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ABSTRACT

In this dissertation, we mainly address two issues: 1. improving the finite-length per-

formance of capacity-achieving polar codes; 2. use polar codes to efficiently exploit the

source redundancy to improve the reliability of the data storage system.

In the first part of the dissertation, we propose interleaved concatenation schemes

of polar codes with outer binary BCH and convolutional codes to improve the finite-

length performance of polar codes. For asymptotically long blocklength, we show that

our schemes achieve exponential error decay rate which is much larger than the sub-

exponential decay rate of standalone polar codes. In practice we show by simulation that

our schemes outperform stand-alone polar codes decoded with successive cancellation or

belief propagation decoding. The performance of concatenated polar and convolutional

codes can be comparable to stand-alone polar codes with list decoding in the high signal

to noise ratio regime. In addition to this, we show that the proposed concatenation schemes

require lower memory and decoding complexity in comparison to belief propagation and

list decoding of polar codes. With the proposed schemes, polar codes are able to strike a

good balance between performance, memory and decoding complexity.

The second part of the dissertation is devoted to improving the decoding performance

of polar codes where there is leftover redundancy after source compression. We focus on

language-based sources, and propose a joint-source channel decoding scheme for polar

codes. We show that if the language decoder is modeled as erasure correcting outer block

codes, the rate of inner polar codes can be improved while still guaranteeing a vanishing

probability of error. The improved rate depends on the frozen bit distribution of polar

codes and we provide a formal proof for the convergence of that distribution. Both lower

bound and maximum improved rate analysis are provided. To compare with the non-
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iterative joint list decoding scheme for polar codes, we study a joint iterative decoding

scheme with graph codes. In particular, irregular repeat accumulate codes are exploited

because of low encoding/decoding complexity and capacity achieving property for the

binary erasure channel. We propose how to design optimal irregular repeat accumulate

codes with different models of language decoder. We show that our scheme achieves

improved decoding thresholds. A comparison of joint polar decoding and joint irregular

repeat accumulate decoding is given.
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1. INTRODUCTION

Polar codes, invented by Arikan [2] in 2008, are a major breakthrough in coding theory

in recent years. Polar codes are the first known capacity-achieving codes with explicit con-

struction methods; they have low encoding and decoding complexities; they don’t exhibit

error floors in bit error rates. Polar codes have been widely applied to problems including

channel coding [3, 4], source coding [4, 5, 6], transmission through multiple access chan-

nels (MACs) [7, 8, 9], broadcast channels [10, 11] and wiretap channels [12, 13]. Many

asymptotic properties of polar codes have been studied, such as the rate of channel polar-

ization [14], their scaling exponents [15, 16, 17] and minimum distance [4], etc. However

there are several drawbacks of polar codes. First, the block error probability of polar

codes decays with the blocklength N only as O(2N
0.5−ε

). The sub-exponential error decay

rate cannot be improved by using advanced decoding strategies such as belief propagation

(BP) or list decoding. Second, the finite length performance (for small to moderate block

lengths) of polar codes is not as impressive as that of other state of the art coding schemes

[3, 18].

In the first part of the dissertation, we aim at improving the finite-length performance

of polar codes. We propose interleaved concatenation schemes of polar codes with outer

binary codes, including binary Bose, Chaudhuri and Hocquenghem (BCH) and convolu-

tional codes. Our insight of using interleaved concatenation comes from the increased

cutoff rate of the channel by the polarization process [19]. The interleaved concatenation

is a clever way for sequential decoding to efficiently take advantage of the increased cutoff

rate of polar codes. With the interleaved structure, sequential decoding can exploit the im-

proved cutoff rate by using long constraint length convolutional codes, while maintaining

a low complexity of communication at rates up to the capacity. We show that for asymp-
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totically long blocklength our schemes give exponential error decay rate which is a large

improvement over the standalone polar codes. For moderate blocklengths, our simulation

results show show substantial performance improvement over existing schemes.

In the second part of the dissertation, we study how to use polar codes to exploit the

benefit of source redundancy. Our motivation is from the observation that in the practical

data storage system, there is always residual redundancy even after source compression.

Joint source-channel decoding (JSCD) is a good way to take advantage of source redun-

dancy. There are works on JSCD with convolutional codes, Turbo codes and LDPC codes.

However, the performance of polar codes with JSCD has not been studied in detail. We

show that list decoding of polar codes can fully exploit the structure inherent in the source

redundancy. For language based source , the redundancy is described by a tree structured

dictionary. The tree structure of list decoding of polar codes thus can be efficiently com-

bined with the dictionary in JSCD. It has been shown that the concatenation of polar codes

with a few cyclic redundancy check (CRC) bits under list decoding has outstanding per-

formance compared with Turbo and LDPC codes [20]. If polar codes are used as error cor-

rection codes for sources with redundancy, the system can be considered as concatenation

of polar codes with a set of short length outer codes. The source redundancy has a critical

advantage over CRC constraint. It acts as a set of local constraints thus is able to detect

the validity of decoded paths before decoding the whole codeword. We propose a joint

list decoding scheme for polar codes for language-based sources, and show impressive

performance improvement obtained from the scheme. To understand how much gain can

be fully achieved by exploiting the source redundancy, we make simplifying assumptions

of the source model and analyze the improved rate of polar codes in the asymptotically

long blocklength. We show that the improved rate depends on the frozen bit distribution

of polar codes, and the frozen bit distribution converges to a limit. We then derive a lower

bound of improved rate of polar codes based on the converged frozen bit distribution. Fur-

2



ther we propose an optimal bit allocation algorithm to maximize the increase in rate of

polar codes.

The joint decoding scheme with polar codes is a non-iterative decision feedback scheme.

Since iterative decoding is shown to be a powerful and efficient tool for decoding Turbo

and LDPC codes with low decoding complexity, it is interesting to study how to fully

explore the benefit of iterative decoding when the source redundancy is available at the

decoder. We extend our work to study an alternative scheme to explore the natural redun-

dancy – joint iterative source-channel decoding. We study how to design optimal irregular

repeat accumulate codes in the joint decoding scheme with improved decoding thresh-

olds. Finally we provide a comparison of joint polar decoding and joint LDPC decoding

schemes to see the benefit of each scheme.

1.1 Organization

The rest of this dissertation is organized as follows. In Chapter 2 we include some

background on polar codes and their decoding methods, rate of polarization, cutoff rate and

sequential decoding. In Chapter 3 we introduce the finite-length problem of polar codes,

and propose interleaved concatenation schemes of polar codes with outer binary codes.

For convolutional outer codes, we use sequential decoding to take advantage of increased

cutoff rate by polarization. We study comprehensively the memory space, decoding com-

plexity and performance compared to other existing schemes such as the concatenated RS

and polar codes.

In Chapter 4 we study the problem of how to exploit the natural redundancy in the

source to improve the decoding performance in the data storage system. We propose a

JSCD scheme based on polar codes to efficiently exploit the natural redundancy. Simpli-

fying assumptions of the source model is made, and we study the improved rate of polar

codes by the natural redundancy.

3



In Chapter 5 we extend the joint decoding scheme proposed in Chapter 4 by consid-

ering LDPC codes as channel codes and do joint iterative decoding. In particular, we

consider irregular repeat accumulate codes because of their special structure, capacity-

achieving property for BEC and ease of implementation, etc. Linear programming and

extrinsic information transfer (EXIT) chart methods are used to design codes with nat-

ural redundancy. Finally we give a comparison of joint polar decoding and joint LDPC

decoding schemes.

1.2 Notation

Throughout the dissertation, we use the following notation. The channels are assumed

to be binary-discrete memoryless channels (B-DMCs). We use uppercase letters X , Y

to denote random variables and lower case letters to x, y to denote the realizations. We

use W : X → Y to denote a binary-discrete memoryless channel with input alphabet X ,

output alphabet Y , and transition probability W (y|x) where x ∈ X and y ∈ Y . Xn
1 is

used to represent a vector of sequence [X1, · · · , Xn]. We denote I(X;Y ) as the mutual

information between X and Y .

We use BEC(ε) to denote the BEC with erasure probability ε, and use BSC(α) to rep-

resent the binary symmetric channel (BSC) with crossover probability α. When the code-

words are transmitted through additive white Gaussian noise (AWGN) channel, we assume

binary phase-shift keying (BPSK) modulation is employed if the modulation scheme is not

explicitly specified.
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2. BACKGROUND

In this chapter we provide a background on polar codes and their asymptotic properties,

the cutoff rate of a channel and sequential decoding of convolutional codes, which lay the

foundation for the following chapters.

2.1 Channel polarization and polar codes

In his seminal work [2], Arikan introduced the phenomenon of channel polarization

by the processes of channel combining and splitting. We illustrate the idea of channel

polarization from the basic transform shown in Fig. 2.1. The transform is characterized

by the matrix G2 =

 1 0

1 1

. Let U1 and U2 be two bits which independently take 0

and 1 values with probability 1/2. Let X1 and X2 be two binary transmitted bits. We

have X2
1 = U2

1G2, that is, X1 = U1 ⊕ U2 and X2 = U2. Here ⊕ denotes the modulo two

summation. Let Y1 and Y2 be two received bits. First in the channel combining process

two copies of the channel W are combined to generate a channel W2:

W2(y2
1|u2

1) = W (y1|u1 + u2)W (y2|u2).

Then the combined channel is split into two different channels resulting in the following

transform: (W,W ) 7→ (W
(1)
2 ,W

(2)
2 ) where W (1)

2 : {0, 1} 7→ Y2 and W (2)
2 : {0, 1} 7→

{0, 1} × Y2 are defined as

W
(1)
2 (y2

1|u1) =
∑
u2

1

2
W2(y2

1|u2
1) =

∑
u2

1

2
W (y1|u1 ⊕ u2)W (y2|u2),

W
(2)
2 (y2

1, u1|u2) =
1

2
W2(y2

1|u2
1) =

1

2
W (y1|u1 ⊕ u2)W (y2|u2).
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W
(1)
2 can be considered as the channel seen from U1, considering U2 as noise. W (2)

2 can

be seen as the channel seen from U2, assuming that U1 is decoded correctly. Let I(W ) be

the symmetric capacity of a B-DMC W , which is defined as

I(W ) =
∑
y

∑
x

1

2
W (y|x) log

W (y|x)
1
2

(W (y|0) +W (y|1))
.

It can be seen that

I(W
(1)
2 ) + I(W

(2)
2 ) = 2I(W ), (2.1)

I(W
(1)
2 ) ≤ I(W ) ≤ I(W

(2)
2 )

The preserve of the sum capacity follows from the chain rule given as

I(U2
1 ;Y 2

1 ) = I(U1;Y 2
1 ) + I(U2;Y 2

1 |U1).

We use the Bhattacharyya parameter Z(W ) to measure the reliability of the channel.

Figure 2.1: Basic transform
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Z(W ) is defined as

Z(W ) =
∑
y∈Y

√
W (y|0)W (y|1).

It is an upper bound on the error probability of maximum likelihood (ML) decoding. The

reliability after transformation has the following properties:

Z(W
(2)
2 ) = Z(W )2,

Z(W
(1)
2 ) ≤ 2Z(W )− Z(W )2,

Z(W
(2)
2 ) ≤ Z(W ) ≤ Z(W

(1)
2 ).

It is easy to see that Z(W
(1)
2 ) + Z(W

(2)
2 ) ≤ 2Z(W ), which indicates that reliability can

only improve under this transformation, whereas from (2.1) it can be seen that the sum

capacity is preserved under the transformation.

From above analysis we see that after the basic transform, the channel W is converted

into a better channel W (2)
2 and a worse channel W (1)

2 . If the channel combining and split-

ting process is repeated n times, we get N = 2n different bit channels W (i)
N , i ∈ [1, N ].

Each time the recursive transform can be written as

(W (i)
m ,W (i)

m ) 7→ (W
(2i)
2m ,W

(2i+1)
2m ).

In general, N copies of the channel are combined to create the channel

WN(yN1 |uN1 ) , W (yN1 |uN1 GN) =
N∏
i=1

W (yi|xi)

due to the memoryless property of the channel W . WN can be recursively constructed.

Fig. 2.2 shows a recursive construction of WN from two copies of WN/2. The channel

7



splitting process then splits WN back into a set of N bit channels

W
(i)
N (yN1 , u

i−1
1 |ui) ,

1

2N−1

∑
uNi+1

WN(yN1 |uN1 ), i = 1, · · · , N. (2.2)

Arikan has proved the following polarization theorem:

Theorem 1. [2] For any B-DMC W , almost all bit channels {W (i)
N } polarize in the sense

that, for any δ ∈ (0, 1), the fraction of indices i ∈ {1, · · · , N} for which I(W
(i)
N ) ∈

(1− δ, 1] goes to I(W ) and the fraction for which I(W
(i)
N ) ∈ [0, δ) goes to 1− I(W ).

The idea of polar codes is to transmit information only on those noiseless channels

while freezing bits on those noisy channels. Let F denote the set of frozen bits and let F c

be its complement set {1, · · · , N} \ F . Polar codes are formally defined in the following:

Definition 2. An (N,K) polar code for a B-DMC W is a code with its information set F c

chosen as a K-element subset of {1, · · · , N} such that Z(W
(i)
N ) ≤ Z(W

(j)
N ) for all i ∈ F c

and j ∈ F .

Construction of polar codes then involves finding a set of best channels F c based on

the channel reliabilities. The construction methods include the upgrading/degrading quan-

tization method [21] and density evolution [22]. The encoding of polar codes is to use the

generator matrix GN = RNG
⊗n
2 , where RN is an N ×N bit-reversal permutation matrix,

and ⊗ is the Kronecker product.

2.2 Decoding of polar codes

In this section various decoding schemes of polar codes are reviewed.

2.2.1 Successive cancellation decoding

Let uN1 and yN1 be the uncoded bits and received sequence, respectively. The successive

cancellation (SC) decoder generates an estimate of bits in F c. It first computes the log-
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RN

WN

+
u1 s1

u2 s2

+

uN/2−1 sN/2−1

uN/2 sN/2

+

uN/2+1 sN/2+1

uN/2+2 sN/2+2

+

uN−1 sN−2

uN sN

WN/2

WN/2

...

...

v1

v2

vN/2

y1

y2

yN/2

vN/2+1

vN/2+2

vN

...

...

yN/2+1

yN/2+2

yN

...

...

Figure 2.2: Recursive construction ofWN from two copies ofWN/2. RN is the bit-reversal
permutation.
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likelihood ratio (LLR) of each bit channel

L
(i)
N (yN1 , û

i−1
1 ) = log

W
(i)
N (yN1 , û

i−1
1 |ui = 0)

W
(i)
N (yN1 , û

i−1
1 |ui = 1)

(2.3)

Then it makes decisions as follows: ûi = 0 if i ∈ F . If i ∈ F c,

ûi =

0, if L(i)
N (yN1 , û

i−1
1 ) ≥ 0

1, otherwise.

Arikan has shown that (2.3) admits a recursive structure with decoding complexityO(N logN).

It has been proved that polar codes are capacity achieving under SC decoding.

2.2.2 List decoding

SC decoding suffers from error propagation, that is, if bits in early stages are decoded

incorrectly, the later decoded bits will have high probability to be decoded in error. Instead

of making hard decision of ui at each stage, list decoder keeps a list of most probable

paths [20]. In each stage, the decoder extends a path by hypothesizing both 0 and 1 for

the unfrozen bit and the number of paths doubles. Assume the list size is L. When the

number of paths exceeds L, the decoder picks L most probable paths as surviving paths

and prunes the rest. After decoding the last bit, the most probable path is picked. Fig. 2.3

gives an illustration of list decoding with list size L = 4, with solid paths as surviving

paths. The complexity of list decoding is O(Ln log n), where n is the block length. An

extra improvement can be brought by adding CRC bits, which increases the minimum

distance of polar codes and helps to select the most probable path in the list. The adaptive

list decoder with a large list size can be used to fully exploit the benefit of CRC while

largely reducing the decoder complexity [23].
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0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 10 10 1

u1

u2

u3

u4

Figure 2.3: Tree structure of list decoding, with list size L = 4. The dashed paths are
pruned.

2.2.3 Belief propagation decoding

Belief propagation (BP) decoding for polar codes was studied in [4, 18, 24]. For length

N = 2n polar codes, there are (n + 1) layers of bit nodes and n layers of check nodes in

the tanner graph. It has been shown that BP decoding has superior performance over SC

decoding in general, but the finite-length performance of BP decoding is still not satisfac-

tory. The stopping set and minimum distance structure in the factor graph of polar codes

are analyzed in [18]. Recently Reed Muller (RM) codes have been proved to achieve the

capacity of BEC [25, 26]. RM codes essentially have a close relationship with polar codes

[24, 27]. The main difference in the code construction is the way of picking rows in the

generator matrix. Arikan gave a comparison of BP decoding between the two codes in

[24]. He demonstrated the performance advantages of polar codes over RM codes under

BP decoding. It is shown in [4, 28] that scheduling is important to obtain good perfor-
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mance under BP decoding for general DMCs.

2.3 Error exponent of polar codes

Let PB(N,R) denote the block error probability of a code with blocklegth N and rate

R. Arikan has shown the rate of polarization in the following theorem.

Theorem 3. [14] Let R < I(W ) and β < 1
2

be fixed. For N = 2n, n ≥ 0, the best

achievable block error probability under successive cancellation decoding satisfies

PB(N,R) = o(2−N
β

).

A refined bound that includes rate as a parameter is derived in [29] and [30]:

PB(N,R) = o(2−2(n+t
√
n)/2

)

for any t satisfying t < Q−1(R/I(W )), where Q(x) = 1√
2π

∫∞
x
e−u

2/2du.

A comparison between the error exponent of random codes and that of polar codes

exposes some weaknesses of polar codes. The random coding bound on the ensembles of

block codes is [31]

PB(N,R) ≤ 2−NEr(R)

where Er(R) is the random coding exponent which is defined as

Er(R) = max
q

max
ρ∈[0,1]

−ρR + E0(ρ,q).

Here q(x) is the probability distribution of the input. Gallager has shown that for binary

symmetric memoryless channels, Er(R) is maximized when X is uniformly distributed.
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For random block code ensemble, there exists codes that have exponent Er(R) = 1 under

maximum a posteriori (MAP) decoding [31]. This is much larger than the sub-exponential

error decay rate of polar codes.

To determine whether the suboptimal error exponent of polar codes is due to the SC

decoder or the weakness in the code itself, we study the minimum distance of polar codes.

The minimum distance of a length-N polar code is

dmin = min
i∈Fc

2wt(i)

where wt(i) is the number of 1’s in the binary expansion of i, i ∈ [0, N − 1]. An upper

bound of dmin is given in the following theorem

Theorem 4. [4] For any rate R > 0 and any choice of information bits, the minimum

distance of a polar code of length N = 2n is upper bounded by

dmin ≤ 2
n
2

+c
√
n

for large enough n and a constant c.

It follows that for any rate R > 0, β > 1
2

and any B-DMC, the error probability of

polar codes under MAP decoding satisfies PMAP
B > 2−N

β . We can see that SC decoder

already achieves the same order of error exponent as MAP decoding. Thus the code itself

is weak in terms of the error exponent.

2.4 Cutoff rate and sequential decoding

Sequential decoding is a search algorithm for guessing the correct path through the

expanded tree of possible transmitted sequences. Consider a (no, ko, ν) convolutional code

with ko input bits and no output bits at each stage with a constraint length of ν. It is
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well known that the Viterbi algorithm provides a ML sequence decoder but the decoding

complexity grows exponentially with the constraint length. Sequential decoding is a depth-

first search on the code tree which provides a computationally efficient alternative to the

Viterbi algorithm. Sequential decoding was first introduced by Wozencraft for decoding

of convolutional codes in [32]. An improvement in the decoding complexity of sequential

decoding algorithm was presented by Fano [33]. Fano’s work largely inspired further

research on sequential decoding. A practical stack decoding algorithm was proposed by

Zigangirov [34] and Jelinek [35].

2.4.1 Cutoff rate

Definition 5. The cutoff rate of a channel W is defined as

Rc(W ) = max
q(x)
− log2

(∑
y

(∑
x

q(x)
√
W (y|x)

)2
)

(2.4)

where q(x) is the input probability distribution.

The cutoff rate of a channel is a fundamental quantity associated with the channel and it

has implications for ML decoding or minimum distance decoding and sequential decoding

of certain classes of codes [36]. It is smaller than or equal to the capacity of the channel.

In particular, its significance to sequential decoding of convolutional codes is discussed

below.

In sequential decoding, the number of computations required to decode a given number

of bits is a random variable, but is more or less independent of ν [37]. Let q(x) be the

input probability distribution. Define E0(ρ,q) as

E0(ρ,q) = − log
∑
y

(∑
x

q(x)P (y|x)1/(1+ρ)

)1+ρ

,
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and define Gallager function E0(ρ) as E0(ρ) = maxqE0(ρ,q). We have Rc = E0(1). Let

Tn be the number of hypotheses made on the nth node of the path. Gallager has shown an

upper bound to Tn with sequential decoding in the following theorem.

Theorem 6. [31] LetR be the code rate and let ν be the constraint length of the code. With

sequential decoding on a DMC the average number of hypothesis required per decoded

subblock T̄n satisfies

T̄n ≤ 4(1− exp(−νE0(1) + νR))−2

for R ≤ E0(1).

From Theorem 6 it can be seen that the average number of hypothesis is bounded

when R < Rc. The converse result was first shown by Arikan in [38], that is, T̄n = ∞

for R > Rc. Jacobs and Berlekamp showed that the distribution of computations follows

a Pareto distribution [39]. The cutoff rate is the rate at which the exponent of the Pareto

distribution becomes 1 and, hence, the average computational effort becomes unbounded

[40]. For all rates smaller than the cutoff rate, while the average computational effort is

bounded, the average bit error rate of the ensemble of random convolutional code with

sequential decoding can be bounded as [40]

Pb ≤ Ke−noνρRc (2.5)

where K is a constant independent of ν and Rc, and 0 ≤ ρ < 1.

These results together show that the cutoff rate represents a sharp transition in the aver-

age computational effort required to obtain arbitrarily small bit error rates with sequential

decoding of convolutional codes, i.e., for all rates below the cutoff rate, very small bit error

rates can be obtained at fairly small average computational complexity.
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2.5 Increase in cutoff rate due to polarization

It was noticed by Massey that the sum cutoff rate can be increased if a channel is split

into correlated subchannels [41]. Arikan showed that the basic transform given in 2.1 with

successive cancellation decoder is able to achieve increased sum cutoff rate [19]. For a

N -length polar transform, let Rc(W
(i)
N ) denote the cutoff rate of the ith equivalent channel

defined in (2.2) and let R̄c = 1
N

∑N
i=1Rc(W

(i)
N ) denote the average cutoff rate. As shown

by Arikan in [19], one of the remarkable aspects of polarization is that R̄c monotonically

increases with N and in the limit N → ∞, R̄c approaches the capacity of the channel

I(W ). Thus, polarization can be thought of as a technique to increase the cutoff rate of

the channel without decreasing the capacity.

In Fig. 2.4, we plot the ratio of the average cutoff rate to the channel capacity (R̄c/I(W ))

with a polar transform of length N = 2n for an AWGN channel at Eb/N0 = 2 dB. We can

observe that the average cutoff rate increases towards the channel capacity as the length of

the transform (code) increases. More importantly, it can be seen that there is a substantial

increase in the cutoff rate even for small N . Even for n = 10, R̄c reaches 95% of the

channel capacity. This is a fact that we will exploit in the design of concatenated polar

codes in Chapter 3.
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Figure 2.4: The average cutoff rate with a polar transformation of length N = 2n for a
binary-input AWGN channel; Eb/N0 = 2 dB
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3. INTERLEAVED CONCATENATIONS OF POLAR CODES WITH OUTER

BINARY CODES

3.1 Introduction

Polar codes are known for their ability to achieve the capacity of symmetric discrete

memoryless channels with an explicit construction and a computationally-efficient SC de-

coding algorithm [2]. However, the error performance of polar codes in the finite length

regime is not as impressive as that of other state of the art coding schemes [18]. In this

chapter we use “frame error rate" to represent the error rate of the whole code, and use

“block error rate" to represent the error rate of the inner or outer code. One way to

improve the finite length performance of polar codes is to consider more sophisticated de-

coders than the SC decoder. BP decoding of polar codes has been proposed in [3], but

the improvement is not significant over the AWGN channel. SC list decoding can provide

substantial improvement over SC decoding [20]. However, both the memory requirement

and the decoding complexity increase linearly with the list size; further, the error exponent

cannot be improved with any finite list size [42]. Another way to improve the finite length

performance is to change the structure of the code, such as through concatenation with

other codes or by using non-binary construction schemes. For instance, it has been shown

that the concatenation of polar codes with CRC bits can even outperform some LDPC

codes under list decoding. The concatenation of polar codes with RS codes proposed in

[43] has been shown to increase the frame error rate of the code to be almost exponen-

tial in the code length but the field size of RS codes also increases exponentially with the

length of the polar code. The concatenation of polar codes with short outer block codes is

c©2016 IEEE. Reprinted, with permission, from Ying Wang, Krishna R. Narayanan and Yu-Chih Huang,
“Interleaved Concatenations of Polar Codes with BCH and Convolutional Codes," IEEE Journal on Selected
Areas in Communications, vol. 34, no. 2, pp. 267–277, Feb. 2016.
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proposed in [44] and a modest improvement in performance has been reported. In [45], it

is shown that the performance of polar codes can be improved by concatenation with an

LDPC code.

In [46] and [47] interleaved concatenation of polar codes with outer RS codes and BCH

codes are considered, respectively. In [46], Mahdavifar et al. show that the concatenation

of polar codes with RS (referred to as RS-polar) codes can increase the error decay rate

to be O(2−N
1−ε

). In [47], Trifonov and Semenov view the concatenation schemes as

multilevel coding with multistage decoding and apply the design criteria in [48] to the

problem considered. They then provide empirical results for designs with outer BCH

codes (referred to as BCH-polar codes).

We analyze interleaved concatenations of polar codes with outer binary codes such as

BCH and convolutional codes. We show that these concatenated schemes strike a better

balance between performance and complexity than existing schemes. The main contri-

butions of this chapter and the insights obtained from this chapter are summarized in the

following.

• First, we show that for binary polar codes, binary outer codes are more effective

at reducing error propagation since they are matched to the SC decoder that works

at the bit level. This indicates that RS-polar codes designed over non-binary fields

may be mismatched to the SC decoder. We then provide an analysis of BCH-polar

codes which have binary BCH outer codes and show that for these codes, for binary

input discrete memoryless channels, the frame error rate decays exponentially with

the code length for all code rates R < C, where C is the capacity of the channel.

• It is known that the polarization process increases the cutoff rate of the channel

[19], while preserving the capacity. Interleaved concatenation is proposed as a way

to naturally leverage the increase in the cutoff rate to decrease the complexity of
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communication at rates close to the capacity. In particular, it is well known that

sequential decoding of long constraint length convolutional codes is a computation-

ally efficient way to communicate at rates lower than the cutoff rate. Based on this

insight, we then propose a novel family of concatenation codes called Conv-polar

codes which use polar codes as inner codes and binary convolutional codes as outer

codes [49]. The frame error rate of Conv-polar codes is shown to decay exponen-

tially with the code length for all rates up to the capacity with SC decoding for the

inner polar code and sequential decoding for the outer convolutional codes. Indeed,

it has been known for a long time (for e.g. from [50]) that the performance of se-

quential decoding of convolutional codes can be improved by using an inner code.

Our results show that a polar code is indeed an optimal inner code since it increases

the cutoff rate all the way up to the capacity of the channel.

• We propose a soft-output multistage iterative decoding method for Conv-polar codes

that combines the benefits of soft-output decoding and multistage decoding. This

decoding algorithm avoids making hard decisions too early and prevents error prop-

agation. Simulation results show that for the Conv-polar codes, the iterative decod-

ing can provide roughly 0.2 dB gain over SC decoding with only 2 iterations. Some

methods to further tradeoff performance for complexity are also discussed.

• Finally, we provide a comprehensive comparison of the performance, memory re-

quirement, and decoding complexity of proposed Conv-polar codes with those of

stand alone polar codes. Simulation results show that the proposed approach sub-

stantially outperforms stand-alone polar codes under SC or BP decoding and is even

comparable to that of list decoding in the high SNR regime. Polar codes with list

decoding may require prohibitively large memory size, while Conv-polar codes pro-

vide performance gain with much lower memory size. This suggests that using the
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proposed soft-output multistage iterative decoding for concatenated polar codes with

interleaving/deinterleaving may have a better balance compared to existing methods.

Generally speaking, our scheme is advantageous in the relatively high SNR regime

and is particularly suitable for applications with stringent memory size constraint.

Data storage may be a good application.

3.2 Interleaved concatenation schemes of polar codes with outer binary codes

3.2.1 Interleaved structure and encoding

A schematic of the interleaved concatenated scheme is shown in Fig. 3.1. The figure

shows an m × n array which represents the coded bits of the outer code. The ith column

in the array represents the codeword of a (m, ki) binary block or terminated convolutional

code with rate Roi, i ∈ [1, n]. This column is formed by simply encoding ki information

bits into m coded bits. Roi = 0 if there’s no outer code in the column. The (j, i)-th entry

in the array, namely uj,i represents the jth coded bit in the ith code, i ∈ [1, n], j ∈ [1,m].

Each row in the matrix represents the input bits to a (n, k) polar code and each row is

independently encoded by a polar code and the encoded bits form the coded bits of the

overall code. All the polar codes are identical and hence, the frozen bits in all the polar

codes belong to some n − k columns which are shown in the figure. These columns can

also be thought of as codewords of a zero rate column code. The columns in gray and white

correspond to the information and frozen bits of the polar codes, respectively. This results

in an overall (mn,
∑n

i=1bmRoic) linear block code. To further reduce error propagation,

random interleavers may be added to the outer codes. We will assume the received vector

is also arranged in an m × n array and we use yj,i to denote the output of the channel

corresponding to the transmission of the coded bit xj,i.
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3.2.2 Multistage successive cancellation decoder

The m polar codes are decoded in parallel and a posteriori probabilities are produced

for the bits in the first column in Fig. 3.1. Then, the decoding of the first outer code

takes place. The decisions from the decoder of the outer code are used in producing the

a posteriori probabilities for all the bits in the second column and so on. In general,

when a posteriori probabilities are produced from the polar decoder for the bits in the

ith column, the decisions from the outer decoder for the bits in the first i − 1 columns

are available. Decoding of the outer code ensures that these decisions are highly reliable,

thereby reducing the error propagation substantially.

1 2 k n

1st   polar code

2nd  polar code

mth polar code

1st outer  code 2nd outer code k th outer code

3

Figure 3.1: Concatenation of polar codes with binary codes

3.2.3 Rate optimization scheme

In this section, we consider the issue of how to choose the rates Roi for each column

based on the equal block error rate design rule. Let uj,ij,1 and yj,ij,1 denote the uncoded and
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received bits in the jth row indexed from 1 to i. Since the m polar codes are completely

independent of each other, the equivalent channel between the jth bit in the ith column,

uj,i and the received vector y depends only on yj,nj,1 and hence, let W (i)
n (yj,nj,1 , u

j,i−1
j,1 |uj,i)

denote this equivalent channel. Since all the polar codes used are identical, this equivalent

channel is independent of j and hence we can drop the dependence of j and with an abuse

of notation write this as W (i)
n (yn1 , u

i−1
1 |ui). This is simply the ith bit channel in the polar

code.

The block error rate PBi of each outer code depends on the specific codes used, the

outer code rate Roi and the equivalent channel W (i)
n (yn1 , u

i−1
1 |ui). Here, we will assume

that the outer codes are chosen from a family of codes such as BCH or convolutional

codes. If we use PB(N,R) to represent the frame error rate of the overall concatenated

code with rate R, then PB(N,R) can be computed as

PB(N,R) = 1−
n∏
i=1

(1− PBi)

Let P ∗ denote the target block error rate of the outer codes. If we set equal target block

error rates for all the outer codes, to maximize the overall rate, Roi is chosen to be the

maximum value satisfying the condition that PBi ≤ P ∗. Since there are k outer codes,

PB(N,R) is bounded by

PB(N,R) ≤ 1− (1− P ∗)k

The overall rate R of the concatenated code is

R =

∑n
i=1bRoi ·mc
mn

To design codes with a fixed overall rate, the rates of inner and outer codes should be

optimized to achieve the minimum frame error rate. The rate optimization algorithm is
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shown in [51].

3.3 BCH-polar codes

In this section, we consider binary BCH codes as the outer codes. BCH codes are a

large class of binary codes within which we can find a t-error correcting code of length m

for 0 ≤ t ≤ bm−1
2
c. We first consider Bounded Distance (BD) decoding of BCH codes.

3.3.1 BD decoding over a general channel

Assume that the ith outer code is ti-error correcting code of rate Roi. pi is the error

probability of the ith bit channel of polar codes. Then PBi is given by

PBi =
m∑

j=ti+1

(
m

j

)
pji · (1− pi)(m−j), i = 1, · · · , n.

It is well known that the rate of a ti-error correcting BCH code of length m = 2l − 1 can

be lower bounded as follows: [52]

Roi ≥ 1− til

m

3.3.1.1 Error probability analysis

The following theorem shows that the frame error rate of BCH-polar codes when de-

coded with an outer bounded distance decoder decays exponentially with the code length.

Theorem 7. For any discrete memoryless channel with capacity C, and for rate R =

C(1 − δ), for any 0 < δ < 1, there exists a sequence of BCH-polar codes of rate R

indexed by the block length N such that

lim
N→∞

PB(N,R) ≤ N ε2−N
1−ε
, for any 0 < ε < 1
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Proof. This proof follows the steps from [46]. First, for any 0 < ε < 1 we let the inner

polar code length n = N ε and the length of the outer code m = N1−ε. Assume that the

inner polar code rate is Rin < C. Then, n → ∞ as N → ∞, the block error rate PBI

of the polar code satisfies PBI ≤ 2−n
0.5−ε′ for any ε′ > 0 as N → ∞ [14]. Let k be the

number of information bits of the polar code. As the error rate of each bit channel satisfies

pi ≤ PBI for all i = 1, · · · , n, we have pi ≤ 2−n
0.5−ε′ . If bounded distance decoding is

used for BCH codes, we have ti ≥ (1−Roi)m
log2(m+1)

from (3.3.1). Hence the block error rate of

the i-th outer code is

PBi =
m∑

j=ti+1

(
m

j

)
pji (1− pi)m−j

≤
(

m

ti + 1

)
pti+1
i

≤
(

m

ti + 1

)
2
−n0.5−ε′ (1−Roi)m

log2(m+1)

The term
(
m
ti+1

)
can be bounded by Stirling’s approximation

(
m

ti + 1

)
≤ 2mH(

ti+1

m
)− 1

2
log2m+O(1)

PBi is further bounded as

PBi ≤ 2
−m[n0.5−ε′ 1−Roi

log2(m+1)
+H(

1−Roi
log2(m+1)

+ 1
m

)]

= 2
−N1−ε

[
Nε(0.5−ε′) 1−Roi

log2(N
1−ε+1)

+H
(

1−Roi
log2(N

1−ε+1)
+ 1
N1−ε

)]
(3.1)

For any Roi satisfying

N ε(0.5−ε′) 1−Roi

log2(N1−ε + 1)
+H

(
1−Roi

log2(N1−ε + 1)
+

1

N1−ε

)
≥ 1,
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from (3.1) we get an upper bound on PBi given by

PBi ≤ 2−N
1−ε

The frame error rate PB(N,R) is bounded as

PB(N,R) ≤ kPBi ≤ n2−N
1−ε

= N ε2−N
1−ε

which indicates PB(N,R)→ 0 as N →∞. The overall rate of the code R′ is

R′ =
1

N

k∑
i=1

bmRoic =
1

N
bnRinc · bmRoic

= RinRoi + o(1)

To make the overall rate R′ = R, we choose Rin to be

Rin =
C(1− δ) + o(1)

Roi

Thus we have designed the code with overall rate R with the frame error rate upper

bounded by N ε2−N
1−ε when N is large enough.

3.3.2 Tradeoff between performance and complexity for the BEC

In the previous section, we considered the use of a bounded distance decoder for the

outer code and the performance of the concatenated scheme can be improved by consid-

ering ML decoding of the outer codes. Even though the complexity of ML decoding of

arbitrary outer codes can be exponential inm, for the binary erasure channel, ML decoding

is equivalent to a matrix inversion whose complexity is only O(m3).

For a length-N polar code, the decoding complexity isO(N logN) and the block error
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rate is bounded by 2−N
0.5−ε . If we set the inner code length n = N ε and the outer code

length m = N1−ε for any 0 < ε < 1, from Theorem 1 we know that the concatenated

BCH-polar code is able to boost the frame error rate to be PB(N,R) ≤ N ε2−N
1−ε , which

is a substantial improvement over the stand-alone polar code. The decoding complexity T

for the BCH-polar code is O(mn log n + nm3), where O(mn log n) is the complexity of

decoding the inner polar codes, and O(nm3) is the complexity of decoding the outer BCH

codes. T can be further derived as

T = O(N logN ε +N εN3(1−ε))

= O(εN logN +N3−2ε)

The decoding complexity decreases while the frame error rate increases as ε increases.

Thus we can have a balance between the performance and complexity by choosing ε ap-

propriately.

3.4 Proposed Conv-Polar Codes

In this section, we consider the case when the outer codes in the interleaved concate-

nated scheme are convolutional codes. AssumeRci is the cutoff rate of the i-th bit channel.

The ith convolutional code is of rate Roi < Rci and constraint length ν. We refer to these

codes as Conv-polar codes. The decoder is a multistage SC decoder which uses m parallel

polar successive cancellation decoders and sequential decoders or a Viterbi decoders for

decoding the outer convolutional codes.

3.4.1 Error probability analysis of Conv-polar codes

We will first construct a sequence of codes for which n = N ε,m = N1−ε and ν = αm

for an arbitrarily small constant α. For these parameters, we will first show that Conv-

polar codes can be used to obtain a frame error rate that decays exponentially with N with

27



both multistage Viterbi decoding and multistage sequential decoding.

Theorem 8. Let N be the code length and C be the capacity of the channel. There exists

a Conv-polar code with constraint length ν = αm, where α is a constant and m is the

length of the convolutional code, such that for any discrete memoryless channel and for

any overall rate R < C, the frame error rate of the code PB(N,R) is upper bounded by

KNe−k
′ραN1−ε for some constants K and k′ and for any 0 < ε ≤ 1 and large enough N

under either Viterbi decoding or sequential decoding. Here, 0 ≤ ρ ≤ 1 if Viterbi decoding

is used and 0 ≤ ρ < 1 if sequential decoding is adopted.

Proof. The average bit error rate of the ensemble of (no, ko, ν) convolutional code be

bounded as follows [53]

Pb ≤ Ke−noνρRc (3.2)

where K is a constant, 0 ≤ ρ ≤ 1 and Rc is the cutoff rate. (3.2) holds if Viterbi decoding

is used; if sequential decoding is used, we set the code rate Ro < Rc, then (3.2) holds

with 0 ≤ ρ < 1. The block error rate of the ensemble is PB ≤ mPb. For each equivalent

bit channel, the cutoff rate Rci can be computed based on (2.4). Thus, there always exists

at least one (noi, koi, ν) convolutional code with the bit error rate for the i-th channel

Pbi ≤ Ke−noiνρRci . Then PB(N,R) can be bounded as

PB(N,R) ≤
n∑
i=1

PBi ≤
n∑
i=1

Kme−noiνρRci

≤ Kmne−k
′ρν

where k′ = mini{noiRci}, PBi is the block error rate of the ith outer code and n is the

inner code length. If we pick n = N ε, m = N1−ε, PB(N,R) can be further bounded as

PB(N,R) ≤ KNe−k
′ραN1−ε
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As n increases, 1
n

∑n
i=1Rci → C. For sequential decoding, we chooseRoi = Rci−∆ and

we note that there is a rate loss associated with terminating the convolutional codes. The

rate achievable is then 1
n

∑n
i=1Rci(1 − αm

m
) − ∆. By choosing α and ∆ to be arbitrarily

small any rate C − δ can be obtained.

Remark 9. Notice that in the above theorem, we have proved that an exponential error

decay rate can be achieved for the proposed Conv-polar code under either Viterbi decoding

or sequential decoding, when ν = αm. However, our primary interest of this theorem is in

the one with sequential decoding as Viterbi decoding with a large constraint length (linear

in m) is typically forbidden in practice due to its large complexity. We have shown in this

theorem that the proposed Conv-polar codes efficiently exploit the increased cutoff rate due

to channel polarization and hence allow sequential decoding to have bounded complexity

while enjoying an exponential error decay rate. On the other hand, when Viterbi decoding

is used, one can trade off the error rate for decoding complexity by choosing the constraint

length to grow with the length at different rates. The following theorem makes this precise.

Theorem 10. Consider a sequence of Conv-polar codes with inner polar code-length n

equal to N ε for any 0 < ε < 1. Assume (noi, koi, ν) is the i-th outer code and Rci is

the cutoff rate of the i-th channel. Let the constraint length ν = α lnm, where m is the

outer code length, α > 1
(1−ε)h and h = mini{noiRci}. The frame error rate of the code

PB(R,N) is upper bounded by KN ε−(1−ε)(hα−1) where K is a constant. Meanwhile, the

decoding complexity is proportional to N ε+(1−ε)α ln 2 if the Viterbi decoder is adopted.

Proof. With Viterbi decoding we can set ρ = 1 in (3.2). By following the proof of Theo-

rem 2 we can bound PB(R,N) by

PB(R,N) ≤ Kmne−hν
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where h = mini{noiRci}. By replacing ν by α lnm, and picking n = N ε, m = N1−ε, we

can easily prove the upper bound of PB(R,N). The complexity of Viterbi decoding for

each code is proportional to 2ν , which is further derived as 2ν = 2α lnm = mα ln 2. Thus the

overall decoding complexity of outer codes is proportional to nmα ln 2 = N ε+(1−ε)α ln 2.

3.4.2 Convolutional codes with multistage Viterbi decoding

When the constraint lengths of the convolutional codes are not too large, optimal

Viterbi decoding can be used to decode the codes. For finite lengths, the multistage Viterbi

decoder with moderate constraint length codes may outperform sequential decoding with

long constraint length convolutional codes and we now consider the design of convolu-

tional codes for finite lengths.

3.4.2.1 Design of Conv-polar codes for finite lengths

The bit error rate Pb at the output of the Viterbi decoder for a convolutional code in an

AWGN channel is bounded by the following:

Pb ≤
∞∑

d=dfree

adQ

(√
2dEs
N0

)
(3.3)

where dfree is the free distance and ad is the weight distribution of the code. Es/N0 is

the signal to noise ratio. Q(x) is defined as Q(x) =
∫∞
x

1√
2π
e−t

2/2dt. If the convolutional

code is terminated to an (m, k) block code, the block error rate of the ith outer code PBi is

PBi ≤ kPbi

where Pbi is the bit error rate of the i-th outer code. Since we’re able to estimate the error

rate of outer codes from the weight distribution of the codes, the rates of inner and outer

codes can be optimized based on the equal block error rate design rule. Convolutional
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codes with a wide range of rates are provided in [54] and [55].

If the convolutional code is terminated, additional ν bits should be appended to drive

the encoder to the zero state. This will result in rate loss. The actual rate then becomes

k
m

(1 − ν
k
). There are several ways to avoid the rate loss. Tail biting is a good way with a

slight degradation in the performance [56]. When decoding the outer codes, we use soft

input for Viterbi decoding, which greatly outperforms hard input [57]. The SC decoding

of inner polar codes naturally gives out the LLRs of all the bits, and we can take them as

soft input for Viterbi decoding.

3.4.2.2 Methods to decrease the decoding complexity

As the constraint length or the rate of the convolutional code increases, Viterbi de-

coding would be too complex to be used in practice. There are various ways to decrease

the decoding complexity. For the case when the constraint length is not large but the rate

is high, the dual algorithm proposed in [54] can be applied. The decoding complexity is

roughly the same as decoding the low rate dual code. Another way to alleviate the high

complexity problem is to obtain a high-rate code from puncturing a low-rate mother code

[55]. A general (no, ko, ν) convolutional code with rate ko/no and constraint length ν, re-

quires (2ko · 2ν)/ko operations in terms of addition, comparison and selection per decoded

bit [58]. However, with puncturing the branch for each stage remains to be 2, thus the

complexity of decoding the punctured code remains to be the same as that of mother codes

which is 2 · 2ν per coded bit [58]. Also puncturing provides flexibility in designing a wide

range of rates. From a more practical point of view, we propose to use the Rate Compati-

ble Punctured Convolutional (RCPC) codes as outer codes. RCPC codes are obtained by

puncturing the same low-rate mother code. A main advantage is that they can use the same

encoder and decoder as the mother code [58] which simplifies hardware implementation.

Since the mother code is a low-rate code the decoding complexity is rather small.
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3.5 Soft-output multistage iterative decoding of Conv-polar codes

In the multistage successive cancellation decoder considered so far, the outer decoder

uses a hard output algorithm and it is natural to consider an extension where soft informa-

tion is passed between the outer decoder and the inner polar decoder. Here we consider a

decoder that adopts the same scheduling as the multistage SC decoder, but at each stage a

soft output decoder is used for the outer code. In addition, the procedure is iterative and

a few iterations are performed between the inner and outer decoders. We call it the soft-

output multistage iterative decoder. For outer convolutional codes, we use Bahl, Cocke,

Jelinek and Raviv (BCJR) algorithm to obtain soft outputs. For inner polar codes, we use

soft SC decoding proposed in [28]. This algorithm pushes the hard decision to the end of

the decoding process and hence prevents premature hard decision. The reason that we use

the soft decoding in [28] with SC scheduling for decoding polar codes instead of simply

applying BP decoding on the whole graph is that the proposed algorithm will give us faster

convergence compared to BP decoding. Moreover, the SC scheduling admits a recursive

structure and therefore can be exploited to reuse the memory in hardware implementation.

The proposed soft-output multistage iterative decoding (SOMID) algorithm is outlined

in Algorithm 1. We use xj and y
j

to represent the coded and received vector corresponding

to the j-th row (jth polar code) in the interleaved structure, j ≤ m. Roi denotes the outer

code rate corresponding to i-th column. The factor graph of a length-n polar code consists

of l + 1 layers where l = log n. We use the same notation as in [28]. Each layer λ has

2λ groups and each group includes 2l−λ nodes. Each node in the graph can be indexed

by (λ, i, ω), meaning that the node is the ω-th node in the i-th group of the λ-th layer.

0 ≤ i < 2λ, and 0 ≤ ω < 2l−λ. Let Bj and Lj denote the memory space required to store

LLRs passing forward and backward in the tanner graph of the jth polar code, and let

Lj,λ(i, ω) and Bj,λ(i, ω) denote the LLRs passed in λ-th layer of the jth polar code,. For
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the outer codes, we use Lapconv and Lextconv to represent the a-priori and extrinsic LLRs of the

codeword bits. niter is the maximum number of iterations and σ is the standard deviation

of the Gaussian noise. The functions updateB and updateL are to update the LLRs passed

forward and backward with soft SC decoding for polar codes. The function convBCJRdec

represents BCJR decoding of outer convolutional codes.

Algorithm 1 Soft-output multistage iterative decoder of the Conv-polar codes
Input: {y

j
}mj=1, {Roi}ni=1, σ, niter

Output: {x̂j}mj=1

for t = 1→ niter do
{Lj,0(0, i)}ni=1 ←

2yj,i
σ2 for all j = 1, · · · ,m

Bj,l(i, 0)i∈F ←∞ for all j = 1, · · · ,m
for i = 1→ n do

Lj ← updateL(n, i, Lj, Bj) for all j = 1, · · · ,m
if Roi > 0 and Roi < 1 then

Lapconv ← {Lj,l(i, 0)}mj=1

Lextconv ← convBCJRdec(m,Lapconv, Roi)
{Lj,l(i, 0)}mj=1 ← Lextconv

end if
if i is odd then

Bj ← updateB(n, i, Lj, Bj) for all j = 1, · · · ,m
end if
if t = niter then

if i ∈ F then
x̂j,i ← 0 for all j = 1, · · · ,m

else
if Lj,0(0, i) +Bj,0(0, i) ≥ 0 then

x̂j,i ← 0 for all j = 1, · · · ,m
else x̂j,i ← 1 for all j = 1, · · · ,m
end if

end if
end if

end for
end for
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3.6 Memory space and decoding complexity analysis of Conv-polar codes

In this section, we analyze and compare the performance, required memory size, and

decoding complexity of various designs including polar codes with SC decoding, polar

codes with BP decoding, polar codes with list decoding, and Conv-polar codes with both

multistage SC decoding and sof-output multistage iterative decoding.

3.6.1 Memory space analysis

We useB and L to denote the memory space required to store the LLRs passed forward

and backward in the Tanner graph of polar codes. For a length-N polar code, BP decoding

requiresN(logN+1) units for bothL andB and hence the total memory is 2N(logN+1).

SC decoding requires 2N − 1 units for L and 2(2N − 1) units for B, since we can reuse

space with the recursive structure [20]. Therefore, the total memory for SC decoding is

3(2N−1). Soft-output SC decoding in [28] requires 2N−1 units forL and 4N−2+N logN
2

units for B. The total memory for soft-output SC decoding is 6N − 3 + N logN
2

. This

reduction (for large N ) is a consequence of the space reuse in the decoding. For list

decoding, the memory space required for L and B are l(2N − 1) and 2l(2N − 1) with

careful reuse of memory [20], respectively, where l is the decoding list size. Another

3l(logN + 1) + 2l memory space is needed for path mapping [20, Alg. 8]. Thus the total

memory space for list decoding is l(6N+3 logN+2). Table 3.1 shows the memory space

for L and B for polar codes with different decoding methods.

Now, let us discuss the memory space required for the Conv-polar codes. Since m

polar codes are decoded in parallel, the memory for the polar codes is 3m(2n− 1) for SC

decoding and it ism(6n−3+ n logn
2

) for soft-output SC decoding. The outer convolutional

codes are decoded in order, which enables us to reuse the memory. The memory for outer

codes is the maximum of the memory required for all the outer codes. If Viterbi algorithm

is used, the memory space required is 2k′ · 2ν [57] where k′ is the length of information
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bits and ν is the constraint length. This can be upper bounded by 2m · 2ν since k′ ≤ m.

If BCJR algorithm is used, the memory space required is 3k′ · 2ν , which is upper-bounded

by 3m · 2ν . Then the total memory required for the Conv-polar codes with multistage

SC decoding is upper bounded by 3m(2n − 1) + 2m · 2ν . The total memory required

for the Conv-polar codes with soft-output multistage iterative decoding is upper-bounded

by m(6n − 3 + n logn
2

) + 3m · 2ν . Further memory reduction is possible by windowed

decoding of convolutional codes. The memory required is about 5ν. We do not pursue it

in this chapter.

Table 3.2 summarizes the above analysis. Let the memories of Conv-polar and stand-

alone polar codes be MConv−polar and Mpolar, respectively. In Fig. 3.2, we show the ratio

α =
MConv−polar

Mpolar
of the memory space required by Conv-polar codes to that by stand-alone

polar codes with BP decoding. The outer code length m is set to 64 or 128. The constraint

length ν of outer codes is 8. We observe that for m = 128, when multistage SC decoding

is used, the memory space required for Conv-polar codes is about 50% less than that of

BP decoding when when N = 213, and is 70% less when N = 214. When soft-output

multistage iterative decoding is used, the memory space required for Conv-polar codes is

about 25% less than that of BP decoding when N = 213, and is 50% less when N = 214.

In Fig. 3.3, we show the ratio α of the memory space required for Conv-polar codes to

that for stand-alone polar codes with list decoding. The list size l is 2 for polar codes.

m is set to 64 and 128. One can see that when N = 8192 and m = 128 the memory

of Conv-polar codes with multistage SC decoding is about 1.1 times that of polar codes,

and the memory of Conv-polar codes with SOMID is 1.7 times that of polar codes with

list decoding. When N exceeds 215, the memory of Conv-polar codes with multistage

SC decoding is about half that of polar codes, and the memory of Conv-polar codes with

SOMID is close to that of polar codes with list decoding. Notice that the memory of polar

codes increases linearly with the list size. When the list size is greater than 2, the memory
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of polar codes would be substantially larger than that of Conv-polar codes.

Table 3.1: Memory required for different decoders of polar codes

L B Total memory for L and B
SC 2N − 1 2(2N − 1) 3(2N − 1)
BP N(logN + 1) N(logN + 1) 2N(logN + 1)
List l(2N − 1) 2l(2N − 1) 3l(2N − 1)

soft-output SC 2N − 1 4N − 2 + N logN
2

6N − 3 + N logN
2

Table 3.2: Overall memory space required

Overall memory space
Polar SC decoding 3(2N − 1)
Polar BP decoding 2N(logN + 1)

Polar soft-output SC decoding 6N − 3 + N logN
2

Polar List decoding l(6N + 3 logN + 2)
Conv-polar multistage SC decoding 3m(2n− 1) + 2m · 2ν
Conv-polar SOMID m(6n− 3 + n logn

2
) + 3m · 2ν

3.6.2 Decoding complexity analysis

It is well-known that the time complexity of polar codes with SC decoding isO(N logN).

The complexity for BP decoding is O(niterN logN) [3], where niter is the number of it-

erations. Typically, in order to have a reasonable performance, polar codes with BP de-

coding requires a large number of iterations. For list decoding, the decoding complexity

is O(lN logN) [20]. For RS-polar codes in [46], the decoding method is generalized

minimum distance (GMD) decoding. The candidate in the list of codewords which is clos-

est to the received word is picked. This method is denoted as GMD-ML decoding. The

complexity of RS-polar codes is O(N log n+N log2m log logm) [46].
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Figure 3.2: The ratio α of memory space of Conv-polar codes to that of stand-alone polar
codes with BP decoding
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Figure 3.3: The ratio α of memory space of Conv-polar codes to that of stand-alone polar
codes with list decoding (l = 2)
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We now analyze the decoding complexity of Conv-polar codes. For the inner polar

codes, the decoding complexity is O(mn log n) per iteration. The complexity of using

Viterbi algorithm to decode the outer (no, ko, ν) convolutional codes isO(
∑n

i=1 ki2
ko2ν) =

O(K2ko2ν), where ki is the number of information bits in the ith column and K is the

total information length of the concatenated code. The complexity of BCJR decoding is

roughly twice as much of Viterbi decoding. Notice that as mentioned above, we benefit

from using punctured codes and get high rate codes by puncturing a low-rate mother code;

therefore, we can always set ko = 1 by considering rate 1/no mother codes. This would

not affect the asymptotic result but would have non-negligible impact for finite length

codes. The overall complexity is O(mn log n+K2ko2ν)) for multistage SC decoding, and

is O(n′iter(mn log n+2K2ko2ν)) for soft-output multistage iterative decoding, where n′iter

is the number of iterations. It is worth mentioning that unlike BP decoding which typically

requires a large number of iterations, the simulation results shown in the following section

suggest that a few iterations suffice to provide improvement. Also, when N or l is large,

the decoding complexity of Conv-polar codes can be much smaller than stand-alone polar

codes with list decoding. Table 3.3 summarizes the above analysis.

Table 3.3: Decoding complexity of different schemes

Decoding complexity
Polar SC decoding O(N logN)
Polar BP decoding O(niterN logN)
Polar List decoding O(lN logN)

RS-polar GMD-ML decoding [46] O(N log n+N log2m log logm)
Conv-polar multistage SC decoding O(N log n+K · 2ko · 2ν)
Conv-polar SOMID O(n′iter(N log n+ 2K · 2ko · 2ν))
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3.7 Simulation results

3.7.1 Performance of BCH-polar codes

We design BCH-polar codes for the BEC, with BD decoding and ML decoding for

the BCH outer codes. The overall rate of the code is 0.4. The code length N is 1024,

n = 8 and m = 128. The rates of the outer codes are optimized for BEC(0.4). We use the

Extended BCH codes and the weight distributions for the BCH codes are obtained from

[59]. The outer code rates are 0, 0, 0, 71/128, 8/128, 99/128, 113/128, 120/128. Fig. 3.4

plots the frame error rate of BCH-polar codes and stand-alone polar codes with both SC

and BP decoding over the BEC as a function of the erasure probability. The frame error

rate for RS-polar codes with the same code length and rate is also plotted. The extended

outer RS codes are designed over F24 . n = 16 and m = 64. RS-polar codes are optimized

using the methods in [46]. It can be seen that BCH-polar codes outperform RS-polar

codes with BD decoding. While BCH-polar codes with BD decoding are inferior to the

stand-alone polar codes, BCH-polar codes with ML decoding significantly outperform

polar codes with SC or BP decoding. As discussed earlier, the length of the BCH codes

is only 1/n-th the overall length and hence the ML decoding complexity is substantially

smaller than ML decoding of a single BCH code of the overall length.

3.7.2 Performance of Conv-polar codes

In this section, we show simulation results to compare the finite-length performance of

Conv-polar codes over the AWGN channel with BPSK modulation. Multistage iterative

decoding are considered. Punctured codes are used to reduce the decoding complexity.

We use terminated convolutional codes of rate ranging from 1/8 to 7/8. The convolutional

codes are chosen from [60] and [61]. For the very good equivalent bit channels, we use

high-rate BCH codes with 1 or 2 error correction ability or single parity check codes in

those channels, which provides improvement in the high SNR regime.

40



0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
10

-4

10
-3

10
-2

10
-1

10
0

polar,SC dec

polar,BP dec 60 iters

RS-polar,BD dec

BCH-polar,BD dec

BCH-polar,ML dec

Figure 3.4: FER performance of codes with N = 1024 and rate 0.4 over BEC
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In Fig. 3.5 we compare the frame error rate performance of the Conv-polar codes

with multistage SC decoding and soft-output multistage iterative decoding, stand-alone

polar codes with SC, BP and list decoding, polar-CRC codes with list decoding. The

performance of concatenated codes with ν = 13 and sequential decoding is also shown.

The overall block length is N = 2048 and overall rate is 1/2. The target Eb/N0 that we

use to construct codes is 2 dB. For the concatenated Conv-polar codes, we split N into

n = 8 and m = 256. The iteration number is set to 60 in BP decoding and the list size of

list decoding is 32. For polar-CRC codes, the number of CRC bits is 16 and the list size is

32. One can see from this figure that the Conv-polar codes outperform stand-alone polar

codes and their performance can be better than that of list decoding at high SNR region.

Soft-ouput multistage iterative decoding provides a gain of about 0.2 dB with 2 iterations.

Further increasing the iteration number doesn’t provide much gain. When convolutional

codes with larger constraint lengths are used, the performance of Conv-polar codes with

sequential decoding would be much better than that of list decoding at high SNR region.

In all cases however, list decoding of polar codes with CRC provides better performance.

To compare Conv-polar codes with RS-polar codes, we construct Conv-polar codes

with code length N = 8192 and rate 1/3. n = 64 and m = 128. Fig. 3.6 shows the frame

error rate of Conv-polar codes along with other codes. The performance of RS-polar codes

shown in the figure is from Fig. 5 of [46]. It can be observed that while RS-polar codes do

not outperform standalone polar codes, Conv-polar codes significantly outperform polar

codes. There’s 0.2 dB gain for the second iteration. Fig. 3.7 shows the frame error rate

of Conv-polar codes with length N = 16384 and rate 1/2. n = 128 and m = 128. We

choose the best RS-polar code among different lengths of inner and outer codes in Fig. 6

of [46] as a comparison. Again the result shows the superiority of Conv-polar codes over

RS-polar codes.

From the above we can conclude that the proposed Conv-polar codes outperform SC
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and BP decoding of stand-alone polar codes, while the memory space required is much less

than that of polar codes with BP decoding. List decoding provides performance gain at the

cost of much larger memory size, as seen from Fig. 3.3. RS-polar codes achieve exponen-

tial error decay rate as Conv-polar codes but their performance is inferior to Conv-polar

codes. The performance of Conv-polar codes can be improved by increasing the constraint

length, while sequential decoding is able to maintain low decoding complexity. Thus we

can conclude that Conv-polar codes strike a better balance than the existing schemes.
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Figure 3.5: FER performance of codes with N = 2048 and rate 1/2 codes over AWGN
channel.
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Figure 3.6: FER performance of codes with N = 8192 and rate 1/3 over AWGN channel.

44



1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

polar,SC dec

RS-polar,GMD-ML dec

Conv-polar,SOMID 1 iter

Conv-polar,SOMID 2 iters
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3.8 Conclusion

Interleaved concatenation schemes of polar codes with binary codes have been consid-

ered. We have reviewed BCH-polar codes and have shown that the frame error rate can

decay exponentially with the code length for all rates up to capacity. We have also shown

that BCH-polar codes outperform RS-polar codes for the binary erasure channel. We have

then proposed a new class of concatenation schemes, namely the Conv-polar codes. We

have shown that such schemes also have an exponentially decaying error rate with a low-

complexity sequential decoder for all rates up to capacity. Furthermore, we have proposed

a soft-output multistage iterative decoder for the concatenated Conv-polar codes to fur-

ther improve the performance. From a more practical point of view, we have proposed

using RCPC codes as outer codes which enable the same encoder and decoder for outer

codes and are more hardware friendly. We have also investigated polar codes with various

decoders in many practical aspects including error-correcting capability, required mem-

ory space, and decoding complexity. Analysis and simulation results have shown that the

Conv-polar codes with the proposed decoders outperform stand-alone polar codes with SC

and BP decoding , while having much smaller required memory size than BP decoding.

Conv-polar codes also outperform RS-polar codes. Further performance improvement can

be obtained by the use of outer codes with much larger constraint length and sequential

decoding. This has suggested that the Conv-polar codes with the proposed decoding may

strike a better balance than existing methods.
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4. JOINT SOURCE-CHANNEL DECODING OF POLAR CODES FOR LANGUAGE

BASED SOURCES

4.1 Introduction

In this chapter, we study how to improve the performance of polar codes using the

natural redundancy in data. By natural redundancy, we refer to the inherent redundancy

in data (e.g., features in languages, images and videos) that is not artificially added for

error correction. We focus on compressed languages here. Current works have shown that

after compression of texts (at a compression ratio higher than practical systems), lots of

natural redundancy still exists [62]. Shannon has estimated the English entropy to be 11.82

bits/word or 1.34 bits/character [63]. With Huffman coding for characters, the source after

compression has on average 37 bits/word or 4.59 bits/character. With Lempel-Ziv-Welch

(LZW) coding with a dictionary of 220 patterns (much larger than LZW dictionaries in

many practical systems), the average length per character after source compression is 2.94

bits [62]. We can observe that it is difficult for the standard source compression schemes

to approach the Shannon estimation. There are also significant amount of redundancy

brought by various backup devices or cloud storage. By exploiting the natural redundancy,

the performance of error correction codes can be substantially improved [64, 1, 65, 66,

67, 68, 69, 70]. For example, after English texts are compressed by a LZW code and

transmitted over a BEC, a decoding algorithm using only natural redundancy can reduce

the noise in the compressed texts by over 85% for channel erasure rates from 5% to 30%.

To better understand how natural redundancy is efficient in improving the decoding

performance, we show an example of decoding a piece of English text. Assume the text

c©2016 IEEE. Part of the results reported in this chapter are reprinted with permission from Ying Wang,
Krishna R. Narayanan, Anxiao (Andrew) Jiang, Minghai Qin and Zvonimir Bandic, “Joint Source-Channel
Decoding of Polar Codes for Language-Based Sources," IEEE Global Communications Conference, Dec.
2016.
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is encoded by Huffman code into a length-n binary sequence and stored. As time goes

errors occur in the stored data. Assume that the number of bit errors is at most t. If we use

exhaustive search to find all possible solutions, the number of all solutions is
∑t

i=0

(
n
i

)
.

However valid solutions are very sparse. By valid solution we mean that the solution sat-

isfies two properties: (1) the bit string can be mapped successfully to a character string

by Huffman code; (2) all words in the character string appear enough number of times in

Wikipedia. Table 4.1 shows an example of decoding a corrupted version of text “funda-

mental problem". We see that there are only 6 valid solutions, and it is easy to pick the

correct one from valid solutions.

Table 4.1: An example of how the natural redundancy helps with error correction

Number
of bits

Number
of er-
rors

Number
of all
solutions

Number
of valid
solutions

Valid solutions

92 2 3547 6 (1) fundamental proc ira (2) fundamental
proc-m (3) fundamental problem (4) fun-
damental pro w ra (5) fundamental pr ch
ra (6) fundamental t9ch ra

This work is an extension of JSCD and denoising, which have been studied extensively.

However it has distinctive features. First, it does not consider joint optimization between

source compression and error correction. It assumes that the codes for source compression

are given and fixed. The reason is that typically the encoder needs to apply source and

channel encoding to data following a standard and the encoded data are sent to different

decoders. However, each decoder has its own freedom to develop advanced algorithms

to decode data. Second, our work explores new features in big data. One example is the

co-location relationship in languages shown in [62]. The natural redundancy acts as global
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constraints.

Shannon’s theorem [71] shows that separate optimization of source and channel codes

suffices for communicating sources over a large class of channels. However, such a

separation-based scheme is often subject to impractical computational complexity and un-

limited delay. It is well known that JSCD can outperform separation-based schemes in

the presence of complexity and delay constraints. Several works have considered JSCD

schemes that exploit the leftover redundancy from the source encoder. In [72], JSCD using

a soft-output Viterbi algorithm is considered. In [73], a trellis based decoder is used as a

source decoder in an iterative decoding scheme. Joint decoding of Huffman and Turbo

codes is proposed in [74]. In [75], joint decoding of variable length codes (VLCs) and

convolutional/Turbo codes is analyzed. Applications of turbo codes to image/video trans-

mission are shown in [76] and [77]. Joint decoding using LDPC codes for VLCs and

images are illustrated in[78] and [79], respectively. However, few works have considered

JSCD specifically for language-based sources. In [1], LDPC codes are combined with

a language decoder and a message passing algorithm is designed to exploit the natural

redundancy.

In this chapter, we propose a joint source-channel decoding scheme where the source

is source encoded by Huffman codes and channel encoded by polar codes and stored. The

proposed scheme decodes polar codes jointly with a language decoder using list decoding,

based on a word dictionary. We assume the dictionary is only available and used on the

decoder side, which is a reasonable assumption when the decoder has larger storage space

and stronger calculation power, e.g., uplink channels where the source is compressed at a

mobile device and uploaded to a data center. The insights of exploring joint list decoding

of polar codes in the JSCD scheme include the following:

1. CRC-aided list decoding of polar codes has outstanding performance for short to
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medium length codes [20]. The language decoder has a similar function to that

of a CRC. The language decoder uses the word dictionary to select most probable

paths, where the word dictionary can be viewed as local constraints on the decoded

subsequences. The language decoder has a critical advantage over global CRC, that

is, it can detect the validity of partially decoded paths before decoding the whole

codeword. In this way, incorrect paths can be pruned at early stages, resulting in a

larger probability that the correct path survives in the list. Based on this, we expect

the joint list decoding scheme for polar codes to have superior performance over

others.

2. Both polar list decoder and language decoder work over trees and that they can be

combined in a computationally efficient way. This provides an efficient framework

for exploiting the benefit of source redundancy;

3. The sequential nature of polar decoding makes polar codes more naturally suited

for exploiting source redundancy than LDPC type codes. In general, SC decoding

of polar codes suffers from error propagation. Wrongly decoded bits in early stages

may severely degrade the decoding performance of the whole sequence. To alleviate

this, we can reorder the words before encoding and put more reliable sub-sequences

in front to suppress error propagation. By cleverly arranging the order of information

bits based on the reliability/recover ability, we are able to substantially improve the

overall performance.

We show from simulation results that the proposed decoder provides substantial im-

provement in performance over the CRC-aided list decoding of standalone polar codes,

while the decoding complexity is kept in the same order. The improvement in the finite

length performance inspires us to explore how much the rate of channel codes can be im-

proved asymptotically by source redundancy. We first give a general model of decoding
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with side information, and show that the source redundancy can help improve the error

exponent and rate of channel codes. A theoretical model is studied for natural redundancy

in compressed languages. That is, we model the source redundancy as a set of t erasure

correcting block codes concatenated to the information bits. The block code is a simple

and effective way to model the erasure correcting ability of words in the dictionary. Each

block code corresponds to a word or a longer text. We show that the improvement in

the rate of polar codes depends on the distribution of frozen bits within a codeword. We

formally prove that the distribution of frozen bits converges to a limit distribution. Given

the limit distribution, we first obtain lower bounds on the improved rate. Then an opti-

mal information-bit allocation algorithm is proposed, and we analyze the convergence of

maximum improvement in the rate of polar codes with the proposed algorithm.

4.2 System model and joint source-channel decoding

Fig. 4.1 illustrates the framework of the proposed coding scheme. We consider text

in English, and the extension to other languages is straightforward. In our framework,

the text is first compressed by Huffman codes and then encoded by polar codes. On the

decoder side, the received sequence is jointly decoded by the polar code and a language

decoder. The language decoder consists of Huffman decoding and dictionary tracing. It

checks the validity of the decoded sequence by recognizing words in the dictionary. A

detailed description of the proposed JSCD scheme is given below.

The maximum a posteriori decoder aims to find maxun−1
0

P (un−1
0 |yn−1

0 ). To avoid

exponential complexity in n, we use list decoding to maximize P (ui0|yn−1
0 ), i ∈ [0, n− 1]

progressively by breadth-first search of a path in the decoding tree, where for each length-

(i + 1) path, a constant number, often denoted by L, of most probable paths are kept to
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Figure 4.1: A system model for joint source-channel decoding

search for length-(i+ 2) paths. Since

P (ui0|yn−1
0 ) =

P (ui0, y
n−1
0 )

P (yn−1
0 )

∝ P (yn−1
0 |ui0)P (ui0),

by source-channel separation theorem, a stand-alone polar decoder calculates the first term

P (yn−1
0 |ui0) ∝ P (yn−1

0 , ui−1
0 |ui) by a recursive structure, assuming ui0 are independently

and identically distributed (i.i.d.) Bernoulli(0.5) random variables, and thus the second

term can be obliterated since P (ui0) = 2−i−1,∀ui0 ∈ {0, 1}i+1. However, in the language-

based JSCD framework, ui0 are no longer i.i.d., one obvious consequence of which is

that ui0 is feasible only if the decoded text, translated from ui0 by Huffman decoder, con-

sists words in the dictionary. Therefore, P (ui0) contributes critically to the path metric

P (ui0|yn−1
0 ), and in particular, if P (ui0) = 0, this path should be pruned despite the metric

P (yn−1
0 |ui0) obtained from the channel. This pruning technique enables early detection of

decoding errors and is critical in keeping the correct path in the list. Algorithm 2 shows a

high-level description of JSCD.
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Algorithm 2 A high-level description of JSCD
Input: yn−1

0 , L
Output: un−1

0

1: Initialize: i← 0; lact ← 1;
2: while i < n do
3: if i ∈ F then
4: ui ← 0 for each active path;
5: else
6: k ← 1;
7: for each active path lj, j ∈ [lact] do
8: for ui = 0, 1 do
9: Compute P (yn−1

0 , ui−1
0 |ui);

10: Update P (ui0);
11: Mk ← P (yn−1

0 , ui−1
0 |ui)P (ui0) ;

12: k ← k + 1;
13: end for
14: end for
15: ρ← min(2lact, L) ;
16: Keep most probable ρ paths according to M2lact

1 ;
17: lact ← ρ;
18: end if
19: i← i+ 1;
20: end while
21: Select the most probable path and output un−1

0 .
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4.3 Practical implementation of JSCD

In this section we show a practical implementation of JSCD scheme. Let A be the

alphabet of symbols in text (e.g., {a, b, . . . , z} for lowercase English letters, {0, . . . , 127}

for symbols in ASCII table). LetD be the set of words in the dictionary. We assume a first

order approximation of English words where all words are independent. The performance

improvement of considering higher order Markov models of words [80] in languages is

diminishing since redundancy within a Huffman-encoded word are much larger than re-

dundancy across a sequence of words.

Proposition 11. The prior probability of source P (ui0) can be efficiently computed from

dictionary as follows:

P (ui0) =

j−1∏
m=1

P (wm)P (lk1r) =

j−1∏
m=1

P (wm)
∑
w

P (w), (4.1)

where wj−1
1 are j − 1 uniquely decoded words in D, lk1 are k uniquely Huffman-decoded

symbols in A and r is the remaining bit sequence. In the summation, w ∈ D satisfies that

in binary Huffman-coded representation, the first k symbols equals lk1 and r is a prefix of

the remaining bit sequences.

Remark 12. The calculation of P (ui0) should also take into account the probability of

spaces (or punctuations) between words. We append a space mark to all words.

Now we focus on the efficient calculation of (4.1). Two trees are used to facilitate the

calculation, one is a tree for Huffman coding and the other is a prefix tree (i.e., a trie) for

tracing a partially decoded word in the dictionary.
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4.3.1 Trie representation of the dictionary

A trie is an ordered tree data structure that is used to store a dynamic set or associative

array where the keys are usually strings [81]. In our implementation, each node in the

trie is instantiated as an object of a class named DictNode. As shown in Table 4.2, it

has 4 data members, a symbol c (e.g., English letter), a variable count representing the

frequency of the presence of this prefix, an indicator is_a_word indicating if the path

from root to this node is a whole word, and a vector of pointers child[] pointing to

their children. Fig. 4.2 is an illustrative example of the dictionary represented by a trie. In

an established trie, if the pointer that points to the end of a word (or a partial word) w is

known, then the calculation of P (w) can be accomplished in O(1) by dividing the count

of the end node of the path associated with w by the count of the root node.

Table 4.2: DictNode members

member type
c char

count int
is_a_word bool
child[] DictNode*

Table 4.3: HuffNode members

member type
p double

leftChild huffNode*
rightChild huffNode*

symSet char*

In order to establish the trie from extracted text (e.g., from books, websites, etc.), an

algorithm with an inductive process can be used. That is, suppose we have a trie T that

represents the first i words of the extracted text, for the (i + 1)st word w = (l1 . . . lk)

(assuming it contains k symbols), a pointer p_dict is created to point to the root and the

first symbol l1 in the word is compared with the children of the root in T . If l1 exists as

the symbol of a depth-1 node m1, then p_dict moves to m1 and l2 is compared with the

children of m1. The same operation continues until some lj does not exist in the children
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Figure 4.2: An illustrative example of a trie to represent the dictionary

set of the node mj−1 corresponding to path lj−1
1 . Then a new child with symbol lj is added

to mj−1 and the rest of the word lkj+1 is added accordingly. During the scan of (i + 1)st

word, the counts for each node p_dict visits are increased by 1. Algorithm 3 shows the

details of the algorithm.

Since searching for a symbol as a child of a node in T can be accomplished in O(1)

using a Hash table (e.g., unordered_map STL container in C++), the time complexity

of establishing the trie would be O(NlengthNword), where Nlength is the average length of a

word and Nword is the number of words extracted from some resource.

4.3.2 Tree representation of Huffman codes

The Huffman codes for source coding are for 1-grams, namely characters, or more

specifically, letters and space mark. In principle, we can also build a Huffman code for

n-grams. The Huffman codes are represented as a binary tree. Each node in the tree is

instantiated as an object of a class HuffNode whose members are shown in Table 4.3.

In a typical Huffman tree realization, a node m consists of three members: the probability

p of the associated symbol and two pointers to their left and right children (leftChild
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Algorithm 3 Establish a trie for the dictionary from text
Input: a sequence of words (w1w2 . . . wN), each word is represented as a string
Output: a trie T

1: Initialize: Create a root node of T as an object of DictNode;
2: for k = 1 to N do
3: Let p_dict point to the root of T ;
4: for i = 1 to the length of wk do
5: if *p_dict has no child or wk[i] is not in the children set of *p_dict then
6: Create a new node as an object of DictNode with c ← wk[i], count
← 1 and is_a_word ← False;

7: Insert the new node as a child of *p_dict;
8: Move p_dict to the new node;
9: if i == the length of wk then

10: p_dict->is_a_word ← True;
11: end if
12: else
13: Find j, s.t. wk[i] ==p_dict->child[j]->c;
14: p_dict->count++;
15: p_dict ← p_dict->child[j];
16: end if
17: end for
18: end for
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and rightChild). In addition, we implement a fourth data member symSet, that is, a

set of symbols that are descendants of m. This extra data member helps in simplifying the

calculation of (4.1) in the following manner. Note that in (4.1), P (lk1r), the probability of a

partial word is required. Assume lk1 is a path that ends in a node nk in the trie-represented

dictionary T and r is a path that ends in a node nr in the Huffman tree H. Then P (lk1r)

can be calculated by summing up the counts (or probability) of the subset of children of

nk ∈ T , such that the symbols associated with this subset are all descendants of nr ∈ H.

By associating all descendants of nr as a data member to the node itself, the complexity of

calculating P (lk1r) is linear in the number of descendants of nr, which is typically a small

number and decreases exponentially in the depth of nr. Fig. 4.3 shows an illustrative

example of a Huffman tree.

0 1

0 1 0 1

0 1 0 1

o

e

u

a

t m

symbol code

e 00
o 010
u 011
a 10
t 110
m 111

Figure 4.3: An illustrative example of a Huffman tree.

4.3.3 Calculation of P (ui0) with T andH

Next, we present an algorithm to calculate P (ui0) progressively according to (4.1). In

each of T and H, two pointers, denoted by p_dict and p_huff, are used respectively

58



to locate the current decoding stages i ∈ [0, n − 1]. They are initiated to point to the

root of T and H, respectively. A simple description of the algorithm is as follows. Let

ui−1
0 be represented as (wj−1

1 lk1r) and suppose each term in (4.1) is known up to index

i − 1. Suppose p_dict and p_huff point to two nodes in T and H. To update P (ui0),

first, p_huff moves to its left or right child according to ui. Let S denote all descendant

symbols of *p_huff. Replace P (lk1r) by the summation of probabilities associated with

a set of children, denoted by C, of *p_dict such that ∀a ∈ C, the symbols associated

with a belongs to S; If *p_huff is a leaf, then p_dict moves to its child according

to the symbol *p_huff associates and p_huff is reset to point to the root of H. If the

symbol that *p_huff associates with does not exist in the children of *p_dict, that

means P (ui0) should be set to 0 and this path has a decoding error and thus be pruned.

If furthermore *p_dict is an end node of a word in T , replace P (lk1r) by P (wj) and

p_dict is reset to point to the root of T . Let the multiplication of probabilities in (4.1)

be denoted by Pwd, i.e., Pwd =
∏j−1

m=1 P (wm), where Pwd can be updated recursively. A

detailed description is presented in Algorithm 4, 5 and 6.

Theorem 13. The overall decoding complexity of JSCD in Algorithm 2 and 4 isO(Ln(log n)).

Proof. Note that the only difference of Algorithm 2 from the list decoder of stand-alone

polar codes presented in [20] is the introduction of P (ui0) in 10th line. The complexity of

Algorithm 4 involves operations of the two pointers, both of which are local operations in

the dictionary tree and Huffman tree. It takes O(1) operations to extract the descendants

of *p_huff and it takes at most O(Nchild) to sum up their probabilities, where Nchild is

the number of children of a node in T . Therefore, updating P (ui0) is constant in n. Thus,

complexity of Algorithm 2 is O(Ln(log n + C)), where C is a constant. In other words,

the proposed JSCD algorithm has the same order of complexity as list decoders.
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Algorithm 4 Update P (ui0)

Input: ui, T ,H, p_dict, p_huff, Pwd
Output: p_dict, p_huff, P (ui0), Pwd

1: S ←TraceHuffmanTree(H,p_huff,ui);
2: C ←TraceDict(T ,p_dict,S);
3: P (lk1r)←

∑
w∈C P (w);

4: P (ui0)← Pwd · P (lk1r);
5: if p_huff points to a leaf inH then
6: Move p_dict to its child according to p_huff ;
7: Move p_huff to the root ofH;
8: if p_dict points to a leaf in T then
9: P (wj)← P (lk1r);

10: Pwd ← Pwd · P (wj);
11: end if
12: end if

Algorithm 5 TraceHuffmanTree(H,p_huff,ui)
Input: ui,H, p_huff
Output: S

1: if ui == 0 then
2: Move p_huff to its left child;
3: else
4: Move p_huff to its right child;
5: end if
6: S ← p_huff->symSet;

Algorithm 6 TraceDict(T ,p_dict,S)
Input: T , p_dict, S
Output: C

1: C ← ∅;
2: for each symbol s ∈ S do
3: if s is found in the children set of *p_dict then
4: s is added to C;
5: end if
6: end for
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4.3.4 List-size adaptive JSCD

To improve the efficiency of JSCD, we implement the list-size adaptive list decoders as

in [23]. A few CRC bits are added for error detection. The adaptive list decoders start with

L = 1 and computes an estimate un−1
0 . If un−1

0 satisfies the CRC, then un−1
0 are output as

the decoded bits, otherwise, the list size doubles and the list decoding is repeated. This

process continues until un−1
0 satisfies the CRC for some Lsuccess or the list size reaches a

threshold Lmax.

4.4 Simulation results

We present some numerical results showing the superiority of JSCD over the stand-

alone polar list decoder.

4.4.1 Dictionary

The dictionary is built from about 10 million extracted words in Wikipedia pages.

According to a word frequecy analysis in [82], the top 3000 most frequent words take

81% of the probability. In the dictionary tree implemented in this chapter, there are Ns =

180133 nodes of type DictNode.

4.4.2 Polar codes and channel parameters

In our simulation, the length of polar codes is fixed to n = 8192 and the code rate

is 0.923. Two typical B-DMCs are assumed, namely, AWGN channels and BSCs. The

polar code used for AWGN channels is constructed by density evolution in [22] at Eb
N0

= 4

dB. The polar code used for BSCs is similarly constructed for a BSC with cross-over

probability 0.002, which is the same as the channel parameter for LDPC designs in [1].

4.4.3 Results

Fig. 4.4 gives a comparison of different decoders for AWGN channels. It can be seen

that at block error rate below 10−3, more than 0.6 dB gain over stand-alone CRC-aided list
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decoders with L = 1024 can be realized by the list-size adaptive joint list decoders. It is

observed in our simulation that L = 1024 would be large enough such that further increase

of the list size will not contribute much to the performance. The decoding complexity of

the list-size adaptive joint list decoding is much lower than that of joint decoding with

fixed list size. Table 4.4 shows that the average list size Lsuccess decreases dramatically

with the increase of SNRs. We see that at Eb
N0

= 4 dB, Lsuccess = 2.24 for all Lmax = 128

and 1024.

Fig. 4.5 gives a comparison of four decoders for BSCs. The results consistently show

the superiority of JSCD over CRC-aided list decoding. Fig. 4.6 shows a comparison

of joint decoding using LDPC codes [1] and our schemes. The polar code has length

n = 4096 and rate 0.936, which is smaller in length and the same in rate as in [1]. We

should note that dictionaries for two schemes are built separately. The dictionary in [1]

is incomplete, i.e., not all words in sources are in the dictionary, while our dictionary is

complete. Thus the comparison is not entirely fair.

Table 4.4: Average list size of JSCD

Eb/N0 (dB) 3 3.25 3.5 3.75 4
Lmax = 32 30.89 25.94 13.68 5.46 2.22
Lmax = 128 113.09 59.27 21.84 5.66 2.24
Lmax = 1024 547.66 177.57 34.12 6.08 2.24

4.5 Discussion on language statistics

In this section, some properties of language-based sources are discussed to explain the

significant gains achieved by JSCD.
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Figure 4.4: Block error rate of different decoding schemes over AWGN channels: a) SC
decoding; b) CRC-aided list decoding (L = 8, 32); c) List-size adaptive CRC-aided list
decoding (Lmax = 1024); d) JSCD (L = 8, 32); e) List-size adaptive JSCD (Lmax = 1024).
All codes have length n = 8192 and k = 7561.
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4.5.1 Redundancy of Huffman-encoded text

The language has diverse features including semantics, grammar and syntax, etc. From

the fundamental coding theorem, the average number of bits to represent a word is lower

bounded by the entropy of words. Shannon estimated the word entropy of printed English

to be 11.82 bits per word [63]. Practically, we have collected a large number of words from

extracted text and computed the entropy of words by H(X) = −
∑

i pi log2 pi, where

H(X) is the entropy of the source X and pi is the probability of the ith unique word,

assuming that the words are independent. In our extracted text, the resultant entropy of

words is estimated to be 10.41 bits per words. However, the average number of bits for

a Huffman-encoded word is approximately 37 bits per words, which is much larger than

both estimates, showing great redundancy remaining in the compressed text. The major

reason for such redundancy is that Huffman codebook is generated by the distribution of

English letters instead of words, where strong correlation between letters exists. Some

other factors to cause the difference in the length of Huffman-encoded word and the en-

tropy of words include integer-length constraint of Huffman codes and mismatch between

the source model and the actual text transmitted.

4.5.2 Sparsity of words

Let Mn denote the number of Huffman-encoded binary sequences of length n that

correspond to a word in the dictionary. We call such a sequence a valid binary sequence.

Let Pn be defined as Pn = Mn

2n
, i.e., Pn is the probability that a uniformly and randomly

chosen binary sequence of length n corresponds to a valid word. We can write Pn in

an exponential form Pn = 10−xn , where xn represents the growth rate of sparsity of valid

binary sequences. Based on statistics of the extracted text,Mn and xn are shown in Fig. 4.7

and Fig. 4.8, respectively. Fig. 4.7 illustrates that the length of Huffman-encoded binary

sequence for more than 97% of words is concentrated between 15 and 70. Fig. 4.8 shows
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Figure 4.7: The number of words with length-n Huffman-encoded binary sequences

that xn increases almost linearly in n for n > 15, thus Pn decreases exponentially in n.

Therefore, if n is large, Pn is very small, meaning valid binary sequences are sparse. The

sparsity of valid words indicates that once the decoded binary sequence corresponds to a

valid word, there is a high probability that the decoded sequence is correct. In fact, the

Hamming distance and the probability of words largely affect the error probability. The

sparsity of valid words is a necessary condition for a large Hamming distance. Thus we

see that the sparsity of words implies high efficiency of the dictionary in pruning paths.
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Figure 4.8: The sparsity exponent xn, where Pn = 10−xn is the probability that a uniformly
and randomly chosen binary sequence of length n corresponds to a valid word.
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4.6 Theoretical analysis of improved rate of polar codes

Simulation results in Section 4.4 show significant gains of the JSCD scheme in prac-

tice, which lay ground for theoretical analysis of the benefits of the scheme. Particularly,

we give a theoretical analysis of improved rate of polar codes at high level in this sec-

tion. First a general model of decoding is given with side information. We show that the

source redundancy can help improve the error exponent and rate of channel codes. Then

we analyze the rate improvement of polar codes.

4.6.1 General decoding model with source redundancy

In a system where the source is compressed without removing all the redundancy, the

leftover redundancy can act as the side information to help improve the decoding perfor-

mance, while no change is made to the encoding structure. In this chapter, the source

redundancy is modeled as side information as shown in Fig. 4.9. There are two parallel

channels, one transmitting the normal codewords, and the other transmitting the side in-

formation. The source w is first source encoded into u and channel encoded into x, and

then is transmitted through a channel to the decoder. The decoder receives y and has side

information v available. v is correlated with the source w and the correlation depends on

the redundancy left in the source.

Source
Encoder

Channel
Encoder Channel Decoder

Side Info
Channel

W
U X Y Ŵ

V

Figure 4.9: A decoding model with side information.
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Lemma 14. Assume the source is encoded by source and channel codes and transmitted

through a DMC with transition probability P (y|x). Each codeword is chosen i.i.d from

distribution q. Denote n as the length of the code. Assume the side information v is

available at the decoder with prior probability p(v). The source w is transmitted through a

channel with transition probability p(v|w). The average error probability of the ensemble

is bounded by

P̄e ≤ 2−nE0(ρ,q)+Es(ρ), ρ ∈ (0, 1],

where E0(ρ,q) and Es(ρ) are defined as

E0(ρ,q) = − log
∑
j

(∑
k

q(k)P (j|k)1/(1+ρ)

)1+ρ

,

Es(ρ) = log

∑
v

p(v)

(∑
w

p(w|v)1/(1+ρ)

)1+ρ
 .

Proof. Let P̄e,v denote the average error probability given side information v. From Ex-

ercise 5.16 of [31] we know that if the prior probability of the source is available at the

decoder, with MAP decoding the average error probability of the ensemble given v is

bounded by

P̄e,v ≤

(∑
w

p(w|v)1/(1+ρ)

)1+ρ

2−nE0(ρ,q). (4.2)

The average error probability is derived as

P̄e =
∑
v

p(v)P̄e,v ≤ 2−nE0(ρ,q)
∑
v

p(v)

(∑
w

p(w|v)1/(1+ρ)

)1+ρ

.
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Then Es(ρ) can be derived from above.

Example 15. Assume that the source w is a binary memoryless source (BMS) with length

l, and the channel code has length n. Each symbol in the source is i.i.d. Assume that

the channel to transmit the side information v is a BEC with erasure probability β. Then,

Es(ρ) can be computed as

Es(ρ) = l log
∑
v

p(v)

(∑
w

p(w|v)1/(1+ρ)

)1+ρ

= l log ((1− β) + β2ρ)

Without loss of generality assume R = l
n

, we have

Es(ρ) = Rn log ((1− β) + β2ρ) . (4.3)

Assume the channel is BEC(ε) and the channel for side information is BEC(β). If we

define E0(ρ) as E0(ρ) = maxqE0(ρ,q), for BEC(ε) E0(ρ) is derived as

E0(ρ) = − log
(
(1− ε)2−ρ + ε

)
,

and Es(ρ) is given in (4.3). Let Er(R) = E0(ρ)− Es(ρ)/n denote the random exponent.

We plot Er(R) in Fig. 4.10. It can be observed that the random exponent with β ∈ [0, 1)

is larger than that without side information. Fig. 4.11 shows the maximum rate for which

Er(R) > 0 as a function of β. We see that the maximum rate is also improved by the side

information.

The preceding discussion shows that for the random code ensemble, the rate can be

improved by side information available at decoder. In the following sections, we consider

a practical joint decoding scheme with polar codes. We study a particular model for the
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side information and analyze the improved rate of polar codes for that model.

4.6.2 A simplified model for natural redundancy in languages

Let [n0, t] denote a block code of length n0 that can correct t erasures. The natural

redundancy in the source is modeled such that each block of n0 consecutive output bits

from the side information channel corresponds to a word in the dictionary or a longer text

and is assumed to be a codeword of a [n0, t] outer code. Let B = (b0, b1, b2 · · · ) be the bits

in a compressed text. We assume that B is a sequence of codewords of [n0, t] codes.

Let C be an (n, k) polar code. Let U = (u0, u1, · · · , un−1) be the input bits and let

X = (x0, x1, · · · , xn−1) be a codeword of polar codes . The encoder normally encodes

U – k of which are information bits, and n − k of which are frozen bits – into X . Let

F ⊂ {0, 1, · · · , n − 1} denote the indices of the frozen bits. Here, we consider a scheme

where the natural redundancy in the information bits is used to improve the code rate by

unfreezing some of the frozen bits, namely, some frozen bits are also used as information

bits. Let E ⊂ F denote the indices of the bits we unfreeze. We use the bits {ui | i ∈

{0, 1, · · · , n − 1} − (F − E)} to store the bits in B, and use the SC decoding for error

correction. For the SC decoder, if the first n0 − t bits of the n0 bits are decoded correctly,

the last t bits can be filled in by the outer erasure code, regardless of the decisions on the

last t bits made by the SC decoder. Equivalently, the rate of the polar code can be increased

by sending those last t bits in frozen bit positions. Since B is a sequence of [n0, t] codes,

to make decoding successful, the requirement is that for every [n0, t] code, its first n0 − t

bits should be stored in bits (of U ) whose indices are not in F . Let |E| be denoted as the

cardinality of the set E . The code-rate improvement is ∆R = |E|/n. We give a simple

example.

Example 16. Consider an (8, 4) polar code and let the outer code be a [2, 1] code. Let

u1, u2, u3 and u5 be the frozen bits. We can unfreeze u5 by grouping u5 with u4 into a
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codeword of the [2, 1] outer code that corrects 1 erasure. If u4 is decoded correctly by

the polar code, the outer code can correctly decode u5. The rate of inner polar code is

therefore increased by 1
8

without increasing the block error rate.

The model is suitable for many compression algorithms, such as Huffman coding and

LZW coding with a fixed dictionary of patterns, where every binary codeword in the com-

pressed text represents a sequence of characters in the original text, and the natural redun-

dancy in multiple adjacent codewords (e.g., the sparsity of valid words, phrases or gram-

matically correct sentences) can be used to correct erasures. Theoretically, the greater n0

is, the better this model is for languages.

The improvement in code rate depends on the distribution of frozen bits in the polar

code. Generally speaking, the further “behind” the frozen bits’ positions are in the polar

code, the more code-rate improvement can be achieved because more frozen bits can be

used in the [n0, t] codes. The distribution of the frozen bits is in general a function of n.

In the next subsection, we show that the distribution converges to a limit distribution.

We should mention that there is another natural way to exploit the redundancy when the

source is modeled as codewords of a [n0, t] code. After the source is compressed into [n0, t]

codes, we can puncture the last t bits of coded bits and encode the remaining bits with

capacity-achieving channel codes. This is equivalent to compressing the source further

before encoding by the channel code and is in the spirit of separate source and channel

coding. Indeed, when the channel is perfectly known at the receiver and for asymptotic

lengths, this scheme would be optimal. However, our scheme of keeping the redundancy

is more robust to the variations of the channel. First, if the channel is time-varying, the

decoder can decide how much redundancy to exploit based on its own channel conditions.

When the channel is degraded, for finite lengths, the newly unfrozen bits can still provide

some information which can be exploited in the decoder. When the channel is upgraded,
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the decoding complexity at the language decoder can be reduced. Second, if the source

is transmitted over multiple channels, a universal coding scheme may be required and

unfreezing the frozen bits may provide a more robust solution. We do not explore these

specific situations in detail in this dissertation but the theoretical results presented in the

next section may be useful in analyzing these situations further. A more careful analysis

is required to fully understand the utility of the proposed scheme.

4.6.3 Convergence of frozen-bit distribution in polar codes

We characterize the distribution of frozen bits as follows. Given a real number y, let

y− be y − 1 if y is an integer, and be byc otherwise. ∀ x ∈ [0, 1], let Fn(x) be the frozen

set (i.e., indices of frozen bits) among the first (nx)− + 1 bits of the polar code. Formally,

given an arbitrarily small ε ∈ [0, 1),

Fn(x) , {i ∈ [0, (nx)−] : I(W (i)
n ) ∈ [0, 1− ε)}.

Let fn(x) , |Fn(x)|
nx
∈ [0, 1], which describes the distribution of frozen bits (or more specif-

ically, the proportion of frozen bits among the first nx bits). We show the convergence of

fn(x) in the following theorem [67].

Theorem 17. For a polar code with length n = 2m and rate R = I(W )− δ where δ is an

arbitrarily small positive number, the function fn(x) converges as n→∞.

Proof. Assume a polar code has length n = 2m and rate R. Let Bn(x),Mn(x) andAn(x)

be defined as follows: for any arbitrarily small ε ∈ [0, 1),

Bn(x) , {i ∈ [0, (nx)−] : I(W (i)
n ) ∈ [0, ε]},

Mn(x) , {i ∈ [0, (nx)−] : I(W (i)
n ) ∈ (ε, 1− ε)},

An(x) , {i ∈ [0, (nx)−] : I(W (i)
n ) ∈ [1− ε, 1]}.
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Figure 4.12: One step transformation to get W (2i)
2n and W (2i+1)

2n from W
(i)
n

We have Fn(x) = Bn(x) ∪Mn(x). Define gn(x), tn(x) and hn(x) as

hn(x) =
|Bn(x)|
nx

, tn(x) =
|Mn(x)|
nx

, and gn(x) =
|An(x)|
nx

.

From the definition of frozen set, we have fn(x) = hn(x) + tn(x) = 1 − gn(x). As

n→∞, almost all channels polarize in the sense that gn(1)→ I(W ), hn(1)→ 1− I(W )

and tn(1) → 0. For polar code of length n = 2m, if we perform one more step of

transformation, the length of the code is increased to 2n. The ith bit channel W (i)
n is
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split to W (2i)
2n and W (2i+1)

2n , where I(W
(2i)
2n ) ≤ I(W

(i)
n ) ≤ I(W

(2i+1)
2n ). Fig. 4.12 shows

the process of one step transformation to get W (2i)
2n and W (2i+1)

2n from W
(i)
n . Define ∆I =

I(W
(i)
n ) − I(W

(2i)
2n ). We know that ∆I = I(W

(2i+1)
2n ) − I(W

(i)
n ). By computing ∆I for

the two extreme channels (BEC and BSC), upper and lower bounds of ∆I can be derived.

The maximum value of ∆I is achieved for BEC:

∆max
I = I(W (i)

n )− I2(W (i)
n ),

and the minimum value is achieved for BSC:

∆min
I = H(2p(1− p))−H(p)

where I(W
(i)
n ) = 1−H(p), andH(p) is the entropy of a BSC with crossover probability p.

The upper and lower bounds of ∆I are plotted in Fig. 4.13. We see that if the ith channel

has I(W
(i)
n ) ∈ [0, ε] or I(W

(i)
n ) ∈ [1 − ε, 1], after one step of transformation the capacity

of W (2i)
2n or W (2i+1)

2n is very close to that of W (i)
n .

Consider the ith bit channel, if i ∈ An(x), I(W
(i)
n ) is bounded by 1−ε ≤ I(W

(i)
n ) ≤ 1.

It is easily seen that 2i+1 ∈ A2n(x) as I(W
(i)
n ) ≤ I(W

(2i+1)
2n ). Since I(W

(2i)
2n ) ≥ I(W

(i)
n )2,

we have I(W
(2i)
2n ) ≥ (1 − ε)2. Since (1 − ε)2 > ε for ε < 3−

√
5

2
= 0.382, if ε < 0.382,

it is guaranteed that I(W
(2i)
2n ) > ε, which indicates 2i /∈ B2n(x). Similarly, if i ∈ Bn(x),

I(W
(i)
n ) satisfies 0 ≤ I(W

(i)
n ) ≤ ε. Since I(W

(2i+1)
2n ) ≤ 2I(W

(i)
n ) − I(W

(i)
n )2, we have

I(W
(2i+1)
2n ) ≤ 2ε − ε2. Since 2ε − ε2 < 1 − ε for ε < 3−

√
5

2
= 0.382, if ε < 0.382,

it is guaranteed that I(W
(2i+1)
2n ) < 1 − ε, indicating 2i + 1 /∈ A2n(x). In summary, if

ε < 0.382, the following constraints are satisfied: if i ∈ An(x), 2i /∈ B2n(x), and if

i ∈ Bn(x), 2i+ 1 /∈ A2n(x). We can conclude that for n large enough the following hold:

1. If i ∈ Bn(x), 2i ∈ B2n(x), and 2i+ 1 can be either in B2n(x) orM2n(x);
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2. If i ∈ An(x), 2i+ 1 ∈ A2n(x), and 2i can be either in A2n(x) orM2n(x);

3. If i ∈Mn(x), 2i can be in eitherM2n(x) or B2n(x); 2i+1 can be in eitherM2n(x)

or A2n(x).

From above facts, |A2n(x)| can be bounded by

|A2n(x)| ≤ 2|An(x)|+ |Mn(x)|.

Thus g2n(x) is bounded by

g2n(x) =
|A2n(x)|

2nx
≤ |An(x)|

nx
+
|Mn(x)|

2nx

= gn(x) +
1

2
tn(x).

We have a lower bound for f2n(x)

f2n(x) = 1− g2n(x) ≥ fn(x)− 1

2
tn(x) (4.4)

On the other hand, |B2n(x)| is upper bounded by

|B2n(x)| ≤ 2|Bn(x)|+ |Mn(x)|.

Thus h2n(x) is bounded by

h2n(x) =
|B2n(x)|

2nx
≤ hn(x) +

1

2
tn(x) = fn(x)− 1

2
tn(x),
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and we obtain an upper bound of f2n(x)

f2n(x) = h2n(x) + t2n(x) ≤ fn(x)− 1

2
tn(x) + t2n(x). (4.5)

Combining (4.4) and (4.5), f2n(x) is bounded by

fn(x)− 1

2
tn(x) ≤ f2n(x) ≤ fn(x)− 1

2
tn(x) + t2n(x).

By induction, if taking s steps of transformation for any s > 0, f2sn(x) is bounded by

fn(x)− 1

2

s∑
i=1

t2i−1n(x) ≤ f2sn(x)

≤fn(x) +
1

2

(
s∑
i=1

t2i−1n(x)

)
− tn(x) + t2sn(x) (4.6)

Thus the difference between f2sn(x) and fn(x) is bounded by

|f2sn(x)− fn(x)| ≤ 1

2

s∑
i=1

t2i−1n(x) + t2sn(x) (4.7)

Since almost all bit channels polarize in the limit of blocklength, we have limn→∞ tn(x) =

0. It is shown in [29] that the fraction of intermediate bit channels tn(1) is bounded by

β2−bm ≤ tn(1) ≤ α2−am (4.8)

for some α > 0 and β > 0. Here m = log2(n). For BEC, the exponents are chosen as

a = 0.2669 and b = 0.2786 [29]. It is easily seen that tn(x) is upper bounded by

tn(x) =
|Mn(x)|
nx

≤ |Mn(1)|
nx

=
1

x
tn(1).
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Hence we have an upper bound for tn(x)

tn(x) ≤ α

x
n−a. (4.9)

t2sn(x) is upper bounded by

t2sn(x) ≤ α

x
(2sn)−a ≤ α

x
n−a.

The term
∑s

i=1 t2i−1n(x) in (4.6) is bounded by

s∑
i=1

t2i−1n(x) ≤
s∑
i=1

α

x
(2i−1n)−a ≤ α

x

∞∑
i=1

(2i−1n)−a

=
α

x

1

1− 2−a
n−a.

Then the right hand side of (4.7) is bounded by

1

2

s∑
i=1

t2i−1n(x) + t2sn(x) ≤ α

x

(
1

2(1− 2−a)
+ 1

)
n−a. (4.10)

Given an arbitrarily small δ, we can find an n′ such that

α

x

(
1

2(1− 2−a)
+ 1

)
(n′)−a < δ (4.11)

Thus from (4.7), (4.10) and (4.11) we derive that for any δ > 0, there exists n′ > 0 such

that for all n > n′ and s > 0,

|f2sn(x)− fn(x)| < δ.

We have proved that fn(x) is a Cauchy sequence for any x ∈ [0, 1]. Since every Cauchy
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sequence converges in R [83], the convergence of fn(x) holds.
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Figure 4.14: Distributions of frozen bits with different code lengths.

We show fn(x) for rate 1/2 polar codes with different code lengths in Fig. 4.14. It can

be seen that the distribution is very close to each other, which validates Theorem 17.

4.6.4 Lower bound of rate improvement

Given the converged distribution of frozen bits in the polar codewords, we show how

to compute lower bounds of the improved rate.
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4.6.4.1 [2, 1] outer codes

We start by considering [2, 1] outer codes. Denote the lower bound of improved rate

by ∆Rl. ∆Rl is given in Theorem 18.

Theorem 18. For [2, 1] outer codes, the rate of the polar code can be increased by

∆Rl = lim
n→∞

n(1−R) (1− fn(1−R))

n

= (1−R) (1− f(1−R))

Proof. Among the first n(1 − R) bits, there are n(1 − R) (1− fn(1−R)) unfrozen bits.

This is equal to the number of frozen bits among the last nR bits. Therefore from the

polar code perspective, all frozen bits in the last nR bits can be unfrozen and grouped with

information bits from the first n(1−R) bits into [2, 1] codes.

4.6.4.2 [n0, t] outer codes

For general [n0, t] outer codes, we give the lower bound of improved rate in Theo-

rem 19.

Theorem 19. Let h(x) be an upper bound on f(x). If outer codes can be modeled as

length-n0 codes that correct t erasures, the rate of polar code can be increased by ∆R =

1−R− x0h(x0), where x0 ∈ (0, 1) satisfies the condition

nx0(1− h(x0))

n0 − t
≥ n− k − nx0h(x0)

t
. (4.12)

Proof. Let hn(x) upper bounds fn(x) for each n and assume h(x) = limn→∞ hn(x). Let

x0 ∈ (0, 1). Among the first nx0 bits, there are nx0(1 − fn(x0)) ≥ nx0(1 − hn(x0))

unfrozen bits. Among the last n(1 − x0) bits, there are n − k − nx0fn(x0) ≥ n − k −

nx0hn(x0) frozen bits. If inequality (4.12) holds, we can unfreeze n − k − nx0hn(x0)
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frozen bits among the last n(1− x0) bits, and take nx0(1− hn(x0)) unfrozen bits among

the first nx0 bits and group them into length-n0 outer codes. Then the increased rate is

∆Rl = limn→∞
n−k−nx0hn(x0)

n
= 1−R− x0h(x0).

A simple yet useful choice of h(x) is a piece-wise linear function as follows. Let α > 0

and β > max(1, α) be two constant real numbers. Then h(x) can be chosen as

h(x) =


1, if 0 < x ≤ β − 1

α
(4.13)

−αx+ β, if
β − 1

α
< x ≤ 1.

Example 20. We choose h(x) in (4.13) with α = 0.6 and β = 1.1. h(x) is shown as a

red curve in Fig. 4.15. If outer codes are [7, 2] codes that correct 2 erasures, x0 = 0.59

satisfies inequality (4.12). Then we can derive ∆Rl = 0.06. If outer codes are [8, 3] codes

that correct 3 erasures, we can derive that ∆Rl = 0.076.

Notice that in Theorem 18 and Theorem 19, n bits are partitioned into two segments,

where frozen bits in the second segment are then unfrozen to transmit bits that are cor-

rectable by unfrozen bits in the first segment. This idea can be generalized by partitioning

the n bits into m + 1 ≥ 2 segments. Let h(x) and g(x) be upper and lower bounds on

f(x), respectively. Let x1, x2, . . . , xm satisfy β−1
α

< x1 < x2 < · · · < xm < 1. They

partition the codewords into m+ 1 segments.

Theorem 21. If outer codes can be modeled as length-n0 codes correcting t erasures, we

partition the codewords into m+ 1 segments. The rate of polar code can be increased by

∆Rl = lim
n→∞

∑m
i=1 Fi+1

n
=

m∑
i=1

(xi+1g(xi+1)− xih(xi)) ,
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Figure 4.15: An upper bound to the frozen bit distribution
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where x1, . . . , xm satisfy Ui
n−t ≥

Fi+1

t
,∀i ∈ [m], Fi and Ui are defined as

Fi , nxig(xi)− nxi−1h(xi−1),

Ui , nxi − nxi−1 − nxih(xi) + nxi−1g(xi−1),

i.e., lower bounds on number of frozen and unfrozen bits in the ith segment.

4.6.5 Maximum rate improvement

Having obtained lower bounds of the improved rate, now we present a new algorithm

for mapping the information bits b0, b1, b2 · · · to the input bits of the polar code’s encoder,

which maximizes ∆R.

4.6.5.1 Bit-allocation algorithm for optimal rate improvement of polar codes

The algorithm has the following procedures: (1) As initialization, let α ← −1 and

β ← −1. (2) For j = 0, 1, 2 · · · , if (j mod n0) < n0 − t (which means bj is one of the

first n0 − t bits of an [n0, t] code), let α ← min{i | α < i < n, i /∈ F} and then assign bj

to uα. Otherwise (which means bj is one of the last t bits of an [n0, t] code), assign bj as

follows:

1. If {i | i > α, i > β, i ∈ F} 6= ∅, let β ← min{i | i > α, i > β, i ∈ F}, and assign

bj to uβ .

2. If {i | i > α, i > β, i ∈ F} = ∅, let α ← min{i | α < i < n, i /∈ F} and then

assign bj to uα.

The above algorithm ends when there is no more value to assign to α (namely, {i | α <

i < n, i /∈ F} = ∅). Let E include all bits denoted by uβ . The algorithm maximizes |E|

and therefore ∆R. It is a greedy algorithm, and has linear time complexity. We present

a sketch of proof for its optimality: for every [n0, t] outer-codeword, call its first n0 − t
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bits “pseudo-info bits”, and call its last t bits “pseudo-check bits". Since SC decoder

decodes the bits of outer-codewords in the order of their increasing indices, in encoding,

it is optimal to allocate the pseudo-info bits to non-frozen bits codeword by codeword,

without interleaving them. For pseudo-check bits, it is optimal to allocate them to as many

frozen bits as possible; and each time we unfreeze a frozen bit to store a pseudo-check bit,

it is optimal to choose the feasible frozen bit of the minimum index.

4.6.5.2 Convergence of the improved rate

Theorem 22. Assume a polar code has length n and rate R = I(W ) − δ, where δ is an

arbitrarily small positive number. Let the polar code be outer coded by a set of [n0, t] block

codes, where n0 and t scales linearly with n. If the frozen bit distribution fn(x) converges

to some function f(x), the improved rate of polar codes ∆Rn converges as n→∞.

Sketch of proof. Consider the optimal bit allocation scheme in Section 4.6.5.1. The bits are

grouped into [n0, t] outer codes sequentially, where the first n0− t bits are information bits

and last t bits are what can be unfrozen. Let nxi and nyi, i ∈ [1, s] be the last information

bit and last bit in the ith outer code, respectively. Given the convergence of fn(x) and

linearity of n0 and t with n, we can show the convergence of xi and yi, i ∈ [1, s], and

thus the convergence of s. Since ∆Rn = st+c
n

where c < t, the convergence of ∆Rn

follows.

Let ∆Rmax denote the optimal code-rate improvement achieved by the bit allocation

algorithm. We illustrate examples of ∆Rmax for rate 1/2 polar codes of different lengths

in Fig. 4.16, for three different [n0, t] outer codes: [2, 1], [7, 2] and [8, 3] codes. It can be

seen that ∆Rmax converges as n increases. The convergence of both the lower bound and

the maximum improved rate depends on the convergence of fn(x). A comparison of the

lower bound and maximum code rate improvement is shown in Table 4.5, for sufficiently

large polar-code length n. We can see that the code-rate improvement by the optimal bit
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allocation algorithm exceeds the lower bound to ∆R. Longer outer codes are also simu-

lated to better model the language-based sources. Fig. 4.17 shows ∆Rmax with [100, 25]

and [100, 40] outer codes. We see the convergence of both improved rates.

Table 4.5: A comparison of the lower bound of improved rate and maximum improved
rate

∆Rmax ∆Rl

[2, 1] outer codes 0.181 0.125
[7, 2] outer codes 0.090 0.060
[8, 3] outer codes 0.124 0.076

4.7 Conclusion

Source redundancy is exploited to improve the decoding of polar codes. We propose

a joint list decoding scheme for polar codes taking into account the source redundancy

using a dictionary. The decoding complexity is of the same order as that of list decoding

for stand-alone polar codes. Simulation results show that our scheme significantly outper-

forms CRC-aided list decoding of polar codes. Theoretically we show the improved rate

of polar codes by source redundancy. We first model the general source redundancy as

side information, and show the improved coding exponent of channel codes. Then a par-

ticular model is given for natural redundancy in languages and we analyze the improved

rate of polar codes for that model. We prove the convergence of frozen bit distribution of

polar codes, and derive lower bounds of the improved rate. Further we propose an optimal

information-bit allocation algorithm to achieve the maximum improved rate. We show

the convergence of the improved rate. Both the finite-length performance and improved

rate in the asymptotic sense imply the superiority of polar codes in exploring the natural

redundancy.
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Figure 4.16: Improved rates with different outer [n0, t] codes. (The [2, 1], [7, 2], [8, 3] outer
codes can correct 1, 2 and 3 erasures, respectively.)
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Figure 4.17: Improved rate ∆Rmax with [100, 25] and [100, 40] outer codes.
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5. DESIGN OF IRREGULAR REPEAT ACCUMULATE CODES FOR JOINT

DECODING OF SOURCES WITH REDUNDANCY

5.1 Introduction

The work in this chapter is an extension of the work in Chapter 4. In Chapter 4 we have

proposed a non-iterative decision feedback scheme for polar codes to exploit the natural

redundancy in the source. We have shown substantial performance improvement over the

separate decoding scheme [66], and we have also shown the improved rate of polar codes.

In this chapter we propose an alternative method – joint iterative decoding with irregular

repeat accumulate (IRA) codes–to exploit the natural redundancy.

As a subclass of Turbo and LDPC codes, IRA codes combine many of the favorable

attributes of both codes [84]. An important advantage of IRA codes over other LDPC

codes is that they are encodable in linear time. They have simple structure but are shown to

have good performance. The structure enables flexible adjustment of degree distributions

to the desired criterion.

In this chapter we propose a joint iterative decoding scheme for IRA codes, with low

encoding and complexity decoding. We propose how to design IRA codes for two models

of sources. In the first model, the source redundancy is modeled as a genie telling the

correct value with a certain probability. In the second model, the source redundancy is

treated as a set of erasure/error correcting block codes. We show that optimized IRA

codes can achieve improved decoding thresholds. With fast encoder and low complexity

decoder, they are powerful candidates for practical use.

5.2 Joint iterative decoder

The framework of joint iterative decoding with LDPC codes is illustrated in Fig. 5.1.

The source is first source encoded by Huffman codes and then channel encoded by LDPC
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codes. The encoded sequence is transmitted through a channel. At the decoder side, the

source decoder and LDPC decoder work jointly to recover the source. The redundancy in

the source is exploited to improve the decoding of LDPC codes. The soft information is

exchanged between the two decoders iteratively.

Source
Encoder

LDPC
Encoder

Channel

LDPC
Decoder

Source
Decoder

Iterative decoding

A
U X

Y

Â

Figure 5.1: Framework of joint iterative decoding with LDPC codes

5.3 Design of IRA codes for BEC

In this section we show how to take advantage of source redundancy in designing IRA

codes. The code structure for joint decoding is shown in Fig. 5.2. Assume codewords are

transmitted through a BEC. Two models for the language decoder are considered. In the

first model, it is assumed that there is a genie that provides the correct value of erased bits

with probability q. In the second model, the language decoder acts as a set of [n0, t] block

codes, where n0 is the length of the code and t is the erasure correction capability. We

should point out that [n0, t] is not a standard notation of an error correction code. We use

this notation to put emphasis on the error correction ability of a code with a certain length.
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Figure 5.2: Joint decoding structure with IRA codes

IRA codes are composed of repetition codes, parity checks and accumulators [84].

Information variable nodes (VNs) are first encoded by repetition codes and then permuted.

The permuted bits are connected to check nodes (CNs) and then encoded by accumulators

(ACCs) to generate parity bit nodes. The IRA code ensemble can be specified by two

degree profiles,

λ(x) =
dvm∑
i=1

λix
i−1,

ρ(x) =
dcm∑
i=1

ρix
i−1,

where λi and ρi are the fraction of edges connected to bit nodes and check nodes with de-

gree i, respectively. dvm and dcm are the maximum degrees of VNs and CNs. We show how

to optimize the degree profiles {λ(x), ρ(x)} to get improved decoding thresholds. Density

evolution can be used to keep track of the error probability, assuming the blocklength is

infinity and the expanded graph is tree structured.
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5.3.1 Genie-aided decoding

Assume that the language decoder acts as a genie that tells each bit the correct value

with probability q. We give two methods for designing IRA codes: linear programming

and EXIT chart design.

5.3.1.1 Linear programming design

We explore density evolution to find optimal degree distribution of IRA codes for each

q. Assume the average degree of bit nodes and parity checks are d̄v and d̄c, respectively.

Let k and m be the number of information bits and parity bits. We have m = kd̄v
d̄c

. For

systematic codes, the rate is Rsys = k
k+m

= 1
1+d̄v/d̄c

, while for non-systematic codes, the

rate is Rnonsys = k
m

= d̄c
d̄v

.

In general IRA codes with constant check node degree are shown to be able to achieve

the capacity of BEC [84]. To find optimized IRA codes, without loss of generality we

assume the degree of check nodes is a constant a, thus ρ(x) = xa−1. The rate of systematic

codes is

Rsys =
a

a+ 1∑dvm
i=2 λi/i

,

and the rate of non-systematic codes is

Rnonsys =
a
1∑dvm

i=2 λi/i

.

Next we show how to optimize λi given q. Let VI be an information bit node, Vp be a

parity bit node and C be a check node. Let x(l)
0 , x(l)

1 , x(l)
2 , x(l)

3 be the erasure probability in

the l-th iteration on an edge from VI to C, C to Vp, Vq to C and C to VI , respectively.

For systematic IRA codes with genie-aided decoding, the erasure probabilities of dif-
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ferent types of messages are:

x
(l)
1 = 1− (1− x(l−1)

2 )(1− x(l−1)
0 )a,

x
(l)
2 = εx

(l−1)
1 ,

x
(l)
3 = 1− (1− x(l−1)

2 )2(1− x(l−1)
0 )a−1,

x
(l)
0 = (1− q)ελ(x

(l−1)
3 ),

with initial condition: x(0)
0 = ε(1 − q). From the above we can derive the fixed point of

iterative decoding:

(1− q)ελ

(
1−

(
1− ε

1− ε(1− x0)a

)2

(1− x0)a−1

)
= x0.

If no solution is found in (0, 1] for (5.1), the erasure probability of information bit x(l)
0 will

converge to 0. Thus the condition for successful BP decoding is

(1− q)ελ

(
1−

(
1− ε

1− ε(1− x0)a

)2

(1− x0)a−1

)
< x0,∀x0 ∈ (0, ε(1− q)].

For non-systematic IRA codes with genie aided decoding, the erasure probabilities of

different messages are:

x
(l)
1 = 1− (1− x(l−1)

2 )(1− x(l−1)
0 )a,

x
(l)
2 = εx

(l−1)
1 ,

x
(l)
3 = 1− (1− x(l−1)

2 )2(1− x(l−1)
0 )a−1,

x
(l)
0 = (1− q)λ(x

(l−1)
3 )
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with initial condition: x(0)
0 = 1− q. The condition for x0 to converge to zero is

(1− q)λ

(
1−

(
1− ε

1− ε(1− x0)a

)2

(1− x0)a−1

)
< x0,∀x0 ∈ (0, 1− q].

Our goal is to maximize the rate under the constraint that the bit erasure probability of

information bits goes to 0 in the limit of large number of iterations. For systematic IRA

codes with a fixed check node degree a, the degree optimization can be performed by

linear program:

max
dvm∑
i=2

λi/i (5.1)

s.t.
dvm∑
i=2

λi = 1, (5.2)

(1− q)ελ

(
1−

(
1− ε

1− ε(1− x)a

)2

(1− x)a−1

)
< x,∀x ∈ (0, ε(1− q)]. (5.3)

Note that (5.3) can be converted to a set of linear inequalities. For non-systematic IRA

codes with genie aided decoding, constraint (5.3) is changed to

(1− q)λ

(
1−

(
1− ε

1− ε(1− x)a

)2

(1− x)a−1

)
< x,∀x ∈ (0, 1− q].

Fig. 5.3 shows BP decoding thresholds of IRA codes with genie-aided decoding. The

LDPC code rate is 1/2. For both systematic and non-systematic codes, the maximum left

degree is set to be 40. The check node degree a is chosen to be 4 or 5. The upper bound in

the figure is the threshold corresponding to the overall rate of the code Rjoint = (1− q)R,

whereR is the channel code rate. This is in accordance with the maximum rate in Fig. 4.11.

We observe that non-systematic IRA codes have much better thresholds than systematic

codes. When the check node degree a = 4, the threshold of non-systematic codes is very
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close to the upper bound when q ≥ 0.3. Codes with a = 5 slightly outperform codes with

a = 4 when q ≥ 0.5.
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Figure 5.3: Threshold of joint decoding of IRA codes in BEC. IRA codes are optimized
in terms of q.

5.3.1.2 EXIT chart design

Linear programming has some limitation on the joint design of codes. If the output

erasure probability of outer codes depends on the input erasure probability, the degree

optimization cannot be done by linear program. It is a good alternative to density evo-

lution. EXIT chart is a more general technique to design graph codes [85], it doesn’t
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matter whether the optimization program is linear or nonlinear. As we have shown that

non-systematic codes have better decoding thresholds, we mainly consider design for non-

systematic codes.

Since non-systematic codes with all check node degrees greater than 1 cannot start

converging [84], we introduce a nonzero fraction of degree-1 CNs. For simplicity we

design IRA codes with biregular CNs, that is, ρ(x) = ρ1+ρdcmx
dcm−1. The non-systematic

code rate R is

R = d̄c/d̄v =

∑
i λi/i∑
i ρi/i

.

Let IA be the mutual information between the bits on the decoder graph edges and the a

priori LLR values from the received vector, and let IE be the mutual information between

bits on the edges and the extrinsic LLR values. The degree-i VN transfer curve can be

derived as

IE,V N(IA,V N , i, q) = 1− (1− IA,V N)i−1(1− q).

Thus the average mutual information is

ĪE,V N =
dvm∑
i=1

λiIE,V N(IA,V N , i, q).

The CN should take into account of the ACC shown in Fig. 5.2. Assume the channel is

BEC(ε). The mutual information of the ACC for BEC is:

IE,ACC(IA,ACC , ε) = (
1− ε

1− εIA,ACC
)2. (5.4)
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The mutual information of degree-i CN can be computed as

IE,CN(IA,CN , IE,ACC , i) = I i−1
A,CN · IE,ACC . (5.5)

The average mutual information of CN is

ĪE,CN(IA,ACC , ε) =
dcm∑
i=1

ρiIE,CN(IA,CN , IE,ACC , i). (5.6)

If we plot IE,CN v.s. IA,CN and IA,V N v.s. IE,CN in the same figure, as long as there is

an open tunnel between the two curves, the BP decoder will decode successfully. Notice

that increasing the fraction of degree-1 CNs lifts the EXIT curve to a wider convergence

tunnel. By optimizing the degree of VNs such that there is an open tunnel between the two

curves, we can design codes with desired decoding thresholds.

Example 23. Assume the channel is BEC(0.5). The code rate is fixed to R = 0.5. Con-

sider that each bit can be decoded by a genie with q = 0.5. We set ρ(x) = x2. The

optimized degree distribution is λ(x) = 0.100x + 0.025x2 + 0.200x3 + 0.675x14. It can

achieve the decoding threshold ε∗ = 0.75, which is equal to the upper bound 1−R(1− q).

Fig. 5.4 shows the EXIT chart of the designed code.

5.3.2 t erasure correcting outer codes

In this subsection we show how to design non-systematic IRA codes when the source

is modeled as a set of [n0, t] outer codes. Since the output erasure probability of outer

codes depends on the input erasure probability, the degree optimization cannot be done by

linear programming. EXIT chart design method is used instead. The erasure probability
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Figure 5.4: EXIT chart for non-systematic IRA code with genie aided decoding, q = 0.5.
ε∗ = 0.75.
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Pe of an [n0, t] outer code is

Pe(n0, t, IA) = 1−
t∑
i=0

(
n0

i

)
(1− IA)i(IA)n0−i.

The mutual information of degree-i VN is derived as

IE,V N(IA,V N , i, n0, t) = 1− (1− IA,V N)i−1Pe(n0, t, IA,V N).

Thus the average mutual information of VN is

ĪE,V N =
dvm∑
i=1

λiIE,V N(IA,V N , i, n0, t). (5.7)

The mutual information of CN can be computed from (5.5) and (5.6). IRA codes are

designed by optimizing λ(x) for desired decoding thresholds.

Example 24. Assume the channel is BEC(0.5), and the code rate is fixed to R = 0.5. If

the source is modeled as [2, 1] outer codes, we can design codes with decoding threshold

ε∗ = 0.68. Fig. 5.5 shows the EXIT curves of the designed code with decoding threshold

ε∗ = 0.68. The optimized degree distributions are: ρ(x) = 0.077 + 0.923x2, and λ(x) =

0.280x+ 0.011x2 + 0.100x3 + 0.609x29.

Example 25. If the source is modeled as [7, 2] outer codes, we can design code with

decoding threshold ε∗ = 0.56. The optimized degree distributions are ρ(x) = 0.077 +

0.923x2, and λ(x) = 0.280x+ 0.016x2 + 0.704x14.

From above examples we see that the joint decoding threshold of IRA codes ε∗ exceeds

0.5, the threshold without source redundancy. We conclude that by optimizing the degree

distribution of IRA codes, improved decoding thresholds can be achieved with the help of

source redundancy.
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Figure 5.5: EXIT curves for non-systematic IRA code with [2, 1] outer codes. ε∗ = 0.68.
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5.4 Design of IRA codes for AWGN channel

If codewords are transmitted through an AWGN channel, we can assume that the ex-

trinsic messages are conditionally Gaussian and it is enough to keep track of the mean and

variance of the LLR messages. In this subsection we show how to design IRA codes for

AWGN channel.

5.4.1 Genie-aided decoder

If the language decoder is modeled as a genie-aided decoder with probability q to tell

the correct value of each information bit, we have

1− q = Q

(√
2Eb
N0

)
.

The variance of the output LLR message from the language decoder can be equivalently

considered as [85]

σ2
q = 8

Eb
N0

. (5.8)

Let J(σl) be the mutual information between the inputX and output Y with LLR variance

σ2
l . J(σl) is expressed as [85]

J(σl) = I(X;Y ) = 1−
∫ ∞
−∞

e−(ε−σ2
l /2)2/2σ2

l√
2πσ2

l

· log2

(
1 + e−ε

)
dε.

The EXIT function of a degree i information bit node is

IE,V N = J
(√

(i− 1)[J−1(IA,V N)]2 + σ2
q

)
. (5.9)
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From (5.8) and (5.9) we have IE,V N as a function of IA,V N .

IE,V N = J

(√
(i− 1)[J−1(IA,V N)]2 + 4[Q−1(1− q)]2)

)
.

The averaged value of IE,V N can be obtained from (5.7). The EXIT function of a degree

a check node is

IE,CN = 1− J
(√

(a− 1)[J−1(1− IA,CN)]2 + [J−1(1− IE,ACC)]2
)
. (5.10)

The EXIT function of the accumulator of an IRA code is derived as

IE,ACC =

(
1− ε

1− εIA,ACC

)2

. (5.11)

where ε = 1−C(Eb/N0) and C(Eb/N0) is the capacity of AWGN channel at SNREb/N0.

Further the EXIT function of the input accumulator is

IA,ACC = 1− J
(√

aJ−1(1− IA,CN)
)
. (5.12)

From (5.10), (5.11) and (5.12) we can derive IE,CN as a function of IA,CN . The averaged

value of IE,CN is computed from (5.6).

5.4.2 t error correcting outer codes

If the language decoder is modeled as an [n0, t] error correcting code that can correct

t errors, the variance of the output LLR message from the language decoder σ2
q can be

computed as follows. First we have

J−1(IA,V N) =

√
8Eb
N0

.
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Let the error probability of each information bit be denoted as p. It is derived as

p = Q

(√
2Eb
N0

)
= Q

(
1

2
J−1(IA,V N)

)
.

The error probability of the output of language decoder is

Pe = 1−
t∑
i=0

pi(1− p)n0−i.

The corresponding Eb/N0 for Pe is

Eb
N0

=
[Q−1(Pe)]

2

2
.

Thus σq is derived as

σq =

√
8Eb
N0

= 2Q−1(Pe). (5.13)

The mutual information IE,V N as a function of IA,V N is obtained from (5.9) and (5.13).

The mutual information IE,CN as a function of IA,CN is derived from (5.10), (5.11) and

(5.12). By optimizing the degree distribution λ(x) and ensuring an open tunnel between

the two EXIT curves we are able to design IRA codes with best decoding thresholds.

5.5 A comparison of joint LDPC decoding with joint polar decoding

We show in Fig. 5.6 a performance comparison between joint polar and joint LDPC

decoding schemes in AWGN channel. Source codes are Huffman codes. Both polar and

LDPC codes have length n = 8192 and rate R = 0.923. In the joint LDPC decoding

scheme, RA codes with VN degree 3 and CN degree 36 are constructed with progressive

edge growth (PEG) algorithm. From the figure we observe that polar list decoding with

list size L = 8 outperforms joint LDPC decoding.
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Asymptotically we compare the improved rates of the two schemes. The rate of both

channel codes is R = 0.5. The source is modeled as a set of [n0, t] outer codes. In

Table 5.1 a comparison of improved rates is provided for the two schemes. We see that if

source codes are modeled as short length outer codes, the improved rates of two schemes

are very close. However, if source codes are modeled as long length outer codes, the

improved rate of joint LDPC codes tends to be larger than that of joint polar codes. The

reason is that the improved rate of polar codes depends on the frozen bit distribution. For

long length outer codes, frozen bits of polar codes cannot be efficiently grouped into outer

codes.

Table 5.1: A comparison of improved rates for two joint decoding schemes

[2, 1] codes [7, 2] codes [8, 3] codes
Joint polar 0.18 0.09 0.12

Joint LDPC 0.18 0.08 0.10

From above results, we believe that joint polar decoding has advantages over joint

LDPC decoding. First, joint polar decoding scheme provides a systematic way to improve

performance, by increasing the list size. Second, it is natural and efficient to combine two

tree structures of polar codes and the dictionary, thus polar codes are able to make better

use of the soft information provided by the source redundancy. Finally, error propagation

is more effectively reduced by polar joint list decoding. With sequential decoding nature,

we can even reorder information bits in the word level before encoding to further reduce

error propagation.
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Figure 5.6: Performance comparison of joint polar decoding and joint LDPC decoding
schemes.
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5.6 Conclusion

In the joint source-channel decoding scheme, source redundancy is explored to im-

prove the decoding thresholds under iterative decoding. We consider IRA codes as chan-

nel codes, and propose schemes to design IRA codes for two different source models and

show that they achieve improved decoding thresholds.
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6. CONCLUSIONS

In this dissertation, we have studied the potential of polar codes in the finite length

regime, and have applied polar codes to the joint source-channel decoding problem. The

main contributions of this dissertation are summarized in the following.

In Chapter 3, we address the problem of improving the finite-length performance of

polar codes. We propose interleaved concatenation schemes of polar codes with binary

codes including BCH and convolutional codes. Interleaved concatenation with long con-

straint length convolutional codes is an effective way to leverage the fact that polarization

increases the cutoff rate of the channel. We show that both schemes outperform the con-

ventional decoding schemes, and they both achieve exponential error decay rate. Further-

more, we propose a soft-output multistage iterative decoder for the concatenated Conv-

polar codes to further improve the performance. From a more practical point of view, we

propose using rate compatible punctured convolutional codes as outer codes which enable

the same encoder and decoder for outer codes and are more hardware friendly.

In Chapter 4, we propose a joint source-channel decoding scheme for polar codes for

language-based sources. The source redundancy is exploited to improve the performance

polar codes. Joint list decoding is employed as a non-iterative decision feedback approach.

Simulation results demonstrate that our scheme significantly outperforms list decoding of

CRC-aided polar codes. Theoretically, we propose models for the language decoder and

show how the rate of polar codes can be improved by exploiting the source redundancy

while achieving vanishing error probability. We show that the rate improvement depends

on the frozen bit distribution of polar codes. We prove that the distribution converges to

a limit distribution. We derive a lower bound of improved rate based on the distribution.

We further propose an optimal bit allocation scheme to achieve the maximum improved
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rate. Both simulation results and theoretical analysis lead us to conclude that polar code is

a good candidate to exploit the source redundancy in the joint decoding scheme.

In Chapter 5, we continue to study the joint-source channel decoding problem but

focus on another type of decoding scheme – joint iterative decoding. We show how to

design irregular repeat accumulate codes when the source redundancy is available at the

decoder. Different models of language decoder are considered. We show that the improved

decoding thresholds can be achieved by our design. Non-systematic IRA codes are able to

achieve better decoding threshold compared to the systematic ones in the joint decoding

scheme. Further we provide a comparison of the joint polar decoding and joint LDPC

decoding schemes. The joint polar decoding tends to outperform joint LDPC decoding. It

exploits the inherent structure in the source redundancy more efficiently.
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