

Petri net-based Approach for Web Service
Automation Resource Coordination

J. Marco Mendes1, Paulo Leitão2, Armando W. Colombo3,
Francisco Restivo1
1Faculty of Engineering of University of Porto, Portugal
2Polytechnic Institute of Bragança, Portugal
3Schneider Electric - HUB & Globalization of Technology, Germany

Abstract

In industrial automation, control systems and mechatronic devices are from
diverse nature, supplied by different manufacturers and made of different
technologies. The adoption of web services principles in an automated
production system satisfies some requirements, namely the interoperability of
such heterogeneous and distributed environments and the basis for flexibility
and reconfigurability. Manufacturing processes require to access resources at
different precedence levels and time instances, but in the other way resources
may also be shared by different processes. A major challenge is then how
individual services may interact, coordinating their activities. Petri nets may be
used to describe complex system behaviour and therefore also applied to
coordinate such systems. The paper introduces a Petri net based approach for the
design, analysis and coordination of systems developed using web services to
represent individual and autonomous resources. For this purpose, it is presented
a Petri nets computational tool to support the design, validation and coordination
of web service based automation systems.

1 Introduction

New revolutionary manufacturing concepts and emerging technologies, which
take advantage of the newest mechatronics, information and communication
technologies and paradigms are being researched and developed since the last
decade of the 20th Century (Colombo et al. [1]). The growing of decentralised
and distributed control systems is showing a way forward to these new
manufacturing processes. The question remains the same: how to efficiently
manage such distributed systems? Different solutions arise in the form of multi-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/154409334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

agent systems, service-oriented architectures, web services, Petri nets and
others.

Standard Web technologies and increasing computational power are
becoming ever more available even on the smallest devices and also different
platforms. Some devices have already natively integrated web servers,
supporting standard protocols or even allow user-defined enhancements. The
interoperability of service-oriented architectures and the concept of creating a
service interface for hiding the service implementation becomes an important
feature. Service aggregation allows forming complex and business centric
services which are composed by often simpler and elementary services in a
“Russian doll” manner (Bepperling et al. [2]).

A major challenge is then how individual services may interact, coordinating
their activities. Manufacturing processes require to access resources at different
precedence levels and time instances, but in the other way resources may also be
shared by different processes. Petri net is a mathematical representation of
discrete, dynamic, and distributed systems, being particularly well-suited for
systems in which concurrency and parallelism, synchronization, resource
sharing and mutual exclusion are important. Requirements of flexibility can be
reduced towards to interoperable and reconfigurable manufacturing systems by
using web services for resource interoperability and Petri Nets for design,
validation and coordination in automation domain. Intricate distributed control
systems require well established and proved applications of web services and
Petri nets, including the enhanced benefits provided by the combination of both.

The paper introduces a Petri net based approach for the design, analysis and
coordination of systems developed using web services to represent individual
and autonomous resources. Initially, Section 2 discusses the concepts about
service-oriented architectures and web services, referring their applicability in
automation domain. In the same section, a brief state of the art on service
composition and coordination is also presented. Section 3 discusses the
applicability of Petri nets for the web services coordination and aggregation, and
Section 4 introduces a Petri nets development tool to support the service
coordination and composition. Finally, Section 5 rounds up the paper with
conclusions.

2 Service-oriented architecture and Web services

Service-Oriented Architectures (SOA) are nowadays used in design and
specification of reconfigurable and distributed systems over the network. In a
SOA environment, the distributed resources provide their functionalities in form
of services that can be accessed externally by clients without knowing the
underlining implementation. In such distributed environments, questions about
interoperability arise, not only the independent condition of these resources, but
also the individual implementation requires that the system has to operate as a
whole. Jammes et al. [3] refer to the challenge of SOA to reconcile the opposing
principles of autonomy and interoperability. A service helps in the
communication by hiding unnecessary complexity to the outside world and by

showing only the necessary information. The service interface describes how
internal structure and functionality, represented by a service, is accessed by a
service's client. Thus, internal processes can be executed and modified
independently and transparent to the client.

Service-oriented architectures are commonly related to web services, being
its preferred implementation. Web Services (WS) provide a language-neutral,
loosely-coupled, and platform independent way for linking applications over the
network (Fu et al. [4]). These services are made available from a web server for
web users or other web-connected programs. Web Services are totally platform-
agnostic and can communicate with and/or be aggregated with other web
services. Besides the standardization and wide availability of the Internet itself,
web services are also enabled by the ubiquitous use of XML as a means of
standardizing data formats and exchanging data (Jammes and Smit [5]). Formal
definition of WS and additional algebra is given by Hamadi and Benatallah [6]
and Bing and Huaping [7].

In practical use, the real meaning of web services is provided by the wide use
of the following core protocols: Simple Object Access Protocol (SOAP), Web
Services Description Language (WSDL) and Universal Description, Discovery
and Integration (UDDI). The first one is a platform and language independent
communication protocol used between applications, using a simple and
extensible XML based format for sending messages over the internet. WSDL
provides a XML based language for describing web services and how to access
them. The last one, UDDI, manages a service directory where applications can
register and search for web services in form of interfaces described by WSDL.

In a web service environment, the service provider exhibits its service
described in WSDL, see Figure 1.

Figure 1: Web service platform with involved elements and protocols.

The external accesses to the service provider resource are via the available

services, which can be published in a service registry, and indirectly discovered
by the service requester. For this reason, a service discovery feature is required
in which services can be added, removed and located. The service registry is not
strictly necessary in situations where the locations of services are known from
the beginning or when the discovery is made in a decentralised way. A service
requester may access some service functionality by sending corresponding
SOAP messages.

The SIRENA project (see Jammes and Smit [5]) has extended the SOA
paradigm into the realm of low-level embedded devices, such as sensors and
actuators (Colombo et al. [8]). The feasibility of this approach has been
demonstrated through a proof-of-concept implementation based on the Devices
Profile for Web Services (DPWS), a device-oriented subset of the Web Services
protocols. By virtue of using DPWS, devices are able to automatically discover
each other's presence, and in simple cases, they can thus start to communicate
once connected. The DPWS specification is intended to foreshadow the next
major upgrade of UPnP (Jammes and Smit [5]). With DPWS, all messaging,
whether related to discovery, control or event notification, is based on the use of
SOAP. In addition to its core protocols, it adds WS-Discovery and WS-Eventing
to provide plug-and-play discovery of network-connected resources and publish-
subscribe eventing.

2.1 Service Interaction

Complex web services may be created by aggregating the functionality provided
by simpler ones. This is referred as service composition and the aggregated web
service becomes a composite web service (Chafle et al. [9]). The aggregation of
services requires mechanisms for coordination and synchronisation. Web service
composition problem shares many common features with workflow systems.
However, web service composition requires additional functionalities for
discovery and checking interoperability of the web services (Karakoc et al.
[10]).

Other terms, such as service orchestration and choreography, important to
the concepts of coordination and composition, are used. Orchestration is the
practice of sequencing and synchronising the execution of services, which
encapsulate business or manufacturing processes (Jammes et al. [3]). An
orchestration engine implements the required logic application for workflow-
oriented execution and sequencing of atomic services, and provides a high-level
interface for the composed process. The choreography level considers the rules
that define the messages and interaction sequences that must occur in order to
execute a given process through a particular service interface. Additionally,
choreography can be used independently in a collaborative system without a
centralised approach.

Some protocols are currently available for dealing with service aggregation
and coordination, such as Web Services Business Process Execution Language
(WSBPEL), Web Services Flow Language (WSFL), Web Service Conversation
Language (WSCL), Web Services Choreography Description Language (WS -
CDL) and Composite Web Service Language (CWSL) from Karakoc et al. [10].

According to Moldt and Ortmann [11], web services might be composed to
accomplish arbitrary complex tasks. Agents can compose these Web services as
long as they know their semantics. Here process ontology offers a way to give
agents an understanding of the services offered. Elfatatry and Layzell [12] write
about complex forms of interaction, such as negotiation, that will become
dominant towards a service-oriented model of development. In automation

domain, the vision of using service-oriented architectures is to support the
lifecycle needs in the context of agile and flexible manufacturing. The request
for easy reconfigurable manufacturing systems composed of standard
components that may be remotely supported by geographically distributed
engineering partners to suit changing and unpredictable business needs is
presented by Colombo et al. [8].

The adoption of web services principles in an automated production system
satisfies some requirements, namely the interoperability between equipments
and the basis for flexibility and reconfigurability. The higher level of abstraction
and transparency introduced by the composition provides the access only to the
necessary features. Consequently, the autonomous resources can control their
own environment and reconfigure itself when necessary, without the knowledge
of the external requesters (or at least sending the corresponding information of
reconfiguration). From the viewpoint of interaction, service providers and
clients (that may represent devices), should control the interaction based on
specific communication patterns and rules.

3 Petri nets for service coordination and composition

Distributed systems, such as those based on web services, require coordination
schemes to manage complex and aggregated tasks. When handling with
services, the interaction and synchronization between clients and providers can
be described and directed by workflow structures. These structures may have a
dedicated engine that manages the environment according to the task relations of
the workflow or, in a distributed control system, collaboration among service
providers and clients should follow the established work plan.

The organizational processes among service providers and clients, when
established according to a structured management, oblige special attention. For
instance, the coordination of web services may bring undesirable and erroneous
behaviours, if not planned properly. On the other hand, when handling with
composition of services, the simplified and transparent service that aggregates a
more complex structure of services must synchronize the individual operations
and its information flow. Such considerations demand a powerful and flexible
modelling tool; therefore we consider Petri nets for this reason.

The graph-based Petri nets are used to describe complex task
synchronization, not only for validation purpose, but also to control the
interaction and conditional rules. The distributed nature of web services and the
requirement for coordination fits well with the benefits provided by Petri nets.

3.1 Petri nets Formalism

Petri nets (PN) formalism is a graphical oriented language for design,
specification, simulation and verification of systems, designed by Carl Adam
Petri in 1962. It is in particular well-suited for systems in which communication,
synchronization and resource sharing are important. On one hand, as a graphical
tool, Petri nets can be used as a visual-communication aid similar to flow charts,

block diagrams, and networks. On the other hand, as a mathematical tool, it is
possible to set up state equations, algebraic equations, and other mathematical
models governing the behaviour of systems (Murata [13]).

Figure 2 exemplifies the execution steps of a product manufacturing process
with sequential and parallel tasks, modelled by a Petri net, with transitions
representing the execution of the tasks. The actual state of the Petri net (in which
p2 has a token) activates transition t2. After the firing of transition t2, the token of
p2 is consumed (removed) and the places p3 and p4 hold each one a token. In this
case, two parallel processes are activated and are again synchronized by
transition t5.

Figure 2: Example of a Petri Net with sequential and parallel processes.

The powerful analysis and modelling features provides also the ability of

control of complex manufacturing systems. Due to their capability in modelling
the dynamics of the systems, Petri nets have been combined with fault tree
analysis techniques to determine the average rate of occurrence of system
failures (Adamyan and He [14]). A novel approach to the development life-cycle
of agent-based production control applications, from the design to the operation,
based in a catalogue of High-level Petri nets is given by Leitão et al. [15]. The
High-level Petri net-based approach facilitates the conception, definition and
formal specification of an "encapsulation process" in industrial production
systems.

3.2 Service coordination and aggregation with Petri nets

Compositional aspects and coordination of Petri nets and workflows in general
have been studied, such as described by Anisimov et al. [16] and Pankratius and
Stucky [17], to provide an approach to distributed systems. The workflow
management system can be orchestrated in a centralized viewpoint
(master/slave) in which the workflow model should be interpreted and
coordinated by the corresponding manager. In other hand, distributed
management requires additional care because the global execution and state
identification is not synchronized and supervised by one element.

Web service behaviour is basically a partially ordered set of operations.
Therefore, it is straight-forward to map it into a Petri net. Operations are
modelled by transitions and the state of the service is modelled by places. The
arrows between places and transitions are used to specify causal relations
(Hamadi and Benatallah [6]).

Figure 3 exemplifies how individual web services can be coordinated and
aggregated to form a new service. This model is based on some concepts of the
SO-SAM architecture, described by Fu et al. [4]. The first web service manages
a transport system with two lines and the second is a simple manufacturing
machine. The composition of both services requires coordination between the
inputs and outputs of the services. The aggregated composed service manages its
internal structure and shows externally only the necessary functionality (input,
output). A token in the input place (result of requesting the input port of the
service) selects an available transport line. To activate the machine service, both
transport lines must be activated and transportation concluded. After the
machine finished its activity, the output place gets a token that can be used to
notify the ending of a specific activity.

Figure 3: Example of service coordination and composition using Petri nets

Diversified research has been done by using Petri nets in web service

environment. Hamadi and Benatallah [6] propose a Petri net-based algebra for
modelling Web services control flows, and Zhai et al. [18] integrate agents and
Web Services into Grid Service Workflow System based on Coloured Petri
Nets. The combination of agents and Web Services enhances the adaptability
and dynamics of the framework. The verification of Web services composition
by using Coloured Petri nets is presented by Yang et al. [19]. In Bing and
Huaping [7], a Petri net-based algebra is used to capture the semantics of
complex Web service combinations. Chatain and Jard [20] reveal the interest in
the questions of supervision and diagnosis, by explaining how to use unfolding
of dynamic nets for the diagnosis application. To facilitating web services
integration and verification, Zhang et al. [21] introduces WS-Net as an
executable architectural description language incorporating the semantics of
Coloured Petri-net with the style of object-oriented concepts.

In automation, where the requirements of flexibility and reconfigurability are
high, the combination of web service for interoperability and Petri nets for
distributed control and management appears as an emerging and promise
application. The environment-specific features of industrial beds must be taken
in account when specifying these technologies together. The challenge is, in our
perspective, the research and development of Petri net based service
coordination for industrial automation scenarios, and thus serving the concept of
a higher flexibility of these systems.

4 Petri nets development toolKit (PndK)

The practical usage of Petri nets is limited by the lack of computer tools which
would allow handling large and complex nets in a comfortable way (Suraj et al.
[22]). A good editor, simulator and powerful analysis engine are essentials for
modelling and analysing Petri. Moreover, for distributed coordination in a
service-oriented environment, these tools should provide orchestration
mechanisms based on Petri nets and additionally permit the design of composed
services.

The Petri net development toolKit (PndK) is a Petri net design tool with
analysis and discrete simulation, which is being developed for service
coordination and aggregation in automated production systems. The simple but
effective GUI makes possible the design/configuration of Petri nets and the Petri
net library/plug-ins adds analysis environment to the framework. The built-in
orchestration engine is able to coordinate and synchronize the workflow
described by the Petri net. Despite of its early development stage, the main
objective of PndK remains to be a development tool for distributed, web service
and agent based applications in automation systems, filling the emptiness in this
area. Figure 4 shows a screenshot of the PndK application, demonstrating the
modelling and analysis phases of the Petri net illustrated in Figure 2.

Figure 4: PndK in action showing behavioural properties of a Petri net.

At this development stage, PndK tool has already many solid features, such
as an user friendly graphical editor for Petri nets design, extensible through
plug-in technology, Petri net kernel with some High-level Petri Net
characteristics (timed, priority based transition), validation of Petri nets and
analysis methods (reachability tree, invariants and discrete simulation) to extract
different properties.

In the near future, diverse additions and enhancements are planned, such as
transition explosion (hierarchical transitions), coordination between Petri nets
and web services, XML/code generation, handling of Petri net extensions (e.g.
Coloured Petri Net) and the integration in automation and control environment
for modelling, analysis and orchestration.

5 Conclusions

The authors’ vision is to approach the modelling, control and analysis features
of the Petri nets to the interoperability concepts of the web service technology in
the automation field. Several researches have been done in the area of business
processes and e-commerce, but in automation and manufacturing environments
it is still a major challenge. Not only the intrinsically complex structure of
distributed automation systems, but also the need for mature applications from
both sides (web services and Petri nets) is requested for further research on how
to get the best of both technologies.

This paper introduces compositional aspects and coordination of Petri nets in
web service environment applied to automation environment. The research and
work is on progress, demonstrated by the emerging of Devices Profile for Web
Services (DPWS), from the side of web services applied at the device level, and
Petri nets development toolKit (PndK) for Petri net modelling of automation
systems. A step forward should be extending the PndK to integrate web service
capabilities to support the design and control of distributed automation systems.

References

[1] Colombo, A., Schoop, R., Leitao, P. and Restivo, F., A collaborative automation

approach to distributed production systems, 2nd IEEE International Conference
on Industrial Informatics, pp. 27-32, 2004.

[2] Bepperling, A., Mendes, J., Colombo, A., Schoop, R. and Aspragathos, A., A
framework for development and implementation of web service-based intelligent
autonomous mechatronics components, IEEE International Conference on
Industrial Informatics, pp. 341-347, 2006.

[3] Jammes, F. , Smit, H., Lastra, J.L. and Delamer, I., Orchestration of service-
oriented manufacturing processes, In 10th IEEE Conference on Emerging
Technologies and Factory Automation, vol. 1, pp. 8-, 2005.

[4] Fu, Y., Dong, Z. and He, X., An approach to web services oriented modeling and
validation, Proceedings of the 2006 international workshop on Service-oriented
software engineering, ACM Press, pp. 81-87, 2006.

[5] Jammes, F. and Smit, H., Service-oriented paradigms in industrial automation,
IEEE Transactions on Industrial Informatics, vol. 1, pp. 62-70, 2005.

[6] Hamadi, R. and Benatallah, B., A Petri net-based model for web service
composition, Proceedings of the 14th Australasian database conference,
Australian Computer Society, Inc., pp. 191-200, 2003.

[7] Bing, L. and Huaping, C., Web service composition and analysis: a Petri-net
based approach, First International Conference on Semantics, Knowledge and
Grid, 2005.

[8] Colombo, A., Jammes, F., Smit, H., Harrison, R., Lastra, J. and Delamer, I.,
Service-oriented architectures for collaborative automation, 32nd Annual
Conference of IEEE Industrial Electronics Society, 2005.

[9] Chafle, G. B., Chandra, S., Mann, V. and Nanda, M. G., Decentralized
orchestration of composite web services, Proceedings of the 13th International
World Wide Web Conference on Alternate track papers & posters, ACM Press,
pp. 134-143, 2004.

[10] Karakoc, E., Kardas, K. and Senkul, P. A, Workflow-based web service
composition system, Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology, IEEE
Computer Society, pp. 113-116, 2006.

[11] Moldt, D. and Ortmann, J., A conceptual and practical framework for web-based
processes in multi-agent systems, Third International Joint Conference on
Autonomous Agents and Multiagent Systems, volume 3, pp. 1464-1465, 2004.

[12] Elfatatry, A. and Layzell, P., A negotiation description language, Software:
Practice and Experience, volume 35, pp. 323-343, 2005.

[13] Murata, T., Petri nets: Properties, analysis and applications, Proceedings of the
IEEE, volume 77, pp. 541-580, 1989.

[14] Adamyan, A. and He, D., System failure analysis through counters of Petri net
models, Quality and Reliability Engineering International, volume 20, pp. 317-
335, 2004.

[15] Leitão, P. and Colombo, A., An approach towards the development life-cycle of
agent-based production control applications, 10th IEEE Conference on Emerging
Technologies and Factory Automation, vol. 1, pp. 8-, 2005.

[16] Anisimov, N. A., Golenkov, E. A. and Kharitonov, D. I., Compositional Petri net
approach to the development of concurrent and distributed systems, Program
Computer Software, volume 27, pp. 309-319, 2001.

[17] Pankratius, V. and Stucky, W., A formal foundation for workflow composition,
workflow view definition, and workflow normalization based on Petri nets,
Proceedings of the 2nd Asia-Pacific Conference on Conceptual Modelling,
Australian Computer Society, pp. 79-88, 2005.

[18] Zhai, Z., Yang, Y., Guo, W. and Tian, Z., Integrating agent and web service into
grid service workflow system, Sixth International Conference on Parallel and
Distributed Computing, Applications and Technologies, pp. 407-410, 2005.

[19] Yang, Y., Tan, Q. and Xiao, Y., Verifying web services composition based on
hierarchical colored petri nets, Proc. of the 1st Int. Workshop on Interoperability
of heterogeneous information systems, ACM Press, pp. 47-54, 2005.

[20] Chatain, T. and Jard, C., Models for the supervision of web services orchestration
with dynamic changes, Advanced Industrial Conference on
Telecommunications/Service Assurance with Partial and Intermittent Resources
Conference/ E-Learning on Telecommunications Workshop, pp. 446-451, 2005.

[21] Zhang, J., Chung, J., Chang, C. K. and Kim, S. W., WS-Net: A Petri-net based
specification model for web services, Proceedings of the IEEE Internat.
Conference on Web Services, IEEE Computer Society, 2004.

[22] Suraj, Z., Fryc, B., Matusiewicz, Z. and Pancerz, K, A Petri net system - an
overview, Fundamenta Informaticae, volume 71, pp. 101-120, 2006.

