B to 

unwind the mRNA 5’ secondary structure (2).  

Viruses require components from the host cell to propagate, replicate and 

assemble viral components and release their progeny virions (4). The viral protein 

synthesis completely relies on the translational machinery of the host due to the lack 

of the machinery for mRNA translation from the viruses (6). Viruses are able to 

exploit the translational machinery including eIF4F to support the translation of their 

transcripts (4). Particular mammalian viruses are involved in targeting eIF4F complex 

to regulate both viral and host mRNA translation; while many RNA viruses inhibit host 

protein synthesis to initiate the translation of their own mRNAs by inhibition of eIF4F 

(7). Feline calicivirus (FCV) and mouse norovirus (MNV) were reported to be capable 

of directly interacting with the initiation factors eIF4E, and viral RNA translation 

required the RNA helicase component of the eIF4F complex (8). Blocking eIF4E-

eIF4G interaction has been demonstrated to result in impairing Coronavirus 

replication (9). Interestingly, certain genes from the eIF4G family were thought to be 
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resistance to Rice yellow mottle virus (RYMV) (10). Collectively, eIF4F complex has 

diverse effects on various viruses.  

Rotavirus infection is considered to be the leading causative agent of severe 

diarrhea in infants younger than five years old (11). It causes an estimated 611 000 

death of children each year globally (12). Although rotavirus infection mainly occurs 

in low-income countries (13), it also bears heavy burden in industrialized countries. In 

European Union, rotavirus causes more than 200 deaths, over 87 000 admissions, 

and almost 700 000 outpatient visits in children younger than 5 years of age annually 

(14). Increasing evidence indicate that rotavirus infection causes severe 

complications in organ transplant patients irrespective to their ages (15). Although 

vaccines have been developed, no approved antiviral treatment is available. 

Furthermore, the biology of rotavirus infection remains to be further explored. In the 

study, we dissect effects of the cellular translation machinery on rotavirus infection. 

We have demonstrated that the eIF4F complex is an essential host factor in 

counteracting rotavirus infection.  

 

Materials and Methods 

Cell culture and Virus 

Caucasian colon adenocarcinoma cell line (Caco2) and human embryonic kidney 

cells 293 (HEK293) were grown in Dulbecco's Modified Eagle Medium (DMEM, 

Lonza, Verviers, Belguim) containing 20% (vol/vol) heat-inactivated fetal calve serum 

(FCS) (Hyclone, Lonan, Utah) and penicillin (100 IU/mL)/streptomycin (100 mg/mL) 

(P/S) Invitrogen-Gibco) at 37 °C in a humidified 5% CO2 incubator. 

Simian rotavirus SA11 was used and prepared as described previously (16).  

 

Inoculation of SA11 rotavirus in cells 

The protocol of inoculation of SA11 rotavirus was described previously (16). Briefly, 

cell monolayers of Caco2 cells were incubated with SA11 rotavirus at 37⁰C with 5% 

CO2 for 60 min for infection, followed by removing free viral particles. Then, cells 

were added with culture medium (FCS free) containing 5 μg/ml of trypsin and 

indicative drugs, followed by incubation at 37⁰C in a humidified 5% CO2 incubator. 

Viral titer was detected by qRT-PCR after 48 hrs inoculation. 
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Gene knockdown by shRNA  

Lentiviral shRNA vectors, targeting eIF4A, eIF4E, eIF4B and PDCD4 or non-targeted 

control lentivirus were produced in HEK293 cells. Briefly, the target vector was co-

transfected with packaging plasmids including pVSV-G, pMD, and pREV into 

HEK293 cells and viral vectors were harvested.  

Caco2 cells were incubated with lentiviral vectors for three days, followed by 

replacing virus-containing medium by medium containing puromycin (8 μg/mL), since 

the vectors also express a puromycin resistance gene. After selection, stable clones 

were established in 2-3 weeks. The knockdown effect was detected by western blot.  

 

Gene knockdown by crispr/cas9  

sgRNAs against eIF4A (forward: 5’-CACCGCCCCCGATACAGGCGTGAC-3’; 

reverse: 5’-CGGGGGCTATGTCCGCACTGCAAA-3’), eIF4E (forward: 5’-

CACCGGGACGTCCCCACTTGTCCG-3’; reverse: 5’-

CCCTGCAGGGGTGAACAGGCCAAA-3’), and eIF4G (forward: 5’-

CACCGCTATCCAGTCGAACACCCGC-3’; reverse: 5’-

CGATAGGTCAGCTTGTGGGCGCAAA-3’) were designed manually or using freely 

available online tools. Oligos were annealed ac he manufacturer's protocol (37 °C for 

30 min; 95 °C for 5 min and then ramp down to 25 °C at 5 °C/min). Subsequently, 

annealed oligos were ligated into pX330, followed by tansforming 10 µl of 

electrocomp™ cells (ThermoFisher SCIENTIFIC) with 5 µl of annealed oligos, and 

then incubated at 37 °C for overnight. Pick 2-3 colonies and inoculate into LB 

medium, followed by performing a sequence-verification. Inoculate verified colony 

into a miaxi-prep culture and isolate DNA by using DNA extraction kit (ThermoFisher 

SCIENTIFIC) according to manufacturer’s protocol. CRISPR DNA was co-transfected 

with packaging plasmids including pVSV-G, pMD, and pREV into HEK293 cells and 

lentiviral vectors were harvested.  

Caco2 cells were incubated with lentiviral vectors for three days, followed by 

replacing virus-containing medium by medium containing puromycin (8 μg/mL), since 

the vectors also express a puromycin resistance gene. After selection, stable clones 

were established in 2-3 weeks. The knockdown effect was detected by western blot.  
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qRT-PCR analyses 

Total RNA was isolated using NucleoSpin® RNA kit (MACHEREY-NAGEL, Düren, 

Germany), and the RNA concentration was measured by a Nanodrop ND-1000 

(Wilmington, DE, USA). cDNA was synthesized using the reverse transcription 

system from TAKARA according to manufacturer’s instructions (TAKARA BIO INC). 

The resulting cDNA was diluted 1:10, and 2 µL of the diluted cDNA was used for 

qRT-PCR with primers listed in Supplementary Table 1. All qRT-PCR experiments 

were performed by SYBR-Green-based (Applied Biosystems SYBR Green PCR 

Master Mix; Thermo Fisher Scientific Life Science) real-time PCR with the 

StepOnePlus System (Thermo Fisher Scientific Life Sciences). The expression of 

target mRNAs was normalized to the glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) mRNA. Gene expression analysis was performed by the ΔΔCT method.  

 

MTT assay 

Caco2 cells were seeded 1 x 104 cells per well of a 96-well plate and viable cells 

were detected at indicated time points through adding 10 μl 5 mg/ml MTT per well, 3 

hrs incubation at 37⁰C. Then, medium containing MTT was replaced by 100 μl 

dimethyl sulfoxide (DMSO) (Sigma), followed by measuring the absorbance (490 nm) 

after 50 mins inoculation. The effects of shRNA vectors on host cell viability were 

determined by MTT assay. 

 

Western blot assay 

Cells were washed three times with PBS and lysed in Laemmli buffer (4% (W/V) SDS, 

20% glycerol, 120 mM Tris-Cl (PH 6.8), and 0.002% (W/V) bromophenol blue) 

containing 10% dithiothreitol (DTT, Thermo Fisher Scientific), following by heating for 

5 mins at 95 ⁰C. Proteins in the lysates were separated by SDS-PAGE. Subsequently, 

they were transferred onto PVDF membrane (Immobilon-FL), and then probed with 

the indicated antibodies including eIF4A (1:1000, rabbit polyclonal; cell signaling), 

eIF4E (1:1000, rabbit polyclonal; cell signaling), eIF4G (1:1000, rabbit polyclonal; cell 

signaling), PDCD4 (1:1000, rabbit polyclonal; cell signaling) and SA11 rotavirus VP4 

(1:1000, HS-2, mouse monoclonal; provided by professor Harry Greenberg, Stanford 

University School of Medicine, USA). β-actin was used as a loading control (1:1000, 

mouse monoclonal; Santa Cruz). 
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Statistics 

All numerical results are reported as Mean ± SEM. The statistical significance of 

differences between means was assessed with the Mann-Whitney test (GraphPad 

Prism 5; GraphPad Software Inc., La Jolla, CA). The statistical significance was 

defined as P≤0.05. 

 

Results 

eIF4A inhibits rotavirus infection 

We first examined the effects of rotavirus infection on the expression of the 

components of the eIF4F complex, including eIF4A and eIF4E at various time points 

(1, 2, 3, 4, 6, 24 and 48 hr) (Figure 1).  

 

 

Figure 1. The effect of rotavirus and mock infection (1, 2, 4, 6, 24 and 48 hr) on the 
expression level of eIF4E, eIF4A and PDCD4. Western blot assay detected the expression of 
eIF4E, eIF4A and PDCD4 after 1, 2, 4, 6, 24 and 48 hrs post-infection by rotavirus and mock 
infection in Caco2 cells. 

 

Although rotavirus infection did not affect the expression level of eIF4F complex 

(Figure 1), it is interesting to investigate whether the subunits of the eIF4F complex 

can regulate the course of rotavirus infection. To this aim, we first detected the 

effects of eIF4A, by performing lentiviral RNAi-mediated loss-of-function assay to 

silence eIF4A gene. All five shRNA vectors showed successful knockdown (Figure 

3A and 3B). Importantly, two shRNA vectors (No 1 and 2) resulted in 121.7 ± 60.6 (n 

= 6, P< 0.01) and 56.7 ± 29.9 (n = 6, P< 0.01) fold increase of SA11 rotavirus viral 
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RNA, respectively (Figure 3C). All shRNA vectors showed no clear cytotoxicity 

determined by MTT assay (Figure 2A). Western blot assay indicated that all five 

shRNA vectors promoted rotavirus VP4 protein synthesis (Figure 3D). To further 

verify, we used crispr/cas9 to knockdown eIF4A gene in Caco2 cells (Figure 3E). 

After knockdown, viral RNA and protein systhesis were decreased (Figure 3F, G).  

 

 

Figure 2. Effect of shRNA against eIF4A (A), eIF4E (B), eIF4G (C) and PDCD4 (D) on host 
cell viability determined by MTT assays. 
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Figure 3. Knockdown of eIF4A supports rotavirus infection. (A) Western blot assay detected 
eIF4A in Caco2 cells transduced with lentiviral RNAi vectors against eIF4A. (B) Successful 
knockdown by shRNA vectors measured by qRT-PCR (n = 6, **P< 0.01, Mann-Whitney test). 
(C) Silence of eIF4A increased rotavirus genomic RNA (n = 6, *P< 0.05, **P< 0.01, Mann-
Whitney test). (D) Silence of eIF4A increased viral VP4 protein in SA11 rotavirus infected 
Caco2 cells. (E) Western blot assay detected eIF4A in Caco2 cells transduced with 
CRIPSRs against eIF4A. (F) Silencey of eIF4A by crispr/cas9 increased rotavirus genomic 
RNA (n = 6, *P< 0.05, Mann-Whitney test). (G) Silence of eIF4A by crispr/cas9 increased 
viral VP4 protein in SA11 rotavirus infected Caco2 cells.  

 

Blocking eIF4E promotes rotavirus infection 
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Another member of the eIF4F complex named eIF4E is responsible for binding to the 

cap of mRNA. Similarly, a lentiviral RNAi-mediated loss-of-function assay was 

performed to silence eIF4E gene to detect its effects on rotavirus infection. One out 

of the four (No 8723) shRNAs exerted potent silence of eIF4E gene (Figure 4A). 

Consistently, the No 8723 shRNA vector resulted in 14.5 ± 5.8 (n = 6, P< 0.01) fold 

increase of SA11 rotavirus viral RNA (Figure 4B). All shRNA vectors showed no clear 

cytotoxicity detected by MTT assay (Figure 2B). The No 8723 shRNA vector resulted 

in the increased of SA11 rotavirus viral protein VP4 synthesis (Figure 3C). To further 

verify, we used crispr/cas9 to knockdown eIF4E gene in Caco2 cells (Figure 4D). 

After knockdown, viral RNA and protein systhesis were decreased (Figure 3E, F). 

 

 

Figure 4. eIF4E suppresses rotavirus infection. (A) Western blot assay detected eIF4E in 
Caco2 cells transduced lentiviral RNAi vectors against eIF4E. (B) One (No 8723) out of three 
shRNA vectors showed potent knockdown, and the vector significantly promoted rotavirus 
genomic RNA (n = 6, *P< 0.05, Mann-Whitney test). (C) Western blot assay confirmed eIF4E 
knockdown increased rotavirus protein systhesis. (D) eIF4E was knockdown by crispr/cas9 
technique. (E) Silence of eIF4E by crispr/cas9 increase rotavirus RNA (n = 6, *P< 0.05, 
Mann-Whitney test). (F) Silence of eIF4E by crispr/cas9 increase rotavirus protein VP4 
systhesis.  
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eIF4G suppresses rotavirus infection 

As a scaffolding protein, eIF4G protein is able to physically link the mRNA and the 

small ribosomal subunit via several protein-protein interactions. To investigate the 

effects of eIF4G protein on rotavirus infection, a lentiviral RNAi-mediated loss-of-

function assay was performed, which resulted in the significant silence of eIF4G by 

all five vectors (Figure 5A and 5B). Importantly, all these shRNA vectors resulted in 

potent increase of viral RNA and viral protein synthesis (Figure 5C and 5D). The 

vitality of cells was not altered by these shRNA vectors (Figure 2C). To further verify, 

we used crispr/cas9 to knockdown eIF4G gene in Caco2 cells (Figure 5E). After 

knockdown, viral RNA and protein systhesis were decreased (Figure 5F, G).  

 

Silence eIF4A, eIF4E, and eIF4G together promotes rotavirus infection 

To further verify the effect of eIF4A, eIF4E, and eIF4G on rotavirus infection. CRIPRs 

against eIF4A, eIF4E, and eIF4G were co-transfected in Caco2 cells. After puromycin 

selection, the knockdown of eIF4A, eIF4E, and eIF4G was detected by western blot, 

indicating a successful knockdown (Figure 6A). The effect of silence of eIF4A, eIF4E, 

and eIF4G on rotavirus infection was further detected by qPCR assay and western 

assay, indicating both increased viral genomic RNA and viral protein VP4 systhesis 

(Figure 6B, C).  

 

Programmed cell death 4 (PDCD4) inhibits rotavirus infection 

PDCD4 functions inhibition of translation by directly interacting with and inhibiting the 

helicase activity of eIF4A to competitively bind to the scaffold protein eIF4G. To 

further verify the effects of eIF4F complex, the effects of PDCD4 on rotavirus 

infection were investigated. To this aim, a lentiviral RNAi-mediated loss-of-function 

assay was performed to silence PDCD4 gene, which indicated that one out of three 

shRNA vectors (No 1) exerted potent knockdown (Figure 7A and 7B). Consistently, 

the shRNA vector (No 1) resulted in 50 ± 12 %(n= 8, P< 0.05) reduction of SA11 

rotavirus viral RNA (Figure 7C), and remarkable reduction of viral VP4 protein 

synthesis (Figure 7D). All shRNA vectors have no clear cytotoxicity (Figure 2D). 
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Figure 5. Silence of eIF4G promotes rotavirus infection. (A) Western blot assay detected 
eIF4G in Caco2 cells transduced lentiviral RNAi vectors against eIF4G. (B) Successful 
knockdown by shRNA vectors measured by qRT-PCR (n = 6, **P< 0.01, Mann-Whitney test). 
(C) Silence of eIF4G showed increased rotavirus genomic RNA (n = 6, *P< 0.05, **P< 0.01, 
Mann-Whitney test). (D) Silence of eIF4G promoted viral VP4 protein in SA11 rotavirus 
infected Caco2 cells. (E) Western blot assay detected eIF4G in Caco2 cells transduced with 
CRIPSRs against eIF4G. (F) Silencey of eIF4A by crispr/cas9 increased rotavirus genomic 
RNA (n = 6, *P< 0.05, Mann-Whitney test). (G) Silence of eIF4G by crispr/cas9 increased 
viral VP4 protein in SA11 rotavirus infected Caco2 cells. 
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Figure 6. Silence of eIF4A/E/G promotes rotavirus infection. (A) Western blot assay detected 
eIF4 A/E/G in Caco2 cells transduced CRIPRs against eIF4A, eIF4E and eIF4G. (B) Silence 
of eIF4A/E/G promoted rotavirus genomic RNA detected by qPCR assay (n = 6, **P< 0.01, 
Mann-Whitney test). (C) Silence of eIF4A/E/G showed increased rotavirus protein VP4. 
 

 

Figure 7. PDCD4 sustains rotavirus infection. (A) Western blot assay detected PDCD4 in 
Caco2 cells transduced lentiviral RNAi vectors against PDCD4. (B) One (No 1) out of three 
shRNA vectors showed successful knockdown detected by qRT-PCR (n = 6, **P< 0.01, 
Mann-Whitney test). (C) Silence of PDCD4 showed inhibition of rotavirus genomic RNA (n = 
8, *P< 0.05, Mann-Whitney test). (D) Silence of PDCD4 inhibited viral VP4 protein in SA11 
rotavirus infected Caco2 cells. 
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Discussion 

Many viral RNAs have acquired a variety of sophisticated mechanisms to compete 

with cellular mRNA that are already present in the cytoplasm. This allows the 

selective translation of viral mRNAs, since they do not possess the required 

components to initiate mRNA translation (8, 17). The eIF4F initiation factor complex 

plays a vital role in initiating translation by recognizing the 5’ cap structure in a cap-

dependent manner (8). As the target of numerous cellular signaling pathways, eIF4F 

closely monitors translation in response to a multitude of environmental conditions 

including viral infection (18). In contrast, viral infections often cause dysregulation of 

eIF4F expression to benefit its replication. Vesicular stomatitis virus (VSV) was 

reported to cause modifications of the eIF4F complex to inhibit host protein synthesis 

(19). Human Cytomegalovirus (HCMV) replication was demonstrated to increase the 

overall abundance of the eIF4F components and promote assembly of the eIF4F 

complexes (20). The cellular cap-dependent protein synthesis was reported to be 

rapidly inhibited by foot-and-mouth disease virus (FMDV) via inducing the cleavage 

of eIF4G (21). But we did not find altered expression level of eIF4F upon rotavirus 

infection (Figure 1).  

eIF4F complex is a tripartite complex composed of three components including a 

cap-binding subunit (eIF4E), an RNA helicase (eIF4A) anchored to a large molecular 

scaffold (eIF4G) being able to associate with eIF3-bound 40S ribosome subunits (18). 

These three components of the eIF4F complex were confirmed to closely regulate 

the life cycle of various viruses. A functional eIF4A factor was confirmed to fully 

determine the translation of influenza virus mRNAs (22). Hepatitis E virus (HEV) 

requires all three subunits of eIF4F to replicate in the host (23). The protein synthesis 

of Junin virus (JUNV), Tacaribe virus (TCRV) and Pichinde virus (PICV) requires the 

participation of eIF4A and eIF4G but not eIF4E (24). The eIF4F complex is required 

for the translation efficiency of HCMV at the start of infection; while viral protein 

synthesis becomes increasingly insensitive to inhibition of eIF4F complex at late 

stage of virus infection (25). Rotavirus mRNAs are capped but not polyadenylated 

(26), and we find that blocking three components of eIF4F complex promotes 

rotavirus infection (Figure 3, 4, 5, and 6). PDCD4 is capable of directly interacting 

with and inhibiting the helicase activity of eIF4A by competing its binding to eIF4G to 

suppress activity of eIF4F complex (27). Consistently, we find that blocking PDCD4 
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can inhibit rotavirus infection (Figure 7). Our findings suggest that eIF4F complex 

exerts inhibitory effects on rotavirus infection instead of being required for rotavirus 

infection.  

In summary, this study has demonstrated that rotavirus infection does not affect 

the expression level of the eIF4F complex; whereas the three components of the 

eIF4F complex can remarkably inhibit rotavirus infection. The negative regulator of 

the eIF4F complex, PDCD4, inhibits rotavirus infection. Hereto, this study revealed 

new insight in rotavirus-host interactions, and the eIF4F complex may represent as 

important targets for the development of new antivirals against rotavirus infection. 
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Abstract 

Objective Norovirus is a major cause of acute gastroenteritis worldwide and has 

emerged as an important issue of chronic infection in transplantation patients. Since 

no approved antiviral is available, we evaluated the effects of different 

immunosuppressants and ribavirin on norovirus and explored their mechanism-of-

actions. 

Design Immunosuppressants and ribavirin were profiled in a human norovirus (HuNV) 

replicon-harboring model and a surrogate murine norovirus 1 (MNV-1) model. Roles 

of corresponding drug targets were investigated by gain- or loss-of-function 

approaches.  

Results Calcineurin inhibitors cyclosporin A (CsA) and tacrolimus (FK506) 

moderately inhibited HuNV replication. Gene silencing of their cellular targets, 

cyclophilin A, FKBP12 and calcineurin, significantly inhibited HuNV replication. A 

therapeutically-speaking low concentration of mycophenolic acid (MPA), an 

uncompetitive inosine monophosphate dehydrogenase (IMPDH) inhibitor, potently 

and rapidly inhibited norovirus replication and ultimately cleared norovirus without 

inducible MPA resistance following long-term drug exposure. Knockdown of the MPA 

cellular targets, IMPDH1 and IMPDH2, suppressed HuNV replication. Consistent with 

the nucleotide synthesizing function of IMPDH, exogenous guanosine counteracted 

the anti-norovirus effects of MPA. Furthermore, the competitive IMPDH inhibitor, 

ribavirin efficiently inhibited norovirus and resulted in an additive effect when 

combined with immunosuppressants. 

Conclusions We demonstrate that calcineurin phosphatase activity and IMPDH 

guanine synthase activity are crucial in sustaining norovirus infection, thus could be 

therapeutically targeted. Our results suggest that MPA shall be preferentially 

considered as immunosuppressive medication for transplantation patients at risk of 

norovirus infection; whereas ribavirin represents as a potential antiviral for both 

immunocompromised and immunocompetent patients with norovirus gastroenteritis. 
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Introduction 

Following wide-spread implementation of rotavirus vaccination, norovirus infection is 

now becoming the major cause of acute gastroenteritis worldwide (1). As a single-

strand positive RNA virus belonging to the family Caliciviridae, norovirus is classified 

into 6 distinct genogroups (GI-VI). Genogroup 2, genotype 4 (GII.4) is the most 

prevalent, accounting for 96% of all sporadic infections (2). Although norovirus 

infection is often self-limiting in adults, it results in up to 200,000 deaths in children 

below five years of age, mainly in developing countries (3).  

Accumulating evidence indicates that transplant recipients are highly susceptible 

to norovirus infection, irrespective of their status as a pediatric or adult patient (4, 5). 

Norovirus infection has been described in many types of transplant recipients, 

including those receiving orthotopic transplantation of lung (6), kidney (7-9), liver (10), 

heart (11, 12), renal (13-15), intestinal (16-18), small bowel (19) or of hematopoietic 

stem cells (8, 20-23). Infection with norovirus in such patients often results in severe 

clinical pathology with prolonged illness (20, 24). Although the exact mechanism of 

norovirus susceptibility in orthotopic organ transplantation recipients remains unclear, 

the use of immunosuppressants for preventing organ rejection is conceivably an 

important risk factor (4, 25). It is plausible that an immunosuppressed status weakens 

host immunity defending virus invasion. Therefore, a cautious reduction and 

withdrawal of immunosuppressants has been taken into consideration for managing 

chronic norovirus gastroenteritis in transplant recipients (26). Intriguingly, 

immunosuppressants have been reported to directly modulate viral infection (27), but 

the direct effects on norovirus infection remain to be investigated. 

Despite its significant impact on public health, no vaccination or specific antiviral 

treatment is available. Ribavirin has broad antiviral activities against many viruses in 

vitro, and has been approved for treating chronic hepatitis C virus (HCV) patients for 

decades. A recent study has described eight patients with common variable 

immunodeficiency (CVID) showing persistent norovirus infection. Viral clearance 

occurred in two patients with oral ribavirin therapy, leading to complete symptomatic 

and histological recovery (28), although the definitive effect of ribavirin on norovirus 

requires further evaluation. 

In this study, we profiled the effects of different immunosuppressants on norovirus 

in cell culture models. We reveal that cellular calcineurin and IMPDH enzymes are 
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essential factors supporting norovirus replication, which could be targeted by 

corresponding immunosuppressants, calcineurin inhibitors and mycophenolic acid 

(MPA), to exert anti-norovirus effects. Furthermore, we demonstrate that ribavirin, a 

general antiviral drug of a non-immunosuppressive IMPDH inhibitor, has potent anti-

norovirus effect and exerts additive inhibition of norovirus replication when combined 

with calcineurin inhibitors or MPA. These results provide an important reference for 

managing immunosuppression and antiviral treatment for transplant patients infected 

by norovirus or at risk of norovirus infection. 

 

Materials and methods 

Compounds 

The immunosuppressants, including dexamethasone (DEX), prednisolone (PRED), 

rapamycin (RAP), leflunomide (LEF), brequinar (BQR) sodium salt hydrate and MPA 

were purchased from Sigma-Aldrich (St Louis, MO). Calcineurin inhibitors (CNIs), 

cyclosporin A (CsA) and tacrolimus (FK506) were obtained from Bio-Connect (Huizen, 

The Netherlands) and Abcam (Cambridge, MA), respectively. Two non-

immunosuppressive cyclosporine A derivatives 431-32 and 440-02, together with a 

novel calcineurin inhibitor voclosporin (VCS), were provided by Isotechnika Pharma 

Incorporation (Edmonto, AB, Canada). All the compounds were dissolved in DMSO 

and stored in aliquots at -20℃ before use. Cytotoxicity of the compounds on host 

cells were determined by MTT assay (supplementary figure 1). 

 

Cell cultures and virus propagation 

HG23 (Huh7 cells containing a stable subgenomic HuNV replicon), RAW 264.7 and 

human embryonic kidney 293T cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM; Lonza Verviers, Belgium) supplemented with 10% (vol/vol) heat-

inactivated fetal calf serum (FCS; Hyclone, Logan, UT, USA). A marker cassette 

containing the neomycin phosphotransferase gene was inserted between nts 5456 

and 6753 of the ORF2 of HuNV, conferring HG23 resistance to neomycin. 

Gentamicin (G418; Gibco) was added to HG23 culture medium at 1.5 mg/ml for 

selection before experimentation. 
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The Murine norovirus 1 (MNV-1) was produced by consecutively inoculating MNV 

(kindly provided by Herbert Virgin IV, Department of pathology and immunology, 

Washington University School of Medicine) into RAW cells. After 4 consecutive 

passages, the P4 MNV cultures were purified, aliquoted and stored at -80℃ for all 

subsequent experiments. The MNV stock was quantified by the 50% tissue culture 

infective dose (TCID50) and copy number analysis (supplementary material; 

supplementary figure 2). P4 stocks were quantified three independent times prior to 

use. 

 

Long-term treatment and rebound assay 

HG23 cells were seeded into 48-well plates at 2.5×104 cells/well containing drugs but 

no G418. After 2 days treatment, the cells were trypsinized, (i) 2.5×104 cells were 

sub-cultured into 48-well plates containing the same concentrations of drugs for 

another 4 days of treatment; (ii) remaining cells were collected for qRT-PCR analysis. 

After 6 days treatment, the same treatment process was performed for the second 

time. After 10 days treatment, 2.5×104 cells were sub-cultured into 48-well plate with 

fresh medium containing G418 (1 mg/ml). With further 5 days of routine culture, the 

cell layers were stained with hematoxylin. 

 

In vitro selection of MPA-resistant MNV 

MPA-resistant MNV was selected by culturing MNV for 20 passages under antiviral 

pressure. Briefly, MNV-infected RAW cells were treated with either medium or MPA 

(0.1 or 0.5 μg/ml). After 24 h incubation, the MNV cultures were purified and titrated 

by qRT-PCR for use in the next passage. After 10 passages, (i) MNV was 

continuously exposed to the same MPA concentrations for another 10 passages; (ii) 

MNV were exposed to increased MPA concentrations for another 10 passages. 

When MNV serial passaging with MPA was done, the inhibitory effect of MPA on 

MNV was quantified by qRT-PCR. 

 

Statistics 
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Data are presented as Mean±SEM. Comparisons between groups were performed 

with Mann-Whitney test using GraphPad Prism (GraphPad Software Inc., La Jolla, 

CA, USA). Differences were considered significant at a p value less than 0.05. 

 

Results 

Not all immunosuppressants directly affect norovirus replication 

A major challenge in anti-norovirus drug development is the lack of an infectious 

human isolate that recapitulates the entire life-cycle of the virus in a cell culture 

model. Therefore, we used a HuNV subgenomic replicon model that closely 

mimicked viral replication in the absence of the production of infectious particles (29). 

In our study, we observe that glucocorticoids, including PRED (supplementary figure 

3A) and DEX (supplementary figure 3B), rapamycin (supplementary figure 3C), 

brequinar (supplementary figure 3D) and leflunomide (supplementary figure 3E) show 

no effect on HuNV replication, demonstrating that modulation of norovirus infection is 

not a general property of immunosuppressants. 

 

CsA and its immunosuppressive analogue voclosporin, inhibit HuNV 

replication through a CyPA-dependent mechanism 

CsA is a calcineurin inhibitor targeting cellular cyclophilins. Treatment with CsA (5 

μg/ml) for 48 h inhibits HuNV replication by 82 ± 3.3% (n=6, p<0.01; figure 1A). To 

further confirm that this inhibitory effect relates to the compound targeting cyclophilins, 

a series of CsA derivatives were tested. Voclosporin, a novel immunosuppressive 

cyclophilin inhibitor, diminishes cellular HuNV RNA level by 49 ± 10% (n=6, p<0.05; 

figure 1B) after 48 h treatment, even at low concentration of 1 μg/ml; whereas the 

parental compound CsA at this concentration has no effect on HuNV. This 

observation relates well with the notion that voclosporin is a more potent calcineurin 

inhibitor as compared to CsA (30). Two non-immunosuppressive CsA derivatives, 

431-32 and 440-02 (figure 1C), which are chemically similar to CsA, if functionally 

distinct, have no effect on HuNV replication, suggesting that effects of CsA 

analogues on norovirus replication relate to calcineurin inhibition. 
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Figure 1. CsA and voclosporin suppress HuNV replication. CsA (A) and its 
immunosuppressive analogue voclosporin (B) inhibit HuNV replication in a time- and dose-
dependent manner (n=6). Non-immunosuppressive cyclosporine derivatives 431-32 and 440-
02 at high concentration fail to inhibit HuNV replication (n=4; C). (D) Design of long-term 
treatment and rebound assay. During clearance phase, HG23 cells were treated with 
immunosuppressants for 10 days without G418. During rebound phase, cells were sub-
cultured in fresh medium with G418 (1 mg/ml) for 5 days. Pictures were taken under light 
microscope. (E) A moderate reduction of HuNV RNA over 10 days of treatment with CsA 
(n=6). (F) Rebound assay after long-term treatment with CsA. The graphs show the 
confluence of the cell monolayers after 5 days of culture with G418. (G) Voclosporin causes 
a drastic reduction of HuNV RNA level after long-term treatment (n=6). (H) Rebound assay 
after long-term treatment with voclosporin. 
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It is necessary to determine whether long-term exposure to these 

immunosuppressants completely eliminates HuNV replicons from host cells. For this 

purpose, a long-term treatment and rebound assay (figure 1D) was employed. If the 

replicons are completely cleared, the cells die in the presence of G418. If the cells 

still carry some replicons, they will survive and proliferate. CsA at 5 μg/ml causes a 

reduction of HuNV RNA level by 79 ± 3.8% (n=6, p<0.01; figure 1E) after 10 days of 

treatment. Consistently, CsA-treated cells survive and proliferate in the presence of 

the selection marker (figure 1F), demonstrating that although CsA inhibits HuNV 

replication, it does not completely cause elimination of all replicons from cells. 

Voclosporin at 2.5 μg/ml provokes potent inhibition of HuNV replication, as evident 

from a reduction of 91 ± 1.5% (n=6, p<0.01; figure 1G) in viral RNA. Following 

subsequent challenge with the selection marker, only a small portion of cells stays 

alive (figure 1H), showing that voclosporin treatment clears most HuNV replicons 

from cultures, but a replicon containing compartment remains. 

Cellular cyclophilins, in particular the cyclophilin A (CyPA) and cyclophilin B 

(CyPB) isoforms, are the canonical drug targets of CsA. To study the potential 

involvement of CyPA and CyPB in CsA inhibition of HuNV replication, a RNAi-

mediated loss-of-function assay was performed. Upon transduction of lentiviral 

vectors targeting CyPA (shCyPA) or CyPB (shCyPB), specific down-regulation of the 

target genes at mRNA level was observed at both day 6 and 10 post-transduction, 

when compared to a scrambled control (shCTR) (figure 2A,B). Down-regulation at the 

protein level was only observed at day 10 (figure 2C). Consistently, following 

knockdown no effect on HuNV was observed at day 6, but significant reduction of 

viral replication by 60 ± 5.7% (n=8, p<0.001; figure 2D) was observed by knockdown 

of CyPA, but not that of CyPB, at day 10 post-transduction. Notably, knockdown of 

CyPA also resulted in elevation of CyPB mRNA expression at day 10 post-

transduction and vice versa, suggesting that a compensatory mechanism may exist 

between CyPA and CyPB (figure 2A, B). Concomitant with CyPA knockdown, CsA 

(n=5, p<0.05; figure 2E) and voclosporin (n=5, p<0.05; figure 2F) lost their capacity to 

inhibit HuNV after 48 h treatment. Collectively, these results show that CsA and 

voclosporin inhibit HuNV replication through targeting CyPA, but not CyPB. 
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Figure 2. CyPA, but not CyPB, is involved in CsA-caused inhibition of HuNV replication. (A, 
B) Lentiviral shRNA vectors targeting CyPA, CyPB as well as the non-targeting scrambled 
vector were transduced into HG23 cells. The mRNA levels of cyclophilins were quantified at 
day 6 and day 10 post-transduction (n=4). (C) Western blot analysis of HG23 cells 
transduced with shRNAs. Transduction of CyPA or CyPB shRNAs results in a dramatic 
reduction in CyPA or CyPB proteins at day 10, but not at day 6 post-transduction. (D) HuNV 
RNA in replicon cells was determined by qRT-PCR at day 6 and day 10 post-transduction 
and was normalized to the non-targeting control shRNA. Knockdown of CyPA, but not CyPB 
results in a significant decrease in viral replication at day 10, but not at day 6 post-
transduction (n=8). (E) Knockdown of CyPA abrogated CsA-mediated inhibition of HuNV 
replication (n=5). (F) Loss-of-function of CyPA abrogated voclosporin-caused inhibition of 
HuNV replication (n=5). 
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FK506 moderately inhibits HuNV replication via targeting FKBP12 

FK506 (tacrolimus) is another calcineurin inhibitor. FK506 at 2.5 μg/ml causes an 

reduction of HuNV replication by 77 ± 5.0% (n=5, p<0.05) and 70 ± 8.3% (n=6, 

p<0.01) after short-term (2 days; figure 3A) and long-term (10 days; figure 3B) 

treatment, respectively. Of note, FK506 at high concentrations quickly inhibits HuNV 

replication being evident from effects even after one day of treatment. Similar to CsA 

analogues, however, FK506 does not completely clear HuNV replicons from cultures 

(figure 3C). 

FK506 suppresses the immune system by binding to FKBP12, resulting in 

inhibition of the phosphatase activity of calcineurin. To understand the role of 

FKBP12 in FK506 inhibition of HuNV, we used five different lentiviral shRNA vectors 

to knock down the expression of FKBP12. We demonstrate that knockdown of 

FKBP12 (figure 3D; supplementary figure 4), but not FKBP8 (as a control; 

supplementary figure 4), results in reduced HuNV replication (figure 3E). At the same 

time, FKBP12 knockdown partially abrogates FK506 inhibition of HuNV (figure 3F), 

suggesting that FK506 inhibits HuNV replication through a pathway involving 

FKBP12. Thus the calcineurin pathway appears essential for norovirus propagation 

and experiments were initiated to confirm this notion. 

 

Calcineurin activation is indispensable for efficient replication of norovirus  

Calcineurin inhibitors are effective against norovirus replication; whereas non-

immunosuppressive CsA derivatives are ineffective, suggesting that calcineurin 

activity is required for CsA and FK506 inhibition of norovirus. To confirm this 

hypothesis, we used RNAi to knock down PPP3CA for inhibiting calcineurin 

phosphatase activity. As shown in figure 3G and H, knockdown of PPP3CA potently 

inhibited HuNV replication. Thus, calcineurin activation is vital for norovirus 

replication, supporting the idea that CsA and FK506 exert anti-norovirus activity 

through inhibition of calcineurin. 

 

 

 

 

 



Chapter 8 

196 | P a g e  

 

Figure 3. FK506 moderately inhibits HuNV through FKBP12 and calcineurin. (A) Time- and 
concentration-dependent antiviral effects of FK506 on HuNV replication (n=5-6). (B) Long-
term exposure to FK506 results in a moderate reduction of HuNV replication (n=6). (C) 
Rebound assay after long-term treatment with FK506. A reduced confluence of cell layers 
was observed after long-term treatment with FK506. (D) Western blot analysis of HG23 cells 
transduced with shRNA targeting FKBP12 or non-targeting control. (E) qRT-PCR analysis of 
HuNV RNA level in HG23 cells transduced with lentiviral shRNA vectors shows that 
knockdown of FKBP12, but not FKBP8, causes a reduction of HuNV replication (n=5). (F) 
Knockdown of FKBP12 partially diminishes FK506-induced inhibition of HuNV (n=6). (G) 
Efficiency of calcineurin gene knockdown. The RNA level of calcineurin subunit PPP3CA was 
determined by qRT-PCR and presented as the relative values to the scrambled control (n=5). 
(H) qRT-PCR analysis of HuNV RNA level in PPP3CA knockdown cells (n=5). 

 

MPA potently inhibits norovirus replication and completely clears HuNV 

replicons from host cells 
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Examining the effect of MPA on HuNV replication, we observe that treatment with 

only 0.25 μg/ml of MPA, which is even lower than blood concentration (approx. 1-10 

μg/ml) in transplantation patients (31), potently inhibits HuNV replication by 79 ± 2.7% 

(n=6, p<0.01; figure 4A) after 48 h treatment. Likewise, following long-term treatment 

by MPA (0.5 μg/ml; 10 day; figure 4B), the HuNV replication is reduced by 94 ± 1.7% 

(n=6, p<0.01). Correspondingly, in rebound experiment (figure 4C), when challenged 

with G418, the cells treated by 0.5 μg/ml MPA completely lose the ability to 

proliferate and succumb to the selection marker, suggesting that MPA treatment 

totally clears replicons from the host cells. In apparent support, when we tested other 

23 IMPDH inhibitors with differential inhibitory efficacy on IMPDH enzymatic activity 

(supplementary table 2), 17 out of these 23 IMPDH inhibitors exert significant 

inhibition of HuNV replication at a 1 μM concentration (n=6, p<0.01; figure 4D). 

In face of the lack of a cell culture system for HuNV, we considered MNV as a 

suitable surrogate for studying HuNV biology and pathogenesis. Consistent with the 

results in the replicon model, MPA at 0.1 μg/ml reduces MNV cellular viral RNA by 83 

± 8% (n=8, p<0.001; figure 4E) and virus production by 91 ± 6% (n=6, p<0.01; figure 

4F). The inhibitory effect is also confirmed in a CPE inhibition assay, demonstrating 

that MPA at 0.1 μg/ml protects RAW cells from norovirus-induced CPE formation by 

57 ± 14% (n=8, p<0.01; figure 4G). Collectively, our results demonstrate that MPA 

potently inhibits norovirus replication and could even completely clear the virus.  

 

High barrier to resistance development  

In the HuNV replicon model, MPA completely clears the viral replicons, which 

obviously prevents the emergence of resistance and thus leaves to extent to which 

such resistance can emerge unanswered. To address this issue, MNV-infected RAW 

cultures were exposed to MPA in different setups for 20 passages. As shown in 

figure 4H, MNV retains its sensitivity to MPA, even at passage 20, with inhibitory 

efficacy varying from 98.5 ± 0.07% to 99.6 ± 0.07% following treatment with 0.5 μg/ml 

MPA, which is comparable to unchallenged control (99.6 ± 0.05% inhibition). Thus, 

norovirus is not prone to developing resistance to MPA. 
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Figure 4. MPA potently inhibits norovirus replication and completely eliminates HuNV 
replicons from cells without concomitant drug resistance. (A, B) qRT-PCR analysis of HuNV 
RNA after short-term and long-term treatment with MPA (n=6). (C) MPA completely clears 
HuNV replicons from cells, and HG23 cells do not survive after treatment with the selection 
marker of G418. (D) The effects of 23 IMPDH inhibitors on HuNV were determined (n=6). 
The effects of MPA were validated on a murine norovirus model by quantifying the relative 
MNV intracellular RNA level (E) and copy numbers of MNV in supernatant (secreted viruses; 
F) after MPA treatment using qRT-PCR (n=5-6). (G) The inhibitory effect of MPA is also 
confirmed by a CPE inhibition assay. MNV induces CPE in RAW cells, but MPA protects 
RAW cells from CPE (n=8). (H) The inhibitory efficacy of MPA on MNV following 20 
passages exposed to MPA or vehicle control. In the selection process, MNV was either 
directly cultured in the presence of a fixed MPA concentration (0.1 or 0.5 μg/ml) or in a 
lengthy stepwise selection concentration from 0.1 to 0.5 μg/ml or from 0.5 to 1 μg/ml. After 
selection, the effects of MPA on the 20th passage of MNV were determined by qRT-PCR. 
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MPA inhibits norovirus replication by simultaneously targeting IMPDH1 and 

IMPDH2 

MPA acts through inhibition of IMPDH. There are two isoforms of IMPDH, IMPDH1 

and IMPDH2, in mammals. MPA has a five-fold more potent inhibitory effect on 

IMPDH2 as compared to IMPDH1 (32). In view of the low concentrations of MPA 

required to counteract norovirus, IMPDH2 appears the more likely drug target with 

respect to its effect on the norovirus life cycle. However, knockdown of IMPDH2 has 

no significant effect on HuNV replication, even though such knockdown profoundly 

decreases IMPDH2 mRNA and protein level, as assessed by qRT-PCR and western 

blot (figure 5A, C; supplementary figure 5). Similarly, knockdown of IMPDH1 causes 

no significant change in HuNV replication (figure 5B, C). Surprisingly, simultaneous 

knockdown of both IMPDH1 and IMPDH2 suppresses HuNV replication by 64 ± 5.3% 

(n=4, p<0.05; figure 5D, E), showing the IMPDH1 and IMPDH2 interchangeable roles 

in norovirus life cycle. 

 

Guanosine restored norovirus replication in MPA-treated and IMPDH1/2 

knockdown cells 

MPA inhibits de novo guanosine nucleotide biosynthesis by inhibiting IMPDH. To 

examine whether MPA exerts inhibitory effect on norovirus via guanosine depletion, 

we challenged norovirus cultures either with only MPA or with the combination of 

MPA and guanosine (the latter at 1, 10 or 100 μg/ml concentrations) for 24 h. We 

observe that the inhibitory effect of MPA on norovirus replication is sensitive to 

supplementation with guanosine. A 100 μg/ml guanosine concentration completely 

negates MPA effects in both HuNV replicon model (n=5; figure 5F) and MNV model 

(n=8; figure 5G). In apparent agreement exogenous supplementation of guanosine 

reverses the inhibitory effects of IMPDH1/2 knockdown on HuNV replication (n=5; 

figure 5H). Thus, norovirus biology requires a substantial intracellular guanosine 

levels and the inhibitory effects of MPA and IMPDH knockdown are mediated by 

depletion of this guanosine pool. 
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Figure 5. Simultaneous knockdown of IMPDH1/2 reduces HuNV replication, which is 
reversed by exogenous guanosine. (A, B) Western blot analysis of IMPDH2 and IMPDH1 
knockdown. (C) qRT-PCR analysis of HuNV RNA level in knockdown cells. Knockdown of 
IMPDH1 or IMPDH2 alone has little effect on HuNV replication (n=4). (D) The efficacy of 
gene knockdown was quantified by western blot. Simultaneous knockdown of IMPDH1/2 
decreases HuNV replication (n=4; E). Guanosine restores norovirus replication in MPA-
treated and IMPDH1/2 knockdown cells. HuNV replicon (n=5; F) and MNV (n=7; G) cultures 
were treated with MPA alone or combined with guanosine (1, 10 or 100 μg/ml). After 24 h 
incubation, relative levels of norovirus RNA were quantified by qRT-PCR. (H) IMPDH1/2 
knockdown cells were cultured with medium or increasing concentrations of guanosine. After 
24 h incubation, the relative HuNV RNA level was analyzed by qRT-PCR (n=4). 

 

Ribavirin efficiently inhibits norovirus  

Ribavirin at 2.5 μg/ml concentration results in a reduction of HuNV replication by 

64±6.1% (n=5, p<0.01; figure 6A) and 61 ± 8.5% (n=6, p<0.01; figure 6B) after short-
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term and long-term treatment, respectively. Additionally, ribavirin at higher 

concentrations (5 and 10 μg/ml) is capable of clearing cells of most replicons 

following 10 days of consecutive culture (figure 6C). The antiviral activity of ribavirin 

is confirmed in MNV model. Ribavirin at lower concentration (1 μg/ml) effectively 

decreases MNV cellular RNA (figure 6D) and extracellular viral particles in the 

supernatant (figure 6E). In the CPE inhibition experiment, treatment with ribavirin for 

3 days dose-dependently increases cell viability and decreases CPE formation by 

inhibiting MNV (n=8, p<0.001; figure 6F), further validating the antiviral activity of 

ribavirin on MNV.  

 

 

Figure 6. Ribavirin effectively inhibits norovirus replication. Short-term (2 days; A) and long-
term (10 days; B) effects of ribavirin on norovirus RNA replication in HuNV model. Results 
are expressed as the percentage relative to the medium control (n=6). (C) In the rebound 
phase, ribavirin-treated cells were cultured under the selective pressure of G418. The graph 
shows the cell confluence of 48-well plates after 5 days culture. Effect of ribavirin on 
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norovirus replication in MNV model was determined by quantifying the intracellular MNV 
RNA (n=6; D) and extracellular MNV particles (n=6; E) using qRT-PCR after 24 h incubation. 
(F) The antiviral effect of ribavirin on MNV was confirmed by CPE inhibition assay using a 
colorimetric method (MTT) after 3 days incubation (n=8). 

 

Combinatory effects of ribavirin and immunosuppressants on norovirus 

replication 

Immunosuppressants are often used in combination in the clinic. First, we evaluated 

the interaction of immunosuppressants on norovirus using MacSynergy 2 

combination analysis (supplementary material). As shown in figure 7A, the combined 

calcineurin inhibitors, FK506 and CsA, exert a moderately synergistic antiviral effect, 

with a log volumes of 5.55. The maximal degree of combined inhibition between 

FK506 and CsA was achieved at 1 μg/ml CsA and 0.4 μg/ml FK506, with a synergy 

volume of 35.06 μM2% above the expected value. The combination of calcineurin 

inhibitors, FK506 (figure 7B) or CsA (figure 7C) with MPA achieved a synergy volume 

of -7.79 μM2% (log volume of -0.93) and -14.58 μM2% (log volume of -1.32), 

respectively, indicating that the combination effect of calcineurin inhibitors with MPA 

was additive. These results highlight the dependency of norovirus biology on both 

calcineurin phosphatase activity and the presence of an adequate intracellular 

guanosine pool. 

Next, we assessed the combinatory antiviral effects of ribavirin and 

immunosuppressants. The combined effects of ribavirin and immunosuppressants, 

including CsA (n=5; figure 7D), FK506 (n=5; figure 7E), and MPA (n=5; figure 7F), is 

additive with a synergy volume of 0 μM2% (log volume of 0), 0 μM2% (log volume of 0) 

and -4.04 μM2% (log volume of -0.37), respectively. 
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Figure 7. The combinatory effects of ribavirin and immunosuppressants on norovirus 
replication. The combinatory effects of two drugs in the 48 h antiviral assay with HuNV were 
analyzed using the mathematical model MacSynergy. The three-dimensional surface plot 
represents the differences (within 95% confidence interval) between actual experimental 
effects and theoretical additive effects of the combination at various concentrations of the two 
compounds (n=5). MacSynergy analysis of the antiviral effect of FK506 in combination with 
CsA (A), MPA (B) as well as CsA in combination with MPA (C), as measured on HuNV model 
after 48 h of treatment. Combinations of ribavirin with CsA (D), FK506 (E) or MPA (F) were 
expressed by the relative HuNV RNA level compared to the control and the three-
dimensional surface plot. 
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Discussion 

Immunosuppressants are universally used to deliberately induce immunosuppression 

after organ transplantation as to prevent allograft rejection. However, this results in 

increased susceptibility to opportunistic infections, and especially norovirus infection 

has emerged as a major concern in this respect (4). A recent study reported among 

116 immunocompromised pediatric hematopoietic stem cell and solid organ 

transplant recipients, norovirus infection was identified in 22% of patients and that in 

these patients norovirus infection was associated with prolonged diarrhea and 

frequent intensive care unit (ICU) admission (4). Although new classes of 

immunosuppressive medications have been introduced to the transplant community 

during the last decades, T-lymphocytes remain the key targets of these agents as 

this cell type is a major effector in graft rejection. T-lymphocytes, however, also play 

an important role in the adaptive immune response following viral infection and thus 

reduced resistance to viral infection is an expected side-effect of graft tolerance-

inducing medications. Intriguingly, immunosuppressive medications may also directly 

interfere with the viral life cycle and for various viruses, it is now clear that the choice 

of immunosuppressive medications relates to patient sensitivity to infection (33). 

Norovirus biology, however, is relatively poorly understood and its interaction with 

different immunosuppressive regimens remains obscure at best. Here we have 

profiled the commonly used immunosuppressants on norovirus infection and related 

the effects to their cellular effectors. Thus our data provide guidance as to host 

biochemical mechanisms essential for norovirus replication and may guide clinical 

management of transplantation patients at risk for norovirus infection. With respect to 

latter especially the remarkable sensitivity of norovirus to MPA is important, 

especially in view of the absence of norovirus-directed vaccines or antiviral 

medications. 

Interestingly, our study reveals a hitherto unexpected role for calcineurin 

phosphatase activity in the norovirus life cycle. Calcineurin inhibitors include FK506 

and CsA. FK506 is currently a widely-used immunosuppressive agent for managing 

transplantation patients. CsA binds to cyclophilins and FK506 binds to FK binding 

proteins (FKBPs). Both events result in a profound inhibition of the phosphatase 

activity of calcineurin which in turn suppresses T cell proliferation. In general, FK506 

is thought to have no effect on viral infections (27). In contrast, CsA has been 
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demonstrated to interact with the biology of a broad range of viruses mainly through 

inhibiting cyclophilins. Of note, CsA inhibited HCV replication both in vitro and in vivo 

in an apparently specific manner. HCV RNA replication requires the non-structural 

HCV NS5A protein that serves as a direct ligand for CyPA. CsA could disrupt the 

CyPA-NS5A interaction, further reducing HCV RNA replication (34). In our study, 

FK506 and CsA exert a moderate inhibitory effect on norovirus replication through 

FKBP12 and CyPA, respectively. Furthermore non-immunosuppressive CsA 

analogues, which do not inhibit calcineurin, fail to suppress norovirus replication, 

which supports the hypothesis that calcineurin activation is required for norovirus life 

cycle.  

Calcineurin is a heterodimeric Ca2+- and calmodulin-dependent serine/threonine 

protein phosphatase composed of a 60-kDa catalytic subunit (PPP3CA) and a 19-

kDa calcium binding regulatory subunit (PPP3R1) (35). Our results show that 

knockdown of PPP3CA results in a dramatic reduction of HuNV replication, 

demonstrating that calcineurin is required for HuNV replication. Although the exact 

mechanism as to how calcineurin facilitates norovirus replication is unknown, but may 

resemble its role in the life cycle of polymavirus BK (36). The observation that CsA, 

but not NIM811 (a non-immunosuppressive CsA derivative) inhibits BKV replication 

by inhibiting CyPA and calcineurin activation is highly reminiscent of the results 

obtained in the present study, but concluding that effects are mechanistically identical 

requires further validation especially with respect to the role of the nuclear factor of 

activated T cells (NFAT). 

Mycophenolate mofetil (MMF) has become the first-line immunosuppressive 

treatment in kidney, pancreas, liver and heart transplantation (37). MPA, the active 

form of MMF in vivo, is a potent inhibitor of IMPDH, a rate-limiting enzyme in the de 

novo synthesis of guanosine nucleotides. By inhibiting IMPDH, MPA results in the 

depletion of the intracellular GTP and dGTP pools and exerts potent 

immunosuppressive effects. MPA has been demonstrated to inhibit a variety of 

viruses, ranging from DNA virus, including HBV, to RNA viruses, including HCV, 

dengue virus, yellow fever virus and Chikungunya virus (27). Here, we demonstrate 

that MPA potently inhibits both MNV and HuNV replication through simultaneously 

targeting IMPDH1 and IMPDH2. Furthermore, MPA at levels below serum 

concentrations in patients completely eliminates HuNV replicons from cells after long-

term treatment. In apparent agreement, 17 out of 23 IMPDH inhibitors also inhibit 
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HuNV replication in our experiments. Apparently, MPA has a high barrier against 

developing drug resistance with respect to its action on norovirus biology. In 

conjunction, our data provide compelling evidence that MPA should be the 

immunosuppressant of choice in transplantation patients at risk for norovirus infection. 

Optimization of immunosuppression could potentially help the clearance of 

norovirus infection in a proportion of infected organ recipients. However, for the 

transplant or other types of patients who fail to clear the virus, effective antiviral 

therapy is urgently needed; whereas no proven antiviral medications are available. 

Ribavirin, as a general antiviral, has been used in the clinic for decades to treat 

various types of viral infections. A recent study reported that ribavirin cleared 

norovirus and resulted in complete symptomatic and histological recovery in two 

CVID patients, which raises the possibility of ribavirin as potential antiviral therapy for 

norovirus infection. Ribavirin is a guanosine analogue, which inhibits the replication of 

a wide range of RNA and DNA viruses. Ribavirin functions through a multiple 

mechanism-of-actions, including depleting GTP pool via IMPDH inhibition, inhibiting 

viral RNA polymerase activity and causing mutagenesis. In our study, ribavirin at 

concentrations comparable to serum concentrations in patients (38) inhibited 

norovirus replication. Ribavirin, combined with MPA or calcineurin inhibitors, 

additively inhibited norovirus replication, which support the potential of ribavirin as a 

therapy for norovirus infection in transplant patients.  

In summary, we profiled the effects of clinically relevant immunosuppressants on 

norovirus replication and observe that norovirus is sensitively dependent on IMPDH 

guanine synthesizing activity but also requires calcineurin phosphatase activity. MPA 

represents a potent inhibitor of norovirus replication with a high barrier towards 

development of drug resistance. Ribavirin is a promising candidate in treating 

norovirus infection, though further evaluation particularly in patients is needed. 

 

Materials and methods 

Antibodies 

Primary antibodies targeting cyclophilin a (CyPA; polyclonal rabbit, 1:1000, Abcam), 

cyclophilin b (CyPB; polyclonal rabbit, 1:1000, Abcam), IMPDH1 (polyclonal rabbit, 

ab33039, 1:1000, Abcam), IMPDH2 (monoclonal rabbit, ab131158, 1:1000, Abcam), 

FKBP12 (polyclonal rabbit, sc-28814, 1:500, Santa Cruz) and β-actin (monoclonal 
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mouse, 1:1000, Santa Cruz) were used. Secondary antibodies IRDye® 800CW Goat 

anti-Rabbit IgG (H + L) (1:10000; Li-Cor) and IRDye® 680RD Goat anti-Mouse IgG 

(H + L) (1:5000; Li-Cor) were used, as appropriate. 

 

Quantification of MNV 

The MNV was quantified by the 50% tissue culture infective dose (TCID50). Briefly, 

RAW cells were cultured in 96-well plates at 1000 cells/well. After overnight 

incubation, 50 μl of 10-time serial dilutions of MNV were added. The plate was 

incubated at 37℃ for further 5 days, followed by observing the cytopathic effect (CPE) 

of each well under light scope. The TCID50 was measured by using the Reed-

Muench method. 

Another optimized qRT-PCR assay was developed to quantify MNV genomes as 

copy numbers. In brief, cDNA containing target sequence positioning between nts 

4972 and 5064 in MNV were amplified, purified and 10 times serially-diluted. The 

dilutions were quantified by qRT-PCR to generate a standard curve, which was 

expressed by plotting the log copy numbers against the cycle threshold (Ct) value. 

Then 100 μl of MNV was lysed and Ct value was quantified by qRT-PCR assay. The 

viral genome copy numbers in the MNV culture were calculated by comparing the Ct 

with that of the standard curve. 

 

Antiviral assay with HuNV replicon model 

Before experiments, HG23 cells were cultured overnight without G418. Next day, 

HG23 cells were treated with drugs. At indicated time points, cells were lysed and 

HuNV subgenomic RNA was determined using SYBR Green-based quantitative real-

time polymerase chain reaction (qRT-PCR) method. GAPDH was used as 

housekeeping gene and data were analyzed with the 2-ΔΔCT method. All primer 

combinations were listed in supplementary table 1. 

 

Antiviral assay with MNV 

The antiviral assay with MNV was initiated by inoculating MNV into RAW cells at a 

multiplicity of infection (MOI) of 0.1. After 1 h infection, MNV-infected cells were 

treated with drugs for 24 h. The supernatants and cell layers were separately 

collected for qRT-PCR analysis. 
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MNV could induce cytopathic effect (CPE) in RAW cells (1). The antiviral activity 

of drugs on MNV was further verified by using a MTT-based CPE inhibition assay. 

Briefly, MNV-infected RAW cells were seeded into 96-well plates at 10000 cells/well. 

After 72 h treatment with drugs, more than 95 percent of CPE was observed in 

medium control. Then MTT assay was initiated and the absorbance at 490 nm was 

recorded. CPE inhibition was calculated as [(ODtreated)MNV-ODVC]/[ODcc-ODvc], where 

(ODtreated)MNV represented OD of virus-infected cells treated with drugs, while ODcc 

and ODvc represented the OD of cell control and virus control, respectively. 

 

Short-hairpin RNA delivery by lentiviral transduction 

Gene knockdown was performed as described previously (40). In brief, pLKO.1-

based vectors containing the RNA interference sequences were obtained from the 

Biomics Center at the Erasmus Medical Center. The lentiviral vectors were generated 

and condensed by high-speed centrifugation (if indicated). Transduction was initiated 

by inoculating shRNA vectors into HG23 cells. Following 3 days of transduction, cells 

were cultured with 3 μg/ml of puromycin. A validated nonsilencing scrambled vector 

(shCTR) was used as a control. All the shRNA sequences are listed in 

supplementary table 1. For simultaneous knockdown, HG23 cells were transduced 

with a first lentiviral vector. After selection with puromycin, HG23 cells were 

subsequently transduced with a second condensed lentiviral vector. 

 

Western blotting 

Cell samples were lysed and loaded onto a sodium dodecyl sulfate polyacrylamide 

gel (SDS-PAGE). After electrophoresis, the proteins were electrotransferred to a 

polyvinylidene difluoride membrane (PVDF, Invitrogen). The membrane was probed 

with primary antibody plus secondary antibody and detected with Odyssey 3.0 

Infrared Imaging System (LI-COR Biosciences). 

 

Synergy analysis 

To evaluate the interaction of ribavirin and immunosuppressants on norovirus 

replication, MacSynergy 2 (kindly provided by Mark Prichard) (41), a mathematical 
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model based on Bliss Independence theory, was employed to analyze the data from 

48 h combined treatment of ribavirin and immunosuppressants on HuNV model. 

In the MacSynergy model, the theoretical additive effect with two compounds 

could be calculated using the equation: Z = X + Y (1-X), where X and Y represent the 

inhibition produced by the individual drugs and Z represents the theoretical effect 

produced by the combination of two drugs. The theoretical additive surface is 

subtracted from the actual experimental surface. When a combination is additive, 

data points of the calculated surface lies in the zero plane. A surface that lies > 20% 

above the zero plane indicates a synergistic effect of the combination; a surface > 20% 

below the zero plane indicates antagonism. The 95% confidence interval was 

considered to be statistically significant. 
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Supplementary Results 

 

Supplementary Figure 1. Cytotoxicity of compounds determined by MTT assay. Effects of 

CsA (A), voclosporin (B), FK506 (C), MPA (D) and ribavirin (E) on viability of HG23 cells 

were determined after 24 h and 48 h treatment. Effects of MPA (F) and ribavirin (G) on RAW 

cell viability were detected after 24 h treatment (n=8).   
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Supplementary Figure 2. Standard curve for quantifying MNV genome copy numbers. 

 

 

Supplementary Figure 3. Not all immunosuppressants directly affect norovirus replication. 

Glucocorticoids, including PRED (A) and DEX (B) show no effect on HuNV replication. 
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Likewise, rapamycin, a mTOR inhibitor and immunosuppressant with low nephrotoxicity (4) 

produces no significant changes in HuNV replication (C). Similarly, BQR (D) and LFM (E), 

which are in clinical development for use in transplantation medicine, show no significant 

effects on HuNV replication. Thus modulation of norovirus infection is not a general property 

of immunosuppressants 

 

 

Supplementary Figure 4. qRT-PCR analysis of FKBP8 and FKBP12 RNA levels after 

shRNA-based knockdown. 

 

 

Supplementary Figure 5. qRT-PCR analysis of IMPDH RNA levels in IMPDH1 or IMPDH2 

knockdown cells. 
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Supplementary Table 1 

PCR primer sequences and shRNA-mediated vectors sequences were listed. 

Name Sequences 

Neomycin 
phosphotransferase 

F: 5’-CCGGCTACCTGCCCATTC-3’ 
R: 5’-CCAGATCATCCTGATCGACAA G-3’ 

MNV-1
a
 F: 5’-CACGCCACCGATCTGTTCTG-3’ 

R: 5’-GCGCTGCGCCATCACTC-3’ 

Human GAPDH F: 5’-GTCTCCTCT GACTTCAACAGCG-3’ 
R: 5’-ACCACCCTGTTGCTGTAGTAGCCAA-3’ 

Murine GAPDH F: 5’-TTCCAGTATGACTCCACTCACGG-3’ 
R: 5’-TGAAGACACCAGTAGACTCCACGAC-3’ 

CyPA primer F: 5’-TAAAGCATACGGGTCCTGG-3’ 
R: 5’-TCGAGTTGTCCACAGTCAG-3’ 

CyPB primer F: 5’-ATGTAGGCCGGGTGATCTTT-3’ 
R: 5’-TTTATCCCGGCTGTCTGTCT-3’ 

FKBP12 primer F: 5’- TGCTAGGCAAGCAGGAGGTGAT-3’ 
R: 5’- GTGGCACCATAGGCATAATCTGG-3’ 

FKBP8 primer F: 5’- ACTCCTACGACCTCGCCATCAA-3’ 
R: 5’- GGTAGTGGTCGAGCTTCAGCTG-3’ 

PPP3CA primer F: 5’-GCCCTGATGAACCAACAGTTCC-3’ 
R: 5’-GCAGGTGGTTCTTTGAATCGGTC-3’ 

IMPDH1 primer F: 5’-GCACACTGTGGGCGAT-3’ 
R: 5’-GAGCCACCACCAGTTCA-3’ 

IMPDH2 primer F: 5’-TCTTCAACTGCGGAGAC-3’ 
R: 5’-CTGTAAGCGCCATTGCT-3’ 

Scrambled vector 5’-CCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCAT 
CTTGTTGTTTTT-3’ 

CyPA vector 5’-CCGGTGGTGACTTCACACGCCATAACTCGAGTTATGGCGTGTGAA 
GTCACCATTTTTG-3’ 

CyPB vector 5’-CCGGGCCTTAGCTACAGGAGAGAAACTCGAGTTTCTCTCCTGTAG 
CTAAGGCTTTTTG-3’ 

FKBP8 sh1 vector 5’-CCGGACGTCGCTGGAGAATGGCACACTCGAGTGTGCCATTCTC 
CAGCGACGTTTTTT-3’ 

FKBP8 sh2 vector 5’-CCGGAGTGGACATGACGTTCGAGGACTCGAGTCCTCGAACGTC 
ATGTCCACTTTTTT-3’ 

FKBP12 sh1 vector 5’- CCGGAGAGAGCCAAACTGACTATATCTCGAGATATAGTCAGTTTG 
GCTCTCTTTTTT-3’ 

FKBP12 sh2 vector 5’-CCGGGCCAAACTGACTATATCTCCACTCGAGTGGAGATATAGTCA 
GTTTGGCTTTTT-3’ 

FKBP12 sh3 vector 5’-
CCGGGAGAGCCAAACTGACTATATCCTCGAGGATATAGTCAGTTTG 
GCTCTCTTTTT-3’ 

PPP3CA sh1 vector 5’-CCGGCACCACAACATAAGATCACTACTCGAGTAGTGATCTTATGTT 
GTGGTGTTTTT-3’ 

PPP3CA sh2 vector 5’-
CCGGGAATAATAACAGAGGGTGCATCTCGAGATGCACCCTCTGTTA 
TTATTCTTTTT-3’ 

IMPDH1 sh1 vector 5’-CCGGCCAGGATTCATAGACTTCATACTCGAGTATGAAGTCTATGAA 
TCCTGGTTTTT-3’ 

IMPDH1 sh2 vector 5’-CCGGCGGAAGGTCAAGAAGTTTGAACTCGAGTTCAAACTTCTTG 
ACCTTCCGTTTTT-3’ 

IMPDH1 sh3 vector 5’-CCGGGTGACGTTGAAAGAGGCAAATCTCGAGATTTGCCTCTTTCA 
ACGTCACTTTTT-3’ 

IMPDH1 sh4 vector 5’-CCGGCCTGAAGAAGAACCGAGACTACTCGAGTAGTCTCGGTTCTT 
CTTCAGGTTTTT-3’ 

IMPDH2 sh1 vector 5’-CCGGCACCTACAATGACTTTCTCATCTCGAGATGAGAAAGTCATTG 
TAGGTGTTTTT-3’ 
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IMPDH2 sh2 vector 5’-CCGGGACTGTTTCTTGGAAGAGATACTCGAGTATCTCTTCCAAGAA 
ACAGTCTTTTT-3’ 

a, accession# NC008311 

b, accession# M87661 

 

Supplementary Table 2 

The Ki values of 23 IMPHD inhibitors towards IMPDH1 and IMPDH2. Because of 

confidentiality, the structures are not shown. 

# IMPDH I Ki in nM IMPDH in nM MW 

102 330 250 667.44 

1316 82.10 55.70 749.56 

1315 0.60 13.90 744.53 

1401 2553 231.1 569.58 

1344 162.80 102.40 569.58 

1346 859.1 243.9 546.54 

1347 703.4 230.1 562.60 

1348 1725 365.7 433.51 

1351 618.40 185.90 549.59 

1352 136.20 93.01 646.66 

1353 1255 364.70 790.35 

1356 70.12 65.69 588.67 

1401-L-ABC
a
 - - 588.67 

1357 1813 522.50 569.58 

1389 11274 297.90 706.75 

1391 4221 2160 526.55 

1393 5556 2398 481.55 

1400 9138 367.7 596.69 

1402 2203 146.7 465.57 

1406
b
 - - 269.32 
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1407
b
 - - 287.31 

1382 1815 2154 568.59 

1385 521.80 487.40 391.42 

a, 1401-L-ABC inhibit IMPDH. 

b, If 1406 and 1407 were converted in the cell into their corresponding NAD analogues, they 

should show some inhibition of the enzyme. 

 

Supplementary Discussion 

Glucocorticosteroids were widely used during the early years of organ transplantation. 

Nowadays clinicians generally attempt to avoid prescribing steroids in case of active 

infection because of their potential of facilitating the infectious process and concern 

about long-term complications associated with such treatment regimens (5). For 

instance, steroids boluses used to treat acute rejection in hepatitis C virus (HCV) 

infection-related liver transplantation are often associated with an increase in viral 

load and the severity of HCV recurrence (5, 6). In cell culture, steroids are reported to 

have no effect on HCV replication (7), but can specifically facilitate viral entry by 

enhancing the expression of the HCV co-receptors (8). In the present study, however, 

we observe no direct effect of steroids on norovirus replication in cell culture, 

although their impact on norovirus infection in patients remains to be addressed. 

Rapamycin when complexed to FKBP12 to form the FKBP-rapamycin complex that 

directly binds to mTOR complex 1 and thus inhibits the mTOR pathway, appears 

likewise safe but is associated with anti-norovirus activity per se. This contrasts the 

situation with HCV infection. Rapamycin potently inhibits HCV RNA replication, but 

does not influence the early replication cycle steps associated with its biology such 

as cell entry and viral RNA translation (9). Diametrically opposing the situation with 

HCV, another study showed that rapamycin facilitated hepatitis E virus (HEV) 

replication through inhibition of PI3K-PKB-mTOR pathway. The latter pathway limits 

HEV infection and acts as a gate-keeper with respect to HEV in human HEV target 

cells. In our study, rapamycin treatment results in no change on norovirus replication 

in cell culture models and thus effects of mTOR inhibitors on viral life cycle appear 

highly virus specific, hampering design of rational immunosuppressive therapies 

using this medication. Brequinar and leflunomide, two best-known inhibitors of 

dihydroorotate dehydrogenase (DHOD), interfere with cell proliferation by inhibiting 
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pyrimidine nucleotide biosynthesis (10). Leflunomide has been extensively studied 

and is approved for the treatment of psoriatic arthritis and rheumatoid arthritis (11). 

Leflunomide has been shown to inhibit HIV-1 replication mainly through pyrimidine 

nucleotide pool depletion (12). In our study, both leflunomide and brequinar showed 

no effect on HuNV replication and appear thus not specifically useful for the 

management of patients at risk for norovirus infection. 
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How do the findings presented in this thesis advance our understandings on the 

importance of rotavirus infection in organ transplantation, the utilization of primary 

intestinal organoids model to study viral infection and antiviral therapy, the 

understanding of the effects of immunosuppressive medicines on rotavirus infection 

and identification of the cellular signaling pathways important for rotavirus infection? 

These are the question I set out to answer in this thesis and in this chapter, I aim to 

analyze my success in answering them and to relate the findings obtained in this 

respect to the contemporary body of biomedical literature with also a special aim in 

defining future directions of research I deem appropriate. 

 

Enteric viruses including rotavirus and norovirus in organ transplantation 

 

Diarrhea has been emerged as a common complication after solid organ 

transplantation, and is particularly the consequence of viral infections in these 

patients (1). Rotavirus, as one of most important causative agents of severe 

enterogastritis in infants younger than three years old, has become increasingly 

recognized as a pathogen in solid-organ transplantation (2). At the start of my 

research, motivated by the incompleteness of information about this subject I decided 

to embark on a literature study which resulted in the completion of a comprehensively 

review, on this issue (Chapter 2). The results show that rotavirus infection is major 

driver of severe gastroenteritis in organ recipients irrespective to their age 

(contrasting the situation in the population at large, where such gastroenteritis is 

mainly to small children). An average incidence of 3% of rotavirus infections in organ 

recipients was found by combining results of 6176 organ recipients, and eight deaths 

were found to be related to rotavirus infection. Thus rotavirus is a serious concern in 

this patient group (Chapter 2). Most of data were collected from industrialized 

countries, it is plausible to assume that rotavirus infect is not regularly diagnosed in 

organ recipients in developing countries, which might cause underestimate of the 

incidence in this disease in developing countries (Chapter 2). We also find that 

intestinal transplant patients (12.95%), liver transplant patients (4.44%) and HSCT 

patients (4.40%) are more susceptible to rotavirus infection as compared to other 

organ transplantation recipients, but the reason behind this discrepancy is not very 

clear, also in view of largely similar immunosuppressive regimens in different groups 
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of organ recipients, unravelling the factors that drive this difference is of utmost 

interest also in view of my finding that rotavirus might be able to cause acute cellular 

rejection (ACR) leading to graft loss in organ recipients. With respect to the latter, I 

suspect that the virus can stimulate the host immune system provoking graft loss 

(Chapter 2). For instance, there is cellular infiltration of gut-associated lymphoid 

tissue (GALT) in the rotavirus-infected intestine and it is rational to assume that these 

GALT areas represent local intestinal immunity stimulation. Particular viruses are 

reported to result in non-specific abnormal regulation of the immune system. Even 

though very limited information is available about as to whether rotavirus can cause 

ACR via promotion of GALT, I demonstrated that rotavirus infection can induce 

expression of a panel of interferon stimulated genes (ISGs) in both Caco2 cells and 

organoids models (3 and Chapter 3), which provides strong evidence for the 

immunostimulatory function of rotavirus infection. Apart from rotavirus, I discovered 

that another enteric virus, norovirus was also reported to occasionally infect organ-

transplanted patients (4). I concluded that more attentions should be paid about 

rotavirus and norovirus infections in transplanted patients to reduce burden of these 

viruses, but also that more attention should be given to investigating the interaction of 

immunosuppressive medication and process of viral infection.  

Immunosuppressive medicines including steroids (prednisolone and 

dexamethasone), cyclosporine A (CsA), tacrolimus (FK506), mycophenolic acid 

(MPA), mTOR inhibitor etc. have been extensively used to combat organ rejection in 

transplanted patients, albeit at the cost of opportunistic infections (5). As such 

medication usually shows extensive interactions with multiple aspects of intestinal 

cell biology it is possible that certain types of immunosuppressive medication can 

directly interfere with the viral life cycle and combat viral infection while 

simultaneously preventing graft rejection. Indeed this has already been shown for 

other viruses (6). With this possibility in mind I profiled the effects of commonly-used 

immunosuppressive drugs on rotavirus and norovirus infections. I find that 

glucocorticosteroids do not interact with the viral life cycle of these enteric viruses 

(Chapter 4 and 8), which contrasts earlier reports that dexamethasone and 

prednisolone inhibit HCV replication (7). Thus interaction with viral life cycle appears 

highly virus type specific. CsA has been reported to inhibit various virus infections 

including HCV (8) and HIV (9). As the calcineurin inhibitors, CsA and FK506 are often 

used as immunosuppressive medicine in organ transplantation recipients, and also in 
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view of the reported interaction with the viral life cycle for other viruses infecting 

endodermal derivatives. CsA was reported to inhibit HCV infection in the absence of 

effects on the rate of cell growth or viability (8), in addition CsA was also reported to 

suppress HIV (9) and Flavivirus (10). I investigated the effect of this medication on 

the life cycle of enteric viruses. However, I find that the calcineurin inhibitors including 

CsA only moderately inhibits rotavirus and norovirus, while FK506 has no effect on 

rotavirus but moderate inhibitory effect on norovirus. Thus usefulness of these drugs 

in organ transplantation patients at risk for enteric viral infection is questionable, while 

simultaneously these results uncover a mechanistic dichotomy between the effects of 

different calcineurin inhibitors on enterocyte physiology (Chapter 4 and 8). MPA is a 

nucleoside analogue, which non-competitively inhibits inosine monophosphate 

dehydrogenase (IMPDH), and is thus essential for biosynthesis of guanine 

nucleotides (11). The replication of RNA or DNA viruses evidently requires guanine 

nucleotides, and thus it is plausible that MPA is able to impair viral replication (11). In 

apparent agreement, I found that MPA report to exert potent antiviral effects on 

rotavirus and norovirus via inhibition of IMPDH. Importantly, MPA displays a high 

barrier toward the emergence of drug resistant viral variants, implying that this drug 

potentially combines immunosuppressive therapy with antiviral activity and should 

thus be considered as the drug of choice for organ transplantation recipients at risk 

for infection by enteric viruses (e.g. those patients in frequent contact with young 

children).  

Increasing evidence indicate that rotavirus might be one of the causative agents in 

IBD (12). 6-TG has been increasingly used for the treatment in IBD patients. 

Interestingly, we demonstrated that 6-TG could potently inhibit rotavirus infection with 

a high barrier towards developing drug resistance (Chapter 5). Mechanically, this 

inhibitory effect is though inhibition of the active form of the Rac1 protein (GTP-Rac1) 

(Chapter 5). The biomedical literature indicates a remarkable low incidence of 

rotavirus infection in the setting of IBD (12, 13). Based on my findings and the 

relatively frequent use of 6-TG in the IBD patient group, I propose that the use of 6-

TG in this setting mediates protection against rotavirus explaining the low incidence 

of rotavirus infecting in this particular case, but this notion obviously requires further 

substantiation. In conjunction, the findings presented in my thesis suggest that 

clinical management of organ transplant patients should be adapted as to incorporate 

the potential risk for enteric viruses and suggest that patients with a high risk for 
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contracting such viral infection should be managed with MPA. Similarly, also IBD 

patients at risk for rotavirus infection would benefit from aggressive implementation of 

6-TG therapy.  

 

Development of primary intestinal organoids as novel model for study 

rotavirus infection and antiviral therapy  

As a double stranded RNA virus, rotavirus has eleven segments which are highly 

variable, which results in more than 110,000 strains from all over the world and a 

large number of distinctly-evolved rotavirus strains is continuously emerging (3). The 

current models for rotavirus research mainly include immunized cancer cells and 

animal models, which only recapitulate certain aspects of the rotavirus infection 

process, hampering development in the field and in particular the identification of 

effective novel antiviral medication. Primary intestinal organoids (also called mini-gut) 

attract increasing global attention, since the model retains the hallmarks of an in vivo 

epithelium (14). We confirmed the primary intestinal organoids can support infection 

with both laboratory rotavirus strains and patient-derived rotavirus isolates (Chapter 

3). This model can also be used for modeling virus-host interaction and antivirals 

including IFNα and ribavirin (Chapter 3). Organoids can be passaged for a long term, 

long-term storage by freezing is also possible, and these organoids allow 

investigation by a host of approaches including various molecular biological 

experimental modalities like infection by retro- and lentiviruses, western blotting and 

immunohistochemistry. Thus, organoids are in general versatile experimental tools 

(14). Importantly, I find that the inhibition by antivirals on rotavirus biology is less 

potent in organoids as compared to conventional cell line models. Thus my results 

suggest that organoids model are closely resembling the experience in in vivo 

models (Chapter 3) but without the associated ethical concerns or the species 

restriction. I thus propose the organoid model to be an effective model for 

personalized evaluation of medicines with regard to rotavirus infection (Chapter 3).  

 

The PI3K-Akt-mTOR-4E-BP1 axis sustains rotavirus infection and represents 

an antiviral target 
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The PI3K signaling axis regulates a variety of cardinal processes in cellular 

physiology including sustaining cell growth and providing an important survival 

signals in addition to stimulating protein synthesis, and angiogenesis while also 

mediating anti-cancer drug resistance in mammalian cells (15). The main elements of 

the pathway include PI3K, Akt and mTOR. PI3K consists of p110 catalytic subunit 

and a p85 regulatory subunit. Akt (also known as PKB) is a serine/threonine kinase 

and mTOR is a serine threonine protein kinase (16). Many viruses highjack the PI3K-

Akt-mTOR pathway to further perform their infection (17). It was reported that the Old 

World alphavirus Semliki Forest virus strongly activates PI3K-Atk-mTOR pathway 

(18), while Vesicular stomatitis virus (VSV) negatively regulates PI3K-Akt-mTOR 

pathway (19) suggesting that modulation of activity of this pathway is a general 

characteristic of viral infection. We find, however, that rotavirus has no effects on this 

pathway (Chapter 6). Antagonism of a PI3K-Akt-mTOR pathway inhibits the life cycle 

of various viruses including influenza A virus (20), CCR5 (R5)-tropic HIV (21), and 

middle east respiratory syndrome coronavirus (22). I find that the suppression of 

PI3K-Akt-mTOR pathway is able to inhibit rotavirus infection (Chapter 6) as well. 

mTOR is well established to inhibit autophagy, a process in which cells initiate a 

lysosomal-dependent self-digestive process and that is particularly triggered by 

nutrient starvation (23). Autophagy was reported to constitute a protective 

mechanism against infection by Sindbis Virus (24), and induction of autophagy by 

trehalose through the inhibition of mTOR was demonstrated to inhibit human 

cytomegalovirus infection (25). Consistent with these observations, I demonstrate 

that the mTOR inhibitor, rapamycin is able to induce autophagy, and that the thus-

evoked increase in autophagy indeed inhibits rotavirus infection (Chapter 6). In this 

sense my observations fit well with the contemporary body of biomedical literature.  

The eIF4F complex exerts an important role in regulating the cap-dependent 

mRNA translation. eIF4F consists the eIF4E (as a cap-binding protein), the eIF4A (as 

a DEAD box RNA helicase) and the eIF4G (as a scaffolding protein) (Figure 1) (26). 

The eIF4F complex was reported to sustain HEV replication (27), West Nile Virus 

infection (28), and barley yellow dwarf virus replication (29). I find, however, that the 

eIF4F complex inhibits rotavirus infection (Chapter 7). We propose our findings as 

potential target for development of novel antiviral medicines against rotavirus 

infection.  
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Figure 1. Schematic diagram of eIF4F which contains eIF4E, eIF4A and eIF4G. PDCD4 
inhibits eIF4A to negatively regulate the complex. eIF4F complex inhibits rotavirus infection.  

 

Conclusion and future perspective 

In this thesis, we first highlighted important clinical complications associated with 

rotavirus infection in setting of orthotopic organ transplantation, I then analyzed the 

incidence of rotavirus infection, its diagnosis, its pathogenesis, how to rationally use 

of immunosuppressive agents in patients at risk for rotavirus infection, especially by 

studying the interactions of rotavirus with specific immunosuppressants, and also 

how to manage rotavirus infection in organ recipients. I also found 3% incidence of 

rotavirus infections among 6176 transplantations. I conclude that rotavirus infections 

occurring in transplantation patients remain clinically largely not diagnosed, and thus 

more attention should be paid to this pathogen.  

The situation might be improved through the development of new superior model 

systems allowing new directions of research. I demonstrated that primary intestinal 

organoids can support infection with both laboratory rotavirus strains and with 

patient-derived rotavirus isolates. Thus, the organoid model might become 

exceedingly useful for obtaining new scientific insights but may also become 

important for individualized assessment of the efficacy of different antivirals in a 

particular patient, next to their potential for developing new and effective medicines 

against rotavirus. In support for this notion I found that the broadly used antivirals 
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including interferon α and ribavirin inhibit rotavirus replication utilizing the organoid 

model. I thus propose that organoids provide a promising novel avenue for 

investigating rotavirus-host interactions and the evaluation of medicines against 

rotavirus. 

I profiled common used immunosuppressive medicines on enteric rotavirus and 

norovirus infections. I found that CsA moderately inhibits rotavirus and norovirus 

infections, and that MPA is very in this respect for both viruses and also with high 

barrier towards the development of drug resistance. Mechanistically, the antiviral 

effects of MPA are mediated through inhibition of its canonical cellular target IMPDH 

and depend on the resulting guanosine nucleotide depletion. I also found that 6-TG 

potently inhibits rotavirus via blocking the formation of the active form of Rac1 (GTP-

Rac1), again with high barrier towards the development of drug resistance. I hope my 

findings will become an important reference for clinicians to design optimal 

immunosuppressive therapy for rotavirus infected transplantation patients and aid the 

development of novel antiviral medicines against rotavirus.  

I also demonstrated that PI3K-Akt-mTOR signaling pathway sustains rotavirus 

infection and that the clinically used mTOR inhibitor rapamycin significantly inhibits 

rotavirus infection. Rapamycin induces autophagy via 4E-BP1, and induction of 

autophagy exerted antiviral effect on rotavirus, suggesting that this is the mechanistic 

explanation of this finding.  

Although I perceive that the findings presented in this thesis contributed to a 

better understanding of the complex nature of enteric viruses including rotavirus and 

norovirus, I also have to acknowledge that more work is needed to reduce the burden 

of rotavirus and norovirus infection and hence there is plenty of opportunities for my 

successors either at the Erasmus MC or elsewhere to further contribute to such 

efforts.  
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Dutch Summary 

 

Samenvatting voor niet ingewijden 

Buikloop of diarree kenmerkt zich door een hoofdzakelijk dunne, brijige tot waterige, 

soms slijmerige, ontlasting die gepaard kan gaan met ernstige uitdroging of zelfs 

ondervoeding.  Het woord diarree is afgeleid van het Grieks [δια ["dia"]= door, ρεω 

["reo"] = stromen]. De oorzaken van diarree zijn divers, zo zijn er toxische, 

bacteriologische en virale oorzaken. In dit proefschrift concentreer ik mij op virale 

oorzaken en met name op de zogenaamde rotavirussen en noravirussen.   

Een rotavirus is vooral bekend van dat het bij jonge kinderen overgeven en diarree 

veroorzaakt. Het is een van de ernstigere diarreeverwekkers in deze leeftijdsgroep, 

omdat de diarree die het veroorzaakt zowel erg besmettelijk als hevig is, en vaak ook 

lang aanhoudend. In ontwikkelingslanden overlijden naar schatting 600.000 kinderen 

per jaar aan een rotavirus infectie. In Nederland is een rotavirus veel minder 

bedreigend door de betere uitgangstoestand (voeding, weerstand) van de patiëntjes 

en de mogelijkheid om spoedig in een ziekenhuis door middel van een infuus te 

worden gerehydrateerd, waardoor uitdroging wordt voorkomen. Toch is het ook bij 

ons een belangrijke oorzaak van ziekenhuisopnamen wegens diarree bij kinderen. 

Vrijwel ieder kind maakt echter in zijn of haar leven minstens één rotavirusinfectie 

door en ziekenhuisopname is gelukkig maar zelden noodzakelijk.  

In een door mij uitgevoerde literatuurstudie (Hoofdstuk 2) ontdekte ik dat ook 

patiënten die door transplantatie een orgaan hebben ontvangen vatbaar zijn voor 

rotavirusinfectie en dat dergelijke virussen een belangrijke oorzaak zijn voor diarree 

in deze patiëntengroep. Opvallend is dat de leeftijd weinig uit lijkt te maken, jonge 

patiënten zijn niet meer gevoelig dan oudere patiënten. De immunosuppressieve 

medicatie die dergelijke patiënten krijgen maskeert waarschijnlijk de leeftijd 

afhankelijke bescherming tegen rotavirusinfectie die algemene populatie wel geniet. 

De notie dat virusinfectie interacteert met het immuunsysteem werd verder 

gesubstantieerd in hoofdstuk 3. Ik infecteerde intestinale cellen en darmorganoïden 

(een simpele miniatuur versie van de darm die in het laboratorium kan blijven leven 

en vermenigvuldigd kan worden) met rotavirussen en ontdekte dat deze darmcellen 
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na infectie allerlei inflammatoire producten gingen uitscheiden. Het werd dus 

belangrijk om te gaan onderzoeken hoe individuele soorten immuunsuppressieven 

interacteerde met de virale levenscyclus. Immers, een medicijn dat naast afstoting 

ook met de virale levenscyclus interfereert, zou dus van grote waarde zijn. De 

resultaten van een dergelijk onderzoek beschrijf ik in hoofdstuk 4. Ik laat in deze 

studie zien dat corticosteroïden geen interactie met virale levenscyclus van 

darmvirussen vertoont. Sommige calcineurin inhibitoren hadden wel enig effect op 

darmvirussen, andere weer niet. Het bleek echter dat mycofenolzuur een sterk 

immuunsuppressief effect combineert met een potente antivirale werking met 

betrekking tot enterische virussen. Dit zou dan ook de aanbevolen 

immuunsuppressie moeten zijn voor die patiënten die verhoogd risico lopen op 

infectie met dergelijke virussen (bijvoorbeeld die patiënten die frequent in contact 

komen met kleine kinderen). Deze gedachtegang werd nog verder uitgebouwd in 

mijn studie (hoofdstuk 5) met 6-thioguanine (een  Immuunsuppressivum dat wordt 

gebruikt na orgaantransplantatie maar vooral bij auto-immuunziekten zoals de ziekte 

van Crohn). Het bleek dat deze medicatie een sterk remmend effect had op het 

rotavirus en haar infectie van cellen. Ook bij deze patiënten zou men dus moeten 

kiezen voor een behandelstrategie waarin deze medicatie snel wordt ingezet bij die 

patiënten die een verhoogd risico lopen op rotavirusinfectie. 

Een belangrijk aspect van mijn dissertatie is dat ook een belangrijk conceptueel 

manco probeer te repareren: de afwezigheid van een goed model systeem om virus 

infectie in te bestuderen en om nieuwe medicatie in te kunnen ontwikkelen. Het is 

met name deze situatie die rotavirus infectie zo’n groot probleem maakt.  Met de 

introductie darmorganoïden (een simpele miniatuur versie van de darm die in het 

laboratorium kan blijven leven en vermenigvuldigd kan worden) in dit proefschrift als 

nieuw rotavirusinfectie model kan aan deze situatie wellicht iets gedaan worden. 

Dergelijke technologie kan ook gebruikt worden om de cellulaire mechanismen te 

ontrafelen die het virus nodig heeft voor infectie en reproductie. Een belangrijke 

biochemische route betrokken bij de levenscyclus van vele virussen is de 

zogenaamde PI3-kinase-PKB-mTOR cascade, een cruciale groep van processen die 

bijvoorbeeld de hoeveelheid eiwitsynthese regelt maar ook de van cellen resistentie 

tegen geprogrammeerde celdood controleert. Vele virussen veranderen de activiteit 

van deze belangrijke cascade. In hoofdstuk 6 stel ik echter vast dat dit niet geldt 
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voor rotavirussen. Wel kon ik vaststellen dat de achtergrondsactiviteit van deze 

signaalweg essentieel is voor succesvolle virusinfectie. Het remmen van deze 

signaalweg is dan ook een mogelijkheid om rotavirus medicamenteus te behandelen. 

In hoofdstuk 7 beschrijf ik de ontdekking van nog een andere strategie om 

rotavirusinfectie te bestrijden. In dit hoofstuk focus ik mij op het eukorayote 

initiatiecomplex 4F, wat belangrijk is bij de vertaling in eiwit en ik stel vast dat dit 

complex een remmende werking heeft op het doorlopen van de rotavirus 

levenscyclus. Het stimuleren van dit complex is dan ook een interessante 

mogelijkheid om slecht-controleerbare rotavirus infectie klinisch te gaan behandelen, 

al moet er nog wel veel werk gebeuren voordat zoiets echt in de zorg kan worden 

toegepast.  

In hoofdstuk 8 plaats al deze bevindingen in het kader van de reeds bestaande 

ideeën en beschikbare biomedische wetenschappelijke literatuur  aangaande het 

rotavirus en daarmee geassocieerde  ziektebeelden. Ook geef ik daar mijn ideeën 

over hoe we nu verder moeten met betrekking tot het ontwikkelen van behandelingen 

en de vragen waar verder onderzoek zich op zou moeten richten. Het mijn hoop dat 

ik met dit werk in ieder geval een eerste aanzet heb gegeven tot beter begrip en 

betere therapie van rotavirusinfectie. 
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