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ABSTRACT

Recent trends in computer-mediated communications (CMC) have not only led to ex-

panded instant messaging through the use of images and videos, but have also expanded 

traditional text messaging with richer content, so-called visual communication markers 

(VCM) such as emoticons, emojis, and stickers. VCMs could prevent a potential loss of 

subtle emotional conversation in CMC, which is delivered by nonverbal cues that convey 

affective and emotional information. However, as the number of VCMs grows in the se-

lection set, the problem of VCM entry needs to be addressed. Additionally, conventional 

ways for accessing VCMs continues to rely on input entry methods that are not directly 

and intimately tied to expressive nonverbal cues. One such form of expressive nonverbal 

that does exist and is well-studied comes in the form of hand gestures. In this work, 

I propose a user-defined hand gesture set that is highly representative to VCMs and a 

two-stage hand gesture recognition system (trajectory-based, shape-based) that 

distinguishes the user-defined hand gestures. While the trajectory-based recognizer 

distinguishes gestures based on the movements of hands, the shape-based recognizer 

classifies gestures based on the shapes of hands. The goal of this research is to allow 

users to be more immersed, natural, and quick in generating VCMs through gestures. 

The idea is for users to maintain the lower-bandwidth online communication of text 

messaging to largely retain its convenient and discreet properties, while also 

incorporating the advantages of higher-bandwidth online communication of video 

messaging by having users naturally gesture their emotions that are then closely mapped 

to VCMs. Results show that the accuracy of user-dependent is approximately 86% and 

the accuracy of user-independent is about 82%.
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1. INTRODUCTION

1.1 Computer-Mediated Communication

Current trends in computer-mediated communication (CMC) has enabled people to

take advantage of a large variety of options for communicating with other people online

when co-located face-to-face communication is not available. These online communica-

tion options can be represented on a spectrum.

• Higher-End Spectrum: People can access tools for communicating video or audio

or both in real-time. This is achievable through software such as Skype, or alterna-

tively, embed them as media clips into existing online messaging systems such as

iMessage or WeChat.

• Lower-End Spectrum: People can also access tools for communicating primarily

with text in numerous real-time online messaging systems such as Facebook Mes-

senger, or even primarily with images such as through Snapchat.

With the large availability of options at people’s disposal for communicating online,

each set of tools offer strengths that people may find appealing. Higher-bandwidth com-

munication from primarily video- and audio-driven messaging software allow people to

closely experience the intimacy and expressiveness that is found in co-located face-to-face

communication, as individuals can see and hear each other’s gesticulations and intona-

tions, respectively, at distinct locations from each other. In contrast, lower-bandwidth

communication from primarily text- and image-driven offers people the opportunity to

communicate conveniently and discreetly, since such tools require less setup to commu-

nicate text and images, and since people may be more receptive to use lower-bandwidth
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communication in a larger range of settings (e.g., crowded places, privately at home) com-

pared to higher-bandwidth communications.

1.2 Traditional Visual Communication Markers

However, the advantages offered by one type of bandwidth communication proves to

be lacking in the context of the other. For example, the expressiveness and intimacy that

people enjoy in higher-bandwidth video- and audio-driven communication does not nec-

essarily invoke as strongly to people in lower-bandwidth text- and image-driven commu-

nication, and vice versa in terms of convenience and discreetness. As a result, one of the

most common ways that people have more closely bridged the advantages between both

bandwidth types of communication is through the use of visual communication markers

(VCMs) that are embedded in existing text messages [5]. As more people are shifting

their attention to lower-bandwidth online communications, these markers provide rela-

tively more recent forms of visual or nonverbal communication cues in digital interac-

tion [6] for uniquely expressing emotions via graphic icons [7, 8, 9, 10]. In addition,

there are a number of ongoing studies of VCMs [9, 11, 10]. These markers also range in

different types in terms of input and visualization [12].

• Emotions: Typographic displays of representations used to convey emotion in a

text-only medium.

• Emoji: Picture-equivalent of emoticons and supported character-set extensions in

most operating systems.

• Kaomoji: Emoticons that expand to the fuller set of typed Japanese; and stickers,

which are larger custom pictures – some of which are animated – and are used in a

number of instant messaging clients.
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VCMs can be easily accessible with their own keypads separate from text keypads on

mobile devices, and are also highly popular globally such as in East Asia [13].

1.2.1 Advantages of VCMs

Several factors that have led to the popularity and appeal of VMCs to people in lower-

bandwidth online communication range from their ability to convey users’ emotions and

enrich their communication [14], substituting for nonverbal cues that is missing in lower-

bandwidth CMCs [5], and even a growing cultural acceptance of replacing text itself (e.g.,

[15]). Various research work have further supported the advantages of VCMs in lower-

bandwidth online communications for reasons including users’ enjoyment and satisfac-

tion of them and their valuable addition to how they communicate compared the absence

of them [8, 7], their ability to convey emotions to users without the cognition of faces [14],

as well as users’ positive effect on attributes such as personal interaction, perceived infor-

mation richness, and perceived usefulness [7].

1.2.2 Disadvantages of VCMs

On the other hand, VCMs present their own limitations either prevent or do not as

fully capture the advantages found in higher-bandwidth online communications. These

limitations include their difficulty in achieving emotional valence from strictly text-only

VCMs for groups such as non-native speakers [16], and also lack analogous mapping

to expressive gesturing frequently found with higher-bandwidth online communications

[17, 18].

One other major limitation of VCMs — especially emoji — is that a large set of them

makes naively inputting them difficult for users to quickly select from [13]. That is, as the

number of emoji grows in the selection set, researchers have tried to alleviate the problem

of emoji text entry [19, 20].
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1.3 Online Video Chat Communication

Unlike VCMs that present lower bandwidth information, online video chat provides a

richer form of long-distance communication that more closely emulates intimate face-to-

face communication [21]. With improvements in internet speeds and greater ubiquity in

both mobile computing devices, online video chat has become a reliable form of commu-

nication. However, there are factors that users may find that online video chat may not be

an appropriate form of communication. One such factor is privacy, where "privacy during

video chat is a key concern of end user," [22] and typically expressed concerns of online

video chat in public areas [23]. Users not only emphasized privacy from others outside

of the conversation, but within the conversation also. For example, users who commu-

nicated with strangers online preferred to express themselves through text versus video

communication [24]. Even with people who were familiar with each other in online con-

versation, people also felt strongly in maintaining privacy due to situations that were not

appropriate for conversations in face-to-face situations (e.g., coming out of the shower) or

to retain their self-image (e.g., not being publicly presentable) [25]. Another factor stems

from accessibility, where despite major strides in internet speeds, there may still be chal-

lenges in internet bandwidth availability to sufficiently serve online video communication

[26], which may make online video chat communication and its expressiveness less acces-

sible compared to its lower-bandwidth alternative of text communication embedded with

VCMs.

1.4 Hand Gesture Communication

While VCMs play an important role in supplementing richer nonverbal communica-

tion cues that are already inherent in online video chat communication, conventional ways

for accessing VCMs continues to rely on input entry methods that are not directly and

intimately tied to expressive nonverbal cues. One such form of expressive nonverbal that
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does exist and is well-studied come in the form of hand gestures [27, 18]. As a nonverbal

communicative cue, "hand gestures constitute an important source" as "either complemen-

tary to the speech, or the primary one for people with disabilities," [28] and are especially

significant since it supplements verbal communication at a very high proportion [17, 18].

However, while there is interesting potential for utilizing hand gestures as a form of ex-

pressive nonverbal input to intuitively select corresponding nonverbal VCMs in online

text communication, research work that investigates this relationship correspondence for

emotion-enhanced CMC remains largely lacking [29].

1.5 Proposed Work

In this work, I focus on eliciting user-defined gestures that are highly representative to

VCMs, and implementing a two-stage hand gesture recognition system (trajectory-based,

shape-based) that distinguishes the gestures. Gestures have seen strong successes in cap-

turing the expressiveness of face-to-face communication such as through facial (e.g., smil-

ing [30]) and limb (e.g., hugging [31]) interactions [29]. My idea involves users to be more

immersed, natural, and quick in generating VCMs through emoting actions that employ

in-air gesturing. The idea is for users to maintain the lower-bandwidth online communi-

cation of text messaging to largely retain its convenient and discreet properties, while also

incorporating the advantages of higher-bandwidth online communication of video mes-

saging by having users naturally gesture their emotions that are then closely mapped to

VCMs.

To this end, the goal of this research is to address the following four questions:

1. Symbolic Gestures: What kinds of hand gestures (emblem) do users express that

they feel properly symbolize popular emojis?

2. Quality Features: Which features are valuable for recognizing the user-defined

gestures?
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3. Robust Recognition: Can we achieve reasonable hand gesture recognition for these

emojis using our method?

The rest of the paper address related work on emotion-enhanced interaction in CMC

and hand gesture recognition, provide our approach for eliciting user-defined hand gesture

from participants and results, our two-stage hand gesture recognition experiments using

five classifier algorithms including random forest, sketch our future research steps and

draw a conclusion.
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2. RELATED WORK

This chapter outlines similar aims in recognition or interaction provides supporting

insight to the direction of the two-stage system. The related work is divided into three

different perspectives: emotion-enhanced interaction in CMC and trajectory-based gesture

recognition, and shape-based gesture recognition.

2.1 Emotion-enhanced Interaction in CMC

The development of multimodal interactions including visual, haptic, or auditory com-

ponents has increased the interest in the recognition and conveying of emotions in com-

puter mediated communications (CMC). Researchers are currently studying the effect of

embedding emotions in CMC such that users can better express their emotion, which in

turn would reflect their emotional availability using facial expression, multi-touch gesture,

body posture or even electrical resistance of the skin.

Many researchers associate emotion-enhanced CMCs with facial expression. Kaliouby

et al. [32] introduce an application called Facial Affect IM (FAIM) based on MSN Messen-

ger 6.0. FAIM analyzes facial expressions of users in real time and maps them analogously

maps them to the facial expressions of an emotive avatar. KinChat provided by Wang et

al. [25] does so by expanding text communication with visualizations of users’ body

movements such as facial expressions and head movements via an illustration, to similarly

replicate the experiences of face-to-face chat. For example, if the person in one end of the

communication smiles, the illustration on the other end would also smile. Even though

FAIM and KinChat provide a real-time commentator for facial expression as a comple-

mentary to the text-based communication and protect visual anonymity, users might not

benefit from the avatar or the illustration since attention is split between the animated

graphics and the actual message in text. Filho et al. [33] augments mobile online text chat
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by detecting user’s emotional reaction using facial expression. For emotion detection, the

facial expression is analyzed by computer vision technologies from a commercial solu-

tion. Depending on the level of emotion detection, either three types of emotion, “happy,”

“surprised,” and “calm,” is notified to conversation thread as text. Ali et al. [20] propose

Face2Emoji that filters out the emojis that are relevant to a user’s facial expression. This

study is similar to my study with regard to conveying emotion via emojis.

There is also much effort on studying tactile interfaces to support emotional expression

in CMC. The multi-touch gesture interface proposed by Pirzadeh [34] identifies text-based

emotional cues and created a set of analogous multi-touch gestures that more expressively

map to those emotional cues. The multi-touch gestures are an author defined. For example,

drawing a heart shape represents love, drawing a circle present agreement and a long tab-

bing and draw a horizontal line represents ‘hahaha.’ Although these type of gesture sets

can be clearly performed, it results in somewhat arbitrary gestures sets whose members

may be chosen out of concern for reliable recognition. Rovers et al. [35] suggest aug-

menting text messaging communication using haptic effects and hapticons. The research

described HIM (haptic instant messaging), a framework for instant messaging, which sup-

ports to exlore the design and to use hapticons and haptic IO devices. Moreover, Shin

et al. [36] introduce a tactile emotional interface. In the proposed methods, users send

and receive 6 emotional expressions, e.g., grin, cry, anger, surprise, kiss, sleepy through

vibration, which cannot achieve direct evocation of emotion.

Additionally, Tan et al. [37] defines gestures as the user’s body postures that occur

in ubiquitous computing environments in order to infer the user’s affective state with a

system called mASqUE [37]. Wang uses animated texts and galvanic skin response (GSR)

as methods conveying emotional information in order to encourage online users to interact

with each other efficiently [38].

Similar to my proposed system in sending VCMs to others online, there have been prior
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online messaging systems that have expanded beyond conventional means of embedding

visual media in existing mainstream online messaging systems. Two such systems include

mobile apps React Messenger [12] and SmileChat [39], both of which perform similarly

by allowing users to use their mobile device’s video camera to record themselves and then

send these recordings as looping animated images. While such systems allow for more

intimate communications to others, doing so also similarly sacrifices privacy of the sender

while also prove more difficult for users to use with strangers. These systems support my

proposed system’s motivation of richer anonymous online communications.

Although gestures are one of the most ubiquitous and expressive forms of human com-

munication [29], there are relatively small number of research works involving gestures

and gesture-based interfaces for emotion-enhanced CMC compared to facial expression or

touch-based interactions. Therefore, the research with no doubt plays important role in the

field of emotion-enhanced interaction.

2.2 Hand Shape-Based Gesture Recognition

Since this thesis work also relies heavily on automatically identify the hand and fingers

for the gestures in my approach, it is similarly important to provide an overview of the

research area that specialize in hand shape-based gesture recognition. While the works in

this research area investigate different approaches, they also generally overlap in the way

they pursue these techniques.

• Hand Detection: Many of the prior approaches focus on trying to automatically rec-

ognizing the location of the hand in complex backgrounds, either through computer

vision algorithms or directly from the sensor.

• Finger Detection: Once the hand is detected, many of the prior approaches then use

the hand’s location as context to subsequently detect the fingers.
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• Sensor Technologies: Many of the prior approaches rely on two types of sensors:

RGB video cameras, which use the red-green-blue color spectrum for recording

video; and depth sense cameras, which also includes depth of the human user as

additional context in user interface interactions.

• Recognition Techniques: Many of the prior approaches rely on a combination of

machine learning and computer vision algorithms to handle the bulk of the auto-

mated hand shape recognition.

• Real-Time Tracking: Many of the prior approaches focus on detecting the hand fro

real-time tracking data.

2.2.1 RGB Video Camera-Based Approaches

The first group of hand shape-based gesture recognition approaches stem from algo-

rithms that were designed for RGB video cameras. These algorithms rely on purely the

color information from video cameras—generally low-cost cameras such as commercial

webcams—for generally filtering the hand and fingers from complex backgrounds. For ex-

ample, work from [40] focuses on a survey of implementations that use machine learning

techniques—specifically, artificial neural networks, fuzzy logic, and genetic algorithms—

in recognizing hand shapes in gesturing. The authors discovered from the survey that

regardless of approach, the majority of researchers relied on fingertip detection at some

capacity to improve their approaches in identifying the user’s hand in real-time video.

Such works include a system that relies on finger tracking and hand pose detecting ap-

proaches for recognizing 24 different types of hand poses [41], a system that also includes

skin segmentation to supplement hand pose detection and curve-fitting for hand motion

detection [25], and a system that relies on a variety of computer vision algorithms and

rule-based approaches for recognizing 13 different types of hand poses [42].
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Other hand shape-based gesture recognition approaches for RGB video cameras em-

phasize their efforts on the contour of the hand and its convex hull. One work by Hongyong

et al. [43] relies on computer vision and machine learning techniques to segment the skin

color, detect the hand’s edges, and perform blob tracking of the overall hand, which was

then evaluated by performing hand gestures for manipulating a virtual keyboard applica-

tion. Another work by Siddharth et al. [44] similarly relies on computer vision techniques

for detecting the hand’s contour and its convex hull for recognizing 7 different hand poses.

Additional approaches for RGB video cameras expand on solely detecting the hand

shape and its different poses. One work focuses on a hand shape detection algorithm that

can handle recognition quickly using multiple algorithms such as template matching, and

can accommodate recognition for 15 different hand poses [28]. Other works pursue the

use of geometric shape descriptors in conjunction with conventional machine learning and

computer vision techniques to try to provide more sophisticated recognition [45, 46]. One

other work also takes into account the user’s head in detection for greater context of the

hand’s location, and was evaluated in a simple application selector program for simple

hand poses [47].

One last work that strays from the conventions of RGB video cameras comes from [48],

which does not rely on video but instead on scans from a flatbed scanner to detect hands.

This work emulates a video snapshot from the hand scan, so that the authors could focus

on developing an approach for recognizing different hand poses. While the system relies

on a variety of algorithms such as k-means clustering, independent component analysis,

and Hausdorff distance for detecting the hand contour in recognition, the approach remains

untested for actual real-time video interactions.
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2.2.2 Depth Sense Camera-Based Approaches

With the growing accessibility of commercial depth sense cameras, which can also

sense depth of the user’s body and limbs for richer digital interactions, researchers are

taking advantage of these sensors to provide more sophisticated tracking of the hands and

fingers beyond the default hand location detection that conventional depth sense cameras

provide. Some approaches for detecting such hand shape gestures rely on identifying the

contour of the hand and its convex hull. One work relies on hand contour algorithms to

recognize 18 different hand poses [49]; another work uses a hand convex hull algorithm to

recognize a small set of gestures that was evaluated in a mobile gaming app [50]; the other

work uses a hand contour algorithm and dynamic time warping to recognize 23 different

hand poses [51].

More detailed hand shape gesture recognition approaches also incorporate detection

techniques for other parts of the body to potentially handle more sophisticated hand ges-

turing interactions. For example, Some works also utilize finger detection for gestures that

have richer finger interactions [52, 53, 54, 55], while other works utilize head detection

to handle hand gestures which require the location of the user’s head for correct context in

the domain of Japanese sign language [56].

2.2.3 Hand Pose Usability Design

While most of the prior works in this section for hand shape poses focused on detection,

there has also been other work that focuses on the usability design of hand poses in existing

signing domains to bring greater insights to designers of automated recognition systems

specific to detecting the hand and fingers. One such study investigates 33 different hand

poses from the sign language domain for hand pose tasks, and was motivated on how

these hand shapes can affect detection of real-world usage of hand gestures [57]. One

of the primary takeaways from this study relies on the discomfort level of different hand
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poses to users, and whose behaviors can better inform designers to better accommodate

users for these types of poses during automated recognition.

2.3 Trajectory-Based Hand Gesture Recognition

Expanding even further from hand shape-based gesture recognition approaches that

specialize more on recognizing static hand poses are trajectory-based hand gesture recog-

nition approaches that explore recognizing dynamic hand gestures and hand motion tra-

jector. One of the early works for this research area relies on the user wearing a wired

dataglove and tracks the user’s static hand poses and dynamic hand gestures in a gestural

command set called Charade to manipulate interactions for presentation slides [58].

As computer vision and machine learning algorithms became more sophisticated for

non-invasive detection of a user’s hand, researchers began investigating how RGB cameras

can be leveraged to recognize their dynamic hand gestures and hand motion trajectory as

well. For example, Tran et al. implemented their own skeletal joint tracking on the user’s

upper body motion tracking such as their hands to recognize a set of six dynamic hand

gestures [59], Bhuyan et al used a variety of features to recognize different hand poses that

changes the interaction type for when the hand is motioning in mid-air [60, 61], Mckenna

used hidden Markov models, moment features, and template matching on users’ skin color

for modeling hand trajectoriesby [62], and Singha provided a heuristic-based approach for

dynamic hand gestures on 40 gesture classes solely without depth information [63] .

With the introduction and growing ubiquity of reliable depth sense cameras, the inclu-

sion of depth information enables researchers to rely on these sensors for global skeletal

joint motion trajectories such as for the hand. By having these sensors automatically han-

dle the calculations for retrieving these global hand motion trajectories, approaches that

utilize such sensors focus on more sophisticated dynamic hand gesturing with motion tra-

jectories. For example, work focuses on techniques for recognizing more dynamic signs
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in Indian sign language [64], work focuses on techniques that recognize hand gestures

with richer motion trajectories for a video gameby [65], and work focuses on more local

hand motion trajectories to supplement the depth sensor’s existing automated detection for

global hand motion trajectories [66].
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3. IDENTIFYING SYMBOLIC HAND GESTURES TO ANALOGOUS EMOJI

The user-defined design is a cornerstone of human-computer interaction. Conceivably,

one could design a system in which all commands were executed with gestures, but not

only would this be difficult to learn [67], it would also be inaffective since users are not

designers. Care must be taken to elicit user behavior profitable for design. This section

describes the approach to developing a user-defined gesture set through three experiments.

Prior to these experiments, I select 30 emojis that are popular, emotion-related or show

hand gesture from the literatures [68, 69, 70]. With the 30 emojis, I have conducted the first

and the follow-up experiments to elicit gestures to analogous emoji. The last experiment

was conducted to evaluate and compare these gestures based on their performance.

3.1 Gesture Collection: Maximizing high intuition with participants

It is possible to design a highly intuitive gesture set by acquiring gestures from partic-

ipants. In this study, participants are first recruited to create symbolic hand gestures for

specific emojis. The more participants, the more likely the resulting symbolic hand ges-

ture set will be intuitive to external users. In other words, if more people propose the same

gesture for an emoji, the gesture is more intuitive than other proposed gestures. The goal

is to obtain commonly used and intuitive hand gestures from which to create the resultant

symbolic hand gesture set.

With 10 participants and 30 emojis, 300 gestures are made with one hand or two hands.

Participants create their hand gesture for each emoji in turn. They are given the instruction

of the initial and the final states, and the image of an emoji. They have unlimited time

to create a gesture for the emoji. Once they have decided on a gesture, they reproduce it

once to be video-recorded by the experimenter. To avoid bias [71], no specific application

domain was assumed.
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(a)
Heart

(b) Joy (c) Una-
mused

(d)
Heart
eyes

(e) Re-
laxed

(f) OK
hand

(g)
Kissing
heart

(h)
Blush

(i) Pen-
sive

(j)
Weary

(k) Sob (l)
Smirk

(m)
Grin

(n)
Flushed

(o)
Thumbs
up

(p)
Raised
hands

(q)
Wink

(r)
Infor-
mation
desk
person

(s) Re-
lieved

(t) See
no evil

(u) Sun-
glasses

(v) V (w)
Pray

(x)
Expres-
sionless

(y) Yum (z)
Stuck
out
tongue
and
winking
eye

(aa)
Notes

(ab)
Disap-
pointed

(ac)
Eyes

(ad)
Hand

Figure 3.1: 30 Popular Emojis
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For each emoji, identical gestures are grouped together. An emoji can have more than

one group. The group with the largest size is then chosen to be the symbolic gesture for

the emoji for our user-defined gesture set. A scoring function determines how gestures are

commonly consistent. The score should be 1 when proposed hand gestures are identical,

and ≈0 when they are unique. Equation 3.1 expresses this as a function.

scoregroupi =
Size of groupi

total number of groupsemoji

(3.1)

For example, in 10 hand gestures for an emoji e, if 7/10 are of one form, 2/10 are of

another, and 1/10 of are of a third, the gesture with the score 7/10 would be most probably

assigned to e.

Figure 3.2 shows the highest score on each emoji. As shown in the graph, the scores

of ‘OK hand,’ ‘Thumbs up,’ ‘See no evil,’ ‘Peace sign hand,’ and ‘Pray’ emojis are 1. This

means that the proposed gestures were identical for those emojis respectively. Since most

of the emojis describe hand gestures, it is easy for the participants to get an idea of creating

a hand gesture directly from the emoji.

3.2 Gesture Selection: Achieving high agreement with participants

This experiment was designed to develop the final user-defined gesture set in light of

the agreement participants exhibited in choosing gestures for each emoji. 17 Participants

consist of the 10 people who participated in the first procedure and 7 people who did not.

They are asked to pick the best match for the emoji’s intended meaning while watching

videos of the proposed hand gestures for each emoji. The videos do not include any audio,

and people’s faces in the videos are blotted out by a blur technique to make participants

focus solely on the gesture itself without facial expressions. The videos on the survey last

from one to three seconds and are played on a loop while participants answer the question.

Figure 3.3 shows a screenshot of a part of the question.
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Figure 3.3: A part of a gesture selection question

To evaluate the degree of consensus among the participants, I adopted the process of

calculating an agreement score for each emoji [1] in equation 3.2.

A =

∑
e∈E

∑
Pi⊆Pe

( |Pi|
|Pe|)

2

|E|
(3.2)

In equation 3.2, e is an emoji in the set of all emojis E, Pr is a set of proposals for emoji e,

and Pi is a subset of identical symbols from Pr. The range forA is [|Pr|−1, 1]. For instance,

in 10 proposals for emoji e1 and e2 respectively, if e1 has three different forms—5/10 are of

one form, 3/10 are of another, and 2/10 are of a third, and e2 has two different forms—6/10

are one form, and 4/10 are of another, then the agreement of e2 ([(6/10)2 + (4/10)2]/1 =
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0.52) is higher than that of e1 ([(5/10)2 + (3/10)2 + (3/10)2]/1 = 0.38).

I applied the process to three data: 1) data from gesture collection, 2) data from gesture

selection only with the 10 people who participated the both experiment, and 3) data from

gesture selection with all the 17 participants including 7 people who have not experienced

the first experiment. Figure 3.4 shows the results of Wobbrock’s agreement [1] on the

three data. As the gestures scored 1 from the gesture collection experiment are excluded

in the second experiment, no values are shown in the second and the third data. In general,

the two data from gesture selection acquire higher agreement than the data from gesture

collection. Particularly, compared gesture collection data and gesture selection data from

the 10 participants involved in the both experiments, the agreement of the latter is mostly

higher than of the former. This is because the participants find out that another gesture

proposed by others is more associated with an emoji than the gesture created by their own

for the emoji in the first experiment. Moreover, the third data from the 17 participants

also has a higher agreement than the first data. Through this result, we conclude that

expressibility is not necessarily intuitive and is more influential for mapping gestures to

emojis. Therefore, this demonstrates that the result of the second experiment is more

reliable for building the final user-defined gesture set.

Deciding a gesture for an emoji in this experiment is similar to the method of the

previous experiment. The user-defined gesture set is developed by taking gestures with

the most votes for each emoji and assigning those gestures to the emoji. The final gesture

sets of the first experiment and the second experiment are partially different. However, the

second experiment achieves higher agreement.

Furthermore, interestingly, a high degree of consistency exists in our user-defined set.

The same gestures are reselected for similar emojis. In the gesture set, there are four cases

in which the same gesture has been used to indicate different emojis. Figure 3.6 describes

the four cases. For example, the gestures for ‘Relieved,’ ‘Blush,’ and ‘Relaxed’ emojis
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(a) ‘Heart’ emoji and gesture (b) ‘Joy’ emoji and gesture (c) ‘Unamused’ emoji and ges-
ture

(d) ‘Heart eyes’ emoji and ges-
ture

(e) ‘Relaxed’ emoji and ges-
ture

(f) ‘OK hand’ emoji and ges-
ture

(g) ‘Kissing heart’ emoji and
gesture

(h) ‘Blush’ emoji and gesture (i) ‘Pensive’ emoji and gesture

(j) ‘Weary’ emoji and gesture (k) ‘Sob’ emoji and gesture (l) ‘Smirk’ emoji and gesture

(m) ‘Grin’ emoji and gesture (n) ‘Flushed’ emoji and ges-
ture

(o) ‘Thumbs up’ emoji and
gesture

Figure 3.5: A user-defined gesture set
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(p) ‘Raised hands’ emoji and
gesture

(q) ‘Wink’ emoji and gesture (r) ‘Information desk person’
emoji and gesture

(s) ‘Relieved’ emoji and ges-
ture

(t) ‘See no evil’ emoji and ges-
ture

(u) ‘Sunglasses’ emoji and
gesture

(v) ‘V’ emoji and gesture (w) ‘Pray’ emoji and gesture (x) ‘Expressionless’ emoji and
gesture

(y) ‘Yum’ emoji and gesture (z) ‘Stuck-out tongue and
winking eye’ emoji and
gesture

(aa) ‘Notes’ emoji and gesture

(ab) ‘Disappointed’ emoji and
gesture

(ac) ‘Eyes’ emoji and gesture (ad) ‘Hand’ emoji and gesture

Figure 3.5: Continued
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are practically the same. This is because the three emojis relatively resemble each other.

Another case is the gestures for ‘Unamused’ and ‘Expressionless.’ Although the two emo-

jis do not look alike, the meaning of the emojis is similar. When facing these questions,

one might try to answer the questions consistently. However, participants did not intend

to make a consistent answer for the questions nor reverse their decision, but they followed

their instinct. Hence, these cases can be evidence that the final user-defined gestures and

emojis are highly correlated. The gestures resulting from the second experiment in Figure

3.5 will be used in further studies.

3.3 Gesture Evaluation

This experiment gives some of the performance measures and preference ratings for

gesture articulation. Participants who have joined neither of the previous two experiments

were recruited and informed of the specific application domain. The subjects watch the

video of a user-defined gesture for an emoji then are asked to follow the gesture two times

on cue. Immediately after performing the gesture, they answer a multiple choice question

that asks them to pick an emoji that is the best match for the gesture as shown in Figure 3.7.

Out of the five choices, the emoji mapped onto the gesture always exists, and other four

emojis are randomly selected. Then, the subjects are asked to rate on both modes of chat,

gesture-driven and search-driven for sending the emoji, on six seven-point Likert scales

on the following criteria: intuition, intimacy, expressiveness, enjoyability, efficiency and

ease. The possible responses ranged from 1 (low) to 7 (high) (9 subjects).

Wobbrock at el. define the guessability in symbolic input (for our study, hand gestures)

as:

The quality of symbols which allows a user to access intended referents via

those symbols despite a lack of knowledge of those symbols.

A user’s initial attempts at performing gestures must be met with success despite the
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(a) Gesture for the next emo-
jis

(b) Re-
laxed

(c)
Blush

(d) Re-
laxed

(e) Gesture for the next
emojis

(f)
Una-
mused

(g) Ex-
pres-
sion-
less

(h) Gesture for the next
emojis

(i) Pen-
sive

(j)
Disap-
pointed

(k) Gesture for the next
emojis

(l) Heart (m)
Heart
Eyes

Figure 3.6: The association between emojis and gestures
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Figure 3.7: A part of a gesture evaluation question
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user’s lack of knowledge of the usage. This requires high guessability. Even though they

have their own formula for the gusessability, I think one measurement for the degree of

the guessability can be also f-measure (detailed discussion in Section 4.2.3). Thus, with

the results from 9 participants, I use f-measure to show shown inFigure 3.8. The total

f-measure is 0.79.

The graph of the preference rating data shown in Figure 3.9 helps us to understand

the impact of the user-defined gesture set. Overall, the average scores of gesture-driven

mode are higher than those of search-driven mode on all criteria especially enjoyability.

In terms of standard deviation, gesture-driven mode is superior to search-driven mode on

three criteria, ease, enjoyability, and intuition.
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Figure 3.9: Comparison between search- and gesture-driven emojis
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4. HAND GESTURE RECOGNITION SYSTEM

Hand gestures can be classified into two types: static and dynamic gestures. Static hand

gestures are defined as orientation and position of the hand in the space during an amount

of time without any movement, and this is often called pose. On the contrary, dynamic

gestures are defined as orientation and position of hand in the space if a movement exists

during the time above. For instance, the waving of a hand is considered as a dynamic

gesture, while a ‘thumbs up’ pose is a static gesture.

I use 15 gestures, a subset of our user-defined gesture set, which consist of nine

single-handed gestures—‘OK hand,’ ‘Thumbs up,’ ‘V,’ ‘Hand,’ ‘Information desk person,’

‘Smirk,’ ‘Wink,’ ‘Pensive,’ and ‘Kissing’—or sex two-handed gestures—‘Unamused,’

‘Weary,’ ’Raised hands,’ ‘Pray,’ ‘Eyes,’ and ‘Notes’—for the proposed hand gesture recog-

nition system. The gestures and the corresponding emojis are shown in Figure 4.1. Among

them, the 5 gestures, ‘OK hand,’ ‘Thumbs up,’ ‘V’ (peace sign), and ‘Hand’ (hi gesture),

and ‘Information Desk Person’ are static.

As the goal of our recognition system is to distinguish the 15 gestures that are either

static or dynamic, the hand gesture recognition system should enable to detect them. Thus,

I implement a two-stage recognition system: trajectory- and shape-based recognition. To

detect dynamic gestures, the feature-based recognition is used, and for static gestures, the

shape-based recognition is used. First, the trajectory-based recognition categorizes the 15

different gestures in 11 groups because the five static gestures are grouped as called ‘Hand

Shape’ due to their similar movement. Second, these gestures in the ‘Hand Shape’ group

are run through the shape-based recognition in order to distinguish the five gestures with

their hand shape.
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(a) Unamused (b) Ok hand (c) Kissing heart (d) Pensive (e) Weary

(f) Smirk (g) Thumbs up (h) Raised hands (i) Wink (j) Information desk
person

(k) V (l) Pray (m) Notes (n) Eyes (o) Hand

Figure 4.1: 15 user-defined hand gestures

4.1 Data Collection

I used Microsoft Kinect, a depth camera, to capture hand gestures as shown in Fig-

ure 4.2. Instead of a data glove, the Kinect has been widely used in computer vision

research due to its natural, intuitive operation and low cost. The sensor can detect and

segment hands robustly. However, due to the low-resolution of the Kinect depth camera

of 640 * 480, it does not work well when tracking a small object, e.g., a hand with com-

plex articulations. To address the problem, I present a shape-based recognition (detailed

discussion in Section 5).

Based on the assumption that a user sits in front of a computer and performs one of our

user-defined gestures to send an emoji while chatting online, only the user’s upper body

movement data is necessary. With using the Kinect SDK 2.01 that provides body-tracking

1https://msdn.microsoft.com/en-us/library/dn799271.aspx
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Figure 4.2: The image of the Microsoft Kinect. Reprinted from [2]

methods for the Kinect, I collect the upper body joints, e.g., head, neck, shoulder-spine,

mid-spine, right and left shoulders, right and left elbows, right and left wrists, right and left

hands, right and left hand tips, and face points, e.g., forehead, eyes, nose, cheeks, mouse

and chin. The Kinect is mounted on the place where could cover overall motions of a user.

Figure 4.3 is the graphic user interface (GUI) that was developed in C# for interaction with

the Kinect. The data collection is captured by the Kinect mounted in upper front of the

user. The big dots indicate the upper body joints, and the small red dots are face points.

Once the Kinect starts tracking the joints and face points, the dots are displayed on the

screen. Also, when the GUI detect the data points, the start button in the GUI is activated.

If the start button is clicked, the button is changed to stop button and the user’s gesture is

recorded. If the stop button is clicked, the recording is stopped and the gesture data has

been saved.

The Kinect produces a sequence of depth images at 30 frames per second, and the

sequence of depth image frames indicates a hand gesture. The gesture has approximately

60–100 frames as our user-defined gestures take two or three seconds for each. The each

frame contains the values of x, y and z coordinates of the upper body joints and the face

points i.e. the position of the hand in 3D space. As shown in figure 4.2, the origin (x = 0,

y = 0, z = 0) is the center of the IR sensor on the Kinect; x grows to the sensor’s left, y

grows up, and z grows out in the direction of the sensor is facing. The data of the gesture

are derived in the Cartesian coordinate space directly from the gesture frames, and saved
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Figure 4.3: The graphic user interface of data collection

as an XML file.

21 subjects participated in this study. In the case of two-handed gestures, they were

asked to do a gesture twice. In the case of single-handed gestures, they were asked to

do a gesture four times, twice with the right hand and twice with the left hand. The total

number of collected gestures is 1008, but the number of processed data is 988 due to

detection failure.

4.2 Trajectory-based Recognition

In this section, I describe features, the implementation of recognition system, and the

results of distinguishing between the 11 hand gestures in our user-defined gesture set.

4.2.1 Proposed features

Good feature selection plays an important role in hand gesture recognition perfor-

mance. For matching the trajectory, 44 traditional features are adapted from different

kinds of literatures [72, 73, 74, 63]. These features are derived for training. In Table 4.1,

the extracted features are shown. These features are inputted into several classification

algorithms with 10-fold cross validation.
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Adapted Traditional Features

Average (X , Y , Z) (Left/Right), 6

Standard Deviation (X , Y , Z) (Head/Left/Right), 9

Min/Max (X , Y , Z) (Left/Right), 12

The length of the bounding box 3D diagonal (Head/Left/Right), 3

The angle of the bounding box (Head/Left/Right), 3

The ratio of the bounding box volume of hands, 1

The length of 3D gesture (Head/Left/Right), 3

Average velocity (Left/Right), 2

Maximum speed (Head/Left/Right), 3

The total traversed angle (Left/Right), 2

Table 4.1: 44 Adapted Traditional Features

4.2.2 Recognition algorithms

The 44 extracted traditional features are tested on five supervised classifications pro-

vided by the WEKA2, the most popular machine learning algorithm library: decision tree,

k-nearest neighbor, naive Bayes, multilayer perceptron, and random forest. To avoid over-

fitting to the training data, I used 10-fold cross-validation that evaluates predictive model

by partitioning data into 10 equal sized subsamples and testing the model 10 times with

using a single subsample as test data and 9 remaining subsamples as training data.

4.2.2.1 Decision tree

A decision tree is a simple machine learning algorithm that creates a tree-like structure

as a predictive model with training data. The completed tree classifies test data. Due

to the simplicity, the decision tree can elucidate the underlying relationships in the data.

2http://www.cs.waikato.ac.nz/ml/weka/
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However, as the decision tree is susceptible to overfitting when training data has noise,

pruning the data must be required. I tested J48, the implementation of algorithm ID3

(iterative Dichotomies 3).

4.2.2.2 K-nearest neighbors (kNN)

kNN is used for classifying data based on closest training examples in the feature

space. It is a type of lazy learning where the process is only estimated locally, and all

computation s are deferred until classification. An instance is classified based on the ma-

jority vote of its k-nearest neighbors. It is helpful to assign k to an odd number because

this prevents tied votes [75]. However, it is challenging to find the optimal value of k. I

tested this classifier with setting up the value of k to be the odd numbers from 1 to 9. For

my case, the highest accuracy amongst the trials was achieved when k is 1. It is a simple

classification that test instances are assigned to the group of the closest neighbor.

4.2.2.3 Naive Bayes

Naive Bayes is a probabilistic classifier based on applying Bayes’ theorem in equa-

tion 4.1 with the assumption that features are independent. Even if features can be cor-

related, naive Bayes lets all of the features independently contribute to the probability of

classification, and this is why it is known as ‘Naive.’ In spite of the oversimplification, the

classifier works well on large data sets and is easy to build. However, one drawback of

naive Bayes is “Zero Frequency.” For example, if test data set has a new class that is not

observed in training data, the model are unable to make a prediction since the model will

assign a zero probability.

Equation 4.1 seeks the posterior probability of Classi given predictor x from 1) the

prior probabilities of the class (P (Classi)) and the predictor (P (x)), and the probability
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of the predictor given the class (P (x|Classi)).

P (Classi|x) =
P (Classi)P (x|Classi)

P (x)
(4.1)

4.2.2.4 Multilayer perceptron

The multilayer perceptron consists of an input layer, an output layer, and one or more

hidden layer. The multilayer perceptron is a feed forward artificial neural network by

training a model with backpropagation. This was introduced to find non-linear pattern in

data since initially standard perceptron can only work well on finding linear patterns.

4.2.2.5 Random forest

Random forest is an ensemble learning method that builds a large number of decision

trees with random sample sets and exploits bootstrap aggregating, so called bagging [76],

with the decision trees for training. As random forest resolves the decision trees’ habit of

overfitting as mentioned in the section 4.2.2.1, it has been widely used in various problems,

consistently achieving high degrees of accuracy [77]. I tested random forest with 100

decision trees.

4.2.3 Result

To evaluate the performance of these algorithms in distinguishing between user-defined

gestures, I used accuracy and F-measure.

In terms of binary classification that has two possible labels, “positive” and “negative”,

there are the four following possible cases: 1) true positives (TP), the number of positives

labeled as positive, 2) true negatives (TN), the number of negatives labeled as positive, 3)

false positives (FP), the number of positives labeled as negatives, and 4) false negatives

(FN) labeled as positive. Accuracy is formulated with the possible cases in equation 4.2.

If TP < FP, then accuracy will may increase when a classification rule is changed to always
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output negative category. Conversely, If TN < FN, the same may happen when a classifi-

cation rule is changed always to output positive. The idea that some algorithms with less

predictive power may have higher accuracy is called accuracy paradox.

To avoid this problem, we instead use recall as defined in Equation 4.3, precision as

defined in Equation 4.4 [78], and f-measure as defined in Equation 4.5. Recall is the

number of true positives divided by the number of all positives. Precision is the number of

true positives divided by the number of all true positives and false negatives. F-measure

is the harmonic mean of recall and precision, and this is widely used as a measure of

accuracy in statistical analysis of binary classification.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.2)

Recall =
TP

TP + FP
(4.3)

Precision =
TP

TP + FN
(4.4)

F -measure = 2 · 1
1

Recall
· 1
Precision

= 2 · Recall · Precision
Recall + Precision

=
2TP

2TP + FP + FN

(4.5)

To evaluate the effectiveness of our features, I tested their ability to distinguish be-

tween 11 gestures. Our features were run through each of the classifiers with 10-fold

cross-validation. Cross-validation is one of model validation techniques to asses results

of statistical analysis. This is used to determine how accurately a predictive model (e.g.,

features, shape context) performs in several experiments. I used 10-fold cross-validation
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Classifier Accuracy F-measure

J48 70.11% 0.698

kNN (k=1) 68.08% 0.674

Naive Bayes 66.26% 0.665

Multilayer perceptron 85.61% 0.856

Random Forest 80.75% 0.792

Table 4.2: The performance of classifier for identifying 11 gestures using the 44 adapted
traditional features

that evaluates the predictive model by partitioning data into 10 equal sized subsamples

and testing the model 10 times with using a single subsample as test data and 9 remaining

subsamples as training data.

The results are shown in Table 4.2. The 44 adapted traditional features are able to

distinguish between 11 gestures fairly accurately.

4.2.4 Novel features

I introduce additional features that are specified to our user-defined gesture set in an

effort to improve the recognition of 15 user-defined gestures. As can be seen in Table 4.3,

33 features are added by observing and quantifying differences in the data between the

user-defined gesture set.

These features are divided into two groups: conditional or non-conditional. Condi-

tional features are extracted given a certain condition. I made 3 assumptions: 1) when the

hand is in the highest position, 2) when the hand is closest to the body (or the face), and 3)

when the distance between two hands is the shortest. Mainly, the extracted features under

the conditions are x, y, and z differences between two hands or between the hand and the

head whereas non-conditional features are the distances between the hand and the head,
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Novel features

The longest distance between the head and the hand (Left/Right)

The shortest distance between the head and the hand (Left/Right)

The average distance between the head and the hand (Left/Right)

The longest distance between hands

The shortest distance between hands

The average distance between hands

The sub-length of 3D gesture

The sub-length of 2D gesture (XY )

The sub-length of 2D gesture (XZ)

Condition 1. When y is the highest,

The y difference between the hand and the head (Left/Right)

The x difference between the hand and the head (Left/Right)

The y difference between hands

The x difference between hands

Condition 2. When z is the furthest from the sensor,

The y difference between the hand and the head (Left/Right)

The x difference between the hand and the head (Left/Right)

The y difference between hands

The x difference between hands

Condition 3. When the shortest distance between two hands,

The y difference between the hand and the head (Left/Right)

The x difference between the hand and the head (Left/Right)

The z difference between the hand and the head (Left/Right)

Table 4.3: 33 novel features
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the distances between two hands, the sub-lengths of gesture.

Additionally, the sub-length of gesture is the length of gesture that includes the trajec-

tory of the hand above the neck. The sub-length are extracted in three dimensional and

two dimensional spaces.

4.2.5 Result

The classification performance of algorithms trained on these features with 10-fold

cross-validation is shown in Table 4.4. Table 4.5 is the confusion matrix. Table 4.6 shows

the f-measure of the 11 gestures. These results shows that when applying additional fea-

tures to the classification, a marked improvement in recognition performance occurred.

For example, with random forest, the accuracy improved from 80.75% with the original

features to 92.40% with the new features; the f-measure increased from 0.792 to 0.922.

Although naive Bayes shows the less improvement, I presume the low performance of this

classifier is not because our features performed poorly but because these features, espe-

cially the new features, are highly correlated to each other. As mentioned in the previous

Section 4.2.2.3, the naive Bayes requires the assumption of the independence of features.

Evaluating the effect of the new features on recognizing 11 gestures is as clear cut. The

result demonstrates that the addition of new features is more sufficient to reliably discrim-

inate the 11 gestures.
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Classifier Accuracy F-measure

J48 81.05% 0.811

k-NN (k=1) 89.66% 0.896

Naive Bayes 69.30% 0.711

Multilayer perceptron 92.50% 0.925

Random Forest 92.40% 0.922

Table 4.4: The performance of classifier for identifying 11 gestures using 77 features (44
traditional + 33 novel)

Activity
Classified As

Eyes Hand
Shape

Kissing
Heart

Notes Pensive Pray Raised
Hands

Smirk Un-
amused

Weary Wink

Eyes 100 0 0 0 0 0 0 0 0 0 0

Hand Shape 0 99.28 0 0 0.24 0 0.24 0 0 0.24 0

Kissing Heart 0 9.52 78.57 0 1.19 0 0 10.71 0 0 0

Notes 2.38 0 0 97.62 0 0 0 0 0 0 0

Pensive 0 6.41 0 0 85.90 0 0 2.56 0 0 5.13

Pray 0 0 0 0 0 92.86 0 0 7.14 0 0

Raised Hands 0 0 0 0 0 0 1000 0 0 0 0

Smirk 8.54 9.76 0 7.32 0 0 0 74.39 0 0 0

Unamused 0 0 0 0 0 4.85 0 0 95.12 0 0

Weary 0 2.38 0 0 0 0 2.38 0 0 95.24 0

Wink 0 18.18 0 0 0 0 0 0 0 0 81.82

Table 4.5: Confusion matrix for distinguishing between the 11 gestures using the random
forest and combining of the traditional features and the novel features
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Gesture F-measure

Eyes 0.988

Hand shape 0.956

Kissing heart 0.835

Notes 0.988

Pensive 0.876

Pray 0.940

Raised hands 0.976

Smirk 0.792

Unamused 0.940

Weary 0.964

Wink 0.875

Table 4.6: F-measures of the 11 gestures
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5. SHAPE-BASED RECOGNITION

In this chapter, I describe our proposed shape-based recognition that employs four

basic steps: pose segmentation, hand segmentation, hand shape tracing, and hand shape

classification. As a reminder, in the trajectory-based hand gesture recognition, five shapes

have been grouped into a single activity ‘Hand Shape.’ The shape-based recognition clas-

sifies those five gestures that were grouped into ‘Hand Shape.’ Images of the five different

hand shapes are shown in Figure 5.1.

5.1 Pose segmentation

A gesture is a sequence of poses and is saved as a sequence of frames as mentioned

in the previous Section 4.1. In order to capture the certain pose considered as one of the

static gestures within the frames, two conditions should be satisfied. First, the algorithm

finds the highest y coordinate of the hand joint. Second, the algorithm checks to see if

the number of the pixels of the contour in the frame is equal or greater than a threshold.

(extracting contour will be explained in Section 5.3.) In our case, the threshold is 100.

Unless the second condition is satisfied, the algorithm searches either the next frame or

the previous frame based on the index of the currently selected frame in the sequence. To

be specific, if the current index is in the middle or the second half of the frame sequence,

the algorithm searches the previous frame. On the other hand, if the current index is in

the first half, the algorithm find the next frame. The algorithm keeps searching until the

threshold condition is met.

5.2 Hand segmentation

The hand segmentation aims to extract the hand region from a depth image. Since

the Kinect SDK 2.0 provides methods to detect the hand joint, the hand tip joint, and the
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(a) ‘Hand’ hand shape and emoji (b) ‘Thumbs up’ hand shape and
emoji

(c) ‘Information desk person’ hand
shape and emoji

(d) ‘V’ hand shape and emoji

(e) ‘OK hand’ hand shape and emoji

Figure 5.1: The hand shapes
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Figure 5.2: The error after the hand segment

thumb joint, the search area of the hand can be narrowed down. First, the length between

the hand joint and the hand tip joint, and the length between the hand joint and the thumb

joint are calculated. The longer of the two is chosen to be the length of the bounding

box of the search area. While scanning the depth values in the area of depth image, any

values will be excluded if the values do not fall between the desired range. Thresholding

converts the search area to a binary black-and-white image; the pixels that belong to the

hands assigned 1 and the remaining pixels are assigned 1. As a result, the shape of the

hand can be extracted.

5.3 Hand shape tracing

I adapt Rajan’s stroke extracting algorithm [3, 79, 80] to trace a hand shape. The

hand shape tracing approach is chosen to resolve an unexpected noisy issue caused by the

hand segment process. Figure 5.2 is an example of the issue. Likewise, the results of the

hand segment process, occasionally, contain more shapes other than a hand shape. One

way to discriminate a hand shape from others is to compare the length of the shapes. It

highly possible that the shape with the longest length will be the hand shape. Thus, shape

segmentation is required, and the hand shape tracing approach enables to segment shapes.
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5.3.1 Pre-processing

The preprocessing is to extract the contour information, or the coordinates of the con-

tour, from the hand shape, the outcome of the hand segment. The first step in the pre-

processing is to denoising the hand shape images. In reality, the images obtained from the

Kinect are often corrupted with noise. As a result, the hand shape usually has noise around

the shape outline. Thus, a denoising process is applied. The denoising process removes

isolated pixels and isolated small regions or segments. The second step in the preprocess-

ing is to obtaining the shape boundary coordinates. Creating a rough contour of the hand

shape, first. Assume that black pixels are denoted as 1’s and white pixels are denoted as

0’s, if a black pixel that belongs to the shape has adjacent to at least one white pixel in

the 8-pixel neighborhood around the black pixel, the algorithm considers the black as a

part of the contour of the shape. After finding all the black pixels that meet the criterion,

the algorithm thins the contour to a thickness of a single pixel. Otherwise, it is difficult

to determine the intended direction of contour. This process is a prerequisite of Rajan’s

stroke extracting algorithm.

In order to thin the rough contour, I use Zhang-Suen’s fast parallel thinning algo-

rithm [81]. Zhang-Suen’s thinning algorithm is an iterative algorithm, which eliminates

the outer layer of pixel until no more layers can be removed [82]. The algorithm consists

of two sub-iteration. The first sub-iteration removes the bottom-right boundary pixels and

the top-left corner pixel while the second sub-iteration removes the top-left boundary pix-

els and the bottom-right corner pixel. In the first sub-iteration, a pixel, P1 in figure 5.3, is

eliminated on the following conditions;

• The number of nonzero neighbors is greater than or equal to 2, or less than and equal

to 6

• The number of 01 pattern should be one in the ordered neighbor set, P2, P3, ..., P9
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Figure 5.3: Designations of the nine pixels in a 3× 3 windows

in figure 5.3

• P2 · P4 · P6 = 0

• P4 · P6 · P8 = 0

In the second sub-iteration, the first two conditions remain same but the last two con-

dition are modified as follow:

• P2 · P4 · P8 = 0

• P2 · P6 · P8 = 0

5.3.2 Contour tracing

After the contour of a hand shape is thinned into a single pixel thickness, Rajan’s stroke

extracting algorithm [3] is applied in order to trace the contour. A resultant stroke can be

regarded as either a whole contour or a part of the contour in this section. The algorithm

traces strokes using both the local and global characteristics of the previously identified

stroke points to determine the future points of the stroke.

Initially, a starting point is identified from which to begin stroke extraction. As the

starting point, the black pixel closest to the bottom left corner of the hand shape image is

selected. The first point belongs in the first stroke and is stored in an array, stroke history.
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Figure 5.4: The transition when just one pixel is available [3]

Figure 5.5: Finding minimum angular deviation with the local solver [3]

The stroke history maintains the record of the pixel designated as part of the stroke under

consideration. The pixels in the array are flagged as 0, which means that these are invisible

to the algorithm.

When the algorithm, continuously, explores pixels, it can face either following two

cases, the number of nonzero neighbors around the current pixel is one or more than one.

The former case is simple to process; the one neighboring pixel is added to the stroke

history as shown in Figure 5.4. In the latter case, the current pixel is called as a point of

ambiguity. Depending on the number of pixels stored in the stroke history, either the local

solver or the global solver is employed to select the next pixel. The threshold in this study

is 12 (pixels).
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The local solver and the global solver determine the next pixel with minimum angular

deviation from the direction given by the last 2 pixels or the last 12 pixels of the stroke

history respectively. The process of the local solver is described in detail in Figure 5.5.

It the last pixel and the current pixel are P0, P1 respectively, the local solver finds the

angles of P2′ and P2′′, θ′ and θ′′. On the contrary, Principle Component Analysis (PCA),

a well-known statistic pattern recognition, serves as the basis of the global pixel selector.

In this study, I used the Accord.NET Framework [83] to implement the PCAs, which are

eigenvectors of the covariance matrix of the data of 12 pixels in stroke history, which is

denoted by equation 5.1. The eigenvectors correspond to the direction with the maximum

eigenvalues.

Cov(X, Y ) =

n∑
i=1

(Xi −X)(Yi − Y )

n− 1
, where n = 12 (5.1)

Assume that the PCA of the stroke history is denoted as
−→
Ph, and the PCA of the data of

12 pixel placed in one possible direction, so-called stroke future, is denoted as
−→
iPf , where

i is the number of stroke futures. Then, as can be seen in equation 5.2, the dot product of
−→
Ph and

−→
iPf is computed. The selected stroke future is the maximum value of DPi.

DPi =
−→
Ph ·
−→
iPf (5.2)

Figure 5.6 is an example of the result of choosing the next point with the global stroke.

Initial point is the P0; current point is P2, the chosen next point is P3, and the blue arrow

indicates the direction of the tracing previous pixels. This is the decision of global solver

because the local solver would choose the bottom left pixel of P2, instead of P3.
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Figure 5.6: A global point of ambiguity in the shape of ‘OK hand,’ one of the user-defined
gestures
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5.3.3 Contour selection

Through stroke extraction with the local solver and the global solver, occasionally,

multiple strokes are generated, which compose a contour of a hand shape. Then, these

strokes are merged based on the distance between the end points of distinct strokes by a

threshold. If the final result has more than one contour, the algorithm finds the longest

contour as well as the second longest contour. As illustrated in Figure 5.1e, the second

longest contour can be a feature to help identify ‘OK hand,’ as ‘OK hand’ has a contour

inside the first. With using Ray’s Casting algorithm, if our system determines that the

second algorithm is located inside of the longest contour, the second longest contour also

remains. The left sides of each of the figures in Figure 5.1 show the outcome of the hand

shape tracing approach.

5.4 Hand shape classification

To classify the five hand shapes in Figure 5.1, I have explored two approaches: finger

detection and shape matching.

5.5 Finger detection

My previous assumption was since the five hand shapes have different number of

unfolded fingers, detecting these fingers can lead to classify the gestures. As many re-

searchers have used convex hull [49, 50, 52] or curve detection [84, 85, 86] for fingertip

detection, both methods are used in this work.

The convex hull of a set of points is the smallest set of points that contains all the

points. Our system calculates convex hull by Graham scan [87] to find the convex hull.

Figure 5.7 is an example of the result after finding the convex hull of the hand shape. The

red dots including the fingertips are the convex hull. Once the convex hull is acquired,

each convex point is examined by curve detection method to determine fingertips. The
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Figure 5.7: The convex hull of the hand shape

Figure 5.8: The k-curvature [4]

k-curvature is used to implement the curve detection. The k-curvature detects the angle

between two vectors at each convex hull point. The vectors start at the convex hull point

and end k points away in either direction as shown in Figure 5.8.

As a result, the finger detection approach performed poorly. Due to the low resolution

of the Kinect, our captured hand shape images are not as clear as the actual hand shape.

The finger detection approach is not robust to unclear hand shapes. For example, Fig-

ure 5.9 is one of our captured hand shapes, and the red dots are convex hull. The actual

fingertips do not have the characteristic This kind of our hand shapes makes defining k of

k-curvature difficult.
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Figure 5.9: One of our unclear hand shapes

5.6 Shape matching

For shape matching, there are various measurement of similarity between shapes, e.g.,

Hausdorff distance [88], inner distance [89], shape context [90, 91]. I implement the shape

context with Emgu CV [92], which allows to use functions of Open CV library [93] in C#

framework. The shape context is binning of spatial relationships between points to find the

correspondence between two shapes. The shape context has three main methods: log-polar

bins (k-bins histogram), shape context cost, point correspondence. Log-polar bins I used

quantizes angle into 12 bins, log-distance into 4 bins. The histogram with 48 elements,

which is the shape context for a point. For each point on the shape, a coarse histogram of

the relative coordinates of the remaining points is computed by taking the vector distance

of the point with respect to all other points. Then, Chi-square test statistic is used to get a

measure of the cost of matching two points. After getting the set of costs between all pairs

of points on the two shapes, bipartite graph matching is done to minimize the total cost of

matching.

5.7 Result

The total number of hand shape data is 420 (21 people × 5 different hand shape × 4

times (twice with left and right hand for each)). Figure 5.10 shows the result of solely the

shape-based recognition. Whereas Figure 5.10a is the result of 10-fold cross validation
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with whole data, i.e, a user’s different data can be either test data or training data, the

result shown in Figure 5.10b is that the whole data of a user is used as test data and the

others’ data have been used as training data. For this reason, the average accuracy of user-

independent data is slightly lower than that of user-dependent data. Table 5.2 shows the

performance of individual recognition, and the performance of the two-stage recognition.

Overall, as there is not much difference between the accuracy of user-independent data

and the accuracy of user-dependent data, it shows that our recognition system is able to

generalize the gestures of users.

(a)

(b)

Figure 5.10: The performance of the shape-based recognition

54



Hand shape
Classified As

95 4 0 1 0

0 98 0 1 1

6 0 93 1 0

2 7 0 91 0

1 1 0 1 97

Table 5.1: Confusion matrix for distinguishing between the 5 hand shapes using shape
context

User-dependent User-independent

Trajectory-based recognition 92.40%

Shape-based recognition 94.43% 92.31%

Two-stage recognition 86.04% 82.07%

Table 5.2: The performance of proposed two-stage recognition
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6. FUTURE WORK

There are many avenues for future development. Foremost, our results shows the pos-

sibility that our system can be extended to the rest of user-defined gestures or even new

user-defined gestures and to a real-time application.

In this work, we implemented a two-stage recognition system for our user-defined

gesture set but has yet to test on the remaining 10 hand gestures. Originally, the number

of the remaining gestures was 15 but as considered that there are identical gestures for

different emojis, the number of the hand gestures to be classified is 10.

This research has focused on eliciting user-defined gestures and recognizing these ges-

tures. I have yet to recognize the gesture in real-time. I have built the framework of the

two-stage recognition system based on the ultimate goal of real-time recognition system.

I envision that a user sends an emoji by an gesticulation while chatting on online.

I am looking forward to finding ways to improve the our system by adding more fea-

tures or bringing more classification methods.
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7. CONCLUSION

In this work, I have presented a user-defined gesture set that is highly representative

to popular emojis and a two-stage hand gesture recognition that distinguish between the

15 user-defined hand gestures using data collected from a Kinect, a depth camera, with an

overall accuracy of 86%.

I present three main contribution in light of the explanation of my work.

1. Symbolic Gestures: What kinds of hand gestures (emblem) do users express that

they feel properly symbolize popular emojis?

Through three experiments, I developed 30 user-defined gestures analoguous to

emojis. The first experiment was to design a highly spontaneous gesture set by

acquiring gestures for emojis from 10 participants. The second experiment is to

achieve a high agreement of the gestures resulted in the first experiment with 17

participants by using Wobbrock’s agreement [1]. I found that The last experiment

was to evaluate the final gesture set by using Wobbrock’s guessability [94] and pref-

erence ratings as performance measurement.

2. Quality Features: Which features are valuable for recognizing the user-defined

gestures?

I developed 32 features specific to 15 user-defined gestures. These 32 additional

features improved the system’s performance to discriminate between the 15 gestures

by over 10%. Therefore, through this work, I show that it is feasible to identify

specific user-defined gestures by using features specifically designed to highlight

the unique characteristics of those gestures.

3. Robust Recognition: Can we achieve reasonable hand gesture recognition for these
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emojis using our method?

I developed a two-stage recognition system, where a trajectory-based recognition

classifies dynamic hand gestures with above-mentioned features, and a shape-based

recognition classifies static hand gesture, particularly hand shapes with shape con-

text. To test the performance of our system, I collected 1008 gesture data from 21

participants. The accuracy of the two-stage recognition system was 86%.
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