
Computing the maximal canonical form for trees in

polynomial time

Gunnar Brinkmann

Applied Mathematics, Computer Science and Statistics

Ghent University

Krijgslaan 281-S9,

9000 Ghent, Belgium

Gunnar.Brinkmann@UGent.be

January 19, 2018

Abstract

Known algorithms computing a canonical form for trees in linear
time use specialized canonical forms for trees and no canonical forms
defined for all graphs. For a graph G = (V,E) the maximal canonical
form is obtained by relabelling the vertices with 1, . . . , |V | in a way that
the binary number with |V |2 bits that is the result of concatenating
the rows of the adjacency matrix is maximal. This maximal canonical
form is not only defined for all graphs but even plays a special role
among the canonical forms for graphs due to some nesting properties
allowing orderly algorithms. We give an O(|V |2) algorithm to compute
the maximal canonical form of a tree.

keywords: tree, canonical form, structure enumeration

1 Introduction

A standard way to decide on the isomorphism of graphs is the use of canoni-
cal representatives of an isomorphism class. When canonical representatives
are coded as numbers or strings, one can also interpret them as a com-

plete graph invariant i(G) – that is an invariant with the property that
i(G) = i(G′) if and only if G and G′ are isomorphic.

While for general graphs the complexity of the problem to determine
a complete invariant is not yet known, for trees it is long known that the
problem can be solved in linear time [7]. Complete invariants for trees that
can be computed in linear time are special invariants defined only for trees
and not invariants defined for all graphs where the restriction to the set of
trees can be computed in linear time.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/154408276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Even among the canonical forms defined for all graphs, some canonical
forms – e.g. the maximal form – play a special role. The maximal form of
a graph is the isomorphic graph G′ with vertices 1, . . . , |V | for which the
binary number b(G′) with |V |2 bits obtained by concatenating the rows of
the adjacency matrix is maximal. Equivalently one can consider the number
b(G′) or the string of zeros and ones coding the graph as the maximal form.
Instead of concatenating all rows to form a binary number, one can also
restrict oneself to the (n2−n)/2 bits of the upper right triangle without the
diagonal (that is: for 1 ≤ i ≤ n use only the last n − i bits of row i) and
require maximality of the binary number obtained that way.

It is not only that this canonical form is very intuitive and easy to ex-
plain, it also has special nesting properties necessary for orderly algorithms:
If G = (V,E) is a graph in maximal form and e the edge corresponding to
the last bit in the binary number obtained from the upper triangle of the
adjacency matrix, then G′ = (V,E − e) is also in maximal form. This prop-
erty allows orderly algorithms for the generation of complete and isomorph
free lists of graphs, see e.g. [1], [3], [4], [6], [8].

From the theoretical point of view a polynomial algorithm for this canon-
ical form is interesting in mathematics and algorithmics. From the practical
point of view it is especially interesting in mathematical chemistry: as the
graphs studied in mathematics are mostly either trees or graphs with many
cycles (e.g. regular graphs with degree at least 3), also structure enumera-
tion is especially interesting for these classes. For trees specialized generators
exist [5]. Generators for graphs using the maximal form work recursively,
so the importance of the algorithm to compute the maximal form for a tree
depends on the place in the recursion where trees occur. Though some pro-
grams like e.g. [4] allow the generation of graphs with few cycles, the focus
lies on graphs with many cycles and in that case trees occur at an early
stage of the recursion, so that the complexity of computing the canonical
form of the trees has not much impact on the running time. In chemistry
graphs with few cycles and even monocyclic graphs have been well studied
and even generators for subclasses of monocyclic graphs have been devel-
oped (see e.g. [2], [9] for just two of many examples). When generating
these classes, the trees can occur until late in the recursion and can have an
important impact on the running time, so that a polynomial test can also
be of practical importance.

This maximal form can also be defined in other, equivalent ways: One
can define a string by listing the neighbours of the vertices 1, . . . , n (in this
order) in increasing order, separated by a symbol that is considered to be
larger than any vertex number. Then a graph is in maximal form if and
only if this string is lexicographically minimal. Similar to using only the
upper right triangle of the adjacency matrix, one can also restrict the string
and list for each vertex v only the neighbours w > v. We call this way of
representing the labelled graph the reduced string representation.

2

2 The algorithm for trees

The vertex labels in a maximal form of a graph G can be obtained by a
breadth first numbering starting with the vertex labelled 1. This remains true
if one does not look for the graph with largest b(G′) among all isomorphic
graphs, but only among those where a certain vertex of G can be mapped
onto the vertex labelled 1.

For trees with n vertices a breadth first labelling implies that each label
2, . . . , n occurs exactly once in the reduced string representation and that
the labels occur in increasing order. So the reduced string representation
of a tree is completely described by the positions of the separation symbols
and we can as well describe the string as a 0-1 sequence with 0 representing
a label and 1 representing a separator. A reduced string representation
is minimal if and only if the corresponding 0-1 sequence is also minimal.
We will call 0-1 sequences corresponding to reduced string representations
0-1-representations.

Let zi, resp. oi denote the number of zeros, resp. ones on positions 0 to
i in a 0-1-representation. As each 0 in the 0-1 sequence stands for a vertex
whose list of neighbours ended with a 1 follows later, we have zi ≥ oi for
each position i except the last one and zi < oi if i is the last position. This
implies that no 0-1-representation is a proper starting sequence of another
0-1-representation – they are either identical or differ in a position that
is present in both representations. The vertices at a given distance d of
the vertex labelled 1 get consecutive numbers and we call these vertices
and the corresponding entries and separators after these entries of the 0-1-
representation the d-th level.

We will also work with 0-1-1′-representations, which are strings with
symbols 0, 1 and 1′. The 0-1-1′-representation of a tree is equal to its 0-
1-representations except for the fact that each last 1 on a level is replaced
by a 1′ which is considered equal to a 1 when comparing strings in order
to find the lexicographically smallest one. These representations are only
used to simplify the description. As the 1’s at the end of a level can eas-
ily be computed from the 0-1-representation, there is a simple one-to-one
correspondence between these representations and even the algorithm could
be rewritten to work as efficiently on 0-1-representations – but would look
more complicated. All results and remarks valid for 0-1-representations are
also valid for 0-1-1′-representations.

These 0-1-representations or 0-1-1′-representations are no canonical forms
defined for all graphs, but they are just intermediate steps in the algorithm
from which the general canonical form can be easily reconstructed (e.g. in
time O(|V |) for the reduced string representation or in time O(|V |2) when
the adjacency matrix representation is asked).

Each 0-1-representation corresponds to one or more labellings of the
tree from which it can be obtained. Together with a 0-1-representation we

3

always assume a corresponding labelling to be given. In rooted trees we will
only consider labellings that assign number 1 to the root and only consider
representations that come from such labellings.

We interpret each edge {u, v} of a tree as two directed edges (u, v) and
(v, u) and denote the component of T −{u, v} containing v and rooted at v
as T (u, v).

Lemma 2.1. If s(Tv) is the minimal 0-1-representation of a tree Tv rooted

at v and u a neighbour of v, then labelling the vertices of T (v, u) in the

same order as for the minimal 0-1-representation of Tv gives a minimal

0-1-representation of T (v, u).

Proof. Assume that the minimal 0-1-representation s(T (v, u)) is smaller
than the representation s̄(T (v, u)) induced by s(Tv). Then there is a po-
sition k so that positions 1 to k − 1 of s(T (v, u)) and s̄(T (v, u)) agree,
position k of s(T (v, u)) is 0 and position k of s̄(T (v, u)) is 1.

Representation s(T (v, u)) also corresponds to a breadth first labelling,
so the entries of the 0-1-representation corresponding to vertices at a fixed
distance d > 0 of u form a substring of s(T (v, u)) as well as of s(Tv). The
length of the substring is given by the sum of all degrees of vertices at
distance d−1 of u, so it is independent of the specific breadth first numbering
inside T (v, u). If we keep the labels of all vertices of Tv that are not in T (v, u)
and take another breadth first order in T (v, u), the set of positions in s(Tv)
corresponding to vertices of T (v, u) remains the same. If we replace the
order in which the vertices inside T (v, u) are labelled by the order in which
they are labelled for s(T (v, u)), the resulting string sm(Tv) is identical with
s(T (v, u)) until the k-th position corresponding to an element of T (v, u).
This position is 1 in s(Tv) and is 0 in sm(Tv) – so s(Tv) was not minimal –
a contradiction.

For a set {s1, . . . , sk} of 0-1-1′-representations Algorithm 1 defines how
the result m(s1, . . . , sk) of merging the strings is obtained. Before starting
the merging process, {s1, . . . , sk} are lexicographically sorted and put in a
list S in increasing order. For each string s we have an index ps giving the
next position in s to be read (initially 0) and a variable ls giving the number
of symbols in s. We will denote the symbol at position i of a string s as s[i].

If si < sj and both contain a level k, then the entries of si on level k
are filled in before the ones of sj . Applying this merging to strings coming
from labelling trees guarantees that the labelling comes from a breadth first
numbering.

With L =
∑k

i=1
|si| the strings s1, . . . , sk can be sorted in time O(L) by

using e.g. radix sort and taking the lengths of the sequences into account,
so that sequences are only considered for indices that are present in the list.

4

Algorithm 1 An algorithm to merge 0-1-1′-representations.

1: m(s1, . . . , sk) = 0, 0, . . . , 0
︸ ︷︷ ︸

k times

, 1′

2: while S is not empty do

3: for all s ∈ L in increasing order do

4: while s[ps] 6= 1′ do
5: append s[ps] to m(s1, . . . , sk)
6: set ps = ps + 1
7: end while

8: append 1 to m(s1, . . . , sk)
9: set ps = ps + 1

10: if ps ≥ ls then

11: remove s from the list
12: end if

13: end for

14: replace the last 1 of m(s1, . . . , sk) by 1′

15: end while

As also the construction of m(s1, . . . , sk) from the sorted strings can be done
in time O(L), the whole computation of m(s1, . . . , sk) takes time O(L).

Lemma 2.2. If s1, . . . , sk are minimal 0-1-1′-representations of trees rooted
at v1, . . . , vk, and Tv is the tree rooted at v obtained from these trees by

adding the new vertex v and connecting it to v1, . . . , vk, then m(s1, . . . , sk)
is the minimal 0-1-1′-representation s(Tv) of Tv.

Proof. By Lemma 2.1 we know that also s(Tv) induces minimal represen-
tations of T (v, v1), . . . , T (v, vk), so these representations are identical to
s1, . . . , sk.

Assume that the order in which v1, . . . , vk are labelled 2, . . . , k + 1 for
s(Tv) is vp1 , . . . , vpk . What remains to be shown is that this order is – up
to interchanging vertices vi, vj with si = sj – identical to the order used by
the algorithm to compute m(s1, . . . , sk). This means that we have to show
that for 1 ≤ i < k we have that spi ≤ spi+1

.
Assume that there is an i so that spi > spi+1

and that the first level on
which they differ is level ld. For each level l of T (v, vpi) and T (v, vpi+1

), the
substrings follow each other on level l + 1 of s(Tv). If we keep the order in
which the vertices are labelled inside T (v, v1), . . . , T (v, vk), but label vpi+1

with i and vpi with i + 1, then the new representation s′(Tv) differs from
s′(Tv) for the first time on level ld + 1 – and here a string s1s2 with s2 < s1
is replaced by s2s1 which is lexicographically smaller. So s′(Tv) < s(Tv)
contradicting the minimality of s(Tv).

5

In order to compute the minimal representation s(T (u, v)) of all directed
edges (u, v) in a tree, we still need some preprocessing:

If d(u, v) denotes the maximum distance of v from a leaf of T in T (u, v),
then for all directed edges (v, w) with w 6= u we have d(v, w) < d(u, v). This
implies that once we have computed s(T (e)) for all directed edges e with
d(e) ≤ d− 1, we can compute s(T (e)) for all directed edges e with d(e) ≤ d.

A straightforward breadth first algorithm starting at each edge could
compute d(u, v) for all edges in together O(|V |2) steps – which is inside the
time limits of the whole algorithm – but also a speedup in parts can be
useful and interesting. In Algorithm 2 we give a linear time algorithm.

First each vertex v is assigned a counter c(v) initialized as deg(v) count-
ing the outgoing edges which have not yet been processed. All edges are
marked as not yet been processed and all edges (u, v) with deg(v) = 1 are
added to a list D and assigned value d(u, v) = 0. Furthermore each vertex
v has a list S(v) of directed edges starting at v and a list E(v) of directed
edges ending in v.

Algorithm 2 An algorithm to compute d(u, v).

1: while D is not empty do

2: let (u, v) be the first element of D
3: remove (u, v) from the list and mark (u, v) as processed
4: set c(u) = c(u)− 1
5: if c(u) = 1 then

6: let (w, u) ∈ E(u) be the edge so that (u,w) is not yet processed
7: set d(w, u) = d(u, v) + 1
8: append (w, u) to the end of D
9: else if c(u) = 0 then

10: for all (w, u) ∈ E(u), w 6= v do

11: set d(w, u) = d(u, v) + 1
12: append (w, u) to the end of D
13: end for

14: end if

15: end while

Lemma 2.3. Algorithm 2 needs O(|V |) steps and computes d(u, v) for all

directed edges of an input tree T = (V,E).

Proof. The fact that Algorithm 2 is linear in |V | is immediate, except for
lines 6 and lines 10 to 12. Line 6 is executed once for each vertex u and takes
time Θ(deg(u)). The same is true for the loop in lines 10 to 12. So altogether
also these lines take time Θ(

∑

v∈V deg(v)) and
∑

v∈V deg(v) = 2|V | − 2 for
trees.

In order to prove that Algorithm 2 computes d() correctly we first observe
that the value of d() grows monotonically with the time that directed edges

6

are added to D. So when c(u) = 1, then only one edge (u,w) incident with
u has not yet been processed and for the inverse edge (w, u) the value of d()
is one larger than the largest value of the edges that have been processed –
which is the value of the last one processed. An analogous argument holds
for the case when c(u) = 0.

So all values of d() that are filled in are correct and it only remains to
show that for all directed edges e the value of d(e) is filled in:

In the beginning the value d(e) = 0 is filled in for all edges e with d(e) = 0
and the edges are added to D, so let us assume that for all edges e with
d(e) < m the value is filled in and that they are added to D at some time.
Let (u, v) be an edge with d(u, v) = m. Then all edges (v, w) starting at
v except maybe (v, u) have d(v, w) < m, so they are added to the list at
some time. When the last of these edges is processed, we have c(v) ≤ 1 and
the value of d(u, v) is filled in, proving by induction that for all edges e the
value of d(e) is filled in.

As d(u, v) ≤ |V | − 2 for all (u, v), we can sort the directed edges in
increasing order of the values of d() in time O(|V |) by using bucket sort. This
way we produce a sorted list of directed edges (u1, v1), . . . , (u2|V |−2, w2|V |−2).

Algorithm 3 An algorithm to compute s(T (u, v)).

1: set i = 1
2: while d(ui, vi) = 0 do

3: s(T (ui, vi)) = 1′

4: set i = i+ 1
5: end while

6: while i <= 2|V | − 2 do

7: s(T (ui, vi)) = m(s(T (vi, w1)), . . . , s(T (vi, wk)))
8: with (vi, w1), . . . , (vi, wk) the directed edges starting at vi that are

not (vi, ui)
9: set i = i+ 1

10: end while

There are 2|V | − 2 directed edges and in each merging step the sum of
the lengths of the lists is at most 2|V | − 1, so all merging steps together can
be done in time O(|V |2).

Finally we can define s(v) for all v ∈ V as s(v) = m(s(T (v, w1)), . . . , s(T (v, wk)))
with (v, w1), . . . , (v, wk) all edges starting at v.

We have |V | merging operations with each a cost of O(|V |), so again a
total cost of O(|V |2). By Lemma 2.2 these s(v) (with 1′ replaced by 1) are
the minimal 0-1-representations of the tree rooted at v. The smallest string
among all s(v) is the minimal 0-1-representation. It can obviously be found
in time O(|V |2). Storing the information on the order of the sorted strings

7

in the various sorting steps would allow to reconstruct the labelling that
leads to the minimal representation in linear time.

As a consequence of the lemmas and algorithms we get

Theorem 2.4. The maximal canonical form of a tree T = (V,E) can be

computed in time O(|V |2).

3 Conclusions and possible further work

The algorithm does not have the same linear time bound as algorithms for
specialized canonical forms for trees, nevertheless the algorithm is polyno-
mial of a small order and fast for practical applications. It would even be
optimal up to a constant factor if the input would be the adjacency matrix
of the graph or the required output would be the maximal adjacency matrix.
It would be very interesting to know whether an algorithm that takes time
o(|V |2) to compute the canonically labelled tree or the 0-1-representation
exists.

For application in orderly algorithms it would also be interesting to know
whether there are still polynomial time algorithms to compute the maximal
canonical form if a small, bounded number of cycles is allowed. It is easy
to design such algorithms for canonical forms designed extra for this appli-
cation. For the maximal canonical form it does not even look simple for
monocyclic graphs.

It would also be interesting to know whether for other general canonical
forms polynomial algorithms for trees exist, e.g. for the canonical form
requiring minimality of the string obtained from the lower left triangle of
the adjacency matrix. This canonical form is proven to be NP-complete for
general graphs, but for trees a polynomial algorithm could be possible.

References

[1] G. Brinkmann. Fast generation of cubic graphs. Journal of Graph The-

ory, 23(2):139–149, 1996.

[2] Z. Du. Wiener indices of trees and monocyclic graphs with given bi-
partition. International Journal of Quantum Chemistry, 112:1598–1605,
2012.

[3] I.A. Faradžev. Constructive enumeration of combinatorial objects. Col-
loques internationaux C.N.R.S. No260 - Problèmes Combinatoires et

Théorie des Graphes, Orsay 1976, pages 131–135, 1976.

[4] R. Grund. Konstruktion schlichter Graphen mit gegebener Gradparti-
tion. Bayreuther Mathematische Schriften, 44:73–104, 1993.

8

[5] G. Li and F. Ruskey. The advantages of forward thinking in generating
rooted and free trees. pages 939–940, 1999. 10th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA).

[6] M. Meringer. Fast generation of regular graphs and construction of cages.
Journal of Graph Theory, 30(2):137–146, 1999.

[7] R.C. Read, editor. Graph Theory and Computing. Academic Press, New
York, 1972.

[8] R.C. Read. Every one a winner. Annals of Discrete Mathematics 2,
pages 107–120, 1978.

[9] M. Suzuki, H. Nagamochi, and Akutsu T. Efficient enumeration of mono-
cyclic chemical graphs with given path frequencies. Journal of Chemin-

formatics, 6(31), 2014.

9

	Introduction
	The algorithm for trees
	Conclusions and possible further work

