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Throughout their lives, people will encounter numerous combinations of words 

and pictures when gathering information and accumulating new knowledge. For 

example, in early childhood, children learn the meaning of new words by coupling a 

spoken word to a picture. In later stages of life, children, adolescents and adults read 

magazines, newspapers, websites, and study textbooks or e-learning resources that 

combine text (written or spoken) with pictorial information (static or dynamic). A 

large body of research exists in educational psychology which tried to identify how 

multimedia materials (the term used to refer to instructional materials that combine 

text and pictures) should be designed to optimize learning. This research is inspired 

by the Cognitive Theory of Multimedia Learning (CTML; Mayer, 2014) and Cognitive 

Load Theory (CLT; Sweller, Ayres, & Kalyuga, 2011), and has led to the establishment 

of numerous principles for effective multimedia design.  

This dissertation is concerned with the central tenet of two of those principles. 

The coherence principle (Mayer & Fiorella, 2014), states that people learn more 

deeply from a multimedia message when unnecessary or irrelevant material is 

excluded rather than included. The redundancy principle (Kalyuga & Sweller, 2014), 

suggests that presenting redundant material (e.g. the same information in two 

different formats) interferes with rather than facilitates learning. In effect, both 

principles entail that the presentation of extraneous information should be avoided, 

because it hampers learning compared to instructional materials from which this 

information has been eliminated. Extraneous information is defined as information 

that is either irrelevant (i.e., not related to the learning goal) or unnecessary (i.e., 

related to the learning goal, but not necessary for learning because the information 

is presented twice or is unnecessarily elaborate). However, eye tracking studies 

suggest that people can learn to ignore task-irrelevant information and focus more 

on task-relevant information with relatively little practice (Haider & Frensch, 1999) 

or explicit instruction (Canham & Hegarty, 2010; Hegarty, Canham, & Fabrikant, 

2010). The central question addressed in this dissertation, therefore, is whether 

extraneous information (either irrelevant or unnecessary) would continue to hamper 

learning when it is present over a series of tasks, items, or slides, which would give 

learners the chance to adapt their study strategy. When learners would start to 

ignore the extraneous information, its negative effect on learning should diminish or 

disappear.  

This question is both theoretically and practically relevant. As for theoretical 

relevance, investigating this question would provide more insight into task 
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experience (i.e., familiarity with the design of the materials) as a possible boundary 

condition to the negative effect of extraneous information on learning, and the 

establishment of boundary conditions is important for describing the limits of 

generalizability of scientific theories (Busse, Kach, & Wagner, 2016; Whetten, 1989). 

Moreover, research has long been focused on what multimedia designers can do to 

aid student learning, and the present studies contribute to a recent, new direction of 

research focusing on whether students can (learn) to adapt their study strategy, and, 

thus, self-manage their cognitive load when learning with multimedia (e.g., 

Agostinho, Tindall-Ford, & Roodenrys, 2013; Gordon, Tindall-Ford, Agostinho, & 

Paas, 2016; Roodenrys, Agostinho, Roodenrys, & Chander, 2012). In terms of practical 

relevance, the knowledge gained from addressing this question would be useful for 

instructional designers. That is, it is very hard for instructional designers to take into 

account all multimedia principles, because individual learner characteristics may 

interact with some of the principles (e.g. what is essential information for a novice 

may be redundant information for a more advanced learner; Kalyuga & Sweller, 

2014).  

In the remainder of this Chapter, I will first discuss the CTML and CLT in more 

detail, after which I will give an overview of the literature on the negative effect of 

extraneous information on learning and the different factors that might influence 

this effect. Then, I will focus on the effect of task experience on the processing of 

extraneous information. Finally, at the end of this Chapter I will present the research 

questions and organization of this dissertation. 

The Cognitive Theory of Multimedia Learning and Cognitive Load Theory 

The CTML (Mayer, 2014) and CLT (Sweller et al., 2011) are two of the most 

influential theories on how humans learn from multimedia learning materials. Both 

argue that the human cognitive architecture, more specifically, the limitations of our 

working memory, should be taken into account when designing learning materials. 

Working memory can be defined as “a limited capacity [brain] system allowing the 

temporary storage and manipulation of information necessary for such complex 

tasks as comprehension, learning and reasoning” (Baddeley, 2000, p. 418; text in 

square brackets added). Working memory is limited in duration and capacity (e.g., 

Baddeley, 2000; Barrouillet & Camos, 2007; Cowan, 2001; Miller, 1956). With regard 

to the capacity limitation, Cowan (2001) proposed that our memory span is limited 

to around four chunks, where a chunk is a collection of items that is remembered 

together. Regarding the limited duration, Barrouillet and Camos (2007) proposed 
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that working memory resources have to be shared between maintenance of ‘old’ 

information (prior knowledge from long-term memory or previously processed 

information during task performance), and processing of new, incoming 

information. When more old information elements have to be maintained active and 

new elements need to be processed faster, the working memory load becomes 

higher. Therefore, a task that is cognitively undemanding when time is unlimited 

can become very demanding when time is limited.  

According to CTML and CLT, learning occurs when schemas are constructed or 

elaborated in working memory and stored in long-term memory (schema acquisition 

and elaboration; Sweller, 1994). Schemas are cognitive constructs that organize 

multiple elements of information into a single element with a specific function 

(Sweller, 1994; Paas, Renkl, & Sweller, 2003). Schema construction requires the 

selection of information from the environment (e.g., the text and picture) by 

attending to it and then organizing and integrating this information (with prior 

knowledge) into a coherent schema in working memory (Mayer, 2014). Existing 

schemas (i.e., prior knowledge) can be brought from long-term memory into 

working memory and can then be elaborated or refined with the new information 

(i.e., schema elaboration; Sweller, 1994). Therefore, learning new information 

imposes a load on working memory. Three types of cognitive load can be 

distinguished: 1) Intrinsic cognitive load, resulting from essential information 

processing, 2) extraneous cognitive load, resulting from extraneous (i.e., 

irrelevant/unnecessary) information processing, and 3) germane cognitive load, 

caused by generative information processing aimed at making sense of the 

instructional materials (Mayer, 2014; Paas et al., 2003).  

Intrinsic cognitive load is determined by the complexity or element interactivity 

of the learning material (which in turn depends on the level of prior knowledge of a 

learner, e.g., Chandler & Sweller, 1991). Learning materials with low element 

interactivity (i.e., low intrinsic load) consist of elements that can be learned in 

isolation, without reference to other elements in the task (Sweller, 2010; Sweller et 

al., 2011). For example, learning vocabulary is low in element interactivity, as each 

new word can be remembered without reference to another word. In contrast, 

learning materials in which the various elements are related and must be processed 

simultaneously in working memory are high in element interactivity (i.e., high in 

intrinsic load). For instance, instructional materials about complex biological 
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processes are high in element interactivity, as relations between information 

elements need to be processed and combined in schemas for learning to occur.  

Extraneous cognitive load is imposed by processes that arise from the manner 

in which the information is presented, but do not contribute to (or may even 

interfere with) learning. For instance, in the context of this dissertation, extraneous 

load is imposed when learners are presented with irrelevant or unnecessary 

information and engage in processing that information. This draws on limited 

working memory resources without contributing to learning the essential 

information. Finally, germane cognitive load is imposed by generative processes that 

are conducive to schema acquisition and elaboration. For example, prompting 

learners to self-explain the principles behind biological processes that they are 

reading about in multimedia materials (cf. Chi, DeLeeuw, Chiu, & Lavancher 1994) 

will increase the demands on working memory, but improve learners’ 

understanding.  

The three types of cognitive load are additive, and the total cognitive load 

cannot exceed working memory resources for learning to occur. Instructional 

materials should therefore be designed in such a way that extraneous processing is 

kept to a minimum, so that all available resources can be devoted to essential and 

generative processing (Mayer, 2014; Sweller et al., 2011). Consequently, both the 

CTML and CLT state that the presentation of extraneous information, which is 

information that is irrelevant or unnecessary for learning, should be avoided because 

it hinders rather than helps learning (the coherence principle, see Mayer & Fiorella, 

2014; and the redundancy principle, see Kalyuga & Sweller, 2014).  

The Negative Effect of Extraneous Information on Learning 

The negative effect of extraneous information on learning arises because 

students attend to, process, and attempt to integrate this information with the 

essential information. These are extraneous processes (imposing extraneous load), 

which unnecessarily deplete valuable working memory resources that can no longer 

be devoted to processing the essential information. Such extraneous processing may 

not be detrimental for learning when working memory capacity limits are not 

exceeded, for instance with materials low in intrinsic load (i.e., containing few 

interacting elements), or when there is sufficient time available to compensate for 

the extraneous processing. However, it will start to hamper learning under 

conditions of high intrinsic load, for example when materials are complex (with 

many interacting elements), or when time is constrained (Barrouillet & Camos, 2007; 
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Sweller et al, 2011). Consequently, it is considered important to avoid the 

presentation of extraneous information (cf. the coherence principle, see Mayer & 

Fiorella, 2014; and the redundancy principle, see Kalyuga & Sweller, 2014). 

Extraneous information can be either irrelevant, or unnecessary for learning.  

Irrelevant Information  

Information that is irrelevant for learning has no relation with the learning goal, 

and hampers learning when added to instructional materials. The negative effect of 

irrelevant information on learning has been demonstrated for instance, when 

instructional materials are enriched with interesting and entertaining (yet irrelevant) 

information (i.e., seductive details; Harp & Mayer, 1998, Mayer, Heiser, & Lonn, 2001; 

Moreno & Mayer, 2000; Park, Moreno, Seufert, & Brünken, 2011; Rey, 2014; Sanchez & 

Wiley, 2006). For example, Harp and Mayer (1998) had participants learn about the 

formation of lightning using a booklet with or without seductive text and pictures. 

These seductive details hampered recall and transfer performance compared to 

materials without the seductive details. A negative effect on learning has also been 

found when remotely related information that actively interferes with processing of 

the currently essential information is added to the learning materials (Mayer, 

DeLeeuw, & Ayres, 2007). Mayer et al. (2007) had participants learn about the 

working mechanisms of hydraulic brakes, with or without explanations added about 

caliper brakes and air brakes. Adding explanations about caliper breaks and air 

brakes – although related to the central content - interfered with learning the 

working mechanisms of hydraulic brakes, mostly when these extra explanations 

were presented after learning about hydraulic brakes. Finally, presenting irrelevant 

pictorial information (animations) that mismatches the relevant textual information 

has been shown to hamper learning (Hald, Van den Hurk, & Bekkering, 2015).  

All in all, the negative effect of different kinds of irrelevant information (i.e., 

seductive, interfering, and mismatching information) on learning seems to be quite 

robust and does not seem to depend on whether this irrelevant information was 

presented as text (e.g., Rey, 2014), animation (e.g., Hald et al., 2015), or sounds (e.g., 

Moreno & Mayer, 2000). However, it is known that when learners have the means to 

compensate for the irrelevant information, this negative effect of irrelevant 

information on learning is smaller or absent. For instance, when learners have more 

attentional control (cf. Rey, 2014), they might not attend as much to the irrelevant 

information, and when they do not process it, it will not burden working memory. 

When learners have more working memory resources available (cf. Sanchez & Wiley, 



General Introduction 

13 

2006), for instance when they have a higher working memory capacity, it is less 

likely that working memory is overloaded. In both cases, CLT would not predict that 

learning is hampered. 

Unnecessary Information 

Unnecessary information is related to the learning goal, but not necessary for 

learning (i.e., schema acquisition or elaboration) because the information is 

presented twice or it is unnecessarily elaborate. For instance, the negative effect of 

simultaneously presenting the same text in both written and spoken form has been 

documented quite extensively (e.g., Craig, Gholson, & Driscoll, 2002, Jamet & Le 

Bohec, 2006; Kalyuga, Chandler, & Sweller, 1999; Mayer et al., 2001; but see Mayer & 

Johnson, 2008; Yue, Bjork, & Bjork, 2013).  For example, Kalyuga et al. (1999) showed 

that students learned better, while investing less mental effort, from a diagram with 

narrated text than from a diagram with narrated and on-screen text.  A negative 

effect on learning has also been found when self-containing diagrams are 

accompanied by textual explanations (Bobis, Sweller, & Cooper, 1993; Chandler & 

Sweller, 1991; Pociask & Morrison, 2008). For instance, Chandler and Sweller (1991) 

showed that the addition of unnecessary text to diagrams hampered learning, 

especially when the text was physically integrated in the diagram, or when 

participants were instructed to mentally integrate the text and the diagram. Finally, 

learning is hampered when unnecessary details and examples are added to learning 

materials while a more concise summary would have been sufficient (e.g., Mayer, 

Bove, Bryman, Mars, & Tapangco, 1996; Reder & Anderson, 1982). For example, 

Reder and Anderson (1982) showed that students learned better from a textbook 

summary than from the original text (even when the time learners could spent on 

the main points was kept equal; suggesting that unnecessary details actually 

interfere with learning the main points of a text).  

Overall, the negative effect of different types of unnecessary information (i.e., 

presenting identical text in written and spoken form, presenting identical 

information in text and diagram form, or adding unnecessary details and examples 

to text) on learning seems quite consistent. However, when participants were not 

forced to attend to the extraneous information, that is, when it was not physically 

integrated with essential information and when learners were not instructed to 

integrate it (cf. Bobis et al., 1993; Chandler & Sweller, 1991), the negative effect seems 

to be smaller, suggesting that participants were able to ignore the extraneous 

information to some extent. This in line with eye-tracking research, which suggests 
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that with increasing task experience, people learn to focus their attention more on 

task-relevant information and to ignore task-irrelevant (or extraneous) information.  

Learning to Ignore Extraneous Information 

Several eye tracking studies have shown that with increasing task experience, 

people learn to focus on task-relevant and ignore task-irrelevant information. For 

example, Charness, Reingold, Pomplun, and Stampe (2001) showed that chess 

experts had different gaze patterns than intermediate chess players, making fewer 

fixations and fixating more on relevant pieces. Van Gog, Paas, and Van Merriënboer 

(2005) found that participants with more expertise in electrical circuits 

troubleshooting had shorter mean fixation duration and fixated more on task-

relevant components of the electrical circuit in the first phase of troubleshooting, 

compared to participants with less expertise. Jarodzka, Scheiter, Gerjets, and Van 

Gog (2010), using a dynamic task, also found that experts attended more to the 

relevant parts of a stimulus compared to novices. However, these studies focused on 

expertise, that is, between-subjects differences in knowledge or skill as a function of 

task experience, rather than within-subjects effects, so they could not show a causal 

relationship between knowledge and viewing behaviour.  

This causal relationship has been investigated in studies in which participants 

build up knowledge of the task while their viewing behavior is tracked. These 

within-subjects studies confirm that, even after relatively little practice, participants 

start to ignore task-irrelevant information and focus more on task-relevant 

information. For example, Haider and Frensch (1999; see also Haider & Frensch 

1996) used an alphabetic string verification task and showed that participants 

implicitly learned to ignore the task-irrelevant information when they became more 

experienced with the task. They called this the information-reduction hypothesis, 

which states that, with task practice, participants first learn to distinguish task-

relevant from task-irrelevant information, and then learn to focus more on the task-

relevant information. Furthermore, Canham and Hegarty (2010; see also Hegarty et 

al., 2010) used a task in which participants had to make inferences from a weather 

map, either with only task-relevant information or both task-relevant and task-

irrelevant information. The presence of task-irrelevant information hampered 

performance. However, after participants got a short instruction (10-15 minutes) 

about relevant meteorological principles, they spent more time viewing the relevant 

parts of the weather map.    
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These results all indicate that, during task performance, people are able to 

ignore task-irrelevant information as a result of their (increased) expertise on a task. 

The question is whether these results would be generalizable to learning materials 

with extraneous information. When students would also be able to start ignoring 

extraneous information with increasing experience, then it would no longer capture 

attention and working memory resources, and therefore, the negative effect of 

extraneous information should decrease or no longer occur with increasing task 

experience. This leads to the main research questions, which will be discussed in the 

next section. 

Research Questions 

The aim of this dissertation is to provide an answer to the following questions: 

1) Does the negative effect of extraneous information on learning decrease or 

disappear with increasing task experience? 2) Does this effect arise because learners 

start to ignore the extraneous information? These two questions are addressed both 

for irrelevant and unnecessary information presentation. An important aspect of this 

dissertation is the use of eye-tracking methodology to address the second question, 

which can provide insight into the perceptual and cognitive processes that underlie 

the effects of different multimedia materials on learning outcomes (Van Gog & 

Scheiter, 2010).  

Organization of this Dissertation 

The two main research questions were addressed in in four empirical chapters, 

presented in two parts. The studies in Part 1, presented in Chapters 2 and 3, 

investigated whether the negative effect of irrelevant information on learning would 

decrease or disappear with increasing task experience. Chapter 2 describes three 

experiments on the effects of irrelevant pictures when learning action-word 

definitions. In all experiments, participants learned the definitions of new words 

(from an artificial language) that denoted actions, coupled with matching pictures 

(depicting the same action), mismatching pictures (depicting another action), or 

without pictures. Experiments 1a/1b addressed the question whether adding 

irrelevant information (the mismatching pictures) would hamper learning of word 

definitions compared to learning words with matching pictures or without pictures. 

Experiment 2 examined the main hypothesis that irrelevant information would no 

longer hamper learning once learners gained experience with the word-learning 

task. Finally, Experiment 3 employed eye tracking to test the hypothesis that learners 
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would adapt their study strategy and start to ignore the irrelevant information with 

increasing task experience.  

The study presented in Chapter 3 built on the findings from Chapter 2, by 

investigating whether learners suppressed attention to the content of the 

mismatching pictures, or ‘only’ learned to ignore the location of the mismatching 

pictures. This question was addressed in Experiments 1a/1b, by systematically 

changing the location of matching and mismatching pictures for half of the 

participants after they had accumulated task experience. If participants would only 

suppress attention to the picture location, then word learning should be negatively 

affected after the location change for participants engaging in word learning with 

mismatching pictures. However, if they were aware that the content of the 

mismatching pictures was irrelevant for learning the word definitions, they would be 

expected to actively suppress attention to the pictures regardless of the location, in 

which case performance should not be negatively affected after the location change 

for participants engaging in word learning with mismatching pictures. 

The studies in Part 2, presented in Chapters 4 and 5, investigated the negative 

effect of unnecessary information on learning, using more complex (i.e., higher 

element interactivity) multimedia materials (i.e., expository text with pictures on 

biological processes). In the two experiments in Chapter 4, the hypothesis was 

addressed that learners would start to ignore unnecessary textual information 

(which merely described the picture) with increasing task experience, thereby 

reducing its negative effects on learning. In addition, it was investigated whether the 

layout of the unnecessary information (integrated in or separated from the picture) 

would influence the effect of unnecessary text on attention and learning over time 

(i.e., with task experience). Participants learned about the process of mitosis with 

materials consisting of a combination of essential text and pictures (control), 

essential text and pictures with unnecessary text presented either integrated in or 

separated from the picture. It was hypothesized that an initial negative effect of 

unnecessary information would occur; that this negative effect would decrease (or 

even disappear) as participants gained task experience; and that this decrease would 

be stronger when the unnecessary text was presented separated from the picture 

(i.e., separated unnecessary text would be easier to ignore than integrated 

unnecessary text).  

In the two experiments described in Chapter 5 participants studied multimedia 

materials about the functioning of the heart. This study involved a replication of 
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Experiment 5 of Chandler and Sweller (1991), which was part of a series of 

experiments showing that (1) the addition of unnecessary text to a self-containing 

diagram impeded learning; (2) this negative effect of unnecessary text was larger 

when the text was spatially integrated in the essential materials as compared to 

spatially separated; and (3) this effect was larger when participants were instructed 

to mentally integrate the separated unnecessary information as compared to no such 

instruction. A second aim of the first experiment in Chapter 5 was to examine the 

influence of pacing (system-paced vs. self-paced) on the occurrence and size of the 

negative effect of unnecessary information, as this negative effect might be larger 

when learning is system-paced, because under system-paced conditions, any 

unnecessary information processing goes directly at the expense of time available for 

essential information processing.  

In these experiments, we used four different lay-outs in four different 

conditions: 1) a diagram presented without unnecessary text (diagram only); 2) a 

diagram with unnecessary text separated from the diagram (separated); 3) a diagram 

with unnecessary text separated from the diagram with the instruction to mentally 

integrate the text and the diagram (integration instruction); or 4) a diagram with 

unnecessary text integrated into the diagram (integrated). In Experiment 1 study 

time was self-paced for half of the participants, and system-paced for the other half. 

We hypothesized to find a negative effect of the unnecessary text when it was 

integrated in the essential material, or when participants received the integration 

instruction. We also addressed the open question whether participants would be 

able to ignore the spatially separated unnecessary text to such an extent that it 

would not hamper their learning compared to a diagram-only condition. In addition, 

we hypothesized that system-pacing would aggravate the negative effects of 

unnecessary text on learning, particularly in the integrated condition and the 

integration-instruction condition because these conditions were assumed to impose 

the highest cognitive load on the learner.  

Finally, Chapter 6, presents a summary and general discussion of the main 

results of this dissertation.  
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Chapter 2 
 
Task Experience as a Boundary 
Condition for the Negative Effects of 
Irrelevant Information on Learning 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter has been published as: 
 
Rop, G., Van Wermeskerken, M., De Nooijer, J. A., Verkoeijen, P. P. J. L., & Van Gog, 
T. (in press). Task experience as a boundary condition to the negative effects of 
irrelevant information on learning. Educational Psychology Review. doi: 
10.1007/s10648-016-9388- 
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Abstract 

Research on multimedia learning has shown that learning is hampered when a 

multimedia message includes extraneous information that is not relevant for the 

task, because processing the extraneous information uses up scarce attention and 

working memory resources. However, eye-tracking research suggests that task 

experience might be a boundary condition for this negative effect of extraneous 

information on learning, because people seem to learn to ignore task-irrelevant 

information over time. We therefore hypothesized that extraneous information 

might no longer hamper learning when it is present over a series of tasks, giving 

learners the chance to adapt their study strategy. This hypothesis was tested in three 

experiments. In Experiments 1a/1b, participants learned the definitions of new words 

(from an artificial language) that denoted actions, with matching pictures (same 

action), mismatching pictures (another action), or without pictures. Mismatching 

pictures hampered learning compared to matching pictures. Experiment 2 showed 

that task experience may indeed be a boundary condition to this negative effect on 

learning: The initial negative effect was no longer present when learners gained 

experience with the task. This suggests that learners adapted their study strategy, 

ignoring the mismatching pictures. That hypothesis was tested in Experiment 3, 

using eye tracking. Results showed that attention to the pictures waned with task 

experience, and that this decrease was stronger for mismatching than for matching 

pictures. Our findings demonstrate the importance of investigating multimedia 

effects over time and in relation to study strategies.  
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Introduction 

Multimedia learning, which can be defined as learning with a combination of 

words (written or spoken) and pictures (static or dynamic), has been widely 

investigated in research inspired by the Cognitive Theory of Multimedia Learning 

(CTML; Mayer, 2014) and Cognitive Load Theory (CLT; Sweller, Ayres, & Kalyuga, 

2011). This has led to the establishment of several principles for designing effective 

multimedia instructions. The present study is concerned with the coherence principle, 

which states that presenting extraneous information that is not relevant for the 

learning task should be avoided, because it hinders rather than helps learning (Mayer 

& Fiorella, 2014). Because eye-tracking research has shown that with increasing task 

experience, people learn to ignore irrelevant information during task performance, we 

hypothesized that task experience might be a boundary condition for the negative 

effect of extraneous information on learning. That is, the negative effect that the 

presentation of extraneous information initially has on learning might no longer occur 

when this information is present (in the same location) over a series of tasks, because 

learners might adapt their study strategy (i.e., learn to ignore the extraneous 

information). This hypothesis was tested in a series of three experiments, which will 

be introduced after discussing the relevant literature in more detail. 

Cognitive Load in Multimedia Learning 

Decades of multimedia research have shown that learning often improves when 

study tasks or materials combine pictorial and verbal representations of the content 

(i.e., the multimedia effect; Butcher, 2014). However, it soon became apparent that 

there are circumstances under which this hampers rather than aids learning (e.g., 

Chandler & Sweller, 1991; Harp & Mayer, 1998). These circumstances are related to 

the limitations of working memory, which can be defined as “a limited capacity 

[brain] system allowing the temporary storage and manipulation of information 

necessary for such complex tasks as comprehension, learning and reasoning” 

(Baddeley, 2000, p. 418; text in square brackets added). Working memory is limited 

in both duration and capacity (e.g., Baddeley, 2000; Barrouillet & Camos, 2007; 

Cowan, 1995; Miller, 1956). For instance, on average, our memory span is ‘seven plus 

or minus two’ chunks, where a chunk is one piece of information (Miller, 1956). 

Barrouillet and Camos (2007) propose that the limited working memory resources 

have to be shared by rapidly switching attention between maintenance of ‘old’ 

information (prior knowledge from long-term memory or previously processed 

information during task performance), and processing of new, incoming 
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information. Consequently, the higher the number of old information elements that 

have to be maintained active, and the faster new elements need to be processed, the 

higher the working memory load.  

Learning (i.e., schema construction/elaboration in long-term memory; Sweller, 

1994) requires that old information is maintained active in working memory and 

successfully integrated with the new information presented in the learning materials. 

When these processes are disrupted, learning is hampered. Moreover, learning may 

be hindered when scarce working memory resources are devoted to processing 

extraneous information that is not necessary for the learning task. Such extraneous 

processing may not be detrimental for learning when capacity limits are not 

exceeded, for instance with simple materials (that contain few interacting 

information elements), or when there is sufficient time available to compensate for 

the extraneous processing. However, it will start to hamper learning when materials 

are complex (with many interacting information elements), or when time is 

constrained (Barrouillet & Camos, 2007; Sweller et al, 2011). Consequently, it is 

important to avoid the presentation of extraneous information that does not 

contribute to learning as much as possible.  

Avoiding the Presentation of Extraneous Information in Multimedia Learning 

That the presentation of extraneous information can have a negative effect on 

learning has been established in many experiments. However, there are two different 

types of extraneous information presentation effects. The first, which is generally 

called the redundancy effect (Kalyuga & Sweller, 2014; Mayer & Fiorella, 2014; Sweller 

et al., 2011), concerns the negative effect of the presentation of identical extraneous 

information to learners in two modalities compared to a single modality. For 

example, it has been shown that when the text accompanying pictures or animations 

is presented simultaneously in both spoken and written form, this hampers learning 

compared to spoken text only (e.g., Craig, Gholson, & Driscoll, 2002; Mayer, Heiser, 

& Lonn, 2001; but see Mayer & Johnson, 2008; Yue, Bjork, & Bjork, 2013).  

The second, which is called the coherence effect in CTML (Mayer & Fiorella, 

2014; Mayer & Moreno, 2003), concerns the negative effect on learning of the 

presentation of extraneous information that is not relevant or necessary for learning, 

but is added to enrich or elaborate learning materials, compared to when this is left 

out. For instance, learning is hampered when interesting and entertaining 

information that is related to the topic but irrelevant for the learning task at hand is 

added to enrich materials (i.e., seductive details, e.g., ‘fun’ facts, pictures, videos, or 
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sounds; Harp & Mayer, 1998; Mayer et al., 2001; Moreno & Mayer, 2000); when 

learning materials are unnecessarily elaborate, presenting textual explanations with 

self-explanatory diagrams (Bobis, Sweller, & Cooper, 1993; Chandler & Sweller, 1991) 

or presenting details and examples whereas a concise and coherent summary would 

suffice (e.g., Mayer, Bove, Bryman, Mars, & Tapangco, 1996; Reder & Anderson, 

1982); or when information on related systems is presented when learning about a 

specific system (Mayer, DeLeeuw, & Ayres, 2007).  

The negative effects of extraneous information presentation on learning 

presumably arise because learners attend to, process, and attempt to integrate the 

extraneous information with the essential information, which unnecessarily depletes 

valuable working memory resources. Moreover, in some cases of the coherence 

effect, the content of the additional information that is presented may actively 

interfere with learning the essential information. For instance, Mayer et al. (2007) 

showed that adding explanations about caliper breaks and air brakes interfered with 

learning the working mechanisms of hydraulic brakes. Participants who learned 

about the caliper and air brakes made more intrusion errors (i.e., including 

information about caliper and air breaks in their answers) than participants who 

only learned about hydraulic breaks. The present study addresses the coherence 

effect, by investigating the effects of extraneous pictorial information on word 

learning in a ‘second’ (artificial) language.  

Multimedia and Coherence Effects in Word Learning 

As mentioned above, the multimedia effect refers to the finding that learning 

often improves when study tasks or materials combine pictorial and verbal 

representations of the content (Butcher, 2014). In this case, additional information is 

also presented, but it is not extraneous to (i.e. does not hamper) learning and may 

even facilitate learning.  

With regard to word learning, some studies have shown that adding pictures of 

the word to be learned (and example sentences in which the word is used), does not 

hamper and -in accordance with the multimedia effect- can even foster word 

learning (for a review, see Sadoski, 2005). For example, Smith, Stahl, and Neil (1987) 

taught undergraduate students novel words in their first language (English) in one of 

three conditions: Definition only; definition and a sentence using the word; and 

definition, a sentence, and a picture. Results on the immediate retention test 

favoured the condition with pictures, although the differences were not significant. 

On a delayed retention test, the condition with pictures performed significantly 
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better than the definitions only condition (but not than the definitions plus 

sentences condition), demonstrating a multimedia effect (i.e., pictures facilitating 

word learning; Butcher, 2014).  

Whether a multimedia (i.e. facilitative) effect of pictures on word learning is 

found, however, may depend on how easily the words can be mentally simulated or 

visualized. For instance, in a second language vocabulary learning study, Farley, 

Ramonda, and Liu (2014) taught Spanish vocabulary to English-speaking university 

students and found that abstract words (i.e., words without a physical referent) were 

learned better with pictures, while there was no such effect for concrete words (i.e., 

words with a physical referent). Concrete words may be easy to mentally visualize 

and learn because of the physical referent (e.g., Altarriba & Bauer, 2004), in which 

case pictures do not have much added value for learning. Shen (2010) found a 

comparable effect in learning Chinese as a foreign language: Pictures improved word 

learning, but only for abstract words. For non-abstract words, even though 

presenting pictures did not help, it did not hinder learning either.  

While additional presentation of pictures of the words to be learned, might not 

hamper and could even foster learning, presentation of pictures that do not match 

the words might interfere with learning. For instance, a recent study on effects of 

animations on action word learning (e.g., to chisel, to hoe) in the first language 

(Hald, Van den Hurk, & Bekkering, 2015), included a mismatched animation 

condition, to control for effects of movements shown in the animations. Results 

showed that word learning was significantly hampered in the animation condition in 

which the actions depicted in the animation mismatched the word to be learned 

compared to when it matched the word to be learned.  

Another study investigated the effects of pictures on action word learning in a 

“second” artificial language, which matched or mismatched the learners’ handedness 

(De Nooijer, Van Gog, Paas, & Zwaan, 2013). Participants first saw the artificial 

language word (e.g. ‘luko’) on the screen, and heard a verbal definition of the word 

(e.g. ‘luko’ means ‘to dispense from a container’). Hearing actions described tends to 

automatically result in a body-specific (Casasanto, 2009) mental 

simulation/visualization of the action (e.g., Hauk, Johnsrude, & Pulvermüller, 2004; 

Pulvermüller, Hauk, Nikulin, & llmoniemi, 2005; Tettamanti, et al., 2005). Then, they 

heard this definition a second time, but now a picture was shown along with the 

artificial language word. This picture always showed the defined action, but either 

matched (i.e., right-handed for right-handers) or mismatched (i.e., left-handed for 
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right-handers) participants’ mental simulation. The mismatching pictures hampered 

right-handers’ learning (this was a small but consistent effect across multiple 

experiments)1, presumably because attending to and processing the picture that 

mismatched with their mental simulation of the action, interfered with learning the 

verbal definition.  

In sum, additional presentation of pictures that match the word to be learned 

might not hamper, and may even help word learning. In contrast, pictures (whether 

static or dynamic) that mismatch with (the mental visualization of) the word to be 

learned have been shown to hinder learning. It is assumed that mismatching 

pictures hamper word learning because they capture learners’ attention, and lead 

them to engage in extraneous –and conflicting- information processing. However, it 

is unclear whether extraneous information would continue to hamper learning when 

it is present (in the same location) over a series of tasks. This would give learners the 

chance to adapt their study strategy and ignore the extraneous information. Indeed, 

eye-tracking research suggests that with increasing task experience, people learn to 

focus their attention more on task-relevant information and to ignore task-irrelevant 

information.  

Learning to Ignore Task-Irrelevant Information 

Several studies have shown that with increasing task experience, people learn to 

focus on task-relevant and ignore task-irrelevant information. For instance, expertise 

research showed that chess experts had different viewing patterns compared to 

intermediate chess players, which included making fewer fixations and fixating more 

on relevant pieces (Charness, Reingold, Pomplun, & Stampe, 2001). Likewise, Van 

Gog, Paas, and Van Merriënboer (2005) demonstrated that participants with more 

expertise in an electrical circuit-troubleshooting task had shorter mean fixation 

duration and fixated more on task-relevant components of the electrical circuit in 

the first phase of troubleshooting, compared to participants with less expertise. 

Furthermore, Jarodzka, Scheiter, Gerjets, and Van Gog (2010) showed that, in a 

visually complex dynamic task, experts attended more to the relevant parts of a 

stimulus compared to novices. While these studies suggest that people are able to 

ignore irrelevant information with increasing expertise, they did not show a causal 

                                                 
1 Left-handers’ learning, in contrast, was not affected by right-handed pictures, 
presumably because they have visual and actual experience with the right hand 
being used for these actions. 
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relationship between task experience and viewing behaviour, as they compared 

existing groups of experts and novices or intermediates.  

Such evidence also exists, however, and comes from studies that investigated 

how viewing behavior changed as expertise developed. These studies confirm that, 

even after relatively little practice, participants start to ignore task-irrelevant 

information and focus more on task-relevant information. For example, Haider and 

Frensch (1999) used an alphabetic string verification task and showed that 

participants implicitly learned to ignore the task-irrelevant information when they 

became more experienced with the task. Furthermore, Canham and Hegarty (2010; 

see also Hegarty, Canham, & Fabrikant, 2010) used a task in which participants had 

to learn to make inferences from weather maps, and showed that participants fixated 

more on task relevant information after a short training (10-15 minutes) than before a 

training about relevant meteorological principles.  

Taken together, these findings strongly suggest that people may learn to ignore 

irrelevant information during task performance, as a result of increasing experience 

with a task. However, these studies did not investigate effects on learning. When 

learners are able to start ignoring extraneous information with increasing experience 

during learning, then it would no longer capture attention and working memory 

resources, and therefore, the negative effect of extraneous information should 

decrease or no longer occur with increasing task experience. In other words, these 

findings suggest that task experience might be a boundary condition to the negative 

effect of extraneous information on learning. This is not only theoretically relevant 

to establish, as it provides more insight into the underlying cognitive mechanisms of 

multimedia effects and the role that study strategies play over time, but it is also 

relevant for instructional designers, because some multimedia principles are hard to 

implement generally (e.g. what may be essential information for someone with low 

prior knowledge, may be extraneous for a more advanced learner). The present study 

addressed this hypothesis in a series of three experiments, using a word-learning 

task.  

The Present Study 

Experiments 1a and 1b were conducted to first establish whether mismatching 

pictures would negatively affect word learning compared to no pictures and 

matching pictures. We used a similar experimental design as De Nooijer et al. (2013), 

but with right-handed pictures and right-handed participants only. Participants 

learned words from an artificial language called Vimmi (Macedonia & Knösche, 2011) 
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that we coupled with action verb definitions. We used an artificial language to 

exclude any influences of prior knowledge of the words to be learned and 

associations on idiomatic level between two languages. Participants saw the artificial 

language word on the screen, and heard the verbal definition of the word (e.g., ‘ifra’ 

means ‘to polish or scrape with sandpaper’), after which they heard this definition a 

second time, either without a picture (control condition), with a matching picture 

(showing the action) or a mismatching picture (showing another action). Note that 

matching pictures, even though they showed the action that was being defined, are 

not entirely redundant to the definition and may in fact provide useful additional 

information. For instance, in case of known actions, these pictures may 

automatically prompt participants to think of the English verb that was not part of 

the definition (e.g., in the case of ‘ifra’, the picture might clarify that they are hearing 

the definition of ‘to sand’), and in case of unknown actions, the pictures might help 

understand the meaning of the word. 

We expected that the mismatching pictures would capture attention and 

interfere with processing the verbal definition the second time it was presented, 

which would hamper learning compared to the no pictures condition (i.e., a 

coherence effect) and the matching pictures condition (as we expected this 

condition to do as well or better than the no picture condition, see below). Learning 

could be hampered by mismatching pictures via two (not mutually exclusive) routes: 

1) less attention could be devoted to processing the materials relevant for learning, 

and 2) processing the content of the mismatching action pictures could actively 

interfere with learning the correct action word definition. With respect to the 

matching pictures, we expected based on the studies described in the introduction 

that these would either improve learning the meaning of new words (Farley et al, 

2014; Shen, 2010; Smith et al, 1987), providing evidence of a multimedia effect, or not 

affect word learning. If they do not significantly contribute to word learning, one 

could argue that matching pictures also constitute extraneous information, in the 

sense that they are redundant and could be left out at no expense to learning. As 

such one could argue that this null finding would also be a kind of coherence effect, 

though not in the strict definition (Mayer & Fiorella, 2014), as excluding the pictures 

would not have a positive effect on learning compared to including them. 

To foreshadow, Experiment 2 addressed the main question of whether the 

negative effect of mismatching pictures on word learning would decrease or no 

longer occur with increasing task experience, which would suggest that learners 
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adapted their study strategy. Experiment 3 subsequently investigated study 

strategies directly, by means of eye tracking (to measure attention allocation), to 

determine whether participants indeed learned to ignore the mismatching pictures 

over time, with task experience.  

Experiments 1a and 1b 

As described above, Experiments 1a and 1b were conducted to establish whether 

mismatching pictures would negatively affect word learning compared to no pictures 

and matching pictures. Experiment 1b was a direct replication of Experiment 1a to 

test the reliability of our results.  

Method 

Participants and design  

Participants (Experiment 1a: n = 85, Experiment 1b: n = 144) were recruited via 

Amazon’s Mechanical Turk (Paolacci, Chandler, & Ipeirotis, 2010), and were paid 

0.75 dollar for their participation2. A-priori defined criteria for post-hoc exclusion 

were the following: Being a non-native English speaker (n = 2 and n = 1, resp.); being 

left-handed (i.e., the pictures were right-handed and even though left-handers seem 

less hampered by right-handed pictures than right-handers are by left-handed 

pictures according to findings by De Nooijer et al., 2013, we wanted to rule out any 

potential handedness effects; n = 9 and n = 21, resp.); participating in the experiment 

twice or having participated in a similar earlier experiment (n = 2 and n = 3, resp.); 

and being in a noisy environment (i.e., self-reported noise of seven or higher on a 

scale of one to nine; n = 4 and n = 7, resp.). Thus, for Experiment 1a our final sample 

comprised 68 participants (Mage = 39.13 years, SD = 14.12 years, range 20-74; 47 

females), and for Experiment 1b our final sample comprised 112 participants (Mage = 

34.58 years, SD = 12.66 years, range 19-89; 78 females). Both experiments employed a 

within-subjects design, so participants learned words under all three conditions. 

Materials  

Participants learned 18 Vimmi words presented in Qualtrics software (Qualtrics, 

Provo, UT). Each word was randomly coupled to the definition of an action verb 

(e.g., ‘ifra’ means ‘to polish or scrape with sandpaper’). In every condition, the 

participants saw the Vimmi word and heard the definition (spoken by a female voice; 

Mlength = 3.44 seconds, SD = 1.01 seconds) of the word they had to learn twice, each 

presentation lasted 11 seconds and the program automatically progressed. In the two 

                                                 
2 Note that this was a common level of payment at the time the experiments were 
conducted; we are aware of the recent discussions of and increases in MTurk wages. 
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picture conditions, a matching picture (showing the action) or a mismatching 

picture (showing another action) accompanied the word (see Figure 1) the second 

time participants heard the definition. Participants’ knowledge of the definition was 

tested with a cued recall test, in which they were presented with the written Vimmi 

word and had to type in the definition as literally as possible.  

 

Word Definition Condition Picture 

Ifra (to sand) To polish or scrape with 

sandpaper 

Matched 

 

  Mismatched 

 

Figure 1. Example materials. The spoken definition is presented twice, the second time 

accompanied by a picture in the matched condition (top row) and mismatched condition 

(bottom row). 

 

Procedure  

Participants learned the words in three blocks of six, and after each block the 

cued recall test for those words was administered. During the cued recall test no 

time constraint was imposed. To avoid confusion, the six words in the control (no 

picture) condition were presented in one block (either the first or the last) because 

participants might think a technical error occurred when no picture would be 

present at random words during the experiment. The other two blocks consisted of 

three words with matching and three words with mismatching pictures. Order 

within block was randomized, so participants did not know beforehand if the next 
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picture would be matching or mismatching the definition, and, thus, could not 

anticipate on the usefulness of the picture. Furthermore, the artificial words were 

rotated across definitions to control for possible item effects, resulting in the use of 

eight lists. In total, the experiment lasted about twenty minutes and was 

administered without breaks.  

Scoring  

In all experiments, participants were awarded 1 point if the complete definition 

was given on the cued recall test. When a part of the definition was missing, they 

received 0.5 point. If they did not provide a definition, or if it was completely wrong, 

0 points were awarded. So, every participant could score a maximum of six points on 

each test. We adopted the scoring scheme of De Nooijer et al. (2013) who used the 

same materials (they found an interrater reliability of κ = .82), but established 

interrater reliability again for the present study, by having part of the data (10.6%) 

scored by a second, independent rater. Both raters saw only the definitions and 

words during scoring, so they were blind to the experimental condition under which 

each word was learned. Because interrater reliability was sufficient (κ = .76; 

‘substantial agreement’ according to Landis & Koch, 1977), the scores from the first 

rater (first author) were used in this and all subsequent experiments.  

Results 

Throughout all experiments, we maintained an alpha level of .05, and when the 

sphericity assumption was violated, we reported the Greenhouse-Geisser correction. 

Effect size measures used were partial eta-squared and Cohen’s d. Both can be 

interpreted in terms of small (ηp
2 ~ .01, d ~ 0.2), medium (ηp

2 ~ .06, d ~ 0.5), and large 

(ηp
2 ~ .14, d ~ 0.8) effect sizes (Cohen, 1988). In addition, effect sizes can also be 

interpreted with respect to median effects sizes found for these effects (in other 

studies with different materials). For example, Mayer and Fiorella (2014) report an 

average effect size of d = 0.86 for the coherence effect (based on n = 23 comparisons). 

In Experiments 1a and 1b, data were analysed with a repeated-measures ANOVA with 

Condition (matched, mismatched, control) as a within-subjects variable and the 

scores on the cued recall test as dependent variable. 

Table 1 shows the means and standard deviations for the cued recall tests of 

Experiments 1a and 1b for the different conditions. In Experiment 1a there was a main 

effect of Condition, F(1.83, 122.26) = 3.37, p = .042, ηp
2 = .05. Bonferroni corrected 

post-hoc tests showed that the mismatched condition performed worse than the 

matched condition, p = .028, d = 0.32. There were no significant differences between 
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the control and matched condition, p > .999, d < 0.01, nor between the control and 

mismatched condition, p = .125, d = 0.25.  

Experiment 1b replicated the results of Experiment 1a, again showing a main 

effect of Condition, F(1.82, 202.19) = 4.15, p = .017, ηp
2 = .04, with Bonferroni corrected 

post-hoc tests indicating that the mismatched condition performed worse than the 

matched condition on the recall test, p = .002, d = 0.32, and that there were not 

significant differences between the control and matched condition, p = .769, d = 0.11, 

nor between the control and mismatched condition, p = .371, d = 0.15.  

 
Table 1. Mean (and SD) Recall Performance (max. = 6) as a Function of Condition in 

Experiments 1a and 1b.  

 

  Experiment 1a Experiment 1b 

Matched 3.65 (1.83) 3.56 (1.75) 

Mismatched 3.24 (1.83) 3.15 (1.81) 

Control 3.65 (1.78) 3.38 (1.80) 

 

Discussion 

The results of Experiments 1a and 1b provided evidence that adding 

mismatching pictures to word learning decreased recall performance compared to 

matching pictures, but there was no significant negative effect compared to no 

pictures (i.e. no coherence effect). Processing the matching pictures did not 

significantly improve word learning compared to the no picture control condition 

(i.e., there was no multimedia effect), but did not hurt learning either (which could 

be regarded as a kind of coherence effect, though not in the strictest definition, as 

exclusion did not lead to better learning than inclusion of the matching pictures). 

This may be due to the rather concrete object-manipulation verbs we used in our 

experiment, as previous research has suggested that pictures benefit learning 

abstract words more than learning concrete words (Altarriba & Bauer, 2004; Farley et 

al., 2014; Shen, 2010).  

The fact that we did not find a coherence effect, indicating that including 

mismatching pictures would lead to poorer learning outcomes than excluding 

mismatching pictures (control condition) limits our conclusions somewhat. 

However, we did find a negative effect of mismatching compared to matching 

pictures on word learning. This effect of mismatching vs. matching pictures was 
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small, and although it is smaller than the median effect size from other studies on 

the coherence effect, using different materials (d = 0.86 as reported by Mayer & 

Fiorella, 2014), it was comparable to the effects found by De Nooijer et al. (2013) who 

used the same materials but with mismatches in terms of handedness. Furthermore, 

the effect sizes were consistent across Experiments 1a and 1b. As this difference 

between mismatching and matching picture conditions is still interesting for our 

purpose of investigating whether task experience affects processing of mismatching 

pictures and thereby, learning outcomes, we conducted Experiment 2 to address this 

question concerning the effects of task experience. We did not find significant 

differences compared to the control condition for either picture condition in 

Experiment 1a/1b. Performance was somewhat lower in Experiment 1b than in 

Experiment 1a, but the pattern of results was the same. We opted to again include a 

no-picture control condition in Experiment 2, because we could not exclude the 

possibility that differences between the picture conditions and the control condition 

might arise over time.  

Experiment 2 

In Experiment 2, we used the same materials as in Experiments 1a and 1b, but 

now in a between-subjects design. Participants learned the words in three blocks of 

five, with matching, mismatching, or no pictures. We hypothesized that the negative 

effect of mismatching compared to matching pictures would occur initially (after the 

first block), but would decrease or no longer occur with increasing task experience 

(blocks two and three). That is, when participants would learn that the mismatching 

pictures are unnecessary for learning and adapt their study strategy accordingly, 

ignoring these pictures in the later blocks, their recall performance would increase in 

block 2 and 3. For the matched and control conditions we had no reason to expect 

that recall performance would change with increasing task experience.  

We also explored how participants experienced the task3. To get an indication 

of potential differences in processing demands experienced between conditions and 

over time, participants were asked to rate how much mental effort they invested in 

                                                 
3 We asked participants to rate invested effort, enjoyment, and whether they 
preferred to learn words without, with matching, or with decorative pictures in the 
future (cf. Yue et al., 2013) in Experiments 2 and 3 (this was not possible in 
Experiments 1a and 1b, where the blocks comprised words presented under different 
conditions). Only results on effort are reported; data on enjoyment (only null-
effects) and preferences can be obtained from the first author. 
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learning the words (which is an indicator of how much cognitive load participants 

experienced: Paas, Tuovinen, Tabbers, & Van Gerven, 2003).  

Method 

Participants and design 

All participants (n = 232) were recruited via Amazon’s Mechanical Turk and 

were paid 0.75 dollar for their participation2. They were randomly assigned to one of 

the three conditions. The same exclusion criteria as in the former experiments were 

used: being a non-native English speaker (n = 4); being left-handed (n = 36); 

participating in the experiment twice or having participated in a similar earlier 

experiment (n = 14); and being in a noisy environment (n = 6). Finally, there were 

participants in the mismatched condition who did not follow the instructions4, who 

were also excluded (n = 5). Thus, our final sample comprised 166 participants (Mage = 

36.50 years, SD = 12.53 years, range 18-69; 105 females), distributed across the control 

(n = 62), matched (n = 55), and mismatched (n = 49) conditions.  

Materials and procedure  

The materials and procedure were similar to Experiments 1a and 1b, except that: 

(1) participants learned 15 word definitions in three blocks of five words under the 

same condition, (2) after each block of five words and prior to the cued recall test of 

that block, participants were instructed to indicate how much effort they invested in 

learning the words, on a nine-point rating scale ranging from 1, very, very low effort, 

to 9, very, very high effort (Paas, 1992), and (3) at the end of the experiment, 

enjoyment and instruction preference was measured (not reported, see 3). The order 

of the blocks was alternated between participants using a Latin-square design, 

resulting in three lists per condition. The experiment lasted around twenty minutes 

and was administered without breaks.  

Results 

Unless otherwise specified, all data were analysed with a mixed ANOVA with 

Condition (matched, mismatched, control) as a between-subjects factor and Word 

block (first, second, third) as a within-subjects factor.  

Test performance  

Table 2 shows the scores on the cued recall test. The analysis showed no main 

effect of Condition, F(2, 163) = 1.44, p = .239, ηp
2 = .02, but there was a main effect of 

                                                 
4 These participants wrote down one word that described the mismatching picture 
(i.e., wrench when the artificial word ‘Ifra’ was tested), for each and every definition 
they had to provide.  
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Word block, F(1.85, 300.90) = 10.34, p < .001, ηp
2 = .06, indicating that the scores on 

the cued recall test improved over the course of the experiment. Importantly, this 

main effect was qualified by an interaction effect, F(3.69, 300.90) = 2.46, p = .050, ηp
2 

= .03.  

To follow up on the interaction effect, we first analysed differences in test 

performance between conditions per block, using one-tailed independent-samples t-

tests with a Bonferroni corrected p-value (i.e., multiplying the p-value by three, the 

number of tests that were performed). In line with our hypothesis, performance was 

significantly lower in the mismatched condition than in the matched condition in 

block 1, t(102) = 2.18, p = .047, d = 0.43, but only numerically, not significantly lower 

than in the control condition, t(109) = 0.91, p = .545, d = 0.17 (cf. Experiment 1). 

Finally, there was no difference in performance between the matched and the 

control condition in block 1, t(115) = 1.42, p = .239, d = 0.26 (cf. Experiment 1). In 

block 2 and 3, there were no significant differences between the conditions. 

Mismatched vs. matched: Block 2, t(102) = 0.12, p > .999, d = 0.02; block 3, t(102) = 

0.01, p > .999, d = 0.02. Mismatched vs. control: Block 2, t(109) = 1.73, p = .128, d = 

0.34; block 3, t(109) = 1.37, p = .260, d = 0.26. Matched vs. control: Block 2, t(115) = 

1.62, p = .161, d = 0.30; block 3, t(115) = 1.32, p = .287, d = 0.24.  

 

Table 2. Mean (and SD) Recall Performance (max. = 5) and Mental Effort Rating (max. = 9) as a 

Function of Condition and Word Block in Experiment 2. 

 

  Performance Mental effort 

 Block 1 Block 2 Block 3 Block 1 Block 2 Block 3 

Matched 3.15 (1.46) 3.21 (1.51) 3.14 (1.63) 7.20 (1.63) 7.33 (1.63) 7.33 (1.75) 

Mismatched 2.51 (1.51) 3.17 (1.45) 3.13 (1.44) 7.73 (1.15) 7.94 (1.25) 7.86 (1.47) 

Control 2.77 (1.43) 3.65 (1.39) 3.51 (1.42) 7.52 (1.29) 7.85 (1.13) 7.69 (1.43) 

Overall 2.82 (1.48) 3.36 (1.46) 3.27 (1.50) 7.48 (1.38) 7.70 (1.37) 7.62 (1.56) 

 

Secondly, we probed the interaction effect by analysing the change in test 

performance over blocks within each condition. Repeated measures ANOVAs per 

condition, with Word block (first, second, third) as a within-subjects factor, showed 

no effect of Word block in the matched condition, F(2, 108) = 0.08, p = .926, ηp
2 < .01, 

a main effect of Word block in the mismatched condition, F(2, 96) = 4.75, p = .011, ηp
2 

= .09, and a main effect of Word block in the control condition, F(2, 122) = 9.86, p < 



Task Experience and Irrelevant Information Processing 

35 

.001, ηp
2 = .14. Repeated contrasts follow-up showed that, in line with our 

expectations, participants’ performance in the mismatched condition improved from 

block 1 to 2, F(1, 48) = 7.63, p = .008, ηp
2 = .14, and remained stable from block 2 to 3, 

F(1, 48) = 0.04, p = .848, ηp
2 < .01. Similarly, though rather surprisingly, participants’ 

performance in the control condition also improved from block 1 to 2, F(1, 61) = 18.34, 

p < .001, ηp
2 = .23, but not from block 2 to 3, F(1, 61) = 0.53, p = .469, ηp

2 = .01. 

Mental effort  

Table 2 shows the descriptive statistics of the mental effort ratings. Despite a 

trend in the means suggesting that participants in the matched condition invested 

less mental effort in the task, the analysis revealed no significant main effect of 

Condition, F(2, 163) = 2.68, p = .072, ηp
2 = .035. There was a main effect of Word 

block, F(1.90, 309.30) = 3.59, p = .029, ηp
2 = .02, but no interaction effect, F(3.80, 

309.30) = 0.32, p = .859, ηp
2 < 0.01. To follow-up on the main effect of Word block, 

repeated contrasts were conducted, which showed that invested mental effort 

increased from block 1 to 2, F(1, 163) = 7.60, p = .006, ηp
2 = .05, and remained stable 

from block 2 to 3, F(1, 163) = 1.08, p = .299, ηp
2 = .01.  

Discussion 

Consistent with our results from Experiment 1a/1b, the cued recall performance 

in the first block was lower in the mismatched condition than in the matched 

condition. Moreover, and in line with our hypothesis, this negative effect of 

mismatching pictures compared to matching pictures disappeared when participants 

gained more task experience. The finding that performance in the mismatched 

condition improved from block 1 to block 2 (and remained constant from block 2 to 

block 3), suggests that participants adapted their study strategy and learned to 

ignore the mismatching pictures.  

Although this should be interpreted with caution, as the effect of condition did 

not reach statistical significance, an explorative analysis (see 5) suggested that 

mental effort invested in the mismatched condition was higher than in the matched 

condition. Furthermore, participants in all conditions started to invest somewhat 

more effort in block 2 compared to block 1, which then remained at the same level in 

                                                 
5 Although the effect of condition failed to reach statistical significance, we 
conducted an explorative analysis based on a remark by one of the reviewers, which 
showed that average mental effort invested in the mismatched condition (M = 7.84, 
SD = 1.10) was higher than in the matched condition (M = 7.28, SD = 1.59) when 
compared directly in a t-test, t(96.18) = 2.11, p = .038 (two-sided), d = 0.41. 
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block 3. Perhaps, the initial cued recall task in the first word block might have been 

more difficult than expected, leading participants to adjust their effort investment in 

the following blocks (cf. Brehm & Self, 1989; Kahneman, 1973). However, this 

increased effort investment only resulted into better test performance in the 

mismatched and control conditions, not in the matched condition (perhaps because 

the first block baseline score was already relatively high in this condition).  

Experiment 3 

The most important finding from Experiment 2 was that task experience indeed 

seems to be a boundary condition for the negative effect of mismatching compared 

to matching pictures on learning. We assume that this finding arose because 

participants adapted their study strategy and started to ignore the mismatching 

pictures in blocks 2 and 3. Experiment 3 was set up as a direct test of this 

assumption. Using eye-tracking methodology, we measured participants’ attention 

allocation to the pictures in the matched and mismatched conditions over time. We 

hypothesized that with increasing task experience participants in the mismatched 

condition would allocate less attention to the pictures. We had no specific 

hypothesis about attention distribution in the matched condition. Because of the 

smaller sample size in Experiment 3 (which was sufficiently large to address our 

hypotheses regarding attention allocation) and the small effect size in Experiments 1 

and 2, we expected to replicate the trends in performance scores from Experiment 2 

(i.e., mismatched < matched in block 1; increase from block 1 to 2 in the mismatched 

condition), but we did not necessarily expect these to be significant. 

Method 

Participants and design 

Participants were 96 Dutch undergraduate university students (Mage = 20.35 

years, SD = 2.12 years; 80 female) who participated for course credit. All participants 

were native Dutch speakers with normal or corrected-to-normal vision. Participants 

were randomly assigned to either the matched or mismatched condition. Within 

each condition, the picture location was counterbalanced, for half of the participants 

the picture was presented above the word, and for the other half the picture was 

presented underneath the word, to rule out the possibility that the hypothesized 

effects would be due to a particular location. 

Thirteen participants (nine in the matched and four in the mismatched 

condition) turned out to be left-handed and were therefore excluded from the 



Task Experience and Irrelevant Information Processing 

37 

analyses. The data of the remaining 83 participants (39 in the matched and 44 in the 

mismatched condition) was scored and analysed.  

Apparatus and materials 

The words and pictures were the same as those used in Experiment 2, but the 

definitions were now presented in Dutch. The Vimmi words and pictures were 

presented in SMI Experiment Center (Version 3.3; SensoMotoric Instruments) on a 

monitor with a resolution of 1680 x 1050 pixels (see Figure 2). Pictures were 500 x 400 

pixels; the center of the pictures was either at 656 or at 393 pixels (above or 

underneath the word, respectively) on the vertical axis and at 825 pixels on the 

horizontal axis. Participants’ eye movements were recorded using an SMI RED 250 

eye tracker (SensoMotoric Instruments) that recorded binocularly at 250 Hz using 

iView software (Version 2.8; SensoMotoric Instruments) and subsequently analysed 

using BeGaze software (Version 3.3; SensoMotoric Instruments).  

Figure 2. Example materials. Vimmi word “Ifra” (to sand) accompanied by the matching 

picture underneath (left) or above (right) the word. 

 

Procedure 

The procedure was similar to that of Experiment 2; participants learned the 

words in three blocks of five words and had to fill out the mental effort scale and 

complete a cued recall test after each block. At the start of the experiment, 

participants were seated in front of the monitor with their head positioned in a chin 

and forehead rest. The distance to the monitor was approximately 70 cm. After a 

short introduction, the eye tracker was calibrated using a five-point calibration plus 

four-point validation procedure, and participants were instructed to move as little as 

possible. After studying the first block of words, participants were allowed to move 

freely as they had to complete the recall test. After completion of the test, 
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participants were calibrated again, after which the second block started. This 

procedure was repeated for block three. The order of the blocks was alternated 

between participants using a Latin-square design, resulting in three lists per 

condition. The experiment lasted around twenty minutes and was administered 

without breaks. 

Scoring and data analysis  

Due to a programming error, five participants in the mismatched condition 

were presented with one word in the final block twice, while five participants in the 

matched condition were not presented with this word at all. Two of these ten 

participants were excluded for being left handed, for the others, this was handled as 

follows. In the mismatched condition, the eye tracking data for the second 

presentation of the word were discarded, and the recall score for the word was 

replaced with the average score in this condition to eliminate any advantages from 

the double presentation. In the matched condition, the eye tracking data in block 3 

were based on four words instead of five (as these participants were only presented 

with four words in block 3), and the recall score for the fifth word (which was 

missing) was replaced with the average score in the matched condition (see 6). 

For the eye tracking analyses, we first checked the accuracy of calibration. We 

had to exclude six participants (all from the matched condition) because of 

inaccurate calibration (i.e., deviation from the four validation points exceeded 1o in 

one or more word blocks), leaving 77 participants. We then checked the tracking 

ratio (i.e., the percentage of time for which the eye tracker actually measured the eye 

movements) for each trial, and trials were excluded when this ratio was more than 

two standard deviations below the mean. As a result, the data of two other 

participants in the matched condition were excluded from further analyses as most 

of their trials (i.e., 13 and 14 out of the 15 trials) had a poor tracking ratio, leaving 75 

participants for the eye tracking analyses (33 in the matched and 42 in the 

mismatched condition). Eighteen individual trials (six in the matched and twelve in 

the mismatched condition), divided over 11 participants, were excluded, due to low 

tracking ratios in these respective trials. Taken together (i.e., including the 

participants whose trials were entirely excluded), 48 of 1155 trials (4.15%) were 

excluded due to too low tracking ratios (see 6). For the remaining 75 participants, 

mean calibration accuracy for block 1, 2, and 3 was 0.40o (SD = 0.12o), 0.40o (SD = 

0.13o), and 0.40o (SD = 0.10o), respectively. Average tracking ratio based on the 

remaining 1107 trials was 88.82% (SD = 10.75%). 
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For the eye tracking analyses we defined fixations using a 40o/s velocity 

threshold and a minimal duration of 100 ms (cf. Holmqvist, Nyström, Andersson, 

Dewhurst, Jarodzka, & Van de Weijer, 2011). We created two areas of interest (AoIs), 

one for the word (437 x 184 pixels) and one for the picture (536 x 442 pixels). The 

part of the screen not covered by either word or picture AoI was labelled as ‘white 

space’. We calculated the percentage of fixation time on the Word and Picture AoIs 

by dividing the total fixation duration (i.e., the sum of fixation duration on the Word 

AoI, Picture AoI, and white space) by the fixation duration on the Word or Picture 

AoI respectively. Finally, to explore whether the time spent looking at the 

mismatching pictures was indeed associated with lower test performance, we 

computed the correlation between the test performance and fixation duration on the 

Picture AoI for each condition, per block. 

Results 

Unless otherwise specified, all data were analysed with a repeated-measures 

ANOVA with Condition (matched or mismatched) as a between-subjects factor and 

Word block (first, second, third) as a within-subjects factor. 

Test performance 

Table 3 shows the scores on the cued recall test per condition per block. 

Numerically, the mismatched condition performed worse than the matched 

condition, but there was no statistically significant main effect of Condition, F(1, 81) 

= 3.30, p = .073, ηp
2 = .04. There was a main effect of Word block, F(2, 162) = 13.06, p < 

.001, ηp
2 = .14. Repeated contrasts showed that for all participants, recall performance 

improved from block 1 to block 2, F(1, 81) = 9.67, p = .003, ηp
2 = .11, but not from block 

2 to 3, F(1, 81) = 3.62, p = .061, ηp
2 = .04 (but see 6). However, we did not find an 

interaction effect, F(2, 162) = 0.23, p = .847, ηp
2 < .01, probably because –in contrast to 

Experiment 2- performance of participants in the matched condition also improved 

with task experience (see Table 3).  

 
Table 3. Mean (and SD) Recall Performance (max. = 5) and Mental Effort Rating (max. = 9) as a 

Function of Condition and Word Block in Experiment 3. 

  Performance Mental effort 

 Block 1 Block 2 Block 3 Block 1 Block 2 Block 3 

Matched 2.56 (1.27) 3.04 (1.18) 3.45 (1.37) 5.95 (1.38) 6.69 (1.15) 6.72 (1.32) 

Mismatched 2.12 (1.28) 2.82 (1.39) 3.04 (1.61) 6.27 (1.30) 6.55 (0.98) 6.45 (1.36) 

Overall 2.31 (1.29) 2.89 (1.31) 3.23 (1.51) 6.12 (1.34) 6.61 (1.06) 6.58 (1.34) 
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Mental effort 

Table 3 shows the descriptive statistics of the mental effort scores in 

Experiment 3. The analysis revealed no significant main effect of Condition, F(1, 81) = 

0.02, p = .894, ηp
2 < .01. There was a main effect of Word block, F(1.63, 131.76) = 7.39, 

p = .002, ηp
2 = .08, but no interaction effect, F(1.63, 131.76) = 2.20, p = .113, ηp

2 = .03. To 

follow-up on the main effect of Word block, repeated contrasts were conducted, 

which showed that, as in Experiment 2, invested mental effort increased from block 1 

to block 2, F(1, 81) = 12.52, p = .001, ηp
2 = .13, and remained stable from block 2 to 

block 3, F(1, 81) = 0.08, p = .780, ηp
2 < .01. 

Eye movement data 

As stated earlier, participants were presented with each definition twice, first 

without and then with a picture present. We analyzed the eye movement data for 

the second part of the trials, in which a picture was present. As we only postulated 

hypotheses about the Picture AoI, we did not analyze the data on the word AoI, but 

for completeness, we do provide the descriptive statistics in Table 4.  

 
Table 4. Mean (and SD) Percentage of Fixation Time on the Picture and Word AoI as a Function 

of Word Block and Condition.  

 

    Block 1 Block 2 Block 3 

Picture Matched 76.79 (13.68) 67.34 (19.87) 59.97 (21.59) 

 
Mismatched 56.00 (26.24) 35.73 (28.30) 27.58 (24.52) 

     

Word Matched 22.28 (13.56) 30.93 (19.49) 37.77 (21.31) 

  Mismatched 42.14 (26.30) 59.15 (28.31) 69.32 (26.88) 

 

The analysis of the percentage of fixation time on the picture revealed a main 

effect of Condition, F(1, 73) = 41.80, p < .001, ηp
2 = .36, showing that participants in 

the mismatched condition fixated less on the pictures than participants in the 

matched condition. Furthermore, we found a main effect of Word block, F(1.83, 

133.72) = 32.22, p < .001, ηp
2 = .31, indicating that participants allocated less attention 

to the picture AoI over the course of the experiment. The interaction effect did not 

reach statistical significance, F(1.83, 133.72) = 2.93, p = .062, ηp
2 = .04. However, the 

pattern of the mean fixation times across conditions seems to suggest that the 

decrease in fixation time on the picture AoI was larger in the mismatched condition 
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(and see 6). The descriptive statistics for the word AoI suggest that the attention that 

was no longer allocated to the picture was now dedicated to the word. 

Exploratory analysis: Correlation between picture fixation and test 

performance. To explore whether more attention to the mismatching pictures was 

indeed associated with lower recall performance, we computed the correlation 

between picture fixation time and test performance for each condition, per block. In 

the matched condition, we found no significant correlations between picture fixation 

time and test performance in any of the blocks: Block 1, r(31) = -.104, p = .566; block 

2, r(31) = .031, p = .866; block 3, r(31) = -.174, p = .333. In the mismatched condition, 

there was a negative correlation between picture fixation time and test performance, 

which became stronger with increasing task experience: Block 1, r(40) = -.120, p = 

.448; block 2, r(40) = -.310, p = .046; block 3, r(40) = -.523 p < .001.  

Exploratory analysis: Picture fixation during/after the definition was 

spoken. The pattern of results in the main analysis, indicating that fixation time on 

the picture AoI decreased over time, and seemed to decrease more strongly in the 

mismatched condition, is in line with our hypothesis that participants allocate less 

attention to the mismatching pictures with increasing task experience. However, due 

to our experimental set-up (i.e., all trials lasted 11 seconds, while the audio was 

shorter, Mlength = 4.81s, SD = 0.88s.), it is unclear to what extent the picture is being 

ignored during encoding of the verbal definition. Therefore, an exploratory analysis 

was performed, analysing the fixation data during the time the audio was playing, 

and after the audio had stopped (see Appendix A for audio length per Vimmi word 

definition). Because audio duration differed among words (with some definitions 

being longer than others), we could not compare absolute fixation times during or 

after the audio. Instead, we calculated the relative fixation duration by dividing the 

fixation duration on each AoI by the audio length (for during the audio) or non-

audio length (for after the audio ended). Because we assumed that the pictures 

                                                 
6 Exclusion of the eight participants who were affected by the programming error 
would have a minor impact on our results. Performance scores: The difference 
between block 2 and block 3 is now significant, F(1, 73) = 6.26, p = .015, ηp

2 = .08; eye 
movement data: The interaction between Condition and Word block is now 
significant, F(2, 130) = 4.10, p = .019, ηp

2 = .06 
The exclusion of the 48 trials for which the tracking ratio was to low also had a 

minor impact on our results for the eye movement data: Without the exclusion, the 
Condition * Word block interaction was significant, F(1.82, 136.27) = 3.23, p = .042, ηp

2 
= 0.04. 
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would hinder the encoding of the spoken definitions, attention allocation during the 

audio was of most interest.  

We performed a 3 (Word block: first, second, third) x 2 (Audio: during or after) 

x 2 (Condition: matched or mismatched) ANOVA on picture fixation duration. The 

analysis revealed a main effect of Condition, F(1, 73) = 39.45, p < .001, ηp
2 = .36, 

showing that participants in the mismatched condition looked less at the picture AoI 

than participants in the matched condition (see Table 5). Furthermore, we found a 

main effect of Word block, F(2, 146) = 40.50, p < .001, ηp
2 = .36, indicating that the 

relative fixation duration on the picture AoI decreased with increasing task 

experience. This main effect was qualified by an interaction effect between Word 

block and Condition, F(2, 146) = 3.87, p = .023, ηp
2 = .05, showing that the decrease in 

relative fixation duration was strongest in the mismatched condition. The main 

effect of Audio was also significant, F(1, 73) = 374.06, p < .001, ηp
2 = .84, indicating 

that after the audio ended, relative fixation duration on the picture AoI decreased. 

The Audio * Condition and Word block * Audio interaction effects were not 

significant, respectively, F(1, 73) = 0.85, p = .360, ηp
2 = .01, and F(2, 146) = 2.29, p = 

.105, ηp
2 = .03. However, the Word block * Audio * Condition interaction effect was 

significant, F(2, 146) = 3.73, p = .026, ηp
2 = .05. This suggests that the relative picture 

fixation difference between the matched and mismatched condition decreased more 

strongly over time during the audio than after the audio.  

 
Table 5. Mean (and SD) Relative Fixation Duration on the Picture and Word AoI as a Function 

of Word Block and Condition, Split out for During Audio and After Audio. 

 

Discussion 

The eye movement data of Experiment 3 are in line with our hypothesis that 

with increasing task experience, participants in the mismatched condition allocated 

less attention to the pictures. Interestingly, they seemed to pay less attention to the 

    Block 1 Block 2 Block 3 

  
During  After During After During After 

Picture Matched 0.70 (0.09) 0.47 (0.16) 0.62 (0.14) 0.40 (0.17) 0.58 (0.17) 0.34 (0.18) 

 
Mismatched 0.58 (0.17) 0.32 (0.21) 0.40 (0.25) 0.19 (0.20) 0.30 (0.21) 0.14 (0.15) 

        

Word Matched 0.11 (0.08) 0.22 (0.14) 0.16 (0.11) 0.27 (0.17) 0.19 (0.14) 0.32 (0.17) 

 
Mismatched 0.22 (0.18) 0.32 (0.17) 0.36 (0.24) 0.46 (0.21)  0.46 (0.25) 0.51 (0.20) 
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pictures overall (i.e. from the start) than participants in the matched condition. 

Furthermore, participants in the matched condition also looked less at the pictures 

with increasing task experience. However, this decrease was stronger in the 

mismatched condition (although the interaction in the main analysis did not reach 

statistical significance, but see 6). Moreover, only in the mismatched condition did 

we find an increasingly negative correlation between fixation time on the picture AoI 

and test performance: In blocks 2 and 3, less looking at the mismatching pictures 

was associated with higher test performance. Thus, it seems that students are indeed 

capable of adapting their study strategy and start to ignore extraneous information 

that is not relevant for –and may even interfere with- the learning task.  

Similar to Experiment 2, invested mental effort increased from block 1 to block 

2 and remained stable from block 2 to block 3. Again, this is likely a result of 

participants’ experience with the first recall test. In contrast to Experiment 2, 

however, the increased effort investment seems to have translated into better test 

performance in blocks 2 and 3 in both conditions. Whereas we had expected this for 

participants in the mismatched condition, we did not expect recall performance of 

participants in the matched condition to improve based on Experiment 2. It seems 

that participants in Experiment 3 scored somewhat lower on the cued recall test after 

block 1 than participants in Experiment 2 (Tables 2 and 3), leaving more room for 

improvement in the matched condition in Experiment 3. We cannot rule out that 

awareness of being eye tracked had something to do with this lower performance in 

the first block, although very few studies have addressed effects of eye tracking on 

viewing behaviour (see Nasiopoulos, Risko, Foulsham, & Kingstone, 2015; Risko & 

Kingstone, 2011), and we do not know of studies addressing effects on learning or 

performance, so this remains speculative. It should also be kept in mind that this 

might just be chance variation due to the smaller sample size in Experiment 3. 

The exploratory analysis on viewing behaviour during and after the spoken 

definition suggests that attending to the mismatching pictures negatively affects 

word learning in the first block by disrupting the encoding of the verbal definition. 

That is, overall, more attention was paid to the pictures while listening to the verbal 

definition than after, but the difference in attention to the pictures decreased more 

strongly over time in the mismatched than matched condition while hearing the 

verbal definition than after the audio had ended. In other words, the increase in 

recall performance in the mismatched condition over time seems to result mainly 

from being able to ignore the pictures while listening to the verbal definition.  
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General Discussion 

According to the coherence principle in multimedia learning, presenting extraneous 

information that is not relevant for the learning task should be avoided, because it 

hinders learning (Mayer & Fiorella, 2014). However, based on eye-tracking research 

(e.g. Canham & Hegarty, 2010; Haider & Frensch, 1999), we hypothesized that task 

experience might be a boundary condition for the negative effect of extraneous 

information on learning. With increasing task experience, learners might adapt their 

study strategy and ignore extraneous information, which would reduce or lift the 

negative effects on learning. We assessed this hypothesis in a series of three 

experiments. Although we did not find evidence for a coherence effect, we did 

establish that being presented with pictures that mismatched the action words to be 

learned, had a negative effect on learning outcomes compared to being presented 

with pictures that matched the action to be learned (Experiment 1). We then 

confirmed that task experience nullified this negative effect (Experiment 2), and 

finally, established that participants indeed adapted their study strategy, allocating 

less attention to the pictures over time, especially to the mismatching pictures 

(Experiment 3).  

Theoretical Relevance 

Although we did not find a multimedia effect of matching pictures, or a 

coherence effect of mismatching pictures, in the sense that neither picture condition 

differed significantly from the control condition, we did find a negative effect of 

mismatching compared to matching pictures on word learning. This difference was 

interesting for our purpose of investigating whether task experience affects 

processing of mismatching pictures and thereby, learning outcomes. Our findings –

as summarized at the beginning of the General Discussion- are relevant for theories 

of (multimedia) learning and instructional design.  

First, they confirm directly (using eye tracking) the mechanism through which 

the presentation of extraneous information that is irrelevant for and conflicts with 

the task at hand initially hinders learning. That is, our findings show that such 

information initially captures attention (i.e. is being processed). This presumably 

hinders learning by drawing on valuable working memory resources that can no 

longer be used for processes relevant for learning (Kalyuga & Sweller, 2014, Sweller et 

al., 2011) and/or by actively conflicting with the to be learned information (cf. Mayer 

et al., 2007). The additional exploratory analyses of the eye tracking data provide 

some more insight into the potential mechanisms through which this occurs. First, 
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the reduction in attention to the extraneous information (i.e., mismatching pictures) 

was associated with an increase in test performance (i.e. negative correlation that 

became stronger over time). Second, participants seemed to suppress attention to 

the extraneous information over time particularly while the verbal definition was 

spoken (i.e. during encoding). Since the reduction in attention was associated with 

improved performance, this suggests that the extraneous information particularly 

interferes with encoding. Such direct tests of assumptions about the (attentional) 

mechanisms underlying multimedia principles are important, because they can 

support existing ideas about how and why effects on learning occur, or may generate 

new insights and explanations for these principles (Van Gog & Scheiter, 2010). Thus 

far, eye-tracking research on the coherence principle is scarce and focussed mostly 

on effects of presenting ‘seductive details’ (e.g., Lehman, Schraw, McCrudden, & 

Hartley, 2007; Rey, 2014; Sanchez & Wiley, 2006). Seductive details are additional but 

irrelevant pieces of information (pictures, text) that are usually added in an attempt 

to increase learners’ interest or motivation, but have the (unintended) side effect 

that they often hamper learning. Our findings are in line with those from the eye 

tracking studies on seductive-details. These studies showed that seductive details 

hampered test performance by attracting attention, reducing the time learners spent 

on the relevant learning materials (Lehman et al., 2007). Furthermore, this effect was 

stronger for participants with lower attention control (Rey, 2014) or working 

memory capacity (Sanchez & Wiley, 2006).  

Second, our findings not only reinforce but also extend prior multi media 

research by showing that initial negative effects of extraneous information on 

learning disappear because people learn to adapt their study strategy. Furthermore, 

this finding also extends prior eye tracking research. It had been shown that people 

learn to ignore task-irrelevant information during task performance as a result of 

task experience (Haider & Frensch, 1999) or increased prior knowledge (Canham & 

Hegarty, 2010; Hegarty et al., 2010). Our findings demonstrate that people can also 

learn to ignore irrelevant information during learning, and that this is associated 

with better learning outcomes. Thus, our findings suggest that task experience may 

be a boundary condition for the negative effect of extraneous information on 

learning, because participants stop allocating attention to this information. 

Third, the finding that learners seem able to adapt their study strategy to cope 

with the extraneous information (at least when this information always appears in 

the same location), without explicit instruction to do so, demonstrates the 
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importance of studying multimedia learning principles over time, taking into 

account potential changes in study strategy. This focus on spontaneous adaptations 

of study strategies in multimedia learning is scarce, but fits well with a relatively new 

line of research in which participants are successfully instructed to self-manage their 

cognitive load during multimedia learning by changing their study strategy (e.g., 

Agostinho, Tindall-Ford, & Roodenrys, 2013; Gordon, Tindall-Ford, Agostinho, & 

Paas, 2016; Roodenrys, Agostinho, Roodenrys, & Chander, 2012), and with research 

on training multimedia learning strategies (e.g., Bodemer, Ploetzner, Feuerlein, & 

Spada, 2004; Mason, Pluchino, & Tornatora, 2016; Stalbovs, Scheiter, & Gerjets, 2015). 

These studies on strategy training, combined with those of the present study, show 

the importance of studying multimedia learning principles over time, as participants 

might be able to overcome suboptimal instructional design, with or without explicit 

instruction to do so.  

Although these findings on effects of task experience may bring to mind an 

“expertise reversal effect” (Kalyuga, 2014), they are rather different. The expertise 

reversal effect states that learning materials that are essential and non-redundant for 

novices, become redundant when learners gain or have more prior knowledge, at 

which point they will no longer aid, and might even hinder learning. Thus, an 

expertise reversal effect would imply that information becomes extraneous and 

starts to hamper learning as task experience increases, whereas in our study the 

extraneous information stops hampering learning as task experience increases. 

Moreover, in contrast to the expertise reversal effect, participants in our study did 

not gain experience with (or knowledge of) the task content (i.e., the word 

definitions) over time, but with the task presentation.   

Limitations and Future Research 

A limitation of the present study lies in the materials used. In Experiments 1a 

and 1b we failed to establish a coherence effect, as there was no negative effect of 

mismatching pictures compared to a no picture control condition. We did, however, 

find a small but significant and consistent negative effect on learning of 

mismatching compared to matching pictures, which was suitable for addressing our 

main hypothesis that such a negative effect might diminish with task experience. 

Furthermore, the learning materials used in the present study were specifically 

designed to test our hypothesis and as such have rather low ecological validity. Yet, 

pictures that are irrelevant for the learning task, and might even conflict with it, are 

ubiquitous in textbooks and e-learning materials, and our study provides a first 
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indication that students can learn to ignore this extraneous information, and that 

when they do, it no longer hampers their learning.  

Future research should investigate the process by which this occurs in more 

detail. For instance, it is possible that it was relatively easy to suppress attention to 

the pictures in the present study, because they always appeared in the same location. 

An interesting question, therefore, is whether participants have truly learned that 

the content mismatched the definitions. In this case, they would continue to ignore 

the pictures even when the location would suddenly change (which would indicate a 

relatively conscious process of attention inhibition).  

Another potential limitation of our materials is that our mismatching pictures 

were not only irrelevant for learning the action word definition, but might also have 

actively interfered with learning, by depicting another action. Therefore, it would be 

interesting for future research to further disentangle effects of various types of 

extraneous information. For instance, one could use decorative pictures that are 

superficially related to the action, but do not conflict with the to be learned 

definition (e.g., a picture of a toolbox with a wrench, hammer, and sanding paper 

inside when learning that ‘ifra’ means ‘to polish or scrape with sandpaper’). An 

interesting question is whether it would be more difficult for participants to learn to 

ignore such pictures, as the lack of conflict might make it less obvious that the 

pictures can/should be ignored. 

Moreover, it would be interesting to examine whether our findings would 

generalize to more ecologically valid and more complex materials that test 

meaningful learning instead of rote memory (as the present materials required). This 

would also allow for determining whether our findings would also extend to other 

types of coherence effects, such as the presentation of unnecessary elaborations or 

details when learning from illustrated texts. When the learning materials and the 

type of learning that is required become more complex, it may become less obvious 

what information is and is not relevant for learning, which may make it harder for 

learners to adapt their study strategy. Relatedly, the way in which extraneous 

information is presented may also affect how easily students can learn to ignore it. 

For instance, it may be harder for learners to start to ignore irrelevant text when it is 

integrated in pictures (cf. Bobis et al., 1993; Chandler & Sweller, 1991) or to ignore 

incoherent additional explanations about mechanical systems that interfere with 

learning the relevant materials (Mayer et al., 2007) than it is to ignore a picture (that 

always appears in the same location) in its entirety. At the same time, it is arguably 
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even more important to be able to ignore extraneous information in complex 

materials such as illustrated texts, as such materials already pose a high demand on 

limited working memory resources.  

Finally, it would also be relevant to address the role of individual differences in 

attention control or working memory (cf. Rey, 2014; Sanchez & Wiley, 2006) in 

future research. Such individual differences, might affect whether people learn to 

ignore task-irrelevant information or the rate with which they learn to do so. 

Practical Relevance 

Despite these limitations, our findings may prove relevant for educational 

practice. Although our findings require replication with more complex learning 

materials and more complex types of learning, our study provides a first indication 

that students can learn to ignore extraneous information, and that when they do, it 

no longer hampers their learning. Moreover, although learning was ‘merely’ defined 

in terms of rote memory in the present study, this also has its place in educational 

practice. When learning a new language, for example, it is important to first acquire 

a sufficient vocabulary before learning grammar. As Wilkins (1972, pp. 111-112) put it: 

“...while without grammar very little can be conveyed, without vocabulary nothing 

can be conveyed”. 

Knowing that learners might be able to adapt their study strategies and ignore 

extraneous information with task experience, is relevant for instructional designers. 

That is, it is very hard for instructional designers to take into account all multimedia 

principles at once, because individual learner characteristics may interact with some 

of the principles. For example, the split attention principle states that information 

from two mutually referring sources (e.g. text and picture) should be integrated 

rather than presented separately (Ayres & Sweller, 2014). However, whereas the 

integrated text may be crucial for novices’ understanding, it can become redundant, 

and start to hamper learning for more advanced learners (Kalyuga & Sweller, 2014). 

Therefore, it is important to investigate whether and to what extent students 

themselves are able to adapt their study strategy spontaneously or after training, and 

we took a first step in that direction.  

Conclusion 

Concluding, this study suggests that task experience may be a boundary 

condition for the negative effect of extraneous information on learning, because 

experience allows learners to change their study strategies to cope with (i.e. ignore) 

information that interferes with their learning. Future research should establish 
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whether this boundary condition generalizes to more complex learning and other 

types of extraneous information. If so, this is relevant knowledge for multimedia 

learning theories as well as for instructional designers 

 

Appendix A 

Vimmi Words Used in Experiment 2 and 3 and Audio Duration of the definitions for 

Experiment 3. 

 Vimmi word Definition of Duration (s) 

1 Repo to write 4.14 

2 Lapo to iron 4.56 

3 Rifa to saw 6.54 

4 Dawu to inject 4.52 

5 Dupi to hammer 5.28 

6 Kune to paint 3.22 

7 Luko to scrub 4.56 

8 Bepa to screw 5.88 

9 Redu to stir 6.07 

10 Buto to cut 4.82 

11 Lozu to pour 3.89 

12 Tari to erase 5.22 

13 Kori to stamp 3.79 

14 Lefa to beat 5.24 

15 Ifra to sand 4.43 
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Abstract 

Presentation of irrelevant additional information hampers learning. However, using a 

word-learning task, recent research demonstrated that an initial negative effect of 

mismatching pictures on learning no longer occurred once learners gained task 

experience. It is unclear, however, whether learners consciously suppressed attention 

to the content of the mismatching pictures. Therefore, we examined the effects of a 

picture location change towards the end of the learning phase: for half of the 

participants, the picture location was changed after they gained task experience. If 

participants only ignore the location of mismatching pictures, word learning in the 

mismatched condition should be hampered after the location change. Changing the 

location of the mismatching pictures did not affect recall in the mismatched 

condition, but, surprisingly, the location change did hamper learning in the matched 

condition. In sum, it seems that participants learned to ignore the content, and not 

just the location of the irrelevant information. 
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Introduction 

The ”multimedia effect” indicates that learning improves when study tasks or 

materials combine pictorial and verbal representations of the content (Butcher, 

2014). However, this beneficial effect on learning only occurs when both 

representations are crucial for understanding the subject at hand. When one source 

of information is extraneous, that is, not relevant for learning, it will hinder learning 

(Kalyuga & Sweller, 2014; Mayer & Fiorella, 2014). For example, learning is hampered 

when interesting information is added to enrich materials (i.e., seductive details, 

e.g., Harp & Mayer, 1998); when learning materials are unnecessarily elaborate, 

presenting textual explanations with self-explanatory diagrams (e.g., Chandler & 

Sweller, 1991), or providing details and examples whereas a concise summary would 

suffice (e.g., Mayer, Bove, Bryman, Mars, & Tapangco, 1996); or when information on 

related systems is presented when learning about a specific system (Mayer, 

DeLeeuw, & Ayres, 2007). 

The negative effects of extraneous information on learning arise because 

learners attend to, process, and attempt to integrate the extraneous information 

with the essential information, which unnecessarily depletes working memory 

resources required for learning (Mayer, 2014; Sweller, Ayres, & Kalyuga, 2011). 

Moreover, in some cases, the content of the additionally presented information may 

actively interfere with learning the essential information (e.g., Mayer et al., 2007). 

However, eye-tracking studies have shown that participants learn to ignore 

extraneous information with task experience (Haider & Frensch, 1999) or explicit 

instruction (Hegarty, Canham, & Fabrikant, 2010). Therefore, task experience might 

be a boundary condition to the negative effect of extraneous information on 

learning: If people learn to ignore such information with task experience, it should 

no longer hamper learning. 

A recent study yielded evidence in line with this hypothesis (Rop, Van 

Wermeskerken, De Nooijer, Verkoeijen, & Van Gog, in press). Participants learned 

the definitions of fifteen words (from an artificial language called Vimmi; see 

Macedonia & Knösche, 2011) in three blocks of five words, with a recall test after each 

block.  After the first block, recall performance was lower when words were coupled 

with mismatching pictures than with matching pictures; however, once participants 

had some experience with the task (i.e., in blocks 2 and 3), the mismatching pictures 

no longer hampered recall performance compared to the matching pictures 

(Experiment 2). A follow-up experiment, employing eye-tracking methodology to 
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study learners’ attention allocation, showed that learners adapted their study 

strategy with increasing task experience and started to ignore the mismatching 

pictures more strongly than the matching pictures.  

Because the mismatching pictures always appeared at a fixed location, it is an 

open question whether learners consciously suppressed attention to the pictures 

because they were aware that the content was irrelevant for the task at hand. One 

way to answer this question is by systematically changing the location of the pictures 

for half of the participants after they have accumulated task experience (i.e., in the 

third block of words; see Figure 1 for an impression of the location change). If they 

learned to suppress attention to the location, learning should be negatively affected 

in the mismatched condition with a location change (because the change reinstates 

attention to the pictures, at least briefly) compared to all other conditions. However, 

if participants learned that the content is irrelevant, they would be expected to 

actively suppress attention to the pictures regardless of the location and 

performance should not be lower in the mismatched condition with a location 

change compared to all other conditions.  

Another possibility is that a location change will only briefly hamper learning. 

This hypothesis is based on the signal-suppression hypothesis (Gaspelin, Leonard, & 

Luck, 2015; Sawaki & Luck, 2010), which states that a combination of bottom-up and 

top-down influences determines attention paid to a stimulus. While a location 

change might briefly attract attention due to saliency of a stimuli unexpectedly 

appearing at a different location (bottom-up attention influence, cf. Remington, 

Johnston, & Yantis, 1992), awareness that the stimulus does not contain useful 

content (top-down attention influence) would suppress attention to the picture. 

Consequently, in our learning task, the location change of the mismatching pictures 

might only hamper learning for the first few words. 

Present Experiment 

In the present experiment, participants learned fifteen word definitions in three 

blocks of five words, with either matching (depicting the action to be learned) or 

mismatching (depicting another action) pictures added. In two conditions, the 

pictures were presented underneath the word during the whole experiment (these 

conditions replicate the conditions in Rop et al., in press), while in the other two 

conditions the location of the pictures changed in block 3, in which they were now 

presented above the word.  
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We hypothesized that if learners are aware that the mismatching pictures are 

irrelevant for their learning, they would suppress attention to the pictures even after 

the location changes, in which case the change would not influence word learning 

(either in block 3 as a whole or for the first few words) compared to all other 

conditions. If they only ignored the location, however, recall performance in the 

mismatched condition should be negatively affected after the location change (at 

least for the first few words in block 3). We also performed a direct replication 

experiment (Experiment 1b) as one finding from Experiment 1a was interesting but 

surprising. 

Method 

Participants and Design  

Participants (Experiment 1a: n = 429, Experiment 1b: n = 485) were recruited on 

Amazon’s Mechanical Turk (Buhrmester, Kwang, & Gosling, 2011) and were paid 1.50 

US dollar for their participation. A-priori defined post-hoc exclusion criteria were: 

Being left handed (n = 67, n = 80); being a non-native English speaker (n = 11, n = 4); 

participating in a noisy environment (i.e., a self-reported score of 7 or higher on a 9 

point scale, n = 5, n = 5); and taking notes during the learning phase (n = 8, n = 10). 

Furthermore, some participants were excluded for misunderstanding the 

instructions (i.e., they wrote down the names of the pictures instead of the word 

definitions which they were instructed to learn; n = 8, n = 8); and some participants 

were excluded because they encountered technical difficulties (n = 2, n = 4). Finally, 

one participant in Experiment 1a did not have an MTurk ID and was excluded, while 

in Experiment 1b we excluded all participants that already participated in 

Experiment 1a (n = 22). 

This left 327 participants in Experiment 1a (Mage = 37.50 years, SD = 11.71 years, 

range 18-68; 199 females), who were randomly distributed over four conditions 

resulting from a 2 x 2 design with between-subjects factors “Picture Match” 

(matching vs. mismatching) and “Location Change” (yes vs. no): matching pictures 

no location change (matched condition, n = 72), matching pictures with location 

change (matched-change condition, n = 90), mismatching pictures no location 

change (mismatched condition, n = 87), and mismatching pictures with location 

change (mismatched-change condition, n = 78). In Experiment 1b, 352 participants 

were left (Mage = 36.25 years, SD = 11.02 years, range 18-71; 180 females), who were 

randomly distributed over the matched (n = 91), matched-change (n = 89), 

mismatched (n = 86), and mismatched-change (n = 86) conditions. 
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Materials and Procedure 

The learning materials were programmed in Qualtrics software (Qualtrics, 

Provo, UT). Participants learned the definitions of fifteen Vimmi words in three 

blocks of five words, with a recall test after each block. Each word was coupled to the 

definition of an action verb (e.g., “ifra” means “to polish or scrape with sandpaper”). 

Participants saw the word printed on screen and heard the spoken definition of the 

word they had to learn twice (each presentation lasted 11 seconds and the program 

automatically progressed). A matching or a mismatching picture accompanied the 

word the second time participants heard the definition. In the two conditions 

without a location change, the picture was always presented underneath the word. 

In the two change conditions, the picture was presented underneath the word in 

block 1 and 2, but above the word in block 3 (see Figure 1).  

 

 
 

Figure 1. Example materials. The spoken definition (e.g., Ifra means to polish or scrape with 

sandpaper) is presented twice, the second time accompanied by a picture. In the matched (1A) 

and mismatched (1C) conditions, this picture was always presented underneath the word. In 

the matched-change (1B) and mismatched-change (1D) conditions the picture was presented 

underneath the word in block 1 and 2, but the location of the picture changed in block 3, in 

which the picture was now presented above the word. 
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Participants’ knowledge of the definition was tested with a cued recall retention 

test after each block, in which they were presented with the written word and had to 

type in the associated definition as literally as possible1. A block always consisted of 

the same 5 words, but the order of the blocks was randomized using a Latin-square 

design, which resulted in 12 lists used for the experiment. There were no breaks 

between blocks. The experiment lasted about twenty minutes.  

Scoring 

Participants were awarded 1 point if they provided a complete definition on the 

cued recall test (e.g., “to polish or scrape with sandpaper” for the word “ifra”). When 

part of the definition was missing, they received 0.5 point (e.g., “to polish”). If they 

did not provide a definition, or if it was completely wrong, 0 points were awarded 

(e.g., “to remove something written by wiping” which was the definition of another 

word in that block). So, every participant could score a maximum of five points on 

each test. A random subset of the data (11.0% in Experiment 1a and 10.2% in 

Experiment 1b) was scored by a second rater, and interrater reliability was high (κ = 

.91 in Experiment 1a and κ = .84 in Experiment 1b).  

Results 

In all analyses, a significance level of .05 was maintained, and when the 

sphericity assumption was violated, the Greenhouse-Geisser correction is reported. 

Effect size measures used were partial eta-squared and Cohen’s d. Both can be 

interpreted in terms of small (ηp
2 ~ .01, d ~ 0.2), medium (ηp

2 ~ .06, d ~ 0.5), and large 

(ηp
2 ~ .14, d ~ 0.8) effect sizes (Cohen, 1988). First, to check whether we could 

replicate prior findings by Rop et al. (in press) that performance is initially hampered 

by mismatching pictures, we performed a mixed ANOVA on recall performance with 

Word Block (first or second) as within-subjects factor and Picture Match (matching 

or mismatching) as between-subjects factor. Then, to test our hypothesis concerning 

the effects of the location change on recall performance we conducted 2 x 2 ANOVAs 

with Picture Match (matching or mismatching) and Location Change (yes or no) as 

                                                 
1 We also explored whether there were differences in experienced cognitive load 
among the conditions, by asking participants to indicate how much mental effort 
they invested in learning the words on a nine point rating scale (Paas, 1992), ranging 
from one (very, very low effort) to nine (very, very high effort). Because of word 
limits we do not report these data (the only significant finding concerned a main 
effect of Picture Match in Experiment 1b, F(1, 348) = 5.96, p = .015, ηp

2 = .02, 
indicating that participants in the mismatched condition invested more mental 
effort). 
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between-subjects factors on recall performance in block 3. Finally, we investigated 

effects on word level within block 3 by calculating the recall performance per word 

in that block and performing two repeated-measures ANOVA’s (for the mismatched 

and matched condition separately), with Serial Position (1, 2, 3, 4, and 5) as within-

subjects factor and Location Change (yes or no) as between-subjects factor.  

Check: Did Mismatching Pictures Initially Hamper Learning? 

Table 1 shows the results on recall performance in block 1 and 2 of Experiment 

1a and 1b, and of Experiment 2 of Rop et al. (in press). Both Experiment 1a and 1b 

showed a significant main effect of Word Block indicating that recall performance 

improved in both conditions from block 1 to block 2 (1a: F(1, 325) = 10.76, p = .001, ηp
2 

= .03; 1b: F(1, 350) = 15.58, p < .001, ηp
2 = .04). However, we did not replicate the 

interaction between Word Block and Picture Match that was found in the study by 

Rop et al. (in press; 1a: F(1, 325) = 1.17, p = .347, ηp
2 < .01; 1b: F(1, 350) = 1.86, p = .174, 

ηp
2 = .01). Because the pattern in the data seemed consistent with our hypothesis and 

the interaction effect was small in the prior study, we decided to analyse the 

combined data from the prior and current study in order to get an estimate of the 

combined effect of these three studies. To do so, we performed a mixed ANOVA 

with Picture Match (matching or mismatching) and Experiment (Rop et al., 

Experiment 2; Experiment 1a, and Experiment 1b from the present study) as between-

subjects factors and Word Block (first or second) as a within-subjects factor. In this 

analysis, the interaction between Word Block and Picture Match was significant, F(1, 

777) = 6.11, p = .014, ηp
2 = .01, while the three-way interaction Word block x Picture 

Match x Experiment was not, F < 1. The lack of a three-way interaction suggests that 

the patterns of results in the experiments are comparable. Therefore we followed-up 

on the interaction between Word Block and Picture Match with one-tailed t-tests. 

These tests showed that participants in the matched condition had better recall 

performance than participants in the mismatched condition in block 1, t(781) = 2.31, p 

= .011, d = 0.17, but not in block 2, t(781) = 0.06, p = .475, d < 0.01.  
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Table 1. Mean (and SD) Recall Performance (max. = 5) as a Function of Picture Match and 

Location Change in Experiment 1a, Experiment 1b, and Rop et al., Experiment 2. 

 

 
Block 1 Block 2 Block 3 

Experiment 1a (n = 327)    

Matched 3.04 (1.50) 3.17 (1.65) 3.24 (1.63) 

Matched-change 2.89 (1.38) 3.17 (1.53) 2.85 (1.54) 

Mean 2.96 (1.43) 3.17 (1.58)  

Mismatched 2.71 (1.57) 3.09 (1.53) 3.16 (1.52) 

Mismatched-change 3.01 (1.49) 3.40 (1.54) 3.49 (1.46) 

Mean 2.86 (1.54) 3.23 (1.54)  

Experiment 1b (n = 352)    

Matched 2.58 (1.39) 2.77 (1.48) 2.73 (1.52) 

Matched-change 2.63 (1.85) 2.90 (1.85) 2.52 (1.54) 

Mean 2.61 (1.63) 2.83 (1.67)  

Mismatched 2.42 (1.41) 2.65 (1.43) 2.73 (1.49) 

Mismatched-change 2.23 (1.39) 2.94 (1.45) 3.01 (1.42) 

Mean 2.32 (1.40) 2.79 (1.44)  

Rop et al., Exp 2 (n = 104)    

Matched 3.15 (1.46) 3.21 (1.51) 3.14 (1.63) 

Mismatched 2.51 (1.51) 3.17 (1.45) 3.13 (1.44) 

 

Hypothesis: Is Recall Performance in Block 3 Affected by the Picture Location 

Change? 

Experiment 1a. The recall performance in block 3 is shown in Table 1. There 

was no main effect of Picture Match, F(1, 323) = 2.66, p = .104, ηp
2 = .01, or Location 

Change, F < 1 on recall performance, but we did find a significant interaction 

between Picture Match and Location Change, F(1, 323) = 4.61, p = .032, ηp
2 = .01. 

Bonferroni corrected follow-up t-tests (two-tailed) indicated that, in the absence of a 

change, recall performance between the matched and mismatched conditions was 

comparable, t(157) = 0.35, p > .999, d = 0.06, 95% CI for the difference in means = [-

0.58; 0.41]. Surprisingly, after a change, recall performance was higher in the 
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mismatched condition than in the matched condition, t(166) = 2.77, p = .012, d = 0.43, 

95% CI = [0.18; 1.10].  

Experiment 1b. Again, there was no main effect of Picture Match, F(1, 348) = 

2.31, p = .129, ηp
2 = .01, or Location Change, F < 1, and—in contrast to Experiment 1a—

the interaction effect was not statistically significant, F(1, 348) = 2.28, p = .132, ηp
2 = 

.01, although the pattern of results as well as the effect size was comparable to 

Experiment 1a. Therefore, we exploratively conducted the same set of Bonferroni 

corrected follow-up tests as in Experiment 1a. These results were also in the same 

direction as in Experiment 1a, although not statistically significant. In the absence of 

a change, recall performance between the two picture conditions was comparable, 

t(175) = 0.01, p > .999, d < 0.01, 95% CI = [-0.45; 0.45], while recall performance 

seemed higher in the mismatched condition than in the matched condition after a 

location change, t(173) = 2.16, p = .066, d = 0.33, 95% CI = [0.04; 0.93].  

Combined analysis. We ran a combined analysis of Experiment 1a and 1b2, as 

these experiments are a direct replication of each other. We performed a 2 x 2 x 2 

ANOVA with Picture Match (matching or mismatching), Location Change (yes or 

no) and Experiment (Experiment 1a and 1b) as between-subjects factors. This 

analysis revealed a significant interaction between Picture Match and Location 

Change, F(1, 671) = 15.52, p = .009, ηp
2 = .01, while the three-way interaction Picture 

Match x Location Change x Experiment was not significant, F < 1 (again suggesting 

that the Experiments are comparable). The follow-up tests showed that, in the 

absence of a change, recall performance between the two picture conditions did not 

differ, t(334) = 0.07, p = .994, d = 0.01, 95% CI = [-0.34; 0.32], while recall 

performance was higher in the mismatched condition than in the matched condition 

after a location change, t(341) = 3.39, p = .001, d = 0.37, 95% CI = [0.23; 0.87]. This 

combined analysis gives a better estimation of the true effect of a location change, 

which is a small-to-medium effect.  

Hypothesis: Is Recall Performance in Block 3 Affected on Word Level? 

Experiment 1a. Table 2 presents the recall performance data at the word level 

in block 3. Our main objective of this analysis was to explore whether a negative 

effect of location change would occur in the first few serial positions of block 3 for 

mismatching pictures but not for matching pictures. Therefore, we will only report 

                                                 
2 Based on an anonymous Reviewer’s suggestion. 
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on the interaction between Location Change and Serial Position, which was not 

significant for the matched, F < 1 and mismatched condition, F < 1.  

Experiment 1b: Again, we did not find an interaction between Location 

Change and Serial Position for both conditions: matched, F < 1; mismatched, F(3.63, 

616.67) = 1.21, p = .307, ηp
2 = .01. 

 
Table 2. Mean (and SD) Recall Performance on the Words in Block 3 as a Function of Picture 

Match and Location Change in Experiment 1a and 1b. 

 

 Experiment 1a Experiment 1b 

  Matched Mismatched Matched Mismatched 

 No Change Change No Change Change No Change Change No Change Change 

1 .70 (.43) .66 (.46) .66 (.46) .69 (.43) .63 (.45) .60 (.45) .56 (.47) .71 (.43) 

2 .60 (.46) .52 (.43) .59 (.47) .69 (.44) .49 (.42) .43 (.42) .51 (.45) .55 (.43) 

3 .60 (.45) .51 (.42) .57 (.43) .60 (.42) .47 (.42) .44 (.42) .48 (.44) .48 (.43) 

4 .64 (.42) .53 (.45) .60 (.43) .64 (.43) .48 (.42) .47 (.41) .48 (.46) .56 (.44) 

5 .71 (.39) .63 (.44) .74 (.38) .88 (.30) .67 (.41) .60 (.46) .70 (.40) .71 (.39) 

∑ 3.24 (1.63) 2.85 (1.54) 3.16 (1.52) 3.49 (1.46) 2.73 (1.52) 2.52 (1.54) 2.73 (1.49) 3.01 (1.42) 

 

Explorative Analysis: Does Recall Performance Within Conditions Change 

from Block 2 to 3? 

To exploratively follow up on the unexpected finding that recall performance 

was higher in the mismatched that in the matched condition when a change was 

present (see Table 1), we performed Bonferroni corrected paired t-tests to compare 

the performance in block 2 and 3 in all four conditions of Experiment 1a and 1b. The 

results of Experiment 1a suggest that recall performance was lower in block 3 

compared to block 2 in the matched-change condition, t(89) = 2.11, p = .072, d = 0.21, 

95% CI = [-0.02; -0.61], whereas performance remained stable across block 2 and 3 in 

the other three conditions, minimum p = .860, maximum d = 0.07. In Experiment 1b, 

again, there seemed to be a performance drop in the matched-change condition 

from block 2 to 3, t(88) = 2.07, p = .084, d = 0.22, 95% CI = [-0.01; -0.74], which did 

not occur in the other conditions, minimum p < .999, maximum d = 0.05.   
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Discussion 

Prior research has shown that presenting learners with extraneous information 

that is irrelevant for the task at hand, hampers their learning (Kalyuga & Sweller, 

2014; Mayer & Fiorella, 2014). However, a recent study comparing the effect of 

matching and mismatching pictures on word learning, suggested that task 

experience might be a boundary condition to this effect (Rop et al., in press). The 

negative effect on learning was present initially but no longer occurred once learners 

gained task experience, because they started to ignore the irrelevant information. 

However, the mismatching pictures always appeared at a fixed location. Therefore, it 

was unclear whether learners consciously suppressed attention to the pictures 

because they were aware that the content was irrelevant for the task at hand. The 

aim of the present study was to address this question by systematically changing the 

location of the pictures for half of the participants after they have accumulated task 

experience. Our results indicated that changing the picture location influenced recall 

performance, albeit in an unexpected way. The location change in block 3 resulted in 

poorer recall in the matched condition compared to the mismatched condition, and 

an explorative follow-up analysis suggested that recall performance decreased in the 

matched condition from block 2 to block 3, while it remained stable in all other 

conditions. Note that this analysis was not statistically significant after Bonferroni 

correction. However, the effect sizes in Experiment 1a and Experiment 1b were 

almost equal (d = 0.21 and 0.22). Combined, these findings suggest that changing the 

location of matching pictures seemed to have a small negative effect on word 

learning.  

Eye-tracking data from the study by Rop et al. (in press) showed that matching 

pictures continuously attracted a substantial amount of attention, from an average of 

76% of fixation time in block 1 to 60% in block 3, over the course of the experiment. 

Thus, in the present study, when the location of these pictures suddenly changed in 

block 3, participants might have wondered why the location of the pictures changed, 

which would distract from learning the definitions. This distraction might have 

hampered learning as participants focused more on the changing picture location, 

and less on encoding the actual definition. Future research could address the 

plausibility of this explanation by measuring learners’ visual attention allocation 

using eye-tracking methodology to see whether they anticipated on the picture 

appearing in the other location, or by interviewing them after the experiment. More 

importantly for our hypotheses, the fact that the location change did not affect 
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performance in the mismatched condition suggests that students were aware that 

the content was irrelevant for their learning of the word definitions and that they 

continued to ignore these pictures.  

Limitations and Future Research 

A limitation of the present study is that we did not directly measure visual 

attention allocation, but the performance data suggest that the mismatching 

pictures must have been consciously ignored via top-down influences, because 

otherwise a drop in performance compared to block 2 would have occurred. 

Furthermore, within block 3 we did not find a negative effect of mismatching 

pictures on the first words, so even if the location change attracted learners’ 

attention initially (i.e., stimulus-driven, bottom-up influences; cf. Remington et al., 

1992), it seems to have been suppressed quickly (cf. Gaspelin et al., 2015; Sawaki & 

Luck, 2010). Possibly, participants were able to ignore the mismatching pictures by 

redirecting their attention to the artificial language word that was shown on the 

screen (in the study by Rop et al., in press, attention to the word increased from an 

average of 42% in block 1 to 69% in block 3 in the mismatched condition).  

Another possible limitation of the present study could be that we only 

replicated the initial finding that mismatching pictures have a negative effect on 

learning compared to matching pictures when we combined the results of multiple 

experiments. Note though, that the pattern of means of recall performance was 

consistent over all experiments: Participants learning with mismatching pictures 

score lower in block 1 than participants learning with matching pictures. Secondly, 

because we were able to include multiple experiments in the combined analysis, we 

had a large sample size, which means that we can be fairly certain that the effect 

exists, although it is small. Finally, the small effect size is consistent with prior 

studies using the same materials (Rop et al., in press; De Nooijer, Van Gog, Paas, & 

Zwaan, 2013) and may perhaps be due to the relatively low complexity of the learning 

materials. All things considered, we can regard this replication attempt a modest 

success, although the effect size for the crucial interaction we found is much smaller 

than the effect size reported in Rop et al. (in press). Future research should address 

whether these findings would replicate with more complex multimedia learning 

materials, such as expository texts combined with explanatory pictures. Such 

materials might induce larger effect sizes, and would provide evidence that task 

experience is a robust boundary condition to the negative effects of irrelevant 

information on learning.  
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Practical Implications 

Our results may also be relevant for educational practice. Although the study by 

Rop et al. (in press) already showed that over time, students are able to adapt their 

study strategy and ignore irrelevant information, it was an open question whether 

participants consciously supressed attention to the pictures. The results of the 

present study suggest that they truly learned to ignore the content, and not just the 

location of the irrelevant information. Because information that is relevant for 

novices might become irrelevant for advanced learners, it is important for 

instructional designers to know that students seem to be able to adapt their study 

strategies in multimedia learning. Interestingly, our findings do suggest that 

instructional designers might want to be careful with changing the location of 

relevant information after learners have gained experience with the task, as our 

findings suggest that this can have a (small) negative effect on learning. Future 

research should attempt to replicate these findings in other materials, however, 

before clear instructional design guidelines can be derived.
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Abstract 

The presentation of extraneous (i.e., irrelevant or unnecessary) information may 

hamper learning with multimedia. The present study examined whether people can 

learn to ignore unnecessary information with increasing task experience, and 

whether this depends on the layout of that information. Participants learned about 

the process of mitosis from a multimedia slideshow, with each slide presenting a 

combination of expository text and a picture on one of the stages in the process. 

Slides either contained no unnecessary text (control condition), or unnecessary text 

(i.e., merely describing the picture) either integrated in the picture (integrated 

condition), or presented underneath the picture (separated condition). Experiment 1 

showed that the addition of separated unnecessary information hampered learning 

compared to the control condition, but only when the unnecessary information was 

presented at the right-hand side of the screen. We could not replicate these results 

in Experiment 2, in which we also employed eye tracking. The eye movement data 

did confirm, however, that participants attended less to the unnecessary information 

with increasing task experience. This finding suggests that students seem to adapt 

their study strategy and learn to ignore information that is unnecessary for their 

learning, even if processing this information does not hamper their learning. 
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Introduction 

According to well-known multimedia design principles, presenting extraneous 

(i.e., irrelevant or unnecessary) information in study material should be avoided, as it 

hinders learning (for reviews, see Kalyuga & Sweller, 2014; Mayer & Fiorella, 2014). A 

recent study suggested, however, that task experience may be a boundary condition 

for the negative effect of extraneous information on learning, at least when this 

information is pictorial, and irrelevant for the learning task (i.e., Rop, Van 

Wermeskerken, De Nooijer, Verkoeijen, & Van Gog, in press). In this study on word 

learning, participants who were presented with pictures that depicted the to-be-

learned action word performed better initially (i.e., on the first set of words) than 

participants who were presented with pictures showing a different action. However, 

this difference between relevant and irrelevant picture conditions disappeared as 

learners gained experience with the task (i.e., on later sets of words). Eye-tracking data 

suggested that the initial negative effect on learning disappeared because learners 

started to ignore the irrelevant pictures with task experience.  

However, because the extraneous information was pictorial and obviously 

irrelevant (i.e., it mismatched the verbal information that participants had to 

remember), it is an open question whether task experience would have similar effects 

when the extraneous information is textual (e.g., a text describing the elements of a 

picture) and unnecessary rather than irrelevant (i.e., in the sense that the information 

provided by the text is relevant for the learning task but not necessary as it can also 

be inferred from the picture). The present study addressed this question. 

Effects of Extraneous Information on Learning 

While learning from multimedia materials, that is, materials in which text (either 

spoken or written) and pictures (either static or dynamic) are combined (Mayer, 2014), 

a learner first has to select the relevant information from the text and picture (by 

attending to it). Subsequently, this information has to be organised into a coherent 

cognitive structure in working memory, and has to be integrated with prior knowledge 

from long-term memory (Mayer, 2014). When either one of these processes (i.e., 

selection, organisation, or integration) is disrupted, learning is hampered. The 

presentation of extraneous information in multimedia learning materials may hamper 

learning when it captures attention, because working memory capacity is limited (e.g., 

Baddeley, 2000; Cowan, 2001; Miller 1956) and processing this extraneous information 

that is not conducive to learning reduces the working memory resources available for 
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the selection, organization and integration of information that is essential for 

learning.  

The negative effect of extraneous information processing on learning have been 

demonstrated with a variety of materials and types of extraneous information. For 

instance, it has been shown to occur when multimedia learning materials are enriched 

with interesting and entertaining information (i.e., seductive details; Harp & Mayer, 

1998, Lehman, Schraw, McCrudden, & Hartley, 2007; Mayer, Heiser, & Lonn, 2001; 

Moreno & Mayer, 2000; Rey, 2014; Sanchez & Wiley, 2006), when information on 

related systems is presented when learning about a specific system (Mayer, DeLeeuw, 

& Ayres, 2007), or when mismatching pictorial information is provided when learning 

word definitions (De Nooijer, Van Gog, Paas, & Zwaan, 2013; Hald, Van den Hurk, & 

Bekkering, 2015; Rop, Van Wermeskerken et al., in press; Rop, Verkoeijen, & Van Gog, 

2017). Moreover, the effect has been demonstrated when text accompanying pictures 

or animation is presented in both spoken and written form (e.g., Craig, Gholson, & 

Driscoll, 2002, Mayer et al., 2001; but see Mayer & Johnson, 2008; Yue, Bjork, & Bjork, 

2013), when self-containing diagrams are accompanied by textual explanations (Bobis, 

Sweller, & Cooper, 1993; Chandler & Sweller, 1991), and when unnecessary details and 

examples are added to learning materials (e.g., Mayer, Bove, Bryman, Mars, & 

Tapangco, 1996; Reder & Anderson, 1982).  

In all these studies, the extraneous information was either irrelevant or 

unnecessary, depending on its relation with the learning goal. Irrelevant information 

is unrelated to the learning goal (e.g., seductive details, information about related 

systems, and mismatching information), while unnecessary information is related to 

the learning goal, but not necessary for learning because the information is presented 

twice (e.g., the same spoken and written text accompanying an illustration, self-

contained diagrams with unnecessary textual explanations) or is unnecessarily 

elaborate (e.g., unnecessary details and examples).  

As mentioned above, presenting such extraneous information hampers learning 

because it captures learners’ attention, and learners spend valuable cognitive 

resources on processing this information that is not conducive to learning. However, 

recently, evidence emerged that people might learn to ignore extraneous information 

with increasing task experience. 

Task Experience 

Inspired by eye-tracking studies showing that participants may learn to ignore 

task-irrelevant information as a consequence of task experience (Haider & Frensch, 
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1999) or explicit instruction (Canham & Hegarty, 2010; Hegarty, Canham, & Fabrikant, 

2010), Rop, Van Wermeskerken et al. (in press) investigated whether people would 

learn to ignore extraneous information once they have gained some experience with a 

learning task. If learners would indeed start to ignore extraneous information, it no 

longer uses up working memory resources, and the negative effect on learning 

outcomes should therefore become smaller or disappear entirely. The authors tested 

this hypothesis using a word-learning task. Participants had to learn the definition of 

an action word from an artificial language (e.g., ‘ifra’ means ‘to polish or scrape with 

sandpaper’) and were shown either relevant pictures that depicted the to-be-learned 

action or irrelevant pictures showing a different action.  

Participants who were presented with the irrelevant pictures initially (i.e., after 

the first set of words) remembered fewer word definitions than participants who were 

presented with relevant pictures. However, this difference between relevant and 

irrelevant picture conditions disappeared as learners gained experience with the task 

(i.e., on later sets of words). Eye tracking data suggested that the initial negative effect 

on learning disappeared because learners started to ignore (i.e., allocate less attention 

to) the irrelevant pictures with task experience (Rop, Van Wermeskerken et al., in 

press). Moreover, a subsequent study provided evidence that learners started to ignore 

the pictures based on their content (Rop, Verkoeijen, et al., 2017). 

These results suggest that with task experience, learners adapt their study 

strategy and start to ignore irrelevant information, thereby diminishing the negative 

effect of irrelevant information on learning. Thus, task experience may be a boundary 

condition for the negative effect of extraneous information on learning, because 

participants stop allocating attention to this information. It is important to establish 

potential boundary conditions as they describe the limits of generalizability of 

scientific theories (Busse, Kach, & Wagner, 2016; Whetten, 1989). However, as the 

extraneous information in the study by Rop, Van Wermeskerken et al. (in press) was 

pictorial, obviously irrelevant (i.e., it mismatched the verbal information that 

participants had to remember), and not integrated with other information, it is an 

open question whether task experience would have similar effects when the 

extraneous information is textual (e.g., a text describing the elements of a picture), 

unnecessary rather than irrelevant (i.e., in the sense that the information provided by 

the text is relevant for the learning task but not necessary as it can also be inferred 

from the picture), and integrated with relevant information (e.g., unnecessary text 

integrated with a picture).  
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There are several reasons why task experience might not have a similar effect (i.e. 

might not help students to learn to ignore extraneous information) under those 

circumstances. First, textual information may be harder to ignore than pictorial 

information as learners often focus more quickly and more strongly on text than on 

the associated pictures (Cromley, Snyder-Hogan, & Luciw-Dubas, 2010; Hannus & 

Hyönä, 1999; Schmidt-Weigand, Kohnert, & Glowalla, 2010). Second, unnecessary 

information might be harder to ignore than irrelevant information, as it is likely less 

obvious for learners that unnecessary information is extraneous to their learning 

process. Finally, whereas extraneous information that is presented separated from the 

relevant information might be relatively easy for participants to ignore, that might be 

more difficult when it is integrated with relevant information. The present study 

addressed these questions. 

The Present Study  

The present study aimed to answer two questions: 1) Do students learn to ignore 

unnecessary textual information with increasing task experience, and 2) is the 

unnecessary textual information more difficult to ignore when it is integrated with 

relevant information? We conducted two experiments in which participants learned 

about the process of mitosis using a multimedia slideshow. The slides consisted of a 

text explaining the process of mitosis (relevant text), and a picture of the visuo-spatial 

appearance of the cell in that particular stage of mitosis. In two conditions, a 

description of the picture components (unnecessary text) was added to the slide, 

either separated from (separated condition), or integrated in (integrated condition) 

the pictorial information. This information was relevant for the learning goals, but it 

was unnecessary as it provided a textual description of the picture, while a picture is 

generally a better representation of visuo-spatial content (Levie & Lentz, 1982; 

Schmidt-Weigand & Scheiter, 2011). In the third condition, only the relevant text and 

the picture were presented on the slide (control condition) 

Experiment 1 investigated, by measuring learning immediately after each slide, 

whether an initial negative effect of unnecessary information would occur; whether 

this negative effect would decrease (or even disappear) as participants gained task 

experience; and whether this decrease would be stronger when the unnecessary text 

was presented separated from the picture (i.e., separated unnecessary text would be 

easier to ignore than integrated unnecessary text). Because we expected that the 

processing of unnecessary information would increase cognitive load, participants 

were asked to rate how much mental effort they invested in learning the materials 
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immediately after each slide (as an indicator of how much cognitive load participants 

experienced: Paas, Tuovinen, Tabbers, & Van Gerven, 2003). We also asked 

participants to rate how much mental effort they invested during the test phase after 

each slide, as participants who gained more knowledge during the learning phase 

should be able to attain higher test performance with less investment of mental effort 

(Van Gog & Paas, 2008). We expected that participants in the unnecessary-

information conditions would initially invest more mental effort during the learning 

and test phase than participants in the control condition, while this difference should 

decrease (or even disappear) as participants gained task experience (at least in the 

separated condition). Experiment 2 was a direct replication of Experiment 1, apart 

from the fact that eye tracking was employed to directly study attention allocation 

processes.  

Experiment 1 

Method 

Participants and design 

Initially, 96 individuals participated in the study, recruited via the university’s 

online recruitment systems. Due to an error in one of those systems, it turned out 

that two participants had already graduated and therefore they were excluded from 

the sample. The final sample comprised 94 undergraduate students from a Dutch 

University (Mage = 21.74 years, SD = 2.55 years; 65 female) who participated for course 

credit or a small fee of 5 euro. They were randomly assigned to one of the three 

conditions: control (n = 32), integrated (n = 31), and separated (n = 31).  

Materials  

The materials were designed and presented using E-Prime 2.0 (Psychology 

Software Tools, Pittsburgh, PA).  

 Prior knowledge test. Participants’ prior knowledge was tested with four 

multiple-choice questions about the process of mitosis (e.g., what is mitosis?) with 

four possible answers (e.g., the correct alternative: “A process in which the nucleus 

and duplicated chromosomes of a cell divide and are evenly distributed”). During 

this test, and all other tests used in this experiment, participants had to guess when 

they did not know an answer, as the program would not progress unless they 

answered a question. 

 Learning materials. The learning materials consisted of a slideshow in which 

six slides described and depicted the process of mitosis. During mitosis, the nucleus 

and chromosomes of a cell are duplicated and are divided over 2 new daughter cells. 
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This process consists of six phases: Interphase, prophase, prometaphase, metaphase, 

anaphase, and telophase. Each phase in the process was described on a separate 

slide, accompanied by a drawing depicting that phase. That the drawings were 

relevant for learning had been established in prior research with these learning 

materials, which showed that the expository text accompanied by pictures led to 

better learning outcomes than the text alone (Scheiter, Schüler, Gerjets, Huk, & 

Hesse, 2014; Schüler, Scheiter, & Gerjets, 2013).  

 The experiment comprised three conditions: In the control condition only the 

relevant text and the picture were shown on each slide (see Figure 1). In the 

separated unnecessary text condition, the pictures were additionally accompanied by 

a description of the visuo-spatial appearance of the components shown in the 

picture (see Figure 1). In the integrated condition, the same information as in the 

separated condition was presented, but the unnecessary text describing the pictures 

was integrated with the pictures (see Figure 2).  

 On average, the relevant text consisted of 77 words on each slide (range 72-82), 

while the unnecessary text consisted of 39 words per slide (range 28-46). The 

location of the picture and the unnecessary text was varied (left- or right-hand side 

of the screen) between subjects to control for potential bias in attention as a result of 

reading direction. The learning materials were system-paced and the available time 

was the same in each condition, so participants could not compensate for time spent 

on processing the unnecessary text by investing more time on the materials overall. 

A small user-paced pilot (n = 8) was used to determine the presentation time per 

slide. We calculated the average time those eight participants spent on each slide, 

and used this as the presentation time of the corresponding slide in the current 

experiment (slide 1: 65s, slide 2: 120s, slide 3: 110s, slide 4: 97s, slide 5: 107s, slide 6: 

77s). It was not possible for participants to go back to a previously presented slide. 
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Figure 1. Example slide for the separated and control conditions with the Areas of Interest 

used in Experiment 2. The description of the components in the picture (unnecessary 

information) is presented underneath the picture. In the control condition, this description is 

not present. 

 

 

Figure 2. Example slide for the integrated condition with the Areas of Interest used in 

Experiment 2. The description of the components in the picture is integrated in the picture. 
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Cloze test. Knowledge about the studied mitosis phase was tested immediately 

after each slide, using a cloze test in which participants were presented with four 

short sentences from the relevant text they had just studied, with one or two 

keyword(s) omitted (e.g., The nucleus of the newly formed cell is bound by the __). 

Participants were asked to fill in the blanks by typing the correct answer into the 

answer box.  

 Invested mental effort. Participants were asked to indicate how much effort 

they invested in learning the content of each preceding slide on a nine-point rating 

scale (Paas, 1992), ranging from one (extremely low effort) to nine (extremely high 

effort). Moreover, participants were asked to indicate how much effort they invested 

in answering the cloze test after each slide, using the same nine-point scale. 

 Picture test. Because processing the unnecessary text might have gone at the 

expense of processing the pictures, we also tested participants’ knowledge of the 

pictures at the end of the experiment. To do so, we used a multiple-choice test 

consisting of seven items. In six items (present in a random order), participants were 

presented with a picture of one of the phases, and had to choose which phase it 

depicted, from six alternatives. In the seventh item, participants saw all six phases 

depicted on the screen, and had to indicate the correct order of the pictures (i.e., 

according to the phases of mitosis) from six possible answers.  

Procedure 

 Participants were either tested individually or with two participants 

simultaneously. First, the prior knowledge test was administered and participants 

were asked to fill in their age and gender. After this test, participants learned about 

mitosis with a slideshow consisting of six slides, each depicting a different phase in 

the process, under one of the three conditions (see Figures 1 and 2). After each slide, 

participants first had to indicate how much effort they invested in studying the 

preceding slide, then fill in the cloze test, and then indicate how much effort they 

invested in answering the cloze test questions. After the learning phase, participants 

had to fill in the picture test. In total, the experiment took approximately 20 to 30 

minutes, and it was administered without breaks. 

Scoring 

 For all multiple-choice questions, participants received one point when they 

gave the correct answer and no points when they gave the wrong answer. Thus, 

participants could score a maximum of four points on the pretest, and seven points 

on the picture test. For the cloze test questions, participants were awarded 1 point if 
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the correct answer was given, 0.5 points when the answer was partially correct, and 0 

points when they did not provide an answer or if it was completely wrong. Thus, 

participants could score zero to four points per cloze test after each slide. A random 

subset of the cloze test data (10.4%) was scored by a second rater, and interrater 

reliability was high (κ = .91). 

Results 

As mentioned in the materials section, we controlled for reading direction by 

counterbalancing the location of the picture and the unnecessary text (hereafter 

called PUT). As a check revealed that PUT-location seemed to influence the 

dependent variables, we included it as a factor in the analyses. In the analyses of the 

effects of task experience (i.e., on cloze test performance and invested mental effort 

during learning and in the cloze test), we made the distinction between lower (slide 1 

to 3) and higher task experience (slide 4 to 6). When the sphericity assumption was 

violated, we report the results after Greenhouse-Geisser correction. We used partial 

eta-squared and Cohen’s d as measures of effect size; both can be interpreted in 

terms of small (ηp
2 ~ .01, d ~ 0.2), medium (ηp

2 ~ .06, d ~ 0.5), and large (ηp
2 ~ .14, d ~ 

0.8) effect sizes (Cohen, 1988). Moreover, when post-hoc follow-up tests were 

performed, we used a Bonferroni correction (i.e., multiplying the p-value with the 

number of tests performed).  

Prior knowledge  

 Performance on the prior knowledge test is presented in Table 1, and was 

analyzed with a 3 x 2 ANOVA with condition (separated, integrated, or control) and 

PUT location (left or right) as between-subjects factors. The analyses revealed no 

effect of condition, F < 1, no effect of PUT location, F(1, 88) = 3.00, p = .087, ηp
2 = .03, 

and no interaction, F(2, 88) = 1.81, p = .169, ηp
2 = .04. Hence, there were no significant 

differences in prior knowledge among conditions. 
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Table 1. Mean (and SD) Performance on the Prior Knowledge Test (max. = 4) and Picture Test 

(max. = 7) as a Function of Condition and PUT Location in Experiment 1 and 2. 

 

  Prior knowledge test  Picture test 

  Exp. 1 Exp. 2  Exp. 1 Exp. 2 

PUT left Control 2.76 (1.09) 2.26 (1.10)  4.59 (1.77) 4.89 (1.70) 

 Integrated 2.19 (0.98) 2.50 (1.05)  4.69 (1.82) 4.95 (1.79) 

 Separated 2.80 (1.08) 2.23 (1.23)  4.67 (1.99) 5.32 (1.43) 

 Total 2.58 (1.07) 2.33 (1.12)  4.65 (1.82) 5.07 (1.62) 

PUT right Control 2.13 (1.13) 2.37 (0.96)  4.07 (1.22) 5.79 (1.44) 

 Integrated 2.40 (1.06) 2.55 (1.19)  5.20 (2.01) 5.40 (1.64) 

 Separated 2.06 (1.12) 2.41 (1.14)  4.81 (1.56) 5.23 (1.66) 

 Total 2.20 (1.09) 2.44 (1.09)  4.70 (1.66) 5.46 (1.58) 

Total Control 2.47 (1.14) 2.32 (1.02)  4.34 (1.54) 5.34 (1.62) 

 Integrated 2.29 (1.01) 2.53 (1.11)  4.94 (1.90) 5.18 (1.71) 

 Separated 2.42 (1.15) 2.32 (1.18)  4.74 (1.75) 5.27 (1.53) 

 Total 2.39 (1.09) 2.39 (1.10)  4.67 (1.73) 5.26 (1.60) 

 

Cloze test  

 The average performance on the first three (lower experience) and last three 

cloze tests (higher experience) is presented in Table 2. We performed a 3 x 2 x 2 

mixed ANOVA with between-subjects factors condition (separated, integrated, or 

control) and PUT location (left or right) and within-subjects factor task experience 

(lower or higher) on these data. The analysis revealed a main effect of condition, F(2, 

88) = 5.06, p = .008, ηp
2 = .10, with follow-up tests showing that performance in the 

separated condition (M = 1.19, SD = 0.62) was significantly lower than performance in 

the control condition (M = 1.71, SD = 0.65), p = .005, d = 0.82. Performance in the 

integrated condition (M = 1.45, SD = 0.64) did not significantly differ from 

performance in the control condition, p = .349, d = 0.39, or the separated condition p 

= .319, d = 0.42. Moreover, the analysis revealed a main effect of task experience, F(1, 

88) = 10.20, p = .002, ηp
2 = .10, indicating that cloze test performance was higher on 

the first three slides, when participants had lower task experience (M = 1.55, SD = 

0.74), than on the last three slides, when they had more task experience (M = 1.36, 

SD = 0.74). We found no main effect of PUT location, F < 1, but the analysis did 

reveal an interaction between task experience and PUT location, F(1, 88) = 11.11, p = 
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.001, ηp
2 = .11. Two-tailed independent samples t-tests showed that the location of the 

unnecessary information (left, M = 1.51, SD = 0.73; right, M = 1.59, SD = 0.75) did not 

influence cloze test performance when participants had lower task experience, t(92) 

= 0.53, p > .999, d = 0.11, while participants with more task experience seemed to 

perform better when the unnecessary text was presented left (M = 1.52, SD = 0.78) 

than when it was presented right (M = 1.20, SD = 0.66), t(92) = 2.18, p = .064, d = 0.45. 

We found no interaction between PUT location and condition, F < 1. More relevant 

for our hypotheses, we found no interaction between task experience and condition, 

F(2, 88) = 1.65, p = .198, ηp
2 = .04. However, we did find a three way interaction 

between condition, task experience, and PUT location, F(2, 88) = 3.51, p = .034, ηp
2 = 

.07. This three way interaction presumably arose because initial performance 

differences between the control and separated condition diminished when 

participants gained task experience, but only when the unnecessary information was 

presented on the right-hand side of the screen (see Figure 3). We did no predict this 

three-way interaction based on our theoretical framework, and the pattern of results 

was not in line with it. This is because performance in the control condition 

diminished while reasoning from our theoretical framework one would predict the 

performance level to remain constant in the control condition, whereas it ought to 

increase in the separated condition. 
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Table 2. Mean (and SD) Cloze Test Performance (max. = 4) as a Function of Condition, PUT 

location, and Task Experience in Experiment 1 and 2. 

 

  Experiment 1 Experiment 2 

  Task Experience Task Experience 

  
Low High Low High 

PUT left Control 1.72 (0.71) 1.76 (0.69) 1.48 (0.64) 1.31 (0.70) 

 
Integrated 1.48 (0.71) 1.67 (0.77) 1.43 (0.65) 1.38 (0.71) 

 
Separated 1.30 (0.74) 1.09 (0.73) 1.50 (0.50) 1.39 (0.59) 

 Total 1.51 (0.73) 1.52 (0.78) 1.47 (0.59) 1.36 (0.66) 

PUT right Control 2.02 (0.72) 1.32 (0.75) 1.58 (0.83) 1.34 (1.06) 

 
Integrated 1.48 (0.72) 1.18 (0.61) 1.29 (0.73) 1.32 (0.61) 

 
Separated 1.28 (0.66) 1.09 (0.64) 1.56 (0.77) 1.60 (0.87) 

 Total 1.59 (0.75) 1.20 (0.66) 1.48 (0.77) 1.43 (0.86) 

Total Control 1.86 (0.72) 1.56 (0.74) 1.53 (0.73) 1.32 (0.89) 

 Integrated 1.48 (0.70) 1.43 (0.73) 1.36 (0.69) 1.35 (0.66) 

 Separated 1.29 (0.69) 1.09 (0.67) 1.53 (0.64) 1.50 (0.74) 

 Total 1.55 (0.74) 1.36 (0.74) 1.47 (0.69) 1.39 (0.76) 

 

 

Figure 3. Mean Cloze Test Performance in Experiment 1 (max. = 4) as a Function of Condition 

and Task Experience, when the PUT location was Right (Figure 3a) or Left (figure 3b).  
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Mental effort 

 Self-reported invested mental effort during the learning phase and the cloze 

test are presented in Tables 3 and 4. We performed 3 x 2 x 2 mixed ANOVAs with 

between-subjects factors condition (separated, integrated, or control) and PUT 

location (left or right) and within-subjects factor task experience (lower or higher) 

on the invested mental effort data obtained during the learning phase and the cloze 

test. For the invested mental effort during the learning phase, this analysis revealed 

no main effect of condition, F < 1, and no main effect of PUT location, F(1, 88) = 2.41, 

p = .124, ηp
2 = .03. The analysis did reveal a main effect of task experience, F(1, 88) = 

6.16, p = .015, ηp
2 = .07, indicating that participants invested more mental effort when 

they had lower task experience, (M = 6.73, SD = 1.09) than when they had more task 

experience, (M = 6.52, SD = 1.21). There were no significant interactions, all Fs < 1. 

 
Table 3. Mean (and SD) Invested Mental Effort (max. = 9) during the Learning Phase as a 

Function of Condition, PUT location, and Task Experience in Experiment 1 and Experiment 2. 

 
  

Experiment 1 Experiment 2 

  
Task Experience Task Experience 

  
Low High Low High 

PUT left Control 7.00 (0.89) 6.86 (1.17) 6.58 (1.05) 6.61 (1.36) 

 
Integrated 6.88 (1.11) 6.80 (1.11) 6.40 (1.16) 6.10 (1.24) 

 
Separated 6.78 (0.72) 6.47 (0.88) 6.15 (1.05) 6.09 (1.03) 

 Total 6.89 (0.91) 6.72 (1.06) 6.37 (1.08) 6.26 (1.22) 

PUT right Control 6.62 (0.77) 6.47 (1.27) 6.60 (1.09) 6.19 (1.21) 

 
Integrated 6.44 (1.52) 6.07 (1.62) 6.50 (1.24) 6.30 (1.39) 

 
Separated 6.65 (1.36) 6.44 (1.17) 6.58 (0.89) 6.45 (0.85) 

 Total 6.57 (1.24) 6.33 (1.34) 6.56 (1.06) 6.32 (1.15) 

Total Control 6.82 (0.85) 6.68 (1.21) 6.59 (1.05) 6.40 (1.29) 

 Integrated 6.67 (1.32) 6.44 (1.40) 6.45 (1.18) 6.20 (1.30) 

 Separated 6.71 (1.08) 6.45 (1.02) 6.36 (0.99) 6.27 (0.95) 

 Total 6.73 (1.09) 6.52 (1.21 6.46 (1.07) 6.29 (1.18) 
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For the invested mental effort during the cloze test, this analysis revealed no 

main effect of condition, F < 1, no main effect of PUT location, F(2, 88) = 1.82, p = .181, 

ηp
2 = .02, and no main effect of task experience, F < 1. The analysis revealed no 

interaction between PUT location and condition, F(2, 88) = 2.29, p = .107, ηp
2 = .05, 

PUT location and task experience, F(2, 88) = 1.93, p = .168, ηp
2 = .02, task experience 

and condition, F < 1, nor a three-way interaction condition x PUT location x task 

experience, F(2, 88) = 1.15, p = .323, ηp
2 = .03. 

 
Table 4. Mean (and SD) Invested Mental Effort (max. = 9) during the Cloze Test as a Function of 

Condition, PUT location, and Task Experience in Experiment 1 and Experiment 2. 

 

  Experiment 1 Experiment 2 

  Task Experience Task Experience 

  Low High Low High 

PUT left Control 6.88 (1.25) 6.86 (1.17) 6.26 (1.39) 6.37 (1.46) 

 Integrated 6.90 (0.84) 6.89 (0.84) 5.77 (1.21) 5.62 (1.18) 

 Separated 6.02 (1.07) 6.02 (1.06) 5.91 (1.36) 5.82 (1.07) 

 Total 6.62 (1.12) 6.72 (1.06) 5.97 (1.36) 5.92 (1.26) 

PUT right Control 6.04 (1.01) 6.47 (1.27) 5.98 (1.09) 5.74 (1.11) 

 Integrated 6.09 (1.46) 6.09 (1.46) 6.02 (1.39) 6.08 (1.45) 

 Separated 6.40 (1.30) 6.44 (1.27) 6.05 (1.05) 5.98 (0.98) 

 Total 6.18 (1.25) 6.32 (1.34) 6.02 (1.16) 5.94 (1.18) 

Total Control 6.49 (1.21) 6.68 (1.21) 6.12 (1.24) 6.05 (1.32) 

 Integrated 6.51 (1.23) 6.44 (1.40) 5.89 (1.29) 5.85 (1.32) 

 Separated 6.22 (1.19) 6.45 (1.02) 5.98 (1.26) 5.90 (1.02) 

 Total 6.40 (1.20) 6.52 (1.21) 5.99 (1.26) 5.93 (1.21) 

 

Picture test 

 Performance on the picture test is shown in see Table 1, and was analyzed with 

a 3 x 2 ANOVA with condition (separated, integrated, or control) and PUT location 

(left or right) as between-subjects factors. The analysis revealed no effect of 

condition, F(2, 88) = 1.02, p = .366, ηp
2 = .02, no effect of PUT location, F < 1, nor an 

interaction effect, F < 1. 
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Discussion 

Surprisingly, we did not find a consistent negative effect of unnecessary 

information on (initial) learning. Unnecessary information only had a negative effect 

on cloze test performance when it was presented separated from the relevant 

information, not when it was integrated. This finding was qualified, however, by a 

three-way interaction between condition, task experience, and PUT location, 

suggesting that initial performance differences between the control and separated 

condition diminished when participants gained task experience, but only when the 

unnecessary information was presented on the right-hand side of the screen. In 

contrast to our expectations, however, the reduced difference between the 

conditions seemed to result from a decline in performance in the control condition 

rather than an increase in performance in the separated condition. In sum, our 

hypotheses regarding task experience were not confirmed in Experiment 1. To get 

more insight into how students process the unnecessary text and whether this 

changes over time (i.e., with increasing task experience), Experiment 2 replicated 

Experiment 1, using eye-tracking methodology. 

Experiment 2 

 In Experiment 2, we employed eye tracking to investigate how much attention 

participants devoted to the unnecessary information in the separated and integrated 

conditions, and whether they would start to ignore it over time. We hypothesized 

that the unnecessary text would initially attract attention, but with increasing task 

experience, participants would start to ignore the unnecessary text and allocate less 

attention to it. This should result in 1) shorter fixation duration on the unnecessary 

text, and longer fixation duration on the relevant text and picture with increasing 

task experience; and 2) more transitions between relevant information sources, and 

less transitions between relevant and unnecessary information sources with 

increasing task experience.  

Method 

Participants and design 

 Participants were 133 German University students (Mage = 21.28 years, SD = 2.34 

years; 107 female) who participated for course credit or a small fee of 5 euro. All 

participants had normal or corrected-to-normal vision. One participant indicated 

after completing the experiment that he/she wanted to retract his/her data. For six 

participants the data on how long they spend on each slide indicated that they had 

skipped parts of the learning phase. Furthermore, due to a randomization error, four 
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participants participated in two conditions of the Experiment (i.e., they saw each 

slide twice, in two different conditions). The data of these eleven participants were 

excluded from all future analyses, resulting in a sample of 122 participants (Mage = 

21.06 years, SD = 2.28 years; 98 female). Participants were randomly assigned to one 

of the three conditions: control (n = 38), separated (n = 44), and integrated (n = 40). 

Again, within conditions PUT location was varied: for half of the participants the 

picture and unnecessary text was presented at the right, while for the other half the 

picture and unnecessary text was presented at the left. 

Apparatus and materials 

 The materials were identical to those of Experiment 1. The materials were 

presented in SMI Experiment Center (Version 3.6; SensoMotoric Instruments), on a 

monitor with a resolution of 1920 x 1080 pixels. Participants’ eye movements were 

recorded using SMI RED 250 Mobile eye trackers (SensoMotoric Instruments) that 

record binocularly at 250 Hz using SMI iView software (Version 2.8; SensoMotoric 

Instruments). The data was subsequently analyzed using BeGaze software (Version 

3.7; SensoMotoric Instruments). 

Procedure 

 The procedure was similar to that of Experiment 1, only in Experiment 2 

participants were tested individually, or in groups of up to three participants 

simultaneously, and their eye movements were recorded during the learning phase. 

At the start of the Experiment, participants were seated in front of a mobile eye 

tracker, with their head approximately 60 cm from the monitor. After a short 

introduction and the prior knowledge test, the eye tracker was calibrated using a 

thirteen-point calibration plus four-point validation procedure, and participants 

were instructed to move as little as possible. The Experiment lasted around twenty 

minutes and was administered without breaks. 

Data analysis 

 For the eye tracking analyses, we first checked the accuracy of calibration, 

which was sufficient for all participants (i.e., no deviations from the four validation 

points of more than 1 o visual angle). We then checked the tracking ratio (i.e., the 

percentage of time for which the eye tracker actually measured the eye movements) 

for each participant. We had to exclude 22 participants (control: n = 8; separated: n = 

5; integrated n = 9) because their tracking ratio was below 70%. The final sample (n = 

100) had an average tracking ratio of 92.03% (SD = 6.75%), with a mean calibration 
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accuracy of 0.28 o (SD = 0.15o) and was distributed across the conditions as follows: 

control (n = 30), separated (n = 39), and integrated (n = 31). 

 For the eye tracking analyses we defined fixations using a 40 o/s velocity 

threshold and a minimal duration of 100 ms (cf. Holmqvist et al., 2011). On each slide 

in each condition, we created areas of interest (AoIs) for the picture, for the relevant 

text and for the title (see Figure 1). In the separated condition, we defined one extra 

AoI for the unnecessary text (see Figure 1), while in the integrated condition we 

created additional AoIs for each text block (see Figure 2). In this condition, in the 

first three phases, there were four unnecessary text blocks, while the slides in the last 

three phases had three unnecessary text blocks.  

 As a measure of attention to the different AoIs, we used fixation time. Because 

presentation time between slides was different (see the Learning materials section of 

Experiment 1), and the size of the AoIs was different between conditions (see Figure 1 

and 2), we had to calculate a relative measure of fixation time. We did so by dividing 

the fixation time on each AoI by the percentage of the screen covered by that AoI to 

control for the size of the AoI. We then divided this value by the total fixation time 

on that slide in seconds (i.e., the sum of all fixations on the different AoIs and white 

space), to control for the differences in presentation duration and tracking ratio.  

To measure integration of the different sources of information (i.e., relevant text, 

picture, unnecessary text), we used transitions between the different AoIs. We 

defined three types of transitions: relevant-picture transitions, which are transitions 

between the picture and relevant text and vice versa; unnecessary-relevant 

transitions, which are transitions between the unnecessary and relevant text and vice 

versa; and unnecessary-picture transitions, which are transitions between the 

unnecessary text and the picture and vice versa. The unnecessary-relevant and 

unnecessary-picture transitions can only be calculated for the two unnecessary text 

conditions. To control for differences in presentation duration between slides, we 

divided the number of transitions by the total fixation time on that slide in seconds 

(i.e., the same value we used in the fixation time measure).  
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Results 

 The data on prior knowledge, cloze test performance, invested mental effort, 

and picture test performance are analyzed with the same ANOVAs as in Experiment 

1. 

Prior knowledge 

 Performance on the prior knowledge test is presented in Table 1. The analysis 

revealed no effect of condition, F < 1, no effect of PUT location, F < 1, nor an 

interaction, F < 1.  

Cloze test 

 On the cloze test performance (see Table 3), the analyses revealed no main 

effect of condition, F < 1, no main effect of PUT location, F < 1, and no main effect of 

task experience, F(2, 116) = 2.50, p = .116, ηp
2 = .02. Furthermore, we found no 

interaction between condition and task experience, F(2, 116) = 1.35, p = .262, ηp
2 = .02, 

between task experience and PUT location, F < 1, or between condition and PUT 

location, F < 1. Finally, we did not find any evidence for the three-way interaction 

observed in Experiment 1, F < 1. 

Invested mental effort 

 The invested mental effort during learning is presented in Table 3. The analysis 

revealed no main effect of condition, F < 1, and no main effect of PUT location, F < 1. 

However, we did find a main effect of task experience, F(2, 116) = 4.45, p = .037, ηp
2 = 

.04, indicating that invested mental effort during learning was higher on the first 

three slides, when participants had lower task experience (M = 6.46, SD = 1.07) than 

on the last three slides when they had more task experience (M = 6.29, SD = 1.18). We 

found no interactions, all Fs < 1. 

 The analysis on the invested mental effort during the cloze test (see Table 4) 

revealed no main effect of condition, F < 1, no main effect of PUT location, F < 1, and 

no main effect of task experience, F < 1. Furthermore, we found no interactions 

between condition and task experience, F < 1, between PUT location and task 

experience, F < 1, between condition and PUT location, F(2, 116) = 1.27, p = .258, ηp
2 = 

.02, nor a three-way interaction, F(2, 116) = 1.16, p = .317, ηp
2 = .02. 

Picture test 

 Regarding the picture test (see Table 1), the analysis showed no effect of 

condition, F < 1, no effect of PUT location, F(2, 116) = 2.04, p = .156, ηp
2 = .02, or an 

interaction, F < 1. 
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Eye movement data 

 The eye movement data were analyzed in two steps. First we tested whether the 

presence and layout of unnecessary information leads to differences in attention 

towards unnecessary and relevant information. Secondly, we tested whether the 

presence and layout of unnecessary information would lead to differences in 

integration of text and pictures. To do so, we performed a 3 x 2 x 2 mixed ANOVA 

with between-subjects factors condition (separated, integrated, or control) and PUT 

location (left or right) and within-subjects factor task experience (lower or higher) 

on the fixation time on the relevant text and the picture. On the fixation time on the 

unnecessary text, we performed a 2 x 2 x 2 mixed ANOVA with between-subjects 

factors condition (separated or integrated) and PUT location (left or right) and 

within-subjects factor task experience (lower or higher). The data on the relevant-

picture, unnecessary-picture, and unnecessary-relevant transitions are analyzed with 

non-parametric tests as the assumptions of normality were violated. 

 Fixation time. The data on the fixation time (corrected for AoI size and total 

fixation time, see data analysis section) on the unnecessary text are presented in 

Table 5. The analysis revealed a significant main effect of condition, F(1, 66) = 21.14, p 

< .001, ηp
2 = .24, indicating that participants in the integrated condition (M = 17.57, 

SD = 7.80) spent less time fixating on the unnecessary text than participants in the 

separated condition (M = 28.62, SD = 11.53). Moreover, the analysis revealed a 

significant effect of task experience, F(1, 66) = 6.98, p = .010, ηp
2 = .10, indicating that 

participants spent less time fixating on the unnecessary text on the last three slides, 

after they had gained task experience (M = 21.84, SD = 14.59), compared to on the 

first three slides, when they had lower task experience (M = 25.60, SD = 11.30). The 

analysis showed no effect of PUT location, F(1, 66) = 3.58, p = .063, ηp
2 = .05, and no 

interaction effects, smallest p = .056, ηp
2 = .05.  

 For the fixation time on the relevant text (see Table 5), our analysis revealed a 

significant main effect of condition, F(2, 94) = 31.93, p < .001, ηp
2 = .41. Follow-up 

tests showed that participants in the integrated condition (M = 49.31, SD = 7.56; p < 

.001, d = 1.81) and separated condition (M = 50.20, SD = 7.51; p < .001, d = 1.68), fixated 

less on the relevant text than participants in the control condition (M = 61.90, SD = 

6.33). Time spent fixating on the relevant text did not differ significantly between the 

integrated and separated conditions, p > .999, d = 0.12. We found a significant effect 

of task experience, F(2, 94) = 40.56, p < .001, ηp
2 = .30, indicating that participants 

spent more time fixating the relevant text after they gained task experience (M = 
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56.40, SD = 10.26), compared to when they had lower task experience (M = 50.46, SD 

= 10.11). Furthermore, the analysis revealed a main effect of PUT location, F(2, 94) = 

17.47, p < .001, ηp
2 = .16, indicating that participants attended more to the relevant 

text when the PUT was on the left (M = 56.64, SD = 8.44) than when it was on the 

right side of the screen (M = 50.48, SD = 8.64). There were no interaction effects, 

smallest p = .070, ηp
2 = .06.  

 Regarding the fixation time on the picture (see Table 5), we found no significant 

effect of condition, F(2, 94) = 1.69, p = .189, ηp
2 = .04, or task experience, F(2, 94) = 

1.67, p = .200, ηp
2 = .02. However, the analysis revealed a main effect of PUT location, 

F(2, 94) = 8.11, p = .005, ηp
2 = .08, indicating that participants fixated more on the 

picture when the PUT was presented on the right (M = 6.77, SD = 3.12) than when it 

was presented on the left side of the screen (M = 5.14, SD = 2.98). The analyses 

revealed no interactions, smallest p = .116, ηp
2 = .05.  

 

Table 5. Mean (and SD) Fixation Duration on the Different AoIs as a Function of Condition, 

PUT location, and Task Experience. 

  
Unnecessary Text Relevant text Picture 

  
Task Experience Task Experience Task Experience 

  
Low High Low High Low High 

PUT left Control 
  

63.63 (6.90) 66.02 (6.02) 5.09 (3.45) 5.91 (4.86) 

 
Integrated 17.49 (4.79) 13.63 (9.13) 49.44 (5.99) 57.64 (8.99) 5.43 (2.81) 4.87 (2.99) 

 
Separated 30.60 (11.87) 20.82 (14.18) 46.41 (7.54) 57.12 (9.27) 4.69 (2.67) 4.93 (3.23) 

 Total 24.86 (11.43) 17.68 (12.58) 53.03 (10.23) 60.24 (9.06) 5.04 (2.94) 5.24 (3.74) 

PUT right Control 
  

56.92 (7.28) 60.17 (7.37) 7.74 (3.26) 7.47 (4.10) 

 
Integrated 20.52 (10.65) 17.92 (8.54) 42.83 (8.40) 48.80 (9.04) 6.41 (3.09) 8.33 (3.98) 

 
Separated 30.85 (9.81) 31.37 (17.16) 46.46 (7.61) 51.27 (10.27) 5.50 (3.63) 5.98 (3.11) 

 Total 26.23 (11.32) 25.36 (15.38) 48.09 (9.49) 52.86 (10.10) 6.40 (3.42) 7.15 (3.75) 

Total Control   60.50 (7.74) 63.29 (7.20) 6.33 (3.57) 6.63 (4.51) 

 Integrated 19.15 (8.53) 15.99 (8.93) 45.82 (8.02) 52.79 (9.93) 5.97 (2.96) 6.77 (3.92) 

 Separated 30.73 (10.66) 26.50 (16.53) 46.44 (7.48) 53.97 (10.13) 5.12 (3.21) 5.50 (3.17) 

 Total 25.60 (11.30) 21.84 (14.59) 50.46 (10.11) 56.40 (10.26) 5.75 (3.26) 6.23 (3.85) 

 

 Transitions. On the unnecessary-picture transitions (i.e., transitions between 

the unnecessary text and the picture; see Table 6), a Mann-Whitney test revealed a 

main effect of condition, U = 314.00, p = .001, indicating that participants in the 
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integrated condition (Mdn = 0.11, Range = 0.34) made more unnecessary-picture 

transitions than participants in the separated condition (Mdn = 0.06, Range = 0.34). 

A Wilcoxon Signed Ranks test showed a significant effect of task experience, Z = 

4.75, p < .001, indicating that participants made fewer unnecessary-picture 

transitions after they gained task experience (Mdn = 0.07, SD = 0.49) than when they 

had little task experience (Mdn = 0.11, Range = 0.52). Finally, a Mann-Whitney test 

revealed no effect of PUT location, U = 558.00, p = .556.  

 Regarding the unnecessary-relevant transitions (i.e., transitions between the 

unnecessary text and the relevant text; see Table 6), the analysis revealed a main 

effect of condition, U = 353.00, p = .003, indicating that participants in the integrated 

condition (Mdn = 0.021, Range = 0.07) made more unnecessary-relevant transitions 

than participants in the separated condition (Mdn = 0.013, Range = 0.13). We again 

found a main effect of task experience, Z = 3.64, p < .001, indicating that participants 

made fewer unnecessary-relevant transitions after they gained task experience (Mdn 

= 0.013, Range = 0.01) than when they had lower task experience (Mdn = 0.018, Range 

= 0.02). Furthermore, the analysis revealed a main effect of PUT location, U = 301.00, 

p < .001, showing that participants made more unnecessary-relevant transitions 

when the PUT was presented at the right (Mdn = 0.023, Range = 0.13) than when it 

was presented at the left (Mdn = 0.011, Range = 0.04).  

 Regarding the relevant-picture transitions (i.e., transitions between the relevant 

text and the picture; see Table 6), a Kruskall-Wallis test revealed a significant effect 

of condition, χ2 (2) = 11.56, p = .003. Follow-up Mann-Whitney tests showed that both 

participants in the integrated (Mdn = 0.05, Range = 0.45; U = 247.00, p = .006) and 

separated condition (Mdn = 0.07, Range = 0.39; U = 359.00, p = .018) made 

significantly fewer relevant-picture transitions than participants in the control 

condition (Mdn = 0.12, Range = 0.40). Participants in the integrated and separated 

conditions did not differ in the number of relevant-picture transitions, U = 549.00, p 

> .999. We found a significant effect of task experience, Z = 3.36, p = .001, indicating 

that participants made more relevant-picture transitions after they gained task 

experience (Mdn = 0.09, Range = 0.79), compared to when they had little task 

experience (Mdn = 0.07, Range = 0.51). Finally, the analysis revealed an effect of PUT 

location, U = 904.00, p = .018, showing that participants made more relevant-picture 

transitions when the PUT was presented at the right (Mdn = 0.09, Range = 0.45) then 

when it was presented at the left (Mdn = 0.05, Range = 0.37).  
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Table 6. Median (and Range) number of Transitions between the Different AoIs as a Function of 

Condition, PUT location, and Task Experience. 

 

  Relevant-Picture  Unnecessary-Picture Unnecessary-Relevant 

  Task Experience Task Experience Task Experience 

  Low High Low High Low High 

PUT left Control 0.12 (0.44) 0.11 (0.45)     

 Integrated 0.03 (0.09) 0.04 (0.25) 0.11 (0.19) 0.07 (0.16) 0.018 (0.03) 0.012 (0.05) 

 Separated 0.03 (0.35) 0.05 (0.25) 0.11 (0.52) 0.05 (0.13) 0.008 (0.05) 0.000 (0.03) 

 Total 0.04 (0.47) 0.05 (0.46) 0.11 (0.52) 0.06 (0.18) 0.012 (0.05) 0.009 (0.05) 

PUT right Control 0.13 (0.29) 0.11 (0.69)     

 Integrated 0.08 (0.49) 0.11 (0.78) 0.13 (0.20) 0.10 (0.48) 0.034 (0.11) 0.018 (0.08) 

 Separated 0.08 (0.38) 0.07 (0.40) 0.07 (0.42) 0.07 (0.26) 0.016 (0.16) 0.016 (0.10) 

 Total 0.08 (0.51) 0.10 (0.78) 0.10 (0.42) 0.08 (0.49) 0.025 (0.16) 0.017 (0.01) 

Total Control 0.12 (0.44) 0.11 (0.75)     

 Integrated 0.05 (0.51) 0.06 (0.79) 0.12 (0.20) 0.08 (0.48) 0.024 (0.11) 0.016 (0.08) 

 Separated 0.06 (0.38) 0.06 (0.42) 0.08 (0.52) 0.07 (0.26) 0.010 (0.16) 0.009 (0.10) 

 Total 0.07 (0.51) 0.09 (0.79) 0.11 (0.52) 0.07 (0.49) 0.018 (0.16) 0.013 (0.10) 

 

Discussion 

 The results of Experiment 2 are mixed. While the eye-tracking measures 

supported our hypotheses, indicating that attention towards the unnecessary text 

waned with increasing task experience, this did not affect cloze test performance. In 

contrast to our hypothesis, presentation of unnecessary text did not initially hamper 

learning about the process of mitoses, regardless of whether the unnecessary text 

was presented integrated in, or separated from the picture. Because we found no 

initial negative effect of the unnecessary text on learning, the question of whether 

task experience would reduce or eliminate that negative effect could not be 

answered.  

 Next to the main finding of diminishing attention to the unnecessary text in 

favour of attention to the essential textual information, the eye-tracking analyses 

suggested an effect of screen location of the unnecessary text and picture. When the 

relevant text was on the right-hand side of the screen (and the picture + unnecessary 

text on the left), participants attended more to it than when it was on the left-hand 

side of the screen. A possible explanation is that this might be due to the fact that 
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participants looked at the center of the screen at the beginning of each new slide 

because the mental effort question on the preceding slide was presented in the 

center. When attention is centrally located, one may be inclined (because of 

Western reading direction) to process information on the right-hand side of the 

screen first.  

General Discussion 

 According to well-known principles in multimedia learning, the presentation of 

extraneous information should be avoided, because it hinders learning (i.e., the 

coherence principle, Mayer & Fiorella, 2014; the redundancy principle, Kalyuga & 

Sweller, 2014). However, recent research with irrelevant pictorial information 

demonstrated that students may learn to ignore extraneous information with task 

experience, at which point it no longer negatively affects their learning (Rop, Van 

Wermeskerken et al., in press). The present study aimed to examine whether these 

findings would extend to extraneous information that is textual, and unnecessary 

rather than irrelevant. Moreover, we investigated the role of the layout of the 

unnecessary textual information: we expected that it would be harder for students to 

(learn to) ignore unnecessary text when it is presented spatially integrated in a 

relevant picture, as compared to spatially separated from the picture. 

 The eye-movement data collected in Experiment 2 showed that the unnecessary 

textual information was processed by students, and more interestingly, that they 

seemed to start ignoring the unnecessary information with increasing task 

experience. That is, participants paid less attention to the unnecessary text and made 

less transitions between the unnecessary and essential information on the later 

slides, after they had gained some experience with the task. These results are in line 

with the findings by Rop, Van Wermeskerken et al. (in press), who showed that 

learners start to ignore pictorial, obviously irrelevant, and separated extraneous 

information. The present study shows that these results also apply when the 

extraneous information is textual, unnecessary rather than irrelevant, and when it is 

integrated or separated with relevant information. This provides further evidence 

that learners adapt their study strategy and start to focus less on extraneous and 

more on essential information once they gain experience with a task, which is 

relevant information for instructional designers. 

 Although the results also implied that more attention was paid to the essential 

text on the later slides, this change in study strategy did not lead to improvements in 

test performance (improvements which were observed by Rop, Van Wermeskerken 



Chapter 4 

90 

et al., in press). Surprisingly, the presentation of unnecessary text did not 

consistently hamper learning about the process of mitosis in the two Experiments 

(i.e., only a small negative effect of separated unnecessary text in Experiment 1, but 

not in Experiment 2; no negative effect of integrated unnecessary text in both 

experiments). Because we did not reliably find an initial negative effect of the 

unnecessary text on learning, the question of whether task experience would reduce 

or eliminate that negative effect could not be answered. A possible explanation for 

why the unnecessary information did not initially have a negative effect on learning 

even though it was processed, might lie in the nature of the extraneous information, 

that is, in whether it is irrelevant or unnecessary. It is possible that the negative 

effects of irrelevant information on learning would be larger than the effects of 

unnecessary information. That is, processing irrelevant information not only takes 

up working memory capacity but might actively interfere with learning the essential 

information, by disrupting the processing, organization, and integration of essential 

information. Processing unnecessary information on the other hand (which is 

identical in content to the essential information), does take up working memory 

capacity but may interfere less with learning the essential information.  

 Another potential explanation might lie in the amount of time that learners had 

available. We based the time per slide on the average study time of eight participants 

in a pilot study, which can therefore be assumed to have been sufficient for most of 

our participants. It is possible that processing unnecessary information would start 

to hamper learning when there is time pressure. When there is little time available 

for processing, any time spent on the unnecessary information goes at the expense of 

thoroughly processing essential information, and as a result, learning is hampered. 

In the present study, learners may have had sufficient time for processing all sources 

of information, which would explain why their attention to the unnecessary text (as 

demonstrated in Experiment 2) did not significantly increase experienced cognitive 

load and did not negatively affect learning as measured by either the cloze tests or 

the picture test. Systematically varying the presentation time in future research 

could shed some light on this issue. 

Limitations and Future Research  

 It is interesting that we replicated the finding that attention to extraneous 

information wanes with the present materials, as these are more ecologically valid 

and more complex than the word learning materials in the studies by Rop and 

colleagues (Rop, Van Wermeskerken et al., in press; Rop, Verkoeijen et al., 2017). 
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However, a possible limitation of the present study, which might perhaps also 

explain the lack of effects on learning outcomes, is that the different phases of the 

process of mitosis are not fully independent of each other. As each phase is building 

on the information that was provided in the previous phase, the processing of later 

slides might have been dependent on how well information from the previous slides 

had been learned. Moreover, some phases might be more complex than others, 

which is also suggested by the differences in processing time per slide. Another 

potential limitation is that the cloze test mostly tested retention of the essential text; 

it is possible that the results regarding learning outcomes would be different when 

the test would assess understanding (e.g. by means of inference questions). 

 Concluding, the results of this study are interesting in that they provide 

evidence that learners adapt their study strategy and start to ignore unnecessary 

information with increasing task experience. However, our results also call for 

further research aiming to pinpoint conditions under which extraneous information 

presentation negatively affects learning, and employing eye-tracking methodology to 

study the attention allocation processes during learning may help accomplish this 

(see also Van Gog & Scheiter, 2010). Next to the nature of the information (irrelevant 

vs. unnecessary), the format of the information (textual vs. pictorial) and the layout 

of the information (integrated vs. separated), the role of time on task and the 

complexity of the learning and test materials should be investigated. 
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Abstract 

While the presentation of extraneous (i.e., irrelevant or unnecessary) information 

hinders learning, it is unclear whether and how layout and pacing influence this 

effect. In two experiments participants learned how the heart functions using four 

different lay-outs: a diagram presented without unnecessary text (diagram only); 

with unnecessary text separated from the diagram (separated) or integrated into the 

diagram (integrated); or with separated unnecessary text and the instruction to 

integrate (integration instruction). In Experiment 1 study time was self-paced for half 

of the participants, and system-paced for the other half. There were no effects of 

layout and of pacing on learning, although system-pacing was more effortful than 

self-pacing. In Experiment 2, which was system-paced and employed eye tracking, 

the integrated condition showed worse learning outcomes than the separated 

condition. Moreover, in the integrated condition participants made more integration 

attempts between the unnecessary text and the diagram than in the separated 

condition. 
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Introduction 

The majority of contemporary instructional materials are multimedia materials, 

comprising a combination of text (written or spoken) and pictures (e.g., diagrams, 

illustrations, graphs, or animations). Learning from multimedia has been widely 

investigated in research inspired by the Cognitive Theory of Multimedia Learning 

(Mayer, 2014) and Cognitive Load Theory (Sweller, Ayres, & Kalyuga, 2011). This 

research has shown that when a mutually referring text and picture are unintelligible 

in isolation, the combination of text and picture tends to improve learning (the 

multimedia effect, Butcher, 2014; Mayer, Bove, Bryman, Mars, & Tapangco, 1996). 

However, when either text or picture are intelligible in isolation, their combination 

might not help, and could even hamper learning (the redundancy effect, Kalyuga & 

Sweller, 2014; the coherence effect; Mayer & Fiorella, 2014). Accordingly, the 

redundancy and coherence principles of multimedia learning state that presentation 

of extraneous information should be avoided, because it hampers learning compared 

to instructional materials in which this information is eliminated.  

Why Does Extraneous Information Hamper Learning?  

The negative effect of extraneous information on learning can be explained in 

terms of working memory load. Working memory is limited in both capacity and 

duration (e.g., Baddeley, 2000; Barrouillet & Camos, 2007; Cowan, 2001; Miller, 1956). 

Regarding the limited capacity, Miller (1956) proposed that our memory span is 

limited to ‘seven plus or minus two’ chunks, where a chunk is a collection of items 

that are remembered together, although more recent research suggests this number 

is closer to four (Cowan, 2001). Regarding the limited duration, Barrouillet and 

Camos (2007) stress the importance of a time limit on working memory. They 

propose that working memory resources have to be shared between maintenance of 

‘old’ information (prior knowledge from long-term memory or previously processed 

information during task performance), and processing of new, incoming 

information. The higher the number of old information elements that have to be 

maintained and the faster new elements need to be processed, the higher the 

working memory load. Therefore, a task that is cognitively undemanding when time 

is unlimited can become very demanding when time is limited.  

Learning (i.e., schema construction/elaboration/automation in long-term 

memory; Sweller, 1994) requires that old information is maintained in working 

memory and successfully integrated with the new information that the learner 

selects (by attending to it) from the learning materials. When the selection, 
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organization, or integration processes are disrupted, learning is hampered (Mayer, 

2014). Extraneous information that is added to instructional materials can hamper 

learning when learners attend to, process, and attempt to integrate the extraneous 

information with the essential information, as this extraneous processing depletes 

valuable working memory resources. Consequently, these working memory 

resources cannot be allocated to processing the essential information that is relevant 

for learning.  

The negative effects of extraneous information processing on learning have 

been shown with a wide variety of materials (for reviews, see Kalyuga & Sweller, 

2014; Mayer & Fiorella, 2014). A seminal study regarding the negative effect of 

extraneous information on learning was performed by Chandler and Sweller (1991). 

They studied the relationship between extraneous text added to diagrams and 

learning outcomes, in a series of six experiments. In all experiments, study time was 

self-paced. In Experiment 1-4, the learning materials were in the domain of electrical 

engineering, while Experiments 5 and 6 used learning materials about the human 

circulatory system. In Experiment 1 and 6, the text contained essential information 

not conveyed in the diagram. In this case, participants performed better when the 

text was integrated in the diagram (integrated condition) than when it was 

presented spatially separated (separated condition; this is evidence of the ‘split-

attention effect’; see Ayres & Sweller, 2014). In Experiment 2, the text was 

unnecessary for learning, as the information it described could also be inferred from 

the diagram. In this case, participants showed better learning outcomes in the 

separated condition than in the integrated condition, presumably because the 

unnecessary information was harder to ignore in the integrated condition. In 

Experiment 3, all participants learned with the separated learning materials used in 

Experiment 2, but half of the participants were instructed to study the diagram, 

while the other half was instructed to read and integrate the textual information 

with the diagram (integration instruction condition). Learning outcomes were lower 

in the latter group, presumably because –in line with Experiment 2- participants in 

the integration instruction condition spent cognitive resources on processing the 

unnecessary text. In Experiment 4 and 5 participants learned in one of three 

conditions: diagram only, integrated, and integration instruction. Learning 

outcomes were significantly higher in the diagram-only condition than in the 

integrated and integration instruction conditions. Although the integrated condition 
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performed numerically better than the integration instruction condition, this 

difference was not significant. 

These results show that the presentation of unnecessary information alongside 

a diagram hampers learning in a self-paced learning environment. This effect seems 

to be stronger when the unnecessary information comes integrated with the 

essential information or when learners are instructed to integrate it, than when the 

information is presented spatially separated. It seems that in a separated layout, 

learners may be able to ignore the unnecessary information, at least under self-paced 

conditions.  

The Effect of Layout and Pacing on Extraneous Processing  

The Chandler and Sweller (1991) study shows that the layout of the materials 

influences the occurrence and strength of the negative effect of extraneous 

information on learning. Other studies support this finding. For example, Oksa, 

Kalyuga, and Chandler (2010) provided evidence that integrated extraneous 

information in the form of explanatory notes hampered interpretation of 

Shakespearian texts as a function of prior knowledge. While integrated explanatory 

notes improved text comprehension for low prior knowledge learners, for whom the 

notes were essential, they hampered comprehension for experts on Shakespearian 

texts, who did not need the notes to comprehend the text. The authors surmised 

that the experts were unable to ignore the explanatory notes, and that the 

extraneous processing disrupted their reading process.  

Interestingly, Chandler and Sweller’s (1991) findings from Experiments 2 and 3 

showed that unnecessary text that is presented spatially separated from the diagram, 

led to better learning than an integrated text and diagram or instructions to 

integrate text and diagram. This suggests that learning was not hampered, or not 

hampered to the same extent, by unnecessary text when it was presented separately. 

An interesting question therefore, is whether students in the separated condition 

would be able to ignore spatially separated unnecessary text to such an extent that it 

does not hamper their learning compared to a diagram-only condition. This question 

cannot be answered based on the Chandler and Sweller study because they did not 

make a direct comparison of all four (i.e. diagram only, separated, integrated, 

integration instruction) conditions: Experiments 2 and 3 did not include a diagram-

only condition, and Experiments 4 and 5 did not include a separated condition 

without the integration instruction.  
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This question of whether learners would be able to ignore unnecessary 

information when it is presented spatially separated from the essential information 

is relevant, because recent research suggests that students may learn to ignore 

extraneous information once they have gained some task experience (Rop, Van 

Wermeskerken, De Nooijer, Verkoeijen, & Van Gog, in press; Rop, Verkoeijen, & Van 

Gog, 2017). However, in these studies by Rop and colleagues, the extraneous 

information was pictorial, not textual, and mismatched the verbal information that 

participants had to remember. In the materials from Chandler and Sweller’s (1991) 

study, the extraneous information is textual, which may be harder to ignore as 

learners often focus more quickly and more strongly on text than on the associated 

pictures (Cromley, Snyder-Hogan, & Luciw-Dubas, 2010; Hannus & Hyönä, 1999; 

Schmidt-Weigand, Kohnert, & Glowalla, 2010). Thus, it is safe to assume that 

unnecessary text is harder to ignore than pictures. Moreover, in the Chandler and 

Sweller study, the extraneous information was unnecessary, in the sense that the 

information provided by the text could also be inferred from the diagram, but it was 

not irrelevant or mismatching (i.e., it did have a relation with the picture). As such, 

it may be harder for learners to come to realize that they can ignore the text. 

Therefore, the present study addresses the question of whether learners would be 

able to ignore unnecessary textual information when it is presented spatially 

separated from the diagram, by building on the Chandler and Sweller study and 

comparing a diagram only, separated layout, integrated layout, and separated layout 

with integration instruction condition.  

In addition, we study the effects of pacing in the present study. In the Chandler 

and Sweller (1991) study, learning was self-paced. Consequently, the time that 

participants spent on processing the unnecessary text did not have to go at the 

expense of time spent on processing the essential information from the diagram. It is 

likely that when learning is system-paced, the negative effect of processing 

unnecessary information on learning would be even stronger. That is, when the 

available time is limited, any extraneous information processing goes directly at the 

expense of essential information processing (cf. Barrouillet & Camos, 2007), which 

should lead to a stronger negative effect of extraneous information on cognitive load 

(i.e., higher) and learning outcomes (i.e., lower). Kalyuga, Chandler, and Sweller 

(2004; see also Mayer & Jackson, 2005) provide some empirical evidence for this 

hypothesis. In two experiments, one system-paced and one self-paced, participants 

had to learn how to use a cutting speed nomogram with or without unnecessary text. 
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While both experiments showed a negative effect of the unnecessary text, the effect 

sizes were larger in the system-paced experiment. However, this study did not 

directly manipulate learning in a self-paced environment vs. learning in a system-

paced environment within one experiment, so a causal relationship between pacing 

and the negative effect of unnecessary text on learning could not be established.  

The Present Study 

The present study aimed to replicate and extend the results from the seminal 

study of Chandler and Sweller (1991) by making a direct comparison of all four 

conditions (i.e., diagram only, separated, integrated, and integration instruction) 

and by investigating the effects of self- vs. system-pacing, using (an adapted version 

of) their materials about the human circulatory system (Experiment 5). We 

conducted two experiments in which participants learned about the human 

circulatory system using a self-contained diagram of the heart, which was 

accompanied by unnecessary textual explanations. The text was unnecessary for 

learning because it described processes that could also be inferred from the diagram, 

which, according to the findings by Chandler and Sweller (1991), could be 

understood without references to the text. In both experiments, four conditions 

were compared: The unnecessary text was not presented at all (diagram-only 

condition), or was presented separated from the diagram (separated condition), 

integrated in the diagram (integrated condition), or separated from the diagram 

with the instruction to integrate it (integration instruction condition).  

In Experiment 1, half of the participants learned at their own pace (self-paced 

conditions) while learning was time constrained for the other half of the participants 

(system-paced conditions). Learning outcomes were assessed using three retention 

tests (out of the six tests used by Chandler and Sweller, 1991). With regard to 

learning outcomes, we expected to replicate Chandler and Sweller’s overall findings 

(i.e., 1: diagram only > integrated & integration instruction; 2: separated > integrated 

& integration instruction) and sought to answer the open question of whether 

students are able to ignore spatially separated unnecessary text to such an extent 

that it does not hamper their learning compared to a diagram only condition (i.e., 

diagram only = separated > integrated & integration instruction), or whether the 

presentation of unnecessary text should be avoided entirely as it does hamper 

learning even when presented spatially separated (i.e., diagram only > separated > 

integrated & integration instruction). In addition, we hypothesized that system-

pacing would aggravate the negative effects of unnecessary text on learning 
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particularly in the integrated condition and the integration-instruction condition 

because these conditions are assumed to impose the highest cognitive load on the 

learner. Experienced cognitive load was measured by having participants rate their 

invested mental effort (Paas, Tuovinen, Tabbers, & Van Gerven, 2003). With regard 

to cognitive load experienced while studying, we expected the reverse of the learning 

outcomes pattern (i.e., diagram only ≤ separated < integrated & integration 

instruction) and pacing (i.e., integrated & integration instruction conditions: self-

paced < system-paced). 

In Experiment 2, we employed eye tracking to investigate how the presentation 

of unnecessary text affects attention allocation under system-paced conditions. This 

allowed us to directly measure whether or not learners paid less attention to the 

unnecessary text when it was spatially separated from the diagram compared to 

integrated in the diagram, and compared to when they had been given integration 

instructions. 

Experiment 1 

Method 

Participants  

Participants (n = 302) were recruited via Amazon’s Mechanical Turk (Paolacci, 

Chandler, & Ipeirotis, 2010), and were paid 0.60 dollar for their participation (which 

took about six to seven minutes). A priori we decided that participants would be 

excluded when they used a device with a small screen and could not see the diagram 

and explanations sufficiently (i.e., could not see at least six lines of explanations) 

without scrolling (n = 61); when they participated in the experiment twice (n = 5); or 

when they participated in a noisy environment (i.e., self-reported noise of seven or 

higher on a scale of one to nine; n = 5). Furthermore, we decided post-hoc to exclude 

participants who experienced technical problems (in the system-paced condition, for 

some participants the diagram was presented for longer than the pre-defined 

presentation time; n = 3); who did not follow orders (n = 2); and who reported using 

memory influencing drugs (n = 1). Thus, our final sample comprised 225 participants 

(Mage = 37.40 years, SD = 12.97, range 18-87; 108 females).  

Design 

Participants were randomly assigned to one of the eight conditions resulting 

from a 2 x 4 factorial design with between-subjects factors ‘pacing’ (self-paced vs. 

system-paced) and ‘layout’ (diagram only, separated, integrated, integration 

instruction): system-paced diagram only (n = 35), system-paced separated (n = 21), 
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system-paced integrated (n = 28), system-paced integration instruction condition (n 

= 26); and self-paced diagram only (n = 34), self-paced separated (n = 37), self-paced 

integrated (n = 24), and self-paced integration instruction (n = 30)1.  

Materials.  

The materials were programmed and presented in Qualtrics software 

(Qualtrics, Provo, UT). 

Subjective and objective prior knowledge measures. In order to measure 

participants’ prior knowledge on this topic, a subjective and an objective measure 

were used. The subjective measure asked participants to indicate how much they 

knew about the blood flow in our body, ranging from one (nothing at all) to five (a 

great deal). The objective measure asked participants to name the four major 

components of the heart and the two arteries through which blood exits the heart.  

Learning material. The learning material consisted of a simplified diagram of 

the circulatory system, which was adapted from Chandler and Sweller (1991, 

Experiment 5) with slight modifications. We vectored the image, added color (blue 

for the deoxygenated blood and red for the oxygenated blood), changed the font size 

and type, and increased the resolution of the image. The diagram was either the sole 

source of information on the screen (diagram-only condition, see Figure 1), or it was 

accompanied by unnecessary textual explanations separated from the diagram 

(separated and integration instruction conditions, see Figure 1), or it was 

accompanied by the same explanations integrated in the diagram (integrated 

condition, see Figure 1). The unnecessary text consisted of 96 words. In the diagram 

only, integrated, and separated conditions, participants were instructed as follows: 

“Please do your best studying the diagram, because afterwards you will be tested on 

your knowledge of the blood flow in the heart and body”. The instruction for the 

participants in the integration instruction condition was: “Please try to integrate the 

diagram and text as much as possible, because afterwards you will be tested on your 

knowledge of the blood flow in the heart and body”.  

                                                 
1 This is the n after exclusion (hence the unequal sample sizes); see participants 
section 



Layout and Pacing   

102 

 
 
Figure 1. Learning materials in Experiment 1 for the diagram-only condition (1A), the integrated condition (1B), and the separated and integration 
instruction conditions (1C).  
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Participants in the self-paced conditions could spend as much time studying 

the learning material as they wished, while their time on task was measured. 

Participants in the system-paced conditions had 80s to study the learning material, 

which was ca. 10s more than the average time spent by participants in the diagram-

only condition in the Chandler and Sweller study (1991, i.e., 69.1s). Participants were 

informed about this time limit. 

Posttest. The posttest assessed retention of the learning materials using three 

of the six outcome measures used by Chandler and Sweller (1991). These were the 

measures most suitable for online, computer-based testing, as the other three 

outcome measures required physical manipulation of the diagram (e.g., placing 

arrowheads to indicate the correct flow of the blood). In the Chandler and Sweller 

study the first two outcome measures showed a significant advantage of diagram-

only presentation while this advantage was marginally significant for the third. First, 

participants were asked to name the four major components of the heart and the 

two arteries through which blood exits the heart (components test). This was a 

single question for which participants had to give up-to six answers. Then, they were 

asked to complete two blood flow chains presented on separate slides (blood chains 

test): Participants were told that the second component was either the left atrium or 

the right atrium (e.g., __, left atrium, __, __, __) and had to complete the first, third, 

fourth, and fifth component. Finally, participants were given five fill-in-the-gap 

questions, all presented on separated slides, in the form of ‘blood in the left ventricle 

flows to the __’ (blood flow test). The five questions regarded the left atrium, right 

ventricle, left ventricle, pulmonary artery, and aorta. The three outcome measures 

were always presented in the same order, while the order of the questions within 

each measure was randomized. The posttest was self-paced, and participants could 

not go back to previous questions to adjust their answers. 

Mental effort. Participants were asked to indicate how much effort they 

invested in studying the learning material and in answering the posttest questions 

on a nine point rating scale (Paas, 1992), ranging from one (extremely low effort) to 

nine (extremely high effort). Mental effort is an indicator of experienced cognitive 

load (see Paas et al., 2003).  

Control questions and demographic questionnaire. To obtain information 

on the circumstances under which the experiment was completed, participants were 

asked some control questions after the posttest. Participants in the separated and 
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integration instruction conditions were asked whether they could see the entire 

diagram and all explanations without scrolling on a scale of one (yes) to nine (no, I 

could not see any of the explanations). Participants in the diagram-only and 

integrated conditions were asked whether they could see the entire diagram without 

scrolling with a yes or no question. All participants had to self-report on the noise in 

their environment on a scale ranging from one (quiet and no distractions) to nine 

(noise and many distractions). Finally, participants were asked to provide some 

demographic information, namely their age, gender, and highest achieved education 

level. 

Procedure  

Participants first received a short introduction about the experiment, and 

instructions on what they had to do. Then, they filled out the subjective prior 

knowledge questions and completed the objective prior knowledge test, after which 

they studied the learning material, with layout and pacing depending on assigned 

condition. After the learning phase, participants were asked to indicate how much 

mental effort they had invested in studying the learning material. Then, participants 

completed the posttest and reported how much mental effort they invested in 

answering the posttest questions. Finally, they answered the control and 

demographic questions.  

Scoring  

For all measures, participants were awarded 1 point per correct response. When 

they gave a partially correct answer (e.g., pulmonary instead of pulmonary artery), 

they received 0.5 points. If they did not provide an answer, or if it was completely 

wrong, 0 points were awarded. Thus, participants could get a maximum of six points 

for the component test, eight points for the blood chains test (four for the left, and 

four for the right chain), and five points for the blood flow test. A random subset of 

the data (10.67%) was scored by a second rater, and interrater reliability was high (κ 

= .90). 

Results 

In this study, we maintained an alpha level of .05. For the parametric tests, 

effect size measures used were partial eta-squared (ηp
2) and Cohen’s d. Both can be 

interpreted in terms of small (ηp
2 ~ .01, d ~ 0.2), medium (ηp

2 ~ .06, d ~ 0.5), and large 

(ηp
2 ~ .14, d ~ 0.8) effect sizes (Cohen, 1988).  

Prior knowledge  



Layout and Pacing 

105 

To check whether conditions did not differ on prior knowledge (data presented 

in Table 1), we performed a 2 (pacing) x 4 (layout) ANOVA on the self-reported prior 

knowledge , which showed a main effect of pacing, F(1, 217) = 7.92, p = .005, ηp
2 = .04, 

indicating that participants in the self-paced conditions (M = 2.46, SD = 0.83) rated 

their domain knowledge higher than participants in the system-paced conditions (M 

= 2.16, SD = 0.75). There was no effect of layout and no interaction (Fs < 1). The 

objective prior knowledge test did not confirm higher prior knowledge in the self-

paced conditions though. Because the assumptions of normality were violated for 

the objective domain knowledge test, we performed non-parametric tests on these 

data. A Mann-Whitney test indicated no significant differences between the self-

paced and system-paced conditions, U = 5552.50, p = .111. Kruskal-Wallis tests 

showed no significant differences between layout conditions when the presentation 

was self-paced, χ2 (3) = 2.52, p = .472, or system-paced, χ2 (3) = 1.18, p = .759.  
 

Table 1. Mean (SD) Self-estimated Prior Knowledge (range = 1-5) and Mean (SD) and Median 

(Range) Performance on the Objective Domain Prior Knowledge Test (max = 6) as a Function of 

Pacing and Layout in Experiment 1. 

 

  
Self-Estimated  Objective 

  
Mean (SD)  Mean (SD) Median (Range) 

Self-paced Diagram only 2.56 (0.93)  2.59 (2.16) 2.00 (6.00) 

 
Separated 2.59 (0.89)  2.09 (2.14) 1.50 (6.00) 

 
Integrated 2.42 (0.65)  2.67 (2.07) 2.50 (6.00) 

 
Integration instruction 2.27 (0.78)  2.70 (1.61) 3.00 (6.00) 

 Total 2.46 (0.83)  2.52 (1.99) 2.00 (6.00) 

System-paced Diagram only 2.20 (0.80)  2.44 (2.20) 1.50 (6.00) 

 
Separated 2.10 (0.77)  2.02 (1.41) 2.00 (4.00) 

 
Integrated 2.21 (0.74)  1.82 (1.61) 1.50 (5.00) 

 
Integration instruction 2.12 (0.71)  1.90 (1.79) 1.00 (6.00) 

 Total 2.32 (0.80)  2.07 (1.81) 1.50 (6.00) 

 

Time on task  

We checked how much time participants in the self-paced conditions spent on 

the learning materials: On average, participants in the self-paced condition studied 

the materials for 100.77s (SD = 106.77, Mdn = 67.83). Mean time on task was highest 

in the self-paced diagram-only condition (129.25s, SD = 147.69; Mdn = 71.25), 
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followed by the self-paced integrated condition (104.06s, SD = 107.62; Mdn = 68.24), 

the self-paced integration instruction condition (98.49, SD = 69.87; Mdn = 84.43), 

and the self-paced separated condition (64.42s, SD = 64.42; Mdn = 42.27) Thus, 

except for the separated condition, the average time on task was higher in the self-

paced than in the system-paced (i.e., 80s) conditions 

Learning outcomes  

For all learning outcome measures (see Table 2), the assumptions of normality 

were violated. Therefore, we performed non-parametric tests on these data. On the 

components test, a Mann-Whitney test showed no significant differences between 

the self-paced and system-paced conditions, U = 6069.00, p = .574. Kruskal-Wallis 

tests showed no significant differences between layout conditions when the 

presentation was either self-paced, χ2 (3) = 0.47, p = .926, or system-paced, χ2 (3) = 

4.40, p = .221. 
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Table 2. Mean (SD) and Median (Range) Performance on the Components (max. = 6), Blood Chains (max. = 8), and Blood Flow (max. = 5) Tests as a 

Function of Pacing and Layout in Experiment 1. 

 

 
Components  Blood chains Blood flow 

  
Mean (SD) Median (Range) Mean (SD) Median (Range) Mean (SD) Median (Range) 

Self-paced Diagram only 4.81 (1.70) 5.75 (6.00) 2.32 (2.40) 2.00 (8.00) 2.65 (2.66) 3.00 (5.00) 

 
Separated 5.00 (1.59) 6.00 (5.00) 2.41 (2.66) 1.50 (8.00) 3.02 (1.74) 3.50 (5.00) 

 
Integrated 5.02 (1.28) 5.75 (6.00) 3.54 (2.68) 3.00 (8.00) 2.92 (1.74) 3.00 (5.00) 

 
Integration instruction 4.87 (1.68) 6.00 (5.00) 3.07 (2.98) 2.00 (8.00) 2.58 (1.81) 2.75 (5.00) 

 Total 4.91 (1.57) 6.00 (6.00) 2.79 (2.69) 2.00 (8.00) 2.77 (1.70) 3.00 (5.00) 

System-paced Diagram only 5.01 (1.29) 5.50 (5.50) 1.56 (1.92) 1.00 (6.50) 2.47 (1.70) 2.00 (5.00) 

 
Separated 4.67 (1.64) 5.00 (6.00) 1.86 (1.80) 2.00 (7.00) 1.90 (1.68) 1.50 (5.00) 

 
Integrated 4.95 (1.13) 5.00 (3.50) 2.34 (2.26) 1.50 (7.00) 2.36 (1.31) 2.00 (5.00) 

 
Integration instruction 5.35 (1.21) 6.00 (4.00) 2.60 (2.44) 2.00 (8.00) 2.50 (1.57) 2.75 (5.00) 

 Total 5.01 (1.31) 5.50 (6.00) 2.06 (2.13) 1.00 (8.00) 2.34 (1.57) 2.00 (5.00) 
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On the blood chains test, the self-paced conditions seemed to outperform the 

system-paced conditions, but a Mann-Whitney test showed that this difference was 

not significant, U = 5471.50, p = .075. Kruskal-Wallis tests indicated no performance 

differences between layout conditions when the presentation was either self-paced, 

χ2 (3) = 3.65, p = .302, or system-paced, χ2 (3) = 4.13, p = .248.  

Finally, on the blood flow test, the Mann-Whitney test showed a marginally 

significant advantage for the self-paced conditions compared to the system-paced 

conditions, U = 5393.00, p = .054. Again, however, Kruskal-Wallis tests indicated no 

performance differences between layout conditions when the presentation was 

either self-paced, χ2 (3) = 1.42, p = .702, or system-paced, χ2 (3) = 2.27, p = .519.  

Invested Mental Effort.  

The data regarding invested mental effort can be found in Table 3. We 

performed a 2 (pacing) x 4 (layout) ANOVA on the invested mental effort during 

learning, which showed a main effect of pacing, F(1, 217) = 5.37, p = .021, ηp
2 = .02, 

indicating that participants in the system-paced conditions invested more mental 

effort during learning than participants in the self-paced conditions. We found no 

effect of layout, F(3, 217) = 2.04, p = .109, ηp
2 = .03, and no interaction, F(3, 217) = 1.11, 

p = .347, ηp
2 = .02. The same ANOVA on mental effort invested during the posttest 

indicated no effect of pacing, F(1, 217) = 1.20, p = .275, ηp
2 = .01, layout, F < 1, and no 

interaction F < 1. 
Table 3.  

Table 3: Mean (SD) Invested Mental Effort (max. = 9) During the Learning Phase and Posttest 

as a Function of Pacing and Layout in Experiment 1. 

 

  
Learning Phase Posttest 

Self-paced Diagram only 7.50 (1.31) 7.76 (1.28) 

 
Separated 6.67 (1.82) 7.41 (1.37) 

 
Integrated 6.71 (1.85) 7.25 (1.92) 

 
Integration instruction 7.27 (1.08) 7.30 (1.37) 

 Total 7.08 (1.54) 7.45 (1.47) 

System-paced Diagram only 7.49 (0.95) 7.63 (1.09) 

 
Separated 7.19 (1.12) 7.43 (1.29) 

 
Integrated 7.57 (1.14) 7.75 (1.29) 

 
Integration instruction 7.58 (1.36) 7.73 (1.46) 

 Total 7.47 (1.13) 7.65 (1.26) 
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Discussion 

In contrast to our hypotheses regarding layout, we did not replicate Chandler 

and Sweller’s (1991) findings that learning outcomes would be significantly lower in 

the integrated and integration instruction conditions than in the diagram-only 

condition or the separated condition. With regard to our question of whether the 

separated condition would perform as well or worse than the diagram-only 

condition, we found no difference among those conditions. However, given the 

failure to replicate their respective superiority over the integrated and integration 

instruction conditions, that finding cannot be meaningfully interpreted.  

Regarding pacing, we found that self-paced learning was less effortful than 

system-paced learning. In other words, in line with our hypothesis, system-pacing 

did indeed increase perceived cognitive load. Moreover, self-pacing led to a 

numerical (but not statistically significant, p = .075) advantage in performance on 

the blood chains test and a marginally significant (p = .054) advantage in 

performance on the blood flow test compared to system-pacing. However, given the 

lack of differences among layout conditions in either self-paced or system-paced 

learning, we found no evidence that system-pacing would aggravate the negative 

effects of presenting unnecessary text on learning. 

We see two potential explanations for our failure to replicate Chandler and 

Sweller’s (1991) findings. First, to control for possible differences in prior knowledge, 

we added an objective prior knowledge test, which Chandler and Sweller (1991) did 

not have in their experiment. This test might have guided participants’ learning, 

which could have neutralized any effects of the unnecessary text. Indeed, research 

into test-potentiated learning shows that attempting to retrieve information may 

improve later encoding, even when the initial retrieval attempt was unsuccessful 

(Arnold & McDermott, 2013; Little & Bjork, 2016). We cannot rule out that this could 

have led to improved learning performance in the conditions with unnecessary text, 

in which case we should see negative effects of unnecessary text on learning when 

not giving a pretest. Second, we ran our experiment on Mechanical Turk, and 

although Mechanical Turk can yield results similar to lab studies (Paolacci et al., 

2010), this type of online testing reduces experimental control somewhat. For 

instance, the time on task data from the self-paced conditions showed substantial 

variance, and we cannot be sure that participants spent all this time studying the 

learning materials (i.e., they might have been interrupted or attending to another 
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task). However, while this may at least partly explain the large variance in learning 

outcomes, it does not explain the absence of mean/median condition differences.  

Therefore, we dropped the objective prior knowledge test in Experiment 2 and 

conducted this experiment in a lab context. We employed eye-tracking to gain more 

insight into the question of how the presentation of unnecessary text affects 

attention allocation during learning, as it was unclear to what extent students 

processed the unnecessary information in Experiment 1.  

Experiment 2 

In Experiment 2, we compared the four system-paced conditions (i.e., diagram 

only, separated, integrated, integration instruction) on learning outcomes and 

perceived cognitive load in a more controlled lab setting, and excluded the objective 

prior knowledge test for the reason mentioned in the Discussion section of 

Experiment 1. We employed eye-tracking to directly measure to what extent students 

processed the unnecessary text, and to address our assumption that participants in 

the separated condition would attend less to the unnecessary text than participants 

in the integrated and the integration instruction conditions. This should result in 

shorter fixation duration on the unnecessary text and less transitions between 

unnecessary text and the relevant parts of the diagram. With regard to processing 

the relevant information, that is, the arrows and labels in the diagram, we would 

expect that participants in the diagram-only condition would pay most attention to 

this information, followed by the separated condition and the integrated and 

integration instruction conditions, with the question being whether the diagram 

only and separated condition would differ from each other.  

Method 

Participants and design.  

Participants were 132 German University students (Mage = 21.15 years, SD = 2.34; 

106 female) who participated for course credit or 3 Euro. All participants had normal 

or corrected-to-normal vision. One participant indicated after completing the 

experiment that he/she wanted to retract his/her data. Moreover, nine participants 

were removed from the analyses they had accidentally ended the learning phase by 

pressing the spacebar, which was not allowed. The remaining 122 participants were 

distributed across the four conditions (to which they had been randomly assigned) 

as follows: diagram only (n = 29), separated (n = 33), integrated (n = 32), and 

integration instruction (n = 28).  
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Materials  

The materials were programmed and presented in SMI Experiment Center 

(Version 3.6; SensoMotoric Instruments). They were largely similar to Experiment 1, 

with two exceptions: 1) the textual explanations in the separated and integration 

instruction conditions were presented next to the diagram rather than underneath it 

(see Figure 1 and 2) and 2) the materials were presented system-paced at 100s (mean 

time on task in the self-paced conditions in Experiment 1) to ensure that participants 

had sufficient time. Furthermore, due to a programming error, the answers for the 

components test were not saved in Experiment 2. 
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Figure 2. Learning materials in Experiment 2 for the diagram-only condition (2A), the integrated condition (2B), and the separated and 

integration instruction conditions (2C). The different AoIs are presented in a box with a continuous line (relevant text), a box with a dotted line 

(unnecessary text), and in black (arrows).  
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Apparatus  

The materials were presented in SMI Experiment Center (Version 3.6; 

SensoMotoric Instruments) on a monitor with a resolution of 1920 x 1080 pixels. 

Participants’ eye movements were recorded using SMI RED 250 Mobile eye trackers 

(SensoMotoric Instruments) that recorded binocularly at 250 Hz using SMI iView 

software (Version 4.2; SensoMotoric Instruments). SMI BeGaze software (Version 

3.7; SensoMotoric Instruments) was used for data analysis.  

Procedure 

Participants were tested individually, or in groups of up to three participants 

simultaneously. At the start of the experiment, participants were seated in front of a 

laptop with the mobile eye tracker placed underneath, with their head 

approximately 60 cm from the screen. First, participants filled in their age and 

gender. After a short introduction about the experimental procedure, participants 

provided the subjective prior knowledge rating. Subsequently, the eye tracker was 

calibrated using a thirteen-point calibration plus four-point validation procedure, 

and participants were instructed to move as little as possible. Then the learning 

phase started, and participants were given 100 seconds to study the learning 

material, after which they rated how much mental effort they had invested in 

studying the material. Finally, participants completed the posttest and were asked to 

indicate how much mental effort they invested in answering the posttest questions. 

The experiment took 10-15 minutes to complete. 

Data analysis  

Posttest performance on the blood chain and blood flow tests was scored cf. 

Experiment 1. For the eye tracking analyses, we first checked the calibration accuracy 

and tracking ratio (i.e., the percentage of time for which the eye tracker actually 

measured the eye movements). We excluded two participants from the eye-

movement data analyses (one from the integrated, and one from the integration 

instruction condition) because of inaccurate calibration (i.e., deviation from the four 

validation points exceeded 1o), and 28 additional participants (diagram-only: n = 8; 

separated: n = 6; integrated: n = 10; integration instruction: n = 4) because their 

tracking ratio was below 70%. The final sample for the eye-movement data analyses 

(n = 92) had an average tracking ratio of 88.52% (SD = 6.51%), with a mean 

calibration accuracy of 0.27 o (SD = 0.13o), and was distributed across the conditions 

as follows: diagram-only (n = 21), separated (n = 27), integrated (n = 21), and 

integration instruction (n = 23).  
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Fixations were defined using a 40 o/s velocity threshold and a minimal duration 

of 100 ms (cf. Holmqvist et al., 2011). Areas of Interest (AoIs) were created on the 

diagram, covering the relevant text labels and the arrows indicating the blood flow 

(see Figure 2). In the separated, integrated, and integration instruction conditions, 

AoIs were also created on the unnecessary text lines (see Figure 2). This allowed us 

to compute the fixation duration on the unnecessary and essential AoIs; however, to 

control for differences in tracking ratio between participants, we calculated a relative 

measure of fixation duration by dividing the fixation duration on each AoI by the 

total fixation duration on the learning material (i.e., the sum of fixation duration on 

the different AoIs and white space). 

To measure integration of the different sources of information (i.e., relevant 

text labels, arrows, unnecessary text), we used transitions between the different 

AoIs. We defined two types of transitions: unnecessary-relevant and relevant-

relevant transitions. Unnecessary-relevant transitions are transitions between the 

unnecessary text and the relevant parts of the diagram (i.e., the relevant text labels 

and the arrows) or vice versa. Relevant-relevant transitions are transitions between 

and within two different relevant parts of the diagram, that is, between the relevant 

text labels and the arrows (or vice versa), within the arrows, and within the relevant 

text labels. To control for differences in tracking ratio we again divided the number 

of transitions by the total fixation duration on the learning material. 

Results 

Prior knowledge  

A one-way ANOVA with layout as between-factor showed no differences 

between the diagram only (M = 2.03, SD = 0.73), integrated (M = 2.16, SD = 0.63), 

separated (M = 2.03, SD = 0.64), and integration instruction conditions (M = 1.96, SD 

= 0.43) on the subjective ratings of prior knowledge, F < 1.  

Learning outcomes 

For the two learning outcome measures, the assumptions of normality were 

violated and therefore non-parametric tests were conducted (see Table 4). On the 

blood chains test, a Kruskal-Wallis test showed a significant difference between 

conditions, χ2 (3) = 14.97, p = .002. Follow-up Mann-Whitney tests with a Bonferroni 

corrected p-value (i.e., multiplying the p-value by six, the number of tests that were 

performed) showed that participants in the integrated condition had lower 

performance than participants in the separated condition, U = 292.00, p = .012 and 
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participants in the integration instruction condition U = 222.00, p = .006. No other 

comparisons were significant, p > .396.  

On the blood flow test a Kruskal-Wallis test showed significant differences 

between the conditions, χ2 (3) = 12.91, p = .005. Follow-up Mann-Whitney tests (with 

Bonferroni corrected p-values) showed that participants in the integrated condition 

had lower performance than participants in the separated condition, U = 311.00, p = 

.024. None of the other comparisons yielded significant results, p > .060. 

 
Table 4. Mean (SD) and Median (Range) Performance on the Blood Chains (max. = 8) and Blood 

Flow (max. = 5) Tests as a Function of Layout in Experiment 2 

 

 Blood chains Blood flow  

 Mean (SD) Median (Range) Mean (SD) Median (Range) 

Diagram only 2.00 (2.36) 1.00 (7.50) 1.28 (1.61) 0.50 (5.00) 

Separated 2.80 (2.36) 2.50 (7.50) 2.06 (1.36) 2.00 (4.50) 

Integrated 1.17 (1.88) 0.25 (8.00) 1.14 (1.12) 1.00 (5.00) 

Integration instruction 2.64 (2.02) 2.25 (7.50) 1.82 (1.27) 2.00 (5.00) 

Total 2.15 (2.24) 1.50 (8.00) 1.58 (1.38) 1.00 (5.00) 

 

Invested Mental Effort 

Data on the self-reported mental effort investment during the learning phase 

and on the posttest is reported in Table 5. A one-way ANOVA showed no significant 

differences among conditions in self-reported mental effort invested during learning, 

F(3, 118) = 2.23, p = .089, ηp
2 = .05, or during the posttest, F < 1.  

 
Table 5: Mean (SD) Invested Mental Effort (max. = 9) During the Learning Phase and Posttest 

as a Function of Layout in Experiment 2. 

 

 
Learning Phase  Posttest 

Diagram only 6.38 (1.08)  6.24 (1.35) 

Separated 7.09 (1.13)  6.09 (1.72) 

Integrated 6.59 (1.36)  5.91 (1.63) 

Integration instruction 6.89 (1.07)  6.29 (1.61) 

Total 6.75 (1.19)  6.12 (1.58) 
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Fixation Duration  

See Table 6 for the fixation duration on the relevant information (i.e., text labels 

and arrows) and the unnecessary text. A one-way ANOVA on the fixation duration 

on the unnecessary text in the separated, integrated, and integration instruction 

conditions, showed no significant differences among conditions, F(2, 71) = 2.46, p = 

.093, ηp
2 = .07. For the fixation duration on the relevant information a one-way 

ANOVA revealed a significant main effect of layout, F(3, 92) = 30.61, p < .001, ηp
2 = 

.51. Bonferroni-corrected follow-up tests showed that, as expected, participants in 

the diagram-only condition spent more time looking at the relevant information 

than participants in the separated condition, p < .001, d = 1.91, integrated condition, p 

< .001, d = 1.72, and integration instruction condition, p < .001, d = 2.35. All other 

comparisons were not significant, smallest p = .219.  

Transitions  

See Table 6 for the unnecessary-relevant and relevant-relevant transitions. A 

one-way ANOVA on the unnecessary-relevant transitions revealed a significant main 

effect of layout, F(2, 71) = 39.92, p < .001, ηp
2 = .54. Participants in the integrated 

condition made more transitions between the unnecessary text and the relevant 

parts of the diagram than participants in the separated condition, p < .001, d = 1.89, 

and the integration instruction conditions, p < .001, d = 1.77. The analysis revealed no 

differences between the separated and integration instruction condition, p > .999.  

Analysis of the relevant-relevant transitions again revealed a significant main 

effect of layout, F(3, 92) = 8.83, p < .001, ηp
2 = .23. Bonferroni-corrected follow-up 

tests showed that participants in the diagram-only condition made more relevant-

relevant transitions than participants in the integrated, p = .002, d = 0.94; separated, 

p < .001, d = 1.21; and integration instruction conditions, p < .001, d = 1.39. All other 

comparisons were not significant, p > .999. 
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Table 6. Mean (and SD) Fixation Duration on, and Transitions between, the Relevant 

Information and Unnecessary Text as a Function of Layout. 

 

 Fixation Duration Transitions 

 
Relevant  Unnecessary Relevant-relevant Unnecessary-relevant 

Diagram only 0.24 (0.08)  0.12 (0.07)  

Separated 0.10 (0.04) 0.36 (0.10) 0.05 (0.05) 0.03 (0.02) 

Integrated 0.12 (0.04) 0.43 (0.13) 0.05 (0.07) 0.20 (0.13) 

Integration instruction 0.09 (0.04) 0.41 (0.13) 0.04 (0.04) 0.04 (0.03) 

Total 0.13 (0.08) 0.40 (0.12) 0.06 (0.06) 0.09 (0.10) 

 

Discussion 

 In Experiment 2, we again found no evidence for an overall negative effect 

of unnecessary text on learning. In contrast to Experiment 1, we did find some effects 

of layout: on both outcome measures, performance was higher in the separated 

condition than in the integrated condition. The integration instruction did not seem 

to influence learning as no differences emerged between this condition and the 

separated condition without integration instruction.  

 The eye-tracking measures indicate that the unnecessary text attracted 

attention, at the expense of attention to the relevant text labels and arrows, as 

participants in the unnecessary-text conditions looked less at the relevant parts of 

the diagram (and transitioned less between relevant parts of the diagram) than 

participants in the diagram-only condition. Participants in the separated condition 

spent as much time studying the unnecessary text as participants in the integrated 

and integration instruction conditions, while participants in the integrated condition 

made more transitions between the unnecessary text and relevant parts of the 

diagram than participants in the separated and integration instruction conditions.  

This finding provides direct evidence that spatially integrating text and diagram 

affects participants’ study strategy, inducing them to integrate the two sources of 

information more. This is in line with explanations (Ayres & Sweller, 2014) for why 

an integrated layout is preferable over a separated layout when both the text and the 

diagram are necessary for learning (see also Holsanova, Holmberg, & Holmqvist, 

2009) and with research showing that transitions decreased as the distance between 

two sources of information increased (Bauhoff, Huff & Schwan, 2012). However, 

when the information is unnecessary for learning, the increased integration seems to 
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hinder learning compared to a separated layout (though not compared to a diagram 

only).  

The location of the unnecessary information was changed (from underneath to 

besides the diagram) in Experiment 2 to make the materials more suitable for eye 

tracking research. This location change might have influenced how the unnecessary 

text was processed in the separated and integration instruction conditions. However, 

this is highly unlikely as participants in these two conditions had similar posttest 

performance in Experiment 1 and 2. 

General Discussion 

The present study aimed to address the effects of layout and study time pacing 

on the negative influence of extraneous information on learning. We set out to 

replicate and extend the results from Chandler and Sweller (1991). They showed that 

it is better to leave out unnecessary text (diagram only) than to present it integrated 

into the diagram or separated from the diagram with the instruction to integrate it. 

They also demonstrated that a separated presentation (without integration 

instruction) led to better learning outcomes than an integrated presentation of 

unnecessary text. Their findings raised the interesting question of whether students 

in the separated condition would be able to ignore spatially separated unnecessary 

text to such an extent that it does not hamper their learning compared to a diagram 

only condition. Another open question was whether pacing would aggravate the 

effects of unnecessary information on learning, mostly when the unnecessary text is 

spatially integrated or when students are instructed to integrate spatially separated 

text. Therefore, we directly compared all four layout conditions under either system-

paced or self-paced conditions: diagram only, separated, integrated, and integration 

instruction.  

Unfortunately, we did not replicate most of Chandler and Sweller’s (1991) 

findings. In Experiment 1, which was conducted online, we found no significant 

differences in learning outcomes among layout conditions. Thus, the presentation of 

unnecessary text did not hamper learning about the human circulatory system 

compared to studying only the diagram of the heart, regardless of whether 

participants learned at their own pace or under system pacing. However, self-paced 

learning was less effortful than system-paced learning, and seemed to increase 

posttest performance (numerically; this was not statistically significant), which is in 

line with theoretical arguments favoring self-pacing over system-pacing (Barouillet & 

Camos, 2007) and empirical studies (Kalyuga et al., 2004; Mayer & Jackson, 2005). 
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However, we found no evidence for the hypothesis that system-paced learning 

would aggravate the negative effect of presenting unnecessary text on learning, as we 

found no differences among layout conditions when learning was self- or system 

paced.  

In Experiment 2, which was system-paced, conducted in a lab, and involved eye 

tracking to study participants’ processing of the unnecessary information, we did 

replicate the finding that a separated presentation (without integration instruction) 

led to better learning outcomes than an integrated presentation of unnecessary text. 

However, none of the unnecessary text conditions showed lower learning outcomes 

than the diagram-only condition. Moreover, although participants in the integrated 

condition spent about as much time looking at the unnecessary text as participants 

in the separated and integration instruction conditions, they did make more 

transitions between the unnecessary text and the relevant parts of the diagram. A 

possible, but speculative, explanation is that the unnecessary text was not harmful 

for learning when it is merely read, without deep processing or integration attempts, 

but will negatively influence learning when learners attempt to actively integrate the 

unnecessary information with the relevant information.  

One potential explanation for the failure to replicate Chandler and Sweller’s 

(1991) findings on the effects of unnecessary text on learning might lie in their 

relatively small sample size (i.e., between ten and fourteen participants per 

condition). Indeed, given the presence of publication bias, the positive predictive 

value of a significant result (i.e., the probability that a significant effect represents a 

true effect) decreases with the sample size. Yet, their study was not the only one 

showing that extraneous information can hamper learning (for reviews: see Mayer & 

Fiorella, 2014, on the coherence principle; and Kalyuga & Sweller, 2014, on the 

redundancy principle). However, what qualified as ‘extraneous information’ differed 

among studies. Because both the relation between the extraneous information and 

the essential information (i.e., whether the extraneous information is irrelevant or 

unnecessary), and the modality in which the extraneous information is presented 

might influence the occurrence and strength of the negative effect on learning, 

further studies should be performed taking into account these factors. That is, it is 

possible that the negative effects of irrelevant information (i.e., not related to the 

learning goal; e.g., Harp & Mayer, 1998; Moreno & Mayer, 2000; Sanchez & Wiley 

2006) are larger than the effects of unnecessary information (i.e., related to the 

learning goal, but not necessary because the information is presented twice or is 
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unnecessarily elaborate; Bobis, Sweller, & Cooper, 1993; Chandler & Sweller, 1991; 

Mayer et al., 1996). Moreover, the strength of the effect may depend on whether it is 

text (Bobis et al., 1993; Chander & Sweller, 1991; Mayer et al., 1996), picture (Sanchez 

& Wiley, 2006) or sound that is extraneous (Moreno & Mayer, 2000).  

Such studies should also employ eye tracking to study the attention allocation 

processes during learning. Indeed, theory predicts that extraneous information 

hampers learning because learners select this information, attend to it, and try to 

integrate it with the essential information. This presumably hampers learning by 

depleting valuable working memory resources which cannot be used for processes 

relevant for learning (Kalyuga & Sweller, 2014, Sweller et al., 2011). The present study 

indeed suggests that the layout of the learning materials also influences the 

integration process. While participants in all unnecessary-text conditions attended 

to the text, participants in the integrated layout tried to integrate the unnecessary 

text with the relevant information more.  

Note though, that if such integration attempts negatively affect learning, one 

would also expect performance to be lower compared to a diagram only condition, 

which was not the case. This might be associated with a potential limitation of 

Experiment 2: the fact that it was system-paced with a 100s presentation time (i.e., 

20s longer than in Experiment 1), may have meant that some participants had more 

time available than they needed or would otherwise have taken to study the learning 

materials (e.g., the self-paced separated condition only took 64s on average in 

Experiment 1), whereas others may not have had sufficient time (e.g., the self-paced 

diagram-only condition took 129s on average in Experiment 1, though with large 

variability between participants).  

In sum, the present study shows no evidence for a negative effect of 

unnecessary information on learning compared to a diagram-only condition. 

However, a separated presentation led to better learning outcomes than an 

integrated presentation of unnecessary text, and participants made more transitions 

between the unnecessary text and the relevant parts of the diagram when it was 

integrated. This suggests that when text is presented that describes a picture, it is 

better not to integrate it into the picture, but to present it separatel
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Research focusing on the design of multimedia materials has shown that the 

presentation of extraneous information hampers learning. The research presented in 

this dissertation focussed on the question of whether this negative effect of extraneous 

information on learning with multimedia materials would decrease or disappear with 

task experience (i.e., familiarity with the design of the materials). Extraneous 

information can be either irrelevant or unnecessary for attaining the learning goals. 

Irrelevant information is not related to the learning goal (e.g., ‘bells and whistles’ 

added to learning materials to make them interesting or motivating; known as 

seductive details, see Mayer, Heiser, & Lonn, 2001). Unnecessary information in 

contrast, is related to the learning goal, but not necessary for learning, for instance 

because the information is presented twice in a different form (e.g. text and picture, 

Chandler & Sweller, 1991; spoken and written text, Kalyuga, Chandler, & Sweller, 1999) 

or is unnecessarily elaborate (e.g., details and examples that are not necessary for the 

learning goals; Reder & Anderson, 1982).  

A large body of research has demonstrated that the presentation of extraneous 

information, whether irrelevant or unnecessary, hampers learning from multimedia 

materials (for reviews, see Kalyuga & Sweller, 2014; Mayer & Fiorella, 2014). However, 

eye-tracking literature has shown that people may learn to ignore task-irrelevant 

information with increasing expertise (Canham & Hegarty, 2010; Haider & Frensch, 

1999). Therefore, the studies presented in this dissertation examined whether the 

negative effect of extraneous information on learning would decrease or disappear 

with increasing task experience. When extraneous information is present over a series 

of tasks, items, or slides, learners have a chance to adapt their study strategy (if they 

realize the information is irrelevant or unnecessary). When learners would start to 

ignore the extraneous information, its negative effect on learning should diminish or 

disappear.  

Therefore, the aim of this dissertation was to provide an answer to the following 

questions: 1) Does the negative effect of extraneous information on learning decrease 

or disappear with increasing task experience? 2) Does this effect arise because learners 

start to ignore the extraneous information? These two questions were addressed both 

for irrelevant (Part 1) and unnecessary (Part 2) information presentation. In this 

chapter, the key findings of the studies are summarized and discussed in the context 

of theories of cognitive load and multimedia learning, and potential directions for 

future research are sketched.   
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Summary of Key Findings  

The studies in Part 1, presented in Chapters 2 and 3, investigated whether the 

negative effect of irrelevant information on learning would decrease or disappear with 

increasing task experience. Chapter 2 described three experiments on the effects of 

irrelevant pictures when learning action-word definitions. In all experiments, 

participants learned the definitions of new words (from an artificial language) that 

denoted actions, coupled with matching pictures (depicting the same action), 

mismatching pictures (depicting another action), or without pictures. Experiments 

1a/1b addressed the question whether adding irrelevant information (the mismatching 

pictures) would hamper learning of word definitions compared to learning words with 

matching pictures or without pictures. Results showed lower test performance (i.e., 

definition recall) when learning with mismatching pictures than with matching 

pictures. Experiment 2 examined the main hypothesis that irrelevant information 

would no longer hamper learning once learners gained experience with the word-

learning task. As expected, learning with the mismatching pictures led to significantly 

lower test performance compared to learning with the matching pictures initially 

(replicating findings from Experiment 1). However, after participants gained 

experience with the task, test performance in the mismatching condition improved 

and no longer differed significantly from the matching pictures condition. Experiment 

3 employed eye tracking to test the hypothesis that the negative effect on learning 

disappeared with increasing task experience in Experiment 2, because learners started 

to ignore the irrelevant information. In line with this hypothesis, eye-tracking 

measures showed that the increase in recall performance in the mismatching pictures 

condition was accompanied by a decrease in attention towards these pictures. This 

suggests that participants spontaneously (i.e., without any instruction to do so) 

adapted their study strategy, and stopped allocating attention towards the 

mismatching pictures.  

The study presented in Chapter 3 built on the findings from Chapter 2, by 

investigating whether learners ‘only’ ignored the location of the mismatching pictures 

or had learned to suppress attention to the content of the mismatching pictures. This 

question was addressed in Experiments 1a/1b, by systematically changing the location 

of matching and mismatching pictures for half of the participants after they had 

accumulated task experience. If participants would only suppress attention to the 

picture location, then word learning should be negatively affected after the location 

change for participants engaging in word learning with mismatching pictures. 



Chapter 6 

124 

However, if they were aware that the content of the mismatching pictures was 

irrelevant for learning the word definitions, they would be expected to actively 

suppress attention to the pictures regardless of the location, in which case 

performance should not be negatively affected after the location change for 

participants engaging in word learning with mismatching pictures. Results showed 

that changing the location of the mismatching pictures did not affect recall, 

suggesting awareness of the irrelevance of the pictures for their learning goal.  

Concluding, the studies presented in Part 1 showed that learners seemed to be 

able to adapt their study strategy after they gained task experience: they started to 

ignore the irrelevant information (at which point their learning outcomes improved) 

and seem to do so because they are aware that it is irrelevant for their learning goal.  

The studies in Part 2, presented in Chapters 4 and 5, investigated the negative 

effect of unnecessary information on learning, using more complex (i.e., higher 

element interactivity) multimedia materials (i.e., expository text with pictures on 

biological processes).  

In the two experiments in Chapter 4, the hypothesis was addressed that learners 

would start to ignore unnecessary textual information (which merely described the 

picture) with increasing task experience, thereby reducing its negative effects on 

learning. In addition, it was investigated whether the layout of the unnecessary 

information (integrated in or separated from the picture) would influence the effect 

of unnecessary text on attention and learning over time (i.e., with task experience). 

Participants learned about the process of mitosis with materials consisting of a 

combination of essential text and pictures (control), essential text and pictures with 

unnecessary text presented either integrated in or separated from the picture. It was 

hypothesized that an initial negative effect of unnecessary information would occur; 

that this negative effect would decrease (or even disappear) as participants gained task 

experience; and that this decrease would be stronger when the unnecessary text was 

presented separated from the picture (i.e., separated unnecessary text would be easier 

to ignore than integrated unnecessary text). Surprisingly, the presentation of 

unnecessary text did not consistently hamper learning about the process of mitosis in 

the two experiments. Because we did not reliably find an initial negative effect of the 

unnecessary text on learning, the question of whether task experience would reduce 

or eliminate that negative effect could not be answered.  However, the eye-movement 

data collected in Experiment 2 did show that the unnecessary textual information was 
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processed by students, and more interestingly, that they seemed to start ignoring this 

unnecessary information with increasing task experience. 

In the two experiments described in Chapter 5 participants studied multimedia 

materials about the functioning of the heart. This study involved a replication of 

Experiment 5 of Chandler and Sweller (1991), which was part of a series of experiments 

showing that (1) the addition of unnecessary text to a self-containing diagram impeded 

learning; (2) that this negative effect of unnecessary text on learning was larger when 

the text was integrated in the diagram than when the text was presented separately; 

and (3) that this negative effect on learning was larger when participants were 

instructed to mentally integrate the separated unnecessary information with the 

diagram as compared to no such instruction. A second aim of the first experiment in 

Chapter 5 was to examine the influence of pacing (system-paced vs. self-paced) on the 

occurrence and size of the negative effect of unnecessary information, as this negative 

effect might be larger when learning is system-paced, because under system-paced 

conditions, any unnecessary information processing goes directly at the expense of 

time available for essential information processing.  

In these experiments, we used four different lay-outs in four different conditions: 

1) a diagram presented without unnecessary text (diagram only); 2) a diagram with 

unnecessary text separated from the diagram (separated); 3) a diagram with 

unnecessary text separated from the diagram with the instruction to mentally 

integrate the text and the diagram (integration instruction); or 4) a diagram with 

unnecessary text integrated into the diagram (integrated). In Experiment 1 study time 

was self-paced for half of the participants, and system-paced for the other half.  

We hypothesized that the unnecessary text would have a negative effect on 

learning when it was integrated in the essential material, or when participants 

received the integration instruction. We also addressed the open question whether 

participants would be able to ignore the spatially separated unnecessary text to such 

an extent that it would not hamper their learning compared to a diagram-only 

condition. In addition, we hypothesized that system-pacing would aggravate the 

negative effects of unnecessary text on learning. 

Over the two experiments, the presentation of unnecessary text did not hamper 

learning about the functioning of the heart compared to a diagram-only condition, 

regardless of whether participants learned at their own pace or under system-paced 

conditions. In Experiment 2, we did replicate the finding from Chandler and Sweller 

(1991) that a separated presentation (without integration instruction) led to better 
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learning outcomes than an integrated presentation of unnecessary text. The eye-

tracking data indicated that this was not because participants in the integrated 

condition spent more time on the unnecessary information: they spent about as much 

time looking at the unnecessary text as participants in the separated and integration 

instruction conditions but they presumably attempted to integrate the unnecessary 

text and the essential parts of the diagram more (as evidenced by more transitions). 

This might explain why in the integrated condition, the unnecessary text interfered 

more with learning than in the separated condition without integration instruction. 

Discussion of Key Findings 

The results of the studies presented in Part 1 of this dissertation extend prior 

multimedia research by directly testing the prevailing explanations for the negative 

effect of irrelevant information on learning. That is, our findings show that such 

information initially captures attention (i.e. is being processed). This presumably 

hinders learning by drawing on valuable working memory resources that can no 

longer be used for processes relevant for learning (Kalyuga & Sweller, 2014; Sweller et 

al., 2011) and/or by actively conflicting with the to be learned information (cf. Mayer 

et al., 2007). Using eye-tracking methodology, we showed that a reduction in attention 

to irrelevant information was associated with an increase in recall performance, 

providing some evidence that irrelevant information indeed captures attention and 

working memory resources during learning. This assumption, that irrelevant 

information captures attention, is rarely directly testing in studies on multimedia 

learning, and direct tests of assumptions about the (attentional) mechanisms 

underlying multimedia principles are important, because they can support existing 

ideas about how and why effects on learning occur, or may generate new insights and 

explanations for these principles (Van Gog & Scheiter, 2010).  

These findings extend prior eye-tracking research, which already showed that 

people learn to ignore task-irrelevant information during task performance as a result 

of task experience (Haider & Frensch, 1999) or explicit instruction (Canham & 

Hegarty, 2010; Hegarty et al., 2010). Part 1 of this dissertation showed that people can 

also learn to ignore irrelevant information during learning, and that this is associated 

with better learning outcomes. That the negative effect of extraneous information 

diminishes when people gain task experience is interesting and seemingly contradicts 

the expertise reversal effect (Kalyuga, 2014). The expertise reversal effect states that 

learning materials that are essential and non-redundant for novices, become 

redundant when learners gain or have more prior knowledge, at which point they will 
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no longer aid, and might even hinder learning. Thus, an expertise reversal effect would 

imply that information becomes extraneous and starts to hamper learning as task 

experience increases, whereas in our studies the extraneous information (in this case 

irrelevant) stops hampering learning as task experience increases. Moreover, in 

contrast to the expertise reversal effect, participants in our studies did not gain 

experience with (or knowledge of) the task content (i.e., the word definitions to be 

learned) over time (as there were no repetitions, new words were being presented 

throughout the experiments), but with the task presentation.   

That being said, it does seem to be the case that students learn to ignore 

irrelevant information because they are aware that this information does not help 

their learning, and not solely based on the location of the screen at which it is 

presented. This implies that either 1) top-down attentional influences (i.e., conscious 

redirection of attention because a stimulus does not contain relevant information) are 

stronger than bottom-up attentional influences (i.e., saliency of a stimulus suddenly 

appearing at a different location; cf. Remington, Johnston, & Yantis, 1992), or 2) that 

initial bottom-up attentional influences are suppressed quickly (i.e., the signal-

suppression hypothesis; cf. Gaspelin, Leonard, & Luck, 2015; Sawaki & Luck, 2010). 

Either way, it seems that people are capable of a conscious adaptation of their 

attention allocation, and start to attend more to the relevant information that is 

presented on the screen, irrespective of the location of the irrelevant information. This 

shows that task experience might be a boundary condition to the negative effects of 

irrelevant information as learners seem to be able to adapt their study strategy and 

start to ignore irrelevant information. 

While the studies of Part 1 show the expected pattern of results for extraneous 

information that was irrelevant and pictorial in nature, the same does not hold true 

for the studies in Part 2 with extraneous information that was unnecessary and textual. 

While the accumulation of task experience did lead to changes in the allocation of 

attention (i.e., participants attended less to the unnecessary information with 

increasing task experience in Chapter 4), this did not lead to the expected 

improvement in learning outcomes. Because we found no consistent evidence that the 

unnecessary information had an initial negative effect on learning in both Chapters 

reported in Part 2, it was impossible to study the effect of task experience on the 

negative effect of unnecessary information on learning. This failure to find a consistent 

negative effect of unnecessary information is surprising, considering the body of 

research suggesting that this is a quite robust effect (for reviews, see Kalyuga & 
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Sweller, 2014; Mayer & Fiorella, 2014) over a wide variety of instructional material (i.e., 

identical information in written and spoken form, unnecessary text accompanying 

diagram, or unnecessary details and examples). The negative effect of unnecessary text 

on learning has also been shown in various prior studies (e.g., Bobis, Chandler, & 

Sweller, 1993; Chandler & Sweller, 1991; Pociask & Morrison, 2008), yet we were unable 

to replicate these findings. 

A potential explanation might lie in the amount of time that learners had 

available to process and learn the materials in both studies. In Chapter 4, we based 

the time per slide on the average study time of eight participants in a pilot study, while 

in Chapter 5, we based the study time for the participants in the system-paced 

condition on the average study time of the participants in the Chandler and Sweller 

(1991) study. These study times can therefore be assumed to have been sufficient for 

most of our participants, an assertion that is supported by the finding that learning in 

a system-paced environment did not significantly hamper learning compared to a self-

paced environment in Chapter 5. It is possible that processing unnecessary 

information would start to hamper learning when there is time pressure. When there 

is little time available for processing, any time spent on the unnecessary information 

goes at the expense of thoroughly processing essential information, and as a result, 

learning is hampered. In these studies, learners may have had sufficient time for 

processing all sources of information, which would explain why their attention to the 

unnecessary text did not significantly increase experienced cognitive load and did not 

negatively affect learning.  

Despite the differences between irrelevant and unnecessary information (to 

which we will return in the next section), the studies presented in this dissertation are 

relevant in the context of relatively recent lines of research on cognitive load and 

multimedia learning. Whereas research has long been focused on what multimedia 

designers can do to aid student learning, the present studies focused on whether 

students can (learn) to adapt their study strategy and ignore sources of extraneous 

cognitive load. This fits well with a recent line of research in which participants are 

instructed to self-manage their cognitive load during learning by changing their study 

strategy (e.g., Agostinho, Tindall-Ford, & Roodenrys, 2013; Gordon, Tindall-Ford, 

Agostinho, & Paas, 2016; Roodenrys, Agostinho, Roodenrys, & Chander, 2012), and 

with research on training multimedia learning strategies (e.g., Bodemer, Ploetzner, 

Feuerlein, & Spada, 2004; Mason, Pluchino, & Tornatora, 2016; Peshkam, Mensink, 

Putnam, & Rapp, 2011; Stalbovs, Scheiter, & Gerjets, 2015). For instance Roodenrys et 
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al. (2012) showed that students were able to self-manage their cognitive load under 

conditions of split attention by physically manipulating the instructional materials to 

alleviate the need for integration (the split-attention effect occurs when a student is 

required to divide his attention between two or more mutually referring sources; 

Ayres & Sweller, 2014). Moreover, Peshkam et al. (2011) showed that negative effects of 

unnecessary text that was added to an expository text were alleviated to some extend 

by warning readers that such information might be present in the text they were about 

to read. In contrast to those studies, in which participants were actively instructed or 

trained to manage their own cognitive load, the results from Chapters 2 and 3 

(performance and eye tracking data) and Chapter 4 (eye tracking data) indicate that 

students are also able to implicitly adapt their study strategy and improve their 

learning outcomes.  

Our findings that students are able to ignore extraneous information with 

increasing task experience during learning are also interesting in the context of recent 

studies regarding selective attention (e.g., Middlebrooks, Kerr, & Castel, 2017), which 

can compensate for negative effects of divided attention during learning (Craik, 

Govoni, Naveh-Benjamin, & Anderson, 1996). In the study of Middlebrooks et al. 

(2017) participants had to learn words while either performing an auditory dual task 

(i.e., responding to different types of tones), or listening to music. Participants were 

awarded more points for some words than for others, making the words with higher 

rewards more valuable. Results showed that participants could partly overcome a 

negative effect of dividing one’s attention between the two tasks by selectively 

attending to the most valuable words. This shows that students can also re-allocate 

their attention based on the value of the information they have to learn. In the studies 

presented in this dissertation, participants implicitly adapted their study strategy, so 

they decided themselves which information held more value for attaining their 

learning goal. 

These findings on self-management of cognitive load and instructed or 

spontaneous adaptation of study strategies are also of interest for educational practice, 

for instance for instructional designers of multimedia learning materials. That is, it is 

very hard for instructional designers to take into account all multimedia principles, 

because individual learner characteristics may interact with some of the principles. 

For example, information that essential for novices, might be redundant for more 

experience learners (i.e., the expertise-reversal effect, Kalyuga, 2014). Some examples 

of expertise-reversal include explanations with diagrams might be crucial for novices, 
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while these become redundant as they gain expertise (Kalyuga, Chandler, & Sweller, 

2000), and whereas novices benefit from studying worked examples, more advanced 

learners are better off solving practice problems (Kalyuga, Chandler, & Sweller, 2001). 

However, when students are able to self-manage their cognitive load, instructional 

designers do not have to develop tailor-made instructional materials for students with 

different backgrounds and expertise. 

Should the finding that learners are able to ignore irrelevant information with 

increasing task experience be replicated in a wider range of learning situations, then 

instructional materials could be enriched with irrelevant but interesting information 

(i.e. seductive details) to enhance students’ interest and motivation. The negative 

effects of irrelevant information on learning might be smaller than expected in the 

long run, as students might only briefly glance at this information after they gain 

experience with the instructional materials, rendering the negative effects of such 

information on learning negligible, while it might still have a motivating effect, in 

which case such information might even improve learning in the long run when it 

successfully increases situational interest (cf. Magner, Schwonke, Aleven, Popescu, & 

Renkl, 2014), or enjoyment (cf. Lenzner, Schnotz, & Müller, 2013). However, it should 

be noted that it is unsure that our findings would translate to other types of irrelevant 

information, as the pictures used in Part 1 were not only irrelevant for learning the 

action word definition, but might also have actively interfered with learning, by 

depicting another action. An interesting question is whether it would be more difficult 

for participants to learn to ignore irrelevant information that does not actively 

interfere with the to-be-learned information, as the lack of conflict might make it less 

obvious that the information can/should be ignored. 

Limitations and Future Research 

The results of this dissertation provide some evidence that irrelevant information 

more consistently harms learning as compared to unnecessary information. These 

differences might find their origin in the relation between the extraneous information 

and the learning goal, which is profoundly different for unnecessary and irrelevant 

information. Indeed, irrelevant information is not related to the learning goal, and as 

such is extraneous for all learners irrespective of the expertise or prior knowledge the 

learner possesses. Unnecessary information, however, is related to the learning goals, 

but is unnecessary because a better representation of the information is available or 

one source of information is already self-explaining. It is possible that the negative 

effects of irrelevant information on learning would be larger than the effects of 
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unnecessary information. That is, processing irrelevant information not only takes up 

working memory capacity, but might actively interfere with learning the essential 

information, by disrupting the processing, organization, and integration of essential 

information. Processing unnecessary information on the other hand (which is 

identical in content to the essential information), does take up working memory 

capacity but may interfere less with learning the essential information –unless the 

available study time is limited. Thus, it would be interesting for future research to also 

address the role of time pressure: Unnecessary information might mostly hamper 

learning when available study time is limited, while irrelevant information can also 

hamper learning when it is self-paced. 

However, multiple other possible reasons exist as to why different patterns of 

results emerged over the two parts of this dissertation. Firstly, the studies presented 

in the two parts differed in the complexity of the tasks that participants had to 

complete, as they had to learn words in Part 1 (which is lower in task complexity, with 

fewer interacting elements), while they had to learn about biological processes in Part 

2 (which is higher is task complexity, with more interacting elements). However, 

based on CLT we would sooner expect to find negative effects of extraneous 

information in task with a higher complexity, as these tasks would already pose a high 

intrinsic cognitive load, and, thus, an increase in extraneous load would lead to a 

working memory overload. It should be noted though, that the word learning task 

used in Part 1, although low in complexity (with few interacting elements), was 

cognitively demanding for our participants, as shown by the amount of effort invested 

(high), and the performance on the cued recall test (low).  

Another difference between the two parts of this dissertation lies in the manner 

in which the irrelevant and unnecessary information is presented. While the irrelevant 

information in Part 1 was pictorial, the unnecessary information in Part 2 was textual. 

Because there are differences in attention allocation to text and pictures (Cromley, 

Snyder-Hogan, & Luciw-Dubas, 2010; Hannus & Hyönä, 1999; Schmidt-Weigand, 

Kohnert, & Glowalla, 2010), it would be interesting to investigate whether the medium 

in which irrelevant or unnecessary information is presented, would affect attention 

and learning. 

Finally, the results of this dissertation show that task experience might be a 

boundary condition to the negative effects of irrelevant information on learning as 

students seem to be able to adapt their study strategy and start to ignore irrelevant 

information. However, other possible boundary conditions seem to exist, as this 



Chapter 6 

132 

negative effect seems to depend on individual difference in attentional control (Rey, 

2014) and working memory (Sanchez & Wiley, 2006). To this date, these individual 

differences are rarely controlled for in studies regarding design of multimedia 

instructional materials, including the studies presented in this dissertation. These 

concepts are related to core assumptions of both CLT (e.g., a cognitive overload is less 

likely when a student has more working memory resources available) and the CTML 

(e.g., a student with more attention control is less likely to select irrelevant 

information over essential information). Therefore, future research on the design of 

multimedia learning material in general and on extraneous information processing in 

particular, should aim to include measures of attention control and working memory. 

The identification of boundary conditions is important for scientific progress as they 

the limits of generalizability of scientific theories (Busse, Kach, & Wagner, 2016; 

Whetten, 1989). In other words, when boundary conditions are uncovered, they can 

explain previously unexpected results, and open up new avenues for research. 

Hopefully, the results of the studies presented in this dissertation will do just that. 
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Onderzoek heeft aangetoond dat het presenteren van overbodige informatie in 

multimediaal lesmateriaal1 een negatief effect heeft op de leerprestatie. De studies 

gepresenteerd in dit proefschrift, richtten zich op de vraag of dit negatieve effect van 

overbodige informatie op leren van multimediaal lesmateriaal zou verminderen of 

verdwijnen naarmate lerenden ervaring met het materiaal opbouwen (oftewel, bekend 

raken met het design van deze materialen). Er zijn twee subtypen van overbodige 

informatie te onderscheiden; deze informatie kan ofwel irrelevant ofwel onnodig zijn 

voor het bereiken van de leerdoelen. Irrelevante informatie is niet gerelateerd aan het 

leerdoel (bijv. ‘toeters en bellen’ die worden toegevoegd aan instructiematerialen om 

het ‘op te leuken’, met als doel de interesse en motivatie van de lerende te verhogen; 

zie Mayer, Heiser, & Lonn, 2001). Onnodige informatie is wel gerelateerd aan het 

leerdoel, maar niet noodzakelijk voor het leerproces, bijvoorbeeld omdat dezelfde 

informatie twee keer wordt gepresenteerd in verschillende vormen (bijv. als tekst en 

als afbeelding, Chandler & Sweller, 1991; zowel in gesproken als geschreven tekst, 

Kalyuga, Chandler, & Sweller, 1999), of omdat het onnodig uitgebreid is (bijv. details 

en voorbeelden in een tekst die niet nodig zijn om de kern te begrijpen; Reder & 

Anderson, 1982).  

Vele wetenschappelijke studies hebben aangetoond dat het toevoegen van 

overbodige informatie, of het nou irrelevante of onnodige informatie is, het leren met 

multimediaal lesmateriaal schaadt (voor reviews, zie Kalyuga & Sweller, 2014; Mayer 

& Fiorella, 2014). Echter, ‘eye-tracking’ onderzoek, waarin de oogbewegingen van 

participanten werden gemeten, heeft laten zien dat mensen kunnen leren om taak-

irrelevante informatie te negeren naarmate ze meer ervaring met een taak opdoen 

(Canham & Hegarty, 2010; Haider & Frensch, 1999). Gebaseerd op deze schijnbare 

tegenstelling, stond in de studies gepresenteerd in dit proefschrift de vraag centraal of 

het negatieve effect van overbodige informatie op de leerprestatie zou afnemen of 

verdwijnen naarmate lerenden ervaring met het materiaal opbouwen. Mogelijk zijn 

lerenden in staat om hun leerstrategie aan te passen wanneer overbodige informatie 

telkens aanwezig is tijdens het werken aan taken, of het bestuderen van items of slides. 

Wanneer lerenden na enige tijd de overbodige informatie zouden gaan negeren, zou 

                                                 
1 Multimediaal lesmateriaal is lesmateriaal bestaande uit een combinatie van tekst en 
beeld, waarbij de tekst zowel geschreven als gesproken kan zijn en het beeld zowel 
statisch (bijvoorbeeld foto’s of grafieken) als dynamisch (bijvoorbeeld video of 
animatie) kan zijn 
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het negatieve effect dat deze informatie op hun leerprestatie heeft, moeten afnemen 

of verdwijnen. 

Het doel van dit proefschrift was dan ook om een antwoord te geven op de 

volgende vragen: 1) Vermindert of verdwijnt het negatieve effect van overbodige 

informatie op de leerprestatie met toenemende ervaring met het lesmateriaal? 2) 

Treedt dit effect op doordat lerenden de overbodige informatie gaan negeren? In dit 

proefschrift is een poging gedaan om deze twee vragen te beantwoorden voor zowel 

het presenteren van irrelevante (Deel 1) en onnodige (Deel 2) informatie in 

multimediaal lesmateriaal.  

De studies in Deel 1, gepresenteerd in Hoofdstuk 2 en 3, onderzochten of het 

negatieve effect van irrelevante informatie op de leerprestatie zou verminderen of 

verdwijnen naarmate de ervaring van de lerenden met het lesmateriaal toeneemt. In 

Hoofdstuk 2 worden drie experimenten beschreven over de effecten van irrelevante 

afbeeldingen bij het leren van definities van actiewoorden. In alle experimenten 

leerden de participanten de definities van nieuwe woorden (uit een kunstmatige taal) 

die een handeling beschrijven. De geschreven woorden en gesproken definities 

werden vergezeld door afbeeldingen die de actie uitbeeldden (hierna matchende 

afbeeldingen genoemd), afbeeldingen die een andere actie uitbeeldden (hierna 

mismatchende afbeeldingen genoemd), of werden zonder afbeelding gepresenteerd. 

In Experimenten 1a/1b werd onderzocht of het toevoegen van irrelevante informatie 

(d.w.z. de mismatchende afbeeldingen) het leren van de woorddefinities zou schaden 

ten opzichte van het leren van dezelfde definities met matchende afbeeldingen of 

zonder afbeeldingen. De resultaten lieten zien dat participanten lagere testscores 

behaalden wanneer zij leerden met de mismatchende afbeeldingen dan wanneer zij 

leerden met de matchende afbeeldingen. In Experiment 2 werd de belangrijkste 

hypothese onderzocht, namelijk dat irrelevante informatie het leren niet langer zou 

schaden wanneer participanten ervaring hadden opgedaan met de woordleertaak. 

Zoals verwacht, leidde leren met de mismatchende afbeeldingen aanvankelijk tot 

significant lagere testscores in vergelijking met leren met matchende afbeeldingen 

(deze bevinding repliceert die van Experiment 1). Echter, nadat de participanten 

ervaring hadden opgedaan met de woordleertaak, nam de prestatie in de conditie met 

mismatchende afbeeldingen toe en was er geen verschil meer in testscores tussen de 

condities met mismatchende en matchende afbeeldingen. In Experiment 3 werden de 

oogbewegingen van participanten gemeten om de hypothese te testen dat het 

negatieve effect van irrelevante informatie op leren verdween in Experiment 2 doordat 
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lerenden de mismatchende afbeeldingen begonnen te negeren. De resultaten lieten 

het verwachte beeld zien: De toename van testscores in de conditie met 

mismatchende afbeeldingen ging gepaard met een afname in aandacht voor deze 

afbeeldingen. Dit suggereert dat participanten spontaan (oftewel zonder enige 

instructie) hun studiestrategie aanpasten en geen aandacht meer schonken aan de 

mismatchende afbeeldingen. 

De studies gepresenteerd in Hoofdstuk 3, bouwden voort op de bevindingen uit 

Hoofdstuk 2, door te onderzoeken of lerenden enkel de locatie van de mismatchende 

afbeeldingen begonnen te negeren, of dat ze hun aandacht onderdrukten op basis van 

de inhoud van de deze afbeeldingen. In Experimenten 1a/1b werd voor de helft van de 

participanten de locatie van de matchende en de mismatchende afbeeldingen 

systematisch veranderd nadat ze ervaring met de woordleertaak hadden opgedaan. 

Als participanten enkel hun aandacht voor de de mismatchende afbeeldingen zouden 

onderdrukken op basis van de locatie, dan zou de leerprestatie van participanten die 

leerden met mismatchende afbeeldingen negatief beïnvloed moeten worden door de 

locatieverandering. Echter, wanneer het voor de participanten duidelijk was dat de 

inhoud van de afbeeldingen irrelevant was voor het leren van de woorddefinities, dan 

zouden zij in staat moeten zijn om hun aandacht voor deze afbeeldingen te 

onderdrukken ongedacht de locatie van de afbeeldingen en zou hun leerprestatie niet 

negatief beïnvloed moeten worden door de locatiewijziging. Uit de resultaten bleek 

dat de wijziging van de locatie van de mismatchende afbeeldingen de testscores niet 

beïnvloedde, wat suggereert dat participanten zich ervan bewust waren dat deze 

afbeeldingen irrelevant waren voor hun leerdoel.  

Kortom, de studies uit Deel 1 laten zien dat lerenden in staat zijn om op basis van 

hun ervaring met het lesmateriaal hun leerstrategie aan te passen, waarbij ze 

irrelevante informatie gaan negeren waardoor hun leerprestaties toenemen. Het lijkt 

erop dat zij die informatie gaan negeren omdat zij zich ervan bewust zijn dat deze 

irrelevant is voor hun leerdoel.  

De studies in Deel 2, gepresenteerd in Hoofdstuk 4 en 5, onderzochten het effect 

van onnodige informatie op de leerprestatie. In deze studies werd gebruikt gemaakt 

van meer complex multimediaal lesmateriaal (d.w.z. een verklarende tekst met 

relevante afbeeldingen over biologische processen, waarin meerdere informatie 

elementen met elkaar in verband gebracht moeten worden om van de tekst te leren).  

In de twee experimenten in Hoofdstuk 4 werd de hypothese onderzocht dat 

lerenden onnodige tekstuele informatie (die enkel de afbeelding beschreef) zouden 
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gaan negeren nadat ze meer ervaring hadden opgedaan met het materiaal, waarna een 

initieel negatief effect op leren zou verminderen of verdwijnen. Daarnaast werd 

onderzocht of de lay-out van de onnodige informatie (d.w.z. geïntegreerd in of 

gescheiden van de afbeelding) invloed zou hebben op het effect van de onnodige tekst 

op de aandacht en leerprestatie met toenemende ervaring. Participanten leerden over 

het mitoseproces met materialen die bestonden uit een combinatie van essentiële 

tekst en afbeeldingen (controle conditie), of essentiële tekst en afbeeldingen met 

onnodige tekst, die ofwel geïntegreerd was in de afbeelding ofwel los van de afbeelding 

gepresenteerd werd. De verwachting was dat een initieel negatief effect van onnodige 

tekst op de leerprestatie zou optreden; dat dit negatieve effect zou verminderen (of 

zelfs verdwijnen) wanneer participanten ervaring met het lesmateriaal op zouden 

doen; en dat deze afname sterker zou zijn wanneer de onnodige tekst los van de 

afbeelding gepresenteerd werd (omdat deze makkelijker te negeren zou moeten zijn 

dan geïntegreerde tekst). Opvallend genoeg vonden we geen consistent negatief effect 

van de toegevoegde onnodige tekst op het leren over het mitoseproces in de beide 

experimenten. Doordat er geen initieel negatief effect op de leerprestatie optrad, kon 

ook de vraag of dit effect zou verminderen of verdwijnen met toenemende ervaring 

met het lesmateriaal niet beantwoord worden. Echter, de oogbewegingsdata uit 

Experiment 2 lieten wel zien dat lerenden aandacht schonken aan de onnodige tekst 

en dat ze –overeenkomstig onze verwachting- minder aandacht aan deze onnodige 

tekst gingen besteden naarmate hun ervaring met het materiaal toenam. 

In de twee experimenten beschreven in Hoofdstuk 5, werd gebruik gemaakt van 

multimediaal lesmateriaal over het functioneren van het hart. Deze studie was 

gedeeltelijk een replicatie van Experiment 5 van Chandler en Sweller (1991), die in een 

serie experimenten lieten zien dat (1) de toevoeging van onnodige tekst aan een 

afbeelding van het hart (of een elektrische schakeling) die ook zonder de tekst te 

begrijpen was, een negatief effect had op de leerprestatie; (2) dat dit negatieve effect 

van de onnodige tekst op de leerprestatie groter was wanneer de tekst geïntegreerd 

was in de afbeelding dan wanneer de tekst los daarvan gepresenteerd werd; en (3) dat 

dit negatieve effect op de leerprestatie groter was wanneer participanten geïnstrueerd 

werden om los van de afbeelding gepresenteerde onnodige tekst mentaal te integreren 

met de afbeelding, dan wanneer zij geen integratie-instructie kregen. Een tweede doel 

van het eerste experiment in Hoofdstuk 5 was om de invloed van studietijd (d.w.z. 

vaststaande studietijd of in eigen tempo) op het optreden en de grootte van het 

negatieve effect van onnodige informatie op de leerprestatie te onderzoeken. De 
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verwachting was dat dit negatieve effect groter zou zijn bij een vaststaande studietijd, 

omdat het verwerken van onnodige informatie dan direct ten koste gaat van de tijd 

die beschikbaar is om de essentiële informatie te verwerken.  

In deze experimenten werd gebruik gemaakt van verschillende lay-outs in de vier 

condities: 1) een afbeelding van het hart zonder onnodige tekst (enkel afbeelding), 2) 

een afbeelding met onnodige tekst die los van de afbeelding gepresenteerd werd 

(gescheiden), 3) een afbeelding met onnodige tekst die los van de afbeelding 

gepresenteerd werd met de instructie om de tekst en de afbeelding mentaal te 

integreren (integratie instructie), of 4) een afbeelding met onnodige tekst die 

geïntegreerd in de afbeelding gepresenteerd werd (geïntegreerd). In Experiment 1 

leerde de helft van de participanten in elke conditie op hun eigen tempo, terwijl de 

andere helft leerde met een vaststaande studietijd. De hypothese was dat er een 

negatief effect van de onnodige tekst op de leerprestatie zou optreden in de condities 

waarin deze tekst geïntegreerd was in de afbeelding of wanneer lerenden de integratie 

instructie kregen vergeleken met de controle (enkel afbeelding) conditie. Daarnaast 

onderzochten we de open vraag of participanten in de ‘gescheiden tekst zonder 

integratie instructie’ conditie in staat zouden zijn om de gescheiden tekst te negeren, 

waardoor deze de leerprestatie niet zou schaden in vergelijking met het leren van 

enkel de afbeelding. Ten slotte verwachtten we dat leren met een vaststaande 

studietijd het negatieve effect van onnodige tekst op de leerprestatie zou versterken.  

In beide experimenten leidde het toevoegen van onnodige tekst niet tot slechtere 

leerprestaties dan leren met enkel de afbeelding. Het maakte hierbij niet uit of de 

participanten leerden in hun eigen tempo, of met een vaststaande studietijd. In 

Experiment 2 repliceerden wij wel de bevinding van Chandler en Sweller (1991) dat 

leren met los van de afbeelding gepresenteerde onnodige tekst (zonder integratie 

instructie) leidde tot betere leerprestaties dan leren met in de afbeelding 

geïntegreerde onnodige tekst. De oogbewegingsdata lieten zien dat dit niet kwam 

doordat participanten in de geïntegreerde conditie meer tijd besteedden aan de 

onnodige tekst: deze participanten besteedden eenzelfde hoeveelheid tijd aan de 

onnodige tekst als participanten in de gescheiden tekst en de gescheiden tekst met 

integratie instructie condities. Echter, participanten in de geïntegreerde tekst conditie 

leken meer pogingen te doen om de onnodige tekst mentaal te integreren met de 

essentiële delen van de afbeelding (blijkens meer transities tussen tekst en 

afbeelding), wat mogelijk kan verklaren waarom de onnodige tekst in de geïntegreerde 
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conditie meer interfereerde met het leren dan in de gescheiden conditie zonder de 

integratie instructie. 

In Hoofdstuk 6 worden de resultaten bediscussieerd. Uit de resultaten van dit 

proefschrift kunnen twee belangrijke conclusies getrokken worden, namelijk: (1) met 

toenemende ervaring met het lesmateriaal zijn lerenden in staat om overbodige 

informatie te negeren, en zich meer te focussen op de essentiële informatie en (2) of 

dit ook effect heeft op de leerprestaties lijkt te verschillen tussen irrelevante en 

onnodige overbodige informatie. Een mogelijke verklaring voor het verschil in effect 

op de leerprestaties tussen irrelevante en onnodige informatie ligt in de relatie van 

deze informatie met het leerdoel. Aangezien irrelevante informatie niet gerelateerd is 

aan het leerdoel, kan het verwerken van deze informatie actief interfereren met het 

leren van de essentiële informatie. Onnodige informatie, daarentegen, is gerelateerd 

aan het leerdoel, en interfereert daarom mogelijk niet direct met het leren van de 

relevante informatie. Echter hebben eerdere studies wel een negatief effect van 

onnodige informatie op leerprestaties gevonden. Vermoedelijk zal onnodige 

informatie het leren wel gaan schaden wanneer de beschikbare studietijd zeer beperkt 

is. Hierin ligt ook een mogelijk limitatie van Deel 2 van dit proefschrift, aangezien de 

participanten (zelfs in de condities met vaststaande studietijd) waarschijnlijk ruim 

voldoende tijd hadden om alle informatie te verwerken, waardoor we geen negatief 

effect van onnodige informatie op leren konden vaststellen.  

Met betrekking tot de eerste conclusie, tevens de voornaamste bevinding van dit 

proefschrift, lijkt het erop dat ervaring met het lesmateriaal een randvoorwaarde kan 

zijn voor het wel of niet optreden van het negatieve effect van overbodige informatie 

op leren (in elk geval voor wat betreft irrelevante overbodige informatie). Dit omdat 

mensen overbodige informatie leren te negeren, waardoor het negatieve effect op de 

leerprestatie vermindert of zelfs verdwijnt. Het zoeken naar zulke randvoorwaarden 

waaronder effecten wel of niet optreden is belangrijk voor de wetenschap, omdat men 

zo de grenzen van de generaliseerbaarheid van wetenschappelijke theorieën en 

bevindingen kan vaststellen (Busse, Kach, & Wagner, 2016; Whetten, 1989).  

Tevens is deze bevinding mogelijk van belang voor de onderwijspraktijk –hoewel 

verder onderzoek wenselijk en noodzakelijk is. Aan veel instructiematerialen wordt 

namelijk irrelevante informatie toegevoegd (de eerder genoemde ‘toeters en bellen’, 

ofwel ‘verleidelijke details’; Harp & Mayer, 1998) om de materialen aantrekkelijker en 

meer motiverend te maken voor lerenden (Lenzner, Schnotz, & Müller, 2013; Magner, 

Schwonke, Aleven, Popescu, & Renkl, 2014). Omdat uit veel eerder onderzoek bleek 
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dat zulke informatie het leren schaadt (voor reviews, zie Kalyuga & Sweller, 2014; 

Mayer & Fiorella, 2014), werd aanbevolen dat instructiematerialen niet verrijkt moeten 

worden met zulke ‘verleidelijke details’. Deze eerdere onderzoeken hielden echter 

weinig rekening met de ontwikkeling van aandachts- en cognitieve processen over de 

tijd naarmate ervaring met het materiaal toeneemt. Wanneer lerenden in staat zouden 

blijken te zijn om bij een breed scala van instructiematerialen de irrelevante 

informatie grotendeels te negeren met toenemende ervaring, zal het negatieve effect 

op leren van zulke informatie mogelijk kleiner zijn dan verwacht. Als lerenden, na het 

opbouwen van taakervaring, maar kort naar de aantrekkelijke details kijken, kan het 

toevoegen van zulke informatie aan instructiematerialen het leren mogelijk zelfs 

verbeteren door de interesse en het leerplezier van lerenden te verhogen.  
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