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Abstract In theory, aquifer thermal energy storage (ATES) systems can recover in winter the heat stored
in the aquifer during summer to increase the energy efficiency of the system. In practice, the energy effi-
ciency is often lower than expected from simulations due to spatial heterogeneity of hydraulic properties or
non-favorable hydrogeological conditions. A proper design of ATES systems should therefore consider the
uncertainty of the prediction related to those parameters. We use a novel framework called Bayesian Evi-
dential Learning (BEL) to estimate the heat storage capacity of an alluvial aquifer using a heat tracing exper-
iment. BEL is based on two main stages: pre- and postfield data acquisition. Before data acquisition, Monte
Carlo simulations and global sensitivity analysis are used to assess the information content of the data to
reduce the uncertainty of the prediction. After data acquisition, prior falsification and machine learning
based on the same Monte Carlo are used to directly assess uncertainty on key prediction variables from
observations. The result is a full quantification of the posterior distribution of the prediction conditioned to
observed data, without any explicit full model inversion. We demonstrate the methodology in field condi-
tions and validate the framework using independent measurements.

Plain Language Summary Geothermal energy can be extracted or stored in shallow aquifers
through systems called aquifer thermal energy storage (ATES). In practice, the energy efficiency of those sys-
tems is often lower than expected because of the uncertainty related to the subsurface. To assess the uncer-
tainty, a common method in the scientific community is to generate multiple models of the subsurface
fitting the available data, a process called stochastic inversion. However this process is time consuming and
difficult to apply in practice for real systems. In this contribution, we develop a novel approach to avoid the
inversion process called Bayesian Evidential Learning. We are still using many models of the subsurface, but
we do not try to fit the available data. Instead, we use the model to learn a direct relationship between the
data and the response of interest to the user. For ATES systems, this response corresponds to the energy
extracted from the system. It allows to predict the amount of energy extracted with a quantification of the
uncertainty. This framework makes uncertainty assessment easier and faster, a prerequisite for robust risk
analysis and decision making. We demonstrate the method in a feasibility study of ATES design.

1. Introduction

The use of groundwater heat pump systems (GWHP) to provide heating or cooling to buildings allows for
large primary energy savings and significant CO2 reductions through aquifer thermal energy storage (ATES)
(e.g., Bayer et al., 2013; Saner et al., 2010; Vanhoudt et al., 2011). In such systems, groundwater is extracted
from production wells and circulated through a heat exchanger to heat buildings in winter. Cold water is re-
injected in the aquifer through injection wells. In summer, the system is reversed: cold water injected during
the winter is extracted to cool buildings and warmer water is reinjected in the subsurface. Designing ATES
systems requires a multidisciplinary approach where the energy demand of the building must be known to
estimate the volume of water to be extracted and the resulting change of temperature induced in the
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aquifer. In turn, hydrogeological modeling is performed to ensure that the aquifer is able to meet those cri-
teria in a sustainable way and with an efficient energy recovery.

For ATES systems to work efficiently, several conditions must be met (e.g., Bakr et al., 2013; Lee, 2010). Per-
meability and porosity of the aquifer must be sufficient to pump large volumes of water without emptying
the resources. Efficient recovery of thermal energy stored in the aquifer is only possible in specific hydro-
geological conditions such as low natural gradient. In addition, the spatial geological heterogeneity of aqui-
fers makes the efficiency of such systems difficult to predict, since such heterogeneity influences
groundwater flow and the spatial distribution of hot and cold groundwater plumes (Bridger & Allen, 2010,
2014; Ferguson, 2007; Sommer et al., 2013, 2014). Furthermore, hydrogeological conditions and spatial
uncertainty of the aquifer parameters may interact and affect the recovery of stored thermal energy. For
example, Possemiers et al. (2015) showed that the presence of clay drapes in a sandy aquifer may lead to
an increase or decrease of energy efficiency depending on the presence of a natural gradient or not.

Therefore, the proper design of ATES systems and their long-term efficiency strongly depend on the subsur-
face components of the system (e.g., Bloemendal et al., 2014; Chen et al., 2015). Blum et al. (2011) studied
more than 1,000 shallow geothermal systems installed in Germany and showed that inappropriate consider-
ation of the subsurface characteristics lead to over- or undersizing the system. The decision for the develop-
ment of an ATES system and its design should thus be based on realistic predictions. This requires the
development of a hydrogeological model able to simulate heat flow and transport within the subsurface
and account for uncertainties related to the subsurface. The expected outcome of such a model is to predict
the evolution of groundwater temperature at the extraction and re-injection wells, which combined with
the pumping/injection flowrates quantifies the amount of thermal energy.

Although the desired prediction seems relatively simple, building reliable ATES models is a challenging and
time-consuming task. It must consider many uncertain parameters involved in heat flow and transport such as
hydraulic conductivity, porosity, thermal conductivity, or volumetric heat capacity, their associated spatial het-
erogeneity and external inputs such as aquifer recharge or boundary conditions. In many cases, the lack of avail-
able data leads the modeler to consider homogeneous layered conceptual models (Kim et al., 2010; Lo Russo &
Civita, 2009; Nam & Ooka, 2010; Yapparova et al., 2014). Ignoring spatial heterogeneity bears the risk of making
wrong decisions based on the prediction of those models or altering the robustness of the ATES design.

In practice, to improve the reliability of models, in-situ tests such as push/pull tests (Klepikova et al., 2016a;
Park et al., 2015; Vandenbohede et al., 2009), heat storage experiments (Palmer et al., 1992, Vandenbohede
et al., 2011), heat tracer tests (Wagner et al., 2014, Wildemeersch et al., 2014; Macfarlane et al., 2002) or other
specific tests (e.g., Kuo & Liao, 2012) can be performed to gain knowledge on subsurface parameters. How-
ever, these conventional approaches generally lack the spatial coverage required to characterize the hetero-
geneity of the subsurface. The complementary use of geophysical methods which provide spatial
information on the subsurface with a greater coverage than boreholes has been increasing in the past
years. Not only geophysics can be used to define the layers and their geometry, it also has been recently
demonstrated that time-lapse geophysics using electrical resistivity tomography (ERT) could be used to
monitor temperature changes during heat storage and tracing experiments in aquifers (Arato et al., 2015;
Hermans et al., 2012, 2014, 2015b).

An inverse problem approach is typically used to estimate the model parameters based on observed data
(borehole and/or geophysics). However, for a proper uncertainty quantification of the prediction variables
and a robust design, stochastic approaches accounting for realistic patterns of heterogeneity and parame-
ters uncertainty are necessary (e.g., Fu & G�omez-Hern�andez, 2009; G�omez-Hern�andez et al., 1997; Linde
et al., 2015; Oliver et al., 1997; Vrugt et al., 2013; Yoon et al., 2013). Most stochastic inversion methods are
based on a Bayesian formalism where the posterior distribution f mjdð Þ, consisting of an ensemble of mod-
els fitting the data, is expressed as

f mjdð Þ5kf mð ÞL mjdð Þ (1)

where m represents the model parameters and d the data. f mð Þ is the prior distribution of model parame-
ters, based on the background knowledge we have on the problem and the study site, L mjdð Þ is a likeli-
hood function, generally measuring the misfit between observed and calculated data, and k is a
proportionality constant. It is then possible to estimate the desired prediction for each model of the
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posterior distribution and make decisions and risk analysis based on the uncertainty of these predictions.
However, stochastic methods are computationally expensive with tens to hundreds thousands of forward
model runs, often difficult to implement and tune to convergence, and are therefore not widely used in real
field applications.

Bayesian Evidential Learning (BEL) recognizes a number of important difficulties that arise when applying
inverse and other modeling methodologies in the real world (see Scheidt et al., 2018). The first concerns the
statement of the prior distribution on all variables (including spatial variables). Such prior distribution needs to
be able to predict the observations. Any prior that cannot predict the data with finite probability is falsified,
and requires restating the prior, which could mean (1) changing the distributions, (2) increasing model com-
plexity (adding variables). Second, the ultimate aim of modeling and predicting is not the model itself, but the
key decision variables. In the ATES case, this would be the future temperature evolution over time, as the sys-
tem is put in operation. Third, only data that inform these key decision variables are relevant. BEL uses a col-
lection of machine learning and sensitivity analysis methods by learning from Monte Carlo based on falsified
prior uncertainty models on all model variables jointly. In that sense, it aims to circumvent any difficult model
inversions through a prediction-focused approach. Since the method is purely based on Monte Carlo (and not
Markov Chain Monte Carlo), it has proven efficient in a variety of application in oil/gas, hydrogeology and geo-
physics (see Scheidt et al., 2018). The terms Evidential and Learning refer therefore to the central position occu-
pied by the data and the use of prior models to derive a direct data-prediction relationship, respectively.

Our intended contribution is to demonstrate the ability of BEL to assess the uncertainty of the key variable
temperature in a prediction problem facing various sources of uncertainty in the case of a specific ATES
design. Here, we will use the example of estimating the heat storage capacity of an alluvial aquifer using a
real heat tracing experiment but the framework can be applied to any prediction problem. The paper is
organized as follows. First, we describe the methodology and present the studied problem, i.e., the predic-
tion of heat storage in an alluvial aquifer. Then, we build a realistic prior model of the studied aquifer, con-
sidering uncertainty on the hydraulic conductivity distribution and its spatial heterogeneity, the porosity
and boundary conditions. We analyze the sensitivity of these prior parameters on the prediction of heat
storage. Then, we consider the acquisition of data during a short-term heat tracing experiment, known to
be informative for the prediction. In the next step, we verify if the acquired data are consistent with our
prior description of the aquifer. Finally, we forecast the posterior distribution of the prediction considering
the acquired data and validate the approach for another experiment with validation measurements.

2. Bayesian Evidential Learning

In this section, we describe the Bayesian Evidential Learning framework (Figure 1a). In this study, the ulti-
mate objective of BEL is to quantify uncertainty on the heat storage capacity of the aquifer using the evolu-
tion of temperature at the pumping well. In the following, we will often refer to this specific case to
illustrate the methodology. However, the framework can be adapted to handle any kind of predictions
related to the subsurface.

BEL can be divided in two main stages: pre- and postfield data acquisition. In the first stage, the prior distri-
bution is stated and sampled using Monte Carlo. A global sensitivity analysis is used to assess the value of
acquiring a new data set. After field data acquisition, the prior distribution is falsified, a relationship
between data and prediction is derived using machine learning and the posterior distribution of the predic-
tion is computed, and if possible, validated.

2.1. BEL Prefield Data Acquisition
2.1.1. Definition and Sampling of the Prior
The prior aims at identifying the possible range of variation of parameters from existing knowledge. This
includes broad information on the geological context and specific information on the study site acquired in
previous studies.

We sample the prior distribution of model parameters and prediction variables using Monte Carlo, i.e.,
model parameters are randomly sampled from the prior and the prediction is simulated using a forward
groundwater flow and transport model. Similarly, for any proposed experiment, the same sampled models
can be used to simulate the variable corresponding to experimental data to get the prior distribution of

Water Resources Research 10.1002/2017WR022135

HERMANS ET AL. PREDICTING HEAT STORAGE WITH ERT 2933



experimental data. The objective is to assess the range of uncertainty in the model responses (both in data
and prediction) resulting from the uncertainty in the prior.
2.1.2. Global Sensitivity Analysis and Data-Worth Assessment
In this step, BEL uses a global sensitivity considering all parameters simultaneously to identify sensitive
parameters to the prediction, i.e., the evolution of the temperature distribution with time in the pumping
well. BEL being a strategy rather than a specific technique, it can be applied with any global sensitivity
method such as Sobol’ (e.g., Oladyshkin et al., 2012).

In this application, we use the DGSA (distance-based global sensitivity analysis) method to perform the
global sensitivity analysis for its ability to handle the time distribution of studied variables, various types of
parameters (continuous, discrete, spatial uncertainty), and the limited number of models required to com-
pute the sensitivity and interactions. DGSA calculates the distance between the variables within the prior
distribution of the studied variables to derive the sensitivity. For more details on DGSA, we refer to the sup-
porting information Text S1 and to Park et al. (2016) and Fenwick et al. (2014).

An experimental set-up is proposed to collect information on the prediction (e.g., heat storage or heat trac-
ing experiment) and a global sensitivity analysis on the data prior distribution is used to assess the informa-
tion content of new experimental data regarding the prediction. This requires simulating the proposed

Figure 1. (a) Workflow of Bayesian Evidential Learning. (b) Detailed workflow of the prediction-focused approach. Steps 1 and 2 are already performed in the pre-
field data acquisition step of BEL.

Water Resources Research 10.1002/2017WR022135

HERMANS ET AL. PREDICTING HEAT STORAGE WITH ERT 2934



experiment for each sampled realization of the prior. The sensitivity analysis identifies if the set-up is likely
to generate useful information to reduce the uncertainty on the prediction. If it is not the case, another data
proposal has to be made (Figure 1a).

Note that performing global sensitivity analysis does not require the collection of any field data; instead, it
requires the definition of a prior model. Once an adapted experiment has been identified, we can proceed
to data acquisition (Figure 1a).

2.2. BEL Postfield Data Acquisition
2.2.1. Prior Falsification
Bayesian methods require that the posterior solution is part of the span of the prior (e.g., Hou & Rubin,
2005). It is important to verify that the acquired data are able to be predicted by the current prior. If it is not
the case, there is a risk for the subsequent prediction to be completely erroneous (Chalmers, 2013). If the
prior and the data are not consistent, i.e., the observed data cannot be reproduced by the prior, the prior is
falsified and revising the prior model is necessary (see Figure 1a).

In BEL, we thus propose to verify that the prior is able to simulate the observed data before any attempt to
predict the posterior (Hermans et al., 2015a; Park et al., 2013; Scheidt et al., 2015a). This step, called prior fal-
sification, is done by a direct comparison of field data with its prior distribution (already computed for the
sensitivity analysis) both in the physical space and in a reduced-dimension space. Note that prior model fal-
sification does not require matching data (see Scheidt et al, 2015a, 2018). Falsification refers to the idea that
priors cannot be proven correct; they can only be proven incorrect (Popper, 1959).
2.2.2. Prediction-Focused Approach
Once the prior is not falsified, posterior prediction can be made. To compute the posterior distribution of
the prediction, BEL uses a prediction-focused approach (PFA, Figure 1b). PFA takes advantage of the prior
simulations ran in the prefield data acquisition step (sensitivity analysis) to derive a direct relationship
between data and prediction variables using machine learning. Therefore, PFA requires only 2 x n forward
runs (n for the prediction and n for the data) to compute the posterior distribution, which drastically
reduces the time to compute the posterior distribution of the prediction. The method differs from standard
Bayesian methods developed in hydrogeology (e.g., Fu & G�omez-Hern�andez, 2009; Linde et al., 2015; Rubin
et al., 2010) because its likelihood function is formulated in a reduced-dimension space based on target var-
iables (the prediction) and not on model parameters. In this section, we present a brief summary of the
prediction-focused approach used in this paper. As for global sensitivity, BEL is not limited to this specific
approach. For a more detailed description, we refer to Hermans et al. (2016b) and Satija and Caers (2015).

Our application of PFA can be divided in 6 steps (Figure 1b). Steps 1 and 2 correspond to the definition and
sampling of the prior and the forward simulation of the prediction h and the data d for each realization.
Those steps actually correspond to the prefield data acquisition of BEL.

Both data and forecast variables are high-dimensional. To reduce the size of the problem, we independently
apply principal component analysis (PCA) on both d and h and retain only their first p and q components,
respectively. This provides two reduced sets df and hf (Step 3). Then, we linearize the relationship between df

and hf into a set of independent linear relationships between dc and hc(second dimension reduction) using
canonical correlation analysis (CCA, Step 4). This is the learning step of the methodology. If CCA fails to generate
a useful relationship (i.e., no clear linear relationship exists between data and prediction variables), then PFA will
not produce a realistic solution. This might happen because the data is not informative for the prediction or
because a more complex relationship is present, in which case other methods should be applied (Scheidt et al.,
2015b).

At this stage, we formulate the posterior distribution of the forecast in the reduced dimension space hc

given the field observed data dc
obs in reduced dimensions using Bayes’ rule:

fH hcjdc
obs

� �
5kfH hcð ÞL hcjdc

obs

� �
(2)

where fH hcð Þ is the prior distribution, L hcjdc
obs

� �
is a likelihood function and k is a proportionality constant.

If we ensure by histogram transformation that hc is multivariate Gaussian, we can use a Gaussian regression
with a multivariate Gaussian likelihood to solve the problem analytically with mean and covariance equal to
(Tarantola, 2005):
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~hc 5 GT Cd
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Hc

� �21
GT Cd

c 21dc
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Hc
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(3)

~Cc
H 5GT Cd21

c A1C21
Hc (4)

where G is the linear forward operator modeling the relationship between dc and hc , Cd
c is the observational

error covariance matrix, �hc and CHc are the mean and the covariance matrix of the sampled distribution,
and A is the matrix mapping the transformation of df to dc (Step 4). A linear regression model is used to
account for residual error in the linear regression between dc and hc (Satija & Caers, 2015). The derivation of
Cd

c for field data according to Hermans et al. (2016b) is described in supporting information Text S3. It is
now straightforward to generate samples in the reduced dimension space. By back transformation of CCA
and PCA, it is possible to get the posterior distribution in the original space (Step 6).

Note that other techniques of dimension reduction and sampling can be used in PFA depending on the
specificity of the study. For example, if the process generates a non-linear relationship or if the Gaussian his-
togram transformation alters the linearity, it is possible to use kernel density estimation to estimate the pos-
terior distribution.

3. Predicting Thermal Energy Storage Efficiency in a Real Aquifer

3.1. Prediction Scenario
To assess the heat storage potential of the studied aquifer, we define a heat storage and recovery cycle sce-
nario. During 30 days, heated water is continuously injected in a well at the rate of 3 m3/h. The temperature
of the injected water is 108C above the background temperature. After 30 days, water is extracted from the
well at the same rate of 3 m3/h. The change in temperature of the pumped water compared to the initial
value in the aquifer (i.e., before injection) is recorded for another 30 days. The thermal energy recovery can
be estimated using the temperature of the extracted water and the flowrate. The flowrate being fixed, the
heat storage capacity is here directly related to the decrease of temperature with time during the pumping
phase. This constitutes our prediction (Figure 1a).

This simplified scenario enables to assess the storage potential of the aquifer without considering changing
boundary conditions with time and the interaction with the building. Longer simulations would be neces-
sary for the design of the ATES system itself and the flowrate should be adapted according to the energy
requirement of the building.

3.2. Study Site
The study site is located in the alluvial aquifer of the Meuse River in Hermalle-sous-Argenteau, Belgium. We
build the conceptual model of the aquifer and the prior, based on previous studies carried out on the study
site and similar sites in the alluvial aquifer of the Meuse River, including geological logs, pumping and trac-
ing experiments, geophysical surveys and groundwater models (Brouyère, 2001; Dassargues, 1997; Der-
ouane & Dassargues, 1998; Hermans et al., 2015a, 2015b, Klepikova et al., 2016b; Wildemeersch et al., 2014).
The water level is located at 3.2 m depth. Based on borehole logs, the saturated deposits can be divided
into two distinct layers. The upper layer, between 3 and about 7 m depth, is composed of gravel in a sandy
matrix. The bottom layer is composed of coarse clean gravel. The bedrock composed of low permeability
carboniferous shale and sandstones lies at 10 m depth and constitutes the basement of the alluvial aquifer
(Figure 2b).

We build a hydrogeological model of the subsurface using the control-volume finite element code Hydro-
GeoSphere (Therrien et al., 2010). The discretization of the model is based on geological information
obtained from boreholes (Wildemeersch et al., 2014). The saturated part of the subsurface is modeled using
14 layers 0.5 m thick down to the carboniferous bedrock. The bottom 6 layers correspond to clean gravel,
the top 8 layers to sandy gravel. The grid around the wells is discretized with elements 0.025 m wide. The
size of the elements is progressively increased by a factor of 1.15 (Klepikova et al., 2016b). The total size of
the model is 60 m in the direction of flow, 40 m perpendicularly and 7 m vertically (Figure 2a).

The model is oriented such that its main axis corresponds to the natural direction of flow which was identified
in previous studies (Brouyère 2001). Therefore, no-flow boundary conditions were assigned to boundaries
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parallel to this direction. A no-flow boundary condition was also assigned to the bedrock. Between the up and
down-gradient boundaries, a natural gradient exists and is imposed through constant head boundaries.

Heat transport is simulated by analogy to solute transport, homogeneous initial temperature conditions,
corresponding to the average temperature encountered in the aquifer, are used. Those initial conditions are
also used as fixed temperature boundary conditions during the whole simulation.

3.3. Proposed Experiment
The new experiment considered here (Figure 1a) to reduce the uncertainty on the prediction is a forced gra-
dient heat tracing experiment monitored with cross-borehole electrical resistivity tomography (Figure 2).
Heat tracing is an interesting candidate because it is influenced by both hydraulic and thermal properties of
the aquifer. In addition, in forced gradient conditions, heat tracing enables to investigate a larger volume of
subsurface than short-term heat storage experiments of the same duration. The forced gradient is in the
direction of the natural one so that it speeds up groundwater flow without affecting too much the flow
direction. Geophysical methods enable to collect spatially distributed data, informing on the spatial hetero-
geneity of the aquifer (Hermans et al., 2014).

In the present study, we consider collecting two different data sets. In the first case, only the first 30h of the
experiment, corresponding to the increasing part of the temperature breakthrough curve in the ERT panel,
are considered. We will refer to it as the 1 day experiment. In the second case, the tailing part of the break-
through curve is also considered. It will be referred to as the 5 day experiment. The difference between the
two cases illustrates a choice between two tests, one being shorter and less expensive but also likely less
informative than the other.

3.4. Description of the Prior and Global Sensitivity Analysis
We consider here three types of uncertainty: hydrogeological properties, hydrogeological conditions, and
the model of spatial continuity describing the spatial heterogeneity. Then we analyze the sensitivity of the
prediction to these parameters.
3.4.1. Hydrogeological Properties and Boundary Conditions Uncertainties
The main hydrogeological unit responsible for flow and transport in the aquifer is the coarse clean gravel
layer lying above the bedrock. To represent realistically our prior knowledge of the hydraulic conductivity
distribution (K) and its uncertainty, we consider 2 different parameters: the mean of the logarithmic distribu-
tion of K and its variance. Based on previous studies, we consider values ranging from 24 to 21 for the
mean of the logarithm distribution. The variance ranges from 0.05 (relatively homogeneous deposits) to 1.5
(heterogeneous deposits).

The porosity value is uncertain, but considered constant within the field. The porosity ranges between 5
and 11% in previous studies. However, we consider in this study a larger range of variation with values up
to 40%, which can be encountered in soft sediments. The reason for this is the influence of the porosity on
thermal properties (heat capacity, thermal conductivity) of the porous medium. The parameters for heat
transport are calculated through volumetric average between the solid and aqueous phases

Figure 2. (a) Plan view of the experimental set-up and the model for the heat tracing experiment (boundaries are not to
scale). (b) Vertical cross section and electrode layout in the ERT panel.
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jb5 12hð Þjs1hjw (5)

where jb is a bulk thermal parameter and h is the porosity; the subscripts s and w represent the solid and
the water phase, respectively. The uncertainty on the porosity indirectly induces uncertainty on the thermal
parameters of the aquifer.

Given the importance of the natural gradient on heat storage in aquifers (Possemiers et al., 2015), the natu-
ral gradient was also considered as an uncertain parameter. Gradient ranging from 0 to 0.167% were con-
sidered (Brouyère, 2001). The direction of the gradient is fixed.
3.4.2. Model of Spatial Continuity
The spatial heterogeneity of K within the coarse gravel layer is described by a model of spatial continuity
using a spherical variogram. The spatial continuity on the site is largely unknown. The description of existing
destructive boreholes is not precise enough to estimate natural variations within the layers.

We first consider the variogram range (i.e., the correlation length) in the direction of flow to lie between 1 and
10 m. The range in the perpendicular direction is related to the main range through an anisotropy ratio rang-
ing from 0.5 to 10. The orientation of the main ranges can deviate from the direction of flow from 2458 to 458.

The hydraulic conductivity parameter distribution and the model of spatial continuity are used to generate
independent realizations of the hydraulic conductivity field using sequential Gaussian simulations (Goo-
vaerts, 1997).
3.4.3. Global Sensitivity Analysis
In absence of information, all parameter prior distributions were modeled with uniform distributions, using
the principle of indifference (Jaynes, 2003). All other parameters were considered fixed. A summary of the
parameters and their range of variations are provided in Table 1. We generate a representative set of 500
realizations of the prior model parameters described in the previous sections, by means of simple Monte
Carlo simulations. DGSA and later PFA are using dimension reduction and averaging techniques that make
them robust even for a limited number of samples and relatively large number of parameters. Same ranges
of number of models were used by other authors (Fenwick et al., 2014; Park et al., 2016). We further discuss
the choice of the number of models in the dedicated section.

For each model, we simulate the heat storage experiment and generate the curve representing the temper-
ature at the well during the pumping phase. This constitutes the prior distribution of the prediction
(Figure 3a). To identify the most sensitive parameters (step 1, Figure 1a), we use the prior distribution of the
temperature at the well during the whole pumping phase as the input for DGSA (Figure 3b and supporting
information Text S1). The parameter exhibiting the most impact on the prediction is the mean value of the
hydraulic conductivity. The variance of the hydraulic conductivity distribution and the gradient are also sen-
sitive parameters. The anisotropy and the range influence the prediction to a lesser extent. The influence of

the porosity and the orientation on the prediction is limited. Globally,
high hydraulic conductivity and high gradient tend to reduce the heat
storage capacity of the aquifer (low temperature) due to higher
groundwater fluxes.

To compare with our stochastic approach, we also provide the predic-
tion for a hydrogeological model where the spatially distributed
hydraulic conductivity is calibrated through the pilot-point method
using temperature data during a heat tracing experiment (Klepikova
et al., 2016b; see below). The prediction from this model indicates that
the hydraulic conductivity of the site is probably not adequate for
heat storage because the recovered energy is low (DT is rapidly equal
to 0, Figure 3a). However, this model was calibrated under fixed
boundary conditions with a gradient at 0.06% that have a strong influ-
ence on the thermal energy recovery.

3.5. Prefield Data Worth Assessment: An ERT Heat Tracing
Experiment
To reduce uncertainty on the prediction, we consider the collection of
a new data set: a heat tracing experiment monitored by ERT (step 2,

Table 1
Parameters Used for the Heat Flow and Transport Simulations

Parameters Fixed/variable Value

Mean of log10 K (m/s) Variable U[-4 -1]
Variance log10 K (m/s) Variable U[0.05 1.5]
Range (m) Variable U[1 10]
Anisotropy ratio Variable U[0.5 10]
Orientation Variable U[-p/4 -p/4]
Porosity Variable U[0.05 0.40]
Gradient (%) Variable U[0 0.167]
log10 K (m/s) – upper layer Fixed 1025

Longitudinal dispersivity (m) Fixed 1
Transverse dispersivity (m) Fixed 0.1
Solid thermal conductivity (W/mK) Fixed 3
Water thermal conductivity (W/mK) Fixed 0.59
Solid specific heat capacity (J/kgK) Fixed 1,000
Water specific heat capacity (J/kgK) Fixed 4,189

Note. U indicates that the value was randomly sampled from a uniform
distribution
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Figure 1a). For each of the 500 models of the prior set, we simulate the geophysical data set collection. Then,
we apply DGSA on the simulated data sets. If the data response is sensitive to the same parameters as the pre-
diction, then conditions are favorable to reduce the uncertainty on the prediction with that data set.

The heat tracing experiment is simulated for the 500 models of the prior set. The temperature distribution
at each time-step in the cross-borehole ERT panel is extracted and transformed into resistivity variations
using a calibrated petrophysical relationship (Hermans et al., 2014, 2015b). In general, a 3D forward ERT
model should be used to simulate the change in resistance related to the variation of resistivity induced by
the change in temperature. However, in this specific study, we used the 2.5D forward model CRMod
(Kemna, 2000) to reduce the memory requirement and the computational cost of geophysical simulations.
Working with 2.5D simulations can introduce 3D effects in the data sets because variations of resistivity per-
pendicular to the panel are ignored. In this case, 3D effects can be related to the initial resistivity distribu-
tion and the presence of the heat plume. Indeed, in practice, the plume is detected before it reaches the
panel because of the out-of-plane sensitivity (e.g., Vandenborght et al., 2005). The former effects will be
reduced by the use of data difference, but not the later. However, in this specific case, previous works have
shown that 2.5D modeling was able to reproduce the breakthrough curve in an acceptable manner and 3-D
effects were assumed negligible, what was further validated by direct observations (Hermans et al., 2015b,
2016a). The data set for each subsurface model is composed of the change in the measured electrical resis-
tance for 410 different electrode configurations at 6 and 13 different time-steps respectively.

For the 1 day experiment (Figure 4a), the data are sensitive to the same parameters as the heat storage
except for the variance of the hydraulic conductivity distribution. This is likely due to the fact that the first
time-steps mainly provide information on the arrival time of the tracer, related to the mean hydraulic con-
ductivity. The heterogeneity of the distribution will mostly influence the tailing part of the curve. This can

Figure 3. (a) Prior distribution of the prediction (temperature during heat storage). Each black curve represents the pre-
diction for one model of the prior. The green curve indicates the prediction for the calibrated hydraulic conductivity distri-
bution. (b) Global sensitivity analysis of the parameters considered in the prior for the prediction response.

Figure 4. Global sensitivity analysis of the parameters considered in the prior for the data response (ERT data) for the
(a) 1 day and (b) 5 day experiment.
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be seen in the sensitivity analysis for the 5 day experiment (Figure 4b), mostly sensitive to the variance of
the hydraulic conductivity. Both experiments are sensitive to the natural gradient, but its influence is smaller
than for heat storage, because the tracing experiment is carried out in forced conditions.

The sensitivity analysis indicates that the proposed experiments are informative for heat storage predictions
because they are globally sensitive to the same parameters. At this point, one could consider alternative
field experiments. Indeed, the prefield data acquisition step is field-measurement independent. It is only
based on the expected variations of the prediction and the proposed data set based on our prior knowl-
edge of the site.

3.6. Prior Falsification Using Field Data
After data acquisition, we use the entire set of changes in resistances as well as a reduced dimension set to
falsify the prior distribution (step 3, Figure 1a). In addition, two piezometers within the ERT panel, located at
1 and 2.25 m from the left ERT borehole (Figure 2b), were equipped with temperature loggers (DiverVR ) mea-
suring constantly the temperature within the piezometers. We also falsify the prior with those direct, inde-
pendent, temperature measurements.
3.6.1. Raw ERT Measurements
The field ERT data set is composed of 410 electrode configurations. It was obtained after removal of obvious
outliers and noisy measurements. An analysis of the noise on the field data set using time-lapse reciprocals
(Lesparre et al., 2017) is described in supporting information Text S3 and Figure S3.

The average change in resistance for all electrode configurations is consistent with the prior as shown by
Figure 5a. Indeed, the observed curve (red) is within the distribution of curves from the prior (black curves).
This ensures that globally, the amplitude of the change can be represented by the prior and that the tem-
poral behavior is consistent. If the maximum in change in resistance was reached at the 10th time step for
all models of the prior set but at the 4th time step for the field, it would clearly indicate a falsification of the
prior.

We also use each individual electrode configuration for prior falsification. For most quadrupoles, the change
in resistance time series is well caught by the prior (Figure 5b). However, for a few of them, the data are at
the edge of the prior distribution, or even slightly above the maximum observed in the prior, while the tem-
poral behavior is similar (Figure 5c). The observed difference is not larger than between the extreme cases
in Figures 5a and 5b and therefore not sufficient to falsify the prior. This observation is related to the high
sensitivity of cross-borehole ERT to resistivity variations close to the electrodes.
3.6.2. ERT Measurements in Reduced Dimension Space
ERT measurements are sensitive to temperature changes, but each measured resistance is integrated over a
large volume which depends on the actual electrical resistivity distribution in the subsurface. Measurements
with close electrode configurations are relatively similar. A similar temporal behavior is also expected,
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line corresponds to the field data. (a) Average change in resistance for all data configurations. (b) Individual data consis-
tent with the prior. (c) Individual data slightly outside the range of the prior.
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although small differences might occur (Figure 5). Time-lapse ERT data sets thus have a high level of redun-
dancy. Here, we propose to reduce the dimensionality of the data set using principal component analysis
(PCA) and falsify the prior in the reduced dimension space (Figure 6).

For the 1 day experiment, the first principal component explains 81% of the variance, the 3 first compo-
nents represent 92.3%, and more than 99% of the variance in the data is explained by the 10 first principal
components. The same behavior is observed for the 5 day experiment, the first 3 and 10 components repre-
sent 93.4% and 98.7% of the variance, respectively.

For both experiments, the observed data lie within the prior distribution (Figures 6a and 6c) for the first 10
components. However, the location of the field data set in the PCA space for the first three dimensions shows
that our field set lies at the edge of the distribution (Figures 6b and 6d). Although our field data are part of
the prior, it is located in a region poorly sampled. This renders prediction-focused approaches, and stochastic
inversions in general, more challenging than in a densely populated zone (Hermans et al., 2016b).
3.6.3. Direct Measurements of Temperature
We use a similar approach for prior falsification with the independent validation data (raw data and in
reduced space). In contrast to ERT measurements, direct temperature measurements are not subject to any
integration over a large volume. The measured temperature variation is largely within the prior, both for the
raw data (Figure 7a) and in the reduced dimension space (Figure 7b). From the three sets used for prior fal-
sification, we are confident that our prior is adequate and able to reproduce the observed data.

3.7. Heat Storage Stochastic Prediction and Uncertainty Quantification
Since the forced heat tracing experiment monitored by ERT is informative and prior-consistent, we will now
use PFA to predict the temperature at the well during the heat storage experiment (step 4, Figure 1a). We
show only final results, intermediate steps and data noise analysis are presented in supporting information
Text S2, Text S3, Figures S1 and S3.

For the prediction of heat storage with the 1 day heat tracing experiment, we use the first 10 dimensions in
the data and the first 2 dimensions in the prediction. They represent more than 99% of the variance. The
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Water Resources Research 10.1002/2017WR022135

HERMANS ET AL. PREDICTING HEAT STORAGE WITH ERT 2941



correlation in the CCA space is not very strong as reflected in the respective scatter plots (supporting infor-
mation Figures S1a and S1b): 0.75 and 0.40. The calculated posterior distribution (Figure 8a) of the change
of temperature at the well indicates that the capacity for heat storage on the field site is relatively low. Most
samples of the posterior have a rapid decrease in temperature once the pumping phase starts. Globally, lit-
tle thermal energy is recovered. The uncertainty in the prediction is relatively low compared to the prior dis-
tribution of temperature at the well (Figure 8b). We see that the predictions for the observed data lie within
the prior but are at the lower end of the distribution. In the posterior, the percentiles 10 and 50% are almost
superimposed and correspond to the quantile 10% of the prior distribution. This signifies that about 50% of
the samples of the posterior have very low thermal energy recovery, at a level corresponding to only 10%
of the prior models.

For the 5 day experiment, increase correlation coefficients in CCA space are observed (0.89 and 0.72, see
supporting information Figures S1c and S1d) indicating that the 5 day experiment contains more useful
information for the prediction of heat storage. The low heat storage capacity of the aquifer is confirmed by
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the corresponding posterior distribution (Figure 8c). The associated uncertainty is slightly increased as
shown by the 10, 50 and 90% quantiles (Figure 8d). The position of the 90% percentile suggests that the
probability of the aquifer to have a higher heat storage capacity is slightly increased considering the 5 day
experiment. However, the difference is relatively small. The 5 day experiment results are more reliable but
are obtained at the cost of additional data acquisition. This illustrates that PFA can be used within the con-
text of experimental design (Hermans, 2017). The results are also coherent with the deterministic solution
(Figure 3a, green curve).

3.8. Spatio-Temporal Distribution of Temperature Prediction
A similar approach as for heat storage prediction is used in this section. Since the data are similar, the prior
remains valid. The major difference is that the prediction is now a spatio-temporal distribution of tempera-
ture in the saturated part of the aquifer (2D 1 time 5 3D) and not a simple curve (1D). The prediction is the
temperature distribution observed in the ERT panel during the 1 day heat tracing experiment using the
cross-borehole ERT data. It can be validated using direct measurement of the aquifer temperature. Interme-
diate results (CCA) are again presented in supporting information Text S2 and Figure S2.
3.8.1. Posterior Prediction
The dimensionality of the prediction is much larger and complex than in the previous case. The first
8 dimensions were kept after PCA, corresponding to 89% of the variance. Nevertheless, highly correlated
relationships are obtained between data and prediction, although the correlation coefficient decreases as
the scattering around the linear relationships increases (supporting information Figure S2).

Three different samples of the posterior distribution at three different time-steps illustrate the variability of
the posterior distribution (Figure 9). They all show a heat plume limited to the bottom part of the aquifer
and divided in 2 different parts with a lower temperature in the middle of the section. This observation is
coherent with results previously obtained with classical inversion methods and direct measurements made
during the experiment (Hermans et al., 2015b, 2016a). The confinement of the plume to the bottom part of
the aquifer is due to the preferential flow in the coarse gravel layer located above the bed rock.
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Most uncertainty is related to the level of temperature change and
the small-scale temperature distribution. Those spatial variations are
highlighted in the standard deviation distribution (Figure 9). The tem-
poral behavior varies only slightly within the samples.
3.8.2. Validation With Direct Measurements
The direct measurements in the piezometers (Figure 2b) offer inde-
pendent and direct measurements to validate the proposed predic-
tions at the locations of the two sensors. The posterior distribution of
temperature changes at those two positions (Figure 10) shows that
the temporal behavior of the tracer is very well caught by ERT data.
The reduction of uncertainty compared to the prior is large (Figure 7)
but the uncertainty on the temperature variations remains relatively
high.

A change of 18C is responsible for a change in electrical conductivity
of about 2%. In deterministic ERT inversions, small changes are often
disregarded or interpreted only qualitatively (e.g., Chr�etien et al.,
2014; Doetsch et al., 2012; Hermans et al., 2012; Robert et al., 2012). As

an example, Hermans et al. (2015b) estimated the limit of detection of ERT in this experiment at about
1.58C. The level of uncertainty derived with PFA thus seems relatively coherent with the limitation of the
method itself.

The uncertainty of the temperature distribution obtained with PFA within the ERT panel is an illustration of
the non-uniqueness of the solution for geophysical inverse problems. It is therefore expected to observe
high uncertainty at the location of the piezometers which lie in zones of relatively low resolution. Here, BEL
allows a direct estimation of the non-uniqueness (and therefore uncertainty) by deriving the full posterior
distribution.

4. Discussion

Although we considered a wide prior, conceptual assumptions made in the numerical model may introduce
uncertainty. For instance, the bedrock was modeled as an impermeable layer and the upper sandy gravel
layer was modeled as a homogeneous, less permeable layer. The latter is confirmed by direct measure-
ments, but the 5 day tracing data show that a late tracer arrival, with low amplitude is observed in this layer
(Wildemeersch et al., 2014). This behavior is not well reproduced by our prior because we did not consider
uncertainty within this layer. The effect on the heat storage prediction is limited because it is not signifi-
cantly influenced by this parameter. However, it would impact predictions for the last time-steps of the
heat tracing experiment.

The physics of the problem itself was simplified since the density-dependence of the flow was neglected to
speed up hydrogeological forward modeling. Klepikova et al. (2016b) have shown that density effects
mostly affect the temperature distribution at the proximity of the injection well for the heat tracing experi-
ment. Given the lower temperature of injection during heat storage, the effect on the prediction is also
limited.

Some thermal transport parameters and the petrophysical relationship between temperature and resistivity
changes were considered as known. If the relationship was calibrated in the laboratory (Hermans et al.,
2015b), small variations related to spatial uncertainty might occur, due to the presence of clayey sediments
for example. Uncertainty related to petrophysical parameters could directly be included in BEL, similarly to
other parameters. The relationship also supposes the initial water conductivity to be constant.

The application of BEL to a field case highlights the necessity to avoid prior falsification, a concern common
to all Bayesian methods. Otherwise, the resulting posterior distribution might be misleading with an unreal-
istic associated uncertainty. In this specific case, the field data lie at the edge of the data prior distribution.
This is clearly a challenging situation for complex forecast since most models of the prior, although globally
consistent with the data, are not really representative of the particular data set collected on the field. This is
likely related to the spatial heterogeneity of the aquifer.
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Indeed, the spatial patterns of temperature in the ERT panel during the heat tracing experiment, divided in
two separated plumes, indicate a relatively complex flow pattern induced by the heterogeneity within the
coarse gravel layer (Klepikova et al., 2016b). This kind of temperature distribution requiring preferential flow
paths is not observed in most models of the prior set (Figure 11). Many models from the prior set show a
single plume or plumes with several maximum, close to each other. This signifies that it is difficult to accu-
rately represent the field data because only a few spatial models within the prior can represent similar tem-
perature distributions. This can subsequently explain why the field data lie at the edge of the prior
distribution (Figure 6).

If an accurate prediction is difficult to obtain, one solution is to update the prior model in order to preferen-
tially sample models in the area of the data. Such prior falsification approaches have been successfully
applied in different contexts (Hermans et al., 2015a; Park et al., 2013; Scheidt et al., 2015a, 2018).

The above considerations are not specific to our approach but remain valid for all deterministic and sto-
chastic methods. BEL has the double advantage to (1) indicating relatively easily the incompatibility
between the prior and the data and (2) offering a simple and unique framework to integrate any type of
uncertainty, would it be related to conceptual decision, parameter distribution or spatial uncertainty. In
some cases, model parameters are not independent, but are correlated to each other (e.g., porosity and
hydraulic conductivity). If described in the prior, such dependency between parameter can be handled by
BEL without modification of the framework.

One component of BEL is the choice of the number of models necessary to adequately sample the prior. It
is difficult to give a rule of thumb and a sensitivity analysis on this effect is out of the scope of the paper. It
is important to note that BEL focuses on the prediction and not on the model, so that it is the complexity of
the prediction that should drive the number of models. In most studies, a range of models between 100
and 1,000 should be sufficient. In cases where less prior information is available, a wider prior is necessary
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Figure 11. 14 samples of temperature distribution after 30 h during the heat tracing experiment from the prior set of models. The image at the bottom-right is a
sample of the posterior distribution for the observed data, close to the mean of the posterior distribution. This illustrates that the field situation is relatively particu-
lar with two distinct plumes.
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and therefore more Monte Carlo simulations should be used to adequately characterize the data-prediction
relationship. Similarly, if more uncertain parameters are considered or if the spatial extent of the model is
larger, the amount of Monte Carlo simulation should be increased in order to properly sample the data and
prediction spaces. The required number of models might depend on the observed data. Areas of the data
space densely sampled are easier to predict. If the observed data are somehow extreme, a denser sampling
of the prior might help to accurately predict the posterior (see also Scheidt et al., 2018). In our example, the
validation prediction is complex (2D 1 time temperature distribution) and 250 models were sufficient to
make a prediction close to the average, but we increased the number to 500, making the derived relation-
ship more robust, because our data set lies at the edge of the prior distribution.

A good approach is to start with a limited number of models (e.g., 100–200) for the sensitivity analysis and
the prior falsification. Since DGSA provides a confidence interval around the sensitivity, the number of
model can be increased to narrow this interval, if needed. The number can be further increased for PFA to
derive a robust relationship. Hermans et al. (2016b) introduced two straightforward ways to validate the
choice of reduced dimensions and number of models. First, one can calculate the prediction corresponding
to some of the models of the prior. If various predictions are correctly estimated, then the chosen prior is
likely sufficient to characterize the data-prediction relationship. Second, the later process can be extended
to all the models of the prior. In that case, integrating the respective posterior distribution over the parame-
ter space should give a distribution similar to the prior.

5. Conclusion

This paper proposes to use a novel framework, Bayesian Evidential Learning, to estimate the uncertainty of
prediction for subsurface models. We demonstrate the method within the context of the prediction of heat
storage capacity of an alluvial aquifer.

BEL is divided in two stages: prefield and postfield data acquisition. Before data acquisition, we show that
the prior uncertainty of heat storage is large. We identify sensitive parameters and design an informative
heat tracing experiment to reduce the uncertainty of heat storage. After data acquisition, we first verify the
consistency of the prior with the field data (prior falsification). Then we predict the heat storage capacity of
the aquifer. The final results reveal a low ability for the alluvial aquifer to store heat, related to a combina-
tion of high hydraulic conductivity and relatively high natural gradient. Our methodology enables to esti-
mate the uncertainty related to the prediction offering a basis for fully-informed decision making and risk
analysis. As a validation, we also predict the spatio-temporal distribution of the temperature during the field
heat tracing experiment.

The proposed methodology has the advantage over other stochastic methodologies to require only a lim-
ited amount of forward simulations. In this case, only 1,000 hydrogeological model forward runs were nec-
essary to estimate the full posterior distribution of the prediction. Each run requiring about 5 minutes on a
standard desktop computer, the method does not require advanced computing facility. DGSA and PFA are
not computationally time-consuming. Moreover, forward simulations can be fully parallelized. Therefore,
the computational cost is limited compared to the ten to hundred thousands of runs that would be
required by a McMC method.

BEL allows accounting for all kind of uncertainty (conceptual, structural or spatial) within a unique frame-
work. Therefore, our method should enable to generalize the use of stochastic analysis techniques by
researchers, engineers and practitioners for real field applications.

References
Arato, A., Boaga, J., Comina, C., De Seta, M., Di Sipio, E., Galgaro, A., et al. (2015). Geophysical monitoring for shallow geothermal applica-

tions––Two Italian case histories. First Break, 33, 75–79.
Bakr, M., van Oostrom, N., & Sommer, W. (2013). Efficiency of and interference among multiple aquifer thermal energy storage systems:

A Dutch case study. Renewable Energy, 60, 53–62. https://doi.org/10.1016/j.renene.2013.04.004
Bayer, P., Rybach, L., Blum, P., & Brauchler, R. (2013). Review on life cycle environmental effects of geothermal power generation. Renewable

and Sustainable Energy Reviews, 26, 446–463. https://doi.org/10.1016/j.rser.2013.05.039
Bloemendal, M., Olsthoorn, T., & Boons, F. (2014). How to achieve optimal and sustainable use of the subsurface for aquifer thermal energy

storage. Energy Policy, 66, 104–114. https://doi.org/10.1016/j.enpol.2013.11.034

Acknowledgments
This work was partly performed by
Thomas Hermans while being the
recipient of a fellowship from the
Belgian American Educational
Foundation for postdoctoral studies at
Stanford University. We also thank
Wallonia-Brussels International and the
Vocatio Foundation for the financial
support of T. Hermans during his
postdoctoral research stay at Stanford
University. Data used in this paper are
stored in the H1 database, site of
Hermalle-sous-Argenteau at http://
hplus.ore.fr/en/enigma/data-hermalle.
Codes for DGSA and PFA are freely
available at https://github.com/
SCRFpublic.

Water Resources Research 10.1002/2017WR022135

HERMANS ET AL. PREDICTING HEAT STORAGE WITH ERT 2946

https://doi.org/10.1016/j.renene.2013.04.004
https://doi.org/10.1016/j.rser.2013.05.039
https://doi.org/10.1016/j.enpol.2013.11.034
http://hplus.ore.fr/en/enigma/data-hermalle
http://hplus.ore.fr/en/enigma/data-hermalle
https://github.com/SCRFpublic
https://github.com/SCRFpublic


Blum, P., Campillo, G., & K€olbel, T. (2011). Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany.
Energy, 36, 3002–3011. https://doi.org/10.1016/j.energy.2011.02.044

Bridger, D. W., & Allen, D. M. (2010). Heat transport simulations in a heterogeneous aquifer used for aquifer thermal energy storage (ATES).
Canadian Geotechnical Journal, 47, 96–115. https://doi.org/10.1139/T09-078

Bridger, D. W., & Allen, D. M. (2014). Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage sys-
tem. Hydrogeology Journal, 22, 233–250. https://doi.org/10.1007/s10040-013-1049-1

Brouyère, S. (2001). Etude et mod�elisation du transport et du pi�egeage des solut�es en milieu souterrain variablement satur�e (study and model-
ling of transport and retardation of solutes in variably saturated media) (PhD thesis). Liege, Belgium: University of Liege.

Chalmers, A. (2013). What is this thing called science? (4th ed.). Indianapolis, IN: Hackett Publishing.
Chen, M., Tompson, A. F. B., Mellors, R. J., & Abdalla, O. (2015). An efficient optimization of well placement and control for a geothermal

prospect under geological uncertainty. Applied Energy, 137, 352–363. https://doi.org/10.1016/j.apenergy.2014.10.036
Chr�etien, M., Lataste, J. F., Fabre, R., & Denis, A. (2014). Electrical resistivity tomography to understand clay behavior during seasonal water

content variations. Engineering Geology, 169, 112–123. https://doi.org/10.1016/j.enggeo.2013.11.019
Dassargues, A. (1997). Modeling baseflow from an alluvial aquifer using hydraulic-conductivity data obtained from a derived relation with

apparent electrical resistivity. Hydrogeology Journal, 5, 97–108.
Derouane, J., & Dassargues, A. (1998). Delineation of groundwater protection zones based on tracer tests and transport modeling in alluvial

sediments. Environmental Geology, 36, 27–36.
Doetsch, J., Linde, N., Vogt, T., Binley, A., & Green, A. G. (2012). Imaging and quantifying salt-tracer transport in a riparian groundwater sys-

tem by means of 3D ERT monitoring. Geophysics, 77, B207–B218. https://doi.org/10.1190/geo2012-0046.1
Fenwick, D., Scheidt, C., & Caers, J. (2014). Quantifying asymmetric parameter interactions in sensitivity analysis: Application to reservoir

modeling. Mathematical Geosciences, 46, 493–511. https://doi.org/10.1007/s11004-014-9530-5
Ferguson, G. (2007). Heterogeneity and thermal modeling of ground water. Ground Water, 45, 485–490. https://doi.org/10.1111/j.1745-

6584.2007.00323.x
Fu, J., & G�omez-Hern�andez, J. J. (2009). A blocking Markov Chain Monte Carlo method for inverse stochastic hydrogeological modeling.

Mathematical Geosciences, 41, 105–128. https://doi.org/10.1007/s11004-008-9206-0
G�omez-Hern�andez, J. J., Sahuquillo, A., & Capilla, J. E. (1997). Stochastic simulation of transmissivity fields conditional to both transmissivity

and piezometric data––1. Theory. Journal of Hydrology, 203, 162–174.
Goovaerts, P. (1997). Geostatistics for natural resources evaluation (Applied Geostatistics Series). New York: Oxford University Press.
Hermans, T., Kemna, A., & Nguyen, F. (2016a). Covariance-constrained difference inversion of time-lapse electrical resistivity tomography

data. Geophysics, 81, E311–E322. https://doi.org/10.1190/geo2015-0491.1
Hermans, T., Nguyen, F., & Caers, J. (2015a). Uncertainty in training image-based inversion of hydraulic head data constrained to ERT data:

Workflow and case study. Water Resources Research, 51, 5332–5352. https://doi.org/10.1002/2014WR016460
Hermans, T., Nguyen, F., Robert, T., & Revil, A. (2014). Geophysical methods for monitoring temperature changes in shallow low enthalpy

geothermal systems. Energies, 7, 5083–5118. https://doi.org/10.3390/en7085083
Hermans, T., Oware, E. K., & Caers, J. (2016b). Direct prediction of spatially and temporally varying physical properties from time-lapse elec-

trical resistance data. Water Resources Research, 52, 7262–7283. https://doi.org/10.1002/2016WR019126
Hermans, T., Vandenbohede, A., Lebbe, L., & Nguyen, F. (2012). A shallow geothermal experiment in a sandy aquifer monitored using elec-

tric resistivity tomography. Geophysics, 77, B11–B21.
Hermans, T., Wildemeersch, S., Jamin, P., Orban, P., Brouyère, S., Dassargues, A., & Nguyen, F. (2015b). Quantitative temperature moni-

toring of a heat tracing experiment using cross-borehole ERT. Geothermics, 53, 14–26. https://doi.org/10.1016/j.geothermics.2014.
03.013

Hermans, T. (2017). Prediction-focused approaches: An opportunity for hydrology. Groundwater, 55(5), 683–687.
Hou, Z., & Rubin, Y. (2005). On minimum relative entropy concepts and prior compatibility issues in vadose zone inverse and forward

modeling. Water Resources Research, 41, W12425. https://doi.org/10.1029/2005WR004082
Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge, UK: Cambridge University Press.
Kemna, A. (2000). Tomographic inversion of complex resistivity-theory and application. Bochum, Germany: Ruhr-Universit€at.
Kim, J., Lee, Y., Yoon, W. S., Jeon, J. S., Koo, M. H., & Keehm, Y. (2010). Numerical modeling of aquifer thermal energy storage system. Energy,

35, 4955–4965.
Klepikova, M., Wildemeersch, S., Hermans, T., Jamin, P., Orban, P., Nguyen, F., et al.(2016b). Heat tracer test in an alluvial aquifer: Field exper-

iment and inverse modelling. Journal of Hydrology, 540, 812–823. https://doi.org/10.1016/j.jhydrol.2016.06.066
Klepikova, M. V., Le Borgne, T., Bour, O., Dentz, M., Hochreutener, R., & Lavenant, N. (2016a). Heat as a tracer for understanding transport

processes in fractured media: Theory and field assessment from multiscale thermal push-pull tracer tests. Water Resources Research, 52,
5442–5457. https://doi.org/10.1002/2016WR018789

Kuo, C., & Liao, H. (2012). The feasibility of using circulating groundwater as renewable energy sources for air-conditioning in Taipei basin.
Renewable Energy, 39, 175–182. https://doi.org/10.1016/j.renene.2011.07.046

Lee, K. S. (2010). A review on concepts, applications, and models of aquifer thermal energy storage systems. Energies, 3, 1320–1334.
Lesparre, N., Nguyen, F., Kemna, A., Robert, T., Hermans, T., Daoudi, M., & Flores-Orozco, A. (2017). A new approach for time-lapse data

weighting in electrical resistivity tomography. Geophysics, 82(6), E325–E333.
Linde, N., Renard, P., Mukerji, T., & Caers, J. (2015). Geological realism in hydrogeological and geophysical inverse modeling: A review.

Advances in Water Resources, 86, 86–101. https://doi.org/10.1016/j.advwatres.2015.09.019
Lo Russo, S., & Civita, M. V. (2009). Open-loop groundwater heat pumps development for large buildings: A case study. Geothermics, 38,

335–345. https://doi.org/10.1016/j.geothermics.2008.12.009
Macfarlane, A., Foerster, A., Merriam, D., Schroetter, J., & Healey, J. (2002). Monitoring artificially stimulated fluid movement in the Creta-

ceous Dakota aquifer, western Kansas. Hydrogeology Journal, 10, 662–673. https://doi.org/10.1007/s10040-002-0223-7
Nam, Y., & Ooka, R. (2010). Numerical simulation of ground heat and water transfer for groundwater heat pump system based on real-

scale experiment. Energy and Buildings, 42, 69–75. https://doi.org/10.1016/j.enbuild.2009.07.012
Oladyshkin, S., de Barros, F. P. J., & Nowak, W. (2012). Global sensitivity analysis: A flexible and efficient framework with an example from

stochastic hydrogeology. Advances in Water Resources, 37, 10–22.
Oliver, D. S., Cunha, L. B., & Reynolds, A. C. (1997). Markov chain Monte Carlo methods for conditioning a permeability field to pressure

data. Mathematical Geology, 29, 61–91.
Palmer, C. D., Blowes, D. W., Frind, E. O., & Molson, J. W. (1992). Thermal energy storage in an unconfined aquifer 1. Field injection experi-

ment. Water Resources Research, 28, 2845–2856.

Water Resources Research 10.1002/2017WR022135

HERMANS ET AL. PREDICTING HEAT STORAGE WITH ERT 2947

https://doi.org/10.1016/j.energy.2011.02.044
https://doi.org/10.1139/T09-078
https://doi.org/10.1007/s10040-013-1049-1
https://doi.org/10.1016/j.apenergy.2014.10.036
https://doi.org/10.1016/j.enggeo.2013.11.019
https://doi.org/10.1190/geo2012-0046.1
https://doi.org/10.1007/s11004-014-9530-5
https://doi.org/10.1111/j.1745-6584.2007.00323.x
https://doi.org/10.1111/j.1745-6584.2007.00323.x
https://doi.org/10.1007/s11004-008-9206-0
https://doi.org/10.1190/geo2015-0491.1
https://doi.org/10.1002/2014WR016460
https://doi.org/10.3390/en7085083
https://doi.org/10.1002/2016WR019126
https://doi.org/10.1016/j.geothermics.2014.03.013
https://doi.org/10.1016/j.geothermics.2014.03.013
https://doi.org/10.1029/2005WR004082
https://doi.org/10.1016/j.jhydrol.2016.06.066
https://doi.org/10.1002/2016WR018789
https://doi.org/10.1016/j.renene.2011.07.046
https://doi.org/10.1016/j.advwatres.2015.09.019
https://doi.org/10.1016/j.geothermics.2008.12.009
https://doi.org/10.1007/s10040-002-0223-7
https://doi.org/10.1016/j.enbuild.2009.07.012


Park, B.-H., Bae, G.-O., & Lee, K.-K. (2015). Importance of thermal dispersivity in designing groundwater heat pump (GWHP) system: Field
and numerical study. Renewable Energy, 83, 270–279. https://doi.org/10.1016/j.renene.2015.04.036

Park, H., Scheidt, C., Fenwick, D., Boucher, A., & Caers, J. (2013). History matching and uncertainty quantification of facies models with multi-
ple geological interpretations. Computational Geosciences, 17, 609–621. https://doi.org/10.1007/s10596-013-9343-5

Park, J., Yang, G., Satija, A., Scheidt, C., & Caers, J. (2016). DGSA: A Matlab toolbox for distance-based generalized sensitivity analysis of geo-
scientific computer experiments. Computers & Geosciences, 97, 15–29. https://doi.org/10.1016/j.cageo.2016.08.021

Popper, K. (1959). The logic of scientific discovery. London, UK: Hutchinson & Co.
Possemiers, M., Huysmans, M., & Batelaan, O. (2015). Application of multiple-point geostatistics to simulate the effect of small-scale aquifer

heterogeneity on the efficiency of aquifer thermal energy storage. Hydrogeology Journal, 23, 971–981. https://doi.org/10.1007/s10040-
015-1244-3

Robert, T., Caterina, D., Deceuster, J., Kaufmann, O., & Nguyen, F. (2012). A salt tracer test monitored with surface ERT to detect preferential
flow and transport paths in fractured/karstified limestones. Geophysics, 77, B55–B67.

Rubin, Y., Chen, X., Murakami, H., & Hahn, M. (2010). A Bayesian approach for inverse modeling, data assimilation, and conditional simula-
tion of spatial random fields. Water Resources Research, 46, W10523. https://doi.org/10.1029/2009WR008799

Saner, D., Juraske, R., K€ubert, M., Blum, P., Hellweg, S., & Bayer, P. (2010). Is it only CO2 that matters? A life cycle perspective on shallow geo-
thermal systems. Renewable and Sustainable Energy Reviews, 14, 1798–1813. https://doi.org/10.1016/j.rser.2010.04.002

Satija, A., & Caers, J. (2015). Direct forecasting of subsurface flow response from non-linear dynamic data by linear least-squares in canoni-
cal functional principal component space. Advances in Water Resources, 77, 69–81. https://doi.org/10.1016/j.advwatres.2015.01.002

Scheidt, C., Jeong, C., Mukerji, T., & Caers, J. (2015a). Probabilistic falsification of prior geologic uncertainty with seismic amplitude data:
Application to a turbidite reservoir case. Geophysics, 80, M89–M100. https://doi.org/10.1190/geo2015-0084.1

Scheidt, C., Li, L., & Caers, J. (2018). Quantifying uncertainty in subsurface sysems (288 pp.). New York, NY: American Geophysical Union,
Wiley.

Scheidt, C., Renard, P., & Caers, J. (2015b). Prediction-focused subsurface modeling: Investigating the need for accuracy in flow-based
inverse modeling. Mathematical Geosciences, 47, 173–191. https://doi.org/10.1007/s11004-014-9521-6

Sommer, W., Valstar, J., van Gaans, P., Grotenhuis, T., & Rijnaarts, H. (2013). The impact of aquifer heterogeneity on the performance of
aquifer thermal energy storage. Water Resources Research, 49, 8128–8138. https://doi.org/10.1002/2013WR013677

Sommer, W. T., Doornenbal, P. J., Drijver, B. C., van Gaans, P. F. M., Leusbrock, I., Grotenhuis, J. T. C., & Rijnaarts, H. H. M. (2014). Thermal per-
formance and heat transport in aquifer thermal energy storage. Hydrogeology Journal, 22, 263–279. https://doi.org/10.1007/s10040-013-
1066-0

Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. Philadelphia, PA: Society for Industrial and Applied
Mathematics.

Therrien, R., McLaren, R., Sudicky, E., & Panday, S. (2010). HydroGeoSphere: A three-dimensional numerical model describing fully-integrated
subsurface and surface flow and solute transport. Waterloo, ON: Groundwater Simulation Group.

Vandenbohede, A., Hermans, T., Nguyen, F., & Lebbe, L. (2011). Shallow heat injection and storage experiment: Heat transport simulation
and sensitivity analysis. Journal of Hydrology, 409, 262–272.

Vandenbohede, A., Louwyck, A., & Lebbe, L. (2009). Conservative solute versus heat transport in porous media during push-pull tests.
Transport in Porous Media, 76, 265–287. https://doi.org/10.1007/s11242-008-9246-4

Vandenborght, J., Kemna, A., Hardelauf, H., & Vereecken, H. (2005). Potential of electrical resistivity tomography to infer aquifer transport
characteristics from tracer studies: A synthetic case study. Water Resources Research, 41, W06013. https://doi.org/10.1029/
2004WR003774

Vanhoudt, D., Desmedt, J., Van Bael, J., Robeyn, N., & Hoes, H. (2011). An aquifer thermal storage system in a Belgian hospital: Long-term
experimental evaluation of energy and cost savings. Energy and Buildings, 43, 3657–3665.

Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., & Schoups, G. (2013). Hydrologic data assimilation using particle Markov chain Monte Carlo sim-
ulation: Theory, concepts and applications. Advances in Water Resources, 51, 457–478. https://doi.org/10.1016/j.advwatres.2012.04.002

Wagner, V., Li, T., Bayer, P., Leven, C., Dietrich, P., & Blum, P. (2014). Thermal tracer testing in a sedimentary aquifer: Field experiment (Laus-
wiesen, Germany) and numerical simulation. Hydrogeology Journal, 22, 175–187. https://doi.org/10.1007/s10040-013-1059-z

Wildemeersch, S., Jamin, P., Orban, P., Hermans, T., Klepikova, M., Nguyen, F., et al. (2014). Coupling heat and chemical tracer experiments
for estimating heat transfer parameters in shallow alluvial aquifers. Journal of Contaminant Hydrology, 169, 90–99. https://doi.org/10.
1016/j.jconhyd.2014.08.001

Yapparova, A., Matth€ai, S., & Driesner, T. (2014). Realistic simulation of an aquifer thermal energy storage: Effects of injection temperature,
well placement and groundwater flow. Energy, 76, 1011–1018. https://doi.org/10.1016/j.energy.2014.09.018

Yoon, H., Hart, D. B., & McKenna, S. A. (2013). Parameter estimation and predictive uncertainty in stochastic inverse modeling of groundwa-
ter flow: Comparing null-space Monte Carlo and multiple starting point methods. Water Resources Research, 49, 536–553. https://doi.
org/10.1002/wrcr.20064

Erratum

The originally published version of this article misstated the affiliation of Jef Caers as ‘‘Department of Geol-
ogy, Ghent University, Ghent, Belgium.’’ The error has been corrected, and this may be considered the offi-
cial version of record.

Water Resources Research 10.1002/2017WR022135

HERMANS ET AL. PREDICTING HEAT STORAGE WITH ERT 2948

https://doi.org/10.1016/j.renene.2015.04.036
https://doi.org/10.1007/s10596-013-9343-5
https://doi.org/10.1016/j.cageo.2016.08.021
https://doi.org/10.1007/s10040-015-1244-3
https://doi.org/10.1007/s10040-015-1244-3
https://doi.org/10.1029/2009WR008799
https://doi.org/10.1016/j.rser.2010.04.002
https://doi.org/10.1016/j.advwatres.2015.01.002
https://doi.org/10.1190/geo2015-0084.1
https://doi.org/10.1007/s11004-014-9521-6
https://doi.org/10.1002/2013WR013677
https://doi.org/10.1007/s10040-013-1066-0
https://doi.org/10.1007/s10040-013-1066-0
https://doi.org/10.1007/s11242-008-9246-4
https://doi.org/10.1016/j.advwatres.2012.04.002
https://doi.org/10.1007/s10040-013-1059-z
https://doi.org/10.1016/j.jconhyd.2014.08.001
https://doi.org/10.1016/j.jconhyd.2014.08.001
https://doi.org/10.1016/j.energy.2014.09.018
https://doi.org/10.1002/wrcr.20064
https://doi.org/10.1002/wrcr.20064

	l
	l
	l
	l

