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ABSTRACT

In this dissertation, we study some spectral problems for periodic elliptic operators 

arising in solid state physics, material sciences, and differential geometry. More precisely, 

we are interested in dealing with various effects near and at spectral edges of such opera-

tors. We use the name “threshold effects” for the features that depend only on the infinites-

imal structure (e.g., a finite number of Taylor coefficients) of the dispersion relation at a 

spectral edge.

We begin with an example of a threshold effect by describing explicitly the asymp-

totics of the Green’s function near a spectral edge of an internal gap of the spectrum of

a periodic elliptic operator of second-order on Euclidean spaces, as long as the disper-

sion relation of this operator has a non-degenerate parabolic extremum there. This result

confirms the expectation that the asymptotics of such operators resemble the case of the

Laplace operator.

Then we generalize these results by establishing Green’s function asymptotics near and

at gap edges of periodic elliptic operators on abelian coverings of compact Riemannian

manifolds. The interesting feature we discover here is that the torsion-free rank of the

deck transformation group plays a more important role than the dimension of the covering

manifold.

Finally, we provide a combination of the Liouville and the Riemann-Roch theorems for

periodic elliptic operators on abelian co-compact coverings. We obtain several results in

this direction for a wide class of periodic elliptic operators. As a simple application of our

Liouville-Riemann-Roch inequalities, we prove the existence of non-trivial solutions of

polynomial growth of certain periodic elliptic operators on noncompact abelian coverings

with prescribed zeros, provided that such solutions grow fast enough.
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1. INTRODUCTION

Periodic media play a crucial role in solid state physics as well as in other areas (e.g.,

meta- and nano-materials). A remarkable example is the study of crystals: The atoms in

a perfect crystal are placed in a periodic order and this order induces many interesting

properties of the material. Mathematically speaking, to describe the one-electron model

of solid state physics [6], one uses the stationary Schrödinger operator −∆ + V with a

periodic potential V that represents the field created by the lattice of ions in the crystal. In

general, one can study elliptic PDEs with periodic coefficients arising naturally from other

contexts. For instance, periodic magnetic Schrödinger operators, overdetermined systems

like Maxwell equations in a periodic medium, periodic elliptic operators on abelian cov-

erings of compact manifolds or finite graphs are also of interest. It has been known for a

long time that in mathematical physics, the Floquet-Bloch theory is a standard technique

for studying such operators. Although periodic elliptic PDEs have been studied exten-

sively, there are still many theoretical problems to address as well as new applications to

explore such as metamaterials (e.g., graphene and photonic crystals), carbon nanostruc-

tures, topological insulators, waveguides and so on.

In Chapter 2, we briefly discuss periodic elliptic operators and then give a quick review

of the Floquet transform and the Floquet-Bloch theory. Here we introduce definitions,

notations, and preliminary results that will be needed in the subsequent chapters.

In Chapter 3, we describe the behavior at infinity of Green’s functions near gap edges

for periodic elliptic operators in Rd (d ≥ 2), which is an example of a threshold effect.

These asymptotics are relevant for many important applications in Anderson localization,

impurity spectra, Martin boundaries and random walks. The original motivation comes

from the well-known asymptotic behavior of the Green’s function of the Laplacian in Rd
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outside its spectrum: along with an algebraic decay factor, the Green’s function decays

exponentially at infinity with the rate of decay controlled by the distance to the spectrum.

One may ask how the Green’s functions of other classes of elliptic operators behave at

infinity: Would it resemble the Laplacian case? A natural candidate is the class of periodic

self-adjoint elliptic operators of the second-order.

Exponential decay estimates of Schwartz kernels of resolvents, such as the Combes-

Thomas estimates [18] are well-known. However, as most of them are obtained by operator-

theoretic techniques, they do not capture precisely the anisotropy of the asymptotics for

periodic operators. Moreover, an additional algebraically decaying factor besides the ex-

ponential decay rate is lost in this approach.

Since one can compute the asymptotics of the Green’s function of the Laplacian by

using Fourier transform, it is natural to use Floquet theory in the periodic case. Consider a

periodic self-adjoint elliptic operator L on Rd, where d ≥ 2. Its spectrum has a band-gap

structure, so it is reasonable to look at the Green’s function around the spectral edges of a

gap. A special case is of the bottom of the spectrum, for which results were established by

Babilott [9] and then by Murata-Tsuchida [60].

Here we attack the case of an internal spectral edge, where the corresponding band

function λj(k) has an isolated nondegenerate extremum.1 By using Floquet transform

and a localization argument, we reduce the problem to studying the behavior of a scalar

integral that involves a germ of the branch λj . Here only the local structure around the

edge of the branch λj is solely responsible for the main term of the scalar integral, and

this is where nondegeneracy of the extremum is used to compute the asymptotics. This

also confirms the expectation that the asymptotics resemble the ones for the Laplacian.

Indeed, the asymptotics of the Green’s function Gλ(x, y) of L at an energy level λ that is

1Non-degeneracy means that the Hessian matrix of the corresponding band function λj(k) at the gap
edge is non-degenerate.
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sufficiently close to a simple and nondegenerate spectral edge can be described roughly as

follows:

Gλ(x, y) ∼ e−γs|x−y|

|x− y|(d−1)/2
× C(λ, x, y), where s :=

(x− y)

|x− y|
. (1.1)

Here γs > 0 depends on the direction s only and C(λ, x, y) is a bounded term depending

on the local structure of the dispersion relation of L around the spectral edge. Hence,

the rate of exponential decay is usually non-isotropic, unlike in the Laplacian case. The

additional algebraic decay is also captured.

In Chapter 4, we extend the above results to periodic elliptic operators on an abelian

cover of a compact base. An abelian cover X is a normal Riemannian cover such that its

deck transformation group G is abelian and the quotient space M = X/G is a compact

Riemannian manifold. Without loss of generality, one can assume G = Zd. Let dX(·, ·)

be the Riemannian distance on X . Note that the dimension n of the manifold X could

be different from the rank d of the deck group G. Let A be a self-adjoint elliptic operator

of second-order on X such that it is periodic, i.e., A commutes with actions of G. One

can define a Floquet transform on X so that the machinery of Floquet theory still works

well. The notions of dispersion relations, band-gaps, and spectral edges are defined simi-

larly to the flat case and thus, the question of finding the asymptotics of Green’s function

GA,λ(x, y) of A at a level λ that is near to a non-degenerate gap edge still makes sense. At

first glance, one may expect that the leading term of the Green’s function of A can be rep-

resented in terms of the distance dX(x, y) like the formula (1.1) in the flat case. However,

this is just ‘almost’ true as we show that the asymptotics should look like

GA,λ(x, y) ∼ e−γs|h(x)−h(y)|

|h(x)− h(y)|(d−1)/2
× C̃(λ, x, y), where s =

h(x)− h(y)

|h(x)− h(y)|
. (1.2)

3



Here, the mapping h from X to Rd is an analog on an abelian covering of the coordinate

function x in the flat case. 2 It satisfies |h(x) − h(y)| ∼ dX(x, y) when x and y are

sufficiently far apart. The positive constant γs depends on s, and the term C̃(λ, x, y) is

again bounded and does not contribute much to the asymptotics at infinity. An interesting

feature is that the rank d ofG plays a more important role than the dimension n ofX , since

n does not enter explicitly into (1.2). This feature is in line with Gromov’s idea that the

large scale geometry of X is captured mostly by its deck group G. Furthermore, the result

of [52] concerning the behavior at exactly a spectral edge is also extended to co-compact

abelian coverings.

In Chapter 5, we combine the Riemann-Roch and the Liouville theorems for peri-

odic elliptic operators on abelian coverings. The classical Riemann-Roch theorem for

compact Riemann surfaces has been extended in various ways to higher dimensional set-

tings. Instead of taking the viewpoint from algebraic geometry, Gromov and Shubin took

a motivation from classical analysis of solutions of general elliptic equations with point

singularities [32] and beyond [33]. Consider a compact manifold X of dimension n, a

point divisor is an element in the free abelian group generated by the points of X . For an

elliptic operator P of order m and a point divisor µ on X , they define the space L(µ, P ) of

“meromorphic" solutions of P associated to µ by taking all solutions that are allowed to

have some poles at points that enter µ with a positive degree and are required to have zeros

at the points that enter µ with a negative degree. Also, the multiplicities of these poles and

zeros are controlled from above and below by quantities involving the corresponding de-

grees. The Riemann-Roch type formula appeared in [32] is a link between the dimensions

of the space L(µ, P ) and the ‘dual’ one L(µ−1, P ∗), where µ−1 is the dual divisor of µ and

2A topological approach to defining such mappings on any Riemannian co-compact coverings can be
found in Appendix A.
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P ∗ is the adjoint operator of P :

dimL(µ, P ) = dimL(µ−1, P ∗) + indP + degP (µ), (1.3)

where indP is the Fredholm index of P and degP (µ) is the degree of µ that is written in

terms of binomial coefficients involving m,n and µ. The classical Riemann-Roch formula

is a special case of (1.3) if P is the ∂̄ operator on a compact Riemann surface X . Later

in [33], Gromov and Shubin proved a much more general version of (1.3) for solutions of

general elliptic equations with singularities supported on arbitrary compact nowhere dense

sets of a manifold (e.g., a Sierpinsky carpet). In this version, the analogs of point divisors

are rigged divisors.3 A version of (1.3) on non-compact manifolds is also given in [32,33].

On the other hand, the classical Liouville theorem says that a harmonic function that

grows polynomially is a harmonic polynomial and so, the space of all harmonic functions

in Rn that are bounded by C(1 + |x|)N is of finite dimension:

hn,N :=

(
n+N

n

)
−
(
n+N − 2

n

)
. (1.4)

This leads to a natural problem concerning the finite dimensionality of the spaces of solu-

tions of an assigned polynomial growth, estimates of their dimensions, and descriptions of

the structures of these solutions for more general elliptic operators on certain non-compact

manifolds. In the flat case Rn, M. Avellaneda-F.H. Lin [8] and J. Moser-M. Struwe [59]

answered the question for any second order divergence form elliptic equation with periodic

coefficients by using tools of homogenization theory: they proved that the dimensions of

the spaces of all solutions of these equations of polynomial growth of order at most N are

equal to hn,N . However, homogenization techniques have significant limitations, e.g., they

3A rigged divisor µ is a tuple (D+, L+;D−, L−), where D+, D− are disjoint nowhere dense compact
sets and L+, L− are finite-dimensional spaces of distributions supported on D+, D−, respectively.
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work at the bottom of the spectrum only. Using Floquet theory and duality arguments, in

[50], P. Kuchment and Y. Pinchover obtained Liouville type results for a wide range of

elliptic periodic operators on abelian co-compact coverings. The main result of [50] says

that the Liouville type result happens iff the corresponding Fermi surface is finite, which

normally happens at a spectral edge. This is another example of threshold effects: the

dimensions are calculated explicitly based on the lowest order term of a non-zero Taylor

expansion term of the dispersion relations at a spectral edge.

A solution of polynomial growth of order N can be considered as a solution that is

allowed to have a “pole at infinity” of order at most N , while a solution that is “zero at

infinity” with multiplicity at least N can be regarded as a solution with a rate of decay of

polynomial of order N . So one may think a Liouville type result as a Riemann-Roch type

result for divisors located at infinity. It is thus natural to try to combine these theorems.

Consider p ∈ [1,∞], N ∈ R and an abelian cover X whose deck group is G(= Zd).

Suppose that µ is a rigged divisor (defined in Section 5.3) and A is a periodic elliptic

operator on X . We denote by Lp(µ,A,N) the space of all solutions u of the equation

Au = 0 with zeros enforced and poles allowed by the divisor µ, and of polynomial growth

(in Lp-sense) of order N at infinity (see Section 5.4). Now we can give a rough statement

(somewhat vague at this point) to outline some of our main results in Chapter 5.

Theorem 1.0.1. Assume that N ≥ 0, p ∈ [1,∞] and µ is a rigged divisor on X . We define

p′ := p/(p− 1).

(i) If 0 is in the resolvent set of A, then the following Liouville-Riemann-Roch equality

holds:

dimLp(µ,A,N) = dimLp′(µ
−1, A∗,−N) + degA(µ).

(ii) Suppose that 0 is in the spectrum of A and the operator A satisfies the Liouville

property. Let us denote by V p
N(A) the space Lp(µ0, A,N), where µ0 is the trivial

6



divisor (∅, 0; ∅, 0). Assume either p = ∞, N ≥ 0 or p ∈ (1,∞), N > d/p. Then

under some local conditions on the dispersion relation of A, we have the following

Liouville-Riemann-Roch inequality:

dimLp(µ,A,N) ≥ dimV p
N(A) + degA(µ) + dimLp′(µ

−1, A,−N). (1.5)

The inequality (1.5) can be strict in some cases, e.g., when A = −∆ on R3, N = 0

with some µ. However, when µ contains only poles, the equality in (1.5) occurs.

Here degA(µ) is the integer depending on µ and the differential operatorA (see Section

5.3).

In particular, we are able to show that the Liouville-Riemann-Roch inequalities hold

for ‘generic’ periodic Schrödinger operators at their gap edges and for two-dimensional

periodic Schrödinger operators with honeycomb lattice potentials. An immediate appli-

cation is the non-triviality of the space L∞(µ,A,N) in many situations, e.g., when 0 is

at the bottom of the spectrum of A = −∆ + V and hd,N + degA(µ) > 0. This also im-

plies the fact that one can always find a non-zero solution u of polynomial-growth of A

with prescribed zeros as long as N is large enough. The latter fact can be considered as

an analog for noncompact abelian coverings of the following well-known property which

could be deduced from the classical Riemann-Roch equality: the existence of a non-trivial

meromorphic function on a compact Riemann surface with prescribed zeros, provided that

poles of sufficiently high orders are allowed.

The results of this dissertation have been published in:

1. (Joint with Peter Kuchment, Andy Raich), Green’s function asymptotics near the inter-

nal edges of spectra of periodic elliptic operators. Spectral gap interior, To appear in

Journal of Spectral Theory (2016), arXiv:1508.06703.

7



2. Green’s function asymptotics of periodic elliptic operators on abelian coverings of

compact manifolds, Submitted, arXiv:1511.00276.

3. A short note on additive functions on Riemannian co-compact coverings, Preprint,

arXiv:1511.00185.

4. (Joint with Peter Kuchment), A Liouville-Riemann-Roch theorem on abelian coverings,

in preparation.

The results of this dissertation have been presented in the following talks:

1. Green’s function asymptotics of periodic elliptic operators on abelian coverings of

compact manifolds, Contributed talk, Ohio River Analysis Meeting, University of Ken-

tucky, Kentucky, 03/12/2016.

2. Green’s function asymptotics of periodic elliptic operators on abelian coverings of

compact manifolds, Invited talk, Seminar in Applied Mathematics, Department of Math-

ematics and Statistics, Texas Tech University, TX, 03/02/2016.

3. Green’s function asymptotics near the internal edges of spectra of periodic elliptic op-

erators. Spectral gap interior., Invited talk, Special Session on Analysis of Differential

and Integral Equations, AMS Fall Southeastern Sectional Meeting, University of Mem-

phis, TN, 10/18/2015.

4. Green’s function asymptotics near the internal edges of spectra of periodic elliptic

operators. Spectral gap interior., Contributed talk, Prairie Analysis Seminar, Kansas

State University, Manhattan, KS, 09/26/2015.

5. Green’s function asymptotics near the internal edges of spectra of periodic elliptic op-

erators. Spectral gap interior., Mathematical Physics and Harmonic Analysis Seminar,

Texas A&M University, 03/06/2015.

8



2. FLOQUET-BLOCH THEORY FOR PERIODIC ELLIPTIC OPERATORS

2.1 Periodic elliptic operators

Let a linear differential expression

Lu(x) = L(x,D)u =
∑
|α|≤m

aα(x)Dαu(x) (2.1)

of order m ≥ 1 be given in Rd. Here if α = (α1, . . . , αd) is a multi-index, the notation

Dα stands for Dα1
1 . . . Dαd

d , where Dk := −i∂k =
1

i

∂

∂xk
. All coefficients aα are smooth

functions on Rd and they are periodic with respect to the integer lattice Zd in Rd, i.e.,

∀x ∈ Rd, n ∈ Zd: aα(x+ n) = aα(x).

The formal adjoint expression (or transpose) is defined as

Ltu(x) = L(x,D)tu =
∑
|α|≤m

Dα(aα(x)u(x)),

i.e., 〈Lu, v〉 = 〈u, Ltv〉 for any u, v ∈ C∞c (Rd), where 〈·, ·〉 denotes the L2-inner product

in Rd. If L = Lt, then L is called a formally self-adjoint differential expression and the

operator L with the domain C∞c (Rd) is symmetric.

The full symbol of L is the polynomial (in ξ ∈ Rd) L(x, ξ) =
∑
|α|≤m

aα(x)ξα, while the

principal symbol of L is the polynomial L0(x, ξ) =
∑
|α|=m

aα(x)ξα. Note that (Lt)0(x, ξ) =

L0(x, ξ) and hence, the principal symbol of a formally self-adjoint expression is always

real.

The scalar differential expression L is said to be (uniformly) elliptic if its principal
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symbol satisfies the inequality

|L0(x, ξ)| ≥ c|ξ|m, c > 0.

Under these assumptions, the differential expression (2.1) is defined for u ∈ L2(Rd)

in the distribution sense. To consider L as a linear operator in L2(Rd), we have to choose

a domain 1 D ⊂ L2(Rd) of L such that Lu ∈ L2(Rd) for any u ∈ D. We denote by L|D

the corresponding operator (or a realization) of the differential expression L. There are

two important realizations of L. The maximal operator Lmax is the linear operator L|Dmax ,

where its domain Dmax is the largest possible one, i.e.,

Dmax := {u ∈ L2(Rd) | Lu ∈ L2(Rd)}.

The minimal operator Lmin is defined to be the closure of the operator L|C∞c (Rd). Since

L is uniformly elliptic and its coefficients are smooth, Dmin = Hm(Rd). When L is a

formally self-adjoint expression, it follows that the maximal operator Lmax is the adjoint

L∗min of the minimal operator Lmin. If Lmin = Lmax or equivalently, Dmax = Dmin, then

Lmin is a self-adjoint operator and in this case, L is said to be essentially self-adjoint on

C∞c (Rd). In other words, L has a unique self-adjoint realization. It is known [71] that

when L = Lt and the coefficients of L are smooth and periodic, the differential expression

L is essentially self-adjoint on C∞c (Rd). We also use the same notation L to denote the

self-adjoint operator Lmin = Lmax = L|Hm(Rd). For simplicity, we also say that L is

self-adjoint in this case.

We now describe some important examples of periodic elliptic operators, which will

come up in the next chapters.

1I.e., a dense linear subspace of L2(Rd).
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(a) The one-electron model of solid state physics can be described by the periodic Schrödinger

operator in L2(Rd)

L = −∆ + V (x),

where the electric potential V is sufficiently smooth 2 and periodic with respect to the

group Zd. The domain of this operator is the Sobolev spaceH2(Rd). This Schrödinger

operator is self-adjoint whenever the potential V is real. Note that many of the tech-

niques and results do not require self-adjointness, i.e., they can also hold for complex-

valued potentials V .

(b) One can also consider the magnetic Schrödinger operators

L = (−i∇+ A(x))2 + V (x),

where A(x) and V (x) are periodic magnetic and electric potentials. More generally,

the Schrödinger operators with the presence of periodic metrics

L = −∇ · g(x)∇+ iA(x) · ∇+ V (x)

are also of interest. Usually, these operators are more complicated to study.

(c) Periodic elliptic operators of higher than second-order are also worthy of studying. A

typical example is the polyharmonic Schrödinger operator

L = (−∆)m+1 + V (x),

where V is a real and periodic potential and m is a positive integer. We would like

to remark that unlike the second-order case, one may encounter more difficulties with
2L∞ suffices (see e.g., [66]).
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these operators since they may fail even the weakest version of unique continuation.

(d) In this chapter, we mainly discuss Zd-periodic elliptic operators on Rd. Most of the

techniques and some of the results in this thesis can be generalized to the case of

periodic elliptic operators on abelian coverings of compact Riemannian manifolds (see

Chapter 4 and Chapter 5).

2.2 Floquet-Bloch theory

Notation 2.2.1.

(a) Let W = [0, 1]d ⊂ Rd be the unit cube, which is a fundamental domain of Rd with

respect to the lattice Zd (Wigner-Seitz cell).

(b) The dual (or reciprocal) lattice is 2πZd and the Brillouin zone is its fundamental

domain B = [−π, π]d.

(c) The d-dimensional tori with respect to the lattices Zd and 2πZd are denoted by Td :=

Rd/Zd and (T∗)d := Rd/2πZd, respectively.

Definition 2.2.2. For any k ∈ Cd, the subspace Hs
k(W ) ⊂ Hs(W ) consists of restrictions

to W of functions f ∈ Hs
loc(Rd) that satisfy for any γ ∈ Zd the Floquet-Bloch condition

(also known as automorphicity condition or cyclic condition)

f(x+ γ) = eik·γf(x) for a.e x ∈ W. (2.2)

Here Hs denotes the standard Sobolev space of order s. Note that when s = 0, the

above space coincides with L2(W ) for any k. In this definition, the vector k is called the

quasimomentum 3.
3The name comes from solid state physics [6].
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Due to periodicity, the operator L(x,D) preserves condition (2.2) and thus it defines

an operator L(k) in L2(W ) with the domain Hm
k (W ). In this model, L(k) is realized as

a k-independent differential expression L(x,D) acting on functions in W with boundary

conditions depending on k (which can be identified with sections of a linear bundle over

the torus Td). An alternative definition of L(k) is as the operator L(x,D + k) in L2(Td)

with the domain Hm(Td). In the latter model, L(k) acts on the k-independent domain of

periodic functions on W as follows:

e−ik·xL(x,D)eik·x =
∑
|α|≤m

aα(x)(D + k)α. (2.3)

Due to ellipticity and embedding theorems (see [47, Theorem 2.1]), the operators L(k) =

L(x,D + k) : Hm(Td) → L2(Td) are Fredholm for k ∈ Cd. In addition, note that the

condition (2.2) is invariant under translations of k by elements of the dual lattice 2πZd.

Moreover, the operator L(k) is unitarily equivalent to L(k + 2πγ), for any γ ∈ Zd. In

particular, when dealing with real values of k, it suffices to restrict k to the Brillouin zone

[−π, π]d (or any its shifted copy).

Fourier transform is a major tool of studying linear constant coefficient PDEs, due to

their invariance with respect to all shifts. The periodicity of the operator L suggests that

it is natural to apply the Fourier transform with respect to the period group Zd to block-

diagonalize L. In fact, it is an analog of the Fourier transform on the group Zd of periods.

The group Fourier transform we have just mentioned is the so called Floquet transform

F (see e.g., [26, 47, 48]). Now let us consider a sufficiently fast decaying function f(x)

(to begin with, compactly supported functions) on Rd.

Definition 2.2.3. The Floquet transform F

f(x)→ f̂(k, x)
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maps a function f on Rd into a function f̂ defined on Rd × Rd in the following way:

f̂(k, x) :=
∑
γ∈Zd

f(x+ γ)e−ik·(x+γ).

From the above definition, one can see that f̂ is Zd-periodic in the x-variable and

satisfies a cyclic condition with respect to k:

 f̂(k, x+ γ) = f̂(k, x), ∀γ ∈ Zd

f̂(k + 2πγ, x) = e−2πiγ·xf̂(k, x), ∀γ ∈ Zd
.

Thus, it suffices to consider the Floquet transform f̂ as a function defined on [−π, π]d×

Td. Usually, we will regard f̂ as a function f̂(k, ·) in k-variable in [−π, π]d with values in

the function space L2(Td).

We list some well-known results of the Floquet transform (see e.g., [47, 48]):

Lemma 2.2.4.

I. The transform F is an isometry of L2(Rd) onto

⊕∫
[−π,π]d

L2(Td) = L2([−π, π]d, L2(Td))

and of H2(Rd) into

⊕∫
[−π,π]d

H2(Td) = L2([−π, π]d, H2(Td)).
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II. The inversion F−1 is given by the formula

f(x) = (2π)−d
∫

[−π,π]d

eik·xf̂(k, x) dk, x ∈ Rd. (2.4)

By using cyclic conditions of f̂ , we obtain an alternative inversion formula

f(x) = (2π)−d
∫

[−π,π]d

eik·xf̂(k, x− γ) dk, x ∈ W + γ. (2.5)

III. The action of any Zd-periodic elliptic operator L (not necessarily self-adjoint) in

L2(Rd) under the Floquet transform F is given by

FL(x,D)F−1 =

⊕∫
[−π,π]d

L(x,D + k) dk =

⊕∫
[−π,π]d

L(k) dk,

where L(k) is defined in (2.3).

Equivalently,

L̂f(k) = L(k)f̂(k), ∀f ∈ H2(Rd).

IV. (A Paley-Wiener theorem for F .) Let φ(k, x) be a function defined on Rd ×Rd such

that for each k, it belongs to the Sobolev space Hs(Td) for s ∈ R+ and satisfies the

cyclic condition in k-variable. Then

(a) Suppose the mapping k → φ(k, ·) is a C∞-map from Rd into the Hilbert space

Hs(Td). Then φ(k, x) is the Floquet transform of a function f ∈ Hs(Rd) such

that for any compact set K in Rd and any N > 0, the norm ‖f‖Hs(K+γ) ≤

CN |γ|−N . In particular, by Sobolev’s embedding theorem, if s > d/2, then the

15



pointwise estimation holds:

|f(x)| ≤ CN(1 + |x|)−N , ∀N > 0.

(b) Suppose the mapping k → φ(k, ·) is an analytic map from Rd into the Hilbert

space Hs(Td). Then φ(k, x) is the Floquet transform of a function f ∈ Hs(Rd)

such that for any compact set K in Rd, one has ‖f‖Hs(K+γ) ≤ Ce−C|γ|. In

particular, by Sobolev’s embedding theorem, if s > d/2, then the pointwise

estimation holds:

|f(x)| ≤ Ce−C|x|.

From Lemma 2.2.4, one can deduce the well-known result (see [20, 47, 66]) that the

spectrum of L is the union of all the spectra of L(k) when k runs over the Brillouin zone,

i.e.

σ(L) =
⋃

k∈[−π,π]d

σ(L(k)). (2.6)

We now remind some notions that play a crucial role in studying periodic PDEs (see e.g.,

[47, 48]).

Definition 2.2.5.

(a) A Bloch solution of the equation L(x,D)u = 0 is a solution of the form

u(x) = eik·xφ(x),

where the function φ is 1-periodic in each variable xj for j = 1, . . . , d. The vector k

is the quasimomentum and z = eik = (eik1 , . . . , eikd) is theFloquet multiplier of the

solution. In our formulation, allowing quasimomenta k to be complex is essential.
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(b) The (complex) Bloch variety BL of the operator L consists of all pairs (k, λ) ∈ Cd+1

such that λ is an eigenvalue of the operator L(k):

BL = {(k, λ) ∈ Cd+1 : λ ∈ σ(L(k))}.

In another word, the pair (k, λ) belongs to BL if and only if the equation Lu = λu in

Rd has a non-zero Bloch solution u with a quasimomentum k. Also, the Bloch variety

BL is also called the dispersion relation/curve, i.e., the graph of the multivalued

function λ(k).

(c) The (complex) Fermi surface FL,λ of the operator L at the energy level λ ∈ C con-

sists of all quasimomenta k ∈ Cd such that the equation L(k)u = λu has a nonzero

solution. Equivalently, k ∈ FL,λ means the existence of a nonzero periodic solution

u of the equation L(k)u = λu. In other words, Fermi surfaces are level sets of the

dispersion relation. By definitions, FL,λ is 2πZd-periodic.

(d) We denote by BL,R and FL,λ,R the real Bloch variety BL ∩ Rd+1 and the real Fermi

surface FL,λ ∩ Rd, respectively.

(e) Whenever λ = 0, we will write FL and FL,R instead of FL,0 and FL,0,R, correspond-

ingly. This is convenient, since being at the spectral level λ, we could consider the

operator L − λI instead of L and thus, FL,λ = FL−λ and FL,λ,R = FL−λ,R. In other

words, we will be able to assume, w.l.o.g. that λ = 0.

Some important properties of Bloch variety and Fermi surface are stated in the next

proposition (see e.g., [47, 48, 50]).

Proposition 2.2.6.
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(a) The Fermi surface and the Bloch variety are the zero level sets of some entire (2πZd-

periodic in k) functions of finite orders on Cd and Cd+1 respectively.

(b) The Bloch variety is a 2πZd-periodic, complex analytic subvariety of Cd+1 of codi-

mension one.

(c) The real Fermi surface FL,λ either has zero measure in Rd or coincides with the whole

Rd.

(d) (k, λ) ∈ BL if and only if (−k, λ̄) ∈ BL∗ . In other words, FL,λ = −FL∗,λ̄ and

FL,R = −FL∗,R.

The analytical and geometrical properties of dispersion relations encode significant

information about spectral features of the operator. For example, the absolute continuity

of the spectrum of a self-adjoint periodic elliptic operator (which is true for a large class

of periodic Schrödinger operators) can be reformulated as the absence of flat components

in its Bloch variety, which is also equivalent to a seemingly stronger fact that the Fermi

surface at each energy level has zero measure (due to Proposition 2.2.6).

If L is self-adjoint, then by (2.3), L(k) is self-adjoint in L2(Td) and has domain

Hm(Td) for each k ∈ Rd. Due to the ellipticity of L, each L(k) is bounded from be-

low and has compact resolvent. This forces each of the operators L(k), k ∈ Rd to have

discrete spectrum in R. Therefore, we can label its eigenvalues in non-decreasing order:

λ1(k) ≤ λ2(k) ≤ . . . . (2.7)

Hence, we can single out continuous band functions λj(k) for each j ∈ N [80]. The range

of the band function λj constitutes exactly the band [αj, βj] of the spectrum of L in (2.8)

(e.g., see Figure 2.1). Hence, when L is self-adjoint, the spectrum of the operator L in

L2(Rd) has a band-gap structure [20, 47, 66], i.e., it is the union of a sequence of closed
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bounded intervals (bands or stability zones of the operatorL) [αj, βj] ⊂ R (j = 1, 2, . . . ):

σ(L) =
∞⋃
j=1

[αj, βj], (2.8)

such that αj ≤ αj+1, βj ≤ βj+1 and limj→∞ αj = ∞. The bands can (and do) overlap

when d > 1, but they may leave open intervals in between, called spectral gaps. Thus, a

spectral gap is an interval of the form (βj, αj+1) for some j ∈ N for which αj+1 > βj . A

finite spectral gap is of the form (βj, αj+1) for some j ∈ N such that αj+1 > βj , and the

semifinite spectral gap is the open interval (−∞, α1), which contains all real numbers

below the bottom of the spectrum of L.

k

λ

σ(L)

λ3

λ2

I2

I3

Gap

λ1

I1

Gap Edges

Figure 2.1: An example of σ(L).

From Proposition 2.2.6 and the proof of [47, Lemma 4.5.1] (see also [80]), the band

functions λ(k) are piecewise analytic on Cd.
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Remark 2.2.7.

(a) It is worthwhile to mention that in the first three statements of Lemma 2.2.4, one

can replace the Brillouin zone [−π, π]d by any other fundamental domain of Rd with

respect to the dual lattice 2πZd (due to 2πZd-periodicity in quasimomentum k). In

the next chapters, we will use this lemma with some fundamental domain of the form

[−π, π]d + k0, where k0 is a fixed quasimomentum in Rd.

(b) It is sometimes useful to employ an alternative version of Floquet transform for which

the reader can find more details in Chapter 5. Analogs of the Plancherel and Paley-

Wiener theorem for these Floquet transforms are also obtained like we just see in

Lemma 2.2.4.

(c) Our above discussion about Floquet-Bloch theory (e.g., Floquet transform and its

properties in Lemma 2.2.4) can be transferred without any major change to the case

of periodic elliptic operators on co-compact abelian coverings.
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3. GREEN’S FUNCTION ASYMPTOTICS NEAR THE INTERNAL EDGES OF

SPECTRA OF PERIODIC ELLIPTIC OPERATORS. SPECTRAL GAP INTERIOR*

3.1 Introduction

The behavior at infinity of the Green function of the Laplacian in Rn outside and at the 

boundary of its spectrum is well known. Analogous results below and at the lower 

boundary of the spectrum have been established for bounded below periodic elliptic op-

erators of the second order in [9, 60] (see also [81] for the discrete version). Due to the 

band-gap structure of the spectra of such periodic operators, the question arises whether 

similar results can be obtained at or near the edges of spectral gaps. The corresponding 

result at the internal edges of the spectrum was established in [52]. The main result of this 

chapter, Theorem 3.2.5, is the description of such asymptotics near the spectral edge for 

generic periodic elliptic operators of second-order with real coefficients in dimension d ≥ 

2, if the spectral edge is attained at a symmetry point of the Brillouin zone.

It is well known that outside of the spectrum the Green function decays 

exponentially at infinity, with the rate of decay controlled by the distance to the 

spectrum. See, e.g., Combes-Thomas estimates [10, 18]. However, comparison with the 

formulas for the case of the Laplacian shows that an additional algebraically decaying 

factor (depending on the dimension) is lost in this approach. Moreover, the exponential 

decay in general is expected to be anisotropic, while the operator theory approach can 

provide only isotropic estimates. The result of this chapter provides the exact principal 

term of asymptotics, thus resolving these issues.

*Reprinted with permission from “Green’s function asymptotics near the internal edges of spectra 
of periodic elliptic operators. Spectral gap interior.”, by Minh Kha, Peter Kuchment, and Andrew Raich, to 
appear in Journal of Spectral Theory. Copyright Cc by the European Mathematical Society.
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3.2 Assumptions, notation and the main result

Consider a linear second order elliptic operator in Rd with periodic coefficients

L(x,D) =
d∑

k,l=1

Dk(akl(x)Dl) + V (x) = D∗A(x)D + V (x). (3.1)

Here A = (akl)1≤k,l≤d, D = (D1, . . . , Dd), and Dk := −i∂k = −i ∂
∂xk

. All coeffi-

cients akl, V are smooth real-valued functions on Rd, periodic with respect to the integer

lattice Zd in Rd, i.e., akl(x + n) = akl(x) and V (x + n) = V (x), ∀x ∈ Rd, n ∈ Zd. The

operator L is assumed to be uniformly elliptic, i.e., the matrix A is symmetric and

d∑
k,l=1

akl(x)ξkξl ≥ θ|ξ|2, (3.2)

for some θ > 0 and any x ∈ Rd, ξ = (ξ1, . . . , ξd) ∈ Rd. We recall from the previous chap-

ter that the operator L, with the Sobolev space H2(Rd) as the domain, is an unbounded,

self-adjoint operator in L2(Rd). Moreover, the spectrum σ(L) of the operator L has the

band-gap structure:

σ(L) =
∞⋃
j=1

[αj, βj]. (3.3)

We consider the open interval (−∞, α1), which contains all real numbers below the bottom

of the spectrum of L, as an infinite spectral gap. However, we will be mostly interested in

finite spectral gaps.

In this chapter, we study Green’s function asymptotics for the operator L in a spectral

gap, near a spectral gap edge. More precisely, consider a finite spectral gap (βj, αj+1) for

some j ∈ N and a value λ ∈ (βj, αj+1) which is close either to the spectral edge βj or to

the spectral edge αj+1. We would like to study the asymptotic behavior when |x−y| → ∞

of the Green’s kernel Gλ(x, y) of the resolvent operator Rλ,L := (L − λ)−1. The case of
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the spectral edges (i.e., λ = αj+1 or λ = βj) was studied for the similar purpose in [52].

All asymptotics here and also in [52] are deduced from an assumed “generic" spectral edge

behavior of the dispersion relation of the operator L, which we will briefly review below.

From now on, we fix L as a self-adjoint elliptic operator of the form (3.1), whose

band-gap structure is as (2.8). By adding a constant to the operator L if necessary, we can

assume that the spectral edge of interest is 0. It is also enough to suppose that the adjacent

spectral band is of the form [0, a] for some a > 0 since the case when the spectral edge 0

is the maximum of its adjacent spectral band is treated similarly.

Suppose there is no spectrum for small negative values of λ and hence there is a spectral

gap below 0. Thus, there exists at least one band function λj(k) for some j ∈ N such that

0 is the minimal value of this function on the Brillouin zone.

To establish our main result, we need to impose the following analytic assumption on

the dispersion curve λj as in [52]:

Assumption A

There exists k0 ∈ [−π, π]d and a band function λj(k) such that:

A1 λj(k0) = 0.

A2 mink∈Rd,i 6=j |λi(k)| > 0.

A3 k0 is the only1 (modulo 2πZd) minimum of λj .

A4 λj(k) is a Morse function near k0, i.e., its Hessian matrix H := Hess (λj)(k0) at

1Finitely many such points can be also easily handled.
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k0 is positive definite. In particular, the Taylor expansion of λj at k0 is:

λj(k) =
1

2
(k − k0)tH(k − k0) +O(|k − k0|3).

It is known [44] that the conditions A1 and A2 ‘generically’ hold (i.e., they can be

achieved by small perturbation of coefficients of the operator) for Schrödinger operators.

Although this has not been proven, the conditions A3 and A4 are widely believed (both

in the mathematics and physics literature) to hold ‘generically’. In other words, it is con-

jectured that for a ‘generic’ selfadjoint second-order elliptic operator with periodic coef-

ficients on Rd each of the spectral gap’s endpoints is a unique (modulo the dual lattice

2πZd), nondegenerate extremum of a single band function λj(k) (see e.g., [50, Conjecture

5.1]). It is known that for a non-magnetic periodic Schrödinger operator, the bottom of the

spectrum always corresponds to a non-degenerate minimum of λ1 [43]. A similar state-

ment is correct for a wider class of ‘factorable’ operators [13,14]. The following condition

on k0 will also be needed:

A5 The quasimomentum k0 is a high symmetry point of the Brillouin zone, i.e., all

components of k0 must be either equal to 0 or to π.

It is known [37] that the condition A5 is not always satisfied and spectral edges could

occur deeply inside the Brillouin zone. However, as it is discussed in [37], in many prac-

tical cases (e.g., in the media close to homogeneous) this condition holds.

We would like to introduce a suitable fundamental domain with respect to the dual

lattice 2πZd to work with.

Definition 3.2.1. Consider the quasimomentum k0 in Assumption A. Due to A5, k0 =

(δ1π, δ2π, . . . , δdπ), where δj ∈ {0, 1} for j ∈ {1, . . . , d}. We denote byO the fundamen-

24



tal domain so that k0 is its center of symmetry, i.e.,

O =
d∏
j=1

[(δj − 1)π, (δj + 1)π].

When k0 = 0, O is just the Brillouin zone.

We now introduce notation that will be used throughout the chapter.

Notation 3.2.2. (a) Let z1 ∈ C, z2 ∈ Cd−1, z3 ∈ Cd and ri be positive numbers for

i = 1, 2, 3. Then we denote by B(z1, r1), D′(z2, r2) and D(z3, r3) the open balls

(or discs) centered at z1, z2 and z3 whose radii are r1, r2 and r3 in C, Cd−1 and Cd

respectively.

(b) The real parts of a complex vector z, or of a complex matrix A are denoted by <(z)

and <(A) respectively.

(c) The standard notation O(|x− y|−n) for a function f defined on R2d means there exist

constants C > 0 and R > 0 such that |f(x, y)| ≤ C|x− y|−n whenever |x− y| > R.

Also, f(x, y) = o(|x− y|−n) means that

lim
|x−y|→∞

|f(x, y)|/|x− y|n = 0.

(d) We often use the notation A . B to mean that the quantity A is less or equal than

the quantity B up to some multiplicative constant factor, which does not affect the

arguments.

Note that L(z) is non-self-adjoint if z /∈ Rd. Note that L(z) − L(0) is an operator of

lower order for each z ∈ Cd. Therefore, for each z ∈ Cd, the operator L(z) has discrete

spectrum and is therefore a closed operator with non-empty resolvent set (see pp.188-190
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in [4]). These operators have the same domain H2(Td) and for each φ ∈ H2(Td), L(z)φ

is a L2(Td)-valued analytic function of z, due to (4.2.14). Consequently, {L(z)}z∈Cd is an

analytic family of type A in the sense of Kato [39]2. Due to A1-A2, λj(k0) is a simple

eigenvalue of L(k0). By using analytic perturbation theory for the family {L(z)}z∈Cd (see

e.g., [66, Theorem XII.8]), there is an open neighborhood V of k0 in Cd and some ε0 > 0

such that

(P1) λj is analytic in a neighborhood of the closure of V .

(P2) λj(z) has algebraic multiplicity one, i.e., it is a simple eigenvalue of L(z) for any

z ∈ V .

(P3) The only eigenvalue of L(z) contained in the closed disc B(0, ε0) is λj(z). More-

over, we may also assume that |λj(z)| < ε0 for each z ∈ V .

(P4) For each z ∈ V , let φ(z, x) be a nonzero Zd-periodic function of x such that it is

the unique (up to a constant factor) eigenfunction of L(z) with the eigenvalue λj(z), i.e.,

L(z)φ(z, ·) = λj(z)φ(z, ·). We will also use sometimes the notation φz for the eigenfunc-

tion φ(z, ·).

By elliptic regularity, φ(z, x) is smooth in x. On a neighborhood of V , φ(z, ·) is a

H2(Td)-valued holomorphic function.

(P5) By condition A4 and the continuity of Hess (λj),3 we can assume that for all

z ∈ V ,

2<(Hess (λj)(z)) > minσ(Hess (λj)(k0))Id×d.

(P6) V is invariant under complex conjugation. Furthermore, the smooth function

F (z) := (φ(z, ·), φ(z, ·))L2(Td) (3.4)

2It is also an analytic family in the Banach space of bounded linear operators acting from H2(Td) to
L2(Td).

3The Hessian matrix of λj .

26



is non-zero on V , due to analyticity of the mapping z 7→ φ(z, ·) and the inequality F (k0) =

‖φ(k0)‖2
L2(Td)

> 0.

The following lemma will be useful when dealing with operators having real and

smooth coefficients:

Lemma 3.2.3. (i) For k in Rd and i ∈ N,

λi(k) = λi(−k). (3.5)

In other words, each band λi of L is an even function on Rd.

(ii) If k0 ∈ X , we have λi(k + k0) = λi(−k + k0) for all k in Rd and i ∈ N.

Proof. Let φk be an eigenfunction of L(k) corresponding to λj(k). This means that φk is

a periodic solution to the equation

L(x, ∂ + ik)φk(x) = λj(k)φk(x). (3.6)

Taking the complex conjugate of (3.6), we get

L(x, ∂ − ik)φk(x) = λj(k)φk(x).

Therefore, φk is an eigenfunction of L(−k) with eigenvalue λj(k). This implies the iden-

tity (3.5).

(ii) By (i), λi(k + k0) = λi(−k − k0) = λi(−k + k0) since 2k0 ∈ 2πZd.

Corollary 3.2.4. If β ∈ Rd such that k0 + iβ ∈ V then λj(k0 + iβ) ∈ R.

Proof. Indeed, the statement (ii) of Lemma 3.2.3 implies that the Taylor series of λ(k) at

k0 has only even degree terms and real coefficients.
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Corollary 3.2.4 allows us to define near β = 0 the real analytic function E(β) :=

λj(k0 + iβ) near 0. Since its Hessian at 0 is negative-definite (by A4), there exists a con-

nected and bounded neighborhood V0 of 0 in Rd such that k0 + iV0 ⊆ V and Hess (E)(β)

is negative-definite whenever β belongs to V0. Thus, E is strictly concave on V0 and

supβ∈V0
E(β) = E(0) = 0,∇E(β) = 0 iff β = 0. Note that at the bottom of the spectrum

(i.e., j = 1), we could take V0 as the whole Euclidean space Rd.

By the Morse lemma and the fact that 0 is a nondegenerate critical point of E, there

is a smooth change of coordinates Φ : U0 → Rd so that 0 ∈ U0 ⊂⊂ V0, U0 is connected,

Φ(0) = 0 and E(Φ−1(a)) = −|a|2,∀a ∈ Φ(U0). Set Kλ := {β ∈ U0 : E(β) ≥ λ}

and Γλ := {β ∈ U0 : E(β) = λ} for each λ ∈ R. Now, we consider λ to be in the

set {−|a|2 : a ∈ Φ(U0), a 6= 0}. Then Kλ is a strictly convex d-dimensional compact

body in Rd, and Γλ = ∂Kλ is a compact hypersurface in Rd. The compactness of Kλ

follows from the equation −|Φ(β)|2 = E(β) ≥ λ which yields that |β| = |Φ−1(Φ(β))| ≤

max{|Φ−1(a)| : a ∈ Φ(U0), |a|2 ≤ −λ}. Additionally, limλ→0− maxβ∈Kλ |β| = 0.

Let Kλ be the Gauss-Kronecker curvature of Γλ. Since the Hessian of E is negative-

definite on Γλ, Kλ is nowhere-zero. For the value of λ described in the previous paragraph

and each s ∈ Sd−1, there is a unique vector βs ∈ Γλ such that the value of the Gauss map

of the hypersurface Γλ at this point coincides with s, i.e.

∇E(βs) = −|∇E(βs)|s. (3.7)

This is due to the fact that the Gauss map of a compact, connected oriented hypersurface

in Rd, whose Gauss-Kronecker curvature is nowhere zero, is a diffeomorphism onto the

sphere Sd−1 (see e.g., [77, Theorem 5, p.104] or [27, Corollary 3.1]). Thus, βs depends
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smoothly on s. We also see that

lim
|λ|→0

max
s∈Sd−1

|βs| = 0.

Note that βs could be defined equivalently by using the support functional h of the

strictly convex set Kλ. Recall that for each direction s ∈ Sd−1,

h(s) = max
ξ∈Kλ
〈s, ξ〉.

Then βs is the unique point in Γλ such that 〈s, βs〉 = h(s).

By letting |λ| close enough to 0, we can make sure that (−λ)1/2 = |a| for some a ∈

Φ(U0). Then

{k0 + itβs, (t, s) ∈ [0, 1]× Sd−1} ⊂ V. (3.8)

We can now state the main result of the chapter.

Theorem 3.2.5. Suppose conditions A1-A5 are satisfied. For λ < 0 sufficiently close to 0

(depending on the dispersion branch λj and the operator L), the Green’s function Gλ of

L at λ admits the following asymptotics as |x− y| → ∞:

Gλ(x, y) =
e(x−y)(ik0−βs)

(2π|x− y|)(d−1)/2

|∇E(βs)|(d−3)/2

det (−Ps Hess (E)(βs)Ps)1/2

φk0+iβs(x)φk0−iβs(y)

(φk0+iβs , φk0−iβs)L2(Td)

+ e(y−x)·βsr(x, y).

(3.9)

Here s = (x− y)/|x− y|, Ps is the projection from Rd onto the tangent space of the unit

sphere Sd−1 at the point s, and when |x−y| is large enough, the remainder term r satisfies

|r(x, y)| ≤ C|x− y|−d/2 for some constant C > 0 (independent of s).

This result achieves our stated goal of showing the precise (anisotropic) rates of the
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exponential decay of the Green’s function and capturing the additional algebraic decay

factor.

3.3 Proof of the main theorem 3.2.5 and some remarks

Theorem 3.2.5 is a direct consequence of its local (with respect to the direction of

(x− y)) version:

Theorem 3.3.1. Under the hypotheses of Theorem 3.2.5 and when λ ≈ 0, for each ω ∈

Sd−1, there are a neighborhood Vω in Sd−1 containing ω and a smooth function e(s) =

(es,2, . . . , es,d) : Vω → (TsSd−1)d−1, which e(s) is an orthonormal basis of the tangent

space TsSd−1 for each unit vector s ∈ Vω, such that following asymptotics

Gλ(x, y) =
e(x−y)(ik0−βs)

(2π|x− y|)(d−1)/2

(
|∇E(βs)|(d−3)

det (−es,p · Hess (E)(βs)es,q)2≤p,q≤d

)1/2

× φk0+iβs(x)φk0−iβs(y)

(φk0+iβs , φk0−iβs)L2(Td)

+ e(y−x)·βsr(x, y),

(3.10)

hold for all (x, y) such that s = (x − y)/|x − y| ∈ Vω. Furthermore, there is a positive

constant C(ω) depending on ω such that |r(x, y)| ≤ C(ω)|x− y|−d/2.

Proof of Theorem 3.2.5.

Proof. Observe that for any orthonormal basis {es,l}2≤l≤d of the tangent space TsSd−1,

det (−Ps Hess (E)(βs)Ps) = det (−es,p · Hess (E)(βs)es,q)2≤p,q≤d.

Now, using of a finite cover of the unit sphere by neighborhoods Vωj in Theorem 3.3.1,

one obtains Theorem 3.2.5.

Remark 3.3.2.
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• The asymptotics (3.9) (or (3.10)) resemble the formula (1.1) in [60, Theorem 1.1]

when λ is below the bottom of the spectrum of the operator. Moreover, as in [61,

Theorem 1.1], by using the Gauss-Kronecker curvature Kλ, the main result (3.9)

could be restated as follows:

Gλ(x, y) =
e(x−y)(ik0−βs)

(2π|x− y|)(d−1)/2

1

|∇E(βs)|Kλ(βs)1/2

φk0+iβs(x)φk0−iβs(y)

(φk0+iβs , φk0−iβs)L2(Td)

+ e(y−x)·βsO(|x− y|−d/2).

• Although (3.9) is an anisotropic formula, it is not hard to obtain from (3.9) an

isotropic upper estimate for the Green’s function Gλ based on the distance from λ

to the spectrum of the operator L,4 e.g., there are some positive constants C1, C2

(depending only on L and λj) and C3 (which may depend on λ) such that whenever

|x− y| > C3, the following inequality holds:

|Gλ(x, y)| ≤ C1|λ|(d−3)/4 e
−C2|λ|1/2|x−y|

|x− y|(d−1)/2
·

• If the band edge occurs at finitely many points, rather than a single k0, one just needs

to combine the asymptotics coming from all these isolated minima.

Now we outline the proof of Theorem 3.3.1. In Section 3.5, we use the tools of Floquet-

Bloch theory in Chapter 2 to reduce the problem to that of finding the asymptotics of a

scalar integral. The purpose of Section 3.4 is to prepare for Section 3.5, by shifting an

integral from the fundamental domain O along some purely imaginary directions in Cd.

This reduces finding the asymptotics of the Green’s function Gλ to an auxiliary Green’s

functionGs,λ via the formula (3.14). Next, we single out a principal termG0 of the Green’s

functionGs,λ and then represent this kernelG0 as a scalar integral in (3.19). We also prove

4Recall that the spectral edge is assumed to be zero.
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that the error kernel Gs,λ − G0 decays rapidly (see Theorem 3.5.2). Then in (3.22), our

reduced Green’s function G0 can be expressed in terms of the two integrals I and J . Here

the integral I is mainly responsible for the asymptotics ofG0 and the integral J decays fast

enough to be included in the remainder term r(x, y) in the asymptotics (3.9). The first part

of Section 3.6 is devoted to achieving the asymptotics of the main integral I (see Theorem

3.6.2) by adapting the method similar to the one used in the discrete case [81], while the

second part of Section 3.6 provides an estimate of J (see Proposition 3.6.6). In order to

not overload the main text with technicalities, the proofs of some auxiliary statements are

postponed till Sections 3.7-3.9.

3.4 On local geometry of the resolvent set

The following proposition shows that for any s ∈ Sd−1, k0 + iβs is the only complex

quasimomentum having the form of k + itβs where k ∈ O, t ∈ [0, 1] such that λ is in

the spectrum of the corresponding fiber operator L(k + itβs). In other words, by moving

from k ∈ O in the direction iβs, the first time we hit the Fermi surface FL,λ (i.e., the

spectrum of L(k) meets λ) is at the value of the quasimomentum k = k0 + iβs. This step

is crucial for setting up the scalar integral in the next section, which is solely responsible

for the main term asymptotics of our Green’s function.

Proposition 3.4.1. If |λ| is small enough (depending on the dispersion branch λj and L),

then λ ∈ ρ(L(k + itβs)) if and only if (k, t) 6= (k0, 1).

The proof of this proposition is presented in Subsection 3.9.3.

3.5 A Floquet reduction of the problem

We will use the Floquet transform (see Chapter 2) to reduce our problem to finding

asymptotics of a scalar integral expression, which is close to the one arising when dealing

with the Green’s function of the Laplacian at a small negative level λ. As in [52], the idea
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is to show that only the branch of the dispersion relation λj appearing in the Assumption

A dominates the asymptotics.

3.5.1 The Floquet reduction

The Green’s function Gλ of L at λ is the Schwartz kernel of the resolvent operator

Rλ = (L− λ)−1. Fix a λ < 0 such that the statement of Proposition 3.4.1 holds. For any

s ∈ Sd−1 and t ∈ [0, 1], we consider the following operator with real coefficients on Rd:

Lt,s := etβs·xLe−tβs·x. (3.11)

For simplicity, we write Ls := L1,s and note that L0,s = L. Due to self-adjointness of

L, the adjoint of Lt,s is

L∗t,s = L−t,s. (3.12)

By definition, Lt,s(k) = L(k + itβs) for any k in Cd and therefore, (2.6) yields

σ(Lt,s) =
⋃
k∈O

σ(L(k + itβs)) ⊇ {λj(k + itβs)}k∈O. (3.13)

The Schwartz kernel Gs,λ of the resolvent operator Rs,λ := (Ls − λ)−1 is

Gs,λ(x, y) = eβs·xGλ(x, y)e−βs·y = eβs·(x−y)Gλ(x, y). (3.14)

Thus, instead of finding asymptotics of Gλ, we can focus on the asymptotics of Gs,λ.

By (3.13) and Proposition 3.4.1, λ is not in the spectrum of Lt,s for any s ∈ Sd−1 and

t ∈ [0, 1). Let us consider

Rt,s,λf := (Lt,s − λ)−1f, f ∈ L2
comp(Rd),
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where L2
comp stands for compactly supported functions in L2.

Applying Lemma 2.2.4, we have

R̂t,s,λf(k) = (Lt,s(k)− λ)−1f̂(k), (t, k) ∈ [0, 1)×O.

We consider the sesquilinear form

(Rt,s,λf, ϕ) = (2π)−d
∫
O

(
(Lt,s(k)− λ)−1f̂(k), ϕ̂(k)

)
dk,

where ϕ ∈ L2
comp(Rd).

In the next lemma (see Subsection 3.9.3), we show the weak convergence of Rt,s,λ in

L2
comp as t ↗ 1 and introduce the limit operator Rs,λ = lim

t→1−
Rt,s,λ. The limit operator

Rs,λ is central in our study of the asymptotics of the Green’s function.

Lemma 3.5.1. Let d ≥ 2. Under Assumption A, the following equality holds:

lim
t→1−

(Rt,s,λf, ϕ) = (2π)−d
∫
O

(
Ls(k)− λ)−1f̂(k), ϕ̂(k)

)
dk. (3.15)

The integral in the right hand side of (3.15) is absolutely convergent for f, ϕ in L2
comp(Rd).

Thus, the Green’s functionGs,λ is the integral kernel of the operatorRs,λ defined as follows

R̂s,λf(k) = (Ls(k)− λ)−1f̂(k). (3.16)

3.5.2 Singling out the principal term in Rs,λ

By (3.16), the Green’s function Gs,λ is the integral kernel of the operator Rs,λ with the

domain L2
comp(Rd). The inversion formula (2.4) gives

Rs,λf(x) = (2π)−d
∫
O
eik·x(Ls(k)− λ)−1f̂(k, x) dk, x ∈ Rd.
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The purpose of this part is to single out the part of the above integral that is responsible

for the leading term of the Green’s function asymptotics.

To find the Schwartz kernel of Rs,λ, it suffices to consider functions f ∈ C∞c (Rd).

Our first step is to localize the integral around the point k0. Let us consider a connected

neighborhood V of k0 on which there exist nonzero Zd-periodic (in x) functions φz(x), z ∈

V satisfying 1) L(z)φz = λj(z)φz and 2) each φz spans the eigenspace corresponding to

the eigenvalue λj(z) of the operator L(z). According to (P3), λj(V ) ⊆ B(0, ε0) and

∂B(0, ε0) ⊆ ρ(L(z)) when z ∈ V . For such z, let P (z) be the Riesz projection of L(z)

that projects L2(Td) onto the eigenspace spanned by φz, i.e.,

P (z) = − 1

2πi

∮
|µ|=ε0

(L(z)− α)−1 dµ.

Taking the adjoint, we get

P (z)∗ = − 1

2πi

∮
|µ|=ε0

(L(z)− µ)−1 dµ = P (z),

which is the Riesz projection from L2(Td) onto the eigenspace spanned by φz. Recall that

due to (3.8), by choosing |λ| small enough, there exists r0 > 0 (independent of s) such that

k± iβs ∈ V for k ∈ D(k0, r0)∩Rd. We denote Ps(k) := P (k+ iβs) for such real k. Then

Ps(k) is the projector onto the eigenspace spanned by φ(k+iβs) and Ps(k)∗ = P (k−iβs).

Additionally, due to (P6),

Ps(k)g =
(g, φ(k − iβs))L2(Td)

(φ(k + iβs), φ(k − iβs))L2(Td)

φ(k + iβs), ∀g ∈ L2(Td). (3.17)

Let η be a cut-off smooth function on O such that supp(η) b D(k0, r0) and η = 1

around k0.

We decompose f̂ = ηf̂+(1−η)f̂ . When k 6= k0, the operatorLs(k)−λ is invertible by
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Proposition 3.4.1. Hence, the following function is well-defined and smooth with respect

to (k, x) on Rd × Rd:

ûg(k, x) = (Ls(k)− λ)−1(1− η(k))f̂(k, x).

Using Lemma 2.2.4, smoothness of ûg implies that ug has rapid decay in x. Now we want

to solve

(Ls(k)− λ)û(k) = η(k)f̂(k). (3.18)

Let Qs(k) = I −Ps(k) and we denote the ranges of projectors Ps(k), Qs(k) by R(Ps(k)),

R(Qs(k)) respectively. We are interested in decomposing the solution û into a sum of the

form û1 + û2 where û1 = Ps(k)û1 and û2 = Qs(k)û2. Let f̂1 = Ps(k)η(k)f̂ and f̂2 =

Qs(k)η(k)f̂ . Observe that since the Riesz projection Ps(k) commutes with the operator

Ls(k) and R(Ps(k)) is invariant under the action of Ls(k), we have Qs(k)Ls(k)Ps(k) =

Ps(k)Ls(k)Qs(k) = 0 and Qs(k)Ls(k)Qs(k) = Ls(k)Qs(k). Thus, the problem of solv-

ing (3.18) can be reduced to the following block-matrix structure form

 (Ls(k)− λ)Ps(k) 0

0 (Ls(k)− λ)Qs(k)


 û1

û2

 =

 f̂1

f̂2

 .

When k is close to k0,

B(0, ε0) ∩ σ(Ls(k)|R(Qs(k))) = B(0, ε0) ∩ σ(L(k + iβs)) \ {λj(k + iβs)} = ∅.

Since λ = λj(k0 + iβs) ∈ B(0, ε0), λ must belong to ρ(Ls(k)|R(Qs(k))). Hence, the

operator function û2(k) = (Ls(k)− λ)−1Qs(k)f̂2(k) is well-defined and smooth in k and

hence by Lemma 2.2.4 again, u2 has rapid decay when |x| → ∞. More precisely, we have
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the following claim:

Theorem 3.5.2. For each s ∈ Sd−1, let Ks(x, y) be the Schwartz kernel of the operator Ts

acting on L2(Rd) as follows:

Ts = F−1

(∫ ⊕
O
Ts(k) dk

)
F ,

where F is the Floquet transform (see Definition 2.2.3) and

Ts(k) = (1− η(k))(Ls(k)− λ)−1 + η(k)((Ls(k)− λ)|R(Qs(k)))
−1Qs(k).

Then the kernel Ks(x, y) is continuous away from the diagonal and furthermore, as |x −

y| → ∞, we have

sup
s∈Sd−1

|Ks(x, y)| = O(|x− y|−N), ∀N > 0.

The proof of this claim shall be provided in Section 3.7.

The u1 term contributes the leading asymptotics for the Schwartz kernel Gs,λ. There-

fore, we only need to solve the equation (Ls(k)−λ)Ps(k)û1 = f̂1 on the one-dimensional

range of Ps(k).

Applying (3.17), we can rewrite

f̂1(k) =
η(k)(f̂ , φ(k − iβs))L2(Td)

(φ(k + iβs), φ(k − iβs))L2(Td)

φ(k + iβs),

so that equation becomes

(Ls(k)− λ)
(û1, φ(k − iβs))L2(Td)φ(k + iβs)

(φ(k + iβs), φ(k − iβs))L2(Td)

=
η(k)(f̂ , φ(k − iβs))L2(Td)φ(k + iβs)

(φ(k + iβs), φ(k − iβs))L2(Td)

.
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So,

(λj(k + iβs)− λ)(û1, φ(k − iβs))L2(Td)φ(k + iβs)

(φ(k + iβs), φ(k − iβs))L2(Td)

=
η(k)(f̂ , φ(k − iβs))L2(Td)φ(k + iβs)

(φ(k + iβs), φ(k − iβs))L2(Td)

.

In addition to the equation û1 = Ps(k)û1, û1 must also satisfy

(λj(k + iβs)− λ)(û1, φ(k − iβs))L2(Td) = η(k)(f̂ , φ(k − iβs))L2(Td).

Thus, we define

û1(k, ·) :=
η(k)φ(k + iβs, ·)(f̂ , φ(k − iβs))L2(Td)

(φ(k + iβs), φ(k − iβs))L2(Td)(λj(k + iβs)− λ)
.

By the inverse Floquet transform (2.4),

u1(x) = (2π)−d
∫
O
eik·x

η(k)φ(k + iβs, x)(f̂ , φ(k − iβs))L2(Td)

(φ(k + iβs), φ(k − iβs))L2(Td)(λj(k + iβs)− λ)
dk,

for any x ∈ Rd.

3.5.3 A reduced Green’s function.

We are now ready for setting up a reduced Green’s function G0, whose asymptotic

behavior reflects exactly the leading term of the asymptotics of the Green’s function Gs,λ.

We introduce G0(x, y) (roughly speaking) as the Schwartz kernel of the restriction of

the operator Rs,λ onto the one-dimensional range of Ps (which is the direct integral of

idempotents Ps(k)) as follows:

u1(x) =

∫
Rd
G0(x, y)f(y)dy, x ∈ Rd,

where f is in L2
comp(Rd).
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We recall from (3.4) that F (k+ iβs) is the inner product (φ(k+ iβs), φ(k− iβs))L2(Td).

As in [52], we notice that

u1(x) = (2π)−d
∫
O

∫
Td
eik·xη(k)f̂(k, y)

φ(k − iβs, y)φ(k + iβs, x)

F (k + iβs)(λj(k + iβs)− λ)
dy dk

= (2π)−d
∫
O
η(k)

∫
[0,1]d

∑
γ∈Zd

f(y − γ)eik·(x+γ−y) φ(k − iβs, y)φ(k + iβs, x)

F (k + iβs)(λj(k + iβs)− λ)
dy dk

= (2π)−d
∫
O
η(k)

∑
γ∈Zd

∫
[0,1]d−γ

f(y)eik·(x−y)φ(k − iβs, y + γ)φ(k + iβs, x)

F (k + iβs)(λj(k + iβs)− λ)
dy dk

= (2π)−d
∫
O
η(k)

∑
γ∈Zd

∫
[0,1]d−γ

f(y)eik·(x−y) φ(k − iβs, y)φ(k + iβs, x)

F (k + iβs)(λj(k + iβs)− λ)
dy dk

= (2π)−d
∫
Rd
f(y)

(∫
O
η(k)eik·(x−y) φ(k − iβs, y)φ(k + iβs, x)

F (k + iβs)(λj(k + iβs)− λ)
dk

)
dy.

Therefore, our reduced Green’s function is

G0(x, y) = (2π)−d
∫
O
η(k)eik·(x−y) φ(k + iβs, x)φ(k − iβs, y)

F (k + iβs)(λj(k + iβs)− λ)
dk. (3.19)

3.6 Asymptotics of the Green’s function

Let (e1, . . . , ed) be the standard orthonormal basis in Rd. Fixing ω ∈ Sd−1, we would

like to show that the asymptotics (3.10) will hold for all (x, y) such that x − y belongs to

a conic neighborhood containing ω. Without loss of generality, suppose that ω 6= e1.

Now let Rs be the rotation in Rd such that Rs(s) = e1 and Rs leaves the orthogonal

complement of the subspace spanned by {s, e1} invariant. We define es,j := R−1
s (ej),

for all j = 2, . . . , d. Then, 〈s, es,p〉 = 〈e1, ep〉 = 0 and 〈es,p, es,q〉 = 〈ep, eq〉 = δp,q for

p, q > 1. In other words,

{s, es,2, . . . , es,d} is an orthonormal basis of Rd.

Then around ω, we pick a compact coordinate patch Vω, so that the Rd(d−1)-valued
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function e(s) = (es,l)2≤l≤d is smooth in a neighborhood of Vω.

We use the same notation forRs and its C-linear extension to Cd.

3.6.1 The asymptotics of the leading term of the Green’s function

We introduce the function ρ(k, x, y) on D(k0, r0)× Rd × Rd as follows:

ρ(k, x, y) =
φ(k + iβs, x)φ(k − iβs, y)

F (k + iβs)
.

where F is defined in (3.4) and D(k0, r0) is described in Subsection 3.5.2.

Due to Proposition 3.9.6, the function ρ is in C∞(D(k0, r)×Rd×Rd). For each (x, y),

the Taylor expansion around k0 of ρ(k) gives

ρ(k, x, y) = ρ(k0, x, y) + ρ′(k, x, y)(k − k0), (3.20)

where ρ′ ∈ C∞(D(k0, r0) × Rd × Rd,Cd). Note that for z ∈ V , φ(z, x) is Zd-periodic

in x and thus, ρ and ρ′ are Zd × Zd-periodic in (x, y). Since our integrals are taken with

respect to k, it is safe to write ρ(k0) instead of ρ(k0, x, y). We often omit the variables x, y

in ρ if no confusion can arise.

Let µ(k) := η(k + k0) be a cut-off function supported near 0, where η is introduced in

Subsection 3.5.2. We define

I := (2π)−d
∫
O
ei(k−k0)·(x−y) µ(k − k0)

λj(k + iβs)− λ
dk,

J := (2π)−d
∫
O
ei(k−k0)·(x−y)µ(k − k0)(k − k0)ρ′(k, x, y)

λj(k + iβs)− λ
dk.

(3.21)

Hence, we can represent the reduced Green’s function as

G0(x, y) = eik0·(x−y)(ρ(k0)I + J). (3.22)
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The rest of this subsection is devoted to computing the asymptotics of the main integral

I , which gives the leading term in asymptotic expansion of the reduced Green’s function

G0(x, y) as |x− y| → ∞.

By making the change of variables ξ = (ξ1, ξ
′) = Rs(k − k0), we have

I = (2π)−d
∫
Rd
ei|x−y|ξ1

µ(ξ1, ξ
′)

(λj ◦ R−1
s )(ξ +Rs(k0 + iβs))− λ

dξ. (3.23)

We introduce the following function defined on some neighborhood of 0 in Cd:

Ws(z) := (λj ◦ R−1
s )(−iz +Rs(k0 + iβs))− λ.

It is holomorphic near 0 (on iRs(V )) and Ws(0) = 0. Then Ws(iz) is the analytic contin-

uation to the domain Rs(V ) of the denominator of the integrand in (3.23). For a complex

vector z = (z1, . . . , zd) ∈ Cd, we write z = (z1, z
′), where z′ = (z2, . . . , zd).

The following proposition provides a factorization of Ws that is crucial for computing

the asymptotics of the integral I .

Proposition 3.6.1. There exist r > 0 and ε > 0 (independent of s ∈ Vω), such that Ws has

the decomposition

Ws(z) = (z1 − As(z′))Bs(z), ∀z = (z1, z
′) ∈ B(0, r)×D′(0, ε).5 (3.24)

Here the functions As, Bs are holomorphic in D′(0, ε) and B(0, r)×D′(0, ε) respectively

such that As(0) = 0 and Bs is non-vanishing on B(0, r)×D′(0, ε). Also, these functions

and their derivatives depend continuously on s. Moreover for z′ ∈ D′(0, ε),

As(z
′) =

1

2
z′ ·Qsz

′ +O(|z′|3), (3.25)

5See Notation 3.2.2 in Section 3.2 for the definitions of B(0, r) and D′(0, ε).
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whereO(|z′|3) is uniform in s when z′ → 0 andQs is the positive definite (d−1)× (d−1)

matrix

Qs = − 1

|∇E(βs)|

(
es,p · Hess (E)(βs)es,q

)
2≤p,q≤d

. (3.26)

Proof. By Cauchy-Riemann equations for Ws and (3.7),

∂Ws

∂z1

(0) =
∂Ws

∂ξ1

(0) = −i∇λj(k0+iβs)·R−1
s e1 = −∇E(βs)·s = |∇E(βs)| > 0. (3.27)

Thus 0 is a simple zero of Ws. Due to smoothness in s of Ws and βs, we have

c := min
s∈Vω

∂Ws

∂z1

(0) ≥ min
s∈Sd−1

|∇E(βs)| > 0. (3.28)

Applying the Weierstrass preparation theorem (see Theorem 3.9.2), we obtain the decom-

position (3.24) on a neighborhood of 0.

To show that this neighborhood can be chosen such that it does not depend on s, we

have to chase down how the neighborhood is constructed in the proof of [38, Theorem

7.5.1] (only the first three lines of the proof there matter) and then show that all steps in

this construction can be done independently of s.

In the first step of the construction, we need r > 0 such that Ws(z1, 0
′) 6= 0 when

0 < |z1| < 2r. The mapping (s, z) 7→ ∂Ws

∂z1

(z) = −i∇λj(−iR−1
s z+k0 + iβs) ·s is jointly

continuous on Vω × Rs(V ) and the value of this mapping at z = 0 is greater or equal

than c due to (3.27) and (3.28). Therefore,
∣∣∣∣∂Ws

∂z1

(z)

∣∣∣∣ > c/2 in some open neighborhood

Xs × Ys of (s, 0) in Vω × Cd. By compactness, Vω ⊆
N⋃
k=1

Xsk for a finite collection of

points s1, . . . , sN on the sphere. Let Y be the intersection of all Ysk and let r > 0 be such

that D(0, 2r) ⊆ Y . Note that r is independent of s. We claim r has the desired property.

Observe that for |z| < 2r, we have
∣∣∣∣∂Ws

∂z1

(z)

∣∣∣∣ > c

2
for any s in Vω. For a proof by
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contradiction, suppose that there is some z1 such that 0 < |z1| < 2r and Ws(z1, 0
′) = 0 =

Ws(0, 0
′) for some s. Applying Rolle’s theorem to the function t ∈ [0, 1] 7→ Ws(tz1, 0

′)

yields
∂Ws

∂z1

(tz1, 0
′) = 0 for some t ∈ (0, 1). Consequently, (tz1, 0

′) /∈ D(0, 2r) while

|tz1| < |z1| < 2r (contradiction!).

For the second step of the construction, we want some δ > 0 (independent of s) such

that Ws(z) 6= 0 when |z1| = r, |z′| < δ. This can be done in a similar manner. Let

S(0, r) ⊂ C be the circle with radius r. Now we consider the smooth mapping W :

(s, z1, z
′) 7→ Ws(z1, z

′) where z1 ∈ S(0, r). Its value at each point (s, z1, 0
′) is equal to

Ws(z1, 0
′), which is non-zero due to the choice of r in the first step of the construction.

Thus, it is also non-zero in some open neighborhood X̃s,z1 × Ỹs,z1 × Z̃s,z1 of (s, z1, 0
′)

in Vω × S(0, r) × Cd−1. We select points s1, . . . , sM ∈ Vω and γ1, . . . , γM ∈ S(0, r) so

that the union of all X̃sk,γk × Ỹsk,γk , 1 ≤ k ≤ M covers the compact set Vω × S(0, r).

Next we choose δ > 0 so that D′(0, δ) is contained in the intersection of these Z̃sk,zk .

Note that δ is independent of s and also z1. Of course Ws(z1, z
′) 6= 0 for all s and

z ∈ {|z1| = r, |z′| < δ}. According to [38], the decomposition (3.24) holds in the

polydisc {|z1| < r, |z′| < δ}.

Also, from the proof of [38, Theorem 7.5.1], the function As is defined via the follow-

ing formula

z1 − As(z′) = exp

(
1

2πi

∫
|ω|=r

(
∂Ws(ω, z

′)

∂ω
/Ws(ω, z

′)

)
log(z1 − ω) dω

)
. (3.29)

The mappings (s, z′) 7→ As(z
′) and (s, z) 7→ Bs(z) are jointly continuous due to (3.24)

and (3.29). There exists 0 < ε ≤ δ such that max
s∈Vω
|As(z′)| < r whenever |z′| < ε.

We have the identity (3.24) on B(0, r) × D′(0, ε). Now, we show that this is indeed

the neighborhood that has the desired properties. Since |z′| < ε implies that the points
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z = (As(z
′), z′) ∈ B(0, r)×D′(0, ε), we can evaluate (3.24) at these points to obtain

Ws(As(z
′), z′) = 0, z′ ∈ D′(0, ε). (3.30)

By differentiating (3.30), we have

∂Ws

∂zp
(As(z

′), z′) +
∂Ws

∂z1

(As(z
′), z′)

∂As
∂zp

(z′) = 0, for p = 2, . . . , d. (3.31)

Observe that from the above construction, the term
∂Ws

∂z1

(As(z
′), z′) is always non-zero

whenever |z′| < ε. Consequently, all first-order derivatives of As are jointly continuous

in (s, z). Similarly, we deduce by induction on n ∈ Nd that all derivatives of the function

As depend continuously on s since after taking differentiation of the equation (3.30) up to

order n, the n-order derivative term always goes with the nonzero term
∂Ws

∂z1

(As(z
′), z′)

and the remaining terms in the sum are just lower order derivatives. Hence the same

conclusion holds for all derivatives of Bs by differentiating (3.24).

In particular, set z′ = 0 in (3.31) to obtain

∂Ws

∂zp
(0) +

∂Ws

∂z1

(0)
∂As
∂zp

(0) = 0, for p = 2, . . . , d. (3.32)

Note that for p > 1,

∂Ws

∂zp
(z) = −i∇λj(−iR−1

s z + k0 + iβs) · R−1
s ep. (3.33)

By substituting z = 0,

∂Ws

∂zp
(0) = −i∇λj(k0 + iβs) · R−1

s ep

= −∇E(βs) · es,p = −|∇E(βs)|s · es,p = 0.

(3.34)
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(3.27), (3.32) and (3.34) imply

∂As
∂zp

(0) = 0, for p = 2, . . . , d. (3.35)

Taking a partial derivative with respect to zq (q > 1) of (3.33) at z = 0, we see that

∂2Ws

∂zp∂zq
(0) =

d∑
m=1

−∇(
∂λj
∂zm

(k0 + iβs)) · R−1
s ep(R−1

s eq)m

= −
d∑

m,n=1

∂2λj
∂zm∂zn

(k0 + iβs)(es,p)m(es,q)n

= es,q · Hess (E)(βs)es,p.

(3.36)

A second differentiation of (3.31) at z = (As(z
′), z′) gives

0 =

(
∂2Ws

∂zp∂zq
(z) +

∂Ws

∂z1

(z)
∂2As
∂zp∂zq

(z′)

)
+

(
∂2Ws

∂z1∂zq
(z)

∂As
∂zp

(z′) +
∂2Ws

∂zp∂z1

(z)
∂As
∂zq

(z′) +
∂2Ws

∂z2
1

(z)
∂As
∂zp

(z′)
∂As
∂zq

(z′)

)
.

(3.37)

At z = 0, the sum in the second bracket of (3.37) is zero due to (3.35). Thus,

∂2As
∂zp∂zq

(0) = −
(
∂Ws

∂z1

(0)

)−1
∂2Ws

∂zp∂zq
(0) (2 ≤ p, q ≤ d). (3.38)

Together with (3.27) and (3.36), the above equality becomes

∂2As
∂zp∂zq

(0) = − 1

|∇E(βs)|

(
es,p · Hess (E)(βs)es,q

)
2≤p,q≤d

= Qs. (3.39)

Consequently, by (3.35) and (3.39), the Taylor expansion of As at 0 implies (3.25).

Finally, the remainder termO(|z′|3) in the Taylor expansion (3.25), denoted byRs,3(z′),
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can be estimated as follows:

|Rs,3(z′)| . |z′|3 max
|α|=3,0≤t≤1

∣∣∣∣∂αAs∂zα
(tz′)

∣∣∣∣
. |z′|3 max

|α|=3,|y|≤|z′|

∣∣∣∣∂αAs∂zα
(y)

∣∣∣∣ .
Due to the continuity of third-order derivatives of As on Vω ×D′(0, ε),

lim
|z′|→0

max
s∈Vω

|Rs,3(z′)|
|z′|3

<∞. (3.40)

This proves the last claim of this proposition.

We can now let the size of the support of η (b O) be small enough such that the

decomposition (3.24) in Proposition 3.6.1 holds on the support of µ, i.e., supp(µ) b

B(0, r)×D′(0, ε). Therefore, from (3.23), we can represent the integral I as follows:

I = (2π)−d
∫
Rd
ei|x−y|ξ1

µ(ξ1, ξ
′)

Ws(iξ)
dξ1 dξ′ = (2π)−d

∫
|ξ′|<ε

∫
R

ei|x−y|ξ1µ̃s(ξ1, ξ
′)

iξ1 − As(iξ′)
dξ1 dξ′,

(3.41)

where µ̃s(ξ) = µ(ξ)(Bs(iξ))
−1. We extend µ̃s to a smooth compactly supported function

on Rd by setting µ̃s = 0 outside its support. Since all derivatives of µ̃s depend continuously

on s, they are uniformly bounded in s. Let νs(t, ξ′) be the Fourier transform in the variable

ξ1 of the function µ̃s(−ξ1, ξ
′) for each ξ′ ∈ Rd−1, i.e.,

νs(t, ξ
′) =

∫ +∞

−∞
eitξ1µ̃s(ξ1, ξ

′) dξ1.

By applying the Lebesgue Dominated Convergence Theorem, the function νs is continuous

in (s, t, ξ′) on Vω×Rd. For such ξ′, νs(·, ξ′) is a Schwartz function in t on R. Due to Lemma

3.9.1, for anyN > 0, νs(t, ξ′) = O(|t|−N) uniformly in s and ξ′ as t→∞. We also choose
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ε small enough such that whenever |ξ′| < ε, the absolute value of the remainder term

O(|ξ′|3) in (3.25) is bounded from above by 1
4
ξ′ ·Qsξ

′. Note that ε is still independent of s,

because the termO(|ξ′|3)/|ξ′|3 is uniformly bounded by the quantity in (3.40). Meanwhile,

each positive definite matrix Qs dominates the positive matrix γωI(d−1)×(d−1), where γω >

0 is the smallest among all the eigenvalues of all matrices Qs (s ∈ Vω). This implies that

if 0 < |ξ′| < ε, then

<(iξ1 − As(iξ′)) = −<(As(iξ
′)) = −<(−1

2
ξ′ ·Qsξ

′ +O(|ξ′|3))

=
1

2
ξ′ ·Qsξ

′ −<(O(|ξ′|3)) >
1

4
γω|ξ′|2 > 0.

We thus can obtain the following integral representation for a factor in the integrand of I

(see (3.41)):

1

iξ1 − As(iξ′)
=

∫ 0

−∞
e(iξ1−As(iξ′))w dw, (ξ1, ξ

′) ∈ R× (D′(0, ε) \ {0}). (3.42)

Therefore,

I =
1

(2π)d

∫
|ξ′|<ε

∫ 0

−∞
e−wAs(iξ

′)

∫ r

−r
ei(w+|x−y|)ξ1µ̃s(ξ1, ξ

′) dξ1 dw dξ′

=
1

(2π)d

∫
|ξ′|<ε

∫ |x−y|
−∞

e(−t+|x−y|)As(iξ′)νs(t, ξ
′) dt dξ′.

(3.43)

Now our remaining task is to prove the following asymptotics of the integral I:

Theorem 3.6.2. We have

I =
|∇E(βs)|(d−3)/2|x− y|−(d−1)/2

(2π)(d−1)/2 det (−es,p · Hess (E)(βs)es,q)
1/2
2≤p,q≤d

+O(|x− y|−d/2). (3.44)

Here the term O(|x− y|−d/2) is uniform in s ∈ Vω as |x− y| → ∞.
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The next lemma reduces the leading term of the right hand side of (3.44) to a scalar

integral as follows

Lemma 3.6.3.

∫
Rd−1

∫
R

exp

(
−1

2
x′ ·Qsx

′
)
νs(t, 0) dt dx′ =

(2π)(d+1)/2|∇E(βs)|(d−3)/2

det (−es,p · Hess (E)(βs)es,q)
1/2
2≤p,q≤d

.

Proof. By applying the Fourier inversion formula to νs, we get

1

2π

∫
R
νs(t, 0) dt = µ̃s(0) = (Bs(0))−1 = (

∂Ws

∂z1

(0))−1 =
1

|∇E(βs)|
. (3.45)

Here (3.27) is used in the last equality. Thus,

∫
Rd−1

∫
R

exp

(
−1

2
x′ ·Qsx

′
)
νs(t, 0) dt dx′

=
1

(detQs)1/2

∫
R

∫
Rd−1

exp

(
−1

2
|u′|2

)
νs(t, 0) du′ dt =

(2π)(d−1)/2

(detQs)1/2

∫
R
νs(t, 0) dt

=
(2π)(d+1)/2

(detQs)1/2|∇E(βs)|
=

(2π)(d+1)/2|∇E(βs)|(d−3)/2

det (−es,p · Hess (E)(βs)es,q)
1/2
2≤p,q≤d

.

Note that we use the change of variables u′ := Q
1/2
s x′, (3.45), (3.26) in the first, the third

and the last equality respectively.

For clarity, we introduce the notation x0 := |x− y|. The purpose of the following two

lemmas is to truncate some unnecessary (rapidly decreasing) parts of the main integrals

we are interested in.

Lemma 3.6.4. i) For any α ∈ (0, 1) and n > 0, one has

sup
s∈Vω

∫
|ξ′|<ε

∫
(−∞,−xα0 )∪(xα0 ,x0)

exp ((x0 − t)As(iξ′)) νs(t, ξ′) dt dξ′ = O(x−n0 )
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and

sup
s∈Vω

∫
Rd−1

∫
|t|>xα0

exp

(
−1

2
x′ ·Qsx

′
)
νs(t, 0) dt dx′ = O(x−n0 ).

ii) For any β < 1/2, n > 0 and each fixed t ∈ [−x0/2, x0/2], one obtains

sup
s∈Vω

∫
ε
√
x0−t>|x′|≥xβ0

∣∣∣∣exp

(
(x0 − t)As

(
ix′√
x0 − t

))∣∣∣∣ dx′ = O(x−n0 )

and

sup
s∈Vω

∫
|x′|≥xβ0

exp

(
−1

2
x′ ·Qsx

′
)

dx′ = O(x−n0 ).

Proof. i) We recall that sup
s,ξ′
|νs(t, ξ′)| = O(|t|−n) for any n > 0. Observe that when

t ≤ x0, |e(x0−t)As(iξ′)| ≤ 1. Thus, we have

sup
s∈Vω

∣∣∣∣∣
∫
|ξ′|<ε

∫
(−∞,−xα0 )∪(xα0 ,x0)

exp ((x0 − t)As(iξ′)) νs(t, ξ′) dt dξ′

∣∣∣∣∣
.
∫
|ξ′|<ε

∫
(−∞,−xα0 )∪(xα0 ,x0)

|t|−n/α−1 dt dξ′ .
∫
|t|>xα0

|t|−n/α−1 dt = O(x−n0 ).

(3.46)

Since
∣∣exp

(
−1

2
x′ ·Qsx

′)∣∣ ≤ 1, the second integral in this part also decays rapidly by

the same argument.

ii) When t < x0, we can substitute ξ′ = x′(x0 − t)−1/2 into (3.25) to obtain

(x0 − t) · As
(

ix′√
x0 − t

)
= −1

2
x′ ·Qsx

′ +O

(
|x′|3√
x0 − t

)
. (3.47)

Due to our choice of ε and the definition of γω, we get the following estimate when
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|x′| < ε
√
x0 − t:

sup
s∈Vω

∣∣∣∣exp

(
(x0 − t)As

(
ix′√
x0 − t

))∣∣∣∣ = sup
s∈Vω

exp

(
−1

2
x′ ·Qsx

′ +O

(
|x′|3√
x0 − t

))
≤ exp

(
−1

4
γω|x′|2

)
.

(3.48)

Hence, the two integrals in the statement can be estimated from above by:

∫
|x′|≥xβ0

exp

(
−1

4
γω|x′|2

)
dx′ .

∫ ∞
xβ0

exp

(
−1

4
γωr

2

)
rd−2 dr

.
∫ ∞
xβ0

r−n/β−1−(d−2)rd−2 dr = O(x−n0 ).

Lemma 3.6.5. If α ∈ (0, 1), we have

sup
s∈Vω

∫
|t|≤xα0

∫
|x′|<ε

√
x0−t

((
1− t

x0

)−(d−1)/2 − 1

)
exp

(
(x0 − t)As

(
ix′√
x0 − t

))
×νs

(
t,

x′√
x0 − t

)
dx′ dt = O(x2α−1

0 ).

Proof. As we argued in the proof of Lemma 3.6.4 (ii), this integral is majorized by

∫ xα0

−xα0

∫
|x′|<ε

√
x0−t

exp

(
−1

4
x′ ·Qsx

′
)
·
∣∣∣∣νs(t, x′√

x0 − t

)∣∣∣∣·
∣∣∣∣∣
(

1− t

x0

)−(d−1)/2

− 1

∣∣∣∣∣ dx′ dt.

It suffices to estimate the factor
(

1− t

x0

)−(d−1)/2

− 1 since νs is uniformly bounded on

R×D′(0, ε). But this is straightforward, since

∫ xα0

−xα0

∣∣∣∣∣
(

1− t

x0

)−(d−1)/2

− 1

∣∣∣∣∣ dt ≤ 2xα0

((
1− xα−1

0

)−(d−1)/2 − 1

)
= O(x2α−1

0 ).
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This finishes the proof of this lemma.

Proof of Theorem 3.6.2.

Proof. Thanks to Lemma 3.6.3, it is enough to prove the relation

I = (2π)−dx
−(d−1)/2
0

∫
Rd−1

∫
R

exp

(
−1

2
x′ ·Qsx

′
)
νs(t, 0) dt dx′ +O(x

−d/2
0 ).

Due to Lemma 3.6.4 (i) with α = 1/4, we only need to show that

Ĩ = x
−(d−1)/2
0

∫
Rd−1

∫
|t|≤x1/4

0

exp

(
−1

2
x′ ·Qsx

′
)
νs(t, 0) dt dx′ +O(x

−d/2
0 )

where

Ĩ =

∫
|ξ′|<ε

∫
|t|≤x1/4

0

exp ((x0 − t)As(iξ′)) νs(t, ξ′) dt dξ′.

Then we substitute x′ = ξ′
√
x0 − t to the integral Ĩ to get

Ĩ = x
−(d−1)/2
0

∫
|t|≤x1/4

0

∫
|x′|<ε

√
x0−t

(
1− t

x0

)−(d−1)/2

exp

(
(x0 − t)As

(
ix′√
x0 − t

))
×νs

(
t,

x′√
x0 − t

)
dx′ dt.

By Lemma 3.6.5 with α = 1/4, we have

∫
|t|≤x1/4

0

∫
|x′|<ε

√
x0−t

exp

(
(x0 − t)As

(
ix′√
x0 − t

))
νs

(
t,

x′√
x0 − t

)
dx′ dt

=x
(d−1)/2
0 Ĩ +O(x

−1/2
0 ).

(3.49)

Next, it is clear that for |t| ≤ x
1/4
0 , one has

∣∣∣∣νs(t, x′√
x0 − t

)
− νs(t, 0)

∣∣∣∣ ≤ |x′|√
x0 − t

sup
s,ξ′
|∇ξ′νs(t, ξ

′)| . |x′|
√
x0

sup
s,ξ′
|∇ξ′νs(t, ξ

′)|.
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Also, from the definition of the function νs, it follows that sups,ξ′ |∇ξ′νs(t, ξ
′)| = O(|t|)−n

for any n > 0. Consequently,

∫
|t|≤x1/4

0

∫
|x′|<ε

√
x0−t

∣∣∣∣exp

(
(x0 − t)As

(
ix′√
x0 − t

))(
νs

(
t,

x′√
x0 − t

)
− νs(t, 0)

)∣∣∣∣ dx′ dt
.

1
√
x0

∫
Rd−1

exp

(
−1

4
γω|x′|2

)
|x′| dx′ ·

∫
R

sup
s,ξ′
|∇ξ′νs(t, ξ

′)| dt = O(x
−1/2
0 ).

(3.50)

Using (3.49), (3.50) and Lemma 3.6.4 (i), it remains to derive the relation

∫
|t|≤x1/4

0

∫
|x′|<ε

√
x0−t

exp

(
(x0 − t)As

(
ix′√
x0 − t

))
νs(t, 0) dx′ dt

=

∫
|t|≤x1/4

0

∫
Rd−1

exp

(
−1

2
x′ ·Qsx

′
)
νs(t, 0) dx′ dt+O(x

−1/2
0 ).

(3.51)

Due to Lemma (3.6.4) (ii) with β = 1/6, we obtain

sup
s∈Vω

∫
ε
√
x0−t>|x′|≥x1/6

0

∣∣∣∣exp

(
(x0 − t)As

(
ix′√
x0 − t

))∣∣∣∣ dx′ = O(x−n0 ),

sup
s∈Vω

∫
|x′|≥x1/6

0

exp

(
−1

2
x′ ·Qsx

′
)

dx′ = O(x−n0 ).

On the other hand,

sup
s∈Vω

∫
|x′|<x1/6

0

∣∣∣∣exp

(
(x0 − t)As

(
ix′√
x0 − t

))
− exp

(
−1

2
x′ ·Qsx

′
)∣∣∣∣ dx′

= sup
s∈Vω

∫
|x′|<x1/6

0

exp

(
−1

2
x′ ·Qsx

′
) ∣∣∣∣exp

(
O

(
|x′|3
√
x0

))
− 1

∣∣∣∣ dx′
.
∫
|x′|<x1/6

0

exp

(
−1

2
γω|x′|2

)
|x′|3
√
x0

dx′ = O(x
−1/2
0 ).
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Hence, we deduce

∫
|x′|<ε

√
x0−t

exp

(
(x0 − t)As

(
ix′√
x0 − t

))
dx′−

∫
Rd−1

exp

(
−1

2
x′ ·Qsx

′
)

dx′ = O(x
−1/2
0 )

for each t ∈ [−x1/4
0 , x

1/4
0 ]. Finally, we multiply the above relation with νs(t, 0) and then

integrate over the interval [−x1/4
0 , x

1/4
0 ]. Since sups |νs(t, 0)| is integrable over R, the right

hand side is still O(x
−1/2
0 ). Thus, we derive (3.51) as we wish.

3.6.2 Estimates of the integral J

In this part, we want to show that the expression J decays as O
(
|x− y|−d/2

)
. Thus,

taking into account (3.44), we conclude that J does not contribute to the leading term of

the reduced Green’s function.

In (3.20), we set the coordinate functions of ρ′ as (ρ1, . . . , ρd). Let us introduce the

smooth function µ(l)(k, x, y) = ρl(k + k0, x, y)µ(k) for any k ∈ Rd. The support of µ(l)

(as a function of k for each pair (x, y)) is contained in the support of µ and µ(l)(k, ·, ·) is

Zd×Zd-periodic. We denote the components of a vector k in Rd as (k1, . . . , kd). Observe

that J is the sum of integrals Jl (1 ≤ l ≤ d) if we define

Jl := (2π)−d
∫
O
ei(k−k0)·(x−y)µ

(l)(k − k0, x, y)(k − k0)l
λj(k + iβs)− λ

dk. (3.52)

Proposition 3.6.6. As |x − y| → ∞, we have J1 = O
(
|x− y|−(d+1)/2

)
and Jl =

O
(
|x− y|−d/2

)
if l > 1. In particular, J = O

(
|x− y|−d/2

)
.

Proof. Indeed, to treat these integrals, we need to re-examine the calculation in the previ-

ous subsection done for the integral I . After applying the orthogonal transformation Rs
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on each integral Jl, we rewrite them under the form of (3.41) as

Jl = (2π)−d
∫
|ξ′|<ε

∫
R
ei|x−y|ξ1

µ̃
(l)
s (ξ1, ξ

′, x, y)ξl
iξ1 − As(iξ′)

dξ1 dξ′, (3.53)

where µ̃(l)
s (ξ, x, y) is µ(l)(ξ, x, y)(Bs(iξ))

−1 on the support of µ(l) and vanishes elsewhere.

Let ν(l)
s (t, ξ′, x, y) be the Fourier transform in ξ1 of µ̃(l)

s (ξ1, ξ
′, x, y). If the parameter s is

viewed as another argument of our functions here, then ν(l)
s (·, ξ′, x, y) is a Schwartz func-

tion for each quadruple (s, ξ′, x, y). It is elementary to check that the Fourier transform

ν
(l)
s (t, ξ′, x, y) is jointly continuous on Vω×R×Rd−1×Rd×Rd due to the corresponding

property of µ̃(l)
s (ξ, x, y). Periodicity in (x, y) of ν(l)

s and Lemma 3.9.1 imply the following

decay:

lim
t→∞
|t|N sup

(s,ξ′,x,y)∈Vω×D′(0,ε)×Rd×Rd
|ν(l)
s (t, ξ′, x, y)| = 0, N ≥ 0. (3.54)

In particular,

max
1≤l≤d

sup
(s,t,ξ′,x,y)∈Vω×R×D′(0,ε)×Rd×Rd

|ν(l)
s (t, ξ′, x, y)| <∞ (3.55)

and

S := max
1≤l≤d

∫
R

sup
(s,ξ′,x,y)∈Vω×D′(0,ε)×Rd×Rd

|ν(l)
s (t, ξ′, x, y)| dt <∞. (3.56)

Recall that when 0 < |ξ′| < ε, <(As(iξ
′)) < 0 and thus from (3.55),

lim
t→−∞

e(−t+|x−y|)As(iξ′)ν(1)
s (t, ξ′, x, y) = 0. (3.57)

Case 1: l = 1.
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Using (3.42), (3.57) and integration by parts, we obtain

J1 =
1

(2π)d

∫
|ξ′|<ε

∫ 0

−∞
e−wAs(iξ

′)

∫ r

−r
ξ1e

i(w+|x−y|)ξ1µ̃(1)
s (ξ1, ξ

′, x, y) dξ1 dw dξ

= − i

(2π)d

∫
|ξ′|<ε

∫ |x−y|
−∞

e(−t+|x−y|)As(iξ′) d

dt
ν(1)
s (t, ξ′, x, y) dt dξ′

= − i

(2π)d

∫
|ξ′|<ε

(
ν(1)
s (|x− y|, ξ′, x, y) +

∫ |x−y|
−∞

As(iξ
′)e(−t+|x−y|)As(iξ′)

× ν(1)
s (t, ξ′, x, y) dt

)
dξ′.

(3.58)

Recall the notation x0 = |x− y|. The term

∫
|ξ′|<ε

ν(1)
s (x0, ξ

′, x, y) dξ′

decays rapidly in x0, due to (3.54). We decompose the other term

∫ x0

−∞
As(iξ

′)e(x0−t)As(iξ′)ν(1)
s (t, ξ′, x, y) dt

into two parts, where the first integral is taking over (x0/2, x0] and the second one over

(−∞, x0/2]. The first part decays rapidly, as in Lemma 3.6.4 (i). Now we need to prove

that the second part decays as O(x
(d+1)/2
0 ). To do this, we use the change of variables

x′ = ξ′
√
x0 − t to rewrite the remaining integral as

x
(d+1)/2
0

∫
|ξ′|<ε

∫ x0/2

−∞
As(iξ

′)e(−t+x0)As(iξ′)ν(1)
s (t, ξ′, x, y) dt dξ′

=

∫ x0/2

−∞

(
1− t

x0

)−(d+1)/2 ∫
|x′|<ε

√
x0−t

(
−1

2
x′ ·Qsx

′ +O

(
|x′|3√
x0 − t

))
× exp

(
−1

2
x′ ·Qsx

′ +O

(
|x′|3√
x0 − t

))
ν(1)
s

(
t,

(
x′√
x0 − t

)
, x, y

)
dx′ dt.

(3.59)
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From (3.56), we derive

∫ x0/2

−∞

(
1− t

x0

)−(d+1)/2

sup
(s,ξ′,x,y)∈Vω×D′(0,ε)×Rd×Rd

|ν(1)
s (t, ξ′, x, y)| dt ≤ 2

(d+1)
2 S. (3.60)

On the other hand, we recall that

<
(
−1

2
x′ ·Qsx

′ +O

(
|x′|3√
x0 − t

))
≤ −1

4
γω|x′|2.

The exponential term is majorized as follows:

∣∣∣∣(−1

2
x′ ·Qsx

′ +O

(
|x′|3√
x0 − t

))
exp

(
−1

2
x′ ·Qsx

′ +O

(
|x′|3√
x0 − t

))∣∣∣∣
≤
(

1

2
x′ ·Qsx

′ +O(ε|x′|2)

)
exp

(
−1

4
γω|x′|2

)
.

Consequently,

∫
|x′|<ε

√
x0−t

∣∣∣∣(− 1

2
x′ ·Qsx

′ +O

(
|x′|3√
x0 − t

))
exp

(
−1

2
x′ ·Qsx

′ +O

(
|x′|3√
x0 − t

))∣∣∣∣ dx′
.
∫
Rd−1

|x′|2 exp

(
−1

4
γω|x′|2

)
dx′ <∞.

(3.61)

Combining (3.58) through (3.61), we deduce J1 = O(x
−(d+1)/2
0 ).

Case 2: l > 1.
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Using (3.42) and decomposing Jl into two parts as in Case 1, we get

Jl =
1

(2π)d

∫
|ξ′|<ε

∫ 0

−∞
ξle
−wAs(iξ′)

∫ r

−r
ei(w+|x−y|)ξ1µ̃(l)

s (ξ1, ξ
′, x, y) dξ1 dw dξ

=
1

(2π)d

∫
|ξ′|<ε

∫ |x−y|
−∞

ξle
(−t+|x−y|)As(iξ′)ν(l)

s (t, ξ′, x, y) dt dξ′

=
1

(2π)d

∫
|ξ′|<ε

∫ |x−y|/2
−∞

ξle
(−t+|x−y|)As(iξ′)ν(l)

s (t, ξ′, x, y) dt dξ′ + o(|x− y|−d/2).

(3.62)

By changing the variables as before,

x
d/2
0

∫
|ξ′|<ε

∫ x0/2

−∞
ξle

(−t+x0)As(iξ′)ν(l)
s (t, ξ′, x, y) dt dξ′

=

∫ x0/2

−∞

(
1− t

x0

)−d/2 ∫
|x′|<ε

√
x0−t

x′l exp

(
−1

2
x′ ·Qsx

′ +O

(
|x′|3√
x0 − t

))
× ν(l)

s

(
t,

(
x′√
x0 − t

)
, x, y

)
dx′ dt.

(3.63)

In a similar manner, we obtain

∫ x0/2

−∞

(
1− t

x0

)−d/2 ∫
|x′|<ε

√
x0−t

∣∣∣∣x′l exp

(
−1

2
x′ ·Qsx

′ +O

(
|x′|3√
x0 − t

))∣∣∣∣
×
∣∣∣∣ν(l)
s

(
t,

(
x′√
x0 − t

)
, x, y

)∣∣∣∣ dx′ dt
≤ 2d/2S

∫
Rd−1

|x′| exp

(
−1

4
γω|x′|2

)
dx′ <∞.

This final estimate and (3.62)-(3.63) imply Jl = O(x
−d/2
0 ).

3.7 The full Green’s function asymptotics

The main purpose of this section is to give a detailed proof of Theorem 3.5.2. Es-

sentially, this theorem is needed for showing that full Green’s function Gs,λ has the same

asymptotics as the reduced Green’s function G0 as |x− y| → ∞.
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First, we recall that for each unit vector s, Ts(k) = (1 − η(k))(Ls(k) − λ)−1 +

η(k)((Ls(k)−λ)|R(Qs(k)))
−1Qs(k) and the operator Ts is unitarily equivalent (via the Flo-

quet transform) to the direct integral of the operators Ts(k) over O. Now we observe that

the kernel of each projector Ps(k) (see Subsection 3.5.2) is the smooth function:

φ(k + iβs, x)φ(k − iβs, y)

F (k + iβs)
,

for each k in the support of η. Thus, (1 − η(k))Ps(k) is a finite rank smoothing operator

on Td. Moreover, we also have (Ls(k)− λ)Ts(k) = Ts(k)(Ls(k)− λ) = I − η(k)Ps(k).

Each Ts(k) is a parametrix (i.e., an inverse modulo a smoothing operator) of the elliptic

operator Ls(k) − λ when (s, k) ∈ Sd−1 × O. This suggests to study parametrices of the

family of elliptic operators Ls(k)− λ simultaneously.

3.7.1 Parameter-dependent periodic pseudodifferential operators

First, we briefly recall some basic definitions of periodic (or toroidal) pseudodiffer-

ential operators (i.e., ΨDO on the torus Td). We also introduce some useful classes of

symbols with parameters and describe some of their properties that we will use.

There are several approaches to defining pseudodifferential operators on the torus. The

standard approach based on Hörmander’s symbol classes (see e.g., [72]) uses local smooth

structure on the torus Td and thus ignores the group structure on Td. An alternative ap-

proach uses Fourier series with the difference calculus and avoids using local coordinate

charts on Td (the details in [67, Chapter 4])6. To make a distinction, Ruzhansky and Tu-

runen in [67] refer to the symbols in the first approach as Euclidean symbols and the

symbols in the latter one as toroidal symbols (see [67, Section 4.5]). We recall their

definitions for only the Kohn-Nirenberg symbol classes, which we need here:

6A different approach to periodic ΨDOs is introduced by A. Sobolev [73].
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Definition 3.7.1. Let m be a real number.

(a) The class Sm(Td × Rd) consists of all smooth functions σ(x, ξ) on Td × Rd such

that for any multi-indices α, β,

|Dα
ξD

β
xσ(x, ξ)| ≤ Cαβ(1 + |ξ|)m−|α|,

for some constant Cα,β that depends only on α, β. Symbols in Sm(Td × Rd) are called

Euclidean symbols of order m on Td.

(b) The class Sm(Td × Zd) consists of all functions σ(x, ξ) on Td × Zd such that for

each ξ ∈ Zd, σ(., ξ) ∈ C∞(Td) and for any multi-indices α, β,

|∆α
ξD

β
xσ(x, ξ)| ≤ Cαβ(1 + |ξ|)m−|α|,

for some constant Cα,β that depends only on α, β. Here we recall the definition of the

forward difference operator ∆α
ξ with respect to the variable ξ [67]. Let f be a complex-

valued function defined on Zd and 1 ≤ j ≤ d. Then we define

∆jf(ξ) := f(ξ1, . . . , ξj−1, ξj + 1, ξj+1, . . . , ξd)− f(ξ),

and for any multi-index α,

∆α
ξ := ∆α1

1 . . .∆αd
d .

Symbols in Sm(Td × Zd) are called toroidal symbols of order m on Td.

(c) The intersection of all the classes Sm(Td × Rd) (Sm(Td × Zd)) is denoted by

S−∞(Td × Rd) (S−∞(Td × Zd)), which are also called smoothing symbols.

Due to [67, Theorem 4.5.3], a symbol is toroidal of order m if and only if it could be

extended in ξ to an Euclidean symbol of the same order m. Such an extension is unique
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modulo a smoothing symbol. Consequently, we will use the notation Sm(Td) for both

classes Sm(Td ×Rd) and Sm(Td × Zd). The two approaches are essentially equivalent in

defining pseudodifferential operators on Td whenever the symbol is in the class Sm(Td).

Following [36], this motivates us to define periodic pseudodifferential operators as follows:

Definition 3.7.2. Given a symbol σ(x, ξ) ∈ Sm(Td), we denote by Op(σ) the correspond-

ing periodic pseudodifferential operator defined by

(Op(σ)f) (x) :=
∑
ξ∈Zd

σ(x, ξ)f̃(ξ)e2πiξ·x, (3.64)

where f̃(ξ) is the Fourier coefficient of f at ξ. The right hand side of (3.64) converges

absolutely if, for instance, f ∈ C∞(Td).

We also use the notation Op(Sm(Td)) for the set of all periodic pseudodifferential

operators Op(σ) with σ ∈ Sm(Td).

Since we must deal with parameters s and k, we introduce a suitable class of symbols

depending on parameters (s, k) ∈ Sd−1 ×O.

Definition 3.7.3. The parameter-dependent class S̃m(Td) consists of symbols σ(s, k;x, ξ)

satisfying the following conditions:

• For each (s, k) ∈ Sd−1×O, the function σ(s, k; ·, ·) is a symbol in the class Sm(Td).

• Consider any multi-indices α, β, γ. Then for each s ∈ Sd−1, the function σ(s, ·; ·, ·)

is smooth on O × Td × Rd , and furthermore,

sup
s∈Sd−1

|Dα
kD

β
ξD

γ
xσ(s, k;x, ξ)| ≤ Cαβγ(1 + |ξ|)m−|α|−|β|,

for some constant Cαβγ > 0 that is independent of s, k, x, and ξ.
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Thus, taking derivatives of a symbol in S̃m(Td) with respect to k improves decay in ξ. We

also denote

S̃−∞(Td) :=
⋂
m∈R

S̃m(Td).

Definition 3.7.4. For each m ∈ R ∪ {−∞}, we denote by Op(S̃m(Td)) the set of all

families of periodic pseudodifferential operators {Op(σ(s, k; ·, ·))}(s,k)∈Sd−1×O, where σ

runs over the class S̃m(Td).

Example 3.7.5.

• Suppose that |λ| is small enough so that maxs∈Sd−1 |βs| < 1. Then the family of

symbols {(1 + (ξ + k+ iβs)
2)m/2}(s,k) belongs to the class S̃m(Td) for any m ∈ R.

• If aα(x) ∈ C∞(Td) and m ≥ 0, then

{
∑
|α|≤m

aα(x)(ξ + k + iβs)
α}(s,k) ∈ S̃m(Td).

• The family of elliptic operators {(Ls(k)− λ)}(s,k) is in Op(S̃2(Td)).

• If a = {a(s, k;x, ξ)}(s,k) ∈ S̃l(Td) and b = {b(s, k;x, ξ)}(s,k) ∈ S̃m(Td) then

ab = {ab(s, k;x, ξ)}(s,k) ∈ S̃l+m(Td).

• a(s, k;x, ξ) ∈ S̃l(Td) implies Dα
kD

β
ξD

γ
xa(s, k;x, ξ) ∈ S̃l−|α|−|β|(Td).

The following result will be needed in the next subsection:

Theorem 3.7.6. There exists a family of parametrices {As(k)}(s,k) in the classOp(S̃−2(Td))

for the family of elliptic operators {(Ls(k)− λ)}(s,k).

The reader can refer to Section 3.8 for the proof of this result as well as some other

basic properties of parameter-dependent toroidal ΨDOs.
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3.7.2 Decay of the Schwartz kernel of Ts

Lemma 3.7.7. For all k on a sufficiently small neighborhood of the support of η, λ (< 0)

is in the resolvent of the operator Ls(k)Qs(k) acting on L2(Td). Furthermore, for such k,

we have the following identity:

((Ls(k)− λ)|R(Qs(k)))
−1Qs(k) = λ−1Ps(k) + (Ls(k)Qs(k)− λ)−1. (3.65)

Proof. In the block-matrix form, (Ls(k)Qs(k)− λ) is

 −λPs(k) 0

0 (Ls(k)− λ)|R(Qs(k))

 . (3.66)

This gives the first claim of this lemma. The inverse of (3.66) is

 −λ−1Ps(k) 0

0 ((Ls(k)− λ)|R(Qs(k)))
−1

 ,

which proves the identity (3.65).

The identity (3.65) implies that for each (s, k), the operator

η(k)((Ls(k)− λ)|R(Qs(k)))
−1Qs(k)

is a periodic pseudodifferential operator in S−2(Td). Thus, each of the operators Ts(k)

is also in S−2(Td) and its symbol is smooth in (s, k) since Ps(k) and Qs(k) are smooth

in (s, k). Actually, more information about the family of operators {Ts(k)}(s,k) and their

Schwartz kernels can be obtained.

At first, we want to introduce a class of family of operators whose kernels behave
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nicely.

Definition 3.7.8. We denote by S the set consisting of families of smoothing operators

{Us(k)}(s,k) acting on Td so that the following properties hold:

• For anym1,m2 ∈ R, the operator Us(k) is smooth in k as aB(Hm1(Td), Hm2(Td))-

valued function7.

• The following uniform condition holds for any multi-index α:

sup
s,k
‖Dα

kUs(k)‖B(Hm1 (Td),Hm2 (Td)) <∞.

We remark that if the family of smoothing operators {Us(k)}(s,k) is in Op(S̃−∞(Td)),

then this family also belongs to S .

In order to obtain information on Schwartz kernels of a family of operators in S, we

need to use the following standard lemma on Schwartz kernels of integral operators acting

on Td.

Lemma 3.7.9. Let A be a bounded operator in L2(Td). Suppose that the range of A is

contained in Hm(Td), where m > d/2 and in addition,

‖Af‖Hm(Td) ≤ C‖f‖H−m(Td)

for all f ∈ L2(Td).

Then A is an integral operator whose kernel KA(x, y) is bounded and uniformly con-

tinuous on Td × T and the following estimate holds:

|KA(x, y)| ≤ γ0C, (3.67)
7We remind the reader that B(E,F ) denotes the space of all bounded linear operators from the Banach

space E to F .
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where γ0 is a constant depending only on d and m.

The fact can be found in [1, Lemma 2.2].

Now we can state a useful property of Schwartz kernels of a family of operators in S.

Corollary 3.7.10. If {Us(k)}(s,k) is a family of smoothing operators in S, then the Schwartz

kernel KUs(k, x, y) of the operator Us(k) satisfies

sup
s,k,x,y

|Dα
kKUs(k, x, y)| <∞,

for any multi-index α.

Proof. We pick any m > d/2. Then by Definition 3.7.8, we have

sup
s,k
‖Dα

kUs(k)f‖Hm(Td) ≤ Cα‖f‖H−m(Td).

Applying Lemma 3.7.9, the estimates (3.67) hold for kernels Dα
kKUs(k, x, y) of the oper-

ators Dα
kUs(k) uniformly in (s, k).

We now go back to the family of operators Ts(k).

Proposition 3.7.11. There is a family of periodic pseudodifferential operators {As(k)}(s,k)

in Op(S̃−2(Td)) such that the family of operators {Ts(k)− As(k)}(s,k) belongs to S.

Proof. Due to Theorem 3.7.6, there is a family of operators {As(k)}(s,k) in Op(S̃−2(Td))

and a family of operators {Rs(k)}(s,k) in Op(S̃−∞(Td)) such that

(Ls(k)− λ)As(k) = I −Rs(k).

Since Ts(k)(Ls(k)− λ) = I − η(k)Ps(k), we deduce that

Ts(k) = As(k)− η(k)Ps(k)As(k) + Ts(k)Rs(k). (3.68)
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Now it remains to show that the two families of smoothing operators {Ts(k)Rs(k)}(s,k)

and {η(k)Ps(k)As(k)}(s,k) are in S. Let us fix any two real numbers m1, m2 and a multi-

index α. Notice that (Ls(k) − λ) is analytic in k as a B(Hm2(Td), Hm2−2(Td))-valued

function and also,

sup
s,k
‖Dα

k (Ls(k)− λ)‖B(Hm2 (Td),Hm2−2(Td)) <∞.

Due to Lemma 3.7.7,

Ts(k) = (1− η(k))(Ls(k)− λ)−1 + η(k)λ−1Ps(k) + η(k)(Ls(k)Qs(k)− λ)−1.

Thus, Ts(k) is smooth in k as a B(Hm2−2(Td), Hm2(Td))-valued function and moreover,

sup
s,k
‖Dα

kTs(k)‖B(Hm2−2(Td),Hm2 (Td)) <∞. (3.69)

Since {Rs(k)} is in Op(S̃−∞(Td)), Rs(k) is smooth in k as a B(Hm1(Td), Hm2−2(Td))-

valued function and furthermore,

sup
s,k
‖Dα

kRs(k)‖B(Hm1 (Td),Hm2−2(Td)) <∞. (3.70)

By (3.69), (3.70) and Leibnitz’s rule, we deduce that Ts(k)Rs(k) is smooth in k as a

B(Hm1(Td), Hm2(Td))-valued function and the corresponding uniform estimate also holds.

Hence, we conclude that the family {Ts(k)Rs(k)}(s,k) belongs to S. Meanwhile, since

{η(k)Ps(k)}(s,k) is in S and {Dα
kAs(k)}(s,k) is a toroidal pseudodifferential operator of

order 2− |α| for any multi-index α, we could repeat the above argument to show that the

family {η(k)Ps(k)As(k)}(s,k) is also in S.

We need the following important estimate of Schwartz kernels of operators Ts(k):
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Corollary 3.7.12. Let Ks(k, x, y) be the Schwartz kernel of the operator Ts(k). Let N >

d − 2. If α is a multi-index such that |α| = N , then each Dα
kKs(k, x, y) is a continuous

function on Td×Td and the following estimate also holds uniformly with respect to (x, y):

sup
(s,k)∈Sd−1×O

|Dα
kKs(k, x, y)| <∞.

Proof. Due to Proposition 3.7.11, the operator Ts(k) is a sum of operators As(k) and

Us(k) such that {As(k)}(s,k) ∈ Op(S̃−2(Td)) and {Us(k)}(s,k) ∈ S. In particular,

Ks(k, x, y) = KAs(k, x, y) +KUs(k, x, y).

Recall that in the distributional sense, the Schwartz kernel KAs(k, x, y) of the periodic

pseudodifferential operator As(k) is given by

∑
ξ∈Zd

σ(s, k;x, ξ)e2πiξ·(x−y),

where σ(s, k;x, ξ) is the symbol of the operator As(k).

Since {σ(s, k;x, ξ)}(s,k) is in S̃−2(Td),

|e2πiξ·(x−y)Dα
kσ(s, k;x, ξ)| . (1 + |ξ|)−2−N .

Since −(2 +N) < −d, the sum

∑
ξ∈Zd

Dα
kσ(s, k;x, ξ)e2πiξ·(x−y)
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converges absolutely and moreover,

sup
(s,k,x,y)∈Sd−1×O×Td×Td

|Dα
kKAs(k, x, y)| .

∑
ξ∈Zd

(1 + |ξ|)−(d+1) <∞.

Combining this with Corollary 3.7.10, we complete the proof.

Notation 3.7.13. Let ψ be a function on Rd and γ be a vector in Rd, then τγψ is the

γ-shifted version of ψ. Namely, it is defined as follows:

τγψ(·) = ψ(·+ γ).

We denote byP the subset ofC∞0 (Rd) consisting of all functions ψ such that its support

is connected, and if γ is a non-zero vector in Zd, then the support of τγψ does not intersect

with the support of ψ.

Definition 3.7.14. Since Rd is the universal covering space of Td, we can consider the

covering map

π : Rd → Rd/Zd = Td.

In particular, π(x+ γ) = π(x) for any x ∈ Rd and γ ∈ Zd.

A standard fundamental domain (with respect to the covering map π) is of the form

[0, 1]d+γ for some vector γ in Rd. Thus, a standard fundamental domain is a fundamental

domain of Rd with respect to the lattice Zd.

Using Definition 2.2.3 of the Floquet transform F , we can obtain the following for-

mula:

Lemma 3.7.15. Let φ and θ be any two smooth functions in P . Then the Schwartz kernel
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Ks,φ,θ of the operator φTsθ satisfies the following identity for any (x, y) ∈ Rd × Rd:

Ks,φ,θ(x, y) =
1

(2π)d

∫
O
eik·(x−y)φ(x)Ks(k, π(x), π(y))θ(y) dk.

Proof. Since both φ, θ ∈ P , there are standard fundamental domains Wφ and Wθ ⊂ Rd so

that

supp(φ) ⊂ W̊φ, supp(θ) ⊂ W̊θ.

Then, it suffices to show that 〈φTsθf, g〉 equals

1

(2π)d

∫
Wφ

∫
Wθ

∫
O
eik·(x−y)(φg)(x)Ks(k, π(x), π(y))(θf)(y) dk dy dx,

for any f, g in C∞(Rd).

We observe that

〈φTsθf, g〉 = 〈FφTsθf,Fg〉

=
1

(2π)d

〈
(FφF−1)

(∫ ⊕
O
Ts(k) dk

)
F(θf),Fg

〉
=

1

(2π)d

〈(∫ ⊕
O
Ts(k) dk

)
F(θf),F(φg)

〉
.

Since θ ∈ P , for any y in Wθ, we have

F(θf)(k, π(y)) = (θf)(y)e−ik·y.

Similarly,

F(φg)(k, π(x)) = (φg)(x)e−ik·x, ∀x ∈ Wφ.
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We also have

(∫ ⊕
O
Ts(k) dk

)
(F(θf))(k, π(x)) = Ts(k)(F(θf)(k, ·))(π(x)).

Consequently,

〈(∫ ⊕
O
Ts(k) dk

)
F(θf),F(φg)

〉
=

∫
O

∫
Wφ

Ts(k)(F(θf)(k, ·))(π(x))(φg)(x)e−ik·x dx dk

=

∫
O

∫
Wφ

∫
Wθ

Ks(k, π(x), π(y))F(θf)(k, π(y))(φg)(x)eik·x dy dx dk

=

∫
O

∫
Wφ

∫
Wθ

eik·(x−y)Ks(k, π(x), π(y))(θf)(y)(φg)(x) dy dx dk.

Using Fubini’s theorem to rewrite the above integral, we have the desired identity.

Proposition 3.7.16. Consider any two smooth compactly supported functions φ and θ on

Rd such that their supports are disjoint. Then the kernel Ks,φ,θ(x, y) is continuous on

Rd × Rd and moreover, it satisfies the following decay:

sup
s
|Ks,φ,θ(x, y)| ≤ CN |φ(x)θ(y)| · |x− y|−N ,

for any N > d− 2. Here, the constant CN is independent of φ and θ.

Proof. By using partitions of unity, any smooth compactly supported function can be writ-

ten as a finite sum of smooth functions in the set P . Thus, we can assume without loss of

generality that both φ and θ belong to P .

First, observe that for any (k, n) ∈ O × Zd,

Ts(k + 2πn) =M−1
n Ts(k)Mn,
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whereMn is the multiplication operator on L2(Td) by the exponential function e2πin·x.

Hence,

∇α
kKs(k + 2πn, π(x), π(y)) = e−2πin·π(x)∇α

kKs(k, π(x), π(y))e2πin·π(y),

for any multi-index α. Since e2πin·x = e2πin·π(x) for any x ∈ Rd, we obtain

ei(k+2πn)·(x−y)∇α
kKs(k + 2πn, π(x), π(y)) = eik·(x−y)∇α

kKs(k, π(x), π(y)). (3.71)

Applying Lemma 3.7.15, we then use integration by parts (all boundary terms vanish

when applying integration by parts due to (3.71)) to derive that for any |α| = N ,

(2π)d(i(x− y))αKs,φ,θ(x, y) = φ(x)θ(y)

∫
O
eik·(x−y)∇α

kKs(k, π(x), π(y)) dk.

Suppose N > d − 2. Then by applying Corollary 3.7.12, the above integral is abso-

lutely convergent and it is also uniformly bounded in (s, x, y). Consequently, the kernel

Ks,φ,θ(x, y) is continuous. Furthermore,

sup
s
|Ks,φ,θ(x, y)| . |φ(x)θ(y)| · min

|α|=N
|(x− y)α|−1 . |φ(x)θ(y)| · |x− y|−N .

We now have enough tools to approach our goal:

Proof of Theorem 3.5.2.

Proof. Let us fix a point (s, x) in Sd−1 × Rd. Now we consider a point y = x+ st, where

t is a real number. When |t| > 0, we can choose two cut-off functions φ and θ such that

φ and θ equal 1 on some neighborhoods of x and y, respectively, and also, the supports of
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these two functions are disjoint. Then, Proposition 3.7.16 implies that the kernel Ks(x, y)

is continuous at (x, y) since it coincides with Ks,φ,θ on a neighborhood of (x, y). This

yields the first statement about the continuity off diagonal of Ks. Again, by Proposition

3.7.16, we obtain

sup
s
|Ks(x, y)| = sup

s
|Ks,φ,θ(x, y)| ≤ CN |x− y|−N ,

which proves the last statement.

3.8 Some results on parameter-dependent toroidal ΨDOs

The aim in this section is to provide some results needed to complete the proof of

Theorem 3.7.6. We adopt the approach of [36] to periodic elliptic differential operators.

The next two theorems are straightforward modifications of the proofs for non-parameter

toroidal ΨDOs:

Theorem 3.8.1. (The asymptotic summation theorem) Given families of symbols bl ∈

S̃m−l(Td), where each family bl = {bl(s, k)}(s,k) for l = 0, 1, . . . , there exists a family of

symbols b in S̃m(Td) such that

{b(s, k)−
∑
i<l

bi(s, k)}(s,k) ∈ S̃m−l(Td). (3.72)

We will write b ∼
∑
l

bl if b satisfies (3.72).

Proof. Step 1. Let n = m+ ε for some ε > 0. Then

|bl(s, k;x, ξ)| ≤ Cl(1 + |ξ|)m−l =
Cl(1 + |ξ|)n−l

(1 + |ξ|)ε
.
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Thus, there is a sequence {ηl}l≥1 such that ηl → +∞ and

|bl(s, k;x, ξ)| < 1

2l
(1 + |ξ|)n−l

for |ξ| > ηl. Let ρ ∈ C∞(R) satisfy that 0 ≤ ρ ≤ 1, ρ(t) = 0 whenever |t| < 1 and

ρ(t) = 1 whenever |t| > 2. We define:

b(s, k;x, ξ) =
∑
l

ρ

(
|ξ|
ηl

)
bl(s, k;x, ξ).

Since only a finite number of summands are non-zero on any compact subset of Td × Rd,

b(s, ·; ·, ·) ∈ C∞(O × Td × Rd). Moreover, b(s, k)−
∑

r<l br(s, k) is equal to:

∑
r<l

(
ρ

(
|ξ|
ηr

)
− 1

)
br(s, k) + ρ

(
|ξ|
ηl

)
bl(s, k) +

∑
r>l

ρ

(
|ξ|
ηr

)
br(s, k).

The first summand is compactly supported while the second summand is in Sm−l(Td).

Now let ε < 1. Then, the third summand is bounded from above by

∑
r>l

1

2r
(1 + |ξ|)n−r ≤ (1 + |ξ|)n−l−1 ≤ (1 + |ξ|)m−l.

Consequently,

sup
s∈Sd−1

∣∣∣∣∣b(s, k)−
∑
r<l

br(s, k)

∣∣∣∣∣ ≤ C(1 + |ξ|)m−l.

Step 2. For |α|+ |β|+ |γ| ≤ N , one can choose ηl such that

sup
s∈Sd−1

∣∣∣Dα
kD

β
ξD

γ
xbl(s, k;x, ξ)

∣∣∣ ≤ 1

2l
(1 + |ξ|)n−l−|α|−|β|
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for ηl < |ξ|. The same argument as in Step 1 implies that

sup
s∈Sd−1

∣∣∣∣∣Dα
kD

β
ξD

γ
x(b(s, k)−

∑
r<l

br(s, k))

∣∣∣∣∣ ≤ CN(1 + |ξ|)m−l−|α|−|β|. (3.73)

Step 3. The sequence of ηl’s in Step 2 depends on N . We denote this sequence by ηl,N

to indicate this dependence onN . By induction, we can assume that for all l, ηl,N ≤ ηl,N+1.

Applying the Cantor diagonal process to this family of sequences, i.e., let ηl = ηl,l then b

has the property (3.73) for every N .

Theorem 3.8.2. (The composition formula) Let a = {a(s, k)} be a family of symbols

in S̃l(Td) and Q(x,D) =
∑
|α|≤m aα(x)Dα be a differential operators of order m ≥ 0

with smooth periodic coefficients aα(x). Then the family of periodic pseudodifferential

operators {Q(x,D + k + iβs)Op(a(s, k))}(s,k) ∈ Op(S̃l+m(Td)). Indeed, we have:

Q(x,D + k + iβs)Op(a(s, k)) = Op((Q ◦ a)(s, k)),

where

(Q ◦ a)(s, k;x, ξ) =
∑
|α|≤m

1

α!
Dα
ξQ(x, ξ + k + iβs)D

α
xa(s, k;x, ξ) (3.74)

Proof. The composition formula (3.74) is obtained for each (s, k) is standard in pseudod-

ifferential operator theory (see e.g., [36,67,72]). We only need to check that the family of

symbols {(Q ◦ a)(s, k;x, ξ)}(s,k) is in S̃l+m(Td). But this fact follows easily from (3.74)

and Leibnitz’s formula.

We now finish the proof of Theorem 3.7.6.

Theorem 3.8.3. (The inversion formula) There exists a family of symbols a = {a(s, k)}(s,k)
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in S̃−2(Td) and a family of symbols r = {r(s, k)}(s,k) in S̃−∞(Td) such that

(Ls(k)− λ)Op(a(s, k)) = I −Op(r(s, k)).

Proof. Let

L0(s, k;x, ξ) :=
∑
|α|=2

aα(x)(ξ + k + iβs)
α,

‖a‖∞ :=
∑
|α|=2

‖aα(·)‖L∞(Td),

and

M := max
(s,k)∈Sd−1×O

(
|k|2 + θ−1‖a‖∞|βs|2 + θ−1

)
,

where θ is the ellipticity constant in (3.2). Whenever |ξ| > (2M)1/2,

|L0(s, k;x, ξ)| ≥ <(L0(s, k;x, ξ)) ≥ θ|ξ + k|2 −
∑
|α|=2

aα(x)(βs)
α

≥ θ

(
|ξ|2

2
− |k|2

)
− ‖a‖∞|βs|2 > 1.

Let ρ ∈ C∞(R) be a function satisfying ρ(t) = 0 when |t| < (2M)1/2 and ρ(t) = 1 when

|t| > 2M1/2. We define the function

a0(s, k)(x, ξ) = ρ(|ξ|) 1

L0(s, k;x, ξ)
. (3.75)

Then a0 := {a0(s, k)}(s,k) is well-defined and belongs to S̃−2(Td). The next lemma is the

final piece we need to complete the proof of the theorem.

Lemma 3.8.4. (i) If b = {b(s, k)}(s,k) ∈ S̃l(Td) then b− (L− λ) ◦ (a0b) ∈ S̃l−1(Td).

(ii) There exists a sequence of families of symbols al = {al(s, k)}(s,k) in S̃−2−l(Td), l =

0, 1, . . . and a sequence of families of symbols rl = {rl(s, k)}(s,k) in S̃−l(Td), l = 0, 1, . . .
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such that a0 is the family of symbols in (3.75), r0(s, k) = 1 for every (s, k) and for all l,

(L− λ) ◦ al = rl − rl+1.

Proof. (i) Let p(s, k) = (L(s, k) − λ)(x, ξ) − L0(s, k;x, ξ) so that p = {p(s, k)}(s,k) ∈

S̃1(Td) and hence, p ◦ (a0b) is in S̃l−1(Td) due to Theorem 3.8.2. Moreover, b− L0a0b =

(1 − ρ(|ξ|))b is a family of symbols whose ξ-supports are compact and thus it is in

S̃−∞(Td). We can now derive again from the composition formula (3.74) when P := L0

that

(L− λ) ◦ (a0b) = L0 ◦ (a0b) + p ◦ (a0b) = L0a0b+ · · · = b+ . . . ,

where the dots are the terms in S̃l−1(Td).

(ii) Recursively, let al = a0rl and rl+1 = rl − (L − λ) ◦ al. By part (i), rl+1 ∈

S̃−(l+1)(Td).

Now let a be the asymptotic sum of the families of symbols al, i.e., a ∼
∑

l al. Then

(L− λ) ◦ a ∼
∑
l

(L− λ) ◦ al =
∑
l

rl − rl+1 = r0 = 1,

which implies that 1−(L−λ)◦a ∼ 0. In other words, this means that r := 1−(L−λ)◦a ∈

S̃−∞(Td). Hence, there exists a family of symbols a in S̃−2(Td) and a family of symbols

r in S̃−∞(Td) satisfying (L − λ) ◦ a = 1 − r. Finally, an application of Theorem 3.8.2

completes the proof of Theorem 3.7.6.

3.9 Some auxiliary statements

3.9.1 A lemma on the principle of non-stationary phase

Lemma 3.9.1. LetM be a compact manifold (with or without boundary) and a : R×M →

C be a smooth function with compact support. Then for any N > 0, there exists a constant
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CN > 0 so that the following estimate holds for any non-zero t ∈ R:

sup
x∈M

∣∣∣∣∫ ∞
−∞

eitya(y, x) dy

∣∣∣∣ ≤ CN |t|−N . (3.76)

Here CN depends only on N , the diameter R of the y-support of a and sup
x,y
|∂Ny a|.

Proof. Let t 6= 0. Applying integration by parts repeatedly (N -times), it follows that

∣∣∣∣∫ ∞
−∞

eitya(y, x) dy

∣∣∣∣ = |t|−N
∣∣∣∣∫ ∞
−∞

eity∂Ny a(y, x) dy

∣∣∣∣ ≤ R sup
x,y
|∂Ny a| · |t|−N .

3.9.2 The Weierstrass preparation theorem

Theorem 3.9.2. Let f(t, z) be an analytic function of (t, z) ∈ C1+n in a neighborhood of

(0, 0) such that (0, 0) is a simple zero of f , i.e.:

f(0, 0) = 0,
∂f

∂t
(0, 0) 6= 0.

Then there is a unique factorization

f(t, z) = (t− A(z))B(t, z),

whereA,B are analytic in a neighborhood of 0 and (0, 0) respectively. Moreover,B(0, 0) 6=

0 and A(0) = 0.

The proof of a more general version of this theorem could be found in [38, Theorem

7.5.1].
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3.9.3 Proofs of Proposition 3.4.1 and Lemma 3.5.1

Remark 3.9.3. Consider a domain D of Cd and let f : D → C be a holomorphic function.

For z ∈ Cd, write z = x + iy where x, y ∈ Rd. Now we fix a vector β in Rd and

denote Dβ = (D − iβ) ∩ Rd. If this intersection is non-empty, we may consider the

restriction k → f(k + iβ) as a real analytic function defined on a subdomain Dβ of

Rd. Thanks to Cauchy-Riemann equations of f , we do not need to make any distinction

between derivatives of f with respect to x (when f is viewed as a real analytic one) or z

(when f is considered as a complex analytic one) at every point in Dβ since

∂f

∂xl
(k + iβ) =

∂f

∂zl
(k + iβ) = −i ∂f

∂yl
(k + iβ), 1 ≤ l ≤ d.

For higher order derivatives, we use induction and the above identity to obtain

∂αx f(k + iβ) = ∂αz f(k + iβ) = (−i)|α|∂αy f(k + iβ),

for any multi-index α. We use these facts implicitly for the function λj . When dealing

with the analytic function f = λj in this part, denote ∂αλj to indicate either its x or

z-derivatives.

We also want to mention this simple relation between derivatives of λj and E:

∂αE(β) = ∂αy λj(k0 + iβ) = i|α|∂αλj(k0 + iβ).

Proof of Proposition 3.4.1.

Proof. We recall from Section 2 that V is an open neighborhood of k0 in Cd such that the

properties (P1)-(P6) are satisfied. Note that V depends only on the local structure at k0

of the dispersion branch λj of L. Denote Os = {k + itβs : k ∈ O, t ∈ [0, 1]} for each
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s ∈ Sd−1. ForC > 0 (which is defined later), setMs,C = Os∩{z ∈ Cd : |<(z)−k0| < C}

and Ns,C = Os \Ms,C (e.g., see Figure 3.1). For C and |λ| small enough, we can suppose

Ms,C b V since βs is small too. We also assume that |λ| ≤ ε0.8

Rd

iRd

iβs

[−π, π]d

Ms,CNs,C Ns,C

[−π, π]d

0

Figure 3.1: An illustration of the regions Ms,C and Ns,C when k0 ≡ 0.

For any point z = k + itβs ∈ Ms,C , we want to show if λ ∈ σ(L(z)), it forces

z = k0 + iβs. By (P3), this is the same as showing the equation λj(z) = λ has no

solution z in Ms,C except for the trivial solution z = k0 + iβs. Suppose for contradiction

λj(k + itβs) = λ = λ(βs) for some t ∈ [0, 1] and k in {k ∈ O | 0 < |k − k0| < C}. By

Taylor expanding around k0 + itβs, there is some γ ∈ (0, 1) such that

λ− λj(k0 + itβs) =

(k − k0) · ∇λj(k0 + itβs) +
∑
|α|=3

(k − k0)α

α!
∂αλj(k0 + itβs)

+

1

2
(k − k0) · Hess (λj)(k0 + itβs)(k − k0) +

∑
|α|=4

(k − k0)α

α!
∂αλj(γ(k − k0) + k0 + itβs).

(3.77)

8Recall the definition of ε0 from (P3).
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If |α| is odd, then by Remark 3.9.3 and the fact that E is real, we have

∂αλj(k0 + itβs) =
1

i|α|
∂αE(tβs) ∈ iR.

Taking the real part of the equation (3.77) to get

E(βs)− E(tβs) = −1

2
(k − k0) · Hess(E)(tβs)(k − k0) +

∑
|α|=4

(k − k0)α

α!
×

×<(∂αλj(γ(k − k0) + k0 + itβs)).

The left-hand side is bounded above by (1 − t)λ ≤ 0 because of the concavity of E

(E(tβs) ≥ tE(βs) = tλ). On the other hand, by (P5),

−1

2
(k − k0) · Hess (E)(tβs)(k − k0) ≥ 1

4
|k − k0|2 minσ(Hess (λj)(k0))

∣∣∣∣∣∣
∑
|α|=4

(k − k0)α

α!
<(∂αλj(γ(k − k0) + k0 + itβs))

∣∣∣∣∣∣ ≤ C(d)|k − k0|4 max
z∈V ,|α|=4

|∂αλj(z)|.

We simply choose C2 <
minσ(Hess (λj)(k0))

C(d) maxz∈V ,|α|=4 |∂αλj(z)|
to get a contradiction if k 6= k0.

For the remaining part, we just need to treat points k + itβs in Ns,C . We have λ ∈

ρ(L(k)),∀k ∈ Rd. The idea is to adapt the upper-semicontinuity of the spectrum of an

analytic family of typeA on Cd, following [39]. For any k ∈ O and z ∈ Cd, the composed

operators (L(k+ z)−L(k))(L(k)−λ)−1 are closed and defined on L2(Td) and by closed

graph theorem, these are bounded operators. Clearly,

L(k + z)− λ = (1 + (L(k + z)− L(k))(L(k)− λ)−1)(L(k)− λ).
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Thus, λ is in the resolvent of L(k+ z) if the operator 1 + (L(k+ z)−L(k))(L(k)− λ)−1

is invertible. Hence, it is enough to show that there is some positive constant τ such that

for any k ∈ O and |z| < τ ,

‖(L(k + z)− L(k))(L(k)− λ)−1‖op < 1/2, |k − k0| ≥ C, (3.78)

where the operator norm on L2(Td) is denoted by ‖ · ‖op. Indeed, if |λ| is small enough

so that we have max
s∈Sd−1

|βs| < τ and then (3.78) implies that λ ∈ ρ(L(k + itβs)) for any

t ∈ [0, 1].

Finally, we will use some energy estimates of linear elliptic equations and spectral

theory to obtain (3.78). Observe that,

L(k + z)− L(k) = z · A(x)(D + k) + (D + k) · A(x)z + z · A(x)z.

For v ∈ H1(Td) and |z| < 1, there is some constant C1 > 0 (independent of z) such that

‖(z · A(x)(D + k) + (D + k) · A(x)z + z · A(x)z)v‖L2(Td) ≤ C1|z| · ‖v‖H1(Td). (3.79)

Set v := (L(k) − λ)−1u for u ∈ L2(Td). Ellipticity of L(k) yields v ∈ H2(Td) and in

particular, we obtain (3.79) for such v. Testing the equation (L(k) − λ)v = u with the

function v, we derive the standard energy estimate

‖Dv‖L2(Td) ≤ C2(‖v‖L2(Td) + ‖u‖L2(Td)). (3.80)

Note that both C1 and C2 in (3.79) and (3.80) are independent of k and λ since we take k

in the bounded set O and consider |λ| to be small enough.

Suppose that |λ| is less than one-half of the length of the gap between the dispersion
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branches λj and λj−1. Due to functional calculus of the self-adjoint operator L(k), we get

‖(L(k)− λ)−1‖op = dist(λ, σ(L(k)))−1 = min{(λj(k)− λ), (λ− λj−1(k))}−1.

Now let δ1 = −1
2

maxλj−1(k) > 0 and δ2 = min
k∈O,|k−k0|≥C

λj(k). Then due to A3,

δ2 > 0. Moreover,

λ− λj−1(k) ≥ λ−max
k∈O

λj−1(k) > δ1,

and

λj(k)− λ ≥ min
k∈O,|k−k0|≥C

λj(k)− λ > δ2.

Hence,

‖(L(k)− λ)−1‖op < δ := min{δ1, δ2}−1. (3.81)

In other words, ‖v‖L2(Td) ≤ δ‖u‖L2(Td). Applying this fact together with (3.79) and

(3.80), we have

‖(L(k + z)− L(k))(L(k)− λ)−1u‖L2(Td) ≤ |z|C1‖v‖H1(Td)

≤ |z|C1C2(‖v‖L2(Td) + ‖u‖L2(Td))

≤ |z|C1C2(1 + δ)‖u‖L2(Td).

Now (3.78) is a consequence of the above estimate if we let

τ ≤ min

(
1

2C1C2(1 + δ)
, 1

)
.

Proof of Lemma 3.5.1.

Proof. From Proposition 2.2.6, the complex Bloch variety Σ := BL of the operator L is
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an analytic subset of codimension one in Cd+1. By [47, 80], there exist an entire scalar

function h(k, µ) and an entire operator-valued function I(k, µ) on Cd+1 such that

(1) h vanishes only on Σ and has simple zeros on Σ, i.e., its normal derivative is not

zero at all smooth parts of Σ.

(2) In Cd+1 \ Σ, (L(k)− µ)−1 = h(k, µ)−1I(k, µ).

In particular, (Lt,s(k)−λ)−1 = h(k+itβs, λ)−1I(k+itβs, λ) for k ∈ Rd and t ∈ [0, 1)

by Proposition 3.4.1. Due to Assumption A and (P2), if k0 + itβs ∈ V , the k-variable

function h(k, λ)−1 is equal (up to a non-vanishing analytic factor) to (λj(k+ itβs)− λ)−1

on an open discD(k0, 2ε) ⊆ V in Cd for some ε > 0. Hence, we can write the sesquilinear

form for such values of k as

(Rt,s,λf, ϕ) = R1 +R2,

where

R1 = (2π)−d
∫
O∩D(k0,ε)

(
M(k, λ)f̂(k), ϕ̂(k)

)
λj(k + itβs)− λ

dk

and

R2 = (2π)−d
∫
O\D(k0,ε)

(
L(k + itβs)− λ)−1f̂(k), ϕ̂(k)

)
dk.

Here M(k, λ) is a L2(Td)-valued analytic function on D(k0, ε) when |λ| is small. Since

f and ϕ have compact supports, their Floquet transforms f̂(k), ϕ̂(k) are analytic with

respect to k. To prove the equality (3.15), we apply the Lebesgue Dominated Convergence

Theorem. For R1, it suffices to show that the denominator in the integrand when t → 1−

is integrable over D(k0, ε) for d ≥ 2. Indeed,

|λj(k + iβs)− λ| ≥ δ

∣∣∣∣i∇E(βs) · (k − k0)− 1

2
(k − k0) · Hess (E)(βs)(k − k0)

∣∣∣∣ ,
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for some δ > 0 if ε is chosen small enough so that in the Taylor expansion of λj at k0 +iβs,

the remainder termO(|k−k0|3) is dominated by the quadratic term |k−k0|2. Furthermore,

∣∣∣∣i∇E(βs) · (k − k0)− 1

2
(k − k0) · Hess (E)(βs)(k − k0)

∣∣∣∣2 ≥ C(|〈k−k0, s〉|2+|k−k0|4),

for some constant C > 0 (independent of k). Now let v := (k − k0) and so the right hand

side of the above estimate is just |〈v, s〉|2 + |v|4 (up to a constant factor). One can apply

Hölder’s inequality to obtain

|〈v, s〉|2 + |v|4 ≥ |〈v, s〉|2 + |v′|4 ≥ C|〈v, s〉|3/2|v′|,

where v = (v1, v
′) ∈ R× Rd−1. Thus, we deduce

|λj(k + iβs)− λ|−1 ≤ C|〈v, s〉|−3/4|v′|−1/2. (3.82)

Since the function |x|−n is integrable near 0 in Rd if and only if n < d, |v′|−1/2 and

|〈v, s〉|−3/4 are integrable near 0 in Rd−1 and R respectively. Therefore, the function in the

right hand side of (3.82) is integrable near 0.

The integrability of R2 as t → 1− follows from the estimation (3.78) in the proof of

Proposition 3.4.1. Indeed,

‖(L(k + itβs)− λ)−1‖op = ‖(1− (L(k + itβs)− L(k))(λ− L(k))−1)−1(λ− L(k))−1‖op

≤ ‖(L(k)− λ)−1‖op
1− ‖(L(k + itβs)− L(k))(λ− L(k))−1‖op

.

(3.83)

By decreasing |λ|, if necessary, and repeating the arguments when showing (3.78) and
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(3.81) we derive:

1− ‖(L(k + itβs)− L(k))(λ− L(k))−1‖op ≥ 1/2, ∀k ∈ O \D(k0, ε) (3.84)

and

sup
k∈O\D(k0,ε)

‖(L(k)− λ)−1‖op <∞. (3.85)

Thanks to (3.83), (3.84), (3.85), Cauchy-Schwarz inequality and Lemma 2.2.4, we have:

sup
t∈[0,1]

∣∣∣(L(k + itβs)− λ)−1f̂(k), ϕ̂(k)
)∣∣∣ ≤ 2‖(L(k)− λ)−1‖op · ‖f̂(k)‖L2(Td)‖ϕ̂(k)‖L2(Td)

. ‖f̂(k)‖L2(Td)‖ϕ̂(k)‖L2(Td) ,∀k ∈ O \D(k0, ε)

and ∫
O\D(k0,ε)

‖f̂(k)‖L2(Td)‖ϕ̂(k)‖L2(Td) dk ≤ ‖f‖L2(Rd)‖ϕ‖L2(Rd) <∞.

This completes the proof of our lemma.

3.9.4 Regularity of eigenfunctions φ(z, x)

In this subsection, we study the regularity of the eigenfunctions φ(z, x) of the operator

L(z) with corresponding eigenvalue λj(z) (see (P4)). It is known that for each z ∈ V , the

eigenfunction φ(z, x) is smooth in x. We will claim that these eigenfunctions are smooth

in (z, x) when z is near to k0. The idea is that initially, φ(z, ·) is an analytic section of

the Hilbert bundle V × H2(Td) and then by ellipticity, it is also an analytic section of

the bundle V × Hm(Td) for any m > 0 (for statements related to Fredholm morphisms

between analytic Banach bundles, see e.g., [82]) and hence smoothness will follow.

For the sake of completeness, we provide the proof of the above claim by applying

standard bootstrap arguments in the theory of elliptic differential equations.
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Lemma 3.9.4. The function ∂αxφ(z, x) is jointly continuous on V ×Rd for any multi-index

α.

Proof. By periodicity, it suffices to restrict x to Td. LetK := V . Due to (P4), the function

z 7→ φ(z, ·) is a H2(Td)-valued analytic on some neighborhood of K. Thus,

sup
z∈K
‖φ(z, ·)‖H2(Td) <∞.

Then, we can apply bootstrap arguments for the equation

L(z)φ(z, ·) = λj(z)φ(z, ·)

to see that Mm := supz∈K ‖φ(z, ·)‖Hm(Td) is finite for any nonnegative integer m.

Now we consider z and z′ in K. Let φz,z′(x) := φ(z, x) − φ(z′, x). Then, φz,z′ is a

(classical) solution of the equation

L(z)φz,z′ = fz,z′ ,

where fz,z′ := (λj(z)φ(z, ·)− λj(z′)φ(z′, ·)) + (L(z′)− L(z))φ(z′, ·).

By induction, we will show that for any m ≥ 0,

‖φz,z′‖Hm(Td) . |z − z′|. (3.86)

The case m = 0 is clear because (P4) implies that z 7→ ‖φ(z, ·)‖L2(Td) is Lipschitz

continuous.

Next, we assume that the estimate (3.86) holds for m. As in (3.79),

‖(L(z)− L(z′))φ(z′, ·)‖Hm(Td) . |z − z′| · ‖φ(z′, ·)‖Hm+1(Td) .Mm+1|z − z′|. (3.87)
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Using triangle inequalities, the estimates (3.86), (3.87) and analyticity of λj , we get

‖fz,z′‖Hm(Td) . ‖λj(z)φ(z, ·)− λj(z′)φ(z′, ·)‖Hm(Td) + ‖(L(z)− L(z′))φ(z′, ·)‖Hm(Td)

. |λj(z)| · ‖φz,z′‖Hm(Td) +Mm|λj(z)− λj(z′)|+Mm+1|z − z′|

. |z − z′|.

(3.88)

Notice that for any m ≥ 0, the following standard energy estimate holds (see e.g., [22, 28,

53]):

‖φz,z′‖Hm+2(Td) . ‖fz,z′‖Hm(Td) + ‖φz,z′‖L2(Td). (3.89)

Combining (3.88) and (3.89), we deduce that ‖φz,z′‖Hm+2(Td) . |z − z′|. Hence, (3.86)

holds for m+ 2. This finishes our induction.

Applying the Sobolev embedding theorem, ‖φz,z′‖Cm(Td) . |z − z′| for any m ≥ 0.

In other words, φ ∈ C(K,Cm(Td)) for any m. Since C(K × Td) = C(K,C(Td)), this

completes the proof.

Notation 3.9.5. Consider a z-parameter family of linear partial differential operators {L(z)}

where z ∈ Rd. SupposeL(x, ξ, z) is the symbol ofL(z). Whenever it makes sense, the dif-

ferential operator
∂L(z)

∂zl
is the one whose symbol is

∂L

∂zl
(x, ξ, z) for any l ∈ {1, 2, . . . , d}.

Proposition 3.9.6. Assume D is an open disc centered at k0 in Rd such that D± iβs b V

for any s ∈ Sd−1. Then all eigenfunctions φ(k ± iβs, x) are smooth on a neighborhood of

D × Rd. Furthermore, all derivatives of φ(k ± iβs, x) are bounded on D × Rd uniformly

in s, i.e., for any multi-indices α, β:

sup
(s,k,x)∈Sd−1×D×Rd

|∂αk ∂βxφ(k ± iβs, x)| <∞.

Proof. Pick any open disc D′ in Rd so that D ± iβs ⊂ D′ ± iβs ⊆ V . We will prove that
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all eigenfunctions are smooth on the domain D′ × Rd. Also, it is enough to consider the

function φ(k + iβs) since the other one is treated similarly.

First, we show that
∂φ

∂kl
(k + iβs, x) is continuous for any 1 ≤ l ≤ d. By Lemma

3.9.4, the function (k, x) 7→ φ(k+ iβs, x) is continuous on D′×Td. We consider any two

complex-valued test functions ϕ ∈ C∞c (D′) and ψ ∈ C∞(Td). Testing the equation of the

eigenfunction φ(k + iβs, x) with ψ and
∂ϕ

∂kl
, we derive

∫
D′

∫
Td

(L(k + iβs)− λj(k + iβs))φ(k + iβs, x)ψ(x)
∂ϕ

∂kl
(k) dx dk = 0.

Observe that L(k + iβs)
∗ = L(k − iβs) and

(
∂L(k − iβs)

∂kl

)∗
=

∂L(k + iβs)

∂kl
. We

integrate by parts to derive

0 =

∫
D′

((L(k + iβs)− λj(k + iβs))φ(k + iβs, x), ψ(x))L2(Td)

∂ϕ

∂kl
(k) dk

=

∫
D′

(
φ(k + iβs, x),

(
L(k − iβs)− λj(k + iβs)

)
ψ(x)

)
L2(Td)

∂ϕ

∂kl
(k) dk

=

∫
D′

(
− ∂φ
∂kl

(k + iβs, x),
(
L(k − iβs)− λj(k + iβs)

)
ψ(x)

)
L2(Td)

ϕ(k) dk

−
∫
D′

(
φ(k + iβs, x),

∂L(k − iβs)
∂kl

ψ(x)− ∂λj
∂kl

(k + iβs)ψ(x)

)
L2(Td)

ϕ(k) dk

=

∫
D′

(
(−L(k + iβs) + λj(k + iβs))

∂φ

∂kl
(k + iβs, x), ψ(x)

)
L2(Td)

ϕ(k) dk

−
∫
D′

((
∂L(k + iβs)

∂kl
− ∂λj
∂kl

(k + iβs)

)
φ(k + iβs, x), ψ(x)

)
L2(Td)

ϕ(k) dk.

(3.90)

We introduce

φl(k, x) :=
∂φ

∂kl
(k + iβs, x),

G(k) := −L(k + iβs) + λj(k + iβs),

H(k, x) :=

(
∂L(k + iβs)

∂kl
− ∂λj
∂kl

(k + iβs)

)
φ(k + iβs, x).
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By invoking the previous lemma, the Lipschitz continuity of the Cm+2(Td)-valued func-

tion φ(k + iβs, ·) implies that the mapping k 7→ H(k, ·) must be Lipschitz as a Cm(Td)-

valued function on D′ for any m ≥ 0. On the other hand, the H2(Td)-valued func-

tion φl(k, ·) is also Lipschitz on D′ due to (P4). Hence, both (G(k)φl(k, ·), ψ)L2(Td) and

(H(k, ·), ψ)L2(Td) are continuous on D′ for any test function ψ. The continuity let us con-

clude from (3.90) that for every k ∈ D′, φl(k, ·) is a weak solution of the equation

G(k)φl(k, x) = H(k, x). (3.91)

We interpret (3.91) in the classical sense since all the coefficients of this equation are

smooth. Consider any k1, k2 in D′ and subtract the equation corresponding to k1 from

the one corresponding to k2 to obtain the equation for the oscillation function φl(k1, ·) −

φl(k2, ·):

G(k1)(φl(k1, x)− φl(k2, x)) = (G(k2)−G(k1))φl(k2, x) + (H(k1, x)−H(k2, x)).

Note that due to regularities of λj , H and the fact that the differential operator G(k) de-

pends analytically on k, we get

‖H(k1, ·)−H(k2, ·)‖Hm(Td)+‖(G(k1)−G(k2))φl(k2, ·)‖Hm(Td) = O(|k1−k2|), ∀m ∈ N.

Combining this with the uniform boundedness in k of the supremum norms of all coeffi-

cients of the differential operator G(k1), we obtain

‖φl(k1, ·)− φl(k2, ·)‖Hm(Td) = O(|k1 − k2|),

by using energy estimates as in the proof of Lemma 3.9.4. An application of the Sobolev
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embedding theorem shows that ∂βxφl(k, x) is continuous on D′ × Td for any multi-index

β.

To deduce continuity of higher derivatives ∂βx∂
α
k φ(k + iβs) (|α| > 1, |β| ≥ 0), we

induct on |α| and repeat the arguments of the |α| = 1 case.

Finally, the last statement of this proposition also follows since all of our estimates

hold uniformly in s.

Observation 3.9.7. 1. The property (P4) is crucial in order to bootstrap regularities of

eigenfunctions φ(k ± iβs).

2. If one just requires φ(k±iβs) ∈ Cm(D×Rd) for certainm > 0 then the smoothness

on coefficients of L could be relaxed significantly (see [28, 53]).

3.10 Concluding remarks

1. The condition that the potentials A, V are infinitely differentiable is an overkill. The

Fredholm property of the corresponding Floquet operators is essential, which can be

obtained under much weaker assumptions.

2. The main result of this chapter assumes the central symmetry (evenness) of the rel-

evant branch of the dispersion curve λj(k), which does not hold for instance for

operators with periodic magnetic potentials [24, 69]. Note that the result of [52] at

the spectral edge does not require such a symmetry. It seems that in the inside-the-

gap situation one also should not need such a symmetry. However, we have not been

able to do so here, and thus were limited to the case of high symmetry points of the

Brillouin zone.

3. In the case when λ is below the whole spectrum, the result of this chapter implies

[60, Theorem 1.1] for self-adjoint operators.
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4. GREEN’S FUNCTION ASYMPTOTICS OF PERIODIC ELLIPTIC OPERATORS

ON ABELIAN COVERINGS OF COMPACT MANIFOLDS.

4.1 Introduction

Many classical properties of solutions of periodic Schrödinger operators on Euclidean

spaces were generalized successfully to solutions of periodic Schrödinger operators on

coverings of compact manifolds (see e.g., [3, 15, 16, 45, 50, 56, 74, 75]). Hence, a question

arises of whether one can obtain analogs of the results of Chapter 3 and the paper [52] as

well. The main theorems 4.3.1 and 4.3.4 of this chapter provide such results for opera-

tors on abelian coverings of compact Riemannian manifolds. The results are in line with

Gromov’s idea that the large scale geometry of a co-compact normal covering is captured

mostly by its deck transformation group (see e.g., [17, 31, 68]). For instance, the dimen-

sion of the covering manifold does not enter explicitly to the asymptotics. Rather, the

torsion-free rank d of the abelian deck transformation group influences these asymptotics

significantly. One can find a similar effect in various results involving analysis on Rieman-

nian co-compact normal coverings such as the long time asymptotic behaviors of the heat

kernel on a noncompact abelian Riemannian covering [46], or the analogs of Liouville’s

theorem [50] (see also [68] for an excellent survey on analysis on co-compact coverings).

We discuss now the main thrust of this chapter.

Let X be a noncompact Riemannian manifold that is a normal abelian covering of a

compact Riemannian manifoldM with the deck transformation groupG. For any function

u on X and any g ∈ G, we denote by ug the “shifted" function

ug(x) = u(g · x),
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for any x ∈ X . Consider a bounded below second-order elliptic operatorL on the manifold

X with real and smooth coefficients. We assume that L is a periodic operator on X , i.e.,

the following invariance condition holds:

Lug = (Lu)g,

for any g ∈ G and u ∈ C∞c (X). The operator L, with the Sobolev space H2(X) as its

domain, is an unbounded self-adjoint operator in L2(X).

As one could expect from Remark 2.2.7, the following fact for such operators on co-

compact abelian coverings is well-known (see e.g., [16, 20, 47, 48, 66, 74, 75]):

Theorem 4.1.1. The spectrum of the above operator L in L2(X) has a band-gap struc-

ture:

σ(L) =
∞⋃
j=1

[αj, βj],

such that αj ≤ αj+1, βj ≤ βj+1 and limj→∞ αj =∞.

The bands can overlap when the dimension of the covering X is greater than 1.

In this chapter, we study Green’s function asymptotics for the operator L at an energy

level λ ∈ R, such that λ belongs to the union of all closures of finite spectral gaps1. We

divide this into two cases:

• Case I: (Spectral gap interior) The level λ is in a finite spectral gap (βj, αj+1) such

that λ is close either to the spectral edge βj or to the spectral edge αj+1.

• Case II: (Spectral edge case) The level λ coincides with one of the spectral edges

of some finite spectral gap, i.e., λ = αj+1 (lower edge) or λ = βj (upper edge) for

some j ∈ N.
1All of the results still hold for the case when λ does not exceed the bottom of the spectrum, i.e. for the

semi-infinite gap.
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In Case I, the Green’s functionGλ(x, y) is the Schwartz kernel of the resolvent operator

Rλ,L := (L−λ)−1, while in Case II, it is the Schwartz kernel of the weak limit of resolvent

operators Rλ,L := (L− λ± ε)−1 as ε→ 0 (the sign ± depends on whether λ is an upper

or a lower spectral edge). Note that in the flat case X = Rd, Green’s function asymptotics

of periodic elliptic operators were obtained in Chapter 3 for Case I, and in [52] for Case II.

As in the previous chapter (see also [52]), we will deduce all asymptotics from an assumed

“generic" spectral edge behavior of the dispersion relation of the operator L.

The organization of the chapter is as follows. In Subsection 4.2.1, we will review

some general notions and results about group actions on abelian coverings, and then in

Subsection 4.2.2, we introduce additive and multiplicative functions defined on an abelian

covering, which will be needed for writing down the main formulae of Green’s function

asymptotics. Subsection 4.2.3 contains not only a brief introduction to periodic elliptic

operators on abelian coverings, but also the necessary notations and assumptions for for-

mulating the asymptotics. The main results of this chapter are stated in Section 4.3. In

Section 4.4, the Floquet-Bloch theory is recalled and the problem is reduced to studying

a scalar integral. Some auxiliary statements that appeared in Chapter 3 and [52] are col-

lected in Section 4.5 for reader’s convenience, and the final proofs of the main results are

provided in Section 4.6. Section 4.7 provides the proofs of some technical claims that

were postponed from previous sections.

4.2 Notions and preliminary results

4.2.1 Group actions and abelian coverings

LetX be a noncompact smooth Riemannian manifold of dimension n equipped with an

isometric, properly discontinuous, free, and co-compact action of an finitely generated

abelian discrete group G. The action of an element g ∈ G on x ∈ X is denoted by

g · x. Due to our conditions, the orbit space M = X/G is a compact smooth Riemannian
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manifold of dimension nwhen equipped with the metric pushed down fromX . We assume

that X and M are connected. Thus, we are dealing with a normal abelian covering of a

compact manifold

X
π−→M(= X/G),

where G is the deck group of the covering π.

Let dX(·, ·) be the distance metric on the Riemannian manifold X . It is known that

X is a complete Riemannian manifold since it is a Riemannian covering of a compact

Riemannian manifold M (see e.g., [17]). Thus, for any two points p and q in X , dX(p, q)

is the length of a length minimizing geodesic connecting these two points.

Let S be any finite generating set of the deck group G. We define the word length |g|S

of g ∈ G to be the number of generators in the shortest word representing g as a product

of elements in S:

|g|S = min{n ∈ N | g = s1 . . . sn, si ∈ S ∪ S−1}.

The word metric dS on G with respect to S is the metric on G defined by the formula

dS(g, h) = |g−1h|S

for any g, h ∈ G.

We introduce a notion in geometric group theory due to Gromov that we will need here

(see e.g., [57, 62]).

Definition 4.2.1. Let Y, Z be metric spaces. A map f : Y → Z is called a quasi-isometry,

if the following conditions are satisfied:
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• There are constants C1, C2 > 0 such that

C−1
1 dY (x, y)− C2 ≤ dZ(f(x), f(y)) ≤ C1dY (x, y) + C2

for all x, y ∈ Y .

• The image f(Y ) is a net in Z, i.e., there is some constant C > 0 so that if z ∈ Z,

then there exists y ∈ Y such that dZ(f(y), z) < C.

We remark that given any two finite generating sets S1 and S2 of G, the two word

metrics dS1 and dS2 on G are equivalent (see e.g., [62, Theorem 1.3.12]).

The next result, which directly follows from the Švarc-Milnor lemma (see e.g., [57,

Lemma 2.8], [62, Proposition 1.3.13]), establishes a quasi-isometry between the word

metric dS(·, ·) of the deck group G and the distance metric dX(·, ·) of the Riemannian

covering X of a closed connected Riemannian manifold M .

Proposition 4.2.2. For any x ∈ X , the map

(G, dS)→ (X, dX)

g 7→ g · x

given by the action of the deck transformation group G on X is a quasi-isometry.

Since G is a finitely generated abelian group, its torsion free subgroup is a free abelian

subgroup Zd of finite index. Hence, we obtain a normal Zd-covering

X →M ′(= X/Zd),
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and a normal covering of M with a finite number of sheets

M ′ →M.

Then M ′ is still a compact Riemannian manifold. By switching to the normal subcovering

X
Zd−→ M ′, we assume from now on that the deck group G is Zd and substitute M ′ for

M . This will not reduce generality of our results 2.

Notation 4.2.3. (a) Hereafter, we choose the symmetric set {−1, 1}d to be the generating

set S of Zd. Then the function z = (z1, . . . , zd) 7→
∑d

j=1 |zj| is the word length

function | · |S on Zd associated with S.

(b) For a general Riemannian manifold Y , we denote by µY the Riemannian measure

of Y . We use the notation L2(Y ) for the Lebesgue function space L2(Y, µY ). Also,

the notation L2
comp(Y ) stands for the subspace of L2(Y ) consisting of compactly sup-

ported functions. It is worth mentioning that in our case, the Riemannian measure

µX is the lifting of the Riemannian measure µM to X . Thus, µX is a G-invariant

Riemannian measure on X .

(c) We recall that a fundamental domain F (M) for M in X (with respect to the action of

G) is an open subset of X such that for any g 6= e, F (M) ∩ g · F (M) = ∅ and the

subset

X \
⋃
g∈G

g · F (M)

has measure zero. One can refer to [7] for constructions of such fundamental domains.

Henceforth, we use the notation F (M) to stand for a fixed fundamental domain for M

in X .
2The same reduction holds for any finitely generated virtually abelian deck group G.
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Remark 4.2.4. The closure of F (M) contains at least one point in X from every orbit of

G, i.e.,

X =
⋃
g∈G

g · F (M). (4.1)

Thus, if F : X → R is the lifting of an integrable function f : M → R to X , then

∫
M

f(x)dµM(x) =

∫
F (M)

F (x)dµX(x). (4.2)

4.2.2 Additive and multiplicative functions on abelian coverings

To formulate our main results in Section 4.3, we need to introduce an analog of expo-

nential type functions on the noncompact covering X .

We begin with a notion of additive and multiplicative functions on X (see [56]) 3.

Definition 4.2.5. • A real smooth function u on X is said to be additive if there is a

homomorphism α : G→ R such that

u(g · x) = u(x) + α(g), for all (g, x) ∈ G×X.

• A real smooth function v on X is said to be multiplicative if there is a homomor-

phism β from G to the multiplicative group R \ {0} such that

v(g · x) = β(g)v(x), for all (g, x) ∈ G×X.

• Let m ∈ N. A function α (resp. β) that maps X to Rm is called a vector-valued

additive (resp. multiplicative) function on X if every component of α (resp. β) is

also additive (resp. multiplicative) on X .

3The definition can apply to any covering manifold with a discrete deck group.
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Following [50,56], we can define explicitly some additive and multiplicative functions

for which the group homomorphisms α, β appearing in Definition 4.2.5 are trivial.

Definition 4.2.6. Let f be a nonnegative function in C∞c (X) such that f is strictly positive

on F (M). For any j = 1, . . . , d, we define the following function

Ej(x) =
∑
g∈Zd

exp (−gj)f(g · x).

We also put E(x) := (E1(x), . . . , Ed(x)).

Then Ej is a positive function satisfying the multiplicative property Ej(g · x) =

exp (gj)Ej(x), for any g = (g1, . . . , gd) ∈ Zd. The multiplicative function E plays a

similar role to the one played by the exponential function ex on the Euclidean space Rd.

By taking logarithms, we obtain an additive function on X , which leads to the next

definition.

Definition 4.2.7. We denote by h the smooth Rd-valued function on X

h(x) := (logE1(x), · · · , logEn(x)).

Then h = (h1, . . . , hd) with hj(x) = logEj(x). Thus, h satisfies the following additivity:

h(g · x) = h(x) + g, for all (g, x) ∈ G×X. (4.3)

Here we use the natural embedding G = Zd ⊂ Rd.

Clearly, the definitions of functionsE and h depend on the choice of the function f and

the fundamental domain F (M). So, there is no canonical choice for constructing additive

and multiplicative functions. Nevertheless, a more invariant approach to defining additive

functions on co-compact coverings can be found in Appendix A, for instance.
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The following important comparison between the Riemannian metric and the distance

from the additive function h in Definition 4.2.7 will be needed later.

Proposition 4.2.8. There are some positive constants Rh (depending on h) and C > 1

such that whenever dX(x, y) ≥ Rh, we have

C−1 · dX(x, y) ≤ |h(x)− h(y)| ≤ C · dX(x, y).

Here | · | is the Euclidean distance on Rd, and the constant C is independent of the choice

of h.

As a consequence, the pseudo-distance dh(x, y) := |h(x) − h(y)| → ∞ if and only if

dX(x, y)→∞.

The proof of this statement is given in Section 4.7.

Definition 4.2.9. For any additive function h, Ah is the set consisting of unit vectors

s ∈ Sd−1 such that there exist two points x and y satisfying dX(x, y) > Rh and

s = (h(x)− h(y))/|h(x)− h(y)|.

The set Ah is called the admissible set of the additive function h, and its elements are

admissible directions of h.

For the proof of the following proposition, one can see in Section 4.7.

Proposition 4.2.10. For any additive function h on X , one has

Qd ∩ Sd−1 = {g/|g| | g ∈ Zd \ {0}} ⊂ Ah. (4.4)

Hence, the admissible set Ah of h is dense in the sphere Sd−1. In particular, when d = 2,

Ah is the whole unit circle S1.
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Remark 4.2.11. When the dimension n of X is less than (d − 1)/2 (e.g., if d > 5 and X

is the standard two dimensional jungle gym JG2 in Rd, see [63]), the (d− 1)-dimensional

Lebesgue measure of the admissible set Ah of any additive function h on X is zero. To

see this, we first denote by Xh the 2n-dimensional smooth manifold {(x, y) ∈ X × X |

dX(x, y) > Rh}, and then consider the smooth mapping:

Ψ : Xh → Sd−1

(x, y) 7→ h(x)− h(y)

|h(x)− h(y)|
.

Then Ah is the range of Ψ. Since dimXh < dimSd−1, every point in the range of Ψ is

critical and thus, Ah has measure zero by Sard’s theorem.

Example 4.2.12.

• Here is a family of non-trivial examples of additive functions in the flat case, i.e.,

when the covering space X is Rd and the base is the d-dimensional torus Td. Let

d ≥ 1 and ϕ be a real smooth function in Rd such that ϕ is Zd-periodic. It is

shown in [5] that there exists a unique map Fϕ = ((Fϕ)1, . . . , (Fϕ)d) : Rd → Rd

satisfying Fϕ(0) = 0, the additive condition (4.3), i.e., Fϕ(x + n) = Fϕ(x) + n for

any (x, n) ∈ Rd × Zd, and the equation

∆(Fϕ)i = ∇ϕ · ∇(Fϕ)i,

for any 1 ≤ i ≤ d. Note that Fϕ is just the identity mapping in the trivial case when

ϕ = 0. Moreover, it is also known [5] that when d = 2, Fϕ is a diffeomorphism of Rd

onto itself. In particular, for any Z2-periodic functionϕ, |Fϕ(x)−Fϕ(y)| ≥ Cϕ|x−y|

for any x, y ∈ R2 for some Cϕ > 0. However, when d ≥ 3, Fϕ may admit a critical

point for some Zd-periodic function ϕ.
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• Let X
p−→ M , Y

q−→ N be normal Zd1 and Zd2 coverings of compact Riemannian

manifolds M and N respectively. Then X×Y p×q−−→M ×N is also a normal Zd1+d2

covering ofM×N . Consider any Rd1-valued function h1 (resp. Rd2-valued function

h2) defined on X (resp. Y ). Let us denote by h1 ⊕ h2 the following Rd1+d2-valued

function on X × Y :

(h1 ⊕ h2)(x, y) = (h1(x), h2(y)), (x, y) ∈ X × Y.

Then it is clear that h1 ⊕ h2 is additive (resp. multiplicative) on X × Y if and only

if both functions h1 and h2 are additive (resp. multiplicative). Moreover, Ah1⊕h2 ⊆

{(a1 · Ah1 , a2 · Ah2) | 0 < a1, a2 < 1 and a2
1 + a2

2 = 1}.

4.2.3 Some notions and assumptions

Let L be a bounded from below, real and symmetric second-order elliptic4 operator

on X with smooth5 coefficients such that the operator commutes with the action of G.

An operator that commutes with the action of G is called a G-periodic (or sometimes

periodic) operator for brevity.

Notice that on a Riemannian co-compact covering, any G-periodic elliptic operator

with smooth coefficients is uniformly elliptic in the sense that

|L−1
0 (x, ξ)| ≤ C|ξ|−2, (x, ξ) ∈ T ∗X, ξ 6= 0.

Here |ξ| is the Riemannian length of (x, ξ) and L0(x, ξ) is the principal symbol of L.

The periodic operator L can be pushed down to an elliptic operator LM onM and thus,

L is the lifting of an elliptic operator LM to X . By a slight abuse of notation, we will use

4The ellipticity is understood in the sense of the nonvanishing of the principal symbol of the operator L
on the cotangent bundle of the underlying manifold (with the zero section removed).

5The smoothness condition is assumed for avoiding lengthy technicalities and it can be relaxed.
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the same notation L for both elliptic operators acting on X and M .

Under these assumptions on L, the symmetric operator L with the domain C∞c (X)

is essentially self-adjoint in L2(X), i.e., the minimal operator Lmin coincides with the

maximal operator Lmax (see Chapter 2 or [71] for notation Lmin and Lmax). This fact

can be found in [7, Proposition 3.1], for instance 6. Hence, there exists a unique self-

adjoint extension in the Hilbert space L2(X) of L, which we denote also by L. Since L

is a uniformly elliptic operator on the manifold X of bounded geometry, its domain is the

Sobolev space H2(X) [71, Proposition 4.1], and henceforward, we always work with this

self-adjoint operator L.

From now on, we fix an additive function h (see Definition 4.2.7). The following

lemma is a preparation for the next definition.

Lemma 4.2.13. For any k ∈ Cd, we have

e−ik·h(x)L(x,D)eik·h(x) = L(x,D) +B(k),

whereB(k) is a smooth differential operator of order 1 onX that commutes with the action

of the deck groupG. Thus by pushing down, the differential operators e−ik·h(x)L(x,D)eik·h(x)

and B(k) can be considered also as differential operators on M . Moreover, given any

m ∈ R, the mapping

k 7→ e−ik·h(x)L(x,D)eik·h(x)

is analytic in k as a B(Hm+2(M), Hm(M))-valued function.

Proof. It is standard that the commutator [L, eik·h(x)] is a differential operator of order 1

6In [7], Atiyah proves for symmetric elliptic operators acting on Hermitian vector bundles over any
general co-compact covering manifold (not necessary to be a Riemannian covering). Later, in [16], Brüning
and Sunada extend Atiyah’s arguments to the case including compact quotient spaceX/Gwith singularities.
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on X . Now one can write

B(k) = e−ik·h(x)Leik·h(x) − L = e−ik·h(x)[L, eik·h(x)]

to see that B(k) is also a smooth differential operator of order 1. Also, one can check

that B(k) commutes with the action of G by using G-periodicity of the operator L and

additivity of h. This proves the first claim of the lemma. From a standard fact (see e.g.,

[36, Theorem 2.2]), the operator e−ik·h(x)Leik·h(x) defined on X can be written as a sum∑
|α|≤2 k

αLα, where Lα is a G-periodic differential operator on X of order 2− |α| which

is independent of k. By pushing the above sum down to a sum of operators on M , the

claim about analyticity in k is then obvious.

Definition 4.2.14. For any k ∈ Cd, we denote by L(k) the elliptic operator

e−ik·h(x)L(x,D)eik·h(x)

in L2(M) with the domain the Sobolev space H2(M).

The operator L(k) is self-adjoint in L2(M) for each k ∈ Rd, with the domain H2(M).

Due to ellipticity of L, each of the operators L(k) (k ∈ Rd) has discrete real spectrum and

thus, we can single out continuous and piecewise-analytic band functions λj(k) for each

j ∈ N as before. By Lemma 4.2.13, the operators L(k) are perturbations of the self-adjoint

operator L(0) by lower order operators B(k) for each k ∈ Cd. Consequently, the spectra

of the operators L(k) on M are all discrete (see [4, pp.180-190]). In a similar manner to

the flat case, we have:

Theorem 4.2.15. [16, 20, 45, 47, 66, 74, 75] The spectrum of L is the union of all the

spectra of L(k) when k runs over the Brillouin zone (or any its shifted copy), i.e., for any
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quasimomentum k0 ∈ Rd:

σ(L) =
⋃

k∈k0+[−π,π]d

σ(L(k)) =
⋃

k∈k0+[−π,π]d

{λj(k) | j ∈ N}. (4.5)

We recall the notions of Bloch variety and Fermi surface from Chapter 2.

Definition 4.2.16. A Bloch solution with quasimomentum k of the equationL(x,D)u =

0 is a solution of the form

u(x) = eik·h(x)φ(x),

where h is any fixed additive function onX and the function φ is invariant under the action

of the deck transformation group G.7

Using the above definition of Bloch solution with quasimomentum k, one can define

the Bloch variety and the Fermi surfaces of the operator L as in Definition 2.2.5.

Without loss of generality, it is enough to assume henceforth that 0 is the spectral edge

of interest (by adding a constant into the operator L if necessary) and there is a spectral

gap below this spectral edge 0. Therefore, 0 is the lower spectral edge of some spectral

band 8, i.e., 0 is the minimal value of some band function λj(k) for some j ∈ N over the

Brillouin zone.

From now on, we will impose Assumption A in Chapter 3 on the band function λj .

Remark 4.2.17.

(a) For the flat case, the main theorem in [44] shows that the conditions A1 and A2 are

‘generically’ satisfied, i.e., they can be achieved by small perturbation of the potential

of a periodic Schrödinger operator. The same proof in [44] still works for periodic

Schrödinger operators on a general abelian covering.

7It is easy to see that this definition is independent of the choice of h.
8The upper spectral edge case is treated similarly.

103



(b) We shall only use this condition A5 for the spectral gap interior case.

(c) Due to results of [43] (in the flat case X = Rd) and of [45] (in the general case),

all these assumptions A1-A5 hold at the bottom of the spectrum for non-magnetic

Schrödinger operators.

Here are some notations that will be used throughout this chapter.

Notation 4.2.18. For any two functions f and g defined on X×X , if there exist constants

C > 0 and R > 0 such that |f(x, y)| ≤ C|g(x, y)| whenever dX(x, y) > R, we write

f(x, y) = O(g(x, y)).

We say that a set W in Cd is symmetric if for any z ∈ W , we have z ∈ W .

The following proposition will play a crucial role in establishing Theorem 4.3.1. We

omit the proof since it requires no change from our discussion in Chapter 3.

Proposition 4.2.19. There exists an ε0 > 0 and a symmetric open subset V ⊂ Cd con-

taining the quasimomentum k0 from the Assumption A such that the band function λj in

Assumption A has an analytic continuation into a neighborhood of V , and the following

properties hold for any z in a symmetric neighborhood of V :

(P1) λj(z) is a simple eigenvalue of L(z).

(P2) |λj(z)| < ε0 and B(0, ε0) ∩ σ(L(z)) = {λj(z)}.

(P3) There is a nonzero G-periodic function φz defined on X such that

L(z)φz = λj(z)φz.

Moreover, z 7→ φz can be chosen analytic as a H2(M)-valued function.

(P4) 2<(Hess (λj)(z)) > minσ(Hess (λj)(k0)) · Id×d.

(P5) F (z) := (φ(z, ·), φ(z, ·))L2(M) 6= 0.

104



Let V = {β ∈ Rd | k0+iβ ∈ V }.Now we introduce the functionE(β) := λj(k0+iβ),

which is defined on V . The next lemma (see also Chapter 3) is the only place in this chapter

where the condition A5 is used.

Lemma 4.2.20. Assume the condition A5. Then E is a real-valued function. By reducing

the neighborhood V in Proposition 4.2.19 if necessary, the function E can be assumed

real analytic and strictly concave function from V to R such that its Hessian at any point

β in V is negative-definite.

For λ ∈ R, we put Γλ := {β ∈ V : E(β) = λ}.

Due to Lemma 4.2.20, there exists a diffeomorphism β from Sd−1 onto Γλ such that

∇E(βs) = −|∇E(βs)|s.

In addition, lim|λ|→0 maxs∈Sd−1 |βs| = 0. By letting |λ| be sufficiently small, we will sup-

pose that there is an r0 > 0 (independent of s) such that

{k + itβs | (t, s) ∈ [0, 1]× Sd−1, |k − k0| ≤ r0} ⊂ V. (4.6)

4.3 The main results

We recall that h is a fixed additive function (see Definition 4.2.7).

First, we consider the case when λ is inside a gap and is near to one of the edges of

the gap. The following result is an analog for abelian coverings of compact Riemannian

manifolds of Theorem 3.2.5.

Theorem 4.3.1. (Spectral gap interior)

Suppose that d ≥ 2 and the conditions A1-A5 are satisfied. For λ < 0 sufficiently close

to 0 (depending on the dispersion branch λj and the operator L), the Green’s function Gλ
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of L at λ admits the following asymptotics as dX(x, y)→∞:

Gλ(x, y) =
e(h(x)−h(y))(ik0−βs)

(2π|h(x)− h(y)|)(d−1)/2
· |∇E(βs)|(d−3)/2

det (−Ps Hess (E)(βs)Ps)1/2

× φk0+iβs(x)φk0−iβs(y)

(φk0+iβs , φk0−iβs)L2(M)

+ e(h(y)−h(x))·βsr(x, y).

(4.7)

Here

s = (h(x)− h(y))/|h(x)− h(y)| ∈ Ah,

and Ps is the projection from Rd onto the tangent space of the unit sphere Sd−1 at the point

s. Also, there is a constant C > 0 (independent of s and of the choice of h) such that the

remainder term r satisfies

|r(x, y)| ≤ dX(x, y)−d/2,

when dX(x, y) is large enough.

By using rational admissible directions (see (4.4)) in the formula (4.7), the large scale

behaviors of the Green’s function along orbits of the G-action admit the following nice

form in which the additive function h is absent.

Corollary 4.3.2. Under the same notations and hypotheses of Theorem 4.3.1 and suppose

that λ < 0 is close enough to 0, as |g| → ∞ (g ∈ Zd), we have

Gλ(x, g · x) =
eg·(ik0−βg/|g|)

(2π|g|)(d−1)/2
·

|∇E(βg/|g|)|(d−3)/2

det (−Pg/|g|Hess (E)(βg/|g|)Pg/|g|)1/2

×
φk0+iβg/|g|(x)φk0−iβg/|g|(g · x)

(φk0+iβg/|g| , φk0−iβg/|g|)L2(M)

+ eg·βsO(|g|−d/2).

(4.8)

We also give another interpretation of Theorem 4.3.1 in the special case X = R2 as

follows:

Corollary 4.3.3. Let ϕ be any real, Z2-periodic and smooth function on R2, and we recall
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the notation Fϕ from Example 4.2.12. Let s be any unit vector in R2 and y ∈ R2. Then as

|t| → ∞ (t ∈ R), the Green’s function Gλ of L at λ (≈ 0) has the following asymptotics

Gλ(F
−1
ϕ (ts+ Fϕ(y)), y) =

ets·(ik0−βs)

(2π|∇E(βs)| · det (−Ps Hess (E)(βs)Ps) · |t|)1/2

×
φk0+iβs(F

−1
ϕ (ts+ Fϕ(y)))φk0−iβs(y)

(φk0+iβs , φk0−iβs)L2(T2)

+ ets·βsO(|t|−1).

We now switch to the case when λ is on the boundary of the spectrum. The following

result is a generalization of [52, Theorem 2].

Theorem 4.3.4. (Spectral edge case)

Let d ≥ 3, the operator L satisfy the assumptions A1-A4, and R−ε = (L + ε)−1 for a

small ε > 0 denote the resolvent of L near the spectral edge λ = 0 (which exists, due to

Assumption A). Then:

i) For any φ, ϕ ∈ L2
comp(X), as ε→ 0, we have:

〈R−εφ, ϕ〉 → 〈Rφ, ϕ〉.

for an operator R : L2
comp(X)→ L2

loc(X).

ii) The Schwartz kernel G(x, y) of the operator R, which we call the Green’s function

of L (at the spectral edge 0), has the following asymptotics when dX(x, y)→∞:

G(x, y) =
Γ(d−2

2
)ei(h(x)−h(y))·k0

2πd/2
√

detH|H−1/2(h(x)− h(y))|d−2
· φk0(x)φk0(y)

‖φk0‖2
L2(M)

×
(
1 +O

(
dX(x, y)−1

))
+O

(
dX(x, y)1−d) , (4.9)
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where H is the Hessian matrix of λj at k0.

Remark 4.3.5.

(a) An interesting feature in the main results is that the dimension n of the covering man-

ifold X does not explicitly enter into the asymptotics (4.7) and (4.9) (especially, see

also (4.8)). Anyway, it certainly influences the geometry of the dispersion curves and

therefore the asymptotics too. However, as the Riemannian distance of x and y be-

comes larger, one can see that in the asymptotics, the role of the dimension n is rather

limited, while the influence of the rank d of the torsion-free subgroup of the deck

group G is stronger.

(b) Note that for a periodic elliptic operator of second order on Rd, at the bottom of

its spectrum, the operator is known to be critical when the dimension d ≤ 2 (see

[56, 60, 64]). So, the assumption d ≥ 3 is needed in Theorem 4.3.4.

Proving Theorem 4.3.4 by generalizing [52, Theorem 2] is similar to showing Theorem

4.3.1 by generalizing Theorem 3.2.5. Thus, after finishing the proof of Theorem 4.3.1, we

will sketch briefly the proof of Theorem 4.3.4 in Section 4.6.

We outline the general strategy of both the proofs of Theorem 4.3.1 and Theorem 4.3.4.

As in Chapter 3 and [52], the idea is to show that only one branch of the dispersion relation

λj appearing in the Assumption A will control the asymptotics.

• Step 1: We use the Floquet transform to reduce the problems of finding asymptotics

of Green’s functions to the problems of obtaining asymptotics of some integral ex-

pressions with respect to the quasimomentum k.

• Step 2: We localize these expressions around the quasimomentum k0 and then we

cut an “infinite-dimensional" part of the operator to deal only with the multiplication

operator by the dispersion branch λj .
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• Step 3: The dispersion curve around this part is almost a paraboloid according to

the assumption A4, thus, we can reduce this piece of operator to the normal form

in the free case. In this step, we obtain some scalar integral expressions which are

close to the ones arising when dealing with the Green’s function of the Laplacian

operator at the level λ. Our remaining task is devoted to computing the asymptotics

of these scalar integrals.

4.4 A Floquet-Bloch reduction of the problem

In this section, we will consider the Green’s function Gλ(x, y) at the level λ in Case I

(i.e., Spectral gap interior).

4.4.1 The Floquet transforms on abelian coverings and a Floquet reduction of the

problem

Notation 4.4.1. We introduce the following fundamental domain O (with respect to the

dual lattice 2πZd):

O = k0 + [−π, π]d.

If k0 is a high symmetry point of the Brillouin zone (i.e., k0 satisfies the assumption

A5), then O is the fundamental domain we defined in Definition 3.2.1.

The following transform will play the role of the Fourier transform for the periodic

case. Indeed, it is a version of the Fourier transform on the group Zd of periods.

Definition 4.4.2. The Floquet transform F (which depends on the choice of h)

f(x)→ f̂(k, x)

maps a compactly supported function f on X into a function f̂ defined on Rd ×X in the

following way:
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f̂(k, x) :=
∑
γ∈Zd

f(γ · x)e−ih(γ·x)·k.

From the above definition, one can see that f̂ is Zd-periodic in the x-variable and

satisfies a cyclic condition with respect to k:

 f̂(k, γ · x) = f̂(k, x), ∀γ ∈ Zd

f̂(k + 2πγ, x) = e−2πiγ·h(x)f̂(k, x), ∀γ ∈ Zd
.

Thus, it suffices to consider the Floquet transform f̂ as a function defined on O ×M .

Usually, we will regard f̂ as a function f̂(k, ·) in k-variable inO with values in the function

space L2(M).

We recall some properties of the Floquet transform on abelian coverings as in Lemma

2.2.4. Note that the proof for the abelian covering case does not require any change from

the proof for the flat case.

I. The transform F is an isometry of L2(X) onto

∫ ⊕
O
L2(M) = L2(O, L2(M))

and of H2(X) onto ∫ ⊕
O
H2(M) = L2(O, H2(M)).

II. The following two equivalent inversion formulae F−1 are given by

f(x) = (2π)−d
∫
O
eik·h(x)f̂(k, x) dk, x ∈ X. (4.10)
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and

f(x) = (2π)−d
∫
O
eik·h(x)f̂(k, γ−1 · x) dk, x ∈ γ · F (M). (4.11)

III. (Block-diagonalization) The action of any periodic elliptic operator P in L2(X) un-

der the Floquet transform F is given by

FP (x,D)F−1 =

∫ ⊕
O
P (k) dk,

where P (k)(x,D) = e−ik·h(x)P (x,D)eik·h(x). In other words, P̂ f(k) = P (k)f̂(k),

for any f ∈ H2(X).

The next statement is proven in Proposition 3.4.1 for the flat case. We omit the proof.

Proposition 4.4.3. If |λ| is small enough (depending on the dispersion branch λj and L),

then for any (t, s) ∈ [0, 1]×Sd−1, we have λ ∈ σ(L(k+itβs)) if and only if (k, t) = (k0, 1).

As in the previous chapter, the main ingredients in the proof of this statement are the

upper-semicontinuity of the spectra of the analytic family {L(k)}k∈Cd and the fact that E

is a real function, whose Hessian is negative definite (Proposition 4.2.20).

We consider the following real, smooth linear elliptic operators on X:

Lt,s = etβs·h(x)Le−tβs·h(x), (t, s) ∈ [0, 1]× Sd−1.

Notice that these operators are G-periodic, and when pushing Lt,s down to M , we get the

operator L(−iβs). We also use the notation Ls for L1,s. By Floquet-Bloch theory for the

operator Lt,s, we obtain

σ(Lt,s) =
⋃
k∈O

σ(Lt,s(k)) =
⋃
k∈O

σ(L(k + itβs)) ⊇ {λj(k + itβs)}k∈O. (4.12)
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We now fix a real number λ such that the statement of Proposition 4.4.3 holds. By

(4.12) and Proposition 4.4.3, λ is in the resolvent set of Lt,s for any (t, s) ∈ [0, 1)× Sd−1.

Let Rt,s,λ be the resolvent operator (Lt,s − λ)−1. From the block-diagonalize property of

the Floquet transform, for any f ∈ L2
comp(X), we have

R̂t,s,λf(k) = (Lt,s(k)− λ)−1f̂(k), (t, k) ∈ [0, 1)×O.

Hence, the sesquilinear form (Rt,s,λf, ϕ) is equal to

(2π)−d
∫
O

(
(Lt,s(k)− λ)−1f̂(k), ϕ̂(k)

)
dk,

where ϕ ∈ L2
comp(X).

In the next lemma, the weak convergence as t ↗ 1 of the operator Rt,s,λ in L2
comp(X)

is proved and thus, we can introduce the limit operator Rs,λ := lim
t→1−

Rt,s,λ.

Lemma 4.4.4. Let d ≥ 2. Under Assumption A, for f, ϕ in L2
comp(X), the following

equality holds:

lim
t→1−

(Rt,s,λf, ϕ) = (2π)−d
∫
O

(
Ls(k)− λ)−1f̂(k), ϕ̂(k)

)
dk. (4.13)

The integral in the right hand side of (4.13) is absolutely convergent.

This lemma is a direct corollary of the analyticity of the Bloch variety (see Proposition

2.2.6), Proposition 4.4.3 and the Lebesgue Dominated Convergence Theorem as being

shown in Lemma 3.5.1. We skip the proof.

For any (t, s) ∈ [0, 1) × Sd−1, let Gt,s,λ be the Green’s function of Lt,s at λ, which is
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the kernel of Rt,s,λ. Thus,

Gt,s,λ(x, y) = etβs·(h(x)−h(y))Gλ(x, y).

Taking the limit and applying Lemma 4.4.4, we conclude that the function

Gs,λ(x, y) := eβs·(h(y)−h(x))Gλ(x, y)

is the integral kernel of the operator Rs,λ defined as follows:

R̂s,λf(k) = (Ls(k)− λ)−1f̂(k). (4.14)

Hence, the problem of finding asymptotics of Gλ is now equivalent to obtaining asymp-

totics of any function Gs,λ, where s is an admissible direction in Ah.

In addition, by (4.10) and (4.14), the function Gs,λ, which is also the Green’s function

of the operator Ls at λ, is the integral kernel of the operator Rs,λ that acts on L2
comp(X) in

the following way:

Rs,λf(x) = (2π)−d
∫
O
eik·h(x)(Ls(k)− λ)−1f̂(k, x) dk, x ∈ X. (4.15)

This accomplishes Step 1 in our strategy of the proof.

4.4.2 Isolating the leading term in Rs,λ and a reduced Green’s function

The purpose of this part is to complete Step 2, i.e., to localize the part of the integral

in (4.15), that is responsible for the leading term of the Green’s function asymptotics.

Definition 4.4.5. For any z ∈ V , we denote by P (z) the spectral projector χB(0,ε0)(L(z)),
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i.e.,

P (z) = − 1

2πi

∮
|α|=ε0

(L(z)− α)−1 dα.

By (P2), P (z) projects L2(M) onto the eigenspace spanned by φz. We also put Q(z) :=

I −P (z) and denote by R(P (z)), R(Q(z)) the ranges of the projectors P (z), Q(z) corre-

spondingly.

Using (P6) and the fact that P (k+iβs)
∗ = P (k−iβs), we can deduce that if |k−k0| ≤

r0 (see (3.8)), the following equality holds

P (k + iβs)u =
(u, φk−iβs)L2(M)

(φk+iβs , φk−iβs)L2(M)

φk+iβs , ∀u ∈ L2(M). (4.16)

Let η be a cut-off smooth function on O supported on {k ∈ O | |k − k0| < r0} and

equal to 1 around k0.

According to (4.15), for any f ∈ C∞c (X), we want to find u such that

(Ls(k)− λ)û(k) = f̂(k).

Then the Green’s function Gs,λ satisfies

∫
X

Gs,λ(x, y)f(y) dµX(y) = F−1û(k, x) = u(x),

where F is the Floquet transform introduced in Definition 4.4.2.

By Proposition 4.4.3, the operator Ls(k) − λ is invertible for any k such that k 6= k0.

Hence, we can decompose û(k) = û0(k)+(Ls(k)−λ)−1(1−η(k))f̂(k), where û0 satisfies

the equation

(Ls(k)− λ)û0(k) = η(k)f̂(k).

Observe that R(P (z)) and R(Q(z)) are invariant subspaces for the operator L(z) for
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any z ∈ V . Thus, if u1, u2 are functions such that û1(k) = P (k + iβs)û0(k) and û2(k) =

Q(k + iβs)û0(k), we must have

(Ls(k)− λ)P (k + iβs)û1(k) = η(k)P (k + iβs)f̂(k) (4.17)

and

(Ls(k)− λ)Q(k + iβs)û2(k) = η(k)Q(k + iβs)f̂(k).

Due to (P2), when k is close to k0, λ = λj(k0 + iβs) must belong to the resolvent of

the operator Ls(k)|R(Q(k+iβs)). Hence, we can write û2(k) = η(k)(Ls(k) − λ)−1Q(k +

iβs)f̂(k). Therefore, û(k) equals

û1(k) +
(
(1− η(k))(Ls(k)− λ)−1 + η(k)((Ls(k)− λ)|R(Q(k+iβs)))

−1Q(k + iβs)
)
f̂(k).

The next theorem shows that we can ignore the infinite-dimensional part of the operator

Rs,λ, i.e., the second term in the above sum of two operators.

Theorem 4.4.6. Define

Ts(k) := (1− η(k))(Ls(k)− λ)−1 + η(k)((Ls(k)− λ)|R(Q(k+iβs)))
−1Q(k + iβs).

Let Ts be the operator acting on L2(X) as follows:

Ts = F−1

(
(2π)−d

∫ ⊕
O
Ts(k) dk

)
F .

Then the Schwartz kernel Ks(x, y) of the operator Ts is continuous away from the

diagonal of X , and moreover, it is also rapidly decaying in a uniform way with respect to
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s ∈ Sd−1, i.e., for any N > 0,

sup
s∈Sd−1

|Ks(x, y)| = O(dX(x, y)−N).

A proof using microlocal analysis is provided in Section 4.7.

Now let Vs := Rs,λ−Ts. Then the Schwartz kernelG0(x, y) of the operator Vs satisfies

the following relation:

∫
X

G0(x, y)f(y) dµX(y) = F−1û1(k, x) = u1(x). (4.18)

In what follows, we will find an integral representation of the kernel G0. We will see that

G0 provides the leading term of the asymptotics of the kernel Gs,λ. For this reason, G0 is

called a reduced Green’s function.

To find u1, we use the equation (4.17) and apply (4.16) to deduce

(λj(k + iβs)− λ)(û1(k), φk−iβs)L2(M) = η(k)(f̂(k), φk−iβs)L2(M).

Using û1(k) = P (k + iβs)û1(k) and (4.16) again, the above identity becomes

û1(k, x) :=
η(k)φk+iβs(x)(f̂(k), φk−iβs)L2(M)

(φk+iβs , φk−iβs)L2(M)(λj(k + iβs)− λ)
, k 6= k0.

By the inverse Floquet transform (4.10), for any x ∈ X ,

u1(x) = (2π)−d
∫
O
eik·h(x) η(k)φk+iβs(x)(f̂(k), φk−iβs)L2(M)

(φk+iβs , φk−iβs)L2(M)(λj(k + iβs)− λ)
dk.
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Now we repeat some calculations in Chapter 3 to have

u1(x) =
1

(2π)d

∫
O

∫
M

eik·h(x)η(k)f̂(k, y)φk−iβs(y)φk+iβs(x)

(φk+iβs , φk−iβs)L2(M)(λj(k + iβs)− λ)
dµM(y) dk

=
1

(2π)d

∫
O

∫
F (M)

∑
γ∈G

eik·(h(x)−h(γ−1·y))η(k)φk−iβs(y)φk+iβs(x)

(φk+iβs , φk−iβs)L2(M)(λj(k + iβs)− λ)
dµX(y) dk

=
1

(2π)d

∫
O

∑
γ∈G

∫
γ·F (M)

f(y)
eik·(h(x)−h(y))η(k)φk−iβs(γ

−1 · y)φk+iβs(x)

(φk+iβs , φk−iβs)L2(M)(λj(k + iβs)− λ)
dµX(y) dk

=
1

(2π)d

∫
X

f(y)

(∫
O

eik·(h(x)−h(y))η(k)φk−iβs(y)φk+iβs(x)

(φk+iβs , φk−iβs)L2(M)(λj(k + iβs)− λ)
dk

)
dµX(y).

In the second equality above, we use the identity (4.2).

Consequently, from (4.18), we conclude that our reduced Green’s function is

G0(x, y) =
1

(2π)d

∫
O
eik·(h(x)−h(y))η(k)

φk+iβs(x)φk−iβs(y)

(φk+iβs , φk−iβs)L2(M)(λj(k + iβs)− λ)
dk.

(4.19)

4.5 Some auxiliary statements

In this part, we provide the analogs of some results from Chapter 3 and [52], which

do not require any significant change in the proofs when dealing with the case of abelian

coverings. Instead of repeating the details, we will make brief comments.

The first result studies the local smoothness in (z, x) of the eigenfunctions φz(x) of the

operator L(z) with the eigenvalue λj(z).

Lemma 4.5.1. Suppose that B ⊂ Rd is the open ball centered at k0 with radius r0 (see

(4.6)). Then for each s ∈ Sd−1, the functions φk±iβs(x) are smooth on a neighborhood of

B×M in Rd×M . In addition, for any multi-index α, the functions Dα
kφk±iβs(x) are also
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jointly continuous in (s, k, x). In particular, we have

sup
(s,k,x)∈Sd−1×B×M

|Dα
kφk±iβs(x)| <∞.

To obtain Lemma 4.5.1, one can modify the proof of Proposition 3.9.6 without any

significant change. Indeed, the three main ingredients in the proof are the smoothness in z

of the family of operators {L(z)}z∈V acting between Sobolev spaces (Lemma 4.2.13), the

property (P3) for bootstrapping regularity of eigenfunctions in k, and the standard coercive

estimates of elliptic operators L(z) on the compact manifold M (see e.g., [76, estimate

(11.29)]) for bootstrapping regularity in x.

The next result is the asymptotics of the scalar integral expression obtained from the

integral representation (4.19) of the reduced Green’s function G0.

Proposition 4.5.2. Suppose that d ≥ 2 and B is the open ball defined in Proposition

4.5.1. Let η(k) be a smooth cut off function around the point k0, and {µs(k, x, y)}s∈Sd−1

be a family of smooth Cd-valued functions defined on B × M × M . We also use the

same notation µs(k, x, y) for its lift to B × X × X . For each quadruple (s, a, x, y) ∈

Sd−1 × Rd ×X ×X , we define

I(s, a) :=
1

(2π)d

∫
O
eik·a

η(k)

λj(k + iβs)− λ
dk

and

J(s, a, x, y) :=
1

(2π)d

∫
O
eik·a

η(k)(k − k0) · µs(k, x, y)

λj(k + iβs)− λ
dk.

Assume that the size of the support of η is small enough. Fix a direction s ∈ Sd−1 and
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consider all vectors a such that s =
a

|a|
. Then when |a| is large enough, we have

I(s, a) =
eik0·a|∇E(βs)|(d−3)/2

(2π|a|)(d−1)/2 det (−Ps Hess (E)(βs)Ps)1/2
+O(|a|−d/2) (4.20)

and

sup
(x,y)∈X×X

|J(s, a, x, y)| = O(|a|−d/2). (4.21)

Moreover, if all derivatives of µs(k, x, y) with respect to k are uniformly bounded in s ∈

Sd−1, then all the terms O(·) in (4.20) and (4.21) are also uniform in s ∈ Sd−1 when

|a| → ∞.

The proof of Proposition 4.5.2 can be extracted from Section 3.6. The main ingredient

(see Proposition 3.6.1) is an application of the Weierstrass Preparation Lemma in several

complex variables to have a factorization of the denominator λj(k + iβs)− λ of the inte-

grands of I, J into a form that is close to the normal form in the free case. This trick was

used in [81] in the discrete setting.

The next result [52, Theorem 3.3] will be needed in the proof of Theorem 4.3.4.

Proposition 4.5.3. Assume d ≥ 3. Let a ∈ Rd. Let η be a smooth function satisfying the

assumptions of Proposition 4.5.2, and let µ(k, x, y) be a smooth G-periodic function from

a neighborhood ofB×X×X to Cd. Then the following asymptotics hold when |a| → ∞:

1

(2π)d

∫
O
eik·a

η(k)

λj(k)
dk =

Γ(d
2
− 1)eik0·a

2πd/2(detH)1/2|H−1/2(a)|d−2
(1 +O(|a|−1),

and

sup
x,y∈X

∣∣∣∣∫
O
eik·a

η(k)(k − k0) · µ(k, x, y)

λj(k)
dk

∣∣∣∣ = O(|a|−d+1).

Here the notation Γ(z) means the Gamma function Γ(z) =

∫ ∞
0

xz−1e−x dx.
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4.6 Proofs of the main results

Proof of Theorem 4.3.1.

Proof. We fix an admissible direction s of the additive function h and consider any x, y ∈

X such that
h(x)− h(y)

|h(x)− h(y)|
= s ∈ Ah.

As we discussed in Section 4.4, the Green’s function Gλ satisfies

Gλ(x, y) = eβs·(h(y)−h(x))Gs,λ(x, y), (4.22)

where Gs,λ is the Schwartz kernel of the resolvent operator Rs. Also, Rs,λ = Vs + Ts.

Due to Theorem 4.4.6, the Schwartz kernel of Ts decays rapidly (uniformly in s) when

dX(x, y) is large enough. Hence, to find the asymptotics of the kernel of Rs,λ, it suffices

to consider the kernel G0 of the operator Vs. Define

a := h(x)− h(y) (4.23)

and

µ̃ω(k, p, q) :=
φk+iβω(p)φk−iβω(q)

(φk+iβω , φk−iβω)L2(M)

, (ω, p, q) ∈ Sd−1 ×M ×M.

By Lemma 4.5.1, µ̃ω is a smooth function on B ×M ×M . By Taylor expanding around

k0, µ̃ω(k, p, q) = µ̃ω(k0, p, q) + (k− k0) · µω(k, p, q) for some smooth Cd-valued function

µω(k, p, q) defined on B ×M ×M . From Lemma 4.5.1 and the definition of µ̃ω,

sup
(ω,k,x)∈Sd−1×B×M

|Dα
k µ̃ω(k, x, y)| <∞,

for any multi-index α. Thus, all derivatives of µω with respect to k are also uniformly
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bounded in ω ∈ Sd−1. We now can rewrite (4.19) as follows:

G0(x, y) =
1

(2π)d

∫
O
eik·a

η(k)

λj(k + iβs)− λ
(µ̃s(k0, x, y) + (k − k0) · µs(k, x, y)) dk

= I(s, a)
φk0+iβs(x)φk0−iβs(y)

(φk0+iβs , φk0−iβs)L2(M)

+ J(s, a, x, y).

Here the integrals I(s, a) and J(s, a, x, y) are defined in Proposition 4.5.2. Applying

Proposition 4.5.2, we obtain the following asymptotics whenever |a| is large enough:

G0(x, y) =
( eik0·a|∇E(βs)|(d−3)/2

(2π|a|)(d−1)/2 det (−Ps Hess (E)(βs)Ps)1/2
+O(|a|−d/2)

)
× φk0+iβs(x)φk0−iβs(y)

(φk0+iβs , φk0−iβs)L2(M)

+O(|a|−d/2),

(4.24)

where all the terms O(·) are uniform in s. Due to (4.23) and Proposition 4.2.8, O(|a|`) =

O(dX(x, y)`) for any ` ∈ Z, provided that dX(x, y) > Rh. Hence, by choosing the

constant Rh larger if necessary, we can assume that when dX(x, y) > Rh, the asymptotics

(4.24) would follow. Finally, we substitute (4.23) to the asymptotics (4.24) and then use

(4.22) to deduce Theorem 4.3.1.

Proof of Theorem 4.3.4.

Proof. We recall that λ = λj(k0) = 0 and R−ε is the resolvent operator (L + ε)−1 when

ε > 0 is small enough. We will repeat the Floquet reduction approach in Section 4.4.

Given any f, ϕ ∈ L2
comp(X), the sesquilinear form 〈R−εf, ϕ〉 is

(2π)−d
∫
O

(
(L(k) + ε)−1f̂(k), ϕ̂(k)

)
dk.

The first conclusion of this theorem is achieved by a similar argument in [52, Lemma 2.3].

Hence the operator R = limε→0+ R−ε is defined by the identity R̂f(k) = R(k)f̂(k) and
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the Green’s functionG is the Schwartz kernel of the operatorR. To single out the principal

term in R, we first choose a neighborhood V ⊂ O of k0 such that when k ∈ V , there is

a non-zero G-periodic eigenfunction φk(x) of the operator L(k) with the corresponding

eigenvalue λj(k) and moreover, the mapping k 7→ φk(·) is analytic in k as a H2(M)-

valued function. For such k ∈ V , let us denote by P (k) the spectral projector of L(k) that

projects L2(M) onto the eigenspace spanned by φk. The notation R(I − P (k)) stands for

the range of the projector I − P (k). Then we pick η as a smooth cut off function around

k0 such that supp(η) b V . Define the operator

T :=
1

(2π)d

∫ ⊕
O
T (k) dk,

where

T (k) := (1− η(k))L(k)−1 + η(k)(L(k)|R(I−P (k)))
−1(I − P (k)).

As in Theorem 4.4.6, the Schwartz kernel K(x, y) of T is rapidly decaying as dX(x, y)→

∞. Thus, the asymptotics of the Green’s function G are the same as the asymptotics of the

Schwartz kernel G0 of the operator R−T . To find G0, we repeat the arguments in Section

4.4 to derive the formula

G0(x, y) =
1

(2π)d

∫
O
eik·(h(x)−h(y)) η(k)

λj(k)

φk(x)φk(y)

‖φk‖2
L2(M)

dk, x, y ∈ X.

As in the proof of Theorem 4.3.1, we set a := h(x)−h(y) and rewrite the smooth function

φk(x)φk(y)

‖φk‖2
L2(M)

=
φk0(x)φk0(y)

‖φk0‖2
L2(M)

+ (k − k0) · µ(k, x, y),

for some smoothG-periodic function µ : B×X×X → Cd. Now by applying Proposition

4.5.3, the proof is completed.
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4.7 Proofs of technical statements

4.7.1 Proof of Proposition 4.2.8

Fixing a point x0 ∈ X , we let

K := F (M),

R := max
x∈K

dX(x0, x),

and

R̃h := max
(x,y)∈K×K

|h(x)− h(y)|.

Due to Proposition 4.2.2 and the fact that | · |S is equivalent to | · | on Zd, there exist

C1 > 1 and C2 > 0 such that

C−1
1 · dX(g1 · x0, g2 · x0)− C2 ≤ |g1 − g2| ≤ C1 · dX(g1 · x0, g2 · x0) + C2,

for any gi ∈ Zd, i = 1, 2.

Now we consider any two points x, y in X . By (4.1), we can select x̃, ỹ in K such that

x = g1 · x̃ and y = g2 · ỹ for some g1, g2 ∈ Zd. Since Zd acts by isometries, we get

dX(g1 · x0, g1 · x̃) = dX(x0, x̃) and dX(g2 · x0, g2 · ỹ) = dX(x0, ỹ). (4.25)

By (A.3), we have

h(x)− h(y) = h(x̃)− h(ỹ) + g1 − g2.
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Using triangle inequalities and (4.25), we obtain

|h(x)− h(y)| ≤ R̃h + |g1 − g2| ≤ C1 · dX(g1 · x0, g2 · x0) + R̃h + C2

≤ C1 · dX(x, y) + C1 · (dX(x0, x̃) + dX(x0, ỹ)) + R̃h + C2

≤ C1 · dX(x, y) + (2C1R + R̃h + C2).

Likewise,

|h(x)− h(y)| ≥ |g1 − g2| − R̃h ≥ C−1
1 · dX(g1 · x0, g2 · x0)− (R̃h + C2)

≥ C−1
1 · dX(x, y)− (C−1

1 · (dX(x0, x̃) + dX(x0, ỹ)) + R̃h + C2)

≥ C−1
1 · dX(x, y)− (2C1R + R̃h + C2).

The statement follows if we put C := 2C1 and Rh := 2C1(2C1R + R̃h + C2).

4.7.2 Proof of Proposition 4.2.10

By Definition 4.2.7, any rational point in the unit sphere Sd−1 is an admissible direction

of the additive function h and thus we have (4.4). By using the stereographic projection,

one can see that the subset Qd ∩ Sd−1 is dense in Sd−1. Hence, the density of Ah follows.

Now we consider the case d = 2. For any point x0 ∈ X , we denote by Ah(x0) the subset

of Ah consisting of unit vectors s such that there exists a point x in {x ∈ X | dX(x, x0) >

Rh} satisfying either h(x)−h(x0) = |h(x)−h(x0)|s or h(x0)−h(x) = |h(x)−h(x0)|s.

It is enough to prove that for any x0,Ah(x0) = S1. Without loss of generality, we suppose

that h(x0) = 0. Let Y be the range of the continuous function x 7→ h(x)

|h(x)|
, which is

defined on the connected set {x ∈ X | dX(x, x0) > Rh}. Then Y is a connected subset

that contains Q2 ∩S1 since h(n ·x0) = n for any n ∈ Zd. Suppose for contradiction, there

is a unit vector s such that s /∈ Ah(x0) and hence, Y ⊆ S1 \ {±s}. Thus, Y cannot be

connected, which is a contradiction.
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4.7.3 Proof of Theorem 4.4.6

It suffices to prove the following claim:

Theorem 4.7.1. Let φ and θ be two functions in C∞c (X) such that the metric distance

on X between the supports of these two functions is bigger than Rh. Let Ks,φ,θ be the

Schwartz kernel of the operator φTsθ. Then Ks,φ,θ is continuous and rapidly decaying

(uniformly in s) on X ×X , i.e., for any N > 0, we have

sup
s∈Sd−1

|Ks,φ,θ(x, y)| ≤ C(1 + dX(x, y))−N ,

for some positive constant C = C(N, ‖φ‖∞, ‖θ‖∞).

Let Ks(k, x, y) be the Schwartz kernel of the operator Ts(k). The next lemma is an

analog for abelian coverings of Lemma 3.7.15.

Lemma 4.7.2. Let φ and θ be any two compactly supported functions on X such that

supp(φ) ∩ supp(θ) = ∅. Then the following identity holds for any (x, y) ∈ X ×X:

Ks,φ,θ(x, y) =
1

(2π)d

∫
O
eik·(h(x)−h(y))φ(x)Ks(k, π(x), π(y))θ(y)dk,

where π is the covering map X →M .

Proof. Let P be the subset of C∞c (X) consisting of all functions ψ whose support is

connected, and if γ ∈ G such that suppψγ ∩ suppψ 6= ∅ then γ is the identity element of

the deck group G. Since any compactly supported function on X can be decomposed as a

finite sum of functions in P , we can assume that both φ and θ belong to P . Then the rest

is similar to the proof of Lemma 3.7.15.

Another key ingredient in proving Theorem 4.7.1 is the following result:
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Proposition 4.7.3. Let dimM = n. Then for any multi-index α such that |α| ≥ n,

Dα
kKs(k, x, y) is a continuous function on M ×M . Furthermore, we have

sup
(s,k,x,y)∈Sd−1×O×M×M

|Dα
kKs(k, x, y)| <∞.

Before providing the proof of Proposition 4.7.3, let us use it to prove Theorem 4.7.1.

Proof of Theorem 4.7.1.

Proof. The exponential function e2πiγ·h(x) is G-periodic for any γ ∈ G, and hence, it is

also defined onM . We use the same notation e2πiγ·h(x) for the corresponding multiplication

operator on L2(M). Then we can write

Ts(k + 2πγ) = e−2πiγ·h(x)Ts(k)e2πiγ·h(x), (k, γ) ∈ O ×G

It follows that for any multi-index α,

ei(k+2πγ)·(h(x)−h(y))∇α
kKs(k + 2πγ, π(x), π(y)) = eik·(h(x)−h(y))∇α

kKs(k, π(x), π(y)).

(4.26)

Now we apply integration by parts to the identity in Lemma 4.7.2 to obtain

iN(h(x)− h(y))αKs,φ,θ(x, y) =
φ(x)θ(y)

(2π)d

∫
O
eik·(h(x)−h(y))∇α

kKs(k, π(x), π(y)) dk.

(4.27)

Note that due to (4.26), when using integration by parts, we do not have any boundary

term. If |α| ≥ n, then the above integral is uniformly bounded in (s, x, y) by Propo-

sition 4.7.3. When φ(x)θ(y) 6= 0, we have dX(x, y) > Rh and so, h(x) 6= h(y) by

Proposition 4.2.8. Therefore, the kernel Ks,φ,θ(x, y) is continuous on X × X . Now fix

(x, y) such that φ(x)θ(y) 6= 0. Next we choose `0 ∈ {1, . . . , d} such that |h`0(x) −
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h`0(y)| = max1≤`≤d |h`(x) − h`(y)| > 0. Fix any N ≥ n. Let α = (α1, . . . , αd) =

N(δ1,`0 , . . . , δd,`0), where δ·,· is the Kronecker delta. Then |(h(x)−h(y))α|−1 = |h`0(x)−

h`0(y)|−N ≤ dN/2|h(x) − h(y)|−N . Consequently, from (4.27), we derive a positive con-

stant C (independent of x, y) such that

sup
s∈Sd−1

|Ks,φ,θ(x, y)| ≤ C|φ(x)θ(y)||(h(x)−h(y))α|−1 ≤ CdN/2‖φ‖∞‖θ‖∞|h(x)−h(y)|−N .

Using Proposition 4.2.8, the above estimate becomes

sup
(s,x,y)∈Sd−1×X×X

(1 + dX(x, y))N |Ks,φ,θ(x, y)| <∞,

which yields the conclusion.

Back to Proposition 4.7.3, we first introduce several notions. Let S(M) be the space of

Schwartz functions on M . The first notion is about the order of an operator on the Sobolev

scale (see e.g. [67, Definition 5.1.1]).

Definition 4.7.4. A linear operator A : S(M) → S(M) is said to be of order ` ∈ R

on the Sobolev scale (Hm(M))m∈R if for every m ∈ R it can be extended to a bounded

linear operator Am,m−` ∈ B(Hm(M), Hm−`(M)). In this situation, we denote by the

same notation A any of the operators Am,m−`.

A typical example of an operator of order ` on the Sobolev scale is any pseudodiffer-

ential operator of order ` acting on M .

Definition 4.7.5. Given ` ∈ R. We denote by S`(M) the set consisting of families of

operators {Bs(k)}(s,k)∈Sd−1×O acting on M so that the following properties hold:

• For any (s, k) ∈ Sd−1 ×O, Bs(k) is of order ` on the Sobolev scale (Hp(M))p∈R.
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• For any p ∈ R, the operator Bs(k) is smooth in k as a B(Hp(M), Hp−`(M))-valued

function.

• For any multi-index α,Dα
kBs(k) is of order `−|α| on the Sobolev scale (Hp(M))p∈R

and moreover, for any p ∈ R, the following uniform condition holds

sup
(s,k)∈Sd−1×O

‖Dα
kBs(k)‖B(Hp(M),Hp−`+|α|(M)) <∞.

It is worth giving a separate definition for the class S−∞(M) =
⋂
`∈R

S`(M) as follows:

Definition 4.7.6. We denote by S−∞(M) the set consisting of families of smoothing op-

erators {Us(k)}(s,k)∈Sd−1×O acting on M so that the following properties hold:

• For anym1,m2 ∈ R, the operator Us(k) is smooth in k as aB(Hm1(M), Hm2(M))-

valued function.

• The following uniform condition holds for any multi-index α:

sup
(s,k)∈Sd−1×O

‖Dα
kUs(k)‖B(Hm1 (M),Hm2 (M)) <∞.

We now introduce the class S̃`(Tn) of parameter-dependent toroidal symbols on the

n-dimensional torus 9.

Definition 4.7.7. The parameter-dependent class S̃`(Tn) consists of symbols σ(s, k;x, ξ)

satisfying the following conditions:

• For each (s, k) ∈ Sd−1 × O, the function σ(s, k; ·, ·) is a symbol of order ` on the

torus Tn (see e.g., Definition 3.7.3 in Chapter 3).
9Note that for the case n = d, the class of parameter-dependent toroidal symbols was introduced in Def-

inition 3.7.3. Nevertheless, the techniques and results on parameter-dependent toroidal pseudodifferential
operators obtained in Section 3.8 of Chapter 3 still apply for the general case n ≥ 1.
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• Consider any multi-indices α, β, γ and any s ∈ Sd−1. Then the function σ(s, ·; ·, ·) is

smooth onO×Tn×Rn. Furthermore, for some positive constantCαβγ (independent

of s,k,x,ξ), we have

sup
s∈Sd−1

|Dα
kD

β
ξD

γ
xσ(s, k;x, ξ)| ≤ Cαβγ(1 + |ξ|)m−|α|−|β|.

We also define

S̃−∞(Tn) :=
⋂
`∈R

S̃`(Tn).

The class of pseudodifferential operators on the torus Tn is also provided in the next

definition.

Definition 4.7.8.

• Given a symbol σ(x, ξ) of order ` on the torus Tn, the corresponding periodic pseu-

dodifferential operator Op(σ) is defined by

(Op(σ)f) (x) :=
∑
ξ∈Zn

σ(x, ξ)f̃(ξ)e2πiξ·x,

where f̃(ξ) is the Fourier coefficient of f at ξ.

• For any ` ∈ R ∪ {−∞}, the set of all families of periodic pseudodifferential oper-

ators {Op(σ(s, k; ·, ·))}(s,k)∈Sd−1×O, where σ runs over the class S̃`(Tn), is denoted

by Op(S̃`(Tn)).

Remarks 4.7.9.

(a) It is straightforward to check from definitions and the Leibnitz rule that for any `1, `2 ∈

R∪ {−∞}, if {As(k)}(s,k)∈Sd−1×O, {Bs(k)}(s,k)∈Sd−1×O are two families of operators
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in the class S`1(M) and S`2(M), respectively, then the family {As(k)Bs(k)}(s,k)∈Sd−1×O

belongs to S`1+`2(M).

(b) If the family of operators {Bs(k)}(s,k)∈Sd−1×O belongs to the class S`(M) then by

definition, the family of operators {Dα
kBs(k)}(s,k)∈Sd−1×O is in the class S`−|α|(M)

for any multi-index α.

(c) S−∞(Tn) is the class S introduced in Definition 3.7.8.

(d) Given a family of symbols {σ(s, k; ·, ·)}(s,k)∈Sd−1×O ∈ S̃`(Tn), it follows from defini-

tions here and boundedness on Sobolev spaces of periodic pseudodifferential operators

(see e.g., [67, Corollary 4.8.3]) that the corresponding family of periodic pseudodiffer-

ential operators {Op(σ(s, k; ·, ·))}(s,k)∈Sd−1×O is in the class S`(Tn). In other words,

Op(S̃`(Tn)) ⊆ S`(Tn) for any ` ∈ R ∪ {−∞}.

Roughly speaking, the next lemma says that we can deduce regularity of the Schwartz

kernel of an operator provided that it acts “nicely" on Sobolev spaces.

Lemma 4.7.10. Let A be a bounded operator in L2(M), where M is a compact n-

dimensional manifold. Suppose that the range of A is contained in Hm(M), where m >

n/2 and in addition,

‖Af‖Hm(M) ≤ C‖f‖H−m(M) (4.28)

for all f ∈ L2(M).

Then A is an integral operator whose kernel KA(x, y) is bounded and uniformly con-

tinuous on M ×M and the following estimate holds:

|KA(x, y)| ≤ γ0C, (4.29)

where γ0 is a constant depending only on n and m.
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Proof. For the Euclidean case, this fact is shown in [1, Lemma 2.2]. To prove this on a

general compact manifold, we simply choose a finite cover U = {Up} of M with charts

Up ∼= Rn. Then fix a smooth partition of unity {ϕp} with respect to the cover U , i.e.,

suppϕp b Up. We decompose A =
∑

p,q ϕpAϕq. Given any f ∈ L2(M), the estimate

(4.28) will imply the estimate ‖ϕpAϕqf‖Hm(Up) ≤ C‖f‖H−m(Uq) for any p, q. Hence, we

obtain the conclusion of the lemma for the kernel of each operator ϕpAϕq, and thus for

kernel of A too.

In what follows, we will show a nice behavior of kernels of families of operators in the

class S`(M) following from an application of the previous lemma.

Corollary 4.7.11. Let ` ∈ R ∪ {−∞}. If {Bs(k)}(s,k) is a family of operators in S`(M),

then the Schwartz kernel KBs(k, x, y) of the operator Bs(k) satisfies

sup
s,k,x,y

|Dα
kKBs(k, x, y)| <∞,

for any multi-index α satisfying |α| ≥ n+ `+ 2.

Proof. For such |α| ≥ n+ `+ 2, we pick some integer m ∈ (n/2, (−`+ |α|)/2]. Then by

Definition 4.7.5, we have

sup
s,k
‖Dα

kBs(k)f‖Hm(M) ≤ Cα‖f‖H−m(M).

Applying Lemma 4.7.10, the estimates (4.29) hold for kernels Dα
kKBs(k, x, y) of the op-

erators Dα
kBs(k) uniformly in (s, k).

The next theorem shows the inversion formula (i.e., the existence of a family of para-

metrices) in the case of Tn. The proof of this theorem just comes straight from the proof

of Theorem 3.7.6. We omit the details.
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Theorem 4.7.12. Let r ∈ N. Let us consider a family of 2rth order elliptic operators

{(Qs(k)}(s,k)∈Sd−1×O on the torus Tn. Assume that this family is in Op(S̃2r(Tn)) and

moreover, for each (s, k) ∈ Sd−1 ×O, the symbol σ(s, k;x, ξ) of the operator Qs(k) is of

the form

σ(s, k;x, ξ) = L0(s, k;x, ξ) + σ̃(s, k;x, ξ),

where the families of parameter-dependent symbols {L0(s, k;x, ξ)}(s,k), {σ̃(s, k;x, ξ)}(s,k)

are in the class S̃2r(Tn) and S̃2r−1(Tn), respectively. Moreover, suppose that there is some

constant A > 0 such that whenever |ξ| > A, we have

|L0(s, k;x, ξ)| ≥ 1, (s, k, x) ∈ Sd−1 ×O × Tn.

We call L0(s, k;x, ξ) the “leading part" of the symbol σ(s, k;x, ξ).

Then there exists a family of parametrices {As(k)}(s,k) in Op(S̃−2r(Tn)) such that

Qs(k)As(k) = I −Rs(k),

whereRs(k) is some family of smoothing operators in the class S−∞(Tn).

To build a family of parametrices on a compact manifold, we will follow closely the

strategy in [36] by working on open subsets of the torus first and then gluing together to

get the final global result.

Theorem 4.7.13. There exists a family of operators {As(k)}(s,k)∈Sd−1×O in S−2(M) and

a family of operators {Rs(k)}(s,k)∈Sd−1×O in S−∞(M) such that

(Ls(k)− λ)As(k) = I −Rs(k).

Proof. Let Vp (p = 1, . . . , N ) be a finite covering of the compact manifold M by evenly
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covered coordinate charts. We also choose an open covering Up (p = 1, . . . , N ) that refine

the covering {Vp} such that Up ⊂ Vp for any p. We can assume that each Vp is an open

subset of (0, 2π)n in Rn and hence, we can view each Vp as an open subset of the torus Tn.

To simplify the notation, we will suppress the index p = 1, . . . , N which specifies the

open sets Vp, Up until the final steps of the proof. Let us denote by iU , rU the inclusion

mapping from iU : U → Tn and the restriction mapping rU : C∞(Tn) → C∞(U), corre-

spondingly. We also use the same notation Ls(k)− λ for its restrictions to the coordinate

charts V, U if no confusion arises. Then (Ls(k) − λ)rU can be considered as an operator

on Tn.

Let us first establish the following localized version of the inversion formula

Lemma 4.7.14. There are two families of symbols {a(s, k;x, ξ)}(s,k)∈Sd−1×O in S̃−2(Tn)

and {r(s, k;x, ξ)}(s,k)∈Sd−1×O in S̃−∞(Tn) so that

(Ls(k)− λ)rUAs(k) = rU(I −Rs(k)),

where As(k) = Op(a(s, k; ·, ·)),Rs(k) = Op(r(s, k; ·, ·)).

Proof. We denote by (Ls(k) − λ)T the transpose operator of (Ls(k) − λ) on V . Now let

ν be a function in C∞c (V ) such that ν = 1 in a neighborhood of U and 0 ≤ ν ≤ 1. Define

Qs(k) = (Ls(k)− λ)(Ls(k)− λ)Tν + (1− ν)∆2.

Observe that each operator Qs(k) is a globally defined 4th order differential operator on

Tn with the following principal symbol

ν(x)|σ0(s, k;x, ξ)|2 + (1− ν(x))|ξ|4.
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Here σ0(s, k;x, ξ) is the non-vanishing symbol of the elliptic operator Ls(k) − λ. Thus,

each operator Qs(k) is an elliptic differential operator on Tn. In order to apply Theorem

4.7.12 to the family {Qs(k)}(s,k), we need to study its family of symbols {σ(s, k;x, ξ)}(s,k).

On the evenly covered chart V , we can assume that the operator Ls(k) − λ is of the

form ∑
|α|≤2

aα(x)(D + (k + iβs)
T · ∇h̃)α,

for some functions aα ∈ C∞(V ) and h̃ is a smooth function obtained from the addi-

tive function h through some coordinate transformation on the chart V . Similarly, since

(Ls(k)−λ)T = L(k− iβs)−λ, one can write the operator (Ls(k)−λ)T on V as follows:

∑
|α|≤2

ãα(x)(D + (k − iβs)T · ∇h̃)α,

for some functions ãα ∈ C∞(V ). Then, on Tn, the operatorQs(k) has the following form:

∑
|α|,|β|≤2

aα(x)ãβ(x)(D + (k + iβs)
T · ∇h̃)α(D + (k − iβs)T · ∇h̃)βν(x) + (1− ν(x))∆2.

Put

L
(1)
0 (s, k;x, ξ) :=

∑
|α|=2

aα(x)(ξ + (k + iβs)
T · ∇h̃)α,

L
(2)
0 (s, k;x, ξ) :=

∑
|β|=2

ãβ(x)(ξ + (k − iβs)T · ∇h̃)β

and

L0(s, k;x, ξ) = ν(x)L
(1)
0 (s, k;x, ξ)L

(2)
0 (s, k;x, ξ) + (1− ν(x))|ξ|4. (4.30)
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Then the symbol σ(s, k;x, ξ) of the operator Qs(k) can be written as

L0(s, k;x, ξ) + σ̃(s, k;x, ξ),

where the family of symbols {σ̃(s, k;x, ξ)}(s,k) is in the class S̃3(Tn). Using the bound-

edness of ∇h̃ and coefficients aα on the support of ν, we deduce that the family of the

symbols of {Qs(k)}(s,k) is in S̃4(Tn). Thus, our remaining task is to find a constant A > 0

such that whenever |ξ| > A, we obtain |L0(s, k;x, ξ)| > 1. Note that by ellipticity, there

are positive constants θ1, θ2 such that

∑
|α|=2

aα(x) ≥ θ1|ξ|2

and ∑
|α|=2

ãα(x) ≥ θ2|ξ|2.

We define

‖a‖∞ :=
∑

|α|=|β|=2

‖aα(·)‖L∞(supp(ν)) + ‖ãβ(·)‖L∞(supp(ν))

and

Ap := max
(s,k,x)∈Sd−1×O×supp(ν)

(
|kT · ∇h̃|2 + θ−1

p ‖a‖∞|βTs · ∇h̃|2 + θ−1
p

)
, p = 1, 2.
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Suppose that |ξ|2 > 2 max
p=1,2

Ap, then for any p = 1, 2, we have

√
ν(x)|L(p)

0 (s, k;x, ξ)| ≥ <
(√

ν(x)L
(p)
0 (s, k;x, ξ)

)
≥
√
ν(x)

θp|ξ + kT · ∇h̃|2 −
∑
|α|=2

aα(x)(βTs · ∇h̃)α


≥
√
ν(x)

(
θp

(
|ξ|2

2
− |kT · ∇h̃|2

)
− ‖a‖∞|βTs · ∇h̃|2

)
≥
√
ν(x).

Thus, due to (4.30), if |ξ|2 > 2 maxp=1,2Ap + 1 then |L0(s, k;x, ξ)| ≥ (
√
ν(x))2 + (1 −

ν(x))|ξ|4 ≥ 1 as we wish. Now we are able to apply Theorem 4.7.12 to the family of

operators {Qs(k)}(s,k), i.e., there are families of operators {Bs(k)}(s,k) ∈ Op(S̃−4(Tn))

and {Rs(k)}(s,k) ∈ S−∞(Tn) such that Qs(k)Bs(k) = I −Rs(k).

Let As(k) := (Ls(k)− λ)TνBs(k). Since ν = 1 on a neighborhood of U , we obtain

rU(I −Rs(k)) = rUQs(k)Bs(k)

= rU
(
(Ls(k)− λ)(Ls(k)− λ)TνBs(k) + (1− ν)∆2Bs(k)

)
= rU(Ls(k)− λ)(Ls(k)− λ)TνBs(k)

= (Ls(k)− λ)rU(Ls(k)− λ)TνBs(k) = (Ls(k)− λ)rUAs(k).

In addition, {As(k)}(s,k) ∈ Op(S̃−2(Tn)) according to the composition formula in Theo-

rem 3.8.2. Hence, the lemma is proved.

Let µp ∈ C∞c (Up) (p = 1, . . . , N ) be a smooth partition of unity with respect to the

cover {Up}p=1,...,N and for any p = 1, . . . , N , let νp be a smooth function in C∞c (Up) such

that it equals one on a neighborhood of supp(µp). By Lemma 4.7.14, there are families of
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operators {A(p)
s (k)}(s,k) ∈ Op(S̃−2(Tn)) and {R(p)

s (k)}(s,k) ∈ S−∞(Tn) such that

(Ls(k)− λ)rUpA(p)
s (k) = rUp(I −R(p)

s (k)). (4.31)

Due to pseudolocality, (1 − νp)A(p)
s (k)µp ∈ S−∞(Tn). This implies that rUpA

(p)
s (k)µp −

νpA(p)
s (k)µp ∈ S−∞(Tn), and thus,

(Ls(k)− λ)rUpA(p)
s (k)µp − (Ls(k)− λ)νpA(p)

s (k)µp ∈ S−∞(Tn).

By (4.31), µp − (Ls(k)− λ)rUpA
(p)
s (k)µp ∈ S−∞(Tn). Hence,

µpI − (Ls(k)− λ)νpA(p)
s (k)µp ∈ S−∞(Tn).

Since both operators µpI and (Ls(k)−λ)νpA(p)
s (k)µp are globally defined on the manifold

M , it follows that

∑
p

(
µpI − (Ls(k)− λ)νpA(p)

s (k)µp
)
∈ S−∞(M). (4.32)

Because Op(S̃−2(Tn) ⊂ S−2(Tn) (see Remark 4.7.9), each family {A(p)
s (k)}(s,k) is in the

class S−2(Tn) for every p. Since {νpA(p)
s (k)µp}(s,k) is globally defined on M , we also

have {νpA(p)
s (k)µp}(s,k) ∈ S−2(M) for any p. Now define As(k) :=

∑
p

νpA(p)
s (k)µp and

Rs(k) := I − (Ls(k) − λ)As(k). Then {As(k)}(s,k) ∈ S−2(M) and moreover, due to

(4.32), the family of operators {Rs(k)}(s,k) is in S−∞(M).

The statement of the following lemma is standard.

Lemma 4.7.15. Let M be a compact metric space, D be a domain in Rm (m ∈ N)

and H1, H2 be two infinite-dimensional separable Hilbert spaces. Let {Ts}s∈M be a
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family of smooth maps from D to B(H1, H2) such that for any multi-index α, the map

(s, d) 7→ Dα
dTs(d) is continuous fromM×D toB(H1, H2). Suppose that there is a family

of maps {Vs}s∈M from D to B(H2, H1) such that Vs(d)Ts(d) = 1H1 and Ts(d)Vs(d) =

1H2 for any (s, d) ∈ M × D. Then for each s ∈ M, the map d ∈ D 7→ Vs(d) is

smooth as a B(H2, H1)-valued function. Furthermore for any multi-index α, the map

(s, k) 7→ Dα
dVs(d) is continuous onM×D as a B(H2, H1)-valued function.

We now go back to the family of operators {Ts(k)}(s,k)∈Sd−1×O. The next statement is

the main ingredient in establishing Proposition 4.7.3.

Proposition 4.7.16. There is a family of operators {Bs(k)}(s,k) in S−2(M) such that the

family of operators {Ts(k)−Bs(k)}(s,k) belongs to S−∞(M).

Proof. Using Theorem 4.7.13, we can find a family {As(k)}(s,k) ∈ S−2(M) and a family

{Rs(k)}(s,k) ∈ S−∞(M) such that

(Ls(k)− λ)As(k) = I −Rs(k).

From the definition of Ts(k), we obtain Ts(k)(Ls(k)− λ) = I − η(k)P (k + iβs).

Using these equalities, we deduce

Ts(k) = As(k)− η(k)P (k + iβs)As(k) + Ts(k)Rs(k).

We recall from Section 4.4 that P (k+iβs) projectsL2(M) onto the eigenspace spanned

by the eigenfunction φk+iβs . Hence, its kernel is the following function

φ(k + iβs)(x)φ(k − iβs)(y)

(φ(k + iβs), φ(k − iβs))L2(M)

,

which is smooth due to Lemma 4.5.1. Thus, the family of operators {η(k)P (k+ iβs)}(s,k)
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is in S−∞(M). Also, the family of operators {η(k)Q(k + iβs)}(s,k) belongs to S0(M).

We put Bs(k) := As(k)− η(k)P (k + iβs)As(k), then {Bs(k)}(s,k) ∈ S−2(M). Since

Ts(k) − Bs(k) = Ts(k)Rs(k), the remaining task is to check that the family of operators

{Ts(k)Rs(k)}(s,k) belongs to the class S−∞(M).

Let us consider any two real numbers m1 and m2. By Lemma 4.2.13, the operators

Ls(k)− λ and Ls(k)Q(k + iβs)− λ are smooth in k as B(Hm2(M), Hm2−2(M))-valued

functions such that their derivatives with respect to k are jointly continuous in (s, k). On

the other hand, we can rewrite (see Lemma 3.65):

Ts(k) = (1− η(k))(Ls(k)− λ)−1 + η(k)λ−1P (k+ iβs) + η(k)(Ls(k)Q(k+ iβs)− λ)−1.

Hence, by Lemma 4.7.15, Ts(k) is smooth in k as a B(Hm2−2(M), Hm2(M))-valued

function and its derivatives with respect to k are jointly continuous in (s, k). Therefore,

for any multi-index α, we have

sup
(s,k)∈Sd−1×O

‖Dα
kTs(k)‖B(Hm2−2(M),Hm2 (M)) <∞.

Moreover since {Rs(k)}(s,k) ∈ S−∞(M), Rs(k) is smooth as aB(Hm1(M), Hm2−2(M))-

valued function and for any multi-index α,

sup
(s,k)∈Sd−1×O

‖Dα
kRs(k)‖B(Hm1 (M),Hm2−2(M)) <∞.

From the Leibniz rule, the composition Ts(k)Rs(k) is smooth as aB(Hm1(M), Hm2(M))-

valued function and for any multi-index α, the following uniform condition also holds

sup
(s,k)∈Sd−1×O

‖Dα
k (Ts(k)Rs(k))‖B(Hm1 (M),Hm2 (M)) <∞.
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Consequently, {Ts(k)Rs(k)}(s,k)∈Sd−1×O ∈ S−∞(M) as we wish.

We finish this subsection.

Proof of Proposition 4.7.3.

Proof. Proposition 4.7.16 provides us with the decomposition Ts(k) = Bs(k) + Cs(k),

where {Bs(k)}(s,k) ∈ S−2(M) and {Cs(k)}(s,k) ∈ S−∞(M). Let KBs(k), KCs(k) be the

Schwartz kernels ofBs(k) andCs(k), correspondingly. It follows from applying Corollary

4.7.11 that for any multi-index α satisfying |α| ≥ n, the kernel Dα
kBs(k) is continuous on

M ×M and

sup
(s,k,x,y)

|Dα
kKBs(k)(k, x, y)| <∞.

A similar conclusion also holds for the kernels Dα
kCs(k) and thus, for Dα

kKs(k, x, y) too.

4.8 Concluding remarks

• The asymptotics (4.7) and (4.9) can be described in terms of the Albanese map

and the Albanese pseudo-distance (see [46, Section 2]), provided that the additive

function h is chosen to be harmonic (see also Appendix A).

• The main results in this chapter can be easily carried over to the case when the

band edge occurs at finitely many quasimomenta k0 in the Brillouin zone (instead

of assuming the condition A3) by summing the asymptotics coming from all these

non-degenerate isolated extrema.

It was shown recently in [25] that for a wide class of two dimensional periodic ellip-

tic second-order operators (including the class of operators we consider in this paper

and periodic magnetic Schrödinger operators in 2D), the extrema of any spectral

band function (not necessarily spectral edges) are attained on a finite set of values

of the quasimomentum in the Brillouin zone.
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• The proofs of our results go through verbatim for periodic elliptic second-order op-

erators acting on vector bundles over the abelian covering X .
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5. A LIOUVILLE-RIEMANN-ROCH THEOREM ON ABELIAN COVERINGS.

5.1 Introduction

The classical Riemann-Roch formula is an important result that connects the dimen-

sion of a space of holomorphic functions and the dimension of a space of meromorphic

(1, 0)-forms on a compact Riemann surface. These spaces are linked with the notion of

“divisors”, which provide constraints limiting where poles (i.e., singularities) and zeros

can be and of what order (i.e., multiplicities). The Riemann-Roch formula gives an equal-

ity between the difference of these two dimensions (i.e., the index of the ∂̄ operator) and

the degree of the divisor, i.e. the total sum of multiplicities.

Since then, many generalizations of the Riemann-Roch formula have been discovered

from various viewpoints. Among these, Gromov and Shubin established their Riemann-

Roch type theorems for elliptic differential operators on compact and non-compact mani-

folds in [32,33]. Namely, these results link the dimensions of spaces of solutions of elliptic

equations on compact manifolds with the prescribed divisor of allowed poles and required

zeros. As in the classical case, the differences between these dimensions are the same as

the degrees of the corresponding divisors. Roughly speaking, one can say that the degree

of a divisor is the difference between the indices of the operators with and without required

zeros and singularities.

On the other hand, Liouville type theorems count the dimension of the space of solu-

tions growing polynomially of a given order at infinity. Such solutions can be considered

as ones with poles at infinity. This dimension can be interpreted as an index, since in this

situation the co-dimension of the range turns out the be equal to zero.

The obvious similarity of the questions (as well as some results and proofs) suggest to

one to seek a combination of these results. This is what we attempt in this chapter.
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In Sections 5.2 and 5.3, we introduce the necessary preliminaries concerning Liouville

and Riemann-Roch type theorems, reminding some notions and results from [49, 50] and

Gromov-Shubin’s works [32, 33]. In Section 5.4, we obtain the main results that combine

the Liouville and Riemann-Roch statements. It is interesting that the combination is non-

trivial, and the results are not easily predictable. Proofs of these main results are provided

in Section 5.5. In Section 5.6, we provide the realizations of the main theorems in several

specific situations. Some technical details and proofs are delegated to Section 5.7.

Besides the non-trivial combination of the Liouville and Riemann-Roch theorems,

some extensions of these individual theorems are also obtained.

5.2 Some preliminaries for Liouville type results

5.2.1 Some preliminaries for periodic elliptic operators on abelian coverings

Let X be a noncompact smooth Riemannian manifold of dimension n equipped with

an isometric, properly discontinuous, free, and co-compact action of a finitely generated

abelian discrete group G. The compact orbit space is M := X/G.

Remark 5.2.1. No harm will be done, if the reader assumes that X = Rd and M is the

torus Td = Rd/Zd. The results are new in this case as well. The only warning is that in

this situation the dimension of X and the rank of the group Zd coincide, while this is not

required in general.

Let µM be the Riemannian measure of M and µX be its lifting to X . Thus, µX is

a G-invariant. We also use the notation L2(X) (see Chapter 4) to denote the space of

L2-functions on X with respect to µX .

We consider the G-invariant bilinear 1 duality

〈·, ·〉 : C∞c (X)× C∞(X)→ C, 〈f, g〉 =

∫
X

f(x)g(x) dµX . (5.1)

1One can also consider the sesquilinear form to obtain analogous results.
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By continuity, we can extend it to a G-invariant bilinear non-degenerate duality

〈·, ·〉 : L2(X)× L2(X)→ C. (5.2)

Let A be an elliptic operator of orderm onX with smooth coefficients. In this chapter,

we will be assuming that A is G-periodic. Note that then A can be pushed down to

an elliptic operator on M . We will assume in most cases (except rare non-self-adjoint

considerations) that the operator A is bounded below.

The formal adjoint operator (transpose) A∗ (with respect to the bilinear duality (5.1))

has similar properties. In particular, A∗ is also a periodic elliptic operator of order m on

X .

Note that since G is a finitely generated abelian group, G is the direct sum of a finite

abelian group and Zd, where d is the rank of the torsion free subgroup of G. In what

follows, without any effect on the results, we could replaceM by the compact Riemannian

manifold X/Zd and thus, we can work with Zd as our new deck group2. Therefore, we

assume henceforward that G = Zd, where d ∈ N.

We remind the reader that the reciprocal lattice G∗ of the deck group G = Zd is

(2πZ)d and the Brillouin zone B = [−π, π]d is chosen as its fundamental domain in this

chapter. The quotient Rd/G∗ is the dual torus (T∗)d. So, G∗-periodic functions on Rd can

be naturally identified with functions on (T∗)d.

For any quasimomentum k ∈ Cd, let γk be the character of the deck groupG defined

as γk(g) = eik·g (for a given character, the corresponding quasimomentum is defined mod-

ulo the reciprocal lattice). If k is real, γk is unitary and vice versa. Abusing the notations

slightly, we will sometimes identify each unitary character of Zd with a quasimomentum

k in the dual group (T∗)d.
2This is exactly what we do in Chapter 4: One can always eliminate the torsion part of G by switching

to a subcovering X → X/Zd.
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We denote by L2
k(X) the space of all γk-automorphic function f(x) in L2

loc(X), i.e.

such that

f(g · x) = γk(g)f(x), for a.e x ∈ X and g ∈ G. (5.3)

It is convenient at this moment to introduce, given a quasimomentum k, the following line

(i.e., one-dimensional) vector bundle Ek over M :

Definition 5.2.2. Given any k ∈ Cd, we denote by Ek the bundle associated with the

principal G-bundle X over M with the character γk. Namely, we consider the free left

action of G on the Cartesian product X × C given by

g · (x, z) = (g · x, γk(g)z), (g, x, z) ∈ G×X × C.

Now Ek is defined as the orbit space of this action and the canonical projection X ×C→

M descends to the surjective mapping Ek →M .

From the definition, Ek is a vector bundle over M with fiber C (see e.g., [54]) and any

L2-section of the bundle Ek must satisfy the quasi-periodic property (5.3). Now the space

L2
k(X) can be identified with the space of all L2-sections of the bundle Ek.

This construction can be easily generalized to Sobolev spaces:

Definition 5.2.3. For any quasimomentum k ∈ Cd and any real number s, we denote

by Hs
k(X) the closed subspace of Hs

loc(X) consisting of γk-automorphic functions. Then

Hs
k(X) is a Hilbert space equipped with a natural inner product arising from the inner

product of the Sobolev space Hs(F), where F is any fixed fundamental domain for the

action of the group G on X . The topology of the Hilbert space Hs
k(X) does not depend

on the choice of the fundamental domain F .

Equivalently, the space Hs
k(X) can be identified with Hs(Ek), the space of all Hs-

sections of the bundle Ek.

145



For any k, the periodic operator A maps Hm
k (X) into L2

k(X). Thus, the restrictions of

A to these subspaces Hm
k (X) define elliptic operators A(k) on the spaces of sections of

the bundles Ek over the compact manifold M . When A is self-adjoint and k is real, the

operatorA(k), with the spaceHm(Ek) as the domain, is an unbounded, bound from below

self-adjoint operator in L2(Ek).

In this chapter, we use a version of the Floquet transform introduced in the previous

chapters as follows

f(x) 7→ Ff(k, x) =
∑
g∈G

f(g · x)γk(g) =
∑
g∈G

f(g · x)e−ik·g, k ∈ Cd. (5.4)

For reader’s convenience, we recall some basic properties of this Floquet transform in

Section 5.7. As one would expect, this transform decomposes the original operator A on

the non-compact manifold X into a direct integral of operators A(k) acting on sections of

line bundles Ek over torus, which is compact:

A =

⊕∫
(T∗)d

A(k) dk, L2(X) =

⊕∫
(T∗)d

L2(Ek) dk. (5.5)

Here the measure dk is the normalized Haar measure of (T∗)d, which can be also consid-

ered as the normalized Lebesgue measure on the Brillouin zoneB. Therefore, the union of

the spectra of operators A(k) over the torus (T∗)d is the spectrum of the periodic operator

A. Finally, the notions of Bloch variety, dispersion relations, Fermi surfaces of the opera-

tor A are defined similarly as in Chapter 2 and Chapter 4 (see Definition 2.2.5). Note that

most of the fundamental properties of these notions in the flat case still hold in the abelian

covering case, e.g., Proposition 2.2.6.
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5.2.2 Floquet-Bloch solutions and Liouville theorem on abelian coverings

In this section, we introduce the notions of Bloch and Floquet solutions of periodic

PDEs and then state the Liouville theorem of [50].

Definition 5.2.4. For any g ∈ G and quasimomentum k ∈ Cd, we denote by ∆g;k the

“k-twisted” version of the first difference operator acting on functions on the covering X

as follows

∆g;ku(x) = e−ik·gu(g · x)− u(x). (5.6)

The iterated “twisted” finite differences of order N with quasimomentum k are defined as

∆g1,...,gN ;k = ∆g1;k . . .∆gN ;k, for g1, . . . , gN ∈ G. (5.7)

Definition 5.2.5. A function u on X is a Floquet function of order N with quasimo-

mentum k if any finite difference of order N + 1 with quasimomentum k annihilates u.

Also, a Bloch function with quasimomentum k is a Floquet function of order 0 with

quasimomentum k.

According to this definition, a Bloch function u(x) with quasimomentum k is a γk-

automorphic function on X , i.e., u(g · x) = eik·gu(x) for any g ∈ G. Thus, if u is

a continuous Bloch function with a real quasimomentum, then u ∈ L2
loc(X) and for any

compact subsetK ofX , the sequence {‖u‖L2(gK)}g∈G is bounded (i.e., belongs to `∞(G)).

It is also known [50] that u(x) is a Floquet function of order N with quasimomentum

k if and only if u can be represented in the form

u(x) = ek(x)

∑
|j|≤N

[x]jpj(x)

 ,

where j = (j1, . . . , jd) ∈ Zd+, and the functions pj are G-periodic. Here for any j ∈ Zd,
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we define

|j| := |j1|+ . . . |jd|, (5.8)

while ek(x) and [x]j are analogs of the exponential eikx and the monomial xj on Rd (see

[50] for details). For convenience, in Section 5.7, we collect some basic facts of Floquet

functions on abelian coverings. In the flat case X = Rd, a Floquet function of order N

with quasimomentum k is the product of the plane wave eikx and a polynomial of degree

N with G-periodic coefficients.

An important consequence of this representation is that any Floquet function u(x) ∈

L2
loc(X) of orderN with a real quasimomentum satisfies the following L2-growth estimate

‖u‖L2(gK) ≤ C(1 + |g|)N , ∀g ∈ G and K b X.

Here |g| is defined according to (5.8), and we have used the Švarc-Milnor lemma from

geometric group theory (see e.g., [57, Lemma 2.8]) to conclude that on a Riemannian

co-compact covering X , the Riemannian distance between any compact subset K and its

g-translation gK is comparable with |g|.

If u is continuous, the above L2-growth estimate can be replaced by the corresponding

L∞-growth estimate.

We now need to introduce the spaces of polynomially growing solutions of the equation

Au = λu. To simplify the notations, we will assume from now on that λ = 0, since, as

we discussed before, we can deal with the operator A−λ instead of A (see also Definition

2.2.5).

Definition 5.2.6. Let K b X be a domain such that X is the union of all G-translations

of K, i.e.,

X =
⋃
g∈G

gK. (5.9)

148



For any s,N ∈ R and 1 ≤ p ≤ ∞, we define the vector spaces

V p
N(X) :=

{
u ∈ C∞(X) | {‖u‖L2(gK) · 〈g〉−N}g∈G ∈ `p(G)

}
,

and

V p
N(A) := {u ∈ V p

N(X) | Au = 0} .

Here 〈g〉 := (1 + |g|2)1/2.

It is clear that these spaces are independent of the choice of the compact subset K

satisfying (5.9). In particular, one can take as K a fundamental domain for G-action on

X . Moreover, we have V p1

N1
(X) ⊆ V p2

N2
(X) and V p1

N1
(A) ⊆ V p2

N2
(A) whenever N1 ≤ N2

and p1 ≤ p2.

Definition 5.2.7. For N ≥ 0, we say that the Liouville theorem of order (p,N) holds

for A, if the space V p
N(A) is finite dimensional.

Now we can restate one of the main results in [50] as follows

Theorem 5.2.8. [50]

(i) The following statements are equivalent:

(1) The cardinality of the real Fermi surface FA,R is finite modulo G∗-shifts, i.e.,

Bloch solutions exist for only finitely many unitary characters γk.

(2) The Liouville theorem of order (∞, N) holds for A for some N ≥ 0.

(3) The Liouville theorem of order (∞, N) holds for A for all N ≥ 0.

(ii) Suppose that the Liouville theorem holds for A. Then for any N ∈ N, each solution

u ∈ V ∞N (A) can be represented as a finite sum of Floquet solutions:

u(x) =
∑
k∈FA,R

∑
0≤j≤N

uk,j(x), (5.10)
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where each uk,j is a Floquet solution of order j with a quasimomentum k.

(iii) A crude estimate of the dimension of V ∞N (A):

dimV ∞N (A) ≤
(
d+N

N

)
·
∑
k∈FA,R

dim KerA(k) <∞.

Due to the relation between FA,R and FA∗,R (see Proposition 2.2.6), the Liouville the-

orem holds for A if and only if it also holds for A∗.

5.2.3 Explicit formulas for dimensions of spaces V ∞N (A)

In order to obtain explicit formulas for the dimensions of V ∞N (A), we need to remind

some notions from [50]. Recall that, for each quasimomentum k, A(k) is in the space

L(Hm
k (X), L2

k(X)) of bounded linear operators acting from Hm
k (X) to L2

k(X). For a real

number s, the spaces Hs
k(X) are the fibers of the following analytic G∗-periodic Hilbert

vector bundle over Cd:

Es :=
⋃
k∈Cd

Hs
k(X) =

⋃
k∈Cd

Hs(Ek). (5.11)

Consider a quasimomentum k0 in FA,R. We can trivialize 3 the vector bundle Em, so that

in a neighborhood of k0, A(k) becomes an analytic family of bounded operators from Hm
k0

to L2
k0

(see Subsection 5.7.2). Suppose that the spectra of operators A(k) are discrete for

any value of the quasimomentum k.

Assume now that zero is an eigenvalue of the operator A(k0) with algebraic multi-

plicity r. Let Υ be a contour in C separating 0 from the rest of the spectrum of A(k0).

Due to Proposition 5.7.3, we can pick a small neighborhood of k0 such that the contour Υ

does not intersect with σ(A(k)) for any k in this neighborhood. We denote by Π(k) the

3In fact, Em is analytically trivializable (see e.g., [47, 82]) although we do not need this fact here.
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r-dimensional spectral Riesz projector for the operator A(k), associated with the contour

Υ. Now one can pick an orthonormal basis {ej}1≤j≤r in the range of Π(k0) and define

ej(k) := Π(k)ej . Then let us consider the r × r matrix λ(k) of the operator A(k)Π(k) in

the basis {ej(k)}, i.e.,

λij(k) = 〈A(k)ej(k), ei(k)〉 = 〈A(k)Π(k)ej, ei〉. (5.12)

Our considerations in this part will not change if we multiply λ(k) by an invertible matrix

function analytic in a neighborhood of k0.

Remark 5.2.9. An important special case is when r = 1 near k0. Then λ(k) is just the

band function that vanishes at k0.

Now, using the Taylor expansion around k0, we decompose λ(k) into the series of

homogeneous matrix valued polynomials:

λ(k) =
∑
j≥0

λj(k − k0), (5.13)

where each λj is a Cr×r-valued homogeneous polynomial of degree j in d variables.

For each quasimomentum k0 ∈ FA,R, let `0(k0) be the order of the first non-zero term

of the Taylor expansion (5.13) around k0 of the matrix function λ(k).

The next result, extracted from [50], provides explicit formulas for dimensions of the

spaces V ∞N (A).

Theorem 5.2.10. [50] Suppose that the real Fermi surface FA,R is finite (moduloG∗-shifts)

and the spectrum σ(A(k)) is discrete for any quasimomentum k.
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(a) For each integer 0 ≤ N < min
k∈FA,R

`0(k), we have

dimV ∞N (A) =
∑
k∈FA,R

mk

[(
d+N

d

)
−
(
d+N − `0(k)

d

)]
, (5.14)

where mk is the algebraic multiplicity of the zero eigenvalue of the operator A(k).

(b) If for every k ∈ FA,R, detλ`0(k) is not identically equal to zero, the formula (5.14)

holds for any N ≥ 0.

The reader might wonder what does the binomial coefficient
(
d+N − `0(k)

d

)
mean

if d+N − `0(k) happens to be negative. We adopt the following agreement:

Definition 5.2.11. If in some formulas throughout this text one encounters a binomial

coefficient
(
M

N

)
, where the difference M −N is negative, we define its value to be equal

to zero.

It is worthwhile to note that the positivity of `0(k) is equivalent to the fact that both

algebraic and geometric multiplicities of the zero eigenvalue of the operator A(k) are the

same. Also, the non-vanishing of the determinant of λ`0(k) implies that `0(k) > 0.

5.2.4 A characterization of the spaces V p
N(A)

Notation 5.2.12. For a real number r, we denote by brc the largest integer that is strictly

less than r, while [r] denotes the largest integer that is less or equal than r.

The following statement follows from Theorem 5.2.8 (ii):

Lemma 5.2.13. V ∞N (A) = V ∞[N ](A) for any non-negative real number N .

The proofs of the next two theorems are delegated to the Subsection 5.7.6.
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Theorem 5.2.14. For each 1 ≤ p <∞ such that pN > d, one has

V ∞bN−d/pc(A) ⊆ V p
N(A).

If, additionally, the Fermi surface FA,R is finite modulo G∗-shifts, then

V p
N(A) = V ∞bN−d/pc(A).

Corollary 5.2.15. If the Fermi surface FA,R is finite modulo G∗-shifts, then Liouville the-

orem of order (p,N) for a pair (p,N) such that pN > d holds for A if and only if the

Liouville theorem of order (∞, N) holds for A for some N ≥ 0, and thus, according to

Theorem 5.2.8, for all N ≥ 0.

The following theorem could be regarded as a version of the unique continuation prop-

erty at infinity for the periodic elliptic operator A.

Theorem 5.2.16. Assume that FA,R is finite (modulo G∗-shifts). Then the space V p
N(A) is

trivial if either one of the following conditions holds:

(a) p 6=∞, N ≤ d/p.

(b) p =∞, N < 0.

In fact, a more general version of these results is:

Theorem 5.2.17. Let p ∈ [1,∞). Let also φ be a continuous, positive function defined on

R+ such that

Np,φ := sup

N ∈ Z :

∞∫
0

φ(r)−p · 〈r〉pN+d−1 dr <∞

 <∞.
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We define Vpφ(A) as the space of all solutions u of A = 0 satisfying the condition

∑
g∈Zd
‖u‖pL2(gK) · φ(|g|)−p <∞

holds for some compact domain K satisfying (5.9).

If FA,R is finite (modulo G∗-shifts), then one has

• If Np,φ ≥ 0, then Vpφ(A) = V ∞Np,φ(A).

• If Np,φ < 0, then Vpφ(A) = {0}.

Note that if φ(r) = 〈r〉N , then Vpφ(A) = V p
N(A).

The proofs of Theorems 5.2.14 and 5.2.16 (provided in Subsection 5.7.6) easily trans-

fer to this general version. We thus skip the proof of Theorem 5.2.17.

Remark 5.2.18. It is worthwhile to note that results of this section do not require the

assumption of discreteness of spectra of the operators A(k). This is useful, in particular,

when considering overdetermined problems.

5.3 The Gromov-Shubin version of the Riemann-Roch theorem for elliptic opera-

tors on noncompact manifolds

We follow here closely the paper [33] by M. Gromov and M. Shubin, addressing only

its parts that are relevant for our considerations.

5.3.1 Some notions and preliminaries

Through this section, P will denote a linear elliptic differential expressions with smooth

coefficients on a non-compact manifold X (later on, X will be the space of an abelian co-

compact covering). We denote by P ∗ its transpose elliptic differential operator, defined

via the identity

〈Pu, v〉 = 〈u, P ∗v〉, ∀u, v ∈ C∞c (X ),
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where 〈·, ·〉 is the bilinear duality (5.1).

We notice that both P and P ∗ can be applied as differential expressions to any smooth

function on X and these operations keep the spaces C∞(X ) and C∞c (X ) invariant.

We assume that P and P ∗ are defined as operators on domains DomP and DomP ∗,

such that

C∞c (X ) ⊆ DomP ⊆ C∞(X ), (5.15)

C∞c (X ) ⊆ DomP ∗ ⊆ C∞(X ). (5.16)

Definition 5.3.1. We denote by ImP and ImP ∗ the ranges of P and P ∗ on their corre-

sponding domains, i.e.

ImP = P (DomP ), ImP ∗ = P ∗(DomP ∗). (5.17)

As usual, KerP and KerP ∗ denote the spaces of solutions of the equations Pu = 0,

P ∗u = 0 in DomP and DomP ∗ respectively.

We also need to define some auxiliary spaces4. Namely, assume that we can choose

linear subspaces5 Dom′P and Dom′P ∗ of C∞(X ) so that

(P1)

C∞c (X ) ⊆ Dom′P ⊆ C∞(X ), (5.18)

C∞c (X ) ⊆ Dom′P ∗ ⊆ C∞(X ), (5.19)

and
4Most of the complications in definitions here and below come from non-compactness of the manifold.
5The notation Dom′ might confuse the reader, leading her to thinking that this is a different domain of

the operator. It is rather an object dual to the domain Dom.

155



(P2)

ImP ∗ ⊆ Dom′P, ImP ⊆ Dom′P ∗.

(P3) The bilinear pairing
∫
X f(x)g(x) dµX (see (5.1)) makes sense for functions from the

relevant spaces, to define the pairings

〈·, ·〉 : Dom′P ∗ ×DomP ∗ 7→ C, 〈·, ·〉 : DomP ×Dom′P 7→ C,

so that

(P4) The duality (“integration by parts formula”)

〈Pu, v〉 = 〈u, P ∗v〉, ∀u ∈ DomP, v ∈ DomP ∗

holds.

We also need an appropriate notion of a polar (annihilator) to a subspace:

Definition 5.3.2. For a subspace L ⊂ DomP , its annihilator L◦ is the subspace of

Dom′P consisting of all elements of Dom′P that are orthogonal to L with respect to

the pairing 〈·, ·〉 :

L◦ = {u ∈ Dom′P | 〈v, u〉 = 0, for any v ∈ DomP}.

Analogously, M◦ is the annihilator in Dom′P ∗ of a linear subspace M ⊂ DomP ∗ with

respect to 〈·, ·〉.

Following [33], we now introduce an appropriate for our goals notion of Fredholm

type operators.
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Definition 5.3.3. P is a Fredholm operator on X if the following requirements are sat-

isfied:

(i)

dim KerP <∞, dim KerP ∗ <∞

and

(ii)

ImP = (KerP ∗)◦ .

Then the index of P is defined as

indP = dim KerP − codim ImP = dim KerP − dim KerP ∗.

5.3.2 Point divisors

We need to recall the rather technical notion of a rigged divisor from [33]. However,

for reader’s sake, we start with more familiar and easier to comprehend particular case of

a point divisor, which appeared initially in the first version of Gromov-Shubin’s analog

of the Riemann-Roch formula [32].

Definition 5.3.4. A point divisor µ on X consists of two finite disjoint subsets of X

D+ = {x1, . . . , xr}, D− = {y1, . . . , ys} (5.20)

and two tuplets 0 < p1, . . . , pr and q1, . . . , qs < 0 of integers6. The support of the

point divisor µ consists of the points x1, . . . , xr and y1, . . . , ys. We will also write µ =

xp1

1 . . . xprr · y
q1
1 . . . yqss .

6In other words, µ is an element of the free abelian group generated by points of X .
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In [32], such a divisor is used to allow solutions of an elliptic equation Pu = 0 to have

poles up to certain orders at the points of D+ and zeros on D−. Namely,

(i) For any 1 ≤ j ≤ r, there exists an open neighborhood Uj of xj such that on Uj\{xj},

one has u = us + ur, where ur ∈ C∞(Uj), us ∈ C∞(Uj \ {xj}) and when x→ xj ,

us(x) = o(|x− xj|m−n−pj).

(ii) For any 1 ≤ j ≤ s, as x→ yj , one has

u(x) = O(|x− yj||qj |).

5.3.3 Rigged divisors

The notion of a “rigged” divisor comes from the desire to allow for some infinite sets

D±, but at the same time to impose only finitely many conditions (“zeros” and “singulari-

ties”) on the solution.

So, let us take a deep breath and dive into it. First, let us define some distribution

spaces:

Definition 5.3.5. For a closed set C ⊂ X , we denote by E ′C(X ) the space of distributions

on X , whose supports belong to C (i.e., they are zero outside C).

Definition 5.3.6.

1. A rigged divisor associated with P is a tuple µ = (D+, L+;D−, L−), whereD± are

compact nowhere dense disjoint subsets in X and L± are finite-dimensional vector

spaces of distributions on X supported in D± respectively, i.e.,

L+ ⊂ E ′D+(X ), L− ⊂ E ′D−(X ).
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2. The secondary spaces L̃± associated with L± are defined as follows:

L̃+ = {u | u ∈ E ′D+(X ), Pu ∈ L+}, L̃− = {u | u ∈ E ′D−(X ), P ∗u ∈ L−}.

3. Let `± = dimL± and ˜̀± = dim L̃±. The degree of µ is defined as follows:

degP µ = (`+ − ˜̀+)− (`− − ˜̀−). (5.21)

4. The inverse of µ is the rigged divisor µ−1 := (D−, L−;D+, L+) associated with

P ∗.

Remark 5.3.7.

• Notice that the degree of the divisor involves the operator P , so it would have been

more prudent to call it “degree of the divisor with respect to the operator P ,” but

we’ll neglect this, hoping that no confusion will arise.

• Observe that P and P ∗ are injective on E ′D+ and E ′D− , correspondingly 7. Thus,

`± ≥ ˜̀±. (5.22)

• The sum of the degrees of a divisor µ and of its inverse is zero.

Although we have claimed that point divisors are also rigged divisors, this is not im-

mediately clear when comparing Definitions 5.3.4 and 5.3.6. Namely, we have to assign

the spaces L± to a point divisor and to check that the definitions are equivalent in this case.

7For example, if u ∈ E ′D+ and Pu = 0 then u is smooth due to elliptic regularity, but then u = 0
everywhere since the complement of D+ is dense.
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This was done8 in [33], if one defines the spaces associated with a point divisor as follows:

L+ =

∑
1≤j≤r

∑
|α|≤pj−1

cαj δ
α(· − xj) | cαj ∈ C


and

L− =

∑
1≤j≤s

∑
|α|≤|qs|−1

cαj δ
α(· − yj) | cαj ∈ C

 ,

where δ and δα denote the Dirac delta function and its derivative corresponding to the

multi-index α.

It was also shown in [33]) that the degree degP (µ) in this case is
∑

1≤j≤r

[(
pj + n− 1

n

)
−(

pj + n− 1−m
n

)]
−
∑

1≤j≤s

[(
qj + n− 1

n

)
−
(
qj + n− 1−m

n

)]
. Here, as before, n

is the dimension of the manifold X and m is the order of the operator P .

5.3.4 Gromov-Shubin theorem on noncompact manifolds

To state (a version of) the Gromov-Shubin theorem, we now introduce the spaces of

solutions of P with allowed singularities on D+ and vanishing conditions on D−.

Notation 5.3.8. For a compact subset K of X and u ∈ C∞(X \K), we shall write that

u ∈ DomK P,

if there is a compact neighborhood K̂ of K and û ∈ DomP such that u = û outside K̂.

Definition 5.3.9. For an elliptic operator P and a rigged divisor µ = (D+, L+;D−, L−),

the space L(µ, P ) is defined as follows:

{u ∈ DomD+ P | ∃ũ ∈ D′(X ) such that ũ = u on X \D+, P ũ ∈ L+ and (u, L−) = 0}.
8Which is not trivial.
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Here (u, L−) = 0 means that u is orthogonal to every element in L− with respect to

the canonical bilinear duality. The distribution ũ are regularization of u ∈ C∞(X \D+).

Now we can state a variant of Gromov-Shubin’s version of the Riemann-Roch theorem.

Theorem 5.3.10. Let P be an elliptic operator such that (5.15) and properties (P1)-(P4)

are satisfied. Let also µ be a rigged divisor associated with P . If P is a Fredholm operator

on X , then the following Riemann-Roch inequality holds:

dimL(µ, P )− dimL(µ−1, P ∗) ≥ indP + degP (µ). (5.23)

If both P and P ∗ are Fredholm on X , (5.23) becomes the Riemann-Roch equality:

dimL(µ, P ) = indP + degP (µ) + dimL(µ−1, P ∗). (5.24)

Remark 5.3.11.

1. Although the authors of [33] do not state their theorem in the exact form above, the

Riemann-Roch inequality (5.23) follows from their proof.

2. If one considers the difference dimL(µ, P )− dimL(µ−1, P ∗) as some “index of P

in presence of the divisor µ” (say, denote it by indµ(P )), the Riemann-Roch equality

becomes

indµ(P ) = indP + degP (µ) (5.25)

and thus it says that introduction of the divisor changes the index of the operator by

degP (µ).

It is useful for our future considerations to mention briefly some of the ingredients 9

of the proof from [33]. To start, Gromov and Shubin [33] define some auxiliary spaces,
9The reader interested in the main results only, can skip to Corollary 5.3.13.
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which we recall now. Let

Γ(X , µ, P ) :={u ∈ C∞(X \D+) | u ∈ DomD+ P, ∃ũ ∈ D′(X ) such that

ũ = u on X \D+, P ũ ∈ L+ + C∞(X ) and, 〈u, L−〉 = 0},

As before, ũ is a regularization of u ∈ C∞(X \D+). The space of all such regularizations

ũ is

Γ̃(X , µ, P ) := {ũ ∈ D′(X ) | ũ|X\D+ ∈ Γ(X , µ, P ), P ũ ∈ L+ + C∞(X )}.

Let us also introduce the spaces

Γµ(X , P ) = {u ∈ DomP | 〈u, L−〉 = 0}

and

Γ̃µ(X , P ) = {f ∈ Dom′P ∗ | 〈f, L̃−〉 = 0}.

Then for any u ∈ Γ(X , µ, P ), one can extend by continuity the restriction of Pu on

X \D+ to a smooth function on the whole X . Let us denote this extension by P̃ u. Then

P̃ is a linear map from Γ(X , µ, P ) to Γ̃µ(X , P ). In the same manner, we can also define

the corresponding extension P̃ ∗ as a linear map from Γ(X , µ−1, P ∗) to Γ̃µ−1(X , P ∗). The

important point here is that L(µ, P ) and L(µ−1, P ∗) are the kernels of these two extensions

P̃ and P̃ ∗, correspondingly. Let us also introduce the duality

(·, ·) : Γ(X , µ, P )× Γ̃µ−1(X , P ∗)→ C (5.26)

as follows:

(u, f) := 〈ũ, f〉, u ∈ Γ(X , µ, P ), f ∈ Γ̃µ−1(X , P ∗),
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where ũ is any element in the preimage of {u} under the restriction map from Γ̃(X , µ, P )

to Γ(X , µ, P ). Similarly, we get the duality

(·, ·) : Γ̃µ(X , P )× Γ(X , µ−1, P ∗)→ C (5.27)

As it was remarked in [33], these dualities are well-defined and non-degenerate and more-

over, one has the following relation

(P̃ u, v) = (u, P̃ ∗v), ∀u ∈ Γ(X , µ, P ), v ∈ Γ(X , µ−1, P ∗).

Gromov and Shubin then prove the following identity

dim Ker P̃ = indP + degP (µ) + codim Im P̃ ∗. (5.28)

by applying the additivity of Fredholm indices to some short exact sequences of the spaces

introduced above (see [33, Lemma 3.1] and [33, Remark 3.2]). The assumption that P is

Fredholm on X is important in this consideration.

Furthermore, (Im P̃ )◦ = Ker P̃ ∗ ([33, Lemma 3.4]) and hence, Im P̃ ⊂ (Ker P̃ ∗)◦.

Here (Im P̃ )◦ and (Ker P̃ ∗)◦ are the annihilators of Im P̃ , Ker P̃ ∗ with respect to the du-

alities (5.26) and (5.27), respectively. By [33, Lemma 3.3], one gets the inequality (3.9) in

[33]:

dim Ker P̃ ∗ = codim (Ker P̃ ∗)◦ ≤ codim Im P̃ . (5.29)

Then the Riemann-Roch inequality (5.23) follows immediately from (5.28) and (5.29). If

P ∗ is also Fredholm, one can apply (5.23) for P ∗ and µ−1 instead of P and µ to get

dim Ker P̃ ≤ indP + degP (µ) + dim Ker P̃ ∗. (5.30)
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Thus, the Riemann-Roch equality (5.24) can be deduced from (5.23) and (5.30). In this

case, we also have Im P̃ = (Ker P̃ ∗)◦ and Im P̃ = (Ker P̃ ∗)◦ as a byproduct of the proof

of (5.24) (see [33, Theorem 2.12]).

Remark 5.3.12. If (5.29) becomes an equality, i.e.,

dim Ker P̃ ∗ = codim Im P̃ ,

one obtains the Riemann-Roch equality (5.24) for the rigged divisor µ without assuming

that P ∗ is Fredholm on X . Conversely, if (5.24) holds, then Im P̃ = (Ker P̃ ∗)◦.

As a result, we have the following useful corollary:

Corollary 5.3.13. Let P be Fredholm onX , ImP = Dom′P ∗, and µ = (D+, L+;D−, L−)

be a rigged divisor on the manifold X . Then the Riemann-Roch equality (5.24) holds for

P and this divisor µ.

Moreover, the space L(µ−1, P ∗) is trivial, if the following additional condition is sat-

isfied: Suppose that u is a smooth function in DomP such that 〈Pu, L̃−〉 = 0. Then there

exists a solution v in DomP of the equation Pv = 0 satisfying 〈u− v, L−〉 = 0.

In particular, this assumption holds automatically if D− = ∅ and L− = {0}.

We end this part by recalling an application of Theorem 5.3.10, which is needed later.

Example 5.3.14. [33, Example 4.6] Consider P = P ∗ = −∆ on X = Rd, where d ≥ 3

and

DomP = DomP ∗ = {u | u ∈ C∞(Rd),∆u ∈ C∞c (Rd) and lim
|x|→∞

u(x) = 0},

Dom′P = Dom′P ∗ = C∞c (Rd).
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Then the operators P and P ∗ are Fredholm on Rd, KerP = KerP ∗ = {0}, ImP =

ImP ∗ = C∞c (Rd), and thus indP = 0 (see [33, Example 4.2]).

Let

D+ = {y1, . . . , yk}, D− = {z1, . . . , zl}.

with all the points y1, . . . , yk, z1, . . . , zl pairwise distinct. Consider the following distri-

butional spaces: L+ is the vector space spanned by Dirac delta distributions δ(· − yj)

supported at the points yj (1 ≤ j ≤ k); L− is spanned by the first order derivatives
∂

∂xα
δ(· − zj) of Dirac delta distributions supported at zj (1 ≤ j ≤ l, 1 ≤ α ≤ d). 10

Consider now the rigged divisor µ := (D+, L+;D−, L−). Then deg−∆(µ) = k − dl.

Furthermore,

L(µ,−∆) =

{
u | u(x) =

k∑
j=1

aj
|x− yj|d−2

, aj ∈ C, and ∇u(zj) = 0, j = 1, . . . , l.

}
,

and

L(µ−1,−∆) =

{
v | v(x) =

l∑
j=1

d∑
α=1

bj,α
∂

∂xα

(
|x− zj|2−d

)
,bj,α ∈ C, and

u(yj) = 0, j = 1, . . . , k.

}
.

In this case, the Gromov-Shubin-Riemann-Roch formula (Theorem 5.3.10) is

dimL(µ,−∆) = k − dl + dimL(µ−1,−∆). (5.31)
10Note that the secondary spaces L̃± are trivial.
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5.4 The main results

In this section, we consider a periodic elliptic operator A on an abelian covering X .

We assume that the Liouville property holds for the operator A at the level λ = 0, i.e., the

real Fermi surface of A (see Definition 2.2.5) is finite (modulo G∗-shifts) (see Theorem

5.2.8). We consider the following two cases:

5.4.1 Non-empty Fermi surface

In this case, suppose that FA,R = {k1, . . . , k`} (modulo G∗-shifts), where ` ≥ 1. To

present our main results in this case, we need to make the following assumption on the

local behavior of the Bloch variety of the operator A around each quasimomentum kj in

the real Fermi surface.

Assumption A

(A1) For any quasimomentum k, the spectrum of the operator A(k) is discrete. Under

this assumption, the following lemma can be deduced immediately from Proposition

5.7.3 in Section 5.7 and perturbation theory (see e.g., [39, 66]):

Lemma 5.4.1. For each quasimomentum kr ∈ FA,R, there is an open neighborhood

Vr of kr in Rd and a closed contour Υr ⊂ C, such that

(a) The neighborhoods Vr are mutually disjoint;

(b) The contour Υr surrounds the eigenvalue 0 and does not contain any other

points of the spectrum σ(A(kr));

(c) The intersection σ(A(k)) ∩Υr is empty for any k ∈ Vr.

Then, any k ∈ Vr, we can define the Riesz projector Πr(k) associated with A(k)

and the contour Υr. Thus, Πr(k)A(k) is well-defined for any k ∈ Vr. Let mr be
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the algebraic multiplicity of the eigenvalue 0 of the operator A(kr). The immediate

consequence is:

Lemma 5.4.2. The projector Πr(k) depends analytically on k ∈ Vr. In particu-

lar, its range R(Πr(k)) has the same dimension mr for all k ∈ Vr and the union⋃
k∈Vr R(Πr(k)) forms a trivial holomorphic vector bundle over Vr.

(A2) We denote by Ar(k) the matrix representation of the operator Πr(k)A(k)|R(Πr(k))

with respect to a fixed holomorphic basis (fj(k))1≤j≤mr of the rangeR(Πr(k)) when

k ∈ Vr. Then Ar(k) is an invertible matrix except only for k = kr. We equip Cmr

with the maximum norm and impose the following integrability condition:

sup
1≤r≤`

∫
Vr\{kr}

‖Ar(k)−1‖L(Cmr ) dk <∞,

where L(Cmr) is the algebra of linear operators on Cmr .

Remark 5.4.3.

(i) Thanks to Proposition 5.7.2 in Section 5.7, Assumption (A1) is satisfied ifA is either

self-adjoint or a real operator of even order.11

(ii) When the rank d of G is greater than 2, Assumption (A2) holds at a generic spectral

edge (see Section 5.6).

To formulate the results, we need to define appropriate spaces of solutions of polynomial

growth satisfying the conditions that are associated with a rigged divisor µ.

Definition 5.4.4. Given any p ∈ [1,∞] and N ∈ R, we define

Lp(µ,A,N) := L(µ,ApN),

11Here A is real means that Au is real whenever u is real.
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where the operator ApN stands for A with the domain

DomApN = {u ∈ V p
N(X) | Au ∈ C∞c (X)}.

In other words, Lp(µ,A,N) is the space

{u ∈ DomD+ ApN | ∃ũ ∈ D
′(X) : ũ = u on X \D+, Aũ ∈ L+, (u, L−) = 0}.

We thus restrict the growth of a function at infinity, impose the divisor conditions, and

require that it satisfies the homogeneous equation outside of a compact.

Remark 5.4.5. Consider u ∈ Lp(µ,A,N). Let K be a compact domain in X such that⋃
g∈G gK = X . Define GK,D+ := {g ∈ G | dist (gK,D+) ≥ 1}, where we use the no-

tation dist (·, ·) for the distance between subsets arising from the Riemannian distance on

X . Since Au = 0 on X \D+, the condition “u ∈ DomD+ ApN” can be written equivalently

as follows:

{‖u‖L2(gK) · 〈g〉−N}g∈GK,D+ ∈ `p(GK,D+).

By Schauder estimates (see Proposition 5.7.7), this condition can be rephrased as follows:

sup
x: dist(x,D+)≥1

|u(x)|
dist(x,D+)N

<∞, when p =∞,∫
x: dist(x,D+)≥1

|u(x)|p

dist(x,D+)pN
dµX(x) <∞, when 1 ≤ p <∞.

(5.32)

So, depending on the sign of N , this condition controls how u grows or decays at infinity.

Our first main result is the next theorem.

Theorem 5.4.6. Assume that either p = ∞ and N ≥ 0 or p ∈ [1,∞) and N > d/p.

Let p′ be the Hölder conjugate of p. Then under Assumption A, the following Liouville-
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Riemann-Roch inequality holds:

dimLp(µ,A,N) ≥ dimV p
N(A) + degA(µ) + dimLp′(µ

−1, A∗,−N), (5.33)

where dimV p
N(A) can be computed via Theorems 5.2.10 and 5.2.14.

Remark 5.4.7.

• This is an extension to include Liouville conditions of the Riemann-Roch inequality

(5.23). One might wonder why in comparison with the “µ-index”

dimLp(µ,A,N)− dimLp(µ
−1, A∗,−N),

the above inequality only involves the dimension of the kernel V p
N(A), rather than a

full index. The reason is that in this case, the dimension is indeed the full index (the

corresponding range co-dimension being zero).

• Also, Assumption (A1) forces the Fredholm index of A(0) on M to vanish (see

[47, Theorem 4.1.4]). Therefore, indM A(k) (k ∈ Cd) and the L2-index of A (by

Atiyah’s theorem [7]) are zero as well.

The next consequence of Theorem 5.4.6 is useful.

Theorem 5.4.8. If dimV p
N(A) + degA(µ) > 0, then there exists a nonzero element in the

space Lp(µ,A,N). In other words, there exists a nontrivial solution of the growth de-

scribed in (5.32) that also satisfies the conditions on “zeros” and “singularities” imposed

by the rigged divisor µ.

To state the remaining results, we will need the following definition related to various

types of divisors. Namely, one can consider divisors containing only “zeros” or “singular-

ities” from a given divisor.
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Definition 5.4.9.

• The divisor (∅, 0; ∅, 0) is called the trivial divisor.

• Let µ = (D+, L+;D−, L−) be a rigged divisor on X . Then the positive part µ+ and

the negative part µ− of µ are defined as the tuples (D+, L+; ∅, 0) and (∅, 0;D−, L−),

respectively. Hence, for a rigged divisor µ, µ+ (resp. µ−) is trivial wheneverD+ = ∅

and L+ is zero (resp. D− = ∅ and L− is zero).

Our next result shows that if µ− is trivial, the Liouville-Riemann-Roch inequality be-

comes an equality:

Theorem 5.4.10.

Consider a rigged divisor µ and its positive part µ+. Under the assumption of Theorem

5.4.6, the space Lp′((µ+)−1, A∗,−N) is trivial and

dimLp(µ
+, A,N) = dimV p

N(A) + degA(µ+). (5.34)

In particular,

dimLp(µ,A,N) ≤ dimV p
N(A) + degA(µ+). (5.35)

In other words, the inequality (5.35) gives an upper bound for the dimension of the

space Lp(µ,A,N) (see (5.33) for its lower bound) in terms of the degree of the positive

part of the divisor µ and the dimension of the space V p
N(A) = Lp(µ0, A,N), where µ0

is the trivial divisor. By (5.34), one can see that this upper bound is sharp for divisors

containing only “singularities”.

When µ− is nontrivial, determining the triviality of the space Lp′(µ−1, A∗,−N) is

more complicated. In the next proposition, we consider two situations: if the degree of
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µ+ is sufficiently large, then the space Lp′(µ−1, A∗,−N) degenerates to zero, while the

spaces Lp′(µ−1, A∗,−N) can have arbitrarily large dimensions if µ+ is trivial.

Here we recall that a differential operator has the strong unique continuation property

if any local smooth solution which has a vanishing order of infinity at some point vanishes

everywhere.

Proposition 5.4.11.

(a) For any N ≥ 0, p ∈ [1,∞], and d ≥ 3,

sup dimLp′(µ
−1,−∆Rd ,−N) =∞,

where the supremum is taken over all divisors µ with trivial positive parts.

(b) Let the assumption of Theorem 5.4.6 be satisfied and A∗ have the strong unique con-

tinuation property. Let also the coveringX be connected and a point x0 ofX be given.

Let us consider p ∈ [1,∞], N ∈ R, a compact nowhere dense subset D− such that

x0 /∈ D−, and a finite dimensional subspace L− of E ′D−(X). Then there exists M > 0

depending on the data (A, p,N, x0, D
−, L−) such that dimLp′(µ

−1, A∗,−N) = 0

for any rigged divisor µ = (D+, L+;D−, L−) satisfying x0 ∈ D+ ⊆ X \ D− and

L+
M := spanC{∂αx δ(· − x0)}0≤|α|≤M ⊆ L+ ⊂ E ′D+(X).

The second part of the above proposition is a reformulation of [32, Proposition 4.3].

Theorem 5.4.6 can be improved if an additional assumption is imposed.

Theorem 5.4.12. Besides Assumption A, we suppose further that for each 1 ≤ r ≤ `,

the function k ∈ Vr 7→ ‖Ar(k)−1‖2
L(Cmr ) is integrable 12. If one of the following two

conditions
12e.g., this occurs at generic edges when d ≥ 5.
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• p ≥ 2 and N ≥ 0

• p ∈ [1, 2) and 2pN > (2− p)d

is satisfied, then the inequality (5.33) holds. In particular, for any rigged divisor µ, we

have

dimL2(µ+, A, 0) = degA(µ+) (5.36)

and

dimL2(µ,A, 0) = degA(µ) + dimL2(µ−1, A∗, 0). (5.37)

Remark 5.4.13. When µ is trivial, the equality (5.36) means the absence of non-zero L2-

solutions, and thus generically, spectral edges are not eigenvalues. Here the condition on

integrability of ‖Ar(k)−1‖2
L(Cmr ) is not required.

One can show that the following L2-solvability result (or Fredholm alternative) follows

from (5.37).

Proposition 5.4.14. Let D be a non-empty compact nowhere dense subset of X and a

finite dimensional subspace L ⊂ E ′D(X) be given. Define the finite dimensional subspace

L̃ = {v ∈ E ′D(X) | A∗v ∈ L}. Consider any f ∈ C∞c (X) satisfying (f, L̃) = 0. Under

the assumptions of Theorem 5.4.12 for the periodic operator A of order m, the following

two statements are equivalent:

(i) f is orthogonal to each element in the space L2(µ,A∗, 0), where µ is the rigged

divisor (D,L; 0, ∅).

(ii) The inhomogeneous equation Au = f has a (unique) solution u in Hm(X) such that

(u, L) = 0.

We present now examples which show that when µ+ is trivial, the Liouville-Riemann-

Roch equality may hold in some cases, while failing miserably in others. The proofs of
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the propositions below can be found in Section 5.5.

Proposition 5.4.15. Consider the Laplacian −∆ on Rd, d ≥ 3. For any N ≥ 0 and

positive integer `, there exists a rigged divisor µ such that µ+ is trivial and

dimL∞(µ,−∆, N) ≥ `+ dimV ∞N (−∆) + deg−∆(µ) + dimL1(µ−1,−∆,−N). (5.38)

Now let A = A(x,D) be an elliptic constant-coefficient homogeneous differential

operator of orderm on Rd that satisfies AssumptionA. Consider two non-negative integers

M0 ≥ M1. We fix a point x0 in X and we define D− := {x0} as well as the following

finite dimensional vector subspace of E ′D−(Rd):

L− := spanC{∂αδ(· − x0)}M1≤|α|≤M0 .

Let µ be a rigged divisor on Rd of the form (D+, L+;D−, L−), where D+ is a nowhere

dense compact subset of Rd that does not contain the point x0 and L+ is a finite dimen-

sional subspace of E ′D+(Rd).13

Proposition 5.4.16. Assume that one of the following two conditions holds:

• 1 ≤ p <∞, N > d/p+M0.

• p =∞, N ≥M0.

Then dimLp′(µ
−1, A∗,−N) = 0 and the Liouville-Riemann-Roch equality holds:

dimLp(µ,A,N) = dimV p
N(A) + degA(µ).

13A particular case is when M1 = 0 and µ+ is trivial, i.e., µ becomes the point divisor x−(M0+1)
0 (see

Definition 5.3.4).
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5.4.2 Empty Fermi surface

In this case, the Liouville theorem becomes trivial, because the emptiness of the Fermi

surface implies that there is no non-zero, polynomially growing solution (see [50, The-

orem 4.3]), which is an analog of the Schnol theorem (see e.g., [19, 29, 78]). One can

obtain a Liouville-Riemann-Roch type result by combining the Riemann-Roch and the

Schnol theorems. It is shown in [70] that a more general and stronger statement than

the Schnol theorem holds for any C∞-bounded uniformly elliptic operator on a mani-

fold of bounded geometry and subexponential growth 14. In this setting, a corresponding

Liouville-Riemann-Roch theorem can also be proven. We consider only the case of C∞-

bounded uniformly elliptic operators 15 on a co-compact Riemannian covering.

We begin with some definitions from [70] first. Let X be a co-compact connected

Riemannian covering and M be its base. The deck group G is a countable and finitely

generated discrete group (not necessarily abelian). Let dX (·, ·) be the G-invariant Rie-

mannian distance on X . Due to the compactness ofM, there exists rinj > 0 (injectivity

radius) such that for every r ∈ (0, rinj) and every x ∈ X , the exponential geodesic map-

ping expx : TXx → X is a diffeomorphism of the Euclidean ball B(0, r) centered at

0 with radius r in the tangent space TXx onto the geodesic ball BX (x, r) centered at x

with the same radius r in X . Taking r0 ∈ (0, rinj), the geodesic balls BX (x, r), where

0 < r ≤ r0, are called canonical charts with x-coordinate in the charts.

Definition 5.4.17. [70, 71]

(i) A differential operator P of order m on X is C∞-bounded if in every canonical

chart, P can be represent as
∑
|α|≤m aα(x)∂αx . Here the coefficient aα(x) is smooth

such that for any multi-index β, |∂βxaα(x)| ≤ Cαβ where the constants Cαβ are inde-

14One could find details about analysis on manifolds of bounded geometry in e.g., [21, 70, 71].
15Such operators are not necessarily periodic.
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pendent of the chosen canonical coordinate.

(ii) A differential operator P of order m on X is uniformly elliptic if

|P−1
0 (x, ξ)| ≤ C|ξ|−m, (x, ξ) ∈ T ∗X , ξ 6= 0.

Here T ∗X is the cotangent bundle of X , P0(x, ξ) is the principal symbol of the

operator P , and |ξ| is the length of the covector (x, ξ) with respect to the metric on

T ∗X induced by the given Riemannian metric on X .

(iii) X is of subexponential growth if the volumes of balls of radius r grow subexpone-

tially as r →∞, i.e., for any ε > 0 and r > 0,

sup
x∈X

volB(x, r) = O(exp (εr)).

Here vol(·) is the Riemannian volume on X .

(iv) Let x0 be a fixed point in X . A differential operator P on X satisfies Strong Schnol

Property (SSP) if the following statement is true: If there exists a non-zero solution

u of the equation Pu = λu such that for any ε > 0

u(x) = O(exp (εdX (x, x0)))

then λ is in the spectrum of P .

Clearly, any G-periodic elliptic differential operator with smooth coefficients on X is

C∞-bounded uniformly elliptic.

We now turn to a brief discussion of growth of groups (see e.g., [62]). Let us pick a

finite, symmetric generating set S of G. The word metric associated to S is denoted by
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dS : G×G→ R, i.e., for every pair (g1, g2) of two group elements in G, dS(g1, g2) is the

length of the shortest representation in S of g−1
1 g2 as a product of generators from S. Let

e be the identity element of G. The volume function of G associated to S is the function

volG,S : N → N defined by assigning to every n ∈ N the cardinality of the open ball

BG,S(e, n) centered at e with radius n in the metric space (G, dS). Although the values of

this volume function depend on the choice of the generating set S, its asymptotic growth

type is independent from it. The group G is said to be of subexponential growth if

lim
n→∞

ln volG,S(n)

n
= 0.

It is known that the deck group G is of subexponential growth if and only if the covering

X is so (see e.g., [68, Proposition 2.1]). Virtually nilpotent groups clearly have poly-

nomial growth 16. Thus, any virtually nilpotent co-compact Riemannian covering X is

of subexponential growth. Groups with intermediate growth, which were constructed by

Grigorchuk [30], provide other non-trivial examples of Riemannian coverings with subex-

ponential growth.

Theorem 5.4.18. [70, Theorem 4.2] If X is of subexponential growth, then any C∞-

bounded uniformly elliptic operator on X satisfies (SSP).

Remark 5.4.19. A Schnol type theorem can be established without the subexponential

growth condition, if the growth of a generalized eigenfunction is controlled in an integral

(over an expanding ball), rather than point-wise sense, see [12, Theorem 3.2.2 for the

quantum graph case and more general remarks and references in Section 3.8].

Henceforth, the word length of g in G is defined as |g| := dS(e, g). Similarly, we also

16The celebrated Gromov’s theorem [34] shows that virtually nilpotent groups are the only ones with
polynomial growth.
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say that a positive function ϕ : G→ R+ is of subexponential growth if

lim
|g|→∞

lnϕ(g)

|g|
= 0.

Again, this concept does not depend on the choice of the finite generating set S (see [62,

Theorem 1.3.12]).

Definition 5.4.20. Let ϕ be a positive function defined on the deck group G such that both

ϕ and its inverse ϕ−1 are of subexponential growth. Let us denote by S(G) the set of all

such ϕ on G. Then for any p ∈ [1,∞] and ϕ ∈ S(G), we define:

Vpϕ(X ) = {u ∈ C∞(X ) | {‖u‖L2(gF)ϕ
−1(g)}g∈G ∈ `p(G)},

where F is a fundamental domain for M in X . Also, let P p
ϕ be the operator P with

the domain {u ∈ Vpϕ(X ) | Pu ∈ C∞c (X )}. Then we denote by Lp(µ, P, ϕ) the space

L(µ, P p
ϕ), where µ is a rigged divisor on X . In a similar manner, we also define the space

Lp(µ, P
∗, ϕ), where P ∗ is the transpose of P . In particular, if G = Zd and ϕ(g) = 〈g〉N ,

Vpϕ(X ) is the space V p
N(X ) introduced in Definition 5.2.6, while Lp(µ, P, ϕ) coincides

with the space Lp(µ, P,N) appeared in Definition 5.4.4.

We now state our result.

Theorem 5.4.21. Consider any Riemannian co-compact covering X of subexponential

growth with a discrete deck group G. Let P be a C∞-bounded uniformly elliptic differen-

tial operator P of order m on X such that 0 /∈ σ(P ). Let us denote by ϕ0 the constant

function 1 defined on G. Then the following statements are true:

(a) For each rigged divisor µ on X , Lp(µ, P, ϕ) = L∞(µ, P, ϕ0), where p ∈ [1,∞] and

ϕ ∈ S(G). Thus, all the spaces Lp(µ, P, ϕ) are the same.
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(b) dimL∞(µ, P, ϕ0) = degP (µ) + dimL∞(µ−1, P ∗, ϕ0).

(c) If µ = (D+, L+; ∅, 0), dimL∞(µ, P, ϕ0) = degP (µ).

Now let D ⊂ X be a compact nowhere dense subset, and L be a finite dimensional

subspace of E ′D(X ). Denote µ := (D,L; 0, ∅). We also define the space L̃ := {u ∈

E ′D(X ) | P ∗u ∈ L}.

As in Corollary 5.4.14, we obtain:

Corollary 5.4.22. Let the assumptions of Theorem 5.4.21 hold and a function f ∈ C∞c (X)

be given such that (f, L̃) = 0. The following statements are equivalent:

(i) f is orthogonal to the vector space L∞(µ, P ∗, ϕ0).

(ii) There exists a unique solution u of the inhomogeneous equation Pu = f such that

(u, L) = 0 and u ∈ Vpϕ(X ) for some p ∈ [1,∞] and ϕ ∈ S(G).

(iii) The equation Pu = f admits a unique solution u which has subexponential decay

and satisfies (u, L) = 0.

(iv) The equation Pu = f admits a unique solution u which has exponential decay and

satisfies (u, L) = 0.

Remark 5.4.23.

(i) Comparing to the Riemann-Roch formula (5.24), the Fredholm index of P does not

appear in the formula in Theorem 5.4.21 (b) since P is invertible in this case.

(ii) When µ is trivial, Theorem 5.4.21 (c) becomes Theorem 5.4.18 and our Corollary

5.4.22 is an analog of [47, Theorem 4.2.1] for the co-compact Riemannian coverings

of subexponential growth.
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5.5 Proofs of the main results

First, we introduce some notions for the proofs.

Definition 5.5.1. For each s,N ∈ R and p ∈ [1,∞], we denote by V p
s,N(X) the vector

space consisting of all function u ∈ C∞(X) such that for some compact subset K of X

satisfying (5.9), the sequence {‖u‖Hs(gK)〈g〉−N}g∈G belongs to `p(G). We put

V p
s,N(A) := V p

s,N(X) ∩KerA.

Moreover, let Aps,N be the elliptic operator A with the following domain

DomAps,N = {u ∈ V p
s,N(X) | Au ∈ C∞c (X)}.

When s = 0, we get back the notions of V p
N(X) and V p

N(A) in Definition 5.2.6, and

the definitions of the operator ApN and its domain DomApN appeared in Definition 5.4.4.

Proof of Theorem 5.4.6

Proof. Fixing a pair (p,N) satisfying the assumption of the statement. We recall that A is

an elliptic differential operator of order m on X . Let F be the closure of a fundamental

domain for G-action on X . We also pick a compact neighborhood F̂ in X so that F b F̂

and F̂ satisfies the conclusion of Proposition 5.7.7. Our proof consists of several steps.

Step 1. We claim that given p ∈ [1,∞], N ∈ R, and any rigged divisor µ =

(D+, L+;D−, L−), one should have

L(µ,Apm,N) = L(µ,ApN) = Lp(µ,A,N). (5.39)

Indeed, it suffices to show that L(µ,ApN) ⊆ L(µ,Apm,N).
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Consider u ∈ L(µ,ApN). Due to Remark 5.4.5, this implies that

{‖u‖L2(gF̂) · 〈g〉
−N}GF̂,D+

∈ `p(GF̂ ,D+), (5.40)

where GF̂ ,D+ = {g ∈ G | dist (gF̂ , D+) ≥ 1}. Let O := X \ D+, then Au = 0 on

O and moreover, the set GO = {g ∈ G | gF̂ ∩ D+ = ∅} contains GF̂ ,D+ . By applying

Proposition 5.7.7, for any g ∈ GF̂ ,D+ , one derives

‖u‖Hm(gF) . ‖u‖L2(gF̂). (5.41)

By (5.40) and (5.41), {‖u‖Hm(gF) · 〈g〉−N}GF,D+ ∈ `p(GF ,D+). By using Remark 5.4.5

again, this shows that u ∈ L(µ,Apm,N). This proves(5.39).

This claim shows that instead of dealing with ApN , it suffices to work with Apm,N . We

now introduce its ‘adjoint’ (Apm,N)∗ (in the sense of Subsection 5.3.1).

Definition 5.5.2. We denote by (Apm,N)∗ the elliptic operator A∗ with the domain

Dom (Apm,N)∗ = {v ∈ V p′

m,−N(X) | A∗v ∈ C∞c (X)},

where 1/p+ 1/p′ = 1. In another word, (Apm,N)∗ = (A∗)p
′

m,−N .

We also define

Dom′Apm,N = Dom′ (Apm,N)∗ := C∞c (X).

Clearly, C∞c (X) ⊆ DomApm,N ,Dom (Apm,N)∗ ⊆ C∞(X) (see (5.15)).

In the next steps, we will apply Theorem 5.3.10 to the operators Apm,N and (Apm,N)∗.

Step 2. In order to apply Theorem 5.3.10, first, we need to check properties (P1) −

(P4). Obviously, the first three properties (P1)− (P3) hold by definition. To show (P4),

let u ∈ DomApm,N and v ∈ Dom (Apm,N)∗.
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Note that since the operator A is G-periodic, one has

‖Au‖L2(gF) . ‖u‖Hm(gF) and ‖A∗v‖L2(gF) . ‖v‖Hm(gF), for any g ∈ G.

Now by Hölder’s inequality, we have

∣∣∣∣∣∑
g∈G

〈Au, v〉L2(gF)

∣∣∣∣∣ ≤∑
g∈G

∣∣〈Au, v〉L2(gF)

∣∣ ≤∑
g∈G

‖Au‖L2(gF) · ‖v‖L2(gF)

≤‖{‖Au‖L2(gF)〈g〉−N}g∈G‖`p(G) · ‖{‖v‖L2(gF)〈g〉N}g∈G‖`p′ (G)

.‖{‖u‖Hm(gF)〈g〉−N}g∈G‖`p(G) · ‖{‖v‖Hm(gF)〈g〉N}g∈G‖`p′ (G)

<∞.

(5.42)

Similarly,

∣∣∣∣∣∑
g∈G

〈u,A∗v〉L2(gF)

∣∣∣∣∣ ≤ ‖{‖u‖Hm(gF)〈g〉−N}g∈G‖`p(G)·‖{‖v‖Hm(gF)〈g〉N}g∈G‖`p′ (G) <∞.

Hence, both 〈Apm,Nu, v〉 and 〈u, (Apm,N)∗v〉 are well-defined.

Our goal is to show that these two quantities are equal. To do this, for each r ∈ N, we

define

Gr := {g ∈ G | |g| ≥ r},

and Fr as the union of all shifts of F by deck group elements whose word length do not

exceed r, i.e.,

Fr :=
⋃

g/∈Gr+1

gF =
⋃
|g|≤r

gF .

Obviously, Fr b Fr+1 for any r ∈ N and the union of these subsets Fr is the whole

covering X . Let φr ∈ C∞c (X) be a cut-off function such that φr = 1 on Fr and suppφr b
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Fr+1. Furthermore, all derivatives of φr are uniformly bounded with respect to r. In

particular, the following estimates hold for any smooth function w on X and any g ∈ G:

‖φrw‖Hm(gF) . ‖w‖Hm(gF), ‖(1− φr)w‖Hm(gF) . ‖w‖Hm(gF). (5.43)

Put ur := φru and vr := φrv. Since ur and vr are compactly supported smooth functions

on X , 〈Aur, vr〉 = 〈ur, A∗vr〉. Therefore, it is enough to demonstrate

〈Aur, vr〉 → 〈Au, v〉 and 〈ur, A∗vr〉 → 〈u,A∗v〉, (5.44)

as r → ∞. By symmetry, we only need to show the first convergence of (5.44). We use

the triangle inequality to reduce (5.44) to checking

lim
r→∞
〈A(u− ur), v〉 = lim

r→∞
〈Aur, (v − vr)〉 = 0. (5.45)

We repeat the argument of (5.42) for the pairs of functions ((1 − φr)u, v) and (φru, (1 −

φr)v), and then use (5.43) to derive

|〈Aur, (v − vr)〉|+ |〈A(u− ur), v〉|

≤
∑
g∈G

∣∣〈A(φru), (1− φr)v〉L2(gF)

∣∣+
∣∣〈A((1− φr)u), v〉L2(gF)

∣∣
=
∑
|g|≥r+1

∣∣〈A(φru), (1− φr)v〉L2(gF)

∣∣+
∣∣〈A((1− φr)u), v〉L2(gF)

∣∣
.‖{‖φru‖Hm(gF)〈g〉−N}g∈Gr+1‖`p(Gr+1) · ‖{‖(1− φr)v‖Hm(gF)〈g〉N}g∈Gr+1‖`p′ (Gr+1)

+ ‖{‖(1− φr)u‖Hm(gF)〈g〉−N}g∈Gr+1‖`p(Gr+1) · ‖{‖v‖Hm(gF)〈g〉N}g∈Gr+1‖`p′ (Gr+1)

.‖{‖u‖Hm(gF)〈g〉−N}g∈Gr+1‖`p(Gr+1) · ‖{‖v‖Hm(gF)〈g〉N}g∈Gr+1‖`p′ (Gr+1).

(5.46)
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Since u ∈ V p
m,N(X) and v ∈ V p′

m,−N(X), it follows that as r →∞, either

‖{‖u‖Hm(gF)〈g〉−N}g∈Gr+1‖`p(Gr+1)

or

‖{‖v‖Hm(gF)〈g〉N}g∈Gr+1‖`p′ (Gr+1)

converges to zero (depending on either p or p′ is finite), while the remaining term is

bounded. Thus, we always have

lim
r→∞
‖{‖u‖Hm(gF)〈g〉−N}g∈Gr+1‖`p(Gr+1) · ‖{‖v‖Hm(gF)〈g〉N}g∈Gr+1‖`p′ (Gr+1) = 0.

This fact and (5.46) imply (5.45). Hence, the property (P4) holds for Apm,N and (Apm,N)∗.

Step 3. Clearly, KerApm,N = {u ∈ DomApm,N | Au = 0} = V p
m,N(A) = V p

N(A). The

latter equality is due to Schauder estimates (see (5.41) in Step 1). Also, Ker(Apm,N)∗ =

V p′

m,−N(A∗) = V p′

−N(A∗) = 0 by Theorem 5.2.16. Hence, the kernels of Apm,N and (Apm,N)∗

are of finite dimensional.

To prove thatApm,N is Fredholm onX , we only need to show that ImApm,N = C∞c (X) =(
Ker (Apm,N)∗

)◦. Given any f ∈ C∞c (X), we want to find a solution u of the equation

Au = f such that u ∈ V p
N(X). If such a solution u is found then automatically, u is in

V p
m,N(X) by the same argument in Step 1 and the fact that Au = 0 on the complement

of the compact support of f . Thus, f must belong to the range of Apm,N and the proof

is then finished. So our remaining task is to find such a solution u. This can be done as

the following way. First, we pick a cut-off function ηr such that η = 1 around kr and

supp ηr b Vr, where Vr is the neighborhood of kr appearing in Assumption A. Define

η =
∑̀
r=1

ηr.
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Note that the Floquet transform Ff is smooth in (k, x) since f ∈ C∞c (X). We decompose

Ff = ηFf + (1− η)Ff . Since the operator A(k) is invertible when k /∈ FA,R, the operator

function

û0(k) := A(k)−1((1− η(k))Ff(k))

is well-defined and smooth in (k, x). By Theorem 5.7.5, the function u0 := F−1û0 has

rapid decay. We recall when k ∈ Vr, the Riesz projection Πr(k) is defined in Assumption

A. Clearly, 0 /∈ σ(A(k)|R(1−Πr(k))), where we use the notation R(T ) to denote the range

of an operator T . Now the operator function

v̂r(k) := ηr(k)(A(k)|R(1−Πr(k)))
−1(1− Πr(k))Ff(k)

is also smooth and thus, the function vr := F−1v̂r has rapid decay by Theorem 5.7.5 again.

In particular, u0, vr(1 ≤ r ≤ `) are in the space V ∞0 (X).

Let us fix 1 ≤ r ≤ `. For any k ∈ Vr \ {kr}, due to (A2), we can define the operator

function ŵr(k) := ηr(k)(A(k)|R(Πr(k)))
−1Πr(k)Ff(k), which is in the range of Πr(k). By

expanding Πr(k)Ff(k) in terms of the basis (fj(k))1≤j≤mr , it is easy to see that

‖ŵr(k)‖L2
k(X) . max

1≤j≤mr
‖Ar(k)−1fj(k)‖L2

k(X) · ‖Ff(k)‖L2
k(X).

From this and the integrability condition in (A2), we obtain

∫
Td

‖ŵr(k)‖L2
k(X) dk .

∫
Vr\{kr}

‖Ff(k)‖L2
k(X) · ‖(Ar(k)−1fj(k))1≤j≤mr‖`∞(Cmr ) dk

. sup
k∈Vr
‖Ff(k)‖L2

k(X) ·
∫

Vr\{kr}

‖Ar(k)−1‖L(Cmr ) dk <∞.

Hence, ŵr ∈ L1(Td, E0).
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Summing up, the function û := û0 +
∑

1≤r≤`
(v̂r + ŵr) belongs to L1(Td, E0), and more-

over, it satisfies the equation

A(k)û(k) = A(k)û0(k) +
∑

1≤r≤`

A(k)(v̂r(k) + ŵr(k))

= (1− η(k))Ff(k) +
∑

1≤r≤`

ηr(k)Ff(k) = Ff(k).

From the above equation, û(k, x) is smooth in x for each quasimomentum k. We define

u := F−1û by using the formula (5.58). According to Lemma 5.7.6, u ∈ L2
loc(X). For any

φ ∈ C∞c (X), we can use Fubini’s theorem to get

〈u,A∗φ〉L2(X) =

∫
X

F−1û(k, x) · A∗φ(x) dµX(x)

=
1

(2π)d

∫
Td

∫
X

û(k, x) · A∗φ(x) dµX(x) dk =
1

(2π)d

∫
Td

∫
X

Aû(k, x) · φ(x) dµX(x) dk

=
1

(2π)d

∫
Td

∫
X

A(k)û(k, x) · φ(x) dµX(x) dk

=
1

(2π)d

∫
Td

∫
X

Ff(k, x) · φ(x) dµX(x) dk = 〈f, φ〉L2(X).

Hence, u is a weak solution of the inhomogeneous equation Au = f on X . Elliptic

regularity then implies that u is a classical solution and therefore, u ∈ V ∞0 (X) due to

Lemma 5.7.6 again. If either N ≥ 0 when p = ∞ or N > d/p when p ∈ [1,∞), we

always have V ∞0 (X) ⊆ V p
N(X). Thus, this shows that Apm,N is a Fredholm operator on X .

Step 4. From Step 2 and Step 3, the operatorApm,N satisfies the assumption of Theorem

5.3.10. Then the Liouville-Riemann-Roch inequality (5.33) follows immediately from

(5.39) and Theorem 5.3.10.

Remark 5.5.3. Assumption (A2) is needed to guarantee the validity of the Liouville-

Riemann-Roch inequality (5.4.6) (at least when p = ∞ and N = 0). Indeed, consider

−∆ in R2. Let µ be the point divisor ({0}, L, ∅, 0), where L = Cδ0. It is not difficult to

185



see that the space L∞(µ,−∆, 0) contains only constant functions since the standard fun-

damental solution u0(x) = − 1
2π

ln |x| is not bounded at infinity. Clearly, L1(µ−1,−∆, 0)

is trivial. Hence, we have:

dimL∞(µ,−∆, 0) = 1 < 2 = deg−∆(µ) + dimV ∞0 (−∆) + dimL1(µ−1,−∆, 0).

Proof of Theorem 5.4.10

Proof. From Step 3 in the proof of Theorem 5.4.6, the operator Apm,N is Fredholm on X

and ImApm,N = C∞c (X) = Dom′ (Apm,N)∗. Now we can apply Corollary 5.3.13 to finish

the proof of the equality (5.34). The upper bound estimate (5.35) follows from (5.34) and

the trivial inclusion Lp(µ,A,N) ⊆ Lp(µ
+, A,N).

Proof of Proposition 5.4.11

Proof. (a) We define µ0 := (∅, 0;D−, L−). Now suppose for contradiction that for any

M > 0, the space Lp′(µ−1
M , A∗,−N) is non-trivial for some rigged divisor µM =

(D+, L+
M ;D−, L−) such that L+

M ⊆ L+
M . Note that Lp′(µ−1

M , A∗,−N) is a subspace

of Lp′(µ−1
0 , A∗,−N). It follows from Proposition 5.4.10 that Lp′(µ−1

0 , A∗,−N) is a

finite dimensional vector space and thus, we equip it with any norm ‖ · ‖. Thus, there

is a sequence {uM}M∈N in Lp′(µ−1
0 , A∗,−N) such that ‖uM‖ = 1 and (uM , L

+
M) = 0.

In particular, (uM ,L+
M) = 0 and therefore, ∂αuM(x0) = 0 for any 0 ≤ |α| ≤ M . By

passing to a subsequence if necessary, there exists v ∈ Lp′(µ
−1
0 , A∗,−N) for which

lim
M→∞

‖uM −v‖ = 0. It is clear that ‖w‖CM (K) . ‖w‖ for any w in Lp′(µ−1
0 , A∗,−N),

M ≥ 0, and compact subset K b X \D−. Hence, for any multi-index α, ∂αv(x0) =

lim
M→∞

∂αuM(x0) = 0. As a local smooth solution of A∗, v must vanish on X \D− due

to the strong unique continuation property of A∗. Consequently, v = 0 as an element

in Lp′(µ−1
0 , A∗,−N) and this gives us a contradiction to the fact that ‖v‖ = 1.
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(b) It suffices to prove the statement for the case p = ∞. If r ≥ 0, we define the corre-

sponding point divisor µr := (∅, 0; {0}, L−r ), where

L−r :=

∑
|α|≤r

cα∂
αδ(· − 0) | cα ∈ C

 .

Let us consider the function vα(x) := ∂α(|x|2−d) for each multi-index α such that

|α| > N + 2. It is clear that |vα(x)| . |x|−|α|−d+2 for x 6= 0. Therefore, we obtain

∑
g∈Zd
‖vα‖L2([0,1)d+g) · 〈g〉N .

∑
g∈Zd
〈g〉−|α|−d+2+N <∞.

Since |x|2−d is a fundamental solution of −∆ on Rd (up to some multiplicative con-

stant), vα belongs to the space L1(µ−1
r ,−∆|Rd ,−N) provided that N + 2 < |α| ≤ r.

Now let us pick some multi-indices α1, . . . , αr−N−2 such that |αj| = N + 2 + j for

any 1 ≤ j ≤ r −N − 2. By homogeneity, the functions vαj are linearly independent

as smooth functions on Rd \ {0}. By letting r →∞, this completes our proof.

Remark 5.5.4.

(i) There are large classes of elliptic operators that have the strong unique continuation

property, e.g., elliptic operators of second-order with smooth coefficients or elliptic

operators with real analytic coefficients.

(ii) Note that the finiteness of the real Fermi surface FA,R would imply the weak unique

continuation property ofA∗, i.e.,A∗ does not have any non-zero compactly supported

solution (see e.g., [47]). We do not know whether the first statement of Proposition

5.4.11 holds if one drops the strong unique continuation property of A∗.

Proof of Theorem 5.4.12
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Proof. The proof is similar to the proof of Theorem 5.4.6, except for Step 3 where we

have a minor modification. Let us keep the same argument and notions in Step 3. The

goal here is to prove the solvability of the equation Au = f , where f ∈ C∞c (X) and

u ∈ V p
N(X). Under the L2-assumption, the functions ŵr (1 ≤ r ≤ `), which are defined

in Step 3, belong to L2(Td, E0). Thus, û ∈ L2(Td, E0) and then by Theorem 5.7.5, u

is in L2(X) as well as Au = f . This means that u ∈ V 2
0 (X). If p ≥ 2, N ≥ 0, the

inclusion V 2
0 (X) ⊆ V 2

N(X) is obvious while if p ∈ [1, 2), N > (1/p− 1/2)d, one can use

Hölder’s inequality to obtain the inclusion V 2
0 (X) ⊂ V p

N(X). This completes the proof

of the first statement. In particular, when p = 2, N = 0, both of the operators A2
0 and

(A2
0)∗ = (A∗)2

0 are Fredholm. Therefore, we obtain the equality (5.37) since it is known

that dimV 2
0 (A) = dimV 2

0 (A∗) = 0 (see Theorem 5.2.16 (a)).

Remark 5.5.5.

(a) The integrability of ‖Ar(k)−1‖2
L(Cmr ) is needed in Theorem 5.4.12. For example, let

us consider A = −∆ on Rd (d < 5) and the point divisor µ representing a simple

pole at 0. Then the fundamental solution cd|x|2−d does not belong to L2(µ,−∆, 0)

and thus, dimL2(µ,−∆, 0) = 0 < 1 = deg−∆(µ). Therefore, the equalities (5.36)

and (5.37) do not hold in this case.

(b) Under the assumption of Theorem 5.4.12, the Liouville-Riemann-Roch inequality

(5.33) holds for any N ≥ 0 if and only if p ≥ 2. Indeed, suppose that d ≥ 5 and

p < 2, then (2− d)p ≥ −d and therefore,

∫
|x|≥1

|x|(2−d)p dx =∞.

This implies that Lp(µ,−∆, 0) = {0}, where µ is also the point divisor 01. So (5.33)

fails since dimLp(µ,−∆, 0) = 0 < 1 = deg−∆(µ).
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Proof of Proposition 5.4.14

Proof. We evoke the operators A2
m,0 and (A2

m,0)∗ and their corresponding domains from

the proof of Theorem 5.4.6. Now we recall from our discussion in Subsection 5.3 the

notations of the operators

Ã2
m,0 : Γ(X,µ−1, A2

m,0)→ Γ̃µ−1(X,A2
m,0)

and

˜(A2
m,0)∗ : Γ(X,µ, (A2

m,0)∗)→ Γ̃µ(X, (A2
m,0)∗)

are extensions of the two operators A2
m,0 and (A2

m,0)∗ with respect to the divisors µ−1 and

µ, respectively. From (5.37) and Remark 5.3.12, we obtain the duality L2(µ,A∗, 0)◦ =

(Ker ˜(A2
m,0)∗)

◦
= Im Ã2

m,0. Put in another word, f is orthogonal to L̃ and L2(µ,A∗, 0) if

and only if f = Au for some u in the space Γ(X,µ−1, A2
m,0) = {v ∈ Hm(X) | Av ∈

C∞c (X), 〈v, L〉 = 0}. This proves the equivalence of (i) and (ii).

Proof of Proposition 5.4.15

Proof. If ` ∈ N, we choose ` distinct points z1, . . . , z` in Rd and define µ` := (∅, 0;D−, L−),

where D− = {z1, . . . , z`} and

L− =

{∑
1≤j≤`

∑
1≤α≤d

cjα
∂

∂xα
δ(x− zj) | cjα ∈ C

}
.

In terms of the notations in Example 5.3.14, k = 0, l = `.

Let us recall now the spaces L(µ,−∆) and L(µ−1,−∆) from Example 5.3.14. By

their definition, it is clear that L∞(µ,−∆, 0) = C. Hence,

dimL∞(µ,−∆, 0) = 1 = dimL(µ,−∆) + dimV ∞0 (−∆). (5.47)
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On the other hand, if v ∈ L1(µ−1,−∆, 0) then

lim
R→∞

∑
|g|≥R

‖v‖L2([0,1)d+g) = 0.

It follows that as |g| → ∞, ‖v‖L2([0,1)d+g) → 0. Using elliptic regularity, this is equivalent

to the condition lim
|x|→∞

v(x) = 0. Thus, L1(µ−1,−∆, 0) is a subspace of L(µ−1,−∆).

Define

vjα(x) =
∂

∂xα
|x− zj|2−d.

Then vjα ∈ L(µ−1,−∆) (see Example 5.3.14). We now claim that vjα /∈ L1(µ−1,−∆, 0)

for any 1 ≤ j ≤ ` and 1 ≤ α ≤ d. Suppose for contradiction that

vjα(x) = (2− d)
(xα − (zj)α)

|x− zj|d
∈ L1(µ−1,−∆, 0).

This implies that for some R > 0, we have

Vα,R :=
∑

g∈Zd,|g|≥R

(∫
[0,1)d+g

|xα − (zj)α|2

|x− zj|2d
dx

)1/2

<∞.

But this gives us a contradiction, since

Vα,R &
∑

g∈Zd,|g|≥R

|gα|
|g|d
≥

∑
g∈Zd,gα 6=0,|g|≥R

1

|g|d
=∞.

From the above claim and the linearly independence of the functions vjα as smooth

functions on Rd \D−, it follows that

dimL1(µ−1,−∆, 0) ≤ dimL(µ−1,−∆)− d`. (5.48)
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From (5.31), (5.47) and (5.48), we conclude

d`+ dimL1(µ−1,−∆, 0) + deg−∆(µ) + dimV ∞0 (−∆)

≤ dimL(µ−1,−∆) + deg−∆(µ) + dimV ∞0 (−∆) = dimL∞(µ,−∆, 0).

(5.49)

This yields the inequality (5.38).

Remark 5.5.6.

(i) Note that the examples we constructed in Proposition 5.4.15 also show that the

Liouville-Riemann-Roch inequality can be strict for other cases. Let us briefly men-

tion some of them here.

Case 1. p =∞, N ≥ 0.

If (d− 1)`+ 1 ≥ dimV ∞N (−∆), one obtains from (5.49) that

dimL1(µ−1,−∆,−N) + deg−∆(µ) + dimV ∞N (−∆) + `

≤ dimL1(µ−1,−∆, 0) + deg−∆(µ) + dimV ∞0 (−∆) + d` ≤ dimL∞(µ,−∆, N).

Case 2. 1 ≤ p <∞, N > d/p.

Note that dimLp(µ,−∆, N) ≥ 1 since it contains constant solutions. Again, each

function vjα does not belong to the space Lp′(µ−1,−∆,−N). In fact, for R > 2|zj|

large enough and p > 1, we get

∑
g∈Zd,|g|>R

‖vjα‖p
′

L2([0,1)d+g)
· 〈g〉p′N &

∑
min

1≤l≤d
gl>R

〈g〉p′(N−d) =∞.

The case p = 1, N > d − 1 is proved similarly. Now as in the proof of (5.49), we
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obtain the inequality

dimLp′(µ
−1,−∆,−N) + deg−∆(µ) + dimV p

N(−∆) + `

≤ dimL(µ−1,−∆)− d`+ deg−∆(µ) + dimV p
N(−∆) + ` ≤ dimLp(µ,−∆, N),

provided that (d− 1)`+ 1 ≥ dimV p
N(−∆).

In physics, the functions vjα in L(µ−1,−∆) are the potentials of dipoles located at

the equilibrium positions zj .

(ii) We can also modify our example in Proposition 5.4.15 to obtain examples for (5.38)

in the case of point divisors. For instance, we could take the point divisor µ =

(∅, 0;D−, L−), whereD− = {z1, . . . , z`} andL− = spanC{∂αδ(x−zj)}1≤j≤`,0≤|α|≤1.

Similarly, L∞(µ,−∆, 0) = L1(µ−1,−∆, 0) = {0} and moreover, deg−∆(µ) =

`(d+1). Hence, dimL∞(µ,−∆, 0) = (`(d+1)−1)+deg−∆(µ)+dimV ∞0 (−∆)+

dimL1(µ−1,−∆, 0).

Additionally, our method can also be adapted without much difficulty to provide

more examples of the inequality (5.38) when the positive parts µ+ and negative parts

µ− of the rigged divisors µ are required to be both non-trivial.

Proof of Proposition 5.4.16

Proof. By translation invariance of A, we can suppose without loss of generality that

x0 = 0. Now we fix a pair (p,N) as in the assumption of the statement. We recall

from Definition 5.5.1 the notations of the operator Apm,N and its corresponding domain

DomApm,N . We will apply Corollary 5.3.13 to the operator P := Apm,N in order to prove

the statement. From our assumption on the operator A and the pair (p,N) and from the

conclusion of Step 3 of the proof of Theorem 5.4.6, we only need to show the following

claim: If u is a smooth function on Rd such that |u(x)| . 〈x〉N and 〈Au, L̃−〉 = 0, then
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there is a polynomial v of degree M0 satisfying Av = 0 and 〈u − v, L−〉 = 0. Indeed, if

this claim holds true, v will belong to the space DomApm,N due to our condition on p and

N . This will fulfill all the necessary assumptions of Corollary 5.3.13 in order to apply it.

To prove the claim, we first introduce the following polynomial:

v(x) :=
∑

M1≤|α|≤M0

∂αu(0)

α!
xα.

Then, 〈v − u, g〉 = 0 if g = ∂αδ(· − 0) and M1 ≤ |α| ≤ M0. Let a(ξ) be the symbol of

the constant-coefficient differential operator A(x,D), i.e.,

A = A(x,D) =
∑
|α|=m

1

α!
∂αξ a(0)Dα.

Define M̃j := max{0,Mj −m} for j ∈ {0, 1}. A straightforward calculation gives us:

A(x,D)v(x) = im
∑
|α|=m

M̃0∑
|β|=M̃1

1

α!

1

β!
∂αξ a(0)∂α+β

x u(0) · xβ

=

M̃0∑
|β|=M̃1

1

β!

∑
|α|=m

1

α!
∂αξ a(0) ·Dα(∂βxu)(0)

 · xβ
=

M̃0∑
|β|=M̃1

1

β!
A∂βu(0) · xβ.

Because ∂βδ(· − 0) ∈ L̃− when M̃1 ≤ |β| ≤ M̃0, we obtain A∂βu(0) = ∂βAu(0) = 0 for

such multi-indices β. Now we conclude that Av = 0, which proves our claim.

Remark 5.5.7.

(i) In Proposition 5.4.16, if d > m then any elliptic real-constant-coefficient homoge-

neous differential operator A of order m on Rd satisfies Assumption A. Notice that
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m must be even. Since FA,R = {0}, it is not hard to see from Theorem 5.2.10 that

dimV p
N(A) = dimV p

N((−∆)m/2). In particular, if µ is the point divisor x−(M0+1)
0 ,

the Liouville-Riemann-Roch formula becomes

dimLp(µ,A,N) =

h
(m)
d,[N ] − h

(m)
d,M0

, if p =∞.

h
(m)
d,bN−d/pc − h

(m)
d,M0

, otherwise,

though this can be proven elementarily. Here for A,B,C ∈ N, we denote by h(C)
A,B

the quantity
(
A+B
A

)
−
(
A+B−C

A

)
, where we adopt the agreement in Definition 5.2.11.

(ii) As a special case of Proposition 5.4.16, the Liouville-Riemann-Roch equality for

the Laplacian operator could occur when µ− is not trivial (compare with Theorem

5.4.10). As we have seen so far, the corresponding spaces Lp′(µ−1,−∆,−N) in

this situation are trivial too. It is worth mentioning that it is possible to obtain the

Liouville-Riemann-Roch equality in certain cases for which the dimensions of the

spaces Lp′(µ−1,−∆,−N) are as large as possible. For instance, let p = ∞ and

r ≥ N+3, we define µ := (∅, 0;D−, L−) withD− = {0} and L− = spanC{∂αδ(·−

0)}|α|=r. Then clearly, L∞(µ,−∆, N) = V ∞N (−∆). From the proof of the second

part of Proposition 5.4.11,

L1(µ−1,−∆,−N) = spanC{∂α(|x|2−d)}|α|=r

= {u ∈ C∞(Rd \ {0}) | −∆u ∈ L−, lim
|x|→∞

|u(x)| = 0}.

By Theorem 5.3.10, it is easy to see that the dimension of this space is equal to the

degree of the divisor µ−1 (see also Example 5.3.14). Thus, dimL∞(µ,−∆, N) =
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dimL1(µ−1,−∆,−N) + deg−∆(µ) + dimV ∞N (−∆) and as r →∞,

dimL1(µ−1,−∆,−N) =

(
d+ r − 1

d− 1

)
−
(
d+ r − 3

d− 1

)
→∞.

Proof of Theorem 5.4.21

Proof. The key lemma of our proof is the following statement:

Lemma 5.5.8. Let us consider p1, p2 ∈ [1,∞] and two positive functions ϕ1 and ϕ2 in

S(G) such that one of the following two conditions holds:

• p−1
1 + p−1

2 ≥ 1 and ϕ1ϕ2 is bounded on G.

• p−1
1 + p−1

2 ≤ 1 and ϕ−1
1 ϕ−1

2 is bounded on G.

Then the following Riemann-Roch formula holds:

dimLp1(µ, P, ϕ1) = degP (µ) + dimLp2(µ−1, P ∗, ϕ2),

where µ is any rigged divisor on X .

Proof of Lemma 5.5.8.

Proof. We follow the strategy of the proof of Theorem 5.4.6. As in Definition 5.5.1, for

each s ∈ R, ϕ ∈ S(G) and p ∈ [1,∞], let us introduce the following space

Vps,ϕ(X ) := {u ∈ C∞(X ) | {‖u‖Hs(gF) · ϕ(g)}g∈G ∈ `p(G)}.

and we denote by P p
m,ϕ the operator P with the domain

DomP p
m,ϕ := {u ∈ Vpm,ϕ(X ) | Pu ∈ C∞c (X )}.
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For the elliptic differential operator P ∗, we also use the corresponding notations (P ∗)pm,ϕ

and Dom(P ∗)pm,ϕ.

Now let us fix a pair of two real numbers (p1, p2) and a pair of two functions (ϕ1, ϕ2)

satisfying the conditions of Lemma 5.5.8. From now on, we will consider the opera-

tor P p1
m,ϕ1

and its “adjoint” (P p1
m,ϕ1

)∗ := (P ∗)p2
m,ϕ2

. As before, we define Dom′P p1
m,ϕ1

=

Dom′(P ∗)p2
m,ϕ2

= C∞c (X ).

Our goal is to verify the assumptions of Theorem 5.3.10 for the operator P p1
m,ϕ1

and its

adjoint (P ∗)p2
m,ϕ2

. The proof also goes through four steps as in the proof of Theorem 5.4.6.

We consider two cases.

Case 1. p−1
1 +p−1

2 ≥ 1, ϕ1ϕ2 . 1. The proof of Step 1 stays exactly the same as before

(see Remark 5.7.8). For Step 2, the first three properties (P1)−(P3) are also obvious. For

the property (P4), we want to show that whenever u ∈ DomP p1
m,ϕ1

and v ∈ Dom(P ∗)p2
m,ϕ2

,

〈Pu, v〉 = 〈u, P ∗v〉. (5.50)

Because P and P ∗ are C∞-bounded, we can repeat the approximation procedure and ob-

tain similar estimates from the proof from Theorem 5.4.6 for showing the identity (5.50)

whenever u ∈ DomP p1
m,ϕ1

and v ∈ Dom(P ∗)
p′1
m,ϕ−1

1

. On the other hand, Vp2
m,ϕ2

(X ) ⊆

Vp
′
1

m,ϕ−1
1

(X ) and hence, Dom(P ∗)p2
m,ϕ2
⊆ Dom(P ∗)

p′1
m,ϕ−1

1

. With this inclusion, it is enough

to conclude the property (P4) in this case and this finishes Step 2. For Step 3, first, it is

clear that the kernels of P p1
m,ϕ1

and (P ∗)p2
m,ϕ2

are both trivial since P and P ∗ satisfy (SSP)

(see Theorem 5.4.18). So the rest is to verify the Fredholm property for both operators

P p1
m,ϕ1

and (P ∗)p2
m,ϕ2

, i.e., to prove that

ImP p1
m,ϕ1

= Im(P ∗)p2
m,ϕ2

= C∞c (X ). (5.51)
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Let us prove (5.51) for the operator P p1
m,ϕ1

since the other identity is proved similarly. We

denote by GP (x, y) the Green’s function of P at the level λ = 0, i.e., Gp(x, y) is the

Schwartz kernel of the resolvent operator P−1. It is known that GP (x, y) ∈ C∞(X ×X \

∆), where ∆ = {(x, x) | x ∈ X}. Moreover, all of its derivatives have exponential decay

off the diagonal (see [71, Theorem 2.2]). However, it is more convenient for us to use its

L2-norm version, i.e., [71, Theorem 2.3]: there exists ε > 0 such that for every δ > 0 and

every multi-indices α, β, one can find a constant Cαβδ > 0 such that

∫
x:dX (x,y)≥δ

|∂αx∂βyGP (x, y)|2 exp (εdX (x, y)) dµX (x) ≤ Cαβδ. (5.52)

Here the derivatives ∂αx , ∂
β
y are taken with respect to canonical coordinates and the con-

stants Cαβδ do not depend on the choice of such canonical coordinates. Note that these

decay estimates (5.52) still work in the case of exponential growth of the volume of the

balls on X . Let f ∈ C∞c (X ) and K be its compact support in X . We introduce

u(x) := P−1f(x) =

∫
X
GP (x, y)f(y) dµX (y),

where µX is the Riemannian measure on X . Thus, u ∈ L2(X ) since P−1 is a bounded

operator on L2(X ). It is clear that u is a weak solution of the equation Pu = f , and

hence, by regularity, u is a smooth solution. We only need to prove that u ∈ V1
m,ϕ1

(X ) ⊆

Vp1
m,ϕ1

(X ). Let us consider any g in GF̄ ,K := {g ∈ G | dist (gF̄ , K) > 1}. Since X is

quasi-isometric to the metric space (G, dS) via the orbit action by the Švarc-Milnor lemma,

it is not hard to see that there are constants C1, C2 > 0 such that for every g ∈ GF̄ ,K and

every (x, y) ∈ gF ×K, one has

2C1|g| − C2 ≤ dX (x, y) ≤ (2C1)−1|g|+ C2. (5.53)
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Taking δ = 1, we can find ε > 0 so that the decay estimates (5.52) satisfy. Now using

Hölder’s inequality, (5.52) and (5.53), we derive

‖u‖Hm(gF) . sup
g∈GF̄,K

max
|α|≤m

(∫
gF

∣∣∣∣∫
K

|∂αxGP (x, y)| · |f(y)| dµX (y)

∣∣∣∣2 dµX (x)

)1/2

. ‖f‖L2(X ) · max
|α|≤m

(∫
gF

∫
K

|∂αxGP (x, y)|2 dµX (y) dµX (x)

)1/2

. ‖f‖L2(X ) · exp (−2C1ε|g|) max
|α|≤m

sup
y∈K

(∫
gF
|∂αxGP (x, y)|2 exp (εdX (x, y)) dµX (x))

)1/2

. ‖f‖L2(X ) · exp (−2C1ε|g|) . ‖f‖L2(X ) · ϕ1(g) · exp (−C1ε|g|).

Note that the above estimates hold up to multiplicative constants which are uniform with

respect to g ∈ GF̄ ,K . Therefore, u belongs to Vp1
m,ϕ1

(X ), and this proves (5.51). In partic-

ular, the Fredholm indices of the operators P p1
m,ϕ1

and (P ∗)p2
m,ϕ2

vanish. Now we are able

to apply Theorem 5.3.10 to finish the proof of Lemma 5.5.8 in this case.

Case 2. p−1
1 + p−1

2 ≤ 1, ϕ−1
1 ϕ−1

2 . 1. Consider a rigged divisor µ on X . By assump-

tions, Lp′2(µ, P, ϕ−1
2 ) ⊆ Lp1(µ, P, ϕ1) and Lp′1(µ−1, P ∗, ϕ−1

1 ) ⊆ Lp2(µ−1, P ∗, ϕ2). From

these inclusions and Case 1, we obtain

dimLp1(µ, P, ϕ1) = degP (µ) + dimLp′1(µ−1, P ∗, ϕ−1
1 ) ≤ degP (µ) + Lp2(µ−1, P ∗, ϕ2)

= dimLp′2(µ, P, ϕ−1
2 ) ≤ dimLp1(µ, P, ϕ1).

Since all of the above inequalities must become equalities, this yields the corresponding

Riemann-Roch formula in this case.

We use Lemma 5.5.8 to prove all of the statements now. First, one can get the iden-

tity in the second statement of Theorem 5.4.21 by taking p1 = p2 = ∞ and ϕ1 =

ϕ2 = ϕ0 in Lemma 5.5.8. Also, due to Theorem 5.4.18, there is no non-zero solution

of P ∗ with subexponential growth. This implies that if µ−1 = (∅, 0;D+, L+), the space
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L∞(µ−1, P ∗, ϕ0) is trivial. Thus, the third statement follows immediately from the second

statement. For the first statement, let us consider p ∈ [1,∞] and a function ϕ ∈ S(G).

Now from Lemma 5.5.8 and the second statement, one gets:

• If ϕ is bounded,

dimL1(µ, P, ϕ) = degP (µ) + dimL∞(µ−1, P ∗, ϕ0) = dimL∞(µ, P, ϕ0). (5.54)

• If ϕ−1 is bounded and 1 ≤ p ≤ ∞,

dimLp(µ, P, ϕ) = degP (µ) + dimL∞(µ−1, P ∗, ϕ0) = dimL∞(µ, P, ϕ0). (5.55)

We consider three cases.

Case 1. If ϕ is bounded, the two spaces L1(µ, P, ϕ) and L∞(µ, P, ϕ0) are the same since

their dimensions are equal to each other by (5.54). Moreover, L1(µ, P, ϕ) ⊆

Lp(µ, P, ϕ) ⊆ Lp(µ, P, ϕ0) ⊆ L∞(µ, P, ϕ0). This means all these spaces are the

same.

Case 2. If ϕ−1 is bounded, L∞(µ, P, ϕ0) ⊆ L∞(µ, P, ϕ). Using (5.55) with p = ∞, we

haveL∞(µ, P, ϕ0) = L∞(µ, P, ϕ). Moreover, (5.55) also yields that all the spaces

Lp(µ, P, ϕ), where 1 ≤ p ≤ ∞, must have the same dimension and therefore, they

are the same space, which coincide L∞(µ, P, ϕ0).

Case 3. If neither ϕ nor ϕ−1 is bounded, we can consider the function φ := ϕ + ϕ−1.

Clearly, φ is in S(G) and φ ≥ 2. Then according to Case 1 and Case 2,

Lp(µ, P, φ) = L∞(µ, P, ϕ0) = Lp(µ, P, φ
−1).
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Also, Lp(µ, P, φ−1) ⊆ Lp(µ, P, ϕ) ⊆ Lp(µ, P, φ) since φ−1 ≤ ϕ ≤ φ. This

means that Lp(µ, P, ϕ) = L∞(µ, P, ϕ0).

Proof of Corollary 5.4.22

Proof. As in the proof of Corollary 5.4.14, the equivalence of the first three statements is

an easy consequence of Theorem 5.4.21 and Remark 5.3.12. It is obvious that (iv) implies

(iii). To see the converse, one can repeat the argument in the proof of Lemma 5.5.8 to show

that the solution u = P−1f has exponential decay due to (5.52). By the unique solvability

of the equation Pu = f in L2(X ), (iii) implies (iv).

5.6 Applications of Liouville-Riemann-Roch theorems to specific operators

In this part, we will try to look at some examples where one can apply the results in

Section 3.2.5.

Let us begin with self-adjoint operators. Suppose that A is a bounded from below and

self-adjoint periodic elliptic operator of orderm on an abelian co-compact coveringX . We

know that the symmetric operator A with the domain C∞c (X) is essentially self-adjoint in

L2(X). Unless confusion can arise, we always use the same notation A for the unique

self-adjoint extension 17 of A in L2(X).

To apply the results from Section 5.4, we will reformulate Assumption A in Section

5.4.

Assumption A′

Suppose that FA,R = {k1, · · · , k`} (modulo G∗-shifts). Let {λr,j}j=1,mr be the set of

dispersion branches that equals to 0 at the quasimomentum kr (1 ≤ r ≤ `). There exists

17The domain of this extension is the Sobolev space Hm(X).
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a family of pairwise disjoint neighborhoods Vr of kr such that the function k ∈ Vr 7→

max1≤j≤mr |λr,j(k)|−1 is L1-integrable.18

Clearly, Assumption A and Assumption A′ are equivalent if A is self-adjoint.

Notation 5.6.1. Let N be a natural number.

• We denote by hd,N the dimension of harmonic polynomials of order at most N in

d-variables, i.e.,

hd,N := dimV ∞N (−∆Rd) =

(
d+N

d

)
−
(
d+N − 2

d

)
.

• We also denote by cd,N the dimension of the space of all homogeneous polynomials

of degree N in d variables, i.e.,

cd,N :=

(
d+N

d

)
−
(
d+N − 1

d

)
=

(
d+N − 1

N

)
.

5.6.1 Periodic operators with nondegenerate spectral edges

Let λ be an energy level that coincides with one of the spectral edges of a gap in the

spectrum of A. By shifting, we can suppose that λ = 0.

One can expect the Fermi surfaces at the spectral edges to be “normally” finite and

hence, Liouville type results are applicable in these situations. We make the following

assumption.

Assumption B. There exists a band function λj(k) such that for each quasimomentum

kr in the real Fermi surface FA,R, one has

(B1) 0 is a simple eigenvalue of the operator A(kr).

18Note that for each k ∈ Vr \ {kr}, λr,j(k) 6= 0 since Vr ∩ FA,R = {kr}.

201



(B2) The Hessian matrix Hessλj(k0) is non-degenerate.

For self-adjoint second-order periodic elliptic operators, it is commonly believed in

mathematics and physics literature (see e.g, [48]) that generically (with respect to the co-

efficients and other free parameters of the operator), extrema of band functions are isolated,

attained by a single band and have non-degenerate Hessians.

Suppose now that the free abelian rank d of the deck group G is greater than 2. The

non-degeneracy assumption (B2) implies the integrability of function |λj(k)|−1 over a

small neighborhood of FA,R. Hence, Assumption A follows from Assumption B.

Due to Theorem 5.2.10, the dimension of the space V ∞N (A) is equal to `hd,[N ] (see

Notation 5.6.1). Applying the results in Section 5.4, we obtain the following results for a

‘generic’ self-adjoint periodic elliptic operator A of second-order:

Theorem 5.6.2. Suppose d ≥ 3 and N ∈ R. Let µ = (D+, L+;D−, L−) be a rigged

divisor on X . Recall that µ+ = (D+, L+; ∅, 0).

(a) If N ≥ 0 then

`hd,[N ] + degA(µ) + dimL1(µ−1, A∗,−N) ≤ dimL∞(µ,A,N)

≤ `hd,[N ] + degA(µ+),

and

dimL∞(µ+, A,N) = `hd,[N ] + degA(µ+).

(b) If p ∈ [1,∞) and N > d/p then

`hd,bN−d/pc + degA(µ) + dimLp′(µ
−1, A∗,−N) ≤ dimLp(µ,A,N)

≤ `hd,bN−d/pc + degA(µ+),
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and

dimLp(µ
+, A,N) = `hd,bN−d/pc + degA(µ+)

(c) For d ≥ 5, the inequality

degA(µ) + dimLp′(µ
−1, A∗,−N) ≤ dimLp(µ,A,N) ≤ degA(µ+)

holds if we assume one of the following conditions:

• p ∈ [1, 2), N ∈ (d(2− p)/(2p), d/p].

• p ∈ [2,∞), N ∈ [0, d/p].

Example 5.6.3. 1. LetA = A∗ = −∆+V be a periodic Schrödinger operator on a co-

compact abelian cover X with real-valued electric potential V . The domain of A is

the Sobolev space H2(X), and thus, A is self-adjoint. Suppose that 0 is the bottom

of its spectrum. It is well-known [43] that Assumption B holds in this situation.

Hence, all the conclusions of Theorem 5.6.2 hold with ` = 1 since FA,R = {0}

(modulo 2πZd-shifts).

2. In [13, 14], a deep analysis of the dispersion curves at the bottom of the spectrum

was developed for a wide class of periodic elliptic operators of second-order on Rd.

Namely, let Γ be a lattice in Rd and Γ∗ be its dual lattice, then these operators admit

the following regular factorization:

A = f(x)b(D)∗g(x)b(D)f(x),

where b(D) =
d∑
j=1

−i∂xjbj : L2(Rd,Cn) → L2(Rd,Cm) is a linear homogeneous

differential operator whose coefficients bj are constant m × n-matrices of rank n
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(here m ≥ n), f is a Γ-periodic and invertible n × n matrix function such that f

and f−1 are in L∞(Rd), and g is a Γ-periodic and positive definite m × m-matrix

function such that for some constants 0 < c0 ≤ c1, c01m×m ≤ g(x) ≤ c11m×m, x ∈

Rd. The existence of this factorization implies that the first band function attains

a simple and nondegenerate minimum with value 0 at only the quasimomentum

k = 0 (modulo Γ∗-shifts). This covers the previous example since it was noted

from [13] that for a periodic metric g(x) and a periodic potential V (x), the periodic

Schrödinger operator D(g(x)D) + V (x) admits a regular factorization.

3. Consider a self-adjoint periodic magnetic Schrödinger operator in Rn (n > 2)

H = (−i∇+ A(x))2 + V (x),

where A(x) and V (x) are real-valued periodic magnetic and electric potentials, re-

spectively. Using a gauge transformation, we can always assume the following nor-

malization condition on A (without effecting our results):

∫
Tn

A(x) dx = 0.

Note that the transpose of H is the magnetic Schrödinger operator

H∗ = (−i∇− A(x))2 + V (x).

From the discussion of [50] (see also [47, Theorem 3.1.7]), the lowest band function

of H has a unique nondegenerate extremum at a single quasimomentum k0 (modulo

G∗-shifts) if the magnetic potential A is small enough, e.g., ‖A‖Lr(Tn) � 1 or some

r > n. Thus, we obtain the same conclusion as the case without magnetic potential.
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It is crucial that one has to assume the smallness of the magnetic potential since

there are examples [69] showing that the bottom of the spectrum are degenerate if

the magnetic potential is large enough.

We end this part by proving the following upper-semicontinuity property for families

of periodic elliptic operators with non-degenerate spectral edges.

Corollary 5.6.4. Let A0 be a periodic elliptic operator on a co-compact abelian covering

X with the deck group G = Zd, where d ≥ 5, such that its real Fermi surface FA0,R

consists of finitely many simple and non-degenerate minima of the jth-band function of A0

(j ≥ 1). Let B be a symmetric and periodic differential operator on X such that B is A0-

bounded. We consider the perturbation Az = A0 + zB, z ∈ R. By standard perturbation

theory, there exists a continuous function λ(z, k) defined for small z and all quasimomenta

k such that k 7→ λ(z, k) is the jth band function of Az and λj(z, k) is analytic in z. Let λz

be the minimum value of the band function λ(z, k) of the perturbation Az. Then for any

rigged divisor µ, there exists ε > 0 such that

dimL2(µ,Az − λz, 0) ≤ dimL2(µ,A0, 0),

for any z satisfying |z| < ε.

The corresponding statement for non-degenerate maxima also holds.

Proof. In a similar manner to the proof of Proposition 5.4.14, for the rigged divisor µ,

the corresponding extension operator ˜(Az)2
m,0 : Γ(X,µ, (Az)

2
m,0) → Γ̃µ(X, (Az)

2
m,0) is

Fredholm. As in the proof of [79, Theorem 2], we can deduce the upper-semicontinuity

of dim Ker ˜(Az)2
m,0 by using [79, Theorem 1] and [79, Theorem 3]. Since Ker ˜(Az)2

m,0 =

L2(µ,Az, 0), this finishes our proof.
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5.6.2 Periodic operators with Dirac points

An important situation in solid state physics and material sciences is when two branches

of the dispersion relation touch to form a conical junction point, which is called a Dirac

point. Two-dimensional massless Dirac operators or 2D-Schrödinger operators with hon-

eycomb symmetric potentials are typical models of periodic operators with conical struc-

tures [11, 23, 35, 51].

Let us consider a self-adjoint periodic elliptic operator A such that there are two

branches λ+ and λ− of the dispersion relation of A that meet at 0 and form a Dirac cone.

Equivalently, we can assume that locally around each quasimomentum kr in the Fermi

surface FA,R, for some cr 6= 0, one has

λ+(k) = cr|k − kr| · (1 +O(|k − kr|),

λ−(k) = −cr|k − kr| · (1 +O(|k − kr|).

Then, the functions |λ+|−1 and |λ−|−1 are integrable over a small neighborhood of FA,R

provided that d > 1. Hence, we conclude:

Theorem 5.6.5. Suppose d ≥ 2. Assume that the Fermi surface FA,R consists of ` Dirac

conical points. Let us recall the notation cd,N in Notation 5.6.1. Then as in Theorem 5.6.5,

we have

(a) If N ≥ 0 then

2`cd,[N ]+degA(µ)+dimL1(µ−1, A∗,−N) ≤ dimL∞(µ,A,N) ≤ 2`cd,[N ]+degA(µ+),

and

dimL∞(µ+, A,N) = 2`cd,[N ] + degA(µ+).
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(b) If p ∈ [1,∞) and N > d/p then

2`cd,bN−d/pc + degA(µ) + dimLp′(µ
−1, A∗,−N) ≤ dimLp(µ,A,N)

≤ 2`cd,bN−d/pc + degA(µ+),

and

dimLp(µ
+, A,N) = 2`cd,bN−d/pc + degA(µ+).

(c) For d ≥ 3 and a pair (p,N) satisfying the condition in Theorem 5.6.5 (c), the same

conclusion of Theorem 5.6.5 (c) also holds.

Example 5.6.6. In this example, we consider Schrödinger operators with honeycomb lat-

tice potentials in R2. Let us recall briefly some notions from [23]. The triangular lattice

Λh = Zv1 ⊕ Zv2 is spanned by the basis vectors:

v1 = a

(√
3

2
,
1

2

)t

, v2 = a

(√
3

2
,−1

2

)t

(a > 0).

The dual lattice is Λ∗h = Zk1 ⊕ Zk2, where

k1 =
4π

a
√

3

(
1

2
,

√
3

2

)t

, k2 =
4π

a
√

3

(
1

2
,−
√

3

2

)t

.

We define

K =
1

3
(k1 − k2), K′ = −K.

The Brillouin zone Bh, a fundamental domain of the quotient R2/Λ∗h, can be chosen as a

hexagon in R2 such that all six vertices of this hexagon fall into two groups:

1. K type-vertices: K, K + k2, K− k1.

2. K′ type-vertices: K′, K′− k2, K′+ k1.
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Note that these groups of vertices are invariant under the clockwise rotation R by 2π/3.

Let potential V ∈ C∞(R2) be real, Λh-periodic, and such that there exists a point x0 ∈ R2

such that V is inversion symmetric (i.e., even) and R-invariant with respect to x0 (see

[23, Remark 2.4] for some construction of such potentials). Now consider the Schrödinger

operator Hε = −∆ + εV (ε ∈ R). One of the main results of [23] is that except possibly

for ε in a countable and closed set C̃, the dispersion relation of Hε has conical singularities

at each vertex of Bh. Assume that λεj , j ∈ N, are the band functions of the operator Hε for

each ε ∈ R. Then according to [23, Theorem 5.1], when ε /∈ C̃, there exists some j ∈ N

such that the Fermi surface FHε,λεj(K) of the operator Hε at the level λεj(K) contains (at

least) two Dirac points located at the quasimomenta K and K′ (modulo shifts by vectors in

the dual lattice Λ∗h). Now our next corollary is a direct consequence of [23, Theorem 5.1]

and our previous discussion:

Corollary 5.6.7. Let µ be a rigged divisor on R2 and V be a honeycomb lattice potential

such that the following Fourier coefficient V1,1 of the potential V

V1,1 :=

∫
R2/Λh

e−i(k1+k2)·xV (x) dx

is nonzero. Then for ε /∈ C̃, there exists j ∈ N such that the following inequalities hold:

1. p =∞, N ≥ 0:

dimL∞(µ,Hε − λεj(K), N) ≥ 4([N ] + 1)+ degHε−λεj(K)(µ)

+ dimL1(µ−1, Hε − λεj(K),−N),

dimL∞(µ+, Hε − λεj(K), N) ≥ 4([N ] + 1) + degHε−λεj(K)(µ
+).
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2. 1 ≤ p <∞, N > 2/p:

dimLp(µ,H
ε − λεj(K), N) ≥ 4(bN − 2/pc+ 1) + degHε−λεj(K)(µ)

+ dimLp′(µ
−1, Hε − λεj(K),−N),

dimLp(µ
+, Hε − λεj(K), N) ≥ 4(bN − 2/pc+ 1) + degHε−λεj(K)(µ

+).

Moreover, there is some ε0 > 0 so that for all ε ∈ (−ε0, ε0) \ {0}, we have

• εV1,1 > 0: the above j can be chosen as j = 1.

• εV1,1 < 0: the above j can be chosen as j = 2.

Remark 5.6.8. Other important results on the existence of Dirac points in the dispersion

relations of Schrödinger operators with periodic potentials on honeycomb lattices are es-

tablished for instance in [51] for quantum graph models of graphene and carbon nanotube

materials and in [11] for many interesting models including both discrete, quantum graph,

and continuous ones.

5.6.3 Non-self-adjoint second order elliptic operators

We now consider a class of possibly non-self-adjoint second-order elliptic operators

arising from probability theory. Let A be a G-periodic linear elliptic operator of second-

order acting on functions u in C∞(X) such that in any coordinate system (U ;x1, . . . , xn),

the operator A can be represented in the form

A =
∑

1≤i,j≤n

aij(x)∂xi∂xj +
∑

1≤j≤n

bj(x)∂xj + c(x), (5.56)

where the coefficients aij, bj, c are real, smooth, and periodic. We notice that the coeffi-

cient c(x) of zeroth-order ofA is globally defined onX since it is the image of the constant

function 1 via A.
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Definition 5.6.9. [3, 56, 64]

(a) A function u on X is called G-multiplicative with exponent ξ ∈ Rd if it satisfies

u(g · x) = eξ·gu(x), ∀x ∈ X, g ∈ G.

In other words, u is a Bloch function with quasimomentum iξ.

(b) The generalized principal eigenvalue of A is defined by

Λ0 = sup{λ ∈ R | (A− λ)u = 0 for some positive solution u}.

The principal eigenvalue is a generalized version of the bottom of the spectrum in the

self-adjoint case (see e.g., [2]).

For an operator A of the type (5.56) and any ξ ∈ Rd, it is known from [3, 47, 56, 64]

that there exists a unique real number Λ(ξ) such that the equation (A − Λ(ξ))u = 0 has

a positive G-multiplicative solution u. We list some known properties of this important

function Λ(ξ). The reader can find proofs in [3, 56, 64] (see also [50, Lemma 5.7]).

Proposition 5.6.10. (a) Λ0 = max
ξ∈Rd

Λ(ξ).

(b) The function Λ(ξ) is strictly concave, real analytic, bounded from above, and its gra-

dient vanishes at only its maximum point. The Hessian of Λ(ξ) is nondegenerate at all

points.

(c) Λ(ξ) is the principal eigenvalue with multiplicity one of the operator A(iξ).

(d) Λ0 ≥ 0 if and only if A admits a positive periodic (super-) solution, which is also

equivalent to the existence of a positiveG-multiplicative solution of the equationAu =

0.
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(e) Λ0 = 0 if and only if there is exactly one normalized positive solution u of the equation

Au = 0.

We are interested in studying Liouville-Riemann-Roch type results for such operators

A satisfying Λ(0) ≥ 0, which implies that A has a positive solution.

Example 5.6.11. 1. Divergence type operators with no zeroth-order coefficient satisfy

Λ0 = Λ(0) = 0.

2. If the zeroth-order coefficient c(x) is nonnegative, Λ(0) is also nonnegative.19 In-

deed, let u be a positive and periodic solution of the equation Au = Λ(0)u. If

Λ(0) < 0, it follows from the equation that u is a positive and periodic subsolution

of A on X . By the strong maximum principle, u must be constant. This means that

0 ≤ cu = Au < 0, which is a contradiction!

Before stating the main result of this subsection, let us provide a key lemma.

Lemma 5.6.12. (a) If Λ(0) > 0 then FA,R = ∅.

(b) If Λ(0) = 0 then FA,R = {0} (modulo G∗-shifts). In this case, there exists an open

strip V in Cd containing the imaginary axis iRd such that for any k ∈ V , there is

exactly one (isolated and nondegenerate eigenvalue) point λ(k) in σ(A(k)) that is

close to 0. The dispersion function λ(k) is analytic in V and λ(ik) = Λ(k) if k ∈ Rd.

Moreover,

• When Λ0 > 0, k = 0 is a noncritical point of the dispersion λ(k) in V ∩ Rd as

well as of the function Λ in Rd.

• When Λ0 = 0, k = 0 is a nondegenerate extremum of the dispersion λ(k) in

V ∩ Rd as well as of the function Λ in Rd.
19In general, the converse is not true: the zeroth-order coefficient of the transpose A∗ is not necessarily

nonnegative while the principal eigenvalue of the operator A∗(0) is the same as Λ(0).
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Proof. The statements of this lemma are direct consequences of [50, Lemma 5.8], Kato-

Rellich theorem (see e.g., [66, Theorem XII.8]), and Proposition 5.6.10.

Theorem 5.6.13. Let A be a periodic elliptic operator of second-order with real and

smooth coefficients on X such that Λ(0) ≥ 0. Let µ be a rigged divisor on X and µ+ be

the positive part of µ.

(a) If Λ(0) > 0, dimL∞(µ+, A, ϕ) = degA(µ+) and dimL∞(µ,A, ϕ) = degA(µ) +

dimL∞(µ−1, A∗, ϕ−1) for any function ϕ ∈ S(G) (see Definition 5.4.20).

(b) If Λ0 > Λ(0) = 0 and d ≥ 2, then we have:

• For any N ≥ 0, dimL∞(µ+, A,N) = cd,[N ] + degA(µ+) and

cd,[N ] + degA(µ) + dimL1(µ−1, A∗,−N) ≤ dimL∞(µ,A,N)

≤ cd,[N ] + degA(µ+).

• For any p ∈ [1,∞), N > d/p, dimLp(µ
+, A,N) = cd,bN−d/pc + degA(µ+),

cd,bN−d/pc + degA(µ) + dimLp′(µ
−1, A∗,−N) ≤ dimLp(µ,A,N)

≤ cd,bN−d/pc + degA(µ+).

• For d ≥ 3 and a pair (p,N) satisfying the condition in Theorem 5.6.5 (c),

degA(µ) + dimLp′(µ
−1, A∗,−N) ≤ dimLp(µ,A,N) ≤ degA(µ+).

(c) If Λ0 = Λ(0) = 0 and d ≥ 3, then we have:
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• For any N ≥ 0, dimL∞(µ+, A,N) = hd,[N ] + degA(µ+),

hd,[N ] + degA(µ) + dimL1(µ−1, A∗,−N) ≤ dimL∞(µ,A,N)

≤ hd,[N ] + degA(µ+).

• For any p ∈ [1,∞), N > d/p, dimLp(µ
+, A,N) = hd,bN−d/pc + degA(µ+),

hd,bN−d/pc + degA(µ) + dimLp′(µ
−1, A∗,−N) ≤ dimLp(µ,A,N)

≤ hd,bN−d/pc + degA(µ+).

• For d ≥ 5 and a pair (p,N) satisfying the condition in Theorem 5.6.5 (c),

degA(µ) + dimLp′(µ
−1, A∗,−N) ≤ dimLp(µ,A,N) ≤ degA(µ+).

Proof. To compute the dimensions of the spaces V p
N(A), we use Lemma 5.6.12 to apply

Theorem 5.2.10 and Theorem 5.2.14. Then Theorem 5.6.13 would follow immediately

from Theorem 5.4.21, Lemma 5.6.12, Theorem 5.4.6, Proposition 5.4.10, and Theorem

5.4.12.

5.7 Some auxiliary statements and proofs of technical lemmas

5.7.1 Some properties of Floquet functions on abelian coverings

We recall briefly another construction of Floquet functions on X . As we discussed

in Subsection 5.2.2, it suffices to define the Bloch function ek(x) with quasimomentum k

and the powers [x]j on X , where j ∈ Zd+. To do this, we first recall the notion of additive

functions on abelian coverings (Definition 4.2.7). We fix an additive function h. Write
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h = (h1, . . . , hd). Let j = (j1, . . . , jd) ∈ Zd+ be a multi-index. We define

[x]j := h(x)j =
d∏

m=1

hm(x)jm ,

and

ek(x) := exp (ik · h(x)).

Clearly, ek(g ·x) = eik·gek(x). Then a Floquet function u of orderN with quasimomentum

k is of the form

u(x) = ek(x)
∑
|j|≤N

pj(x)[x]j,

where pj is smooth and periodic. Observe that the notion of Floquet functions is inde-

pendent of the choice of h. Namely, u is also a Floquet function with the same order

and quasimomentum with respect to another additive function h̃. Indeed, the difference

w := h− h̃ between two additive functions h and h̃ is periodic. Hence, one can rewrite

u(x) = eik·h̃(x)
∑
|j|≤N

eik·w(x)pj(x)
d∏

m=1

(h̃m(x) + wm(x))jm

= eik·h̃(x)
∑
|j|≤N

eik·w(x)pj(x)
∑
j
′≤j

(
j

j′

)
w(x)j−j

′
h̃(x)j

′

= eik·h̃(x)
∑
|j|≤N

p̃j(x)h̃(x)j,

(5.57)

where p̃j(x) :=
∑
j≤j′

(
j′

j

)
eik·w(x)p

j
′(x)w(x)j

′−j is periodic. The following simple lemma

is needed later.

Lemma 5.7.1. Let K be a compact neighborhood in X . Then for any multi-index j ∈ Zd+,
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there exists a constant C such that for any x ∈ K and g ∈ Zd, one has

∣∣[g · x]j − gj
∣∣ ≤ C〈g〉|j|−1.

Proof. ∣∣[g · x]j − gj
∣∣ =

∣∣∣∣∣
d∏

m=1

(hm(x) + gm)jm −
d∏

m=1

gjmm

∣∣∣∣∣ ≤ C〈g〉|j|−1,

for some C > 0 depending on ‖h‖L∞(K).

5.7.2 Some basic facts about the family {A(k)}k∈Cd

In this part, let us always identify elements in L2(M) with their corresponding periodic

functions in L2
loc(X) and vice versa. We discuss briefly how the two definitions of the fiber

operators A(k) in this chapter and Chapter 4 (see Definition 4.2.14) are indeed equivalent.

Note that the corresponding definition in Chapter 4 requires the introduction of additive

functions on abelian coverings. However, each of these definitions has its own advantage.

Consider an additive function h on the abelian covering X (see Definition 4.2.7). Let

Uk be the mapping that multiplies a function f(x) in L2
k(X) by e−ik·h(x). Thus, Uk is

an invertible bounded linear operator in L(L2
k(X), L2(M)) and its inverse is given by

the multiplication operator by eik·h(x). Note that the operator norms of Uk and U−1
k are

bounded by e|=k|·‖h‖L∞(F) , where F is the fundamental domain appearing in the definition

of the inner product of the Hilbert space L2
k(X) in Definition 5.2.3.

Define the following elliptic operator Â(k) := UkA(k)U−1
k . The operator Â(k), with

the Sobolev space Hm(M) as the domain, is a closed and unbounded operator in L2(M).

For each complex quasimomentum k, the two linear operators Â(k) and A(k) are similar

and thus, their spectra are identical. In terms of spectral information, it is no need to

distinguish A(k) and its equivalent model Â(k). One of the benefits of working with the

later model is that Â(k) acts on the k-independent domain of periodic functions on X .
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The following proposition gives a simple sufficient condition on the principal symbol

of the operator A so that the spectra of A(k) are discrete. More general criteria on the

discreteness of spectra can be found in the book [4].

Proposition 5.7.2. If A has real principal symbol, then for each k ∈ Cd, A(k), as an un-

bounded operator on L2(Ek), has discrete spectrum, i.e., its spectrum consists of isolated

eigenvalues with finite (algebraic) multiplicities.

Proof. Let B be the real part of the operator A. Since A has real principal symbol, the

principal symbols of A and B are the same. By pushing down to operators on M , the

differential operator Â(0) − B̂(0) is of lower order. Also, the principal symbols of the

operators Â(k) and Â(0) are identical. Thus, we see that Â(k) is a perturbation of the

self-adjoint elliptic operator B̂(0) by a lower order differential operator on the compact

manifold M . It follows from [4] that the spectrum of Â(k) must be discrete. This finishes

the proof.

Now if one assumes that σ(A(k)) is discrete, then the family of operators {Â(k)}k∈Cd ,

with compact resolvents, is analytic of type (A) in the sense of Kato [39]. Therefore, this

family satisfies the upper-semicontinuity of the spectrum (see e.g., [39, 66]). We provide

this statement here without a proof.

Proposition 5.7.3. Consider k0 ∈ Cd. If Γ is a compact subset of the complex plane

such that Γ ∩ σ(A(k0)) = ∅, then there exists δ > 0 depending on Γ and k0 such that

Γ ∩ σ(A(k)) = ∅, for any k in the ball Bk0(δ) centered at k0 with radius δ.

Remark 5.7.4. (i) The Hilbert bundle Em becomes the trivial bundle Cd ×Hm(M) via

the holomorphic bundle isomorphism defined from the linear maps Uk, where k ∈

Cd.
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(ii) In general, one can use the analytic Fredholm theorem to see that the essential spec-

trum20 of A(k) is empty for any k ∈ Cd, but this is not enough to conclude that

these spectra are discrete in the non-self-adjoint case. For example, if we consider

the Z-periodic elliptic operator A = e2iπxDx on R, a simple argument shows that

σ(A(k)) =

C, if k ∈ 2πZ

∅, otherwise.

A similar example for the higher-dimensional case Rd, d > 1 can be cooked up easily

from the above example.

5.7.3 Some properties of Floquet transforms on abelian coverings

We now state some useful properties of the Floquet transform F on abelian coverings.

First, due to (5.4), one can see that the Floquet transform Ff(k, x) of a nice function f ,

e.g., f ∈ C∞c (X), is periodic in the quasimomentum variable k and moreover, it is a

quasiperiodic function in the x-variable, i.e.,

Ff(k, g · x) = γk(g) · Ff(k, x) = eik·g · Ff(k, x), for any (g, x) ∈ G×X.

It follows that Ff(k, ·) belongs to Hs
k(X), for any k and s. Therefore, it is enough to

regard the Floquet transform of f as a smooth section of the Hilbert bundle Es over (T∗)d

(identified with the Brillouin zone B).

Let K b X be a domain such that
⋃
g∈G

gK = X . Then given any real number s, we

denote by Cs(X) the Frechet space consists of all functions φ ∈ Hs
loc(X) such that for any

N ≥ 0, one has

sup
g∈G
‖φ‖Hs(gK) · 〈g〉N <∞.

20Here we use the definition of the essential spectrum of an operator T as the set of all λ ∈ C such that
T − λ is not Fredholm.
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In terms of Definition 5.2.6,
⋂
N≥0

V ∞N (X) = C0(X) ∩ C∞(X). The following theorem

contains a Paley-Wiener type result for the Floquet transform. The details can be found in

[47–50].

Theorem 5.7.5. (a) The Floquet transform F is an isometric isomorphism between the

Sobolev space Hs(X) and the space L2((T∗)d, Es) of L2-integrable sections of the

vector bundle Es.

(b) The Floquet transform F expands the periodic elliptic operatorA of orderm in L2(X)

into a direct integral of the fiber operators A(k) over (T∗)d.

FAF−1 =

⊕∫
(T∗)d

A(k) dk.

Equivalently, F(Af)(k) = A(k)Ff(k) for any f ∈ Hm(X).

(c) The Floquet transform

F : Cs(X)→ C∞((T∗)d, Es)

is a topological isomorphism, where C∞((T∗)d, Es) is the space of smooth sections

of the vector bundle Es. Furthermore, under the Floquet transform F, the operator

A : Cm(X) → C0(X) becomes the corresponding morphism of sheaves of smooth

sections arising from the holomorphic Fredholm morphism A(k) between the two

holomorphic Hilbert bundles Em and E0 over the torus (T∗)d, i.e., it is an operator

from C∞((T∗)d, Em) to C∞((T∗)d, E0) such that it acts on the fiber of Em at k as the

fiber operator A(k) : Hm
k (X)→ L2

k(X).

218



(d) The inversion F−1 of the Floquet transform is given by the formula

f(x) =
1

(2π)d

∫
(T∗)d

Ff(k, x) dk, (5.58)

provided that one can make sense both sides of (5.58) (as functions or distributions).

We prove a simple analog of the Riemann-Lebesgue lemma for the Floquet transform.

Lemma 5.7.6. (a) Let f̂(k, x) be a function in L1((T∗)d, E0). Then the inverse Floquet

transform f := F−1f̂ belongs to L2
loc(X) and

sup
g∈G
‖f‖L2(gF) <∞.

Here F is a fixed fundamental domain. Moreover, one also has

lim
|g|→∞

‖f‖L2(gF) = 0.

(b) If f ∈ V 1
0 (X) then Ff(k, x) ∈ C((T∗)d, E0).

Proof. We recall that E0 can be considered as L2(F). To prove the first statement, we use

the identity (5.58) and the Minkowski’s inequality to obtain

‖f‖L2(gF) =
1

(2π)d

∥∥∥∥∫
(T∗)d

Ff(k, ·) dk

∥∥∥∥
L2(gF)

=
1

(2π)d

∥∥∥∥∫
(T∗)d

eik·gFf(k, ·) dk

∥∥∥∥
L2(F)

≤ 1

(2π)d

∫
(T∗)d
‖Ff(k, ·)‖L2(F) dk =

1

(2π)d
‖Ff(k, x)‖L1((T∗)d,E0) <∞.

For the fact lim|g|→∞ ‖f‖L2(gF) = 0, one can modify easily the usual proof of the Riemann-

Lebesgue lemma, i.e., by using Theorem 5.7.5 (a) and then approximating Ff by a se-

quence of functions in L2((T∗)d, E0).

The second statement follows directly from (5.4) and triangle inequalities.
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5.7.4 A Schauder type estimate

For convenience, we state a well-known Schauder type estimate for solutions of a

periodic elliptic equation Au = 0, which we needed to refer to several times in this text.

We also sketch its proof for the sake of self-containedness.

Proposition 5.7.7. Let K be a compact neighborhood of a non-empty domain in the cov-

ering X . Then there exists a compact neighborhood K̂ in X such that K b K̂ and the

following statement holds: Suppose that O is an open subset of X such that K̂ ⊂ O.

Define GO := {g ∈ G | gK̂ ⊂ O}. Then for any α ∈ R+, there exists C > 0 depending

on α,K, K̂ such that

‖u‖Hα(gK) ≤ C · ‖u‖L2(gK̂), (5.59)

for any g ∈ GO and any u ∈ C∞(O) satisfying the equation Au = 0 on O.

Proof. Let B be an almost local 21 pseudodifferential parametrix of A such that B com-

mutes with actions of the deck group G (see e.g., [47, Lemma 2.1.1] or [71, Proposition

3.4]). Hence, BA = 1 + T for some almost-local and periodic smoothing operator T on

X . This implies that for some compact neighborhood K̂ (depending on the support of the

Schwartz kernel of T and the subset K) and for any α ≥ 0, one can find some C > 0 so

that for any smooth function v on a neighborhood of K̂, one gets

‖Tv‖Hα(K) ≤ C · ‖v‖L2(K̂).

In particular, for any g ∈ GO and u ∈ C∞(O),

‖Tug‖Hα(K) ≤ C · ‖ug‖L2(K̂), (5.60)

21I.e., for some ε > 0, the support of the Schwartz kernel of B is contained in an ε-neighborhood of the
diagonal of X ×X .
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where ug is the g-shift of the function u on O. Since T is G-periodic, from (5.60), we

obtain

‖Tu‖Hα(gK) ≤ C · ‖u‖L2(gK̂). (5.61)

The important point here is the uniformity of the constant C with respect to g ∈ GO.

Assuming that Au = 0 on O. Thus, u = BAu− Tu = −Tu on O. This identity and

(5.61) imply the following estimate

‖u‖Hα(gK) = ‖Tu‖Hα(gK) ≤ C · ‖u‖L2(gK̂), ∀g ∈ GO.

Remark 5.7.8. We would like to emphasize that Proposition 5.7.7 holds in a more gen-

eral context. Namely, it is true for any C∞-bounded uniformly elliptic operator P on a

co-compact Riemannian covering X with a discrete deck group G. In this setting, P is

invertible modulo a uniform smoothing operator T on X (see [71, Definition 3.1] and

[71, Proposition 3.4]). Now the estimate (5.61) follows easily from the uniformly bound-

edness of the derivatives of any order of the Schwartz kernel of T on canonical coordinate

charts and a routine argument of partition of unity. Another approach is to invoke uniform

local apriori estimates [71, Lemma 1.4].

5.7.5 A variant of Dedekind’s lemma

It is a well-known theorem by Dedekind (see e.g., [58, Lemma 2.2]) that distinct uni-

tary characters of an abelian group G are linearly independent as functions from G to a

field F. The next lemma is a refinement of Dedekind’s lemma when F = C. We no-

tice that a proof by induction method can be found in [65, Lemma 4.4]. For the sake of

completeness, we will provide our analytic proof using Stone-Weierstrass’s theorem.

221



Lemma 5.7.9. Consider a finite number of distinct unitary characters γ1, . . . , γ` of the

abelian group Zd. Then there are vectors g1, . . . , g` in Zd and C > 0 such that for any

v = (v1, . . . , v`) ∈ C`, we have

max
1≤s≤`

∣∣∣∣∣∑̀
r=1

vr · γr(gs)

∣∣∣∣∣ ≥ C · max
1≤r≤`

|vr|.

Proof. By abuse of notation, we can regard γ1, . . . , γ` as distinct points of the torus (T∗)d.

For each tuple (g1, . . . , g`) in (Zd)`, let W (g1, . . . , g`) be a ` × `-matrix whose (s, r)-

entry W (g1, . . . , g`)s,r is γgrs , for any 1 ≤ r, s ≤ `. We equip C` with the maximum

norm. Then the conclusion of the lemma is equivalent to the invertibility of some operator

W (g1, . . . , g`) acting from C` to C`.

Suppose for contradiction that the determinant function detW (g1, . . . , g`) is zero on

(Zd)`, i.e., for any g1, . . . , g` ∈ Zd, one has

0 = detW (g1, . . . , g`) =
∑
σ∈S`

sign (σ) ·
(
γg1

σ(1) . . . γ
g`
σ(`)

)
,

where S` is the permutation group on {1, . . . , `}. Thus, the above relation also holds for

any trigonometric polynomial P (γ1, . . . , γ`) on (T∗)d`, i.e.,

∑
σ∈S`

sign (σ) · P (γσ(1), . . . , γσ(`)) = 0.

By using the fact that the trigonometric polynomials are dense in C((T∗)d`) in the uniform

topology (Stone-Weierstrass theorem), we conclude that

∑
σ∈S`

sign (σ) · f(γσ(1), . . . , γσ(`)) = 0, (5.62)
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for any continuous function f on (T∗)d`.

Now for each 1 ≤ r ≤ `, let us select some smooth cutoff functions ωr supported

on a neighborhood of the point γr such that ωr(γs) = 0 whenever s 6= r. We define

f ∈ C((T∗)d`) as follows

f(x1, . . . , x`) :=
∏̀
r=1

ωr(xr), x1, . . . , x` ∈ (T∗)d.

Hence, f(γσ(1), . . . , γσ(`)) is non-zero if and only if σ is the trivial permutation. By substi-

tuting f into (5.62), we get a contradiction, which proves our lemma.

5.7.6 Proofs of technical statements

In this part, we will use the notation F for the closure of a fundamental domain for

G-action on the covering X .

Proof of Theorem 5.2.14.

Proof. If u ∈ V ∞bN−d/pc(A) then u ∈ V ∞N0
(A) for some nonnegative integer N0 such that

N0 < N − d/p. Thus,

∑
g∈G

‖u‖pL2(gF)〈g〉
−pN .

∑
g∈G

〈g〉p(N0−N) <∞.

Thus, V ∞bN−d/pc(A) ⊆ V p
N(A).

Now suppose that FA,R = {k1, . . . , k`} (modulo G∗-shifts), where ` ∈ N. It suffices

for us to show that

V p
N(A) ⊆ V ∞bN−d/pc(A). (5.63)

A key ingredient of the proof of (5.63) is the following statement.

Lemma 5.7.10. Suppose that N > d/p.
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(i) If u ∈ V p
N (A)∩V ∞M (A) for some 0 ≤M < N + 1− d/p then u ∈ V ∞

M′
(A) for some

M′ < N − d/p. In particular, u ∈ V ∞N−d/p(A).

(ii) V p
N (A) ∩ V ∞N+1−d/p(A) ⊆ V ∞N−d/p(A).

Instead of proving Lemma 5.7.10 immediately, first, let us assume its validity. We now

prove (5.63). Consider u ∈ V p
N(A).

Case 1. p > 1.

We prove by induction that if 0 ≤ s ≤ d− 1, then

u ∈ V p
N+d/p−(s+1)/p(A) ∩ V ∞N−s/p(A). (5.64)

The statement holds for s = 0 since clearly, V p
N(A) ⊆ V ∞N (A) and N + d/p− 1/p ≥ N .

Now suppose that (5.64) holds for s such that s + 1 ≤ d− 1. Since 1− 1/p > 0, we can

apply Lemma 5.7.10 (i) to u and the pair (N ,M) = (N + d/p− (s + 1)/p,N − s/p) to

deduce that u ∈ V ∞N−(s+1)/p(A). Therefore, (5.64) also holds for s+ 1. In the end, we have

u ∈ V p
N(A) ∩ V ∞N−(d−1)/p(A). Again, by Lemma 5.7.10 (i), u belongs to V ∞

M′
(A) for some

M′ < N − d/p. In other words, u is in V ∞bN−d/pc(A).

Case 2. p = 1.

As in Case 1, we apply Lemma 5.7.10 (ii) and induction method to prove that u ∈

V 1
N+d−1−s(A)∩V ∞N−s(A) for any 0 ≤ s ≤ d−1. Hence, u ∈ V 1

N(A)∩V ∞N+1−d(A). Due to

Lemma 5.7.10 (ii) again, one has u ∈ V 1
N(A) ∩ V ∞N−d(A). Applying Lemma 5.7.10 (i) to

u and the pair (N ,M) = (N,N − d), we conclude that u ∈ V ∞bN−dc(A) = V ∞N−(d+1)(A).

Therefore, Theorem 5.2.14 follows from Lemma 5.7.10. Our proof of Lemma 5.7.10

consists of several steps.

(i) Step 1. The lemma is trivial if u = 0. So we assume that u is non-zero. Since

V p
N (A) ⊆ V ∞N (A), we can apply Theorem 5.2.8 (ii) to represent u ∈ V p

N (A) as a
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finite sum of Floquet solutions of A, i.e.,

u =
∑̀
r=1

ur.

Here ur is a Floquet function of order Mr ≤ N with quasimomentum kr. Let N0

be the highest order among all the orders of the Floquet functions ur appearing in

the above representation. Without loss of generality, we can suppose that there exists

r0 ∈ [1, `] such that for any r ≤ r0, the orders Mr of ur is maximal among all the

orders of these Floquet functions. Thus, Mr = N0 ≤ M when r ∈ [1, r0]. To prove

our lemma, it suffices to show that N0 < N − d/p.

Step 2. According to Proposition 5.7.7, we can pick a compact neighborhood F̂ of

F such that for any α ≥ 0,

‖u‖Hα(gF) ≤ C · ‖u‖L2(gF̂)

for some C > 0 which is independent of g ∈ G. Let α > n/2, the Sobolev embed-

ding theorem yields the estimate

‖u‖C0(gF) . ‖u‖L2(gF̂), ∀g ∈ G. (5.65)

From (5.65) and the fact that u ∈ V p
N (A), we obtain

sup
x∈F

(∑
g∈G

|u(g · x)|p 〈g〉−pN
)

.
∑
g∈G

‖u‖p
L2(gF̂)

〈g〉−pN <∞. (5.66)
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Step 3. By definition (see Subsection 5.2.2), one can write

u(x) =
∑̀
r=1

ur(x) =

r0∑
r=1

ekr(x)
∑
|j|=N0

aj,r(x)[x]j +O(|x|N0−1).

Here each function aj,r is G-periodic and the remainder term O(|x|N0−1) is an expo-

nential polynomial with periodic coefficients of order at most N0−1. Hence, for any

(g, x) ∈ G×F , we get

u(g · x) =

r0∑
r=1

eikr·g
∑
|j|=N0

ekr(x)aj,r(x)[g · x]j +O(〈g〉N0−1).

Since N0 − 1 ≤M− 1 < N − d/p, the series

∑
g∈Zd

O(〈g〉p(N0−1))〈g〉−pN

converges. From this and (5.66), we deduce

sup
x∈F

∑
g∈G

∣∣∣∣∣∣
r0∑
r=1

eikr·g
∑
|j|=N0

ekr(x)aj,r(x)[g · x]j

∣∣∣∣∣∣
p

〈g〉−pN <∞.

By Lemma 5.7.1, |[g · x]j − gj| = O(〈g〉N0−1) for any multi-index j such that |j| =

N0. This implies that

sup
x∈F

∑
g∈G

∣∣∣∣∣∣
∑
|j|=N0

r0∑
r=1

ekr(x)aj,r(x)eikr·ggj

∣∣∣∣∣∣
p

〈g〉−pN <∞. (5.67)

Step 4. We will use Lemma 5.7.9 to reduce the condition (5.67) to the one without

exponential terms eikr·g, i.e., we can assume that FA,R = {0} (modulo G∗-shifts).

Indeed, let γ1, . . . , γr0 be distinct unitary characters of G, which are defined via the
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identities γr(g) = eikr·g, where r ∈ {1, . . . , r0} and g ∈ G. Now due to Lemma

5.7.9, there are g1, . . . , gr0 ∈ G and a constant C > 0 such that for any vector

(v1, . . . , vr0) ∈ Cr0 , we have the following inequality

C · max
1≤s≤r0

∣∣∣∣∣
r0∑
r=1

vr · eikr·gs
∣∣∣∣∣ ≥ max

1≤r≤r0
|vr|. (5.68)

Hence, for any (g, x) ∈ G×F and 1 ≤ s ≤ r0, we apply (5.68) to the vector

(v1, . . . , vr0) :=

 ∑
|j|=N0

ekr(x)aj,r(x)(g + gs)
j〈g + gs〉−N eikr·g


1≤r≤r0

to deduce that

max
1≤r≤r0

∣∣∣∣∣∣
∑
|j|=N0

ekr(x)aj,r(x)(g + gs)
j

∣∣∣∣∣∣
p

〈g + gs〉−pN

= max
1≤r≤r0

∣∣∣∣∣∣
∑
|j|=N0

ekr(x)aj,r(x)(g + gs)
j〈g + gs〉−N eikr·g

∣∣∣∣∣∣
p

. max
1≤s≤r0

∣∣∣∣∣∣
r0∑
r=1

 ∑
|j|=N0

ekr(x)aj,r(x)(g + gs)
j〈g + gs〉−N eikr·g

 eikr·gs

∣∣∣∣∣∣
p

.
r0∑
s=1

∣∣∣∣∣∣
r0∑
r=1

∑
|j|=N0

ekr(x)aj,r(x)(g + gs)
j · eikr·(g+gs)

∣∣∣∣∣∣
p

· 〈g + gs〉−pN

(5.69)
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Summing the estimate (5.69) over g ∈ G, we derive

max
1≤r≤r0

sup
x∈F

∑
g∈G

∣∣∣∣∣∣
∑
|j|=N0

ekr(x)aj,r(x)gj

∣∣∣∣∣∣
p

〈g〉−pN

= max
1≤r,s≤r0

sup
x∈F

∑
g∈G

∣∣∣∣∣∣
∑
|j|=N0

ekr(x)aj,r(x)(g + gs)
j

∣∣∣∣∣∣
p

〈g + gs〉−pN

. sup
x∈F

r0∑
s=1

∑
g∈G

∣∣∣∣∣∣
r0∑
r=1

∑
|j|=N0

ekr(x)aj,r(x)(g + gs)
j · eikr·(g+gs)

∣∣∣∣∣∣
p

· 〈g + gs〉−pN

. sup
x∈F

∑
g∈G

∣∣∣∣∣∣
r0∑
r=1

∑
|j|=N0

ekr(x)aj,r(x)gj · eikr·g
∣∣∣∣∣∣
p

· 〈g〉−pN <∞.

(5.70)

From (5.67) and (5.70), we get

∑
g∈G

∣∣∣∣∣∣
∑
|j|=N0

ekr(x)aj,r(x)gj

∣∣∣∣∣∣
p

· 〈g〉−pN <∞, (5.71)

for any 1 ≤ r ≤ r0 and x ∈ F .

Step 5. We prove the following claim: If P is a non-zero homogeneous polynomial

of degree N0 in d-variables such that N0 < N + 1− d/p and

∑
g∈Zd
|P (g)|p · 〈g〉−pN <∞, (5.72)

then N0 < N − d/p.

Our idea is to approximate the series in (5.72) by the integral

I :=

∫
Rd

|P (z)|p · 〈z〉−pN dz.

In fact, for any z ∈ [0, 1)d+g, one can use the triangle inequality and the assumption
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that the order of P is N0 to achieve the following estimate

|P (z)|p ≤ 2p−1 (|P (g)|p + |P (z)− P (g)|p) . |P (g)|p +O(〈g〉p(N0−1)).

Integrating the above estimate over the cube [0, 1)d + g and then summing over all

g ∈ Zd, we deduce

I =
∑
g∈Zd

∫
[0,1)d+g

|P (z)|p·〈z〉−pN dz .
∑
g∈Zd
|P (g)|p·〈g〉−pN+

∑
g∈Zd
〈g〉p(N0−1−N ) <∞,

where we have used (5.72) and the condition (N0 − 1−N )p < −d.

We now rewrite our integral I in polar coordinates as follows

I =

∞∫
0

∫
Sd−1

|P (rω)|p〈r〉−pN rd−1 dω dr =

∞∫
0

〈r〉−pN rd−1+pN0 dr ·
∫

Sd−1

|P (ω)|p dω.

Suppose for contradiction that (N0 −N )p ≥ −d. Then it follows that

∞∫
0

〈r〉−pN rd−1+pN0 dr =∞.

Thus, the finiteness of I implies that

∫
Sd−1

|P (ω)|p dω = 0.

Hence, P (ω) = 0 for any ω ∈ Sd−1. By homogeneity, P must be zero (contradic-

tion). This shows our claim.

Step 6. Since u is non-zero, there are some r ∈ {1, . . . , r0} and x ∈ F such that the
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following homogeneous polynomial of degree N0 in Rd

P (z) :=
∑
|j|=N0

ekr(x)aj,r(x)zj

is non-zero. Thanks to (5.71) and the condition N0 ≤M < N + 1− d/p (see Step

1), the inequality N0 < N − d/p must be satisfied according to Step 5. This finishes

the proof of the first part of the lemma.

(ii) Consider u ∈ V p
N (A) ∩ V ∞N+1−d/p(A). In particular, for any ε > 0, u ∈ V p

N+ε(A) ∩

V ∞N+1−d/p(A). Using Lemma 5.7.10 (i), u is in the space V ∞Mε
(A) for someMε <

(N + ε) − d/p. By letting ε → 0+, we conclude that u ∈ V ∞N−d/p(A). This yields

the second part of the lemma.

Proof of Theorem 5.2.16.

Proof. (a) Consider u ∈ V p
N(A). Due to Theorem 5.2.14 and the condition that N ≤ d/p,

V p
N(A) ⊆ V p

d/p+1/2(A) = V ∞0 (A).

Using Theorem 5.2.8 (ii),

u(x) =
∑̀
r=1

ekr(x)ar(x), (5.73)

for some periodic functions ar(x).

Using (5.65) and the assumption that u ∈ V p
N(A), we derive

sup
x∈F

∑
g∈G

∣∣∣∣∣∑̀
r=1

ekr(x)ar(x)eikr·g

∣∣∣∣∣
p

· 〈g〉−pN <∞. (5.74)
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Then one can modify the argument in Step 4 of the proof of Lemma 5.7.10 (from the

estimate (5.67) to (5.71)) to get

max
1≤r≤`

sup
x∈F
|ekr(x)ar(x)|p ·

∑
g∈Zd
〈g〉−pN <∞.

Hence, the assumption −pN ≥ −d forces that max
1≤r≤`

sup
x∈F
|ekr(x)ar(x)| = 0. Thus, u

must be zero.

(b) Let u be an arbitrary element in V ∞N (A). Since N < 0, we can assume that u has the

form (5.73). To prove that u = 0, it is enough to show that ekr(x)ar(x) = 0 for any

x ∈ F and 1 ≤ r ≤ `. One can repeat the same argument of the previous part to prove

this claim. However, we will provide a different proof using Fourier analysis on the

torus (T∗)d.

For each x ∈ F , we introduce the following distribution on (T∗)d

f(k) :=
∑̀
r=1

ekr(x)ar(x)δ(k − kr),

where δ(·−kr) is the Dirac delta distribution on the torus (T∗)d at the quasimomentum

kr. Taking Fourier series, we obtain

f̂(g) =
∑̀
r=1

ekr(x)ar(x)e−ikr·g.

As in (5.74), the assumption u ∈ V ∞N (A) is equivalent to

sup
g∈Zd

∣∣∣f̂(g)
∣∣∣ · 〈g〉−N <∞.

Let φ be a smooth function on (T∗)d. Using Parseval’s identity and Hölder’s inequality,

231



we have

∣∣∣∣∣∑̀
r=1

ekr(x)ar(x)φ(kr)

∣∣∣∣∣ = |〈f, φ〉| =

∣∣∣∣∣∣
∑
g∈Zd

f̂(g)φ̂(−g)

∣∣∣∣∣∣ .
∑
g∈Zd
|φ̂(g)| · 〈g〉N . (5.75)

We pick δ > 0 small enough such that ks /∈ B(kr, 2δ) if s 6= r. Then we choose

a cut-off function φr such that suppφr ⊆ B(kr, 2δ) and φr = 1 on B(kr, δ). For

1 ≤ r ≤ `, we define functions in C∞((T∗)d) as follows:

φεr(k) := φr(ε
−1k), (0 < ε < 1).

To bound the Fourier coefficients of φεr in terms of ε, we use integration by parts.

Indeed, for any nonnegative real number s,

(2π)d|φ̂εr(g)| =
∣∣∣∣∫

(T∗)d
φεr(k)e−ik·gdk

∣∣∣∣ = εd ·
∣∣∣∣∫
B(kr,2δ)

φr(k)e−iεk·gdk

∣∣∣∣
= εd〈εg〉−2[s]−2 ·

∣∣∣∣∫
B(kr,2δ)

(1−∆)[s]+1φr(k) · e−ik·εgdk
∣∣∣∣

≤ εd〈εg〉−2[s]−2 · sup
k

∣∣(1−∆)[s]+1φr(k)
∣∣ . εd−s〈g〉−s.

In the last inequality, we make use of the fact that 〈εg〉−2[s]−2 ≤ 〈εg〉−s ≤ ε−s〈g〉−s

whenever ε ∈ (0, 1). In particular, by choosing any s ∈ (max(0, N + d), d), one has

|φ̂εr(g)| · 〈g〉N . εd−s · 〈g〉N−s. (5.76)

Now we substitute φ := φεr in (5.75), use (5.76), and then take ε→ 0+ to derive

|ekr(x)ar(x)| . lim
ε→0

εd−s
∑
g∈Zd
〈g〉N−s = 0,
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which completes the proof.

Proof of Corollary 5.3.13.

Proof. It suffices to prove that Im P̃ = Γ̃µ(X , P ) since from (5.29), dim Ker P̃ ∗ =

codim Im P̃ = 0 and then the conclusion of Corollary 5.3.13 holds true as we remarked

in Section 5.3. Now given any f ∈ Γ̃µ(X , P ), one has 〈f, L̃−〉 = 0 and f = Pu for some

u ∈ DomP since ImP = Dom′P ∗. According to the assumption, we can find a solution

w = u − v in DomP of the equation Pw = Pu − Pv = f such that 〈w,L−〉 = 0. Let

w0 be the restriction of w on X \D+. Clearly, w0 belongs to the space Γ(X , µ, P ). Since

Pw is smooth on X , P̃w0 = Pw = f by the definition of the extension operator P̃ . This

shows that f ∈ Im P̃ , which finishes the proof.

Remark 5.7.11. In the special case D− = ∅, L− = {0}, one can prove the Riemann-Roch

equality (5.24) directly, i.e., without referring to the extension operators P̃ and P̃ ∗. For

reader’s convenience, let us present this short proof following from [32]. We define the

space Γ(µ, P ) := {u ∈ D′(X ) | u ∈ DomP \ D+, Pu ∈ L+}. Then it is easy to check

that the following sequences are exact:

0→ L̃+ i−→ Γ(µ, P )
r−→ L(µ, P )→ 0

0→ KerP
i−→ Γ(µ, P )

P−→ L+ → 0,

where i and r are natural inclusion and restriction maps. Here the surjectivity of P from

Γ(µ, P ) to L+ is a consequence of the existence of a properly supported pseudodifferen-

tial parametrix of P (modulo a properly supported smoothing operator) and C∞c (X ) ⊆

Dom′P ∗ = ImP . Note that KerP ∗ = {0}. Hence, it follows that dimL(µ, P ) =

dim Γ(µ, P )− dim L̃+ = dim KerP + dimL+ − dim L̃+ = indP + degP (µ).
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5.8 Concluding remarks

• Let {Az}z and {µz}z be given families of periodic elliptic operators Az satisfy-

ing the assumptions of Theorem 5.4.12 and of rigged divisors µz. Under appropri-

ate conditions on these families depending “nicely” on the parameter z, the upper-

semicontinuity in z of the two functions dimL2(µz, Az, 0) and dimL2(µ−1
z , A∗z, 0)

can be deduced from the Liouville-Riemann-Roch equality (5.37).

• From Remark 5.5.3, we know that Assumption (A2) cannot be dropped in Theo-

rem 5.4.6. Besides the example in Remark 5.5.3, we give a heuristic explanation

here. It is known that if {At} is a family of Fredholm operators that is contin-

uous with respect to the parameter t, the kernel dimension dim KerAt is upper

semicontinuous. The idea in combining Riemann-Roch and Liouville theorems

by considering dimensions of spaces of solutions with polynomial growth as some

Fredholm indices would imply that in this direction, the upper-semicontinuity prop-

erty should hold for these dimensions. On the other hand, in [69], there exists a

continuous family {Mt} of periodic operators on R2 such that for each N ≥ 0,

dimV ∞N (Mt) = 2 dimV ∞N (M2
√

3) if 2
√

3 < t < 2
√

3 + ε for some ε > 0 and thus,

dimVN(Mt) is not upper-semicontinuous at t = 2
√

3 (see [50]). In this example, the

minimum 0 of the lowest band λ1(k) of the operator M2
√

3 is degenerate [69]. This

explains why our approach requires the “non-degeneracy” type condition (A2) for

avoiding some intractable cases like the previous example. Notice that in general,

Assumption A and Liouville type results are not stable under small perturbations.

• The results in this chapter extend to linear elliptic systems and operators between

vector bundles.
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6. SUMMARY AND CONCLUSIONS

In Chapter 3, we obtained the Green’s function asymptotics of periodic elliptic oper-

ators of second-order on Euclidean spaces. Namely, we computed explicitly the leading

term of the Green’s function Gλ(x, y) of a “generic” periodic elliptic operator of second-

order when λ is close enough to a gap edge located at a high symmetry point of the Bril-

louin zone. The case when λ is below the bottom of the spectrum was known before

[9, 60]. However, the techniques used there could not apply directly to our situation here.

We took an approach based on [52] and the calculation in the discrete version [81].

In Chapter 4, we generalized the results of Chapter 3 and [52] to the setting of abelian

coverings. One of the main tools here is the use of additive functions on abelian coverings

(Definition 4.2.7) for describing such asymptotics. These asymptotics capture a well-

known idea (due to Gromov): a co-compact regular cover and its deck transformation

group look similar at large scales.

In Chapter 5, we studied some possible combinations between the Riemann-Roch and

the Liouville type results for periodic elliptic operators on noncompact abelian coverings

with compact bases. Our idea is to employ a very general version of the Riemann-Roch

formula for elliptic operators on noncompact manifolds developed in [32, 33]. Riemann-

Roch type theorems allow the solutions to have prescribed zeros or poles at a given divisor.

On the other hand, Liouville type results address the finite-dimensionality and structure of

the space of solutions with a prescribed polynomial growth on noncompact manifolds. It

is thus natural to try to combine the Riemann-Roch formula and the Liouville type results.

In this direction, we were able to achieve two different groups of results:

(1) Liouville-Riemann-Roch formulas for uniformly bounded elliptic operators on co-

compact Riemannian coverings outside of the spectra.
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(2) Liouville-Riemann-Roch inequalities and their applications for periodic elliptic oper-

ators on co-compact abelian Riemannian coverings at the edges of the spectra.

We have also obtained “an Lp-analog” of the Liouville type results of [49, 50].
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APPENDIX A

A TOPOLOGICAL APPROACH TO DEFINING ADDITIVE FUNCTIONS ON

CO-COMPACT RIEMANNIAN NORMAL COVERINGS

A.1 Introduction

Let X be a connected smooth Riemannian manifold of dimension n equipped with

an isometric, properly discontinuous, free, and co-compact action of a discrete group G.

Notice that G is finitely generated due to the Švarc-Milnor lemma and hence, Hom(G,R)

is finite dimensional. Furthermore, the orbit space M := X/G is a compact Riemannian

manifold when equipped with the metric pushed down from X . The action of an element

g ∈ G on x ∈ X is denoted by g · x. Let π be the covering map from X onto M . Thus,

π(g · x) = π(x) for any (g, x) ∈ G×X .

Following [56], we define the class of additive functions on the covering X as follows:

Definition A.1.1.

• A real smooth function u on X is said to be additive if there is a homomorphism

α : G→ R such that

u(g · x) = u(x) + α(g), for all (g, x) ∈ G×X.

• We denote by A(X) the space of all additive functions on X .

• A map h from X to Rm (m ∈ N) is called a vector-valued additive function on X if

every component of h belongs to A(X).

We remark that additive functions on co-compact coverings appeared in various results

such as studying the structure of positive G-multiplicative type solutions [3, 56], describ-
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ing the off-diagonal long time asymptotics of the heat kernel [46] and the Green’s function

asymptotics of periodic elliptic operators [41] on a noncompact abelian covering of a com-

pact Riemannian manifold.

A direct construction of additive functions on X can be found in either [50, Section 3]

or [56, Remark 2.6]. However, this construction depends on the choice of a fundamental

domain for the base M in X . A more invariant approach to defining additive functions

on coverings was mentioned briefly in [3, 50]. Our goal in this note is to present the full

details of this approach for any co-compact covering.

A.2 Additive functions on co-compact normal coverings

We begin with the following notion (see [3, 50]):

Definition A.2.1. LetH1
DR(M), H1

DR(X) be De Rham cohomologies ofM andX , respec-

tively. We denote by Ω1(M ;G) the image in H1
DR(M) of the set of all closed differential

1-forms ω on M (modulo the exact ones) such that their lifts ω to X are exact. In other

words, Ω1(M ;G) is the kernel of the homomorphism

π∗ : H1
DR(M)→ H1

DR(X),

where π∗ is the induced homomorphism of the covering map π : X →M .

By De Rham’s theorem, Ω1(M ;G) is a finite dimensional vector space. Indeed, more

is true:

Lemma A.2.2. Ω1(M,G) ∼= Hom(G,R).

Proof. By Hurewicz’s theorem (see e.g., [55]), the homologies H1(M) and H1(X) are

isomorphic to the abelianizations of fundamental groups π1(M) and π1(X), respectively.

We can identify De Rham cohomologies H1
DR(M) and H1

DR(X) with Hom(π1(M),R)
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and Hom(π1(X),R), correspondingly. Since X is a normal covering of M , π1(X) is a

normal subgroup of π1(M) and moreover, the following sequence

0→ π1(X)→ π1(M)→ G→ 0

is exact. Because Hom(·,R) is a contravariant exact functor, we deduce the exactness of

the following sequence of vector spaces:

0→ Hom(G,R)→ H1
DR(M)→ H1

DR(X)→ 0.

Hence, Ω1(M,G) is isomorphic to Hom(G,R).

Fixing a base point x0 ∈ X . For any closed 1-form ω on M such that its lift to X is

exact, there exists a unique function fω ∈ C∞(X,R) such that π∗ω = dfω and fω(x0) = 0.

Equivalently,

fω(x) =

∫ x

x0

π∗ω, ∀x ∈ X.

Lemma A.2.3. For such 1-form ω, we have

i) Fix any g ∈ G, then fω(g · x)− fω(x) is independent of x ∈ X .

ii) If π∗ω = 0 then ω = 0.

Proof.

i) For each g ∈ G, let Lg be the diffeomorphism of X that maps any element x to the

element g · x. Since π ◦ Lg = π, we get dfω = π∗ω = L∗gπ
∗ω = L∗gdfω = dL∗gfω =

d(fω ◦ Lg). Thus, d(fω − fω ◦ Lg) = 0 and so, fω ◦ Lg − fω is constant since X is

connected.
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ii) Fix any point p ∈ M . We pick an evenly covered open subset U of M such that it

contains p. Then there is a smooth local section σ : U → X , i.e., π ◦ σ = id|U (see

e.g., [55, Proposition 4.36]). Hence, ω(p) = σ∗π∗ω(p) = 0.

On A(X), we introduce an equivalent relation ∼ as follows: f1 ∼ f2 in A(X) if and

only if f1 − f2 = f ◦ π for some function f ∈ C∞(M,R).

By Lemma A.2.3 (i), the map ω 7→ fω induces the following linear map

Λ : Ω1(M,G)→ A(X)/ ∼

[ω] 7→ [fω],

(A.1)

where the notation [ω] ([fω]) stands for the equivalent class of ω (fω) in Ω1(M,G) (A(X)/ ∼),

correspondingly. We now claim that [ω] = 0 if and only if [fω] = 0, and hence Λ is an in-

jective linear map. Indeed, due to Lemma A.2.3 (ii), the condition that ω is exact is equiv-

alent to π∗ω = d(f ◦ π) for some f ∈ C∞(M,R). But this is the same as dfω = d(f ◦ π),

or [fω] = 0.

Consider an additive function f onX . According to the definition, there exists a unique

group homomorphism `f : G→ R such that f(g·x) = f(x)+`f (g) for any g ∈ G, x ∈ X .

Then the map f 7→ `f induces the linear map

Υ : A(X)/ ∼ → Hom (G,R)

[f ] 7→ `f ,

(A.2)

which is injective.

Then the composition Υ ◦ Λ is also injective. By Lemma A.2.2, dimR Ω1(M,G) =

dimR Hom (G,R) < ∞. These facts together imply that the linear maps Υ and Λ are
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isomorphism. We conclude:

Theorem A.2.4. The three vector spaces Ω1(M,G), A(X)/ ∼ and Hom (G,R) are iso-

morphic.

In particular, we obtain:

Corollary A.2.5. Assume that G = Zd. Then there is a smooth Rd-valued function h on

X such that for any (g, x) ∈ Zd ×X ,

h(g · x) = h(x) + g. (A.3)

The following proposition says that given any additive function u on X , one can pick

a harmonic additive function f such that f − u is G-periodic.

Proposition A.2.6. For any ` in Hom(G,R), there exists a unique (modulo a real constant)

harmonic function f on X such that for any (g, x) ∈ G×X , we have

f(g · x) = f(x) + `(g). (A.4)

Proof. First, we show the existence part. Due to Theorem A.2.4, let f̃ be a function on X

satisfying f̃(g · x) = f̃(x) + `(g) for any (g, x) ∈ G ×X . We recall the isomorphism Λ

defined in (A.1). We put α := Λ−1([f̃ ]) ∈ Ω1(M,G). By the Hodge theorem, there exists

a unique harmonic 1-form ω on M such that [ω] = α in H1
DR(M). Let f be a smooth

function such that f ∈ A(X) and π∗ω = df . Then f satisfies (A.4) since [f ] = [f̃ ] in

A(X)/ ∼. Thus, it is sufficient to show that f is harmonic on X . We denote by δX , ∆X

and δM , ∆M the codifferential and Laplace-Beltrami operators on X and M , respectively.

Since the covering map π is a local isometry betweenX andM , its pullback π∗ intertwines

the codifferential operators, i.e.,

δXπ
∗ = π∗δM .
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Since ∆Mω = 0, it follows that δMω = 0. Thus,

∆Xf = δXdf = δXπ
∗ω = π∗δMω = 0.

For the uniqueness part, let f1 and f2 be any two harmonic functions on X such that

(A.4) holds for each of these functions. Since f1−f2 is G-periodic, it can be pushed down

to a real function f on M . Moreover, π∗∆Mf = ∆Xπ
∗f = ∆X(f1 − f2) = 0. Therefore,

f must be constant since it is a harmonic function on a compact, connected Riemannian

manifold M . Thus, f1 − f2 is constant.

Corollary A.2.7. Fixing a base point x0 in X . Then to each α ∈ Hom(G,R), there exists

a unique harmonic function fα defined onX such that fα(x0) = 0 and Υ([fα]) = α, where

Υ is introduced in (A.2). Consequently,

A(X) =
⊔

α∈Hom(G,R)

{
fα + ϕ | ϕ is periodic

}
.

Remark A.2.8. When G = Zd, the Albanese pseudo-metric dG introduced in [46, Section

2] is just the pseudo-distance arising from any harmonic vector-valued additive function h

satisfying (A.3), i.e., dG(x, y) = |h(x)− h(y)| for any x, y ∈ X .

251




