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ABSTRACT

In this dissertation, we study some spectral problems for periodic elliptic operators
arising in solid state physics, material sciences, and differential geometry. More precisely,
we are interested in dealing with various effects near and at spectral edges of such opera-
tors. We use the name “threshold effects” for the features that depend only on the infinites-
imal structure (e.g., a finite number of Taylor coefficients) of the dispersion relation at a
spectral edge.

We begin with an example of a threshold effect by describing explicitly the asymp-
totics of the Green’s function near a spectral edge of an internal gap of the spectrum of
a periodic elliptic operator of second-order on Euclidean spaces, as long as the disper-
sion relation of this operator has a non-degenerate parabolic extremum there. This result
confirms the expectation that the asymptotics of such operators resemble the case of the
Laplace operator.

Then we generalize these results by establishing Green’s function asymptotics near and
at gap edges of periodic elliptic operators on abelian coverings of compact Riemannian
manifolds. The interesting feature we discover here is that the torsion-free rank of the
deck transformation group plays a more important role than the dimension of the covering
manifold.

Finally, we provide a combination of the Liouville and the Riemann-Roch theorems for
periodic elliptic operators on abelian co-compact coverings. We obtain several results in
this direction for a wide class of periodic elliptic operators. As a simple application of our
Liouville-Riemann-Roch inequalities, we prove the existence of non-trivial solutions of
polynomial growth of certain periodic elliptic operators on noncompact abelian coverings

with prescribed zeros, provided that such solutions grow fast enough.
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1. INTRODUCTION

Periodic media play a crucial role in solid state physics as well as in other areas (e.g.,
meta- and nano-materials). A remarkable example is the study of crystals: The atoms in
a perfect crystal are placed in a periodic order and this order induces many interesting
properties of the material. Mathematically speaking, to describe the one-electron model
of solid state physics [6], one uses the stationary Schrodinger operator —A + V' with a
periodic potential V' that represents the field created by the lattice of ions in the crystal. In
general, one can study elliptic PDEs with periodic coefficients arising naturally from other
contexts. For instance, periodic magnetic Schrodinger operators, overdetermined systems
like Maxwell equations in a periodic medium, periodic elliptic operators on abelian cov-
erings of compact manifolds or finite graphs are also of interest. It has been known for a
long time that in mathematical physics, the Floquet-Bloch theory is a standard technique
for studying such operators. Although periodic elliptic PDEs have been studied exten-
sively, there are still many theoretical problems to address as well as new applications to
explore such as metamaterials (e.g., graphene and photonic crystals), carbon nanostruc-
tures, topological insulators, waveguides and so on.

In Chapter 2, we briefly discuss periodic elliptic operators and then give a quick review
of the Floquet transform and the Floquet-Bloch theory. Here we introduce definitions,
notations, and preliminary results that will be needed in the subsequent chapters.

In Chapter 3, we describe the behavior at infinity of Green’s functions near gap edges
for periodic elliptic operators in R? (d > 2), which is an example of a threshold effect.
These asymptotics are relevant for many important applications in Anderson localization,
impurity spectra, Martin boundaries and random walks. The original motivation comes

from the well-known asymptotic behavior of the Green’s function of the Laplacian in R?



outside its spectrum: along with an algebraic decay factor, the Green’s function decays
exponentially at infinity with the rate of decay controlled by the distance to the spectrum.
One may ask how the Green’s functions of other classes of elliptic operators behave at
infinity: Would it resemble the Laplacian case? A natural candidate is the class of periodic
self-adjoint elliptic operators of the second-order.

Exponential decay estimates of Schwartz kernels of resolvents, such as the Combes-
Thomas estimates [ 18] are well-known. However, as most of them are obtained by operator-
theoretic techniques, they do not capture precisely the anisotropy of the asymptotics for
periodic operators. Moreover, an additional algebraically decaying factor besides the ex-
ponential decay rate is lost in this approach.

Since one can compute the asymptotics of the Green’s function of the Laplacian by
using Fourier transform, it is natural to use Floquet theory in the periodic case. Consider a
periodic self-adjoint elliptic operator L on R?, where d > 2. Its spectrum has a band-gap
structure, so it is reasonable to look at the Green’s function around the spectral edges of a
gap. A special case is of the bottom of the spectrum, for which results were established by
Babilott [9] and then by Murata-Tsuchida [60].

Here we attack the case of an internal spectral edge, where the corresponding band
function \;(k) has an isolated nondegenerate extremum.' By using Floquet transform
and a localization argument, we reduce the problem to studying the behavior of a scalar
integral that involves a germ of the branch A;. Here only the local structure around the
edge of the branch )\, is solely responsible for the main term of the scalar integral, and
this is where nondegeneracy of the extremum is used to compute the asymptotics. This
also confirms the expectation that the asymptotics resemble the ones for the Laplacian.

Indeed, the asymptotics of the Green’s function G, (x, y) of L at an energy level A that is

"Non-degeneracy means that the Hessian matrix of the corresponding band function \;(k) at the gap
edge is non-degenerate.



sufficiently close to a simple and nondegenerate spectral edge can be described roughly as
follows:

ek (v - y)

Gy(zr,y) ~ ————— = x C(\, x,y), where s:=-—"". (1.1)
o)~ g < ) =y

Here 7, > 0 depends on the direction s only and C'(\, z, ) is a bounded term depending
on the local structure of the dispersion relation of L around the spectral edge. Hence,
the rate of exponential decay is usually non-isotropic, unlike in the Laplacian case. The
additional algebraic decay is also captured.

In Chapter 4, we extend the above results to periodic elliptic operators on an abelian
cover of a compact base. An abelian cover X is a normal Riemannian cover such that its
deck transformation group G is abelian and the quotient space M = X/G is a compact
Riemannian manifold. Without loss of generality, one can assume G = Z¢. Let dx(-,-)
be the Riemannian distance on X. Note that the dimension n of the manifold X could
be different from the rank d of the deck group G. Let A be a self-adjoint elliptic operator
of second-order on X such that it is periodic, i.e., A commutes with actions of G. One
can define a Floquet transform on X so that the machinery of Floquet theory still works
well. The notions of dispersion relations, band-gaps, and spectral edges are defined simi-
larly to the flat case and thus, the question of finding the asymptotics of Green’s function
Gaa(z,y) of Aatalevel \ that is near to a non-degenerate gap edge still makes sense. At
first glance, one may expect that the leading term of the Green’s function of A can be rep-
resented in terms of the distance dx (x, y) like the formula (1.1) in the flat case. However,
this is just ‘almost’ true as we show that the asymptotics should look like

e h(@)=h(y)] ] h(z) — hiy
h(w) = h(gyanrz X Chay), where s = Iw) =) g )

GA,A('ra y) ~ ‘



Here, the mapping A from X to R? is an analog on an abelian covering of the coordinate
function x in the flat case. * It satisfies |h(z) — h(y)| ~ dx(z,y) when = and y are
sufficiently far apart. The positive constant v, depends on s, and the term C (A, z,y) is
again bounded and does not contribute much to the asymptotics at infinity. An interesting
feature is that the rank d of G plays a more important role than the dimension n of X, since
n does not enter explicitly into (1.2). This feature is in line with Gromov’s idea that the
large scale geometry of X is captured mostly by its deck group GG. Furthermore, the result
of [52] concerning the behavior at exactly a spectral edge is also extended to co-compact
abelian coverings.

In Chapter 5, we combine the Riemann-Roch and the Liouville theorems for peri-
odic elliptic operators on abelian coverings. The classical Riemann-Roch theorem for
compact Riemann surfaces has been extended in various ways to higher dimensional set-
tings. Instead of taking the viewpoint from algebraic geometry, Gromov and Shubin took
a motivation from classical analysis of solutions of general elliptic equations with point
singularities [32] and beyond [33]. Consider a compact manifold X of dimension n, a
point divisor is an element in the free abelian group generated by the points of X. For an
elliptic operator P of order m and a point divisor . on X, they define the space L(u, P) of
“meromorphic"” solutions of P associated to p by taking all solutions that are allowed to
have some poles at points that enter © with a positive degree and are required to have zeros
at the points that enter ;4 with a negative degree. Also, the multiplicities of these poles and
zeros are controlled from above and below by quantities involving the corresponding de-
grees. The Riemann-Roch type formula appeared in [32] is a link between the dimensions

of the space L(u, P) and the ‘dual’ one L(p~t, P*), where ;! is the dual divisor of y and

2A topological approach to defining such mappings on any Riemannian co-compact coverings can be
found in Appendix A.



P~ is the adjoint operator of P:
dim L(y, P) = dim L(p ™", P*) + ind P + degp(u), (1.3)

where ind P is the Fredholm index of P and degp(u) is the degree of y that is written in
terms of binomial coefficients involving m, n and u. The classical Riemann-Roch formula
is a special case of (1.3) if P is the 0 operator on a compact Riemann surface X. Later
in [33], Gromov and Shubin proved a much more general version of (1.3) for solutions of
general elliptic equations with singularities supported on arbitrary compact nowhere dense
sets of a manifold (e.g., a Sierpinsky carpet). In this version, the analogs of point divisors
are rigged divisors.? A version of (1.3) on non-compact manifolds is also given in [32,33].

On the other hand, the classical Liouville theorem says that a harmonic function that
grows polynomially is a harmonic polynomial and so, the space of all harmonic functions

in R™ that are bounded by C'(1 + |z|) is of finite dimension:

Iy = (”ZN)—CHZ_Q). (1.4)

This leads to a natural problem concerning the finite dimensionality of the spaces of solu-
tions of an assigned polynomial growth, estimates of their dimensions, and descriptions of
the structures of these solutions for more general elliptic operators on certain non-compact
manifolds. In the flat case R", M. Avellaneda-F.H. Lin [8] and J. Moser-M. Struwe [59]
answered the question for any second order divergence form elliptic equation with periodic
coefficients by using tools of homogenization theory: they proved that the dimensions of
the spaces of all solutions of these equations of polynomial growth of order at most N are

equal to h,, y. However, homogenization techniques have significant limitations, e.g., they

3A rigged divisor 1 is a tuple (DT, L*; D=, L™), where DT, D~ are disjoint nowhere dense compact
sets and LT, L~ are finite-dimensional spaces of distributions supported on D+, D~ respectively.



work at the bottom of the spectrum only. Using Floquet theory and duality arguments, in
[50], P. Kuchment and Y. Pinchover obtained Liouville type results for a wide range of
elliptic periodic operators on abelian co-compact coverings. The main result of [50] says
that the Liouville type result happens iff the corresponding Fermi surface is finite, which
normally happens at a spectral edge. This is another example of threshold effects: the
dimensions are calculated explicitly based on the lowest order term of a non-zero Taylor
expansion term of the dispersion relations at a spectral edge.

A solution of polynomial growth of order /N can be considered as a solution that is
allowed to have a “pole at infinity” of order at most N, while a solution that is “zero at
infinity” with multiplicity at least N can be regarded as a solution with a rate of decay of
polynomial of order N. So one may think a Liouville type result as a Riemann-Roch type
result for divisors located at infinity. It is thus natural to try to combine these theorems.

Consider p € [1,00], N € R and an abelian cover X whose deck group is G(= Z%).
Suppose that y is a rigged divisor (defined in Section 5.3) and A is a periodic elliptic
operator on X. We denote by L,(u, A, N) the space of all solutions u of the equation
Au = 0 with zeros enforced and poles allowed by the divisor 1, and of polynomial growth
(in LP-sense) of order /V at infinity (see Section 5.4). Now we can give a rough statement

(somewhat vague at this point) to outline some of our main results in Chapter 5.

Theorem 1.0.1. Assume that N > 0, p € [1, 00| and 1 is a rigged divisor on X. We define
p=p/(p—1).
(i) If O is in the resolvent set of A, then the following Liouville-Riemann-Roch equality

holds:
dim L, (1, A, N) = dim L (™, A", —N) + deg 5 (1),

(ii) Suppose that 0 is in the spectrum of A and the operator A satisfies the Liouville

property. Let us denote by V3;(A) the space L,(uo, A, N), where p is the trivial

6



divisor (0,0;0,0). Assume either p = co, N > 0 orp € (1,00), N > d/p. Then
under some local conditions on the dispersion relation of A, we have the following

Liouville-Riemann-Roch inequality:

dim L, (1, A, N) > dim VZ(A) + deg 4 (p) + dim L, (™, A, —N). (1.5)

The inequality (1.5) can be strict in some cases, e.g., when A = —A on R3 N = 0

with some p. However, when |1 contains only poles, the equality in (1.5) occurs.

Here deg 4 (1) is the integer depending on y and the differential operator A (see Section
5.3).

In particular, we are able to show that the Liouville-Riemann-Roch inequalities hold
for ‘generic’ periodic Schrodinger operators at their gap edges and for two-dimensional
periodic Schrodinger operators with honeycomb lattice potentials. An immediate appli-
cation is the non-triviality of the space L., (x4, A, N) in many situations, e.g., when 0 is
at the bottom of the spectrum of A = —A + V and hy y + deg,(p) > 0. This also im-
plies the fact that one can always find a non-zero solution u of polynomial-growth of A
with prescribed zeros as long as [V is large enough. The latter fact can be considered as
an analog for noncompact abelian coverings of the following well-known property which
could be deduced from the classical Riemann-Roch equality: the existence of a non-trivial
meromorphic function on a compact Riemann surface with prescribed zeros, provided that
poles of sufficiently high orders are allowed.

The results of this dissertation have been published in:

1. (Joint with Peter Kuchment, Andy Raich), Green’s function asymptotics near the inter-
nal edges of spectra of periodic elliptic operators. Spectral gap interior, To appear in

Journal of Spectral Theory (2016), arXiv:1508.06703.



. Green’s function asymptotics of periodic elliptic operators on abelian coverings of

compact manifolds, Submitted, arXiv:1511.00276.

. A short note on additive functions on Riemannian co-compact coverings, Preprint,

arXiv:1511.00185.

. (Joint with Peter Kuchment), A Liouville-Riemann-Roch theorem on abelian coverings,

in preparation.
The results of this dissertation have been presented in the following talks:

. Green’s function asymptotics of periodic elliptic operators on abelian coverings of
compact manifolds, Contributed talk, Ohio River Analysis Meeting, University of Ken-

tucky, Kentucky, 03/12/2016.

. Green’s function asymptotics of periodic elliptic operators on abelian coverings of
compact manifolds, Invited talk, Seminar in Applied Mathematics, Department of Math-

ematics and Statistics, Texas Tech University, TX, 03/02/2016.

. Green’s function asymptotics near the internal edges of spectra of periodic elliptic op-
erators. Spectral gap interior., Invited talk, Special Session on Analysis of Differential
and Integral Equations, AMS Fall Southeastern Sectional Meeting, University of Mem-

phis, TN, 10/18/2015.

. Green’s function asymptotics near the internal edges of spectra of periodic elliptic
operators. Spectral gap interior., Contributed talk, Prairie Analysis Seminar, Kansas

State University, Manhattan, KS, 09/26/2015.

. Green’s function asymptotics near the internal edges of spectra of periodic elliptic op-
erators. Spectral gap interior., Mathematical Physics and Harmonic Analysis Seminar,

Texas A&M University, 03/06/2015.



2. FLOQUET-BLOCH THEORY FOR PERIODIC ELLIPTIC OPERATORS

2.1 Periodic elliptic operators

Let a linear differential expression

Lu(z) = L(x, D)u = Z ao(z)D%(x) (2.1)
|| <m
of order m > 1 be given in R?. Here if & = (o, ..., qq) is a multi-index, the notation
10
D stands for D{* ... Dy?, where D), := —i0;, = ———. All coefficients a, are smooth
1 0T

functions on R and they are periodic with respect to the integer lattice Z¢ in RY, i.e.,
Vo € R4 n € 7% an(x +n) = ay(x).

The formal adjoint expression (or transpose) is defined as

Lu(z) = Lz, DYu= Y D*(an(a)ulz))
laj<m
ie., (Lu,v) = (u, L'v) for any u,v € C°(R?), where (-, -) denotes the L*-inner product
in RY. If L = LY, then L is called a formally self-adjoint differential expression and the
operator L with the domain C2°(R?) is symmetric.
The full symbol of L is the polynomial (in ¢ € R?Y) L(z,&) = > an(2)£2, while the

la|<m

principal symbol of L is the polynomial Lo(x, &) = > a,(2)£*. Note that (L")o(z, &) =
|al=m
Lo(z, &) and hence, the principal symbol of a formally self-adjoint expression is always

real.

The scalar differential expression L is said to be (uniformly) elliptic if its principal



symbol satisfies the inequality

|Lo(z,€)| > €™, ¢>0.

Under these assumptions, the differential expression (2.1) is defined for u € L?(R?)
in the distribution sense. To consider L as a linear operator in L?(IR%), we have to choose
a domain ' D C L?(R?) of L such that Lu € L*(R%) for any u € D. We denote by Lp
the corresponding operator (or a realization) of the differential expression L. There are
two important realizations of L. The maximal operator L,y is the linear operator L|p,, ..,

where its domain D,y is the largest possible one, i.e.,

Dinax := {u € L*(RY) | Lu € L*(R%)}.

The minimal operator Ly, is defined to be the closure of the operator Ljceo(gra). Since
L 1s uniformly elliptic and its coefficients are smooth, Dy, = H m(]Rd). When L is a
formally self-adjoint expression, it follows that the maximal operator L, is the adjoint

L*

» in Of the minimal operator Li,. If Ly, = Liax or equivalently, Dyax = D, then
Lin 1s a self-adjoint operator and in this case, L is said to be essentially self-adjoint on
C>(R%). In other words, L has a unique self-adjoint realization. It is known [71] that
when L = L' and the coefficients of L are smooth and periodic, the differential expression
L is essentially self-adjoint on C°(R?). We also use the same notation L to denote the
self-adjoint operator Lyiy = Lmax = Ljgmge). For simplicity, we also say that L is
self-adjoint in this case.

We now describe some important examples of periodic elliptic operators, which will

come up in the next chapters.

'Le., a dense linear subspace of L?(R9).
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(a) The one-electron model of solid state physics can be described by the periodic Schrodinger
operator in L?(IR?)

L=—-A+V(x),

where the electric potential V' is sufficiently smooth ? and periodic with respect to the
group Z?. The domain of this operator is the Sobolev space H?(R?). This Schrodinger
operator is self-adjoint whenever the potential V' is real. Note that many of the tech-
niques and results do not require self-adjointness, i.e., they can also hold for complex-

valued potentials V.

(b) One can also consider the magnetic Schrodinger operators

L= (—iV + A(z)* + V(z),

where A(z) and V' (x) are periodic magnetic and electric potentials. More generally,

the Schrodinger operators with the presence of periodic metrics

L=-V-g(x)V+iA(z) - V+V(x)

are also of interest. Usually, these operators are more complicated to study.

(¢c) Periodic elliptic operators of higher than second-order are also worthy of studying. A

typical example is the polyharmonic Schrodinger operator

L=(=0)""+V(z),

where V' is a real and periodic potential and m is a positive integer. We would like

to remark that unlike the second-order case, one may encounter more difficulties with

21> suffices (see e.g., [66]).
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these operators since they may fail even the weakest version of unique continuation.

(d) In this chapter, we mainly discuss Z?-periodic elliptic operators on R?. Most of the
techniques and some of the results in this thesis can be generalized to the case of
periodic elliptic operators on abelian coverings of compact Riemannian manifolds (see

Chapter 4 and Chapter 5).
2.2 Floquet-Bloch theory
Notation 2.2.1.

(a) Let W = [0,1]¢ C R? be the unit cube, which is a fundamental domain of R? with

respect to the lattice Z? (Wigner-Seitz cell).

(b) The dual (or reciprocal) lattice is 27Z? and the Brillouin zone is its fundamental

domain B = [—, 7%

(c) The d-dimensional tori with respect to the lattices Z¢ and 27Z% are denoted by T? :=

R?/Z¢ and (T*)? := R?/27Z, respectively.

Definition 2.2.2. For any k € C¢, the subspace H (W) C H*(W) consists of restrictions
to W of functions f € H; (R?) that satisfy for any v € Z? the Floquet-Bloch condition

(also known as automorphicity condition or cyclic condition)

flx+7)=e*7f(x) forae ze&W. (2.2)

Here H*® denotes the standard Sobolev space of order s. Note that when s = 0, the
above space coincides with L?(W) for any k. In this definition, the vector k is called the

quasimomentum °.

3The name comes from solid state physics [6].
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Due to periodicity, the operator L(z, D) preserves condition (2.2) and thus it defines
an operator L(k) in L?(W) with the domain H;"(W). In this model, L(k) is realized as
a k-independent differential expression L(x, D) acting on functions in W with boundary
conditions depending on k (which can be identified with sections of a linear bundle over
the torus T?). An alternative definition of L(k) is as the operator L(x, D + k) in L*(T%)
with the domain H™(T9). In the latter model, L(k) acts on the k-independent domain of

periodic functions on W as follows:

e R L(x,D)e* = Z ao(z)(D + k)°. (2.3)
laj<m

Due to ellipticity and embedding theorems (see [47, Theorem 2.1]), the operators L(k) =
L(x,D + k) : H™(T?%) — L*(T?) are Fredholm for £ € C%. In addition, note that the
condition (2.2) is invariant under translations of k by elements of the dual lattice onZe.
Moreover, the operator L(k) is unitarily equivalent to L(k + 27), for any v € Z. In
particular, when dealing with real values of k, it suffices to restrict & to the Brillouin zone
[—7, 7]¢ (or any its shifted copy).

Fourier transform is a major tool of studying linear constant coefficient PDEs, due to
their invariance with respect to all shifts. The periodicity of the operator L suggests that
it is natural to apply the Fourier transform with respect to the period group Z¢ to block-
diagonalize L. In fact, it is an analog of the Fourier transform on the group Z¢ of periods.
The group Fourier transform we have just mentioned is the so called Floquet transform
F (see e.g., [26,47,48]). Now let us consider a sufficiently fast decaying function f(z)

(to begin with, compactly supported functions) on R<,

Definition 2.2.3. The Floquet transform F

-~

fx) = f(k, )

13



maps a function f on RY into a function f defined on R? x R? in the following way:

f(k7$) = Z f(l’ + fy)e—ih(x-;-—y)‘

~EZD
From the above definition, one can see that f is Z3-periodic in the z-variable and

satisfies a cyclic condition with respect to k:

flk,z+7) = J(k,z), VyeZd

~ -~

flk+2my,2) = e f(k,x), VyeZ?

Thus, it suffices to consider the Floquet transform fas a function defined on [—, 71]¢ x

~

T. Usually, we will regard f as a function f(k, -) in k-variable in [—, 7]¢ with values in
the function space L2(T¢).

We list some well-known results of the Floquet transform (see e.g., [47,48]):
Lemma 2.2.4.

L The transform F is an isometry of L*(R?) onto

/ L(T) = L?(|—r, 7)%, L(T*))
7]

[,’d

and of H*(RY) into

H*(T%) = L*([—n, 7]%, H*(TY)).

\@

[_7r77r]d
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II. The inversion F ' is given by the formula

f(z) = (2m)~¢ / eik“f(k:,x) dk, z€R< (2.4)

[771-777'}(1

By using cyclic conditions of f, we obtain an alternative inversion formula

~

f(z) = (2m)~° / R f(kyx —~)dk, x €W +7. (2.5)

[_Trvﬂ']d

III. The action of any Z%-periodic elliptic operator L (not necessarily self-adjoint) in

L?(R%) under the Floquet transform F is given by

D D
FL(z,D)F ' = / L(z,D+ k)dk = / L(k) dk,
[77r77r]d [77r77r]d

where L(k) is defined in (2.3).

Equivalently,

-~

Lf(k) = L(k)f(k), Vf e HXR?).

IV. (A Paley-Wiener theorem for F.) Let ¢(k, x) be a function defined on R? x R? such
that for each k, it belongs to the Sobolev space H*(T?) for s € RT and satisfies the

cyclic condition in k-variable. Then

(a) Suppose the mapping k — ¢(k,-) is a C*-map from R? into the Hilbert space
H*(T?). Then ¢(k, z) is the Floquet transform of a function f € H*(R?) such

that for any compact set K in R* and any N > 0, the norm || f|| s (x4 <

Cn|y|™N. In particular, by Sobolev’s embedding theorem, if s > d /2, then the
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pointwise estimation holds:

If(z)| < Cn(1+|z))™N, VN >0.

(b) Suppose the mapping k — ¢(k, ) is an analytic map from R® into the Hilbert
space H*(T?). Then ¢(k, x) is the Floquet transform of a function f € H*(R?)

—Chl m

such that for any compact set K in R?, one has || f||gs (k1) < Ce
particular, by Sobolev’s embedding theorem, if s > d/2, then the pointwise

estimation holds:

[f(2)] < Cem@H.

From Lemma 2.2.4, one can deduce the well-known result (see [20,47, 66]) that the
spectrum of L is the union of all the spectra of L(k) when & runs over the Brillouin zone,
Le.

oL)= |J o(Lk). (2.6)

ke[—m,m]d
We now remind some notions that play a crucial role in studying periodic PDEs (see e.g.,

[47,48])).
Definition 2.2.5.

(a) A Bloch solution of the equation L(z, D)u = 0 is a solution of the form

u(w) = "o (),

where the function ¢ is 1-periodic in each variable z; for j = 1,...,d. The vector k
is the quasimomentum and z = ¢* = (e¥*1 ... e'*d) is theFloquet multiplier of the

solution. In our formulation, allowing quasimomenta & to be complex is essential.
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(b)

()

(d)

(e)

The (complex) Bloch variety B, of the operator L consists of all pairs (k, \) € CZ+?

such that ) is an eigenvalue of the operator L(k):

Bp = {(k,\) € C*' : X € o(L(k))}.

In another word, the pair (k, \) belongs to By, if and only if the equation Lu = Au in
R? has a non-zero Bloch solution u with a quasimomentum k. Also, the Bloch variety
By is also called the dispersion relation/curve, i.e., the graph of the multivalued

function A(k).

The (complex) Fermi surface F7, ) of the operator L at the energy level A € C con-
sists of all quasimomenta & € C? such that the equation L(k)u = Au has a nonzero
solution. Equivalently, £ € F ), means the existence of a nonzero periodic solution
u of the equation L(k)u = Au. In other words, Fermi surfaces are level sets of the

dispersion relation. By definitions, Fy, ) is 27Z?-periodic.

We denote by B, r and F7, 5 r the real Bloch variety B, N R4+ and the real Fermi

surface F , N RY, respectively.

Whenever A = 0, we will write F7, and F, g instead of F o and F7 o r, correspond-
ingly. This is convenient, since being at the spectral level A\, we could consider the
operator L — A instead of L and thus, F7, \ = Fr_» and F7 xg = F7_»g. In other

words, we will be able to assume, w.l.o.g. that A = 0.

Some important properties of Bloch variety and Fermi surface are stated in the next

proposition (see e.g., [47,48,50]).

Proposition 2.2.6.
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(a) The Fermi surface and the Bloch variety are the zero level sets of some entire (27 Z.°-

periodic in k) functions of finite orders on C* and C*! respectively.

(b) The Bloch variety is a 2nZ%-periodic, complex analytic subvariety of C**! of codi-

mension one.

(c) The real Fermi surface I}, ) either has zero measure in R? or coincides with the whole

R

(d) (k,\) € By if and only if (—k,\) € By-. In other words, Fi, = —Fj.5 and

Frr = —FrR.

The analytical and geometrical properties of dispersion relations encode significant
information about spectral features of the operator. For example, the absolute continuity
of the spectrum of a self-adjoint periodic elliptic operator (which is true for a large class
of periodic Schrodinger operators) can be reformulated as the absence of flat components
in its Bloch variety, which is also equivalent to a seemingly stronger fact that the Fermi
surface at each energy level has zero measure (due to Proposition 2.2.6).

If L is self-adjoint, then by (2.3), L(k) is self-adjoint in L*(T%) and has domain
H™(T?) for each k € R? Due to the ellipticity of L, each L(k) is bounded from be-
low and has compact resolvent. This forces each of the operators L(k), k € R? to have

discrete spectrum in R. Therefore, we can label its eigenvalues in non-decreasing order:

Mk) < Nalk) < ... 2.7)

Hence, we can single out continuous band functions \;(k) for each j € N [80]. The range
of the band function \; constitutes exactly the band [c;, 5;] of the spectrum of L in (2.8)
(e.g., see Figure 2.1). Hence, when L is self-adjoint, the spectrum of the operator L in

L?(R?) has a band-gap structure [20,47,66], i.e., it is the union of a sequence of closed
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bounded intervals (bands or stability zones of the operator L) [a;, 5;] CR(j =1,2,...):

o0

o(L) = | Jloy. 81, (2.8)

J=1

such that o; < 41, f; < Bj41 and lim;_, o; = oo. The bands can (and do) overlap
when d > 1, but they may leave open intervals in between, called spectral gaps. Thus, a
spectral gap is an interval of the form (3}, «j41) for some j € N for which ;11 > ;. A
finite spectral gap is of the form (/3;, oj11) for some j € N such that a;41 > ;, and the
semifinite spectral gap is the open interval (—oo, 1), which contains all real numbers

below the bottom of the spectrum of L.

>~V

Figure 2.1: An example of o(L).

From Proposition 2.2.6 and the proof of [47, Lemma 4.5.1] (see also [80]), the band

functions \(k) are piecewise analytic on C.
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Remark 2.2.7.

(a)

(b)

()

It is worthwhile to mention that in the first three statements of Lemma 2.2.4, one
can replace the Brillouin zone [—, w]¢ by any other fundamental domain of R¢ with
respect to the dual lattice 277Z¢ (due to 27Z%-periodicity in quasimomentum k). In
the next chapters, we will use this lemma with some fundamental domain of the form

[—7, 7|4 + ko, where kg is a fixed quasimomentum in R?.

It is sometimes useful to employ an alternative version of Floquet transform for which
the reader can find more details in Chapter 5. Analogs of the Plancherel and Paley-
Wiener theorem for these Floquet transforms are also obtained like we just see in

Lemma 2.2.4.

Our above discussion about Floquet-Bloch theory (e.g., Floquet transform and its
properties in Lemma 2.2.4) can be transferred without any major change to the case

of periodic elliptic operators on co-compact abelian coverings.
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3. GREEN’S FUNCTION ASYMPTOTICS NEAR THE INTERNAL EDGES OF

SPECTRA OF PERIODIC ELLIPTIC OPERATORS. SPECTRAL GAP INTERIOR”

3.1 Introduction

The behavior at infinity of the Green function of the Laplacian in R" outside and at the
boundary of its spectrum is well known. Analogous results below and at the lower
boundary of the spectrum have been established for bounded below periodic elliptic op-
erators of the second order in [9, 60] (see also [81] for the discrete version). Due to the
band-gap structure of the spectra of such periodic operators, the question arises whether
similar results can be obtained at or near the edges of spectral gaps. The corresponding
result at the internal edges of the spectrum was established in [52]. The main result of this
chapter, Theorem 3.2.5, is the description of such asymptotics near the spectral edge for
generic periodic elliptic operators of second-order with real coefficients in dimension d >
2, if the spectral edge is attained at a symmetry point of the Brillouin zone.

It is well known that outside of the spectrum the Green function decays
exponentially at infinity, with the rate of decay controlled by the distance to the
spectrum. See, e.g., Combes-Thomas estimates [10, 18]. However, comparison with the
formulas for the case of the Laplacian shows that an additional algebraically decaying
factor (depending on the dimension) is lost in this approach. Moreover, the exponential
decay in general is expected to be anisotropic, while the operator theory approach can
provide only isotropic estimates. The result of this chapter provides the exact principal

term of asymptotics, thus resolving these issues.

"Reprinted with permission from “Green’s function asymptotics near the internal edges of spectra
of periodic elliptic operators. Spectral gap interior.”, by Minh Kha, Peter Kuchment, and Andrew Raich, to
appear in Journal of Spectral Theory. Copyright cc by the European Mathematical Society.
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3.2 Assumptions, notation and the main result
Consider a linear second order elliptic operator in R? with periodic coefficients

L(z,D) = Y Di(an(z)D)) + V(x) = D*A(z)D + V(x). (3.1)

0
Here A = (akl)1<k,l<d, D = (Dl, e ,Dd), and Dk = —z@k = —Za— All coeffi-
<k,I< o
cients ayy, V are smooth real-valued functions on R%, periodic with respect to the integer
lattice Z¢ in RY, i.e., ay(x + n) = ay(x) and V(z +n) = V(x), Vo € R4 n € Z9. The

operator L is assumed to be uniformly elliptic, i.e., the matrix A is symmetric and

> an(x)&& > 0IEP, (32)
k=1
for some § > 0and any x € RY, £ = (£1,...,&;) € R% We recall from the previous chap-
ter that the operator L, with the Sobolev space 2(Rd) as the domain, is an unbounded,
self-adjoint operator in L?(R?). Moreover, the spectrum o (L) of the operator L has the

band-gap structure:
(0.9}

o(L) = [y, ). (3.3)

j=1
We consider the open interval (—oo, o ), which contains all real numbers below the bottom
of the spectrum of L, as an infinite spectral gap. However, we will be mostly interested in
finite spectral gaps.

In this chapter, we study Green’s function asymptotics for the operator L in a spectral
gap, near a spectral gap edge. More precisely, consider a finite spectral gap (5, «j11) for
some j € N and a value A\ € (f3;, «j41) which is close either to the spectral edge (3, or to
the spectral edge o 1. We would like to study the asymptotic behavior when |z —y| — oo

of the Green’s kernel G, (x,y) of the resolvent operator Ry , := (L — \)~'. The case of
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the spectral edges (i.e., A = ;41 or A = (3;) was studied for the similar purpose in [52].
All asymptotics here and also in [52] are deduced from an assumed “generic" spectral edge
behavior of the dispersion relation of the operator L, which we will briefly review below.

From now on, we fix L as a self-adjoint elliptic operator of the form (3.1), whose
band-gap structure is as (2.8). By adding a constant to the operator L if necessary, we can
assume that the spectral edge of interest is 0. It is also enough to suppose that the adjacent
spectral band is of the form [0, a] for some a > 0 since the case when the spectral edge 0
is the maximum of its adjacent spectral band is treated similarly.

Suppose there is no spectrum for small negative values of A and hence there is a spectral
gap below 0. Thus, there exists at least one band function \;(k) for some j € N such that
0 is the minimal value of this function on the Brillouin zone.

To establish our main result, we need to impose the following analytic assumption on

the dispersion curve A; as in [52]:

Assumption A

There exists ko € [—m, 7|? and a band function \;(k) such that:

A1 ) (ko) = 0.

A2 minkeRdyi#j ‘)\Z(k)’ > 0.

A3 ky is the only' (modulo 27 Z%) minimum of Aj.

A4 \;(k) is a Morse function near ky, i.e., its Hessian matrix H := Hess (\;)(ko) at

'Finitely many such points can be also easily handled.
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ko is positive definite. In particular, the Taylor expansion of \; at ky is:

A () = 5k — ko) H(k — o) + O([k — kof’).

It is known [44] that the conditions A1 and A2 ‘generically’ hold (i.e., they can be
achieved by small perturbation of coefficients of the operator) for Schrédinger operators.
Although this has not been proven, the conditions A3 and A4 are widely believed (both
in the mathematics and physics literature) to hold ‘generically’. In other words, it is con-
jectured that for a ‘generic’ selfadjoint second-order elliptic operator with periodic coef-
ficients on R? each of the spectral gap’s endpoints is a unique (modulo the dual lattice
2mZ%), nondegenerate extremum of a single band function \;(k) (see e.g., [50, Conjecture
5.1]). It is known that for a non-magnetic periodic Schrodinger operator, the bottom of the
spectrum always corresponds to a non-degenerate minimum of \; [43]. A similar state-
ment is correct for a wider class of ‘factorable’ operators [13,14]. The following condition
on ko will also be needed:

AS The quasimomentum kq is a high symmetry point of the Brillouin zone, i.c., all
components of ko must be either equal to 0 or to .

It is known [37] that the condition AS is not always satisfied and spectral edges could
occur deeply inside the Brillouin zone. However, as it is discussed in [37], in many prac-
tical cases (e.g., in the media close to homogeneous) this condition holds.

We would like to introduce a suitable fundamental domain with respect to the dual

lattice 27Z% to work with.

Definition 3.2.1. Consider the quasimomentum £k in Assumption A. Due to AS, ky =

(017, bom, ..., 04m), where 0; € {0,1} for j € {1,...,d}. We denote by O the fundamen-
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tal domain so that k is its center of symmetry, i.e.,

O —

J

[(6; — 1)m, (6; + 1)m].

d
=1

When kg = 0, O is just the Brillouin zone.
We now introduce notation that will be used throughout the chapter.

Notation 3.2.2. (a) Let z; € C, 2, € C%!, z3 € C? and r; be positive numbers for
i = 1,2,3. Then we denote by B(z1,71), D'(z2,r2) and D(z3,r3) the open balls
(or discs) centered at 21, z» and z3 whose radii are r;, 75 and r5 in C, C?~! and C¢

respectively.

(b) The real parts of a complex vector z, or of a complex matrix A are denoted by R(z)

and R(A) respectively.

(c) The standard notation O(|z — y|™") for a function f defined on R*¢ means there exist
constants C' > 0 and R > 0 such that | f(z,y)| < C|z — y|~™ whenever |z — y| > R.
Also, f(z,y) = o(J]r — y|™™) means that

lim |f(z.y)|/le — yI" = 0.

lo—y|—ro0

(d) We often use the notation A < B to mean that the quantity A is less or equal than
the quantity B up to some multiplicative constant factor, which does not affect the

arguments.

Note that L(z) is non-self-adjoint if z ¢ R?. Note that L(z) — L(0) is an operator of
lower order for each z € C¢. Therefore, for each z € C¢, the operator L(z) has discrete

spectrum and is therefore a closed operator with non-empty resolvent set (see pp.188-190
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in [4]). These operators have the same domain H?(T?) and for each ¢ € H?(T4), L(2)¢
is a L?(T¢)-valued analytic function of z, due to (4.2.14). Consequently, { L(z)}.ccq is an
analytic family of type A in the sense of Kato [39]>. Due to A1-A2, );(ko) is a simple
eigenvalue of L(kg). By using analytic perturbation theory for the family {L(z)},cca (see
e.g., [66, Theorem XII.8]), there is an open neighborhood V' of kj in C¢ and some ¢, > 0
such that

(P1) ); is analytic in a neighborhood of the closure of V.

(P2) \;(2) has algebraic multiplicity one, i.e., it is a simple eigenvalue of L(z) for any
zeV.

(P3) The only eigenvalue of L(z) contained in the closed disc B(0, €) is \;(z). More-
over, we may also assume that |\;(2)| < ¢, foreach z € V.

(P4) For each z € V, let ¢(2, z) be a nonzero Z?-periodic function of x such that it is
the unique (up to a constant factor) eigenfunction of L(z) with the eigenvalue \;(2), i.e.,
L(z)p(z,-) = \j(2)¢(z, -). We will also use sometimes the notation ¢, for the eigenfunc-
tion ¢(z, -).

By elliptic regularity, ¢(z,x) is smooth in z. On a neighborhood of V, ¢(z,-) is a
H?(T%)-valued holomorphic function.

(P5) By condition A4 and the continuity of Hess (\;),> we can assume that for all
z€eV,

2R (Hess (A\;)(2)) > min o (Hess (A\;)(ko))axa-

(P6) V' is invariant under complex conjugation. Furthermore, the smooth function

F(Z) = (¢(zﬁ ')7 QS(za '))LQ(Td) (3.4)

21t is also an analytic family in the Banach space of bounded linear operators acting from H?(T¢) to
L?(T%).
3The Hessian matrix of A;.
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is non-zero on V', due to analyticity of the mapping z — ¢(z, -) and the inequality F'(ky) =

(ko) 22 ey > O-
The following lemma will be useful when dealing with operators having real and

smooth coefficients:

Lemma 3.2.3. (i) For kin R% and i € N,
Ai(k) = Ai(—k). (3.5)
In other words, each band \; of L is an even function on R%.

(ii) If ko € X, we have \;j(k + ko) = \i(—=k + ko) for all k in R? and i € N.

Proof. Let ¢, be an eigenfunction of L(k) corresponding to \;(k). This means that ¢y is

a periodic solution to the equation
L(x,0 +ik)pr(x) = \j(k)or(z). (3.6)

Taking the complex conjugate of (3.6), we get

L(w,0 — ik)gn(x) = A (k)dr ().

Therefore, ¢y, is an eigenfunction of L(—k) with eigenvalue \;(k). This implies the iden-
tity (3.5).
(ll) By (1), /\z(k + ]{70) = )\z(_k — k’o) = /\Z(—]C + ]{30) since 2]{70 S 27TZd. L]

Corollary 3.2.4. If 3 € R such that kg + i3 € V then \j(ko +i3) € R.

Proof. Indeed, the statement (ii) of Lemma 3.2.3 implies that the Taylor series of A(k) at

ko has only even degree terms and real coefficients. [
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Corollary 3.2.4 allows us to define near § = 0 the real analytic function E(8) :=
A;(ko +iB) near 0. Since its Hessian at 0 is negative-definite (by A4), there exists a con-
nected and bounded neighborhood Vj of 0 in R such that ko + iV C V and Hess (E)(f)
is negative-definite whenever 3 belongs to V. Thus, E is strictly concave on Vj and
supgey, £(8) = £(0) = 0, VE(B) = 0iff 8 = 0. Note that at the bottom of the spectrum
(i.e., j = 1), we could take V; as the whole Euclidean space R¢.

By the Morse lemma and the fact that 0 is a nondegenerate critical point of F, there
is a smooth change of coordinates ® : Uy — R so that 0 € Uy CC Vj, U, is connected,
®(0) = 0 and E(® " !(a)) = —|al]*,Va € ®(Uy). Set K, := {8 € Uy : E(B) > \}
and 'y := {f € Uy : E(B) = A} for each A\ € R. Now, we consider A to be in the
set {—|al? : a € ®(Uy),a # 0}. Then K, is a strictly convex d-dimensional compact
body in R?, and I'y = 0K is a compact hypersurface in R?. The compactness of K,
follows from the equation —|®(5)|*> = E(8) > A which yields that 5] = | 1(®(B))| <
max{|® !(a)| : a € ®(Up), |a]* < —A}. Additionally, limy_,o- maxsex, |5| = 0.

Let K, be the Gauss-Kronecker curvature of I'). Since the Hessian of E is negative-
definite on Iy, ICy is nowhere-zero. For the value of \ described in the previous paragraph
and each s € S%71, there is a unique vector 3, € I'y such that the value of the Gauss map

of the hypersurface I at this point coincides with s, i.e.

VE(B,) = —|VE(B.)]s. (3.7)

This is due to the fact that the Gauss map of a compact, connected oriented hypersurface
in R%, whose Gauss-Kronecker curvature is nowhere zero, is a diffeomorphism onto the

sphere S 1 (see e.g., [77, Theorem 5, p.104] or [27, Corollary 3.1]). Thus, £, depends
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smoothly on s. We also see that

lim max = 0.
A0 se§d—1 18

Note that 5, could be defined equivalently by using the support functional h of the
strictly convex set /). Recall that for each direction s € Se-1

h(s) = max(s,§).

§EK

Then f3; is the unique point in Iy, such that (s, 5s) = h(s).
By letting || close enough to 0, we can make sure that (—\)/? = |a| for some a €
®(Up). Then

{ko +itpBs, (t,s) € [0,1] x S© '} C V. (3.8)

We can now state the main result of the chapter.

Theorem 3.2.5. Suppose conditions AI-AS are satisfied. For A < 0 sufficiently close to 0
(depending on the dispersion branch \; and the operator L), the Green’s function G of

L at \ admits the following asymptotics as |x — y| — oo:

elr—)liko—0s) [VE(B,)| =" Pro+i8, (T) Pro—ig, (Y)
27|z — y])@=D/2 qet (—P, Hess (E)(ﬁs)Ps)l/2 (Pro+iBes Pho—iB. ) L2(Td)

GA(‘Tu y) =

+ e(y_x)'ﬁsr(x, y)‘

(3.9)

, P, is the projection from R? onto the tangent space of the unit

Here s = (z —y)/|lx —y
sphere S¥~1 at the point s, and when |x — y| is large enough, the remainder term r satisfies

i7(z,y)| < Clx — y|~%2 for some constant C > 0 (independent of s).
This result achieves our stated goal of showing the precise (anisotropic) rates of the
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exponential decay of the Green’s function and capturing the additional algebraic decay

factor.
3.3 Proof of the main theorem 3.2.5 and some remarks

Theorem 3.2.5 is a direct consequence of its local (with respect to the direction of

(x — y)) version:

Theorem 3.3.1. Under the hypotheses of Theorem 3.2.5 and when \ =~ (0, for each w €
S4-1, there are a neighborhood V,, in S4~! containing w and a smooth function e(s) =
(€s2,---r€sq) @ Vi — (T:ST14=1 which e(s) is an orthonormal basis of the tangent

space T,S*~! for each unit vector s € V,,, such that following asymptotics

e(@—v)(iko—Bs) VE(B,)]@3)
G (5.0) = ( VE(,)

1/2
(27T|x - y|)(d_1)/2 det (_eS,P - Hess (E> (BS)GS,Q)2§P,qu> (3.10)
Dro+i, (L) Pro—ip, (Y)

X + e Bep (g, y),
(Pro+iBs> Pho—iBs ) L2(T4)

hold for all (x,y) such that s = (x — y)/|x — y| € V.. Furthermore, there is a positive

constant C(w) depending on w such that |r(z,y)| < C(w)|z — y|~%2
Proof of Theorem 3.2.5.

Proof. Observe that for any orthonormal basis {e;; }a<;<4 of the tangent space T.S41,

det (—P; Hess (E)(8s)Ps) = det (—es, - Hess (E)(Bs)es q)2<pg<d-

Now, using of a finite cover of the unit sphere by neighborhoods V,,; in Theorem 3.3.1,

one obtains Theorem 3.2.5. O]

Remark 3.3.2.
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e The asymptotics (3.9) (or (3.10)) resemble the formula (1.1) in [60, Theorem 1.1]
when A is below the bottom of the spectrum of the operator. Moreover, as in [61,
Theorem 1.1], by using the Gauss-Kronecker curvature /Cy, the main result (3.9)
could be restated as follows:
e(@=y)(iko—Bs) 1 Pro-+i8, (%) Pro—is, (Y)

27|z — y )12 [V E(Bs) A (Bs) /2 (Sroipe s Pro—is. ) r2(ra)

+ W DB O |z — y|~Y?).

Gi(z,y) =

e Although (3.9) is an anisotropic formula, it is not hard to obtain from (3.9) an
isotropic upper estimate for the Green’s function GG, based on the distance from \
to the spectrum of the operator L.,* e.g., there are some positive constants C;, C
(depending only on L and \;) and C5 (which may depend on \) such that whenever

|z — y| > Cj, the following inequality holds:

o~ CalA2[z—y|

(d-3)/az__
|Gx(7,y)| < Ci[A| |z — y[[@D/2

e [f the band edge occurs at finitely many points, rather than a single kg, one just needs

to combine the asymptotics coming from all these isolated minima.

Now we outline the proof of Theorem 3.3.1. In Section 3.5, we use the tools of Floquet-
Bloch theory in Chapter 2 to reduce the problem to that of finding the asymptotics of a
scalar integral. The purpose of Section 3.4 is to prepare for Section 3.5, by shifting an
integral from the fundamental domain © along some purely imaginary directions in C.
This reduces finding the asymptotics of the Green’s function G to an auxiliary Green’s
function G  via the formula (3.14). Next, we single out a principal term G, of the Green’s

function G » and then represent this kernel G, as a scalar integral in (3.19). We also prove

“4Recall that the spectral edge is assumed to be zero.
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that the error kernel G, — G decays rapidly (see Theorem 3.5.2). Then in (3.22), our
reduced Green’s function GG can be expressed in terms of the two integrals / and .J. Here
the integral [ is mainly responsible for the asymptotics of G and the integral J decays fast
enough to be included in the remainder term r(x, y) in the asymptotics (3.9). The first part
of Section 3.6 is devoted to achieving the asymptotics of the main integral / (see Theorem
3.6.2) by adapting the method similar to the one used in the discrete case [81], while the
second part of Section 3.6 provides an estimate of .J (see Proposition 3.6.6). In order to
not overload the main text with technicalities, the proofs of some auxiliary statements are

postponed till Sections 3.7-3.9.
3.4 On local geometry of the resolvent set

The following proposition shows that for any s € S¢1, ky + if3, is the only complex
quasimomentum having the form of k + it5; where k € O,t € [0,1] such that X is in
the spectrum of the corresponding fiber operator L(k + it/3,). In other words, by moving
from £ € O in the direction ¢f3;, the first time we hit the Fermi surface 7, ) (i.e., the
spectrum of L(k) meets \) is at the value of the quasimomentum k = ko + i/3;. This step
is crucial for setting up the scalar integral in the next section, which is solely responsible

for the main term asymptotics of our Green’s function.

Proposition 3.4.1. If |\| is small enough (depending on the dispersion branch \; and L),
then \ € p(L(k + itBs)) if and only if (k,t) # (ko, 1).

The proof of this proposition is presented in Subsection 3.9.3.
3.5 A Floquet reduction of the problem

We will use the Floquet transform (see Chapter 2) to reduce our problem to finding
asymptotics of a scalar integral expression, which is close to the one arising when dealing

with the Green’s function of the Laplacian at a small negative level A. As in [52], the idea
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is to show that only the branch of the dispersion relation \; appearing in the Assumption

A dominates the asymptotics.
3.5.1 The Floquet reduction

The Green’s function G, of L at \ is the Schwartz kernel of the resolvent operator
Ry = (L — M\)7% Fix a A < 0 such that the statement of Proposition 3.4.1 holds. For any

s € S¥!andt € [0, 1], we consider the following operator with real coefficients on R%:
Ly =P o Le hm, (3.11)

For simplicity, we write L, := L; ; and note that Ly, = L. Due to self-adjointness of
L, the adjoint of L; 4 is

Li, =L s (3.12)

By definition, L; ((k) = L(k + it3,) for any k in C? and therefore, (2.6) yields

o(Lis) = | o(L(k +itB,)) 2 {Ni(k + itBs) bieo. (3.13)
keO

The Schwartz kernel G of the resolvent operator Ry := (Ls — \) 7! is
Gaon(z,y) = 52\ (z,y)e PV = VG, (1, y). (3.14)

Thus, instead of finding asymptotics of GG, we can focus on the asymptotics of G ».
By (3.13) and Proposition 3.4.1, \ is not in the spectrum of L, ; for any s € S*! and

t € [0,1). Let us consider

Rt,s)\f = (Lt,s - )‘)_lfa f € L?omp(Rd)7
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where Lgomp stands for compactly supported functions in L?.

Applying Lemma 2.2.4, we have
Rt,s,)\f(k) = (Lt,S(k> - A)il A(k>7 <t7 k) S {07 1) X O
We consider the sesquilinear form

(Resaf, @) = (27T)—d/

(@]

where p € L2, (R?).

comp

In the next lemma (see Subsection 3.9.3), we show the weak convergence of R; 5 5 in

Lgomp as t ' 1 and introduce the limit operator R,y = lim R; ). The limit operator
t—1—

R, » is central in our study of the asymptotics of the Green’s function.

Lemma 3.5.1. Let d > 2. Under Assumption A, the following equality holds:

lim (Reoaf. o) = (2m) [

o

(Lotk) = 27 F k), B(R) ) d. (3.15)

The integral in the right hand side of (3.15) is absolutely convergent for f, pin L2, (R?).

comp

Thus, the Green’s function G y is the integral kernel of the operator R, » defined as follows

— ~

Ropf(k) = (Ls(k) — N7 f(R). (3.16)

3.5.2 Singling out the principal term in 2, ,

By (3.16), the Green’s function (i, , is the integral kernel of the operator R; \ with the

domain L2, (R?). The inversion formula (2.4) gives

Roxf(x) = (2m)7¢ /O e* T (Ly(k) — N fk,z)dk, z € R™
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The purpose of this part is to single out the part of the above integral that is responsible
for the leading term of the Green’s function asymptotics.

To find the Schwartz kernel of R, ,, it suffices to consider functions f € C°(R?).
Our first step is to localize the integral around the point ky. Let us consider a connected
neighborhood V' of kg on which there exist nonzero Z?-periodic (in ) functions ¢, (), z €
V satisfying 1) L(2)¢. = Aj(2)¢. and 2) each ¢, spans the eigenspace corresponding to
the eigenvalue \;(z) of the operator L(z). According to (P3), \;(V) C B(0,¢) and
0B(0,¢y) € p(L(z)) when z € V. For such z, let P(z) be the Riesz projection of L(z)

that projects L?(T?) onto the eigenspace spanned by ¢., i.e.,

1

_ -1
P(z) = i (L(z) — )" du.
Taking the adjoint, we get
* 1 — —1 —
P(z2) = —o— (L(Z) =) dp = P(2),
270 Sl =eo

which is the Riesz projection from L?(T¢) onto the eigenspace spanned by ¢-. Recall that
due to (3.8), by choosing |A| small enough, there exists 7y > 0 (independent of s) such that
k+iB, € Vfork € D(ko,70) "R We denote P,(k) := P(k+1f3,) for such real k. Then
P, (k) is the projector onto the eigenspace spanned by ¢(k+if,) and Py (k)* = P(k—i0s).
Additionally, due to (P6),

(9, 0(k — iﬁs))L?(Td)
(Qb(/{? + iﬁs)v ¢<k - iﬁs))LQ(Td)

Py(k)g = ¢(k +1iB,), Vg e L*(T?). (3.17)

Let 7 be a cut-off smooth function on O such that supp(n) € D(ko,79) and n = 1
around k.

We decompose f = nf+ (1 —n)f. When k # ko, the operator L¢(k)— \ is invertible by
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Proposition 3.4.1. Hence, the following function is well-defined and smooth with respect

to (k,7) on R% x R%:

y(ky @) = (Lo(k) = N) 7' (1 = (k) f(k,2).

Using Lemma 2.2.4, smoothness of @, implies that u, has rapid decay in 2. Now we want

to solve

o~

(Ls(k) = Nu(k) = n(k)f (k). (3.18)

Let Qs(k) = I — Ps(k) and we denote the ranges of projectors Ps(k), Q4(k) by R(Ps(k)),
R(Qs(k)) respectively. We are interested in decomposing the solution % into a sum of the
form @ + @3 where @ = P,(k)@; and @ = Q,(k)@. Let f; = Py(k)n(k)f and fo =
Qs(k:)n(k)j/"\. Observe that since the Riesz projection P;(k) commutes with the operator
L(k) and R(Ps(k)) is invariant under the action of L(k), we have Qs(k)Ls(k)Ps(k) =
Py(k)Ls(k)Qs(k) = 0 and Qs(k)Ls(k)Qs(k) = Ls(k)Qs(k). Thus, the problem of solv-

ing (3.18) can be reduced to the following block-matrix structure form

(LK) = D P.(K) 0 0 i

0 (Lo(k) = NQu(k) | \ @ 2
When £k is close to kg,
B(0,e0) No(Ls(k)ir@.m) = B(0,€0) No(L(k +18,)) \ {A;(k + i)} = 0.

Since A = \;(ko +ifs) € B(0,€), A must belong to p(L(k)|r,.k))). Hence, the
operator function (k) = (Ls(k) — /\)*1625(15)]/”\2(16) is well-defined and smooth in k and

hence by Lemma 2.2.4 again, uy has rapid decay when |x| — oo. More precisely, we have
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the following claim:

Theorem 3.5.2. For each s € S*L, let K,(x,1) be the Schwartz kernel of the operator T,

acting on L*(R?) as follows:

T - F ( /O 1) dk) b3

where F is the Floquet transform (see Definition 2.2.3) and

Ti(k) = (1= n(k))(Ls(k) = N)" + (k) (Ls (k) = Mlr@.mn) " Qs(k)-

Then the kernel K (x,y) is continuous away from the diagonal and furthermore, as |x —

y| — oo, we have

sup |Ky(z,y)| = Ol —y[™), VN >0.

s€Sd—1

The proof of this claim shall be provided in Section 3.7.
The u, term contributes the leading asymptotics for the Schwartz kernel G 5. There-
fore, we only need to solve the equation (L,(k) — \) Py (k)uy = 71 on the one-dimensional

range of Ps(k).

Applying (3.17), we can rewrite

= k) bk = iB)) 2w
W0 = T i), 60k — iB2)) e

o(k +1fs),

so that equation becomes

(@0l — Bt +i8)  n(R)(T, 8k — i8,)) paqeay bl + i6)
Lelb) = N T i), ok — By (G0k + 1B, 0k — 1B grrey
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So,

(A (k +88,) = N (@, 9(k — iB,)) r2wayd(k +i6,) _ n(k)(F, $(k — iBy)) 2oy ¢(/€ + zﬂs)
(¢(k + i55)7 ¢(k - Z‘ﬁs))LQ(’]l'd) (¢(k + Zﬁs) ¢( - Zﬂs))

In addition to the equation u; = P(k)uy, w3 must also satisfy

(Nj(k +B5) = M@, ¢k — i) away = (k) (F, Sk — i) 2(pay.

Thus, we define

n(k)p(k +iBs, ) (fr bk — iBy)) L2 (ra)

ﬁ}(k’,) = (¢<k+2ﬁs) ( Zﬁs)) ( (k—FZﬂs) )‘)

By the inverse Floquet transform (2.4),

_ (974 [ ik n(k)o(k + B, ) (f, d(k — iBs)) 2 (T4
(e = @ | S e o 50 )

dk,

for any x € RY.
3.5.3 A reduced Green’s function.

We are now ready for setting up a reduced Green’s function GGy, whose asymptotic
behavior reflects exactly the leading term of the asymptotics of the Green’s function G ».
We introduce Go(z,y) (roughly speaking) as the Schwartz kernel of the restriction of
the operator R, , onto the one-dimensional range of P, (which is the direct integral of

idempotents P;(k)) as follows:

w@) = [ Golen) iy, 7€ R

where fisin L7, (R?).
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We recall from (3.4) that F'(k +1/3,) is the inner product (¢p(k +if3s), ¢(k —1i3s)) r2(1a)-

As in [52], we notice that

. ez G Bag) bk + B )
w () = (2m) /O/ T ) G

i k—1 ER k . ER
=0 o) [ 3 sty et GEED R ayar

ez F(k +iBs)(Aj(k +1iBs) — A)
= (2m)~¢ /O (k) >

~EZ

dy dk

.AML,“”Q Fk +iB,) (O (k +iBs) — \)

dy dk

_ —d ih(e—y) Pk — 185, y)p(k + i85, )
S o = Joes O R B

— (27T)7d /Rd f(y) (/On(k)eik-(xy) ¢<k5 — i/Bsa y)¢(k + iﬂs, l‘) ) d/{}) dy

Flk+ i) Ok + 1B.) — A

erefore, our reduced Green’s function is
Theref duced G ’s funct

Go(z,y) = (27 fa/' ket (@=v) il R 22 dk. (3.19
olms ) = ) e R G i) (0 k + i) — V) :

3.6 Asymptotics of the Green’s function
Let (e, ..., eq) be the standard orthonormal basis in R%. Fixing w € S¢°!, we would

like to show that the asymptotics (3.10) will hold for all (x, y) such that x — y belongs to
a conic neighborhood containing w. Without loss of generality, suppose that w # e;.
Now let R, be the rotation in R such that Rs(s) = e; and R, leaves the orthogonal
complement of the subspace spanned by {s,e;} invariant. We define es; = R '(e;),
forall j = 2,...,d. Then, (s,e5,) = (e1,€p) = 0 and (s, €54) = (€p,€q) = Opq for

p,q > 1. In other words,
{s,es2,...,€es4} is an orthonormal basis of R¢.
Then around w, we pick a compact coordinate patch V,,, so that the R*?~Y_valued
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function e(s) = (es,)2<i<q4 is smooth in a neighborhood of V..

We use the same notation for R, and its C-linear extension to C¢.
3.6.1 The asymptotics of the leading term of the Green’s function

We introduce the function p(k, z,y) on D(kg, ) x R% x R? as follows:

gb(k + iﬁs; x)gb(k — iﬁsa y)
F(k+ i) '

p(k,z,y) =

where F is defined in (3.4) and D(kq, ro) is described in Subsection 3.5.2.

Due to Proposition 3.9.6, the function p is in C°°(D(kg, r) x R x R%). For each (z,y),

the Taylor expansion around kq of p(k) gives

P(kfa%y) :p(k())xvy)+p/(kax7y)(k_k0)ﬂ (320)

where o/ € C®(D(ky,r9) x R? x R? C%). Note that for z € V, ¢(z,z) is Z%-periodic
in 2 and thus, p and p’ are Z¢ x Z%-periodic in (z,y). Since our integrals are taken with
respect to k, it is safe to write p(kg) instead of p(ko, z, y). We often omit the variables x, y
in p if no confusion can arise.

Let pu(k) := n(k + ko) be a cut-off function supported near 0, where 7 is introduced in

Subsection 3.5.2. We define

, k — ko)
I:= 27 d/ g!k=ko)-(z=y) il 0 dk,
( ) o) )‘j (k + ’lﬁs) - A

(3.21)
J o= (QW)—d/ ei(k—ko)‘(x—y):u(k — ko) (k - ko)p'(k, . y) dk.
o) )\J(kf + Zﬁs) — A
Hence, we can represent the reduced Green’s function as
Go(z,y) = e* @9 (p(ko) T + J). (3.22)
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The rest of this subsection is devoted to computing the asymptotics of the main integral
I, which gives the leading term in asymptotic expansion of the reduced Green’s function
GO($7y) as |IL' - y| — 00.

By making the change of variables £ = (£;,&') = Rs(k — ko), we have

_ d ile—ylé1 (&1, ¢)
B (27T> /Rde ’ (/\]ORs_l)(g+Rs(k0+Zﬁs)) - A

d¢. (3.23)
We introduce the following function defined on some neighborhood of 0 in C%:
Wi(2) = (X o RN (—iz + Rs(ko +i85)) — .

It is holomorphic near O (on iR4(V')) and W(0) = 0. Then W (iz) is the analytic contin-
uation to the domain R (V) of the denominator of the integrand in (3.23). For a complex
vector z = (z1,...,2q) € C4, we write 2 = (21, 2), where 2/ = (23, ..., 24).

The following proposition provides a factorization of W that is crucial for computing

the asymptotics of the integral .

Proposition 3.6.1. There exist v > 0 and € > 0 (independent of s € V,,), such that W has

the decomposition
Wi(2) = (21 — A4(2))Bs(2), Vz=(2,2") € B(0,r) x D'(0,¢). (3.24)

Here the functions As, By are holomorphic in D' (0, €) and B(0,1) x D'(0, €) respectively
such that A;(0) = 0 and Bs is non-vanishing on B(0,r) x D'(0,€). Also, these functions

and their derivatives depend continuously on s. Moreover for z' € D'(0, ¢),

A () = %z’ Q.7+ O(P), (3.25)

5See Notation 3.2.2 in Section 3.2 for the definitions of B(0, ) and D’(0, €).
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where O(|2'|?) is uniform in s when 2’ — 0 and Q is the positive definite (d—1) x (d—1)
matrix

Qs = _; <€5,p - Hess (E) (5s)es7q> (326)

IVE(S:)|

2<pg<d

Proof. By Cauchy-Riemann equations for W, and (3.7),

(0) = =iV (ko+iBs) R, 'er = —=VE(B,)-s = [VE(B,)| > 0. (3.27)

Thus 0 is a simple zero of W,. Due to smoothness in s of W, and 5, we have

¢ := min oW (0) > min |[VE(S)| > 0. (3.28)

SEV, 821 seSd—1

Applying the Weierstrass preparation theorem (see Theorem 3.9.2), we obtain the decom-
position (3.24) on a neighborhood of 0.

To show that this neighborhood can be chosen such that it does not depend on s, we
have to chase down how the neighborhood is constructed in the proof of [38, Theorem
7.5.1] (only the first three lines of the proof there matter) and then show that all steps in
this construction can be done independently of s.

In the first step of the construction, we need r > 0 such that W,(z1,0") # 0 when

s

0 < |21| < 2r. The mapping (s, z)

(2) = =iV (=R, 2+ ko +1if3,) - s is jointly

821
continuous on V,, X R¢(V') and the value of this mapping at z = 0 is greater or equal
oW . .
than ¢ due to (3.27) and (3.28). Therefore, 8—(2) > ¢/2 in some open neighborhood
21

N
X, x Y, of (5,0) in V,, x C% By compactness, V,, C U X, for a finite collection of

k=1
points si, ..., sy on the sphere. Let Y be the intersection of all Y, and let » > 0 be such

that D(0,2r) C Y. Note that r is independent of s. We claim r has the desired property.

oW .
Observe that for |z| < 2r, we have 5 ()| > g for any s in V. For a proof by
<1

42



contradiction, suppose that there is some z; such that 0 < |z;| < 2r and Wy(z1,0) =0 =

W,(0,0") for some s. Applying Rolle’s theorem to the function ¢ € [0, 1] — Wi (tz1,0")

oW
yields a2

|tz1| < |z1] < 2r (contradiction!).

(tz1,0') = 0 for some t € (0,1). Consequently, (tz1,0") ¢ D(0,2r) while

For the second step of the construction, we want some § > 0 (independent of s) such
that W(z) # 0 when |z1| = r,|2/| < 6. This can be done in a similar manner. Let
S(0,7) C C be the circle with radius . Now we consider the smooth mapping W :
(8,21,2") ¥ Wi(21,2") where z; € S(0,r). Its value at each point (s, z1,0’) is equal to
W(z1,0"), which is non-zero due to the choice of r in the first step of the construction.
Thus, it is also non-zero in some open neighborhood Xs,zl X ffs,zl X Zs,zl of (s,21,0)
in V, x S(0,r) x C¥1. We select points s1,...,sy € V,and v1,...,vy € S(0,7) so
that the union of all X, ., x Y ..,1 < k < M covers the compact set V,, x S(0,7).
Next we choose § > 0 so that (0, 4) is contained in the intersection of these Z,, ., .
Note that § is independent of s and also z;. Of course Wy(z1,2") # 0 for all s and
z € {|lz1| = r,|2| < 6}. According to [38], the decomposition (3.24) holds in the
polydisc {|z1| < r,|2/| < §}.

Also, from the proof of [38, Theorem 7.5.1], the function A; is defined via the follow-

ing formula

2 — A(2) = exp (i /MT (%:”Z’) Wi, zf)) log (21 — w) dw) . (329)

271

The mappings (s, z') — As(%') and (s, z) — Bs(z) are jointly continuous due to (3.24)

and (3.29). There exists 0 < ¢ < ¢ such that m%x|As(z')| < r whenever |Z/| < e.
s€Viw

We have the identity (3.24) on B(0,r) x D’(0,¢). Now, we show that this is indeed

the neighborhood that has the desired properties. Since |2/| < e implies that the points
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z = (As(2'),2") € B(0,r) x D'(0,€), we can evaluate (3.24) at these points to obtain

W, (As(2),2) =0, 2 € D'(0,¢). (3.30)

By differentiating (3.30), we have

oW,
0z,

oW
821

0A;
0z,

(As(2"),2") + (2')=0, forp=2,...,d. (3.31)

(As(2), 2)

s
82’1

whenever |2/| < e. Consequently, all first-order derivatives of A, are jointly continuous

Observe that from the above construction, the term (As(2"), 2") is always non-zero

in (s, 2). Similarly, we deduce by induction on n € N¢ that all derivatives of the function

A, depend continuously on s since after taking differentiation of the equation (3.30) up to

o : 0
order n, the n-order derivative term always goes with the nonzero term 5 2 (Ay(2), 7))
21
and the remaining terms in the sum are just lower order derivatives. Hence the same
conclusion holds for all derivatives of B, by differentiating (3.24).

In particular, set 2z’ = 0 in (3.31) to obtain

oW, oW, 0A;
= fi =2,...,d. 32
50+ GO0 =0, forp=2,..d (332)

Note that for p > 1,

oW,

é%(@:—ﬁMA4R§z+%+um~Rj%. (3.33)
P

By substituting z = 0,

oW

a@@:—N&%+ngj%

(3.34)
= =VE(f) - esp = =[VE(S;)|s - 55 = 0.
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(3.27), (3.32) and (3.34) imply

A,
0z,

(0)=0, forp=2,...,d. (3.35)

Taking a partial derivative with respect to z, (¢ > 1) of (3.33) at z = 0, we see that

) d
IWe (0 = S V(2 (hy 1i6.)) - Ry (RS g

02,0z, — 0z
3.36
o mzn:l 5zm82n (ko i) (€ (o) 0
= €54 - Hess (E)(Bs)es -
A second differentiation of (3.31) at z = (A,(2'), 2’) gives
W, oW, . 0*A,

B ((’3zp02q (2) + 0% (2)82p82q<2 )> (3.37)
W, (2 0A, (') + W, B 0A, (') + W, (Z)ﬁAs (Z,)aAS () '
0210z, " 0z, Dz,0z1° ~ 0z, 028 V7 0z, 0z, '

At z = 0, the sum in the second bracket of (3.37) is zero due to (3.35). Thus,
i) oW, \ ' W,
5 = — 5 5 2 < <d). 3.38
a0 == (520) 0 @<pa<a. 63
Together with (3.27) and (3.36), the above equality becomes
%A, 1
m(()) = —m (es,p - Hess (E) (53)637(]) 2<pig<d = Qs' (339)

Consequently, by (3.35) and (3.39), the Taylor expansion of A; at 0 implies (3.25).

Finally, the remainder term O(|2’|?) in the Taylor expansion (3.25), denoted by R 3(2'),
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can be estimated as follows:

A
. / < /3 S /
[Boa( S 11| max |5 (t2)
0“A
< /13 S )
1 lal=3yi<] | D2 (y)’

Due to the continuity of third-order derivatives of A on V,, x D'(0, €),

R.s(2
i max s (3.40)
12|50 eV |2/]3

This proves the last claim of this proposition. 0

We can now let the size of the support of » (€ O) be small enough such that the
decomposition (3.24) in Proposition 3.6.1 holds on the support of y, i.e., supp(p) €

B(0,7) x D'(0, €). Therefore, from (3.23), we can represent the integral I as follows:

_ —d ile—yle, P\S1,S7) (51?5) el y\ElluS 5175)
1= [ e e daag = / e e e
(3.41)

where [i,(£) = p(€)(Bs(i€))~!. We extend fi, to a smooth compactly supported function
on R by setting ji, = 0 outside its support. Since all derivatives of /i, depend continuously
on s, they are uniformly bounded in s. Let v4(¢, £’) be the Fourier transform in the variable

& of the function fi,(—&;, ¢ for each & € R, e,

+oo
vilt, &) = / e (61, €7) der.

[e.e]

By applying the Lebesgue Dominated Convergence Theorem, the function v, is continuous
in (s,t,&) onV,xR% Forsuch &, vy(, &) is a Schwartz function in t on R. Due to Lemma

3.9.1,forany N > 0, v5(t, &) = O(|t|~") uniformly in s and £’ as t — oo. We also choose
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e small enough such that whenever |{'| < e, the absolute value of the remainder term
O(|€'|*) in (3.25) is bounded from above by 1&'- Q,£’. Note that e is still independent of s,
because the term O(|£’]3)/|€’|? is uniformly bounded by the quantity in (3.40). Meanwhile,
each positive definite matrix (), dominates the positive matrix ., I(4—1)x(a—1), where ~y,, >
0 is the smallest among all the eigenvalues of all matrices ()5 (s € V,,). This implies that
if 0 < [¢']| < e, then

R(its — A,(0€)) = —R(AL(E)) = ~R(—5€ - Qu€ + O(I€")

1 . 1
= 2€-QuE = RO(EP) >l > 0.

We thus can obtain the following integral representation for a factor in the integrand of /

(see (3.41)):
1 O e AL
e~ e (6.€) €Rx (D0.0\ (0D (4
Therefore,
1 0 o [T
I'= 553 / / e A / et uDS i (&, €') d& dw dg’
( 7T) |€'<e J —o0 —r 343
1 lz—y| (3.43)
= (ZtHle—yDAGE) (¢ ') dt de’
e vs(t, .
(27r)d /|’|<e /oo
Now our remaining task is to prove the following asymptotics of the integral I:
Theorem 3.6.2. We have
I— VEG)TO e —yl 0% ey, Gad)
(2m) (4172 det (—ey,, - Hess (E)(By)esq)sty gea

Here the term O(|z — y|=%?) is uniform in s € V,, as |v — y| — oo.
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The next lemma reduces the leading term of the right hand side of (3.44) to a scalar

integral as follows

Lemma 3.6.3.

1 20\ d+1)/2|1 v B (d—3)/2
/ / exp (——JI/ ' st/) Vs(ty 0) dt dZE/ = ( 7T) |v (68)| e .
ri-1 JR 2 det (—es,p - Hess (E)(Bs)es )5, g<a

Proof. By applying the Fourier inversion formula to v, we get

% [ a(8,0)dt = fu(0) = (BL(0) " = (

Wy 1
0 o~

8_z1( )= VEG) (3.45)

Here (3.27) is used in the last equality. Thus,

1
/ / exp (——x' : st’> v,(t,0) dt da’
Rd-1 JR 2

: // ) v, 0) (%)(dm/ (t,0)dt
- ex ——u V(T U =TT s\,
(det Q)" Jg Jra—s P 2 (det Q)12 Jr
(QW)(dH)/Q (27T)(d+1)/2‘VE(ﬁs)|(d_3)/2
(det Q)'VAVE(B,)|  det (—esp - Hess (E)(ﬁs)es,q);/gmgd
Note that we use the change of variables v’ := V2 (3.45), (3.26) in the first, the third
and the last equality respectively. 0
For clarity, we introduce the notation xy := |x — y|. The purpose of the following two

lemmas is to truncate some unnecessary (rapidly decreasing) parts of the main integrals

we are interested in.

Lemma 3.6.4. i) Forany o € (0,1) and n > 0, one has

sup / / exp ((wg — t) A5 (i) vy (t, &) dt A& = O(zy™)
|§'|<e J (—o0,—zg)U(z§ ,x0)

SEVw
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and

1
sup / / exp <——:c' : st') vs(t,0)dtdz’ = O(xy").
s€V JRA-1 [t|>z§ 2

ii) Forany 8 < 1/2, n > 0 and each fixed t € [—x/2, x¢/2], one obtains

exp <(x0 Y <\/%>) ‘ ' = O(x3™)

w [
5€Vw J ey/mo—t>|a! | >zl

and

1
sup / exp (——w’ : st’> dz’ = O(zg™).
5V J /| >af 2

Proof. i) We recall that sup lvs(t,€")| = O(Jt|™") for any n > 0. Observe that when

t < xp, |eo—DAs ) ]< 1 Thus, we have

sup / / exp (0 — D) A,(i€)) va(t, €) dt dg’

s€Vw |J|¢|<e oo, —z§)U(z§,x0)

< / / H e dede < / el de = O(a™).
|&7|<e (7oo,fxg)u(a:8“,xg) |t\>:1:8‘

(3.46)

Since |exp (—%a:’ - Qg1 ) | < 1, the second integral in this part also decays rapidly by

the same argument.

ii) When ¢ < x, we can substitute &' = z’(z — t)~'/? into (3.25) to obtain

.y /13

Due to our choice of € and the definition of ~,,, we get the following estimate when
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|| < e/zg — T

ix' 1 |2'|3 ))
sup lexp | (zg — t)A, =supexp | —=2"-Q.a' + O (
sevli p(( 0= 1) <v$0—t>)’ s@}i p( 2 < Vg —t

1
< exp (—Z%|x'|2) )

(3.48)
Hence, the two integrals in the statement can be estimated from above by:
_ 1 /2 /< * _ 1 2 ,.d-2
exp | ==, |27 ) da’ < exp | —=q,r” |r* *dr
\x/|2xg 4 l‘g 4
SJ/ pm/BI =2 d=2 g — O(5™).
=5
]

Lemma 3.6.5. If o € (0, 1), we have

sup / / ((1 — i)—(d—l)/2 _ 1) exp((mo —t)A ( 1! ))
s€V Jt|<azf J|z'|<ev/zo—t Lo Vg —t

x’ o
X Vs (t, m) da’ dt = O(x3* ).

Proof. As we argued in the proof of Lemma 3.6.4 (i1), this integral is majorized by

[ e (i) (g o) o
exp | == - Qx| |vs [ 1, —= ] |- - — — ' dt.
—z8 J o' |<ey/mo—T 4 Ty — 1 To
—(d—1)/2
It suffices to estimate the factor (1 — —) — 1 since v, is uniformly bounded on
Lo

R x D'(0, €). But this is straightforward, since

( + )—(d—l)/?
1- = 1
To

{e3

/xo
Yo 2
o

dt < 2xf <(1 — xg‘_l)_(d_l)/z — 1) = O(z3* ).
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This finishes the proof of this lemma. O
Proof of Theorem 3.6.2.

Proof. Thanks to Lemma 3.6.3, it is enough to prove the relation

I = (27) g 1)/2/ /exp (__x Qs ) J(t,0) dt da’ + O(zg ).
Rd—1

Due to Lemma 3.6.4 (i) with & = 1/4, we only need to show that

~ (d— 1 .
I =z, 1)/2/ / o, exp (—§m' : st’) S(t,0)dt da’ + O(x;*?)
RA-1 J|t|<ap/

where

I= / e <e /|t<x1/4 exp ((zo — ) As(i€")) vs(t, &) dt dg'.

Then we substitute 2’ = £’'/xy — t to the integral I to get

=y £\ ~d-1/2 iz
=1 1—— exp(x —t)AS( >)
0 /|t<z1/4 /l,,|<E N < xo) (0 Vrg—t

By Lemma 3.6.5 with o = 1/4, we have

/ / e p ((w t)A ( i’ ))y (t v )dx’dt

X - s s )
|t\<zl/4 e ’ Vg — 1t Vo —t (3.49)
=27V 4 O(x —1/2)

Next, it is clear that for |¢| < x(l]/ * one has

|

x |2’ |z
Vs | t,—— | — s(t,0)| < ——=ssup |Ver,(t,&)| < sup | Ve, (t
(17 ) ~ (00 < s sup Vema(t.€)] 5 L sup a0, €]
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Also, from the definition of the function v, it follows that sup, . [Vevs(t,£")| = O([t]) ™"

for any n > 0. Consequently,

[ (RN S ¥ N ot 1
[t]< \ Vzo—t

1
< r Rt <‘z%lx’|2>lw’\dx' /Rsupfvafvs(tf)\dt Oy ).

(3.50)
Using (3.49), (3.50) and Lemma 3.6.4 (i), it remains to derive the relation
/ / ex ((x —t)A <L>)V (t,0)dz’" dt
|t|<gcl/4 |2’ |<ey/zo—t P ° ’ V20 —t o (351)

]_ _
_ exp [ —=2' - Qu' | vs(t,0) da’ dt + O(xy /).
lt|<ag/* JRI-1 2

Due to Lemma (3.6.4) (ii) with § = 1/6, we obtain

o
s€VL Jen/zo— >|9U’|>361/6

s
exp ((xo — 1) A (%)) ‘ da’ = O(zy™),
sup / exp <—lx' : st/) dz’ = O(zy™).
s€Vo J || >l 2
On the other hand,
i’ 1, , ,
sup exp | (zg —t)As —exp | —=2' - Q.2 || dx
sEV,, ‘Z‘ ‘<J}1/6 To — t 2

= sup / exp (—lx’ : st’> exp (O (@)) — 1’ dz’
€V J |t | <0 2 VZo

,S/ exp (—l%\x’\z) w da’ = O(xgl/Q).
|$/|<$(1)/6 2 \/Zo




Hence, we deduce

! , 1 ; , , 19
exp (@ —tAs( ))dx—/ eXp(——:L"QS$)d:E:Ox
/:v’<e\/m (( ’ ) VTo—t Rd—1 2 ( 0 )

(1)/ * x[l)/ *]. Finally, we multiply the above relation with v,(¢,0) and then

integrate over the interval [~/ x(l]/ 4

foreacht € [—x
. Since sup, |v5(t, 0)] is integrable over R, the right

hand side is still O(z, Y ?). Thus, we derive (3.51) as we wish. O

3.6.2 [Estimates of the integral ./

In this part, we want to show that the expression .J decays as O (|z — y[~%?). Thus,
taking into account (3.44), we conclude that J does not contribute to the leading term of
the reduced Green’s function.

In (3.20), we set the coordinate functions of p’ as (py,...,pq). Let us introduce the
smooth function ) (k, x,y) = py(k + ko, z,y)u(k) for any k € R, The support of u¥
(as a function of k for each pair (x,%)) is contained in the support of y and u® (k, -, ) is
74 x Z%-periodic. We denote the components of a vector k in R% as (ky, ..., ky). Observe

that .J is the sum of integrals J; (1 <[ < d) if we define

; Ok —k )(k — ko)
— —d i(k—ko)-(z—y) ( 0,1,y o) 350
Jii= (o) /(96 NG+ —x (5:52)

Proposition 3.6.6. As [z — y| — oo, we have J, = O (|lz —y|"“*V/?) and J, =

O (|Jz — y|=¥?) if L > 1. In particular, J = O (|z — y|~%/?).

Proof. Indeed, to treat these integrals, we need to re-examine the calculation in the previ-

ous subsection done for the integral /. After applying the orthogonal transformation R
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on each integral .J;, we rewrite them under the form of (3.41) as

J = (2 el e (61, €' Y& e e 3.53
L= (2m) //<€/ & — AGE) §1dg, (3.53)

where /i us (5 Lz, ) is (&, 2, y)(Bs(i€)) ™" on the support of 1)) and vanishes elsewhere.
Let ! )(t, ¢, x,y) be the Fourier transform in &; of /fLs (51, &' x,y). If the parameter s is
viewed as another argument of our functions here, then s ( ¢, x,y) is a Schwartz func-
tion for each quadruple (s,¢’, z,y). It is elementary to check that the Fourier transform
e (t, &', x,y) is jointly continuous on V,, x R x R4~ x R? x R? due to the corresponding
property of /i us (5 ,x,y). Periodicity in (z, y) of Y and Lemma 3.9.1 imply the following
decay:

lim ¢ su v ) =0 N >0. (3.54)
p S ) ] 7y )

900 (467 ) Vi x DI(0,0) xR X R

In particular,

max sup (€ 2,y)| < oo (3.53)
1SI=d (161 0 )€V xRX D7 (0,6) xREXRA

and

S = max/ sup WO (t, €z, y)| dt < co. (3.56)
(s:8"2,y)

1si<d Jg WY)EVL, XD’ (0,€) x R4 x R4
Recall that when 0 < [£'| < €, R(A;(i€')) < 0 and thus from (3.55),
lim e(TtHE=wDAGE) (D (¢ ¢/ g ) = 0. (3.57)

t——o0

Casel: [ =1.
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Using (3.42), (3.57) and integration by parts, we obtain

0 r
¢mAGE) / e85 (6 ¢ o) ey du de

|&'<e J —

Ifr y\ d
(—t+|z—yl)As (3¢’ )d 1)(7575/’ a:,y) dt dé'

e ) (3.58)

|z—y|
— D (| — A (i€ el —tHe—yD As(ig)
(27T)d /£,|<€ (V (|Jz —yl,& x Z/)+/_OO s(i€')e
v D(t, & x,y) dt) de’.

Recall the notation zq = |z — y|. The term

/ (20, €2, ) dE’
|&<e

decays rapidly in x, due to (3.54). We decompose the other term

/O (€)= DAGE D ¢ ¢ 1 ) dt

—0o0

into two parts, where the first integral is taking over (z(/2, xo] and the second one over
(—00, xo/2]. The first part decays rapidly, as in Lemma 3.6.4 (i). Now we need to prove

d12
()

that the second part decays as O . To do this, we use the change of variables

1’ = &\/xy — t to rewrite the remaining integral as
z0/2 .,
xé“”/g/ | / A (i )el =D (1, € 2, y) d dE]
'<e J —oc0

z0/2 t —(d+1)/2 1 |x/’3 (3 59)
L (el o
/—oo ( xO) |2/ |<ev/zo—t 2 xg— 1

1 / / |JZI|3 (1) a’ /
——x - Qs e t,| ——),z,y | dz’' dt.
xexp< 5% Qx—l—O(m Vg N x,y | dx
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From (3.56), we derive

Z0/2 t —(d+1)/2
/ (1— —) sup Pt €2, y) dE <2757 S, (3.60)
(

—00 Lo 5,6",2,y) €V x D'(0,6) xR X RY

On the other hand, we recall that

R (—1a Qs + O " <2 2’|
2" e Vio—1)) = 1

The exponential term is majorized as follows:

Lo T Lo T
(370w ro(5) oo (3w o £5))
< <%x’ Q.1+ O(e[x’]2)> exp (—i%pﬁ/’?)-

Consequently,
L / ( |ZL'/|3 )> < L, / |:L'/|3 ’
——x - Qs + O exp | —=x' - Q.x' + O dx
/x’<e\/xo—t < 2 Vo —1 2 Vg —t

1
< / |2'|? exp <——%,|x/|2> dz’ < oo.
Ra-1 4
(3.61)

Combining (3.58) through (3.61), we deduce J; = O(xzy““™/?).

Case 2: [ > 1.
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Using (3.42) and decomposing J; into two parts as in Case 1, we get

0 T
J = (QW)d/ / flewAs(zﬁ)/ eiwt|z— yl)fl (6175 " y) dg, dw dé
&|<eJ —o0 —r
lz—yl o
€ §el A0, ¢, 2, y) dtdg]
"<e
e t As(ig), (1 / / d/2
" ety AGE) D3 ¢! g )y At de' + o[z — y|~Y?).
"<e

(3.62)

By changing the variables as before,
z0/2
d/2/ / (—t4x0) As(i€’) (l (t 5 T y) dt dg
€' <e J —

/ " ( : ) o Ly gt v o (2L (3.63)
= 1—— / T) exp (——:{; s+ ( )> :
—00 Lo |2 |<ev/mo—t : Vo —

() )

In a similar manner, we obtain

fo0=2) ]
—c0 Zo |/ |<ev/To—t

/ 1 / / |x,‘3
x) exp <—§x Qs+ O (\/ﬁ)) ‘

/
® (t ( - da’ dt
v ) 7$7y x
s VvV o —t
1
<2428 /Rdl |2'| exp (—Z%]:ﬁ’]Q) da’ < 0.

X

This final estimate and (3.62)-(3.63) imply J; = O(a:gdm). H

3.7 The full Green’s function asymptotics

The main purpose of this section is to give a detailed proof of Theorem 3.5.2. Es-
sentially, this theorem is needed for showing that full Green’s function G ) has the same

asymptotics as the reduced Green’s function G as |z — y| — .
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First, we recall that for each unit vector s, T,(k) = (1 — n(k))(Ls(k) — N\)~! +
n(k)((Ls(k) — M| ri@.x))) ' Qs(k) and the operator T is unitarily equivalent (via the Flo-
quet transform) to the direct integral of the operators T, (k) over O. Now we observe that

the kernel of each projector P;(k) (see Subsection 3.5.2) is the smooth function:

¢<k + iﬁs, x)¢<k B iﬁsa y)
F(k +1f;) ’

for each k in the support of 7. Thus, (1 — n(k))Ps(k) is a finite rank smoothing operator
on T¢. Moreover, we also have (L,(k) — \)T,(k) = Ty(k)(Ls(k) — \) = I — n(k)Py(k).
Each T(k) is a parametrix (i.e., an inverse modulo a smoothing operator) of the elliptic
operator L,(k) — A when (s, k) € S¥ x O. This suggests to study parametrices of the

family of elliptic operators Lg(k) — A simultaneously.
3.7.1 Parameter-dependent periodic pseudodifferential operators

First, we briefly recall some basic definitions of periodic (or toroidal) pseudodiffer-
ential operators (i.e., DO on the torus T¢). We also introduce some useful classes of
symbols with parameters and describe some of their properties that we will use.

There are several approaches to defining pseudodifferential operators on the torus. The
standard approach based on Hérmander’s symbol classes (see e.g., [72]) uses local smooth
structure on the torus T¢ and thus ignores the group structure on T?¢. An alternative ap-
proach uses Fourier series with the difference calculus and avoids using local coordinate
charts on T? (the details in [67, Chapter 4])°. To make a distinction, Ruzhansky and Tu-
runen in [67] refer to the symbols in the first approach as Euclidean symbols and the
symbols in the latter one as toroidal symbols (see [67, Section 4.5]). We recall their

definitions for only the Kohn-Nirenberg symbol classes, which we need here:

®A different approach to periodic ¥ DOs is introduced by A. Sobolev [73].
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Definition 3.7.1. Let m be a real number.
(a) The class S™(T? x R?) consists of all smooth functions o (x,£) on T? x R? such

that for any multi-indices «, 3,
|DEDE(x,€)] < Cap(1 + €)1,

for some constant C,, 4 that depends only on «, 3. Symbols in S™(T¢ x R?) are called
Euclidean symbols of order m on T¢.
(b) The class S™(T¢ x Z<) consists of all functions o(z, &) on T¢ x Z? such that for

each & € 24, 0(.,€) € C°°(T?) and for any multi-indices «, 3,
AZD (2, )] < Cap(1 + €)™,

for some constant C, g that depends only on «, 3. Here we recall the definition of the
forward difference operator Ag with respect to the variable § [67]. Let f be a complex-

valued function defined on Z% and 1 < J < d. Then we define

AJf(g) = f(£17 ce >€j*17£]' + 17£j+17 ce 7£d) - f(é)?

and for any multi-index «,

A = AT LLLAG

Symbols in S™(T¢ x Z<) are called toroidal symbols of order m on T¢.
(c) The intersection of all the classes S™(T¢ x RY) (S™(T? x Z%)) is denoted by
S=°(T? x RY) (S~°°(T? x Z<)), which are also called smoothing symbols.

Due to [67, Theorem 4.5.3], a symbol is toroidal of order m if and only if it could be

extended in ¢ to an Euclidean symbol of the same order m. Such an extension is unique
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modulo a smoothing symbol. Consequently, we will use the notation S™(T¢) for both
classes S™(T? x RY) and S™(T¢ x Z<). The two approaches are essentially equivalent in
defining pseudodifferential operators on T¢ whenever the symbol is in the class S™(T?).

Following [36], this motivates us to define periodic pseudodifferential operators as follows:

Definition 3.7.2. Given a symbol o(z, ) € S™(T?), we denote by Op(o) the correspond-

ing periodic pseudodifferential operator defined by

(Op(o)f) (x) ==Y o(,&) f(&)e*™, (3.64)

ez

where f (&) is the Fourier coefficient of f at . The right hand side of (3.64) converges
absolutely if, for instance, f € C°°(T?).
We also use the notation Op(S™(T9)) for the set of all periodic pseudodifferential

operators Op(c) with ¢ € S™(T4).

Since we must deal with parameters s and %, we introduce a suitable class of symbols

depending on parameters (s, k) € ST! x O.

Definition 3.7.3. The parameter-dependent class 5™ (T¢) consists of symbols o (s, k; z, €)

satisfying the following conditions:
e Foreach (s, k) € S9! x O, the function o (s, k; -, -) is a symbol in the class S™(T?).

e Consider any multi-indices a, 3,7. Then for each s € S?°!, the function o (s, -; -, -)

is smooth on @ x T¢ x R%, and furthermore,

sup | Dy D; D)o (s, ks, )] < Copy(1 4 [¢)) 1717,

seSd-1

for some constant C,, 3, > 0 that is independent of s, k, z, and &.

60



Thus, taking derivatives of a symbol in Sm (T<) with respect to k improves decay in £. We

also denote

S7(TY) = (1) S™(TY).

Definition 3.7.4. For each m € R U {—oc}, we denote by Op(S™(T%)) the set of all
families of periodic pseudodifferential operators {Op(c (s, k; -, "))} (s k)esi-1x0, Where o

runs over the class S™(T¢).
Example 3.7.5.

e Suppose that |\| is small enough so that max,cga—1 |5s] < 1. Then the family of

symbols {(1+ (£ + & +iB,)?)™/?} s 1) belongs to the class S™(T<) for any m € R.

If an(x) € C°(T¢) and m > 0, then

{0 aa(@)(€+k+iB)}sp) € S™(TY).

laf<m

The family of elliptic operators {(L(k) — \)} (s is in Op(S?(T9)).

If a = {a(s,k;2,8)}en € Sl(Td) and b = {b(s,k;2,8)} s € Sm(Td) then
ab = {ab(s,k;x,&)}sn) € S”m('ﬂ‘d).

a(s, k;x,€) € SY(T?) implies D,‘ijD;a(s, k;x,€) € Silel=I8l(Td),
The following result will be needed in the next subsection:

Theorem 3.7.6. There exists a family of parametrices { Ay (k) } (s »y in the class Op(S—2(T?))

for the family of elliptic operators {(Ls(k) — A) } (s k).

The reader can refer to Section 3.8 for the proof of this result as well as some other

basic properties of parameter-dependent toroidal WDOs.
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3.7.2 Decay of the Schwartz kernel of 7’

Lemma 3.7.7. For all k on a sufficiently small neighborhood of the support of n, A (< 0)
is in the resolvent of the operator L,(k)Q,(k) acting on L*(T?). Furthermore, for such k,

we have the following identity:

((Ls(k) = Mlre@.mn) " Qs(k) = A Po(k) + (Lo (k)Qs(k) — X) 7. (3.65)

Proof. In the block-matrix form, (Ls(k)Qs(k) — A) is

— AP, (k) 0
(3.66)
0 | (LB~ Nlnoaw
This gives the first claim of this lemma. The inverse of (3.66) is
_Ailps(k) 0
0 ((Ls(k) = Mlr@.mn)
which proves the identity (3.65). U

The identity (3.65) implies that for each (s, k), the operator

(k) ((Ls(k) = Nl r@.0) ' Qs (k)

is a periodic pseudodifferential operator in S~2(T¢). Thus, each of the operators T} (k)
is also in S72(T?) and its symbol is smooth in (s, k) since Ps(k) and Q,(k) are smooth
in (s, k). Actually, more information about the family of operators {7(k)} ) and their
Schwartz kernels can be obtained.

At first, we want to introduce a class of family of operators whose kernels behave
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nicely.

Definition 3.7.8. We denote by S the set consisting of families of smoothing operators

{Us(k)} s,k acting on T so that the following properties hold:

e Forany my,m, € R, the operator U, (k) is smooth in k as a B(H™ (T¢), H™*(T%))-

valued function’.

e The following uniform condition holds for any multi-index a:
SUp [| D Us (k)| s vy pme ey < 00

We remark that if the family of smoothing operators {U,(k)}(s.x) is in Op(S~>(T%)),
then this family also belongs to S.
In order to obtain information on Schwartz kernels of a family of operators in S, we

need to use the following standard lemma on Schwartz kernels of integral operators acting

on T?,

Lemma 3.7.9. Let A be a bounded operator in L*(T?). Suppose that the range of A is

contained in H™(T?), where m > d/2 and in addition,

IAF Nz (pay < CILf I zz=m (o)

forall f € L*(T?).
Then A is an integral operator whose kernel K 4(x,y) is bounded and uniformly con-

tinuous on T¢ x T and the following estimate holds:

|Ka(z,y)| < %C, (3.67)

"We remind the reader that B(E, F') denotes the space of all bounded linear operators from the Banach
space E to F'.
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where 7y is a constant depending only on d and m.

The fact can be found in [1, Lemma 2.2].

Now we can state a useful property of Schwartz kernels of a family of operators in S.

Corollary 3.7.10. If {U,(k)} (s,x) is a family of smoothing operators in S, then the Schwartz

kernel Ky (k,z,y) of the operator Us(k) satisfies

sup ’D?KUs(kax7y)‘ < 00,

8,k,T,y

for any multi-index o.

Proof. We pick any m > d /2. Then by Definition 3.7.8, we have

SUE | DRU(E) f Nl mmay < Coll f Nl -m(ray-

Applying Lemma 3.7.9, the estimates (3.67) hold for kernels Dy Ky, (k, x,y) of the oper-
ators DU (k) uniformly in (s, k). O

We now go back to the family of operators T (k).

Proposition 3.7.11. There is a family of periodic pseudodifferential operators { As(k) } (s k)
in Op(S=2(T%)) such that the family of operators {Ty(k) — As(k)}(s ) belongs to S.

Proof. Due to Theorem 3.7.6, there is a family of operators {A,(k)} (s ) in Op(S—2(T?))

and a family of operators { R(k)} s ) in Op(S~°(T%)) such that

Since T(k)(Ls(k) — A) = I — n(k)Ps(k), we deduce that

Ts(k) = As(k) — n(k)Ps(k)As(k) 4 To(k) Rs (k). (3.68)
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Now it remains to show that the two families of smoothing operators {7, (k) Rs (k) } (s.r)
and {n(k)Ps(k)As(k)}(sx) arein S. Let us fix any two real numbers 1, mo and a multi-
index o Notice that (Ly(k) — \) is analytic in k as a B(H™2(T%), H™2~%(T%))-valued

function and also,
S}}f’ | DR (Ls(k) — )‘)HB(HT”?(’JI‘d),HmQ*Q('Jl‘d)) < 0.
Due to Lemma 3.7.7,
Ti(k) = (1 = n(k))(Ls(k) = A) ™+ n(k)A"" Po(k) + n(k)(Ls (k)Qs(k) — X)7".
Thus, T, (k) is smooth in k as a B(H™22(T4%), H™2(T4))-valued function and moreover,
Ss,u/? | D Ts (k)| Bzma—2(ray, zrma (1ay) < 00 (3.69)

Since {R,(k)} is in Op(S~°°(T%)), R, (k) is smooth in k as a B(H™ (T), H™>~2(T4))-

valued function and furthermore,
SU_IS) ||D?R5(k?) ||B(Hm1 (Td), H™m2~2(Td)) < 0. (3.70)

By (3.69), (3.70) and Leibnitz’s rule, we deduce that T, (k)R (k) is smooth in k as a
B(H™ (T%), H™2(T%))-valued function and the corresponding uniform estimate also holds.
Hence, we conclude that the family {7,(k)R,(k)} ) belongs to S. Meanwhile, since
{n(k)Py(k)} (s is in S and { D} As(k)} sk is a toroidal pseudodifferential operator of
order 2 — |« for any multi-index «, we could repeat the above argument to show that the

family {n(k)P;(k)As(k)} sk is alsoin S. O
We need the following important estimate of Schwartz kernels of operators 7(k):
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Corollary 3.7.12. Let K (k,x,y) be the Schwartz kernel of the operator Ty(k). Let N >
d — 2. If a is a multi-index such that |o| = N, then each Dy K¢(k, x,y) is a continuous

function on T x T¢ and the following estimate also holds uniformly with respect to (x,y):

sup | Dy Ky(k, 2, y)| < oo,
(s,k)ESI—1x0O

Proof. Due to Proposition 3.7.11, the operator T(k) is a sum of operators A,(k) and

U, (k) such that {As(k)}sx) € Op(S~2(T?)) and {U,(k)}(sx) € S. In particular,
Ks(k’ 1/'7 y) = KAS (k’ .T, y) + KUs(k7 x? y)

Recall that in the distributional sense, the Schwartz kernel K 4, (k, =, y) of the periodic

pseudodifferential operator A4(k) is given by

> o(s, by, §)erme ey,

£ezd

where o (s, k; x, £) is the symbol of the operator A4 (k).
Since {0 (s, k;2,&) } (s, is in S-2(T9),

eI DR (s, ks, &) S (1+ 1),
Since —(2 + N) < —d, the sum

> DRo(s,k;a, ey

¢ezd
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converges absolutely and moreover,

sup | Dy Ka, (k,z,y)| S Z(l + |€|)—(d+1) < .

(s,k,x,y)€SE=1 x OXTeXx T cezd
Combining this with Corollary 3.7.10, we complete the proof. [

Notation 3.7.13. Let ) be a function on R? and v be a vector in RY, then 7,1 is the

~-shifted version of ¢). Namely, it is defined as follows:

() = Y-+ 7).

We denote by P the subset of C5°(IR?) consisting of all functions 1/ such that its support
is connected, and if 7y is a non-zero vector in Z¢, then the support of 7.7) does not intersect

with the support of ).

Definition 3.7.14. Since R? is the universal covering space of T?, we can consider the

covering map

7 :RY— RY/Z¢ =T

In particular, 7(x + ) = 7(x) for any x € R% and v € Z<.
A standard fundamental domain (with respect to the covering map 7) is of the form
[0, 1]¢ +~ for some vector «y in R%. Thus, a standard fundamental domain is a fundamental

domain of R? with respect to the lattice Z.

Using Definition 2.2.3 of the Floquet transform F, we can obtain the following for-

mula:

Lemma 3.7.15. Let ¢ and 0 be any two smooth functions in P. Then the Schwartz kernel
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K 4.0 of the operator ¢T,0 satisfies the following identity for any (z,y) € R? x R%:

Kopo(z,y) = ﬁ /O eV () Kk, m(), m())B(y) k.

Proof. Since both ¢, 0 € P, there are standard fundamental domains Wy and Wy C R? so
that

supp(¢) C Vf/¢, supp(f) C W,.
Then, it suffices to show that (¢T0f, g) equals

1 ik-(x—y —
g fo fo [ D), 7)) 0 ak

for any f, g in C*°(RY).

‘We observe that

(9T, 0F, 9) = (FoT.0f, Fg)
:# <(f¢f—1) (/j T, (k) dk) F(Hf),Fg>
= (er)d < ( /O B dk) F (1), F($g>> -

Since 0 € P, for any y in W, we have

F(OF)(k,7(y) = OF)(y)e™".

Similarly,

F(g)(k, m(x)) = (pg)(z)e™™,  Va € Wi.
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We also have

@
(/ Ty(k) dk) (FO)(Fm(x)) = To(k)(FOL)(F ) (7 ().

o

Consequently,

([ " Tk) k) (6. 7(69))

- /o /W To(k)(F(01) (k, ) (m(2))(@g) (x)e = da dk

¢

:/O/W - K (k,m(2), m(y) F(O1) (k, 7(y))(¢g) (x)e™ dy da dk

:/O/W /W eM I K (K, m(x), 7(y))(0f) (y)(¢9) (z) dy da dk.

Using Fubini’s theorem to rewrite the above integral, we have the desired identity. 0

Proposition 3.7.16. Consider any two smooth compactly supported functions ¢ and 6 on

RY such that their supports are disjoint. Then the kernel K, 44(x,y) is continuous on

R? x R and moreover, it satisfies the following decay:

sup |y g.0(2,y)| < Cxlo(2)0(y)| - & —y| 7",

for any N > d — 2. Here, the constant C'y is independent of ¢ and 6.

Proof. By using partitions of unity, any smooth compactly supported function can be writ-

ten as a finite sum of smooth functions in the set . Thus, we can assume without loss of

generality that both ¢ and 6 belong to P.

First, observe that for any (k,n) € O x Z¢,

To(k + 27n) = M T (k) M.,
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where M, is the multiplication operator on L?(T?) by the exponential function e?™"%,

Hence,
VoK (k + 2mn,7(z), m(y)) = e—27rz‘n.7r(:fc)V%K'S(]{;7 (), 7T(y))ezm'n-w(y)7
for any multi-index . Since >™"* = ¢?"7(?) for any € R?, we obtain
W2 K (k4 2mn, (), 7(y)) = € CTIVRK (K, w(2), 7 (). (3.T1)

Applying Lemma 3.7.15, we then use integration by parts (all boundary terms vanish

when applying integration by parts due to (3.71)) to derive that for any || = N,

(2m)(i(2 — )" Kspo(z,y) = ¢(x)0(y) /0 IR (k m(x), 7 (y)) dk.

Suppose N > d — 2. Then by applying Corollary 3.7.12, the above integral is abso-
lutely convergent and it is also uniformly bounded in (s, z,y). Consequently, the kernel
K 4 0(x,y) is continuous. Furthermore,

Sup Kol )] S 6(2)00)] - mim (e = )| 5 [0(2)0(0)] -l — 917

We now have enough tools to approach our goal:

Proof of Theorem 3.5.2.

Proof. Let us fix a point (s, z) in S¢~! x R? Now we consider a point y = x + st, where
t is a real number. When |t| > 0, we can choose two cut-off functions ¢ and 6 such that

¢ and 6 equal 1 on some neighborhoods of = and y, respectively, and also, the supports of
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these two functions are disjoint. Then, Proposition 3.7.16 implies that the kernel K(x, )
is continuous at (z,y) since it coincides with K 4 on a neighborhood of (z,y). This
yields the first statement about the continuity off diagonal of K. Again, by Proposition

3.7.16, we obtain
sup | K(z,y)| = sup | K, go(z,y)| < Cnlz —y| ™",

which proves the last statement. 0

3.8 Some results on parameter-dependent toroidal YDOs

The aim in this section is to provide some results needed to complete the proof of
Theorem 3.7.6. We adopt the approach of [36] to periodic elliptic differential operators.
The next two theorems are straightforward modifications of the proofs for non-parameter

toroidal YDOs:

Theorem 3.8.1. (The asymptotic summation theorem) Given families of symbols b, €
S™=UT9), where each family b; = {bi(s,k)}(sp) for | = 0,1, ..., there exists a family of
symbols b in S™(T%) such that

{b(s, k) = > bils, k) }spy € S™7(TY). (3.72)

i<l
We will write b ~ Z b, if b satisfies (3.72).
!
Proof. Step 1. Let n = m + € for some € > (. Then

et G+ Je)™!

|bi(s, k2, &) < Ci(1+ [€]) 1+ )
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Thus, there is a sequence {7, },;>1 such that 75, — 400 and
1
[ba(s, ks 2, )] < (1 + 1))

for [£] > m. Let p € C*°(R) satisfy that 0 < p < 1, p(t) = 0 whenever |t| < 1 and

p(t) = 1 whenever |t| > 2. We define:

b(s, k2, &) = p ('g)) bi(s, k;x, €).

l

Since only a finite number of summands are non-zero on any compact subset of T¢ x R¢,

b(s,+;-,+) € C(O x T x R?). Moreover, b(s, k) — >_,_, b:(s, k) is equal to:

(8) e (E)se (e

r<l r>1
The first summand is compactly supported while the second summand is in S™~!(T4).

Now let € < 1. Then, the third summand is bounded from above by

S )T < (L )T < (1 )™

2r
r>1
Consequently,
sup |b(s, k) Zb (s, k)| < C(1+ €)™
sesdt r<l

Step 2. For |a| + | 8] + |y| < N, one can choose 7; such that

DEDEDIN(s, ks, €)] < o (14 [l

sup
s€Sd—1
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for n; < |¢|. The same argument as in Step 1 implies that

sup [DED{DY(b(s, k) — > be(s, k)| < Cy(1+ €[y 171 (3.73)

d—1
SES r<l

Step 3. The sequence of 7;’s in Step 2 depends on N. We denote this sequence by 7; n
to indicate this dependence on N. By induction, we can assume that forall [, n; y < 1 n41.
Applying the Cantor diagonal process to this family of sequences, i.e., let 1, = n;; then b

has the property (3.73) for every V. [

Theorem 3.8.2. (The composition formula) Let a = {a(s,k)} be a family of symbols
in Sl(Td) and Q(z, D) = ngm ao(x)D® be a differential operators of order m > 0
with smooth periodic coefficients a,(x). Then the family of periodic pseudodifferential

operators {Q(z, D + k +iB,)Op(a(s, k) } s 1y € Op(S™(T?)). Indeed, we have:

Q(z, D+ k +if)Op(a(s, k) = Op((Q 0 a)(s, k)),

where

(Qoa)(s, k;x, &) = Z D (2,€ 4+ k +1iB,)D%l(s, k; x, €) (3.74)

\cx|<m

Proof. The composition formula (3.74) is obtained for each (s, k) is standard in pseudod-
ifferential operator theory (see e.g., [36,67,72]). We only need to check that the family of
symbols {(Q o a)(s, k; z, &)} (s ) is in S"(T?). But this fact follows easily from (3.74)

and Leibnitz’s formula. ]
We now finish the proof of Theorem 3.7.6.

Theorem 3.8.3. (The inversion formula) There exists a family of symbols a = {a(s, k) } (s x)
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in S=2(T%) and a family of symbols r = {r(s, k) } s x) in S~(T?) such that

(Ls(K) = \)Opla(s, k)) = I = Op(r(s, k)).

Proof. Let
Lo(s, k;x,§) = Z ao(x)(€ + k+1iB,)7,
la|=2
lalloo := Z [aa ()|l zoo (zay,
|loa|=2
and
M= max ([k|*+ 0 |a]l| B +077)

(s,k)ESI—1x0O

where  is the ellipticity constant in (3.2). Whenever |¢| > (2M)'/2,

| Lo(s, k;2,€)] > R(Lo(s, ks 2, €)) > 016 + kP = Y aa(2)(8:)°

|af=2

>0 @—/ﬁ — 2>1
2 0{ =~ Ik lalloo]Bs]” > 1.

Let p € C*=(R) be a function satisfying p(t) = 0 when [t| < (2M)/? and p(t) = 1 when

|t| > 2M'/2. We define the function

aos, k) (7, €) = pwm.

Then ag := {ao(s, k) } (s is well-defined and belongs to S~2(T¢). The next lemma is the

final piece we need to complete the proof of the theorem.

Lemma 3.8.4. (i) If b = {b(s, k) } (o) € S'(T?) then b — (L — \) o (agh) € S'=1(T%).

(ii) There exists a sequence of families of symbols a; = {a;(s, k) }(s k) in S=271(Td) | =

0,1,... and a sequence of families of symbols ry = {r;(s, k) } s 4y in ST (T%),1=0,1,...
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such that aq is the family of symbols in (3.75), ro(s, k) = 1 for every (s, k) and for all |,
(L — /\) ocar =7 —T+1.

Proof. (i) Let p(s, k) = (L(s, k) — X\)(x,&) — Lo(s, k;x,&) so that p = {p(s,k)} sk €
S'(T?) and hence, p o (agb) is in S~ (T?) due to Theorem 3.8.2. Moreover, b — Loagh =
(1 — p(|€]))b is a family of symbols whose &-supports are compact and thus it is in
S *Oo(Td). We can now derive again from the composition formula (3.74) when P := L,
that

(L —A) o (agb) = Lo o (agh) + po (aoh) = Loagb +---=b+ ...,

where the dots are the terms in S'~*(T).
(ii) Recursively, let a; = agr; and 74y = 1, — (L — A) o a;. By part (i), 741 €

g—(H—l) (Td) n

Now let a be the asymptotic sum of the families of symbols a;, i.e., a ~ >, a;. Then

(L=XNoa~Y (L=Noa=» rn—rm=r=1,

l l

which implies that 1 — (L —\)oa ~ 0. In other words, this means that 7 := 1—(L—\)oa €
S—°°(T?). Hence, there exists a family of symbols a in S~2(T%) and a family of symbols
7 in S=°°(T¢) satisfying (L — \) o a = 1 — r. Finally, an application of Theorem 3.8.2
completes the proof of Theorem 3.7.6. [
3.9 Some auxiliary statements

3.9.1 A lemma on the principle of non-stationary phase

Lemma 3.9.1. Let M be a compact manifold (with or without boundary) and a : Rx M —

C be a smooth function with compact support. Then for any N > (, there exists a constant
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Cy > 0 so that the following estimate holds for any non-zerot € R:

zeM

sup ‘/ ealy, ) dy‘ < Cylt|™. (3.76)

Here Cy depends only on N, the diameter R of the y-support of a and sup |0év al.
x7y

Proof. Lett # 0. Applying integration by parts repeatedly (N -times), it follows that

/ ™ol a(y,z) dy| < RS;;I,) 0N al - |7V,

—00 —00

' | eatye) dy] Y

3.9.2 The Weierstrass preparation theorem

Theorem 3.9.2. Let f(t,z) be an analytic function of (t,z) € C*" in a neighborhood of

(0,0) such that (0,0) is a simple zero of f, i.e.:

_4 97
£(0,0) =0, —=-(0,0) #0.

Then there is a unique factorization

ft,z) = (t = A(2))B(t, 2),

where A, B are analytic in a neighborhood of 0 and (0, 0) respectively. Moreover, B(0,0) #
0 and A(0) = 0.

The proof of a more general version of this theorem could be found in [38, Theorem

7.5.1].

76



3.9.3 Proofs of Proposition 3.4.1 and Lemma 3.5.1

Remark 3.9.3. Consider a domain D of C? and let f : D — C be a holomorphic function.
For z € CY, write z = x + iy where 2,y € R% Now we fix a vector 3 in R? and
denote Dy = (D — i) N R If this intersection is non-empty, we may consider the
restriction & — f(k + i) as a real analytic function defined on a subdomain Djs of
R?. Thanks to Cauchy-Riemann equations of f, we do not need to make any distinction
between derivatives of f with respect to z (when f is viewed as a real analytic one) or z

(when f is considered as a complex analytic one) at every point in Dy since

of

of O ik ig)= -k +ip), 1<i<a
Oy

—(k+iﬂ):a

8%[ Z]

For higher order derivatives, we use induction and the above identity to obtain
00 f(k +iB) = 0% f(k +1iB) = (—i)0y f(k +iB),

for any multi-index ov. We use these facts implicitly for the function A\;. When dealing
with the analytic function f = A; in this part, denote 0“); to indicate either its x or
z-derivatives.

We also want to mention this simple relation between derivatives of \; and F:
O“E(B) = 95\;(ko +iB) = i1*0"X; (ko + if3).

Proof of Proposition 3.4.1.

Proof. We recall from Section 2 that V' is an open neighborhood of kg in C? such that the
properties (P1)-(P6) are satisfied. Note that V' depends only on the local structure at kg

of the dispersion branch \; of L. Denote O, = {k + itf3; : k € O,t € [0, 1]} for each
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s € S, For C' > 0 (which is defined later), set M o = O;N{z € C?: |R(z)—ko| < C}
and Ny o = O, \ M, ¢ (e.g., see Figure 3.1). For C' and |\| small enough, we can suppose

M, €@ V since 3, is small too. We also assume that |A| < ;.3

iR?

)

d R?

Figure 3.1: An illustration of the regions M, ¢ and N, o when ko = 0.

For any point z = k + itf; € Mo, we want to show if A € o(L(z)), it forces
z = ko + ifs. By (P3), this is the same as showing the equation \;(z) = A has no
solution z in M, ¢ except for the trivial solution z = ky + i3s. Suppose for contradiction
Nj(k+itBs) = X = A(B,) forsome t € [0,1] and kin {k € O | 0 < |k — ko| < C}. By

Taylor expanding around kg + it 3, there is some y € (0, 1) such that

A= Nj(ko +itBs) = | (k — ko) - VAj(ko +itB) + (k;—,’%waaxj(ko +itB) | +
|a|=3 ’

£ — o) - Hess () o + it (k — ko) + 3 B0 g0y 3k — ) -y + 88,

|a|=4

(3.77)

8Recall the definition of €g from (P3).
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If || is odd, then by Remark 3.9.3 and the fact that F is real, we have
. 1 ,
0%\ (ko +itfs) = W@"‘E(tﬁs) € iR.

Taking the real part of the equation (3.77) to get

(k= ko)

ol

B(8,) — B(th.) = — 5k — ko) - Hess(E)(tB.)(k — ko) + >

|o|=4

X KON (v(k — ko) + ko + itfs)).

The left-hand side is bounded above by (1 — t)A < 0 because of the concavity of E
(E(tBs) > tE(Ps) = tA). On the other hand, by (P5),

—;k—%yH%MEW&Xk—%)z%k—%ﬁmmam%ﬂMX%»

S B R o,k — ko) + o+ it5.))| < @)k — Rol* max 07\, (2)].

! V|a|=4
=4 z€V |al

min o (Hess (A;) (ko))
Cld) max, 7 o= [0 (2)]

We simply choose C? < to get a contradiction if k& # k.
For the remaining part, we just need to treat points k + it3, in N5 . We have \ €
p(L(k)),Vk € RY. The idea is to adapt the upper-semicontinuity of the spectrum of an
analytic family of type A on C¢, following [39]. For any & € O and z € C%, the composed
operators (L(k+ z) — L(k))(L(k) — X\)~! are closed and defined on L?(T%) and by closed

graph theorem, these are bounded operators. Clearly,

Lk+2) = A= (1+ (L(k+2) — L(k))(L(k) — \)"D(L(k) — \).
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Thus, ) is in the resolvent of L(k + z) if the operator 1 + (L(k + z) — L(k))(L(k) — A\)~*
is invertible. Hence, it is enough to show that there is some positive constant 7 such that

forany k € O and |z| < T,
I(L(k + 2) = L(k))(L(k) = X) " lop < 1/2, [k = kol = C, (3.78)

where the operator norm on L?(T?) is denoted by | - ||,,. Indeed, if |\| is small enough
so that we have max, |Bs| < 7 and then (3.78) implies that A € p(L(k + itS;)) for any
t€0,1].

Finally, we will use some energy estimates of linear elliptic equations and spectral

theory to obtain (3.78). Observe that,
Lk+z)—Lk)=z-Alx)(D+k)+(D+k) - Alx)z+ z - A(z)=.
For v € H'(T?) and |z| < 1, there is some constant C; > 0 (independent of z) such that
I A@)(D + k) + (D + k) - Al)z + 2 - A@)2)llacey < Crlz] - ol ooy (B79)

Setv := (L(k) — A\)~‘u for u € L?(T?). Ellipticity of L(k) yields v € H?*(T?) and in
particular, we obtain (3.79) for such v. Testing the equation (L(k) — A\)v = u with the

function v, we derive the standard energy estimate
| Dv|| r2eray < Co(||v]| p2(ray + [lull 2ray)- (3.80)

Note that both C'; and C in (3.79) and (3.80) are independent of k£ and A since we take k
in the bounded set O and consider |\| to be small enough.

Suppose that || is less than one-half of the length of the gap between the dispersion
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branches \; and \;_;. Due to functional calculus of the self-adjoint operator L(k), we get
I(L(k) = X) M lop = dist(A, o(L(K))) ™" = min{(A; (k) — A), (A = Aj-a(K))} "

Now let §; = —2max\;_1(k) > 0and d, = min  A;(k). Then due to A3,
k€O, |k—ko|>C

d9 > 0. Moreover,

A — )\];1(]{) >\ — r’?ea(%( )\3;1(]{}) > 51,

and

() — )\ > ; () —
Aj(k)—A> keO,\rlIclirklo\ZC Aj(k) — A > 0s.

Hence,

I(L(K) = A) " lop < 6 := min{dy, 5o} . (3.81)

In other words, ||v|p2(re) < 6|ul|r2(re). Applying this fact together with (3.79) and

(3.80), we have

I(L(k + 2) — L(k))(L(k) = X) " ull z2eray < |2|Chllv] ooy
< |2[C1Co([[v|| 2(ray + [Jul| L2(Te))

< [2|CLCo(1 4 ) [Jull 2 (ray-

Now (3.78) is a consequence of the above estimate if we let

1
< mi _— .
7 < min <2C’102(1+5)’1>

Proof of Lemma 3.5.1.

Proof. From Proposition 2.2.6, the complex Bloch variety > := B, of the operator L is
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an analytic subset of codimension one in C?*!. By [47, 80], there exist an entire scalar
function h(k, i) and an entire operator-valued function 7 (k, ;1) on C4*! such that

(1) h vanishes only on > and has simple zeros on ¥, i.e., its normal derivative is not
zero at all smooth parts of >..

(2) In CHIN\ S, (L(k) — p)~" = hi(k, p) " I(k, ).

In particular, (L; (k) —\) ™' = h(k+itBs, \) 1 (k+itBs, \) for k € RYandt € [0,1)
by Proposition 3.4.1. Due to Assumption A and (P2), if ky + it € V, the k-variable
function h(k, \) ! is equal (up to a non-vanishing analytic factor) to (\;(k +it3s) — \) ™!
on an open disc D(kg, 2¢) C V in C? for some £ > 0. Hence, we can write the sesquilinear

form for such values of k as
(Rt,s,)\f; 90) = Ry + Ro,

where ( R )
M(k,\) f(k), D(k)
= (271 —d
B = @m) /OmD(ko,a) Aj(k+itfBs) — A

and

Ry = (2m)~1 /O s (L(k: +itBy) — A)‘lA(k:),@(k)> dk.

Here M (k, ) is a L?(T?)-valued analytic function on D(kg, ) when |)| is small. Since
f and ¢ have compact supports, their Floquet transforms f(k:), (k) are analytic with
respect to k. To prove the equality (3.15), we apply the Lebesgue Dominated Convergence

Theorem. For R, it suffices to show that the denominator in the integrand when t — 1~

is integrable over D(ky, ) for d > 2. Indeed,

Mgk 80) = N 2 8 | B(B,) - (k — ko) — 5 (k — ko) - Hss (E)(8.)(k — ko)
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for some 0 > 0 if ¢ is chosen small enough so that in the Taylor expansion of \; at ko +1 s,

the remainder term O( |k — ko |®) is dominated by the quadratic term |k — ko|?. Furthermore,

2

IVE(Bs) - (k= ko) — %(/f — ko) - Hess (E)(B:)(k — ko)| > C(|{k—Fko, s)"+|k—ko|"),

for some constant C' > 0 (independent of k). Now let v := (k — ko) and so the right hand
side of the above estimate is just | (v, s)|* + |v|* (up to a constant factor). One can apply

Holder’s inequality to obtain
(v, 8)* + Jol* = (v, )" + V] = Cl(w, )2,
where v = (v1,v') € R x R?"L. Thus, we deduce

(A (k +85) = A7 < Clw, s)| 724|072, (3.82)

'|=1/2 and

Since the function |z|™" is integrable near 0 in R if and only if n < d, |v
|(v, s)|~3/* are integrable near 0 in R~ and R respectively. Therefore, the function in the
right hand side of (3.82) is integrable near 0.

The integrability of Ry as ¢ — 1~ follows from the estimation (3.78) in the proof of

Proposition 3.4.1. Indeed,

I(L(E +itBs) = N Hlop = [[(1 = (L(k + itB,) — L(k))(A — L(k) ™) 7 (A = L(K)) " lop

< ICL(R) = A~ lop '
— L= [[(L(k +itBs) — L(k)) (A = L(K)) " lop

(3.83)

By decreasing ||, if necessary, and repeating the arguments when showing (3.78) and
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(3.81) we derive:
1 — |[(L(k+idtBs) — L(k)) (A — L(k))_IHOp >1/2, Vke O\ D(ko,e) (3.84)

and

sup  |[(L(k) — A)7H|op < 00. (3.85)
keO\D(ko,e)

Thanks to (3.83), (3.84), (3.85), Cauchy-Schwarz inequality and Lemma 2.2.4, we have:

~

sup | (k4 itB,) = 2) 7 F(R), 30) )| < 20 E0k) = 2 o - 1F) o |B0R) 2

tel0,1]

~

SN RN 2 |@(k) [ L2may —,VE € O\ D(ko, )

and

/ 1 (B) | 2wy | (k)| L2ray Ak < || f || 2y [ ]| L2(ray < o0
O\D(ko,s)
This completes the proof of our lemma. [

3.9.4 Regularity of eigenfunctions ¢(z, x)

In this subsection, we study the regularity of the eigenfunctions ¢(z, x) of the operator
L(z) with corresponding eigenvalue \;(z) (see (P4)). It is known that for each z € V, the
eigenfunction ¢(z, z) is smooth in . We will claim that these eigenfunctions are smooth
in (z,x) when z is near to ko. The idea is that initially, ¢(z,-) is an analytic section of
the Hilbert bundle V' x H?(T¢) and then by ellipticity, it is also an analytic section of
the bundle V' x H™(T?) for any m > 0 (for statements related to Fredholm morphisms
between analytic Banach bundles, see e.g., [82]) and hence smoothness will follow.

For the sake of completeness, we provide the proof of the above claim by applying

standard bootstrap arguments in the theory of elliptic differential equations.
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Lemma 3.9.4. The function 0%¢(z, ) is jointly continuous on V x R¢ for any multi-index

Q.

Proof. By periodicity, it suffices to restrict 2 to T%. Let K := V. Due to (P4), the function

2+ ¢(z,-) is a H%(T?)-valued analytic on some neighborhood of K. Thus,

sup || (2, )| g2 (ra) < o0
z€EK

Then, we can apply bootstrap arguments for the equation

to see that M,,, := sup,cx ||¢(z, )|

mm 14y 18 finite for any nonnegative integer m.
Now we consider z and 2’ in K. Let ¢, ./(z) := ¢(z,2) — ¢(2/,x). Then, ¢, . is a

(classical) solution of the equation

L(Z>¢z,z’ = fz,z’ )

where .. := (X;(2)9(z, 1) = X (2)¢(2', ) + (L(2) — L(2))o (2", ).

By induction, we will show that for any m > 0,

H(bZ,Z’HHW(Td) S|z =2 (3.86)

The case m = 0 is clear because (P4) implies that z > |[¢(z,-)||12(ray is Lipschitz
continuous.

Next, we assume that the estimate (3.86) holds for m. As in (3.79),

I(L(2) = LN amay S 12 = 21 - 1902, ) amerway S Mimyalz = 2| (3.87)

85



Using triangle inequalities, the estimates (3.86), (3.87) and analyticity of A;, we get

| foollrmeray SN (2)0(2, ) = X (2) (2", ) gm(ray + |(L(2) — L(2"))p(2", ) || srm (ra)
SN NPz el memay + Min|Aj(2) = Xi(2)] + Mpga|z — 2|
< lz =2

(3.88)

Notice that for any m > 0, the following standard energy estimate holds (see e.g., [22,28,
53)):

Gz | rma(ay SN fozr | mrm (ray + |@2,20 | 2(7a) - (3.89)

Combining (3.88) and (3.89), we deduce that ||¢. .|| ym+2(ray S |2 — 2’|. Hence, (3.86)
holds for m + 2. This finishes our induction.

Applying the Sobolev embedding theorem, ||¢. . ||cmray S |2 — 2’| for any m > 0.
In other words, ¢ € C(K,C™(T%)) for any m. Since C(K x T¢) = C(K,C(T)), this

completes the proof. O

Notation 3.9.5. Consider a z-parameter family of linear partial differential operators { L(z)}

where 2 € R%. Suppose L(x, &, 2) is the symbol of L(z). Whenever it makes sense, the dif-

OL(z)
8zl

Proposition 3.9.6. Assume D is an open disc centered at kg in R? such that D + i3, € V

OL
ferential operator is the one whose symbol is 5 (x,&,2) forany [ € {1,2,...,d}.
21

for any s € S, Then all eigenfunctions ¢(k + if3,, x) are smooth on a neighborhood of
D x RY. Furthermore, all derivatives of ¢(k & if3,, x) are bounded on D x R? uniformly

in s, i.e., for any multi-indices o, [3:

sup 102054 (k + B, )| < oo.
(8,k,x)€SI—1 x DxRd

Proof. Pick any open disc D’ in R? so that D 4+ i3, C D' £, C V. We will prove that
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all eigenfunctions are smooth on the domain D’ x R?. Also, it is enough to consider the
function ¢(k + i5;) since the other one is treated similarly.

First, we show that S—Z(k + i0s, x) is continuous for any 1 < [ < d. By Lemma
3.9.4, the function (k, z) > ¢(k + i3, z) is continuous on D’ x T¢. We consider any two
complex-valued test functions ¢ € C°(D’) and ¢ € C°°(T?). Testing the equation of the

0
eigenfunction ¢(k + i, z) with ¢ and %, we derive
1

/[v)l /Ed<L<k + Zﬁs) - /\](k’ + Zﬁs))¢(k + iﬁs, x)mg_(k> dzdk = 0.

Observe that L(k + if5s)* = L(k — ifs) and (w>* = M We
8]{71 a'Ifl
integrate by parts to derive
0= [ (R0 +i8) = A+ 38) 6k + 82, 6(0) o o ()
o S ¥ S S ) L ('11‘ ) 8kl
0
_ / (B0 + 1B 0), (L(k = i8,) = Nk + i5,)) $(2)) gy 52 () A
D’ 1
= [ (Gt B, (U = 80 - X4 180) vl0)) (k) d
v — o (3.90)
- [, (ot i) G o) G inet)) ot o
= [ (e i+ 004 180) G+ B 0l)) b
D L2(T4)

ok,
(P - G s ) e+ ws,w,@w(a:))m) (k) b

We introduce

G(k) == —L(k +ifs) + X\j(k +i5s),

OL(k +if,) O\ . :
H(k,x):= ( (8;{: iBe) _ ok, (k+zﬂs)> ¢(k + i85, x).
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By invoking the previous lemma, the Lipschitz continuity of the C™*2(T¢)-valued func-
tion ¢(k + i3, -) implies that the mapping k +— H (k, -) must be Lipschitz as a C™(T¢9)-
valued function on D’ for any m > 0. On the other hand, the H?(T9)-valued func-
tion ¢;(k, -) is also Lipschitz on D’ due to (P4). Hence, both (G(k);(k, -), ) 2(rey and
(H(K,-),)2(1a) are continuous on D' for any test function ¢). The continuity let us con-

clude from (3.90) that for every k € D', ¢;(k, -) is a weak solution of the equation

Gk) ok, z) = H(k, ). (3.91)

We interpret (3.91) in the classical sense since all the coefficients of this equation are
smooth. Consider any ki, ko in D’ and subtract the equation corresponding to k; from

the one corresponding to k, to obtain the equation for the oscillation function ¢;(ky, ) —

¢l(l€2,')3

G (k1) (pi(kr, ) — di(ke, 2)) = (G(ka) — G(k1))di(ka, x) + (H (K1, z) — H(k, ).

Note that due to regularities of \;, H and the fact that the differential operator G (k) de-

pends analytically on k, we get

[ H (K1, -)—H (K2, ) || g (ray (G (k1) =G (k2)) @i (K2, )| m(ray = O(|k1—kal),  Vm € N.

Combining this with the uniform boundedness in k& of the supremum norms of all coeffi-

cients of the differential operator G/(k; ), we obtain

H‘bl(kly ) - (bl(k% )’

H'nL(’]I‘d) — O(’kl - le),

by using energy estimates as in the proof of Lemma 3.9.4. An application of the Sobolev
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embedding theorem shows that 92¢;(k, z') is continuous on D’ x T¢ for any multi-index
.

To deduce continuity of higher derivatives 9°0%¢(k + i3,) (Ja| > 1, |3] > 0), we
induct on |a| and repeat the arguments of the |a| = 1 case.

Finally, the last statement of this proposition also follows since all of our estimates

hold uniformly in s. 0

Observation 3.9.7. 1. The property (P4) is crucial in order to bootstrap regularities of
eigenfunctions ¢(k 4 if;).
2. If one just requires ¢(k+i3,) € C™ (D x R?) for certain m > 0 then the smoothness

on coefficients of L could be relaxed significantly (see [28, 53]).

3.10 Concluding remarks

1. The condition that the potentials A, V" are infinitely differentiable is an overkill. The
Fredholm property of the corresponding Floquet operators is essential, which can be

obtained under much weaker assumptions.

2. The main result of this chapter assumes the central symmetry (evenness) of the rel-
evant branch of the dispersion curve \;(k), which does not hold for instance for
operators with periodic magnetic potentials [24,69]. Note that the result of [52] at
the spectral edge does not require such a symmetry. It seems that in the inside-the-
gap situation one also should not need such a symmetry. However, we have not been
able to do so here, and thus were limited to the case of high symmetry points of the

Brillouin zone.

3. In the case when )\ is below the whole spectrum, the result of this chapter implies

[60, Theorem 1.1] for self-adjoint operators.
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4. GREEN’S FUNCTION ASYMPTOTICS OF PERIODIC ELLIPTIC OPERATORS
ON ABELIAN COVERINGS OF COMPACT MANIFOLDS.

4.1 Introduction

Many classical properties of solutions of periodic Schrédinger operators on Euclidean
spaces were generalized successfully to solutions of periodic Schrodinger operators on
coverings of compact manifolds (see e.g., [3,15,16,45,50,56,74,75]). Hence, a question
arises of whether one can obtain analogs of the results of Chapter 3 and the paper [52] as
well. The main theorems 4.3.1 and 4.3.4 of this chapter provide such results for opera-
tors on abelian coverings of compact Riemannian manifolds. The results are in line with
Gromov’s idea that the large scale geometry of a co-compact normal covering is captured
mostly by its deck transformation group (see e.g., [17,31, 68]). For instance, the dimen-
sion of the covering manifold does not enter explicitly to the asymptotics. Rather, the
torsion-free rank d of the abelian deck transformation group influences these asymptotics
significantly. One can find a similar effect in various results involving analysis on Rieman-
nian co-compact normal coverings such as the long time asymptotic behaviors of the heat
kernel on a noncompact abelian Riemannian covering [46], or the analogs of Liouville’s
theorem [50] (see also [68] for an excellent survey on analysis on co-compact coverings).

We discuss now the main thrust of this chapter.

Let X be a noncompact Riemannian manifold that is a normal abelian covering of a
compact Riemannian manifold M with the deck transformation group G. For any function

won X and any g € (G, we denote by u? the “shifted" function

w!(z) = u(g - v),
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forany x € X. Consider a bounded below second-order elliptic operator L on the manifold
X with real and smooth coefficients. We assume that L is a periodic operator on X, i.e.,

the following invariance condition holds:
Lu? = (Lu)?,

for any ¢ € G and u € C°(X). The operator L, with the Sobolev space H?(X) as its
domain, is an unbounded self-adjoint operator in L*(X).
As one could expect from Remark 2.2.7, the following fact for such operators on co-

compact abelian coverings is well-known (see e.g., [16,20,47,48,66,74,75]):

Theorem 4.1.1. The spectrum of the above operator L in L*(X) has a band-gap struc-

ture:

o(L) = [y, 8)l;
j=1
such that a; < ajyq, B < Bj41 and limj_,o o; = oo.

The bands can overlap when the dimension of the covering X is greater than 1.
In this chapter, we study Green’s function asymptotics for the operator L at an energy
level A € R, such that \ belongs to the union of all closures of finite spectral gaps'. We

divide this into two cases:

o Case I: (Spectral gap interior) The level A is in a finite spectral gap (3}, aj11) such

that ) is close either to the spectral edge 3; or to the spectral edge ;1.

o Case II: (Spectral edge case) The level A coincides with one of the spectral edges
of some finite spectral gap, i.e., \ = ;1 (lower edge) or A\ = 3; (upper edge) for

some j € N.

'All of the results still hold for the case when A does not exceed the bottom of the spectrum, i.e. for the
semi-infinite gap.
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In Case I, the Green’s function G, (x, y) is the Schwartz kernel of the resolvent operator
Ry 1 := (L—X\)"!, while in Case II, it is the Schwartz kernel of the weak limit of resolvent
operators Ry 1, := (L — A £ &)~ as e — 0 (the sign & depends on whether ) is an upper
or a lower spectral edge). Note that in the flat case X = R%, Green’s function asymptotics
of periodic elliptic operators were obtained in Chapter 3 for Case I, and in [52] for Case II.
As in the previous chapter (see also [52]), we will deduce all asymptotics from an assumed
“generic" spectral edge behavior of the dispersion relation of the operator L.

The organization of the chapter is as follows. In Subsection 4.2.1, we will review
some general notions and results about group actions on abelian coverings, and then in
Subsection 4.2.2, we introduce additive and multiplicative functions defined on an abelian
covering, which will be needed for writing down the main formulae of Green’s function
asymptotics. Subsection 4.2.3 contains not only a brief introduction to periodic elliptic
operators on abelian coverings, but also the necessary notations and assumptions for for-
mulating the asymptotics. The main results of this chapter are stated in Section 4.3. In
Section 4.4, the Floquet-Bloch theory is recalled and the problem is reduced to studying
a scalar integral. Some auxiliary statements that appeared in Chapter 3 and [52] are col-
lected in Section 4.5 for reader’s convenience, and the final proofs of the main results are
provided in Section 4.6. Section 4.7 provides the proofs of some technical claims that

were postponed from previous sections.
4.2 Notions and preliminary results
4.2.1 Group actions and abelian coverings

Let X be a noncompact smooth Riemannian manifold of dimension n equipped with an
isometric, properly discontinuous, free, and co-compact action of an finitely generated
abelian discrete group GG. The action of an element ¢ € GG on x € X is denoted by

g - . Due to our conditions, the orbit space M = X/ is a compact smooth Riemannian
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manifold of dimension n when equipped with the metric pushed down from X. We assume
that X and M are connected. Thus, we are dealing with a normal abelian covering of a
compact manifold

X5 M(=X/G),

where G is the deck group of the covering 7.

Let dx(-,-) be the distance metric on the Riemannian manifold X. It is known that
X is a complete Riemannian manifold since it is a Riemannian covering of a compact
Riemannian manifold M (see e.g., [17]). Thus, for any two points p and ¢ in X, dx(p, q)
is the length of a length minimizing geodesic connecting these two points.

Let S be any finite generating set of the deck group GG. We define the word length |g|s
of g € G to be the number of generators in the shortest word representing g as a product

of elements in 5"

lgls = min{n € N|g=151...5,,8 €SUS '}

The word metric ds on G with respect to S is the metric on GG defined by the formula

ds(g,h) =g 'hls

forany g, h € G.
We introduce a notion in geometric group theory due to Gromov that we will need here

(see e.g., [57,62]).

Definition 4.2.1. Let Y, Z be metric spaces. Amap [ : Y — Z is called a quasi-isometry,

if the following conditions are satisfied:
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e There are constants C';, 'y > 0 such that

Crldy (z,y) — Cy < dz(f(x), f(y)) < Cidy(z,y) + Cs

forall z,y € Y.

e The image f(Y) is a net in Z, i.e., there is some constant C' > 0 so that if z € Z,

then there exists y € Y such that dz(f(y), z) < C.

We remark that given any two finite generating sets S; and Sy of G, the two word
metrics dg, and dg, on GG are equivalent (see e.g., [62, Theorem 1.3.12]).

The next result, which directly follows from the Svarc-Milnor lemma (see e.g., [57,
Lemma 2.8], [62, Proposition 1.3.13]), establishes a quasi-isometry between the word
metric dg(-,-) of the deck group G and the distance metric dx(-,-) of the Riemannian

covering X of a closed connected Riemannian manifold M .

Proposition 4.2.2. For any x € X, the map

(G,ds) — (X, dx)

g—g-x
given by the action of the deck transformation group G on X is a quasi-isometry.

Since G is a finitely generated abelian group, its torsion free subgroup is a free abelian

subgroup Z¢ of finite index. Hence, we obtain a normal Z?-covering

X = M'(= X/7%),
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and a normal covering of M with a finite number of sheets

M — M.

Then M’ is still a compact Riemannian manifold. By switching to the normal subcovering

X

d
2% M, we assume from now on that the deck group G is Z and substitute M’ for

M. This will not reduce generality of our results 2.

Notation 4.2.3. (a) Hereafter, we choose the symmetric set {—1, 1}¢ to be the generating

(b)

(c)

set S of Z%. Then the function z = (21,...,24) — Z;l:l |z;| is the word length

function | - | on Z? associated with S.

For a general Riemannian manifold Y, we denote by py the Riemannian measure
of Y. We use the notation L?(Y) for the Lebesgue function space L(Y, uy ). Also,
the notation L2, ,(Y") stands for the subspace of L*(Y’) consisting of compactly sup-
ported functions. It is worth mentioning that in our case, the Riemannian measure

px 1is the lifting of the Riemannian measure p; to X. Thus, py is a G-invariant

Riemannian measure on X.

We recall that a fundamental domain F'(M) for M in X (with respect to the action of
(?) is an open subset of X such that for any g # e, F(M)Ng- F(M) = () and the

subset

X\Jg-F(m)

geG
has measure zero. One can refer to [7] for constructions of such fundamental domains.
Henceforth, we use the notation F'( M) to stand for a fixed fundamental domain for M

in X.

The same reduction holds for any finitely generated virtually abelian deck group G.
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Remark 4.2.4. The closure of F'(M) contains at least one point in X from every orbit of

G,ie.,

X=Jg-F(M). (4.1

geqG

Thus, if F': X — R is the lifting of an integrable function f : M — R to X, then

| r@dunte) = [ Pla)duxta) (42)

F(M)

4.2.2 Additive and multiplicative functions on abelian coverings

To formulate our main results in Section 4.3, we need to introduce an analog of expo-
nential type functions on the noncompact covering X.

We begin with a notion of additive and multiplicative functions on X (see [56]) 3.

Definition 4.2.5. e A real smooth function v on X is said to be additive if there is a

homomorphism « : G — R such that

u(g-z) =u(x)+ag), forall (g,z)€ G x X.

e A real smooth function v on X is said to be multiplicative if there is a homomor-

phism § from G to the multiplicative group R \ {0} such that

v(g-x) =B(g)v(x), forall (g,z)€ G x X.

e Let m € N. A function « (resp. ) that maps X to R™ is called a vector-valued
additive (resp. multiplicative) function on X if every component of « (resp. ) is

also additive (resp. multiplicative) on X.

3The definition can apply to any covering manifold with a discrete deck group.
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Following [50,56], we can define explicitly some additive and multiplicative functions

for which the group homomorphisms «, 5 appearing in Definition 4.2.5 are trivial.

Definition 4.2.6. Let f be a nonnegative function in C'2°(X) such that f is strictly positive

on F(M). Forany j = 1,...,d, we define the following function

We also put E(z) := (Ey(z),. .., Eq(x)).

Then E; is a positive function satisfying the multiplicative property E;(g - ) =
exp (g;)E;(x), for any ¢ = (g1,...,94) € Z°. The multiplicative function E plays a
similar role to the one played by the exponential function e* on the Euclidean space R%.

By taking logarithms, we obtain an additive function on X, which leads to the next

definition.

Definition 4.2.7. We denote by A the smooth R?-valued function on X

h(z) := (log Ey(z),- - - ,log E,(x)).

Then h = (hy, ..., hq) with hj(x) = log E;(x). Thus, h satisfies the following additivity:

h(g-z)=h(x)+g, forall (g,z)€ G xX. (4.3)

Here we use the natural embedding G = Z? C R%.

Clearly, the definitions of functions £ and i depend on the choice of the function f and
the fundamental domain F'(M). So, there is no canonical choice for constructing additive
and multiplicative functions. Nevertheless, a more invariant approach to defining additive

functions on co-compact coverings can be found in Appendix A, for instance.
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The following important comparison between the Riemannian metric and the distance

from the additive function A in Definition 4.2.7 will be needed later.

Proposition 4.2.8. There are some positive constants Ry, (depending on h) and C > 1

such that whenever dx(x,y) > Ry, we have

C™ - dx(@,y) < |h(z) — h(y)] < C' - dx(z,y).

Here | - | is the Euclidean distance on R?, and the constant C' is independent of the choice
of h.
As a consequence, the pseudo-distance dy,(z,y) := |h(z) — h(y)| — oo if and only if

dx(x,y) — oc.
The proof of this statement is given in Section 4.7.

Definition 4.2.9. For any additive function h, A, is the set consisting of unit vectors

s € S?! such that there exist two points x and y satisfying dx (z,y) > Ry, and

s = (h(z) = h(y))/[h(z) = h(y)].

The set A;, is called the admissible set of the additive function 5, and its elements are

admissible directions of /.
For the proof of the following proposition, one can see in Section 4.7.

Proposition 4.2.10. For any additive function h on X, one has

QNS ={g/lgl | g € Z*\ {0}} C A,. (4.4)

Hence, the admissible set Aj, of h is dense in the sphere S, In particular, when d = 2,

Ay, is the whole unit circle S.
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Remark 4.2.11. When the dimension n of X is less than (d — 1)/2 (e.g., if d > 5 and X
is the standard two dimensional jungle gym JG? in R, see [63]), the (d — 1)-dimensional
Lebesgue measure of the admissible set .A4;, of any additive function 2 on X is zero. To
see this, we first denote by X}, the 2n-dimensional smooth manifold {(z,y) € X x X |

dx(x,y) > Ry}, and then consider the smooth mapping:

U X, — St
hx) — h(y)
(= 9) = Ty = hy)]

Then A}, is the range of W. Since dim X}, < dim S%!, every point in the range of ¥ is

critical and thus, A has measure zero by Sard’s theorem.
Example 4.2.12.

e Here is a family of non-trivial examples of additive functions in the flat case, i.e.,
when the covering space X is R? and the base is the d-dimensional torus T¢. Let
d > 1 and ¢ be a real smooth function in R? such that ¢ is Z?-periodic. It is
shown in [5] that there exists a unique map F, = ((F,)1,..., (F,)q) : R — R?
satisfying F,,(0) = 0, the additive condition (4.3), i.e., F,,(z + n) = F,,(z) + n for

any (z,n) € R? x Z4, and the equation

A(F@)i =Vp- V(F@>ia

for any 1 <14 < d. Note that F,, is just the identity mapping in the trivial case when
¢ = 0. Moreover, it is also known [5] that when d = 2, F, is a diffeomorphism of R¢
onto itself. In particular, for any Z*-periodic function ¢, |F,,(z)—F,(y)| > C,lz—y|
for any z,y € R? for some C, > 0. However, when d > 3, F}, may admit a critical

point for some Z?-periodic function .
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o Let X & M,Y 4 N be normal Z% and Z® coverings of compact Riemannian
manifolds M and N respectively. Then X x Y £°% M x N is also a normal Z% +
covering of M x N. Consider any R% -valued function h; (resp. R%-valued function
hs) defined on X (resp. Y). Let us denote by h; & hs the following R4 *%_valued

functionon X x Y

(@ ha)(z,y) = (i (2), ha(y)),  (2,y) € X x Y.

Then it is clear that hy @ hs is additive (resp. multiplicative) on X x Y if and only
if both functions h; and hy are additive (resp. multiplicative). Moreover, Ay, on, €

{(a1 - Ap,, a9 - Ap,) | 0 < aj,as < 1 and a%—l—a% =1}

4.2.3 Some notions and assumptions

Let L be a bounded from below, real and symmetric second-order elliptic* operator
on X with smooth’ coefficients such that the operator commutes with the action of G.
An operator that commutes with the action of G is called a GG-periodic (or sometimes
periodic) operator for brevity.

Notice that on a Riemannian co-compact covering, any G-periodic elliptic operator

with smooth coefficients is uniformly elliptic in the sense that

Lg' (0. ) < Cle[ 2 (2.6) € T'X,E £0.

Here |¢| is the Riemannian length of (x, ) and Lo (x, §) is the principal symbol of L.
The periodic operator L can be pushed down to an elliptic operator L,; on M and thus,

L is the lifting of an elliptic operator L,; to X. By a slight abuse of notation, we will use

4The ellipticity is understood in the sense of the nonvanishing of the principal symbol of the operator L
on the cotangent bundle of the underlying manifold (with the zero section removed).
3The smoothness condition is assumed for avoiding lengthy technicalities and it can be relaxed.
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the same notation L for both elliptic operators acting on X and M.

Under these assumptions on L, the symmetric operator L with the domain C'2°(X)
is essentially self-adjoint in L?(X), i.e., the minimal operator L,,;, coincides with the
maximal operator L,,,, (see Chapter 2 or [71] for notation L,,;, and L,,,,). This fact
can be found in [7, Proposition 3.1], for instance ®. Hence, there exists a unique self-
adjoint extension in the Hilbert space L?(X) of L, which we denote also by L. Since L
is a uniformly elliptic operator on the manifold X of bounded geometry, its domain is the
Sobolev space H 2(X ) [71, Proposition 4.1], and henceforward, we always work with this
self-adjoint operator L.

From now on, we fix an additive function h (see Definition 4.2.7). The following

lemma is a preparation for the next definition.

Lemma 4.2.13. For any k € C%, we have

e W@ (2, D)e* M@ = L(z, D) + B(k),

where B(k) is a smooth differential operator of order 1 on X that commutes with the action
of the deck group G. Thus by pushing down, the differential operators e="*"®) [,(z, D)e™*"@)
and B(k) can be considered also as differential operators on M. Moreover, given any
m € R, the mapping

ko e—ik-h(w)L(x7 D)@lkh(w)
is analytic in k as a B(H™ (M), H™(M))-valued function.

Proof. Tt is standard that the commutator [L, e’*"(*)] is a differential operator of order 1

®In [7], Atiyah proves for symmetric elliptic operators acting on Hermitian vector bundles over any
general co-compact covering manifold (not necessary to be a Riemannian covering). Later, in [16], Briining
and Sunada extend Atiyah’s arguments to the case including compact quotient space X /G with singularities.
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on X. Now one can write

B(k) — o thh(@) [ pikeh(@) _ [ o—ikh(z) [L, eik.h(m)]

to see that B(k) is also a smooth differential operator of order 1. Also, one can check
that B(k) commutes with the action of G by using G-periodicity of the operator L and
additivity of h. This proves the first claim of the lemma. From a standard fact (see e.g.,
[36, Theorem 2.2]), the operator e~ **"(*) Le*#*(=) defined on X can be written as a sum
> laj<2 K La, where L, is a G-periodic differential operator on X of order 2 — || which
is independent of k. By pushing the above sum down to a sum of operators on M, the

claim about analyticity in k is then obvious. [

Definition 4.2.14. For any k € C¢, we denote by L(k) the elliptic operator

e—ik-h(w)L(J;? D)ezkh(m)

in L?(M) with the domain the Sobolev space H?(M).

The operator L(k) is self-adjoint in L?(M) for each k € R?, with the domain H?(M).
Due to ellipticity of L, each of the operators L(k) (k € R?) has discrete real spectrum and
thus, we can single out continuous and piecewise-analytic band functions \;(k) for each
j € Nas before. By Lemma 4.2.13, the operators L(k) are perturbations of the self-adjoint
operator L(0) by lower order operators B(k) for each k € C?. Consequently, the spectra
of the operators L(k) on M are all discrete (see [4, pp.180-190]). In a similar manner to

the flat case, we have:

Theorem 4.2.15. [16, 20, 45,47, 66, 74,75] The spectrum of L is the union of all the

spectra of L(k) when k runs over the Brillouin zone (or any its shifted copy), i.e., for any
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quasimomentum ko € R%:

oL)= |J o@k)= U NKIjeN} (4.5)

keko+[—m,m]? keko+[—m,m]?
We recall the notions of Bloch variety and Fermi surface from Chapter 2.

Definition 4.2.16. A Bloch solution with quasimomentum £ of the equation L(z, D)u =

0 is a solution of the form

u(z) = e g(z),

where h is any fixed additive function on X and the function ¢ is invariant under the action
of the deck transformation group G.’
Using the above definition of Bloch solution with quasimomentum k, one can define

the Bloch variety and the Fermi surfaces of the operator L as in Definition 2.2.5.

Without loss of generality, it is enough to assume henceforth that 0 is the spectral edge
of interest (by adding a constant into the operator L if necessary) and there is a spectral
gap below this spectral edge 0. Therefore, 0 is the lower spectral edge of some spectral
band 8, i.e., 0 is the minimal value of some band function \;(k) for some j € N over the
Brillouin zone.

From now on, we will impose Assumption A in Chapter 3 on the band function \;.

Remark 4.2.17.

(a) For the flat case, the main theorem in [44] shows that the conditions A1 and A2 are
‘generically’ satisfied, i.e., they can be achieved by small perturbation of the potential
of a periodic Schrodinger operator. The same proof in [44] still works for periodic

Schrodinger operators on a general abelian covering.

"It is easy to see that this definition is independent of the choice of h.
8The upper spectral edge case is treated similarly.
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(b) We shall only use this condition AS for the spectral gap interior case.

(c) Due to results of [43] (in the flat case X = R?) and of [45] (in the general case),
all these assumptions A1-AS hold at the bottom of the spectrum for non-magnetic

Schrodinger operators.
Here are some notations that will be used throughout this chapter.

Notation 4.2.18. For any two functions f and g defined on X x X, if there exist constants

C > 0and R > 0 such that |f(z,y)| < Clg(x,y)| whenever dx(z,y) > R, we write
f(z,y) = O(yg(z,y)).

We say that a set W in C? is symmetric if for any z € W, we have z € V.
The following proposition will play a crucial role in establishing Theorem 4.3.1. We

omit the proof since it requires no change from our discussion in Chapter 3.

Proposition 4.2.19. There exists an ¢y > 0 and a symmetric open subset V. C C? con-
taining the quasimomentum ko from the Assumption A such that the band function \; in
Assumption A has an analytic continuation into a neighborhood of V, and the following
properties hold for any z in a symmetric neighborhood of V :

(P1) \(z) is a simple eigenvalue of L(z).

(P2) |\;(2)| < €0 and B(0, e0) No(L(2)) = {\;(2)}.

(P3) There is a nonzero G-periodic function ¢, defined on X such that

L(2)¢. = Aj(2)0-.

Moreover, z — ¢, can be chosen analytic as a H*(M)-valued function.
(P4) 2R(Hess (X\;)(2)) > min o(Hess (X;)(ko)) - Laxa-
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LetV = {8 € R?| ky+iB € V}. Now we introduce the function E(3) := \;(ko+i83),
which is defined on V. The next lemma (see also Chapter 3) is the only place in this chapter

where the condition A5 is used.

Lemma 4.2.20. Assume the condition A5. Then E is a real-valued function. By reducing
the neighborhood V' in Proposition 4.2.19 if necessary, the function I/ can be assumed
real analytic and strictly concave function from V to R such that its Hessian at any point

B inV is negative-definite.

For A e R,weput'y :={f €V : E(5) =}

Due to Lemma 4.2.20, there exists a diffeomorphism /3 from S¢~! onto I'y such that

VE(/BS) = _|VE(/BS>|S

In addition, limy|_,0 max,csa—1 55| = 0. By letting |A| be sufficiently small, we will sup-

pose that there is an 7y > 0 (independent of s) such that

{k+itB, | (t,5) €[0,1] x ST |k — ko| < 1o} C V- (4.6)

4.3 The main results

We recall that h is a fixed additive function (see Definition 4.2.7).
First, we consider the case when A is inside a gap and is near to one of the edges of

the gap. The following result is an analog for abelian coverings of compact Riemannian

manifolds of Theorem 3.2.5.

Theorem 4.3.1. (Spectral gap interior)
Suppose that d > 2 and the conditions AI-AS5 are satisfied. For A < O sufficiently close

to 0 (depending on the dispersion branch \; and the operator L), the Green’s function G
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of L at \ admits the following asymptotics as dx (z,y) — oco:

e(h(@)—h(y))(iko—Bs) |VE(BS)|(d—3)/2
2m|h(z) — h(y)) D2 det (—P, Hess (E)(BS)PS)1/2

Pro-+ips (T) Pro—is, (Y) + e(h(y)fh(x))'ﬁsr<
(¢k0+’i53 ) ¢k0*iﬁs )LQ(M)

G)\ (LL’, y) =
(4.7)

z,Y).

Here
s = (h(z) — h(y))/Ih(z) — h(y)| € Ap,

and P, is the projection from R? onto the tangent space of the unit sphere S™" at the point
s. Also, there is a constant C' > 0 (independent of s and of the choice of h) such that the

remainder term r satisfies

[z, y)| < dx(z,y)"",
when dx (x,y) is large enough.

By using rational admissible directions (see (4.4)) in the formula (4.7), the large scale
behaviors of the Green’s function along orbits of the G-action admit the following nice

form in which the additive function A is absent.

Corollary 4.3.2. Under the same notations and hypotheses of Theorem 4.3.1 and suppose

that \ < 0 is close enough to 0, as |g| — oo (g € Z2), we have

e9 (tko—=Bg/|g)) |VE(59/|9|)|(¢173)/2
(2m|g])d=1/2 et (—Pg/|g| Hess (F) (Bg/|g|)739/|g|)l/2

¢ko+iﬁg/|g\ (x)ﬁbko—iﬁg/\gl (g-x)
(DhotiBy1g1> Pho—i8, 101 L2(00)

Gi(z,g-x) =
4.8)

+erP0(lg ).

We also give another interpretation of Theorem 4.3.1 in the special case X = R? as

follows:

Corollary 4.3.3. Let o be any real, Z*-periodic and smooth function on R?, and we recall
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the notation F, from Example 4.2.12. Let s be any unit vector in R? and y € R?. Then as

[t| = oo (t € R), the Green’s function G\ of L at X (=~ 0) has the following asymptotics

ets(iko—Bs)

(2m|VE(B;)] - det (—Ps Hess (E)(85)Ps) - [t])1/2

y Pro+ip. (Fy ' (ts + Fu(y))) bro—in. (¥)
(Pro-+ips> Pro—i, ) L2(T2)

GA(F, (ts + Fo(y)), y) =

+ e O(|t ).

We now switch to the case when A is on the boundary of the spectrum. The following

result is a generalization of [52, Theorem 2].

Theorem 4.3.4. (Spectral edge case)
Let d > 3, the operator L satisfy the assumptions AI-A4, and R_. = (L + &)~ fora
small € > 0 denote the resolvent of L near the spectral edge A = 0 (which exists, due to

Assumption A). Then:

i) Forany ¢, ¢ € L? (X), as € — 0, we have:

comp

(R0, ) = (R, p).

for an operator R : L2, (X)— L

comp loc

(X).

ii) The Schwartz kernel G(x,vy) of the operator R, which we call the Green’s function

of L (at the spectral edge 0), has the following asymptotics when dx (z,y) — 0o:

P(%)d(h(w)—h(y))ko . ¢ko(x>¢ko(y)
2n 02/t HIH 2 (h(x) — h)* 2 on ooy 40

x (140 (dx(z,y)™")) + O (dx(z,y)' ™),

G(ZB,y) =
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where H is the Hessian matrix of \; at k.
Remark 4.3.5.

(a) An interesting feature in the main results is that the dimension n of the covering man-
ifold X does not explicitly enter into the asymptotics (4.7) and (4.9) (especially, see
also (4.8)). Anyway, it certainly influences the geometry of the dispersion curves and
therefore the asymptotics too. However, as the Riemannian distance of x and y be-
comes larger, one can see that in the asymptotics, the role of the dimension n is rather
limited, while the influence of the rank d of the torsion-free subgroup of the deck

group G is stronger.

(b) Note that for a periodic elliptic operator of second order on R?, at the bottom of
its spectrum, the operator is known to be critical when the dimension d < 2 (see

[56,60,64]). So, the assumption d > 3 is needed in Theorem 4.3.4.

Proving Theorem 4.3.4 by generalizing [52, Theorem 2] is similar to showing Theorem
4.3.1 by generalizing Theorem 3.2.5. Thus, after finishing the proof of Theorem 4.3.1, we
will sketch briefly the proof of Theorem 4.3.4 in Section 4.6.

We outline the general strategy of both the proofs of Theorem 4.3.1 and Theorem 4.3.4.
As in Chapter 3 and [52], the idea is to show that only one branch of the dispersion relation

A; appearing in the Assumption A will control the asymptotics.

e Step 1: We use the Floquet transform to reduce the problems of finding asymptotics
of Green’s functions to the problems of obtaining asymptotics of some integral ex-

pressions with respect to the quasimomentum k.

e Step 2: We localize these expressions around the quasimomentum k, and then we
cut an “infinite-dimensional" part of the operator to deal only with the multiplication

operator by the dispersion branch \;.
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e Step 3: The dispersion curve around this part is almost a paraboloid according to
the assumption A4, thus, we can reduce this piece of operator to the normal form
in the free case. In this step, we obtain some scalar integral expressions which are
close to the ones arising when dealing with the Green’s function of the Laplacian
operator at the level \. Our remaining task is devoted to computing the asymptotics

of these scalar integrals.

4.4 A Floquet-Bloch reduction of the problem

In this section, we will consider the Green’s function G(z, y) at the level X in Case I

(i.e., Spectral gap interior).

4.4.1 The Floquet transforms on abelian coverings and a Floquet reduction of the

problem

Notation 4.4.1. We introduce the following fundamental domain O (with respect to the
dual lattice 27Z%):

0= k‘o+ [—7T,7T]d.

If kg is a high symmetry point of the Brillouin zone (i.e., ky satisfies the assumption

AS5), then O is the fundamental domain we defined in Definition 3.2.1.

The following transform will play the role of the Fourier transform for the periodic

case. Indeed, it is a version of the Fourier transform on the group Z¢ of periods.
Definition 4.4.2. The Floquet transform F (which depends on the choice of h)

~

f(x) = f(k,x)

maps a compactly supported function f on X into a function J?deﬁned on R? x X in the

following way:
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) = 5 s ay-e.

yeZd
From the above definition, one can see that f is Z?-periodic in the z-variable and

satisfies a cyclic condition with respect to k:

k@) = fkx), vy ez
Flk +2my,2) = e~ rh@ f(k z), Vv € 24 .

Thus, it suffices to consider the Floquet transform ans a function defined on O x M.
Usually, we will regard fas a function f(k;, -) in k-variable in O with values in the function
space L?(M).

We recall some properties of the Floquet transform on abelian coverings as in Lemma

2.2.4. Note that the proof for the abelian covering case does not require any change from

the proof for the flat case.

L. The transform F is an isometry of L?(X) onto

/69 L*(M) = L*(O, L*(M))
O

and of H?(X) onto
/O H2(M) = L2(0, HX(M)).

II. The following two equivalent inversion formulae F ! are given by

f(z)=(2m)™ / eFN@ F (ke x)dk, x € X, (4.10)
@]
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and

~ _

f(z) = (27r)d/ eFh f(k A7t ) dk, x €~ F(M). 4.11)
0

I1. (Block-diagonalization) The action of any periodic elliptic operator P in L?(X) un-

der the Floquet transform F is given by

FP(z,D)F ' = / : P(k)dk,
@

~

where P(k)(z, D) = e=*"® P(z, D)e*"®@_ In other words, Pf(k) = P(k)f(k),
forany f € H*(X).

The next statement is proven in Proposition 3.4.1 for the flat case. We omit the proof.

Proposition 4.4.3. If |\| is small enough (depending on the dispersion branch \; and L),
then forany (t,s) € [0,1]xS% !, we have \ € o(L(k+itf,)) ifand only if (k,t) = (ko, 1).

As in the previous chapter, the main ingredients in the proof of this statement are the
upper-semicontinuity of the spectra of the analytic family {L(k)},cc« and the fact that £/
is a real function, whose Hessian is negative definite (Proposition 4.2.20).

We consider the following real, smooth linear elliptic operators on X:
Ly, = P M) Lm0 (1 5) € [0,1) x ST

Notice that these operators are G-periodic, and when pushing L; ; down to M, we get the
operator L(—i/,). We also use the notation L, for L, ;. By Floquet-Bloch theory for the

operator L, 5, we obtain

o(Lis) = | o(Lea(k) = | o(L(k +itB,)) 2 {Ni(k + itBs) beo. (4.12)

keO keO
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We now fix a real number A such that the statement of Proposition 4.4.3 holds. By
(4.12) and Proposition 4.4.3, X is in the resolvent set of L , for any (¢,s) € [0,1) x S®1.
Let R, s, be the resolvent operator (L; s — A)~'. From the block-diagonalize property of

the Floquet transform, for any f € L? (X), we have

comp

o~

Rt,s,)\f(k) = (Lt,S(k) - /\)_1 (k)7 (t7 k) S [Oa ]-) x O.
Hence, the sesquilinear form (R; s, f, ) is equal to

0 [ (L) = 2770, 208))

where p € L2 (X).

comp

In the next lemma, the weak convergence as ¢ 1 of the operator R, ; ) in Lgomp(X )

is proved and thus, we can introduce the limit operator I, \ := lim R, .
t—1—

Lemma 4.4.4. Let d > 2. Under Assumption A, for [, in L2, (X), the following

comp

equality holds:

Jim (Resnf, ) = (27r)_d/

(Ls(k) (), @(k;)) dk. (4.13)
@]

The integral in the right hand side of (4.13) is absolutely convergent.

This lemma is a direct corollary of the analyticity of the Bloch variety (see Proposition
2.2.6), Proposition 4.4.3 and the Lebesgue Dominated Convergence Theorem as being
shown in Lemma 3.5.1. We skip the proof.

For any (t,s) € [0,1) x S%71, let G, 4, be the Green’s function of L, ; at \, which is
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the kernel of R, ; . Thus,
Gt,g,A(I, y) _ etﬁy(h(x)—h(y))GA(x,y)

Taking the limit and applying Lemma 4.4.4, we conclude that the function
Gs,)\(xa y) = eﬁs'(h(y)_h(””))GA(x,y)

is the integral kernel of the operator R ) defined as follows:

— ~

R f(k) = (Lg(k) — A) 7' f(k). (4.14)

Hence, the problem of finding asymptotics of (G, is now equivalent to obtaining asymp-
totics of any function G 5, where s is an admissible direction in Ay,
In addition, by (4.10) and (4.14), the function G », which is also the Green’s function

of the operator L; at ), is the integral kernel of the operator R, , that acts on L2, (X) in

comp

the following way:

Roxflx) = (2m)~° / RO (LK) — N f(k,2)dk, z € X. (4.15)
(@)

This accomplishes Step 1 in our strategy of the proof.
4.4.2 Isolating the leading term in R, , and a reduced Green’s function

The purpose of this part is to complete Step 2, i.e., to localize the part of the integral

in (4.15), that is responsible for the leading term of the Green’s function asymptotics.

Definition 4.4.5. For any z € V, we denote by P(z) the spectral projector X p(o.,)(L(2)),
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1.e.,

P()=——— ¢ (L(z)—a) ' da.

211 |or|=€0
By (P2), P(z) projects L?( M) onto the eigenspace spanned by ¢.. We also put Q(z) :=
I — P(z) and denote by R(P(z)), R(Q(z)) the ranges of the projectors P(z), Q(z) corre-

spondingly.

Using (P6) and the fact that P(k+if;)* = P(k—1i0s), we can deduce that if |k — kq| <

ro (see (3.8)), the following equality holds

(u, Pr—is, ) L2(ar)
(PktiBss Pr—iBs ) 12(0)

Pk +iBs)u = Grrip., Yu € L*(M). (4.16)

Let 1 be a cut-off smooth function on O supported on {k € O | |k — ko| < 79} and
equal to 1 around k.

According to (4.15), for any f € C2°(X), we want to find u such that

-~

(Ls(k) = Mu(k) = (k).

Then the Green’s function G ) satisfies

/X Gunlr,y) £ (9) dpix (y) = F 0k, 2) = (o),

where F is the Floquet transform introduced in Definition 4.4.2.
By Proposition 4.4.3, the operator L,(k) — X is invertible for any % such that k # k.

Hence, we can decompose (k) = wo(k)+(Ls(k) =)~ (1—n(k)) f(k), where i satisfies

the equation

~

(Ls(k) = Aao(k) = n(k)f (k).
Observe that R(P(z)) and R(Q)(z)) are invariant subspaces for the operator L(z) for
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any z € V. Thus, if u;, uy are functions such that @ (k) = P(k + i0s)uo(k) and a3 (k)
Q(k + iBs)up(k), we must have

(La(k) = N P(k + i)t (k) = n(k)P(k + i85) f (k) (4.17)

and

~

Due to (P2), when £ is close to ko, A = \;(ko + i/35) must belong to the resolvent of

the operator L,(k)|r(qk+is,))- Hence, we can write uy(k) = n(k)(Ls(k) — \)'Q(k +

o~

i3s) f (k). Therefore, u(k) equals

-~

i1 (k) + (1= n(k)(Ls(k) = X)7" +0(k)(Ls(k) = Nr@uerisny) " Qk +iB5)) f (k).

U

The next theorem shows that we can ignore the infinite-dimensional part of the operator

R; », 1.e., the second term in the above sum of two operators.
Theorem 4.4.6. Define

To(k) := (1 = n(k))(Ls(k) = A) 7+ n(k)(Ls(k) = Nl r@u+is) QU +iB5).

Let T, be the operator acting on L*(X) as follows:

T,=F"! ((27‘()_d / : T.(k) dk) F.

(@]

Then the Schwartz kernel K4 (x,y) of the operator Ty is continuous away from the

diagonal of X, and moreover, it is also rapidly decaying in a uniform way with respect to
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s € ST, je., forany N > 0,

sup | K(z,y)| = Oldx(z,5)").

seSd—1

A proof using microlocal analysis is provided in Section 4.7.
Now let V; := R, » —T%. Then the Schwartz kernel Gy (x, y) of the operator V satisfies

the following relation:

/X Golw,9) F(y) dpix (y) = F 01 (k, 2) = i (). (4.18)

In what follows, we will find an integral representation of the kernel Gy. We will see that
G provides the leading term of the asymptotics of the kernel G . For this reason, Gy is
called a reduced Green’s function.

To find u,, we use the equation (4.17) and apply (4.16) to deduce

-~

(N (B +1iBs) = N)(a1(k), dr—is,) 2oy = n(k)(f(k), dr—ig.)L2(a)-

Using w3 (k) = P(k + i55)t1(k) and (4.16) again, the above identity becomes

-~

n(k)Prrig, () (f(K), dr—is.)r2(a)

b z) = (Prtipss Qbkfiﬁs)LQ(M)(Aj(k +ifs) =)

k£ ko.

By the inverse Floquet transform (4.10), for any z € X,

_ i [ k) (k) bisis. () (F(E), bi_is.)2n
uy(z) = (2m) /Oe G b e Collo £ 7)) dk.
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Now we repeat some calculations in Chapter 3 to have

etthte (k Y) ki, (Y) Pryip, (T)
)= gy / / askﬂﬁs,ask nJuranOull +if) - y) e (w) Ak

e )77( >¢k 263( )¢k+zﬂs( )
27T // ) NeG qbkﬂﬁsaﬁbk zﬁs)L2 ( <k+lﬁs) )dﬂX(y) dk

(W=D (k) pr—ip, (v - y) Phap, (@ z) 4
¢k+zﬁs7¢k 7,65) ( (k—i_zﬁs) )

= L et (D)) ( )¢k iﬁs( )¢k+zﬂs( )
- (27T)d/xf v </ (Grraans o) 2 O (b + 1B2) — >dk> Apxy)

In the second equality above, we use the identity (4.2).

px (y) dk

Consequently, from (4.18), we conclude that our reduced Green’s function is

1 ik (h(z)— Pr+ip, (T) Pr—is, (y)
G _ ke (h(@)=h(¥)) (I + dk.
o(@,y) (2m)d / € U )(Cbk:-i—zﬂsa ¢kz—z‘65)L2(M)()‘j(k +ifs) = A)
(4.19)

4.5 Some auxiliary statements

In this part, we provide the analogs of some results from Chapter 3 and [52], which
do not require any significant change in the proofs when dealing with the case of abelian
coverings. Instead of repeating the details, we will make brief comments.

The first result studies the local smoothness in (z, ) of the eigenfunctions ¢, () of the

operator L(z) with the eigenvalue \;(2).

Lemma 4.5.1. Suppose that B C R? is the open ball centered at ko with radius r, (see
(4.6)). Then for each s € S*~*, the functions ¢yvip,(x) are smooth on a neighborhood of

B x M in R x M. In addition, for any multi-index o, the functions D ¢y, () are also
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jointly continuous in (s, k, x). In particular, we have

sup | Dg Grtip, (x)| < oo
(8,k,x)€SI=L X Bx M

To obtain Lemma 4.5.1, one can modify the proof of Proposition 3.9.6 without any
significant change. Indeed, the three main ingredients in the proof are the smoothness in z
of the family of operators { L(z) },cy acting between Sobolev spaces (Lemma 4.2.13), the
property (P3) for bootstrapping regularity of eigenfunctions in &, and the standard coercive
estimates of elliptic operators L(z) on the compact manifold M (see e.g., [76, estimate
(11.29)]) for bootstrapping regularity in x.

The next result is the asymptotics of the scalar integral expression obtained from the

integral representation (4.19) of the reduced Green’s function Gy.

Proposition 4.5.2. Suppose that d > 2 and B is the open ball defined in Proposition
4.5.1. Let n(k) be a smooth cut off function around the point ko, and {ps(k,x,y)}cga—1
be a family of smooth C*-valued functions defined on B x M x M. We also use the
same notation ji,(k,xz,y) for its lift to B x X x X. For each quadruple (s,a,z,y) €

St x RY x X x X, we define

R 1 ik-a U(k)
I(s,a) = /Oe /\j(k+iﬁs)—)\dk

and

J(SJ(I?ny) = L / €1kan(k)(k _ k’o) i Ms(l{/‘,l”y) dk.
@]

(2m)d N0k +iBs) — A

Assume that the size of the support of 1) is small enough. Fix a direction s € S%! and
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. a ,
consider all vectors a such that s = —. Then when |a| is large enough, we have

lal

iko-a (d—3)/2
I(s,a) = eV E(S,)] — + O(la]~*?) (4.20)
(2|a])@=1)/2 det (=P, Hess (E)(5,)Ps)"

and

sup  |J(s,a,z,9)| = O(la|~%?). (4.21)
(z,y)eX x X

Moreover; if all derivatives of js(k, z,y) with respect to k are uniformly bounded in s €
S, then all the terms O(-) in (4.20) and (4.21) are also uniform in s € S*! when

la| — oo.

The proof of Proposition 4.5.2 can be extracted from Section 3.6. The main ingredient
(see Proposition 3.6.1) is an application of the Weierstrass Preparation Lemma in several
complex variables to have a factorization of the denominator A;(k + i3;) — X of the inte-
grands of /, J into a form that is close to the normal form in the free case. This trick was
used in [81] in the discrete setting.

The next result [52, Theorem 3.3] will be needed in the proof of Theorem 4.3.4.

Proposition 4.5.3. Assume d > 3. Let a € R%. Let 1) be a smooth function satisfying the
assumptions of Proposition 4.5.2, and let ji(k, x,y) be a smooth G-periodic function from
a neighborhood of B x X x X to C%. Then the following asymptotics hold when |a| — oo:

1 ik-a U(k) o F(%l - 1>€ik0.a —1
o o = e AR + Ol

and

sup
z,yeX

Zka77<k)<k - kO) ) ,U,(k?, L, y) . a —d+1
| () ] = Ol ),

oo
Here the notation I'(z) means the Gamma function I'(z) = / ¥ e " du.
0
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4.6 Proofs of the main results
Proof of Theorem 4.3.1.
Proof. We fix an admissible direction s of the additive function i and consider any x,y €

X such that

:SGAh.

As we discussed in Section 4.4, the Green’s function GG satisfies

Ga(z,y) = P MW@ G (2, ), (4.22)

where G » is the Schwartz kernel of the resolvent operator R,. Also, R, = V, + Ts.
Due to Theorem 4.4.6, the Schwartz kernel of 7 decays rapidly (uniformly in s) when
dx(z,y) is large enough. Hence, to find the asymptotics of the kernel of Rj ,, it suffices

to consider the kernel GG of the operator V;. Define

a:= h(x) — h(y) (4.23)

and

Prris., (D) Pr—ip. (@)
PrtiBe> Ph—if ) L2(M)

ﬂw(k,p,Q) = ( ) (W>p7Q)€Sd_1XMXM.

By Lemma 4.5.1, /i, is a smooth function on B x M x M. By Taylor expanding around
ko, fi(ky D, q) = i (ko, 0, q) + (k — ko) - po(k, p, q) for some smooth C?-valued function
p(k, p, q) defined on B x M x M. From Lemma 4.5.1 and the definition of /i,

wp DRk )] < oo,
(w,k,2)€S4~ L xBx M

for any multi-index a. Thus, all derivatives of p,, with respect to k£ are also uniformly

120



bounded in w € S?"'. We now can rewrite (4.19) as follows:

GO(xv y) = (271T)d /Oeik-a )\j(k ‘Z(Z];)s) —\ (ﬂs(k()vxu y) + (k - kO) : :us(ka z, y)) dk

Drorifs (T)Pro—ip, (Y)
I
(87 a) (¢ko+i,357 ¢k0*iﬁs)L2(M)

+ J(s,a,z,y).

Here the integrals I(s,a) and J(s,a,z,y) are defined in Proposition 4.5.2. Applying

Proposition 4.5.2, we obtain the following asymptotics whenever |a| is large enough:

( e | (5,)|
(27|a])@=1/2 det (—P; Hess (E)(85)Ps)

¢k0+1:ﬁs<x)¢k?fiﬁs(y) +O(|a|_d/2)’
(Pro+iBs> Pho—iB. ) L2(M)

Golar,y) = 75+ Ollal ™))

(4.24)

where all the terms O(-) are uniform in s. Due to (4.23) and Proposition 4.2.8, O(|a|*) =
O(dx(x,y)") for any ¢ € Z, provided that dx(z,y) > Rj. Hence, by choosing the
constant R, larger if necessary, we can assume that when dx (z,y) > R, the asymptotics
(4.24) would follow. Finally, we substitute (4.23) to the asymptotics (4.24) and then use

(4.22) to deduce Theorem 4.3.1. O

Proof of Theorem 4.3.4.

Proof. We recall that A = )\;(ko) = 0 and R_. is the resolvent operator (L + £)~* when

e > 0 is small enough. We will repeat the Floquet reduction approach in Section 4.4.

2
comp

Given any f, ¢ € L7, (X), the sesquilinear form (R__f, ¢) is

n [ () o) F(b). 20 d

The first conclusion of this theorem is achieved by a similar argument in [52, Lemma 2.3].

~

Hence the operator R = lim._,o+ R_. is defined by the identity R f (k) = R(k)f(k) and
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the Green’s function G is the Schwartz kernel of the operator R. To single out the principal
term in R, we first choose a neighborhood V' C O of kg such that when k € V, there is
a non-zero G-periodic eigenfunction ¢y (z) of the operator L(k) with the corresponding
eigenvalue \;(k) and moreover, the mapping k — ¢x(-) is analytic in k as a H*(M)-
valued function. For such k& € V, let us denote by P (k) the spectral projector of L(k) that
projects L*(M) onto the eigenspace spanned by ¢y.. The notation R(I — P(k)) stands for
the range of the projector I — P(k). Then we pick 1 as a smooth cut off function around

ko such that supp(n) € V. Define the operator

1 (S5}
T::W/O (k) dk,

where

T(k) := (1= n(k)L(k) ™ +n(k) (LK) | ra-pay) ™ (I = P(k)).

As in Theorem 4.4.6, the Schwartz kernel K (z,y) of T is rapidly decaying as dx (z,y) —
0o. Thus, the asymptotics of the Green’s function G are the same as the asymptotics of the
Schwartz kernel GG of the operator R — T'. To find G, we repeat the arguments in Section

4.4 to derive the formula

1 ik (h()—h(y)) 1K) ¢k(x)¢k(y>dk,
(2m)¢ /06 Aj(k) ol Zzan

GO(l'ay): %CUGX-

As in the proof of Theorem 4.3.1, we set a := h(z) — h(y) and rewrite the smooth function

Or(7)Pr(y) _ Do () Phy (V)

9elZ20r kol F2cn)

+ (k - kO) ’ u(k,x,y),

for some smooth G-periodic function i : B x X x X — C?. Now by applying Proposition

4.5.3, the proof is completed. [
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4.7 Proofs of technical statements
4.7.1 Proof of Proposition 4.2.8

Fixing a point xy € X, we let

R = max dx(xo, ),

and

R, = max |h(z) — h(y)|.

(z,y)eKxK

Due to Proposition 4.2.2 and the fact that | - |g is equivalent to | - | on Z<, there exist

C7 > 1 and C5 > 0 such that

Crtdx (g1 70,92 - 20) — Ca < |g1 — ga| < C1 - dx (g1 - To, g2 - 7o) + Cs,

forany g; € Z%,i =1, 2.
Now we consider any two points x, y in X. By (4.1), we can select 2, ¢ in K such that

x =g, -7andy = g, - j for some g, g, € Z%. Since Z? acts by isometries, we get

dx(gl “ Lo, 91 53) = dX(fL“m if) and dX(92 * Lo, 92 - ?j) = dX(-T07 ?J) (4.25)

By (A.3), we have
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Using triangle inequalities and (4.25), we obtain

h(x) — h(y)] < Ry + |g1 — go| < Ci - dx (g1 - o, g2 - 20) + Riy + Co
< Cy - dy(x,y) + Cy - (dx (2o, &) + dx (20, §)) + Ry + Co

S Cl . dx({lf,y) + (QOlR + EL + OQ)

Likewise,

h(z) = h(y)] > g1 — go] — R > Ct - dx(g1 - o, g2 - 20) — (R + Cb)
> O dx(z,y) — (CF - (dx (w0, ) + dx (0, 9)) + Ry, + Cs)

> 07 dy(z,y) — (2C1R + Ry, + Cs).

The statement follows if we put C' := 2C and R, :== 2C1(2C1 R + EL + C5).
4.7.2 Proof of Proposition 4.2.10

By Definition 4.2.7, any rational point in the unit sphere S~! is an admissible direction
of the additive function /& and thus we have (4.4). By using the stereographic projection,
one can see that the subset Q¢ N S?~! is dense in S?~!. Hence, the density of Ay, follows.
Now we consider the case d = 2. For any point 2, € X, we denote by A (z) the subset
of Ay, consisting of unit vectors s such that there exists a point x in {x € X | dx(z,x¢) >
Ry} satistying either h(x) — h(xg) = |h(x) — h(zo)|s or h(zo) — h(z) = |h(z) — h(xo)]s.

It is enough to prove that for any zg, Ay (7o) = S*. Without loss of generality, we suppose
h(z)
[h()]
defined on the connected set {z € X | dx(x,z9) > Ry}. Then Y is a connected subset

that h(z9) = 0. Let Y be the range of the continuous function z , which is

that contains Q? N'S! since h(n - x¢) = n for any n € Z%. Suppose for contradiction, there
is a unit vector s such that s ¢ A;(z) and hence, Y C S' \ {#s}. Thus, Y cannot be

connected, which is a contradiction.
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4.7.3 Proof of Theorem 4.4.6

It suffices to prove the following claim:

Theorem 4.7.1. Let ¢ and 6 be two functions in C°(X) such that the metric distance
on X between the supports of these two functions is bigger than Ry,. Let K ;¢ be the
Schwartz kernel of the operator ¢1s0. Then K 4¢ is continuous and rapidly decaying

(uniformly in s) on X x X, i.e., for any N > 0, we have

sup K go(2,y)] < C(1+dx(a,y) ",

sesd-1
for some positive constant C' = C(N, ||¢||o, [|0]]c0)-

Let K, (k,z,y) be the Schwartz kernel of the operator T;(k). The next lemma is an

analog for abelian coverings of Lemma 3.7.15.

Lemma 4.7.2. Let ¢ and 0 be any two compactly supported functions on X such that

supp(¢) Nsupp(#) = 0. Then the following identity holds for any (z,y) € X x X:

1

Kopole) = g [ 01 00(0) (k. n(e). ) ()

where T is the covering map X — M.

Proof. Let P be the subset of C'2°(X) consisting of all functions ¢) whose support is
connected, and if v € G such that supp 1" Nsupp ¢ # 0 then ~ is the identity element of
the deck group . Since any compactly supported function on X can be decomposed as a
finite sum of functions in P, we can assume that both ¢ and 6 belong to P. Then the rest

is similar to the proof of Lemma 3.7.15. ]

Another key ingredient in proving Theorem 4.7.1 is the following result:
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Proposition 4.7.3. Let dim M = n. Then for any multi-index « such that |o| > n,

DY K,(k,x,y) is a continuous function on M x M. Furthermore, we have

sup | DR Ks(k,x,y)| < oo.
(8,k,x,y)€SI=1x Ox M x M

Before providing the proof of Proposition 4.7.3, let us use it to prove Theorem 4.7.1.

Proof of Theorem 4.7.1.

Proof. The exponential function e2™"(*) is G-periodic for any v € G, and hence, it is
also defined on M. We use the same notation e2™7"*(*) for the corresponding multiplication

operator on L?(M ). Then we can write
Ty(k 4 217y) = e~ 7 h@T ()™ h@)  (k4) e Ox G
It follows that for any multi-index «,

BB WDMDTRK (K + 21y, 7w(x), 7 (y)) = e HOPOIVRK, (k, 7(2), 7 (y)).
(4.26)
Now we apply integration by parts to the identity in Lemma 4.7.2 to obtain

P()0(y)

i (h(w) = h(y)* Kspp(z,y) = (2m)4

/ R @I GO K (K 7(z), n(y)) dk.

i (4.27)
Note that due to (4.26), when using integration by parts, we do not have any boundary
term. If o] > n, then the above integral is uniformly bounded in (s, z,y) by Propo-
sition 4.7.3. When ¢(x)0(y) # 0, we have dx(z,y) > Rj, and so, h(z) # h(y) by

Proposition 4.2.8. Therefore, the kernel K 4¢(x,y) is continuous on X x X. Now fix

(x,y) such that ¢(x)f(y) # 0. Next we choose ¢y € {1,...,d} such that |hy(z) —

126



hey(y)| = maxy<p<q |he(z) — he(y)| > 0. Fix any N > n. Leta = (aq,...,qq) =
N (61405 - - - 0a4,), where 8. . is the Kronecker delta. Then |(h(z) — h(y))¥| ™! = |y, (z) —
he, ()|~ < dN2|h(z) — h(y)|~N. Consequently, from (4.27), we derive a positive con-

stant C' (independent of x, i) such that

sup |Kyg0(z,y)| < Clo(@)8(y)ll(h(x)=h(y)*| ™ < Ca¥?||¢lloc]|6]] o (@) —h(y)] .

seSd—1

Using Proposition 4.2.8, the above estimate becomes

sup (1 +dx(z,9))" Ky po(z,y)| < oo,
(s,2,y)€SE—Ix X x X

which yields the conclusion. 0

Back to Proposition 4.7.3, we first introduce several notions. Let S(M ) be the space of
Schwartz functions on M. The first notion is about the order of an operator on the Sobolev

scale (see e.g. [67, Definition 5.1.1]).

Definition 4.7.4. A linear operator A : S(M) — S(M) is said to be of order ¢/ € R
on the Sobolev scale (H™ (M ))cr if for every m € R it can be extended to a bounded
linear operator A,,,, € B(H™(M), H"*(M)). In this situation, we denote by the
same notation A any of the operators A, ,,—;.

A typical example of an operator of order ¢ on the Sobolev scale is any pseudodiffer-

ential operator of order ¢ acting on M.

Definition 4.7.5. Given ¢/ € R. We denote by S,(M) the set consisting of families of

operators { B,(k) } (s r)esi-1xo acting on M so that the following properties hold:

e Forany (s, k) € S™! x O, B,(k) is of order ¢ on the Sobolev scale (H?(M)),cr.
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e Forany p € R, the operator B, (k) is smooth in k as a B(H? (M), H?~*(M))-valued

function.

e For any multi-index o, D§ B, (k) is of order /—|«| on the Sobolev scale (H?(M))yer

and moreover, for any p € R, the following uniform condition holds

sup ||DI?BS(]€)HB(HP(M),HP*”W(M)) < 00.
(s,k)€SI-1x 0O

It is worth giving a separate definition for the class S_..(M) = ﬂ Sy(M) as follows:

LeR

Definition 4.7.6. We denote by S_., (M) the set consisting of families of smoothing op-

erators {Us(k) } (s kyesi-1 xo acting on M so that the following properties hold:

e For any my, my € R, the operator U,(k) is smooth in k asa B(H™ (M), H™*(M))-

valued function.

e The following uniform condition holds for any multi-index a:

sup  [[DRUs(k)| B(zm (ary,mme () < 00
(s,k)ESI—1xO

We now introduce the class ge(T”) of parameter-dependent toroidal symbols on the

n-dimensional torus °.

Definition 4.7.7. The parameter-dependent class S¢(T") consists of symbols (s, k; z, €)

satisfying the following conditions:

e For each (s,k) € S*! x O, the function o (s, k; -, -) is a symbol of order £ on the

torus T" (see e.g., Definition 3.7.3 in Chapter 3).

Note that for the case n = d, the class of parameter-dependent toroidal symbols was introduced in Def-
inition 3.7.3. Nevertheless, the techniques and results on parameter-dependent toroidal pseudodifferential
operators obtained in Section 3.8 of Chapter 3 still apply for the general case n > 1.
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e Consider any multi-indices «, 3,y and any s € S, Then the function o (s, -; -, - is
smooth on O x T™ x R". Furthermore, for some positive constant C', 3, (independent
of s,k,x,§), we have

sup. |DEDE DY (s, ks, €)] < Capy (1 + [y 11171,
seSd—

‘We also define
ST = () S(T™).

leR

The class of pseudodifferential operators on the torus T" is also provided in the next

definition.
Definition 4.7.8.

e Given a symbol o(z, ) of order ¢ on the torus T", the corresponding periodic pseu-

dodifferential operator Op(c) is defined by

(Op(0)f) (2) = 3 o(, €) F(€)e2,

gezr
where f(€) is the Fourier coefficient of f at £.

e Forany / € R U {—o0}, the set of all families of periodic pseudodifferential oper-
ators {Op(a (s, k;+,+)) }(s,k)esi-1x 0> Where o runs over the class S¢(T™), is denoted

by Op(S*(T")).
Remarks 4.7.9.

(a) Itis straightforward to check from definitions and the Leibnitz rule that for any ¢4, {5 €

R U {—o0o}, if {As(k)} (s pesi-1x0s {Bs(k)} (s p)esi-1x0 are two families of operators
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in the class Sy, (M) and Sy, (M), respectively, then the family { A, (k) Bs(k) } (s iyesi-1x0
belongs to Sy, 1, (M).

(b) If the family of operators {B;(k)} (s k)esi-1xo belongs to the class Sy(M) then by
definition, the family of operators { Dy B,(k)} (s x)esi-1xo is in the class Sy, (M)

for any multi-index .
(€) S_oo(T™) is the class S introduced in Definition 3.7.8.

(d) Given a family of symbols {0 (s, k; -, )} kyesi-1x0 € S*(T™), it follows from defini-
tions here and boundedness on Sobolev spaces of periodic pseudodifferential operators
(see e.g., [67, Corollary 4.8.3]) that the corresponding family of periodic pseudodiffer-
ential operators {Op(c (s, k; -, +)) }(s kjesi-1xo is in the class S(T"). In other words,

Op(S4(T™)) C 8,(T") for any ¢ € R U {—o0}.

Roughly speaking, the next lemma says that we can deduce regularity of the Schwartz

kernel of an operator provided that it acts “nicely" on Sobolev spaces.

Lemma 4.7.10. Let A be a bounded operator in L*(M), where M is a compact n-
dimensional manifold. Suppose that the range of A is contained in H™ (M), where m >

n/2 and in addition,

[AF [ ey < Cllfll=man) (4.28)

forall f € L*(M).
Then A is an integral operator whose kernel K 4(x,y) is bounded and uniformly con-

tinuous on M x M and the following estimate holds:
[ Ka(z,y)| <%0, (4.29)

where 7y, is a constant depending only on n and m.
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Proof. For the Euclidean case, this fact is shown in [1, Lemma 2.2]. To prove this on a
general compact manifold, we simply choose a finite cover U/ = {U,} of M with charts
U, = R". Then fix a smooth partition of unity {¢,} with respect to the cover U, i.e.,
supp ¢, € U,. We decompose A = Zp’q ©pAp,. Given any f € L*(M), the estimate
(4.28) will imply the estimate ||, Ap, f||zmw,) < C||f|lg-mu,) for any p, q. Hence, we
obtain the conclusion of the lemma for the kernel of each operator ¢, Ap,, and thus for

kernel of A too. O

In what follows, we will show a nice behavior of kernels of families of operators in the

class Sy(M) following from an application of the previous lemma.
Corollary 4.7.11. Let { € RU {—oo}. If {Bs(k)}(sx) is a family of operators in Sy(M),

then the Schwartz kernel Kg, (k,x,y) of the operator B,(k) satisfies

sup |DgKBs(kﬂl‘7y)| < 00,
s,k,x,y

for any multi-index « satisfying || > n + { + 2.

Proof. For such |a| > n+ ¢+ 2, we pick some integer m € (n/2, (—¢+ |«|)/2]. Then by

Definition 4.7.5, we have

sup || D By(k) fllzrany < Call fllz-mqan-
Applying Lemma 4.7.10, the estimates (4.29) hold for kernels D} Kg,(k, z,y) of the op-
erators D By (k) uniformly in (s, k). O

The next theorem shows the inversion formula (i.e., the existence of a family of para-
metrices) in the case of T". The proof of this theorem just comes straight from the proof

of Theorem 3.7.6. We omit the details.
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Theorem 4.7.12. Let r € N. Let us consider a family of 2r'" order elliptic operators
{(Qs(K)} (s,p)esi-1x0 on the torus T". Assume that this family is in Op(S?(T™)) and
moreover; for each (s, k) € STt x O, the symbol o(s, k; x, &) of the operator Q,(k) is of
the form

0<57 k7$a€> = LO(Sa k>x7£) + 6(87 k7$7€>7

where the families of parameter-dependent symbols { Lo(s, k; 2, £) } s.k), 10(5, k32, €) Yo,
are in the class S*" (T") and S 2r=1(T™), respectively. Moreover, suppose that there is some

constant A > 0 such that whenever || > A, we have
|Lo(s, k;z,6)| > 1, (s, k,x) € ST x O x T",

We call Ly(s, k;x, &) the “leading part” of the symbol o (s, k; x,§).

Then there exists a family of parametrices { Ay(k)} (s xy in Op(S=2"(T™)) such that

Qs(k)As(k) =1- Rs<k)v

where R4(k) is some family of smoothing operators in the class S_,(T™).

To build a family of parametrices on a compact manifold, we will follow closely the
strategy in [36] by working on open subsets of the torus first and then gluing together to

get the final global result.

Theorem 4.7.13. There exists a family of operators {A(k)} (s pyesi-1xo in S—o(M) and

a family of operators { Ry(k)} (s pyesi-1xo in S—oo(M) such that

Proof. LetV,, (p = 1,..., N) be a finite covering of the compact manifold M by evenly
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covered coordinate charts. We also choose an open covering U, (p = 1, ..., N) that refine
the covering {V},} such that U, C V,, for any p. We can assume that each V,, is an open
subset of (0, 27)" in R™ and hence, we can view each V/, as an open subset of the torus T".

To simplify the notation, we will suppress the index p = 1, ..., N which specifies the
open sets V), U, until the final steps of the proof. Let us denote by iy, 7y the inclusion
mapping from iy : U — T" and the restriction mapping ry : C°(T") — C*°(U), corre-
spondingly. We also use the same notation L4(k) — A for its restrictions to the coordinate
charts V, U if no confusion arises. Then (Ls(k) — \)ry can be considered as an operator
on T".

Let us first establish the following localized version of the inversion formula

Lemma 4.7.14. There are two families of symbols {a(s, k; x, g)}(&k‘)ESd_lXO in S’*Q(Tn)
and {T(Sa kv x, £)}(s,k)€§d*1 xO in g—oo<Tn) so that

(Ls(k) - )\>TUAS(]€) - TU(I - Rs(k))a

where As(k) = Op(a(s,k;-,-)), Rs(k) = Op(r(s,k;-,-)).

Proof. We denote by (Ls(k) — \)T the transpose operator of (Ls(k) — \) on V. Now let

v be a function in C>°(V') such that v = 1 in a neighborhood of U and 0 < v < 1. Define

Observe that each operator Q,(k) is a globally defined 4" order differential operator on

T™ with the following principal symbol

v(@)|oo(s, kyz, ) + (1 — v(x))l¢]"
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Here o¢(s, k; x, £) is the non-vanishing symbol of the elliptic operator Ls(k) — A. Thus,
each operator Q(k) is an elliptic differential operator on T™. In order to apply Theorem
4.7.12 to the family { Q. (k) } (s,x), we need to study its family of symbols {o (s, k; z, &) }(s.k).-

On the evenly covered chart 1/, we can assume that the operator Lg(k) — A is of the

form

> aa(@)(D+ (k+i8)" - Vh),

|| <2
for some functions a, € C*(V) and h is a smooth function obtained from the addi-

tive function h through some coordinate transformation on the chart V. Similarly, since

(Ls(k) —\)T = L(k —if,) — )\, one can write the operator (L,(k) — \)* on V as follows:

> Galx)(D + (k —iB,)" - VR)°,

Jor| <2

for some functions @, € C'*°(V). Then, on T™, the operator Q, (k) has the following form:

> aa(@)ag(x)(D+ (k+iB,)" - VR)*(D + (k —iB,)" - V) u(z) + (1 - v(x)) A%

laf,|B]<2

Put
“ LY (s, k;2,8) = > aa(@)(E+ (k+iB,)T - Vh)*,
|af=2
L (s, ks 2, 8) o= > agla)(€ + (k—iB,)" - Vh)”
- 18|
Lo(s, k; 2, €) = v(x) L§ (s, ks 2, )L (s, ks 2, €) + (1 — v(x))[¢]*. (4.30)
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Then the symbol o (s, k; x, £) of the operator Q4(k) can be written as
LO(Sv k) Z, 6) + &(87 ka z, 5)7

where the family of symbols {5 (s, k; 2, &) }(sx) is in the class S3(T™). Using the bound-
edness of VA and coefficients a, on the support of v, we deduce that the family of the
symbols of {Q,(k)}(s.x) is in S*(T™). Thus, our remaining task is to find a constant A > 0
such that whenever || > A, we obtain |L(s, k; z,£)| > 1. Note that by ellipticity, there

are positive constants ¢, 6, such that

S aalx) > 61f¢P

|a|=2

and
Z da@) > 92‘§|2'
|a|=2
We define
lalloo == D llaa()llzeuppe)) + 1as(-) ] L suppe)
|or|=|8|=2
and
A = (k;T-viL? 0-Yall| 87 - VA2 9—1), _ 12
R L S | 1°+0, " lallo|Bs "+, p
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Suppose that |£]? > 2 max A,, then for any p = 1, 2, we have
p: b

N |Lp)skx§|>§R(\/ 2L skxg)
> Vo) [ 0,06 + K7 - VAP = 3 aa()(87 - Vi)

|laf=2

> v/ote) (0, (S5 =177 ) = fallelo? - Vi)
> \/v(z).

Thus, due to (4.30), if |£|* > 2max,—12 A, + 1 then |Lo(s, k;z,&)| > (Vv(z))? + (1 —
v(z))[€]* > 1 as we wish. Now we are able to apply Theorem 4.7.12 to the family of
operators {Q,(k)}(s ), i.e., there are families of operators {B,(k)}x) € Op(S~4(T"))
and {Rs(k)}(sk) € S—oc(T™) such that Q. (k)Bs(k) = I — R,(k).

Let A, (k) := (Ls(k) — \)TvB,(k). Since v = 1 on a neighborhood of U, we obtain

ro(I — Rs(k)) = ryQs(k)Bs(k)
= riy (La(k) = N (Ly(k) = NTvB(k) + (1 - 1) A%B, (k)
= ry(La(k) = N)(Lo(k) = N VB, (k)

= (Ls(k) - )‘)TU(Ls(k) - /\)TVBS(k) = (Ls<k) - A)TUAS<I{:)

In addition, {A,(k)} ek € Op(S~%(T™)) according to the composition formula in Theo-

rem 3.8.2. Hence, the lemma is proved. O]

Let pu, € C*(U,) (p = 1,..., N) be a smooth partition of unity with respect to the

cover {Up},—1,.. nandforany p =1,..., N, let v, be a smooth function in C°(U,) such

.....

that it equals one on a neighborhood of supp(/,). By Lemma 4.7.14, there are families of
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operators { A" (k)}sx) € Op(S~2(T™)) and {RY (k) } sk € S_oo(T™) such that

(Ly(k) — Nro, AP (k) = 1y, (I — RP(K)). 4.31)

S

Due to pseudolocality, (1 — up)Ag” )(k)up € S_o(T™). This implies that rUpAgp (k) T
yp.Agp)(k),up € S_o(T"), and thus,

By (4.31), iy — (Ls(k) — N1, AP (k) € S_oo(T™). Hence,
sl = (Ls(k) = N AP (k) 1y € S—oo(T").

Since both operators 1,/ and (Ls(k)— )\)yp.Agp ) (k) are globally defined on the manifold

M, it follows that

D (ol = (Lo(k) = Np AP (k)psp) € S_oo(M). (4.32)
p
Because Op(S—2(T") C S_o(T") (see Remark 4.7.9), each family {Agp)(/@)}(sk) is in the
class S_o(T") for every p. Since {z/p.Agp )(k)up}(&k) is globally defined on M, we also
have {VpAgp)Uﬁ),up}(s’k) € S_5(M) for any p. Now define A,(k) := Z vy AP (k) 1, and
p

Ry(k) := I — (Ls(k) — N)Ag(E). Then {As(k)}sr € S—2(M) and moreover, due to
(4.32), the family of operators { R(k)}(sx) is in S_oo (M). o

The statement of the following lemma is standard.

Lemma 4.7.15. Let M be a compact metric space, D be a domain in R™ (m € N)

and Hy, Hy be two infinite-dimensional separable Hilbert spaces. Let {Tg}senm be a
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family of smooth maps from D to B(Hy, Hs) such that for any multi-index «, the map
(s,d) — DSTs(d) is continuous from M x D to B(Hy, Hs). Suppose that there is a family
of maps {Vs}seam from D to B(Hs, Hy) such that Vi(d)Ts(d) = 1p, and Ts(d)Vy(d) =
1y, for any (s,d) € M x D. Then for each s € M, the map d € D — V,(d) is
smooth as a B(Hy, Hy)-valued function. Furthermore for any multi-index «, the map

s, k) — DYVi(d) is continuous on M x D as a B(H,, Hy)-valued function.
d

We now go back to the family of operators {7 (k) } (s x)esi-1xo- The next statement is

the main ingredient in establishing Proposition 4.7.3.

Proposition 4.7.16. There is a family of operators { Bs(k)} (s k) in S—o(M) such that the
family of operators {T,(k) — By(k)}(s,r) belongs to S_oo(M).

Proof. Using Theorem 4.7.13, we can find a family {A,(k)} s x) € S—2(M) and a family
{Rs(k)}sk) € S—c(M) such that

From the definition of T(k), we obtain Ty(k)(Ls(k) — X) = I — n(k)P(k +i0,).

Using these equalities, we deduce

Ty(k) = As(k) = n(k)P(k +i0s) As(k) + T5(k) Rs (k).

We recall from Section 4.4 that P(k+i/3,) projects L*(M) onto the eigenspace spanned

by the eigenfunction ¢;s,. Hence, its kernel is the following function

ok + i) (x)d(k — iB,)(y)
(¢(l{ + iﬁs)v ¢(k - Zﬁs))LQ(M) ’

which is smooth due to Lemma 4.5.1. Thus, the family of operators {n(k)P(k +i53;) } s x)
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is in S_(M). Also, the family of operators {n(k)Q(k + i) } (s x) belongs to So(M).
We put B,(k) := A(k) — n(k)P(k +i8s)As(k), then {By(k) } (s x) € S—2(M). Since
Ts(k) — Bs(k) = Ts(k)Rs(k), the remaining task is to check that the family of operators
{Ts(k)Rs(k)} (s,5) belongs to the class S_o(M).
Let us consider any two real numbers m; and m,. By Lemma 4.2.13, the operators
L,(k) — Xand Ly(k)Q(k + i3,) — A are smooth in k as B(H™2(M), H™~2(M))-valued
functions such that their derivatives with respect to k are jointly continuous in (s, k). On

the other hand, we can rewrite (see Lemma 3.65):

Ti(k) = (1= n(k))(Ls(k) = )" +0(R)A™ P(k +iBs) + 0 (k) (Ls()Q(k +if,) — A) 7.

Hence, by Lemma 4.7.15, T,(k) is smooth in k as a B(H™>%(M), H™(M))-valued
function and its derivatives with respect to k are jointly continuous in (s, k). Therefore,

for any multi-index «, we have

sup HD?Ts(k)||B(Hm2—2(M),Hmz (M) < 0.
(s,k)EST—1xO

Moreover since { Ry(k)}(sk) € S—oo(M), Rs(k) is smooth as a B(H™ (M), H™>2(M))-

valued function and for any multi-index o,

sup | DR Rs (k)| peerma (ary, rma—2(aryy < 00.
(s,k)eSe—1x0O

From the Leibniz rule, the composition 7 (k) R,(k) is smooth as a B(H™ (M), H™*(M))-

valued function and for any multi-index «, the following uniform condition also holds

sup || D (To(k) B (k)| 3eams a2 ary) < 00
(s,k)ESI—1xO
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Consequently, {T(k) Rs(k)} (s pesi-1x0 € S—oo(M) as we wish. O

‘We finish this subsection.

Proof of Proposition 4.7.3.

Proof. Proposition 4.7.16 provides us with the decomposition T (k) = Bg(k) + C,(k),
where {B,(k)} s ey € S—o(M) and {C(k)}sp) € S—oc(M). Let Kp iy, Kc,r) be the
Schwartz kernels of B,(k) and Cs(k), correspondingly. It follows from applying Corollary
4.7.11 that for any multi-index « satisfying || > n, the kernel D¢ B, (k) is continuous on
M x M and

sup | Dy Kp, ) (k, z,y)| < oo.
(s,k,z,y)

A similar conclusion also holds for the kernels D C, (k) and thus, for D K(k, x,y) too.

]

4.8 Concluding remarks

e The asymptotics (4.7) and (4.9) can be described in terms of the Albanese map
and the Albanese pseudo-distance (see [46, Section 2]), provided that the additive

function h is chosen to be harmonic (see also Appendix A).

e The main results in this chapter can be easily carried over to the case when the
band edge occurs at finitely many quasimomenta kg in the Brillouin zone (instead
of assuming the condition A3) by summing the asymptotics coming from all these
non-degenerate isolated extrema.

It was shown recently in [25] that for a wide class of two dimensional periodic ellip-
tic second-order operators (including the class of operators we consider in this paper
and periodic magnetic Schrodinger operators in 20), the extrema of any spectral
band function (not necessarily spectral edges) are attained on a finite set of values

of the quasimomentum in the Brillouin zone.

140



e The proofs of our results go through verbatim for periodic elliptic second-order op-

erators acting on vector bundles over the abelian covering X.
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5. A LIOUVILLE-RIEMANN-ROCH THEOREM ON ABELIAN COVERINGS.

5.1 Introduction

The classical Rie