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ABSTRACT 

 

Internet of Things has moved from being a 2-tier server-client into a 3-tier server-

gateway-client architecture. The gateway plays a vital role in this 3-tier architecture with 

intelligence being built into it. With no proper standardization and with more vendors 

having proprietary apps, which are shared in this multi-tenant gateway, it demands 

sandboxing and isolation of apps at the gateway.  

My thesis explores light weight LXD System containers and state of the art 

configuration management tools like Chef, to build an architecture, leveraging 

Infrastructure as a Code, creating an app delivery pipeline to deploy apps in jailed 

environments at an IoT Gateway while maintaining a minimal overhead. The framework 

also provides ways to automate tests for deployment validation.  
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CHAPTER I 

INTRODUCTION  

 

Over the years the IoT stack has transformed itself into a 3 tier based architecture, 

where many end devices (things) connect to a gateway which communicates with an 

enterprise back end IoT Server. The gateway plays a similar role to a wireless router placed 

in one's home but with more roles and responsibilities than routing packets. In state-of-

the-art IoT systems, most data are processed, and decisions are taken at the gateway level. 

With multiple vendors developing IoT solutions, apps share the gateway pushing it 

towards multi-tenancy. However, these vendor specific apps usually prefer having 

elevated access and acquire control of the entire system. With no proper standardization 

and with more vendors having proprietary solutions, sharing of these proprietary apps in 

the gateway inflict on each other affecting their functionality and performance. 

It calls solutions for both app isolation and formation of an app delivery pipeline. 

Though app isolation is provided by generic virtualization technologies, they are resource 

heavy to be used with IoT devices.  

In this thesis, we would be exploring various virtualization technologies that use 

hypervisor at the center. Hypervisors is a software layer that enables a system to run one 

or more Virtual Machines on a physical server. Hypervisors achieve this by translating 

and tapping Instruction set architecture and sometimes completely simulating the 

hardware environment. This increases the overhead and reduces the performance of the 

system. We would be moving towards eliminating the hypervisor layer altogether by 
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bringing in the technology of containerization. Machine Containers use advanced Linux 

 

Fig 1.1 Thesis Overview. 
 

concepts like cgroups, namespaces, chroot and LSM to provide a same level of isolation 

as of virtual machines but with a minimized overhead. We would then be using Chef's 

configuration management framework to build an app delivery pipeline with continuous 

delivery and continuous integration. To validate the pipeline a heavy weight resource 

provider called InSpec Handler will be developed that would perform automated tests. 

  To provide orchestration services, we would be using OpenStack's framework by 

integrating it with containers. We would also develop Chef modules to automate the 

deployment of OpenStack. We now have an end to end solution for bootstrapping, 

managing containers and an app delivery pipeline. This solution is termed as 'OpenLab,' 

and can be used to create lightweight automated software as a service cloud environment. 

Having a lightweight solution that provides system orchestration, configuration 

management, and device isolation, we have laid the foundation for a 3-tier multi-tenant 
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IoT system. However, to further optimize the solution we will replace OpenStack by 

developing a lightweight framework 'IoT Stack.' Together, Machine Containers, Chef, 

InSpec Handler and IoT Stack will form the core components of our proposed IoT 

architecture. We will be using various benchmarks to support our claims. 
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CHAPTER II  

INTRODUCTION TO VIRTUALIZATION 

 

2.1 Virtualization 

Virtualization [1] is a software layer that is used to abstract out applications and 

their components from the hardware. The virtualized object is presented with a logical 

view of the underlying resource. This logical view is not always required to represent an 

exact replica of the hardware. Moreover, in most of the cases, this logical layer is very 

different from the physical layer and is designed in such a way that favors the application 

that is to be run on top of it. The main goal of virtualization is to provide isolation, 

scalability, reliability, availability and to create a unified process for IT protocols like 

maintaining security and management. 

Virtualization was first implemented more than 30 years ago by IBM. 

Virtualization was used to partition the mainframe computers into separate virtual 

machines logically. These partitions allowed mainframes to multitask and run multiple 

application at the same time. Mainframes were expensive resources, and so they were 

partitioned in a way to fully leverage the investment.  

However, during the 1980s and 1990s, the x86 architecture was brought into the 

market that made it possible to build inexpensive servers. This led to the formation of a 

new server-client model.  

Instead of using one central computing center, an island of computers was 

clustered together to form a distributed computing environment. This model, being way 
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cheaper was widely adopted.  Usage of mainframes fell drastically, and virtualization was 

effectively abandoned. 

It was not until the 2000s when companies started realizing the problem of one 

machine - one OS - one app architecture, thus bringing virtualization back into the picture. 

 

2.2 Goals of Virtualization 

In the introduction, we stated that companies started realizing the problem of one 

machine - one OS - one app architecture. What was the problem exactly? 

Most of the machines that were acquired to run the applications were built keeping 

in mind, the configuration required to run it at full capacity.  However, in 85 to 90 percent 

of the time, there was relatively lesser load and about 15 percent of the total processing 

capacity was used. In a way, Moore's law became irrelevant to most of the companies as 

they were not able to take advantage of the increased power density. Given the powerful 

hardware resources, the software typically used only a fraction of the available processing 

power. In addition to that, the light loaded machine still took room space, consumed units 

of electricity and kept the running cost high making it nearly the same to full load running 

capacity. Taking Moore's law into account, next year, machines will have twice as much 

as hardware resources further increasing the gap of resource utilization to available 

resources.  

The rise of internet caused companies to establish more communication with 

customers, partners and even led to collecting real-time data from objects through the IoT 

platform. To offer an example, Large Hadron Collider produces approximately 25 
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petabytes of data per year and is being continuously analyzed by the LHC computing grid. 

This means that more servers are being put together which is causing a real estate problem. 

Data centers need to be more efficient, with increasing the processing power per sq. ft. 

ratio. 

Moreover, with the increase in the number of servers, there was an increasing 

demand for system administrators. Servers do not run by themselves. Many factors like 

installing an operating system, maintaining security patches, monitoring critical services, 

backing up server data etc. needed to be done. This is labor intensive and required more 

human resources to be put into it. 

Considering all these, virtualization was brought back into the picture. 

The blueprint goals [2] of virtualization are as follows: - 

1. Isolation of an application from the operating system, allowing it to operate on 

a foreign operating system. 

2. Isolation of workloads from other application to enforce security, thus enabling 

multiple application to reside in parallel without the risk of affecting other applications 

when one of them is compromised. 

3. Optimizing the use of a single system by running it on near full capacity, 

decreasing the time the system remains idle. 

4. Increasing the reliability or availability of a system through redundancy, if a 

virtual machine fails, another replica of the machine image should take its place. 

5. Easier administration of the resources. 
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2.3 CPU Virtualization 

 

Figure 2.1 Hypervisor Managing Virtual Machines. 
 

A hypervisor is a software layer that enables a system to run one or more Virtual 

Machines on a physical server. This foreign virtual machine is referred to as 'Guest OS / 

System' and the physical server in which this hypervisor runs is called the 'Host OS / 

System.'  There are variants of virtualization techniques. Figure 1.1 depicts a virtualization 

layer in which the hypervisor is directly running on the hardware. The functionality of the 

hypervisor is greatly dependent on the underlying architecture it is implemented on. Each 

virtual machine monitor (VMM) running on the hypervisor has to partition and share the 

CPU, Memory, I/O devices, disks among other VMMs. This abstraction is responsible for 

running a guest OS. 

Challenges of Hardware Virtualization 

Operating Systems are designed to run on the bare-metal hardware directly, so they 

inherently assume the ownership of the complete hardware resource.  This creates a 

problem for the hypervisor to be installed in the most privileged layer. 
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 Considering an example of Intel's x86 architecture, the processor's segment 

protection mechanism recognizes four privilege levels. The lesser the number means the 

more privilege they have. Figure 1.2 Shows how these level of privileges can be 

interpreted as rings of  protection.  Level 0, which is at the center of the ring has the highest 

privilege and hosts segments of code containing the most critical software, usually the 

kernel of the  operating  system. Outer  rings are for  less critical  software. The operating 

Figure 2.2a  x86 Privilege Levels. 

system services and APIs lie on layer 1 and layer 2. Applications reside on layer 3.  The 

processor uses these privilege levels to prevent programs operating on the outer areas of 

the ring to access a segment of the inner ring, except under controlled situations. When a 

violation is detected, it generates a general-protection exception (#GP). To carry out 

privilege tests the processor defines the following privilege levels: 

Current Privilege level (CPL) 

This is the privilege level of the currently executing program. These are stores in 

the CS and SS segment registers 
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Descriptive Privilege Level (DPL) 

 

Figure 2.2b  x86 Segment Descriptor [3]. 

 
It is the privilege level of a segment or a gate and is stored in the DPL field of the 

segment or gate descriptor for the segment or gate.  

Requested Privilege Level (RPL) 

The RPL is the override privilege level that is stored in bits 0 and 1 of segment selector. 

The processor checks the RPL along with the CPL to determine if access to a segment is 

granted. 

Virtualizing the x86 architecture requires placing a virtualization layer under the 

operating system kernel, which resides in the innermost ring 0, to create and manage the 

virtual machines that deliver multiplexed resources. There are also some sensitive 

instructions which cannot be effectively virtualized as they have different semantics when 

they are executed outside of ring 0. The tapping of these instructions are required to be 

done in run time. 
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 Full Virtualization Using Binary Translation 

This approach involves in translating the non-virtualizable part of the kernel code 

into a newer set of instructions, which have a similar effect on the virtualized platform. 

Each virtual machine is supplied with all the services of a physical system including the 

BIOS, virtualized memory, virtualized block storages. The guest OS is completely 

abstracted from the physical hardware by the hypervisor. This means that the guest OS 

does not require any modifications to run. It is not even aware that it is being run in a 

virtualized environment. System level calls are translated on the fly by the hypervisor. 

 OS Assisted Virtualization or Paravirtualization 

'Para' in Greek means along with.  This refers to 'alongside' communication of the 

guest OS to the hardware.  This type of virtualization involves in modifying the guest OS 

kernel to replace the non-virtualizable pieces of code with hyper calls that can directly 

interact with the virtualization layer without the need of binary level translation. These 

calls can include critical kernel operations like memory management, interrupts 

scheduling algorithms.  

This is done to improve efficiency and performance.  This results in lower 

virtualization overhead but drastically reduces compatibility. Modifying the kernel means 

operating systems like Win XP, cannot run off the shelf. 

Hardware Assisted Virtualization  

If the hardware is modified to incorporate virtualization, this can eliminate the use 

of binary translation and paravirtualization. The Intel Virtualization Technology (VT-x) 

and AMD's AMD-V does exactly that. The both target privileged instruction with a new 
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CPU execution mode that allows virtual machine monitors to run in a new root mode 

below ring 0. 

Type II Virtualization  

This includes emulating one operating system upon another. In this type of 

virtualization, which is mostly used in desktop virtualization, the hypervisor emulates a 

complete set of hardware on top of which a guest operating system runs. They can run 

without VT support by replacing sensitive instruction by emulation. 

Memory Virtualization 

 
Figure 2.3 Memory Virtualization. 

 
The next important component that is needed for a virtual system is memory 

virtualization. This involves in sharing the physical memory of the host system and 

making it dynamically available to the guest operating system.  Applications see a 

contiguous address space that they can reserve for them. Apparently, these address space 

may not directly be tied to the underlying physical system. The operating system makes 

use of a Memory Management Unit called the MMU and a translation lookaside buffer 

(TLB) to optimize virtual memory performance. 
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To support multiple guest operating system, the MMU also needs to be virtualized. 

The guest OS controls the mapping of physical to virtual addresses, but in reality, the guest 

OS cannot have direct physical access to the host's memory. 

This virtualization is done by the VMM which maintains a shadow page for the mapping. 
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CHAPTER III 

CONTAINERIZATION 

 

In chapter one we learned the advantages of using virtual machines; isolation and 

resource sharing among users.  Virtual Machines, however, inflict overhead to the 

performance of the entire system. Each VM needs to run its OS. Each guest OS abstracts 

Compute, Storage, and Network Operations, and this is done by translating and tapping 

guest OS Instruction set architecture to host OS ISA and sometimes completely simulating 

the hardware environment. This increases the resource consumption and the overall 

efficiency of the system decreases.  

The trivial question arises; can we do better? What if we eliminate the hypervisor 

altogether and somehow chunk out isolated spaces in the operating system that share the 

same kernel? 

3.1 Containers 

Containers are lightweight operating systems that run on the host system and execute 

instructions native to the core, eliminating the need of instruction set translation or 

emulating the hardware. Containers thus provide the same level of isolation and allow 

resource sharing without the overhead of expensive hypervisors. Linux Containers are 

implemented through system level virtualization.  
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Figure 3.1 VM vs Container Virtualization. 

 
Applications running inside the containers share the kernel of the host OS. 

On a broader view, containers provide the following advantages [4] over VM. 

1. Since containers do not make use of hypervisors and run directly on the host OS, 

they can provide near bare metal performances for the target application. On the other 

hand, VMs can never reach bare metal performance because of the translations, tapings 

and various other overheads of the hypervisor layer. 

2. Containers boot up in seconds. My test results show almost 12 times speed up in 

booting a container with the same application in contrast to the Linux hypervisor KVM. 

This is because VMs first need to go through the processes of loading the entire operating 

system before running the application. 
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3. Containers require fewer running applications inside them. Memory management is 

efficient. A higher number of containers can be deployed on the same machine. 

Virtualization density is way higher. 

4. Containers are highly portable. Live migration of containers is possible. A container 

running in one system can be transferred to another system without any downtime. High 

portability also makes it easy and readily available to continuous integration and 

continuous delivery pipelines.  

5. They provide greater visibility to the behavior of individual application since the 

security of the kernel module is maintained at the host level. 

 

3.2 Types of Containers 

Containers by nature can be divided into two categories: 

I. Application Containers 

II. System Containers 

Application containers are stripped down operating systems that has enough 

information to run a specific type of application. These are very light weight and are 

beneficial with microservices architecture. It allows creations of a container for each 

application component providing greater control over management, security and policy 

restrictions. They are very easy to ship, and the application placed inside the container has 

significantly fewer risks in terms of reliability, consistency, and compatibility.  

Docker is one of the most widely used container service provider that has its own 

management APIs for dockerization.  
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The second type of containers and the one we will be looking in depth are system 

containers. They play a similar role to virtual machines. These are not application specific 

and allow to install different libraries, languages, and applications inside them. Unlike 

application containers these allow multiple processes to be run at the same time. 

System Containers 

System containers provide virtualization in a way such that the applications 

running inside them perceive the look and feel of a private operating system. They 

simulate the file systems, networking, and even the root user. This is achieved by using 

advanced Linux features like namespaces, control groups, chroot, and Linux security 

models (LSM).  

For example, a container has its private users file at the standard location 

/etc/passwd, where that file's real path, at the host system is at /var/container-

technology/$container1/etc/passwd. /var/container-technology/$container1 is mounted as 

/ inside the container. Similarly container 2 will have its private users file at /etc/passwd 

with a real path at  /var/container-technology/$container2/etc/passwd. This allows each 

container to have their own file systems. The root user inside the container has an UID of 

0, which again is mapped to a non-privileged account at host OS, say UID XX.  

Let us look in detail into each of the kernel features that allow containers to be isolated. 

i. CGroups 

Control Groups [5] or shortly known as cgroups allows to allocate resources like CPU 

time, system memory, network bandwidth to user-defined groups and their future children. 

These groups have specialized behavior and are associated with a set of parameters for 
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one or more subsystems. A subsystem is a resource controller that partitions resources and 

applies per cgroup limits. These cgroups can be hierarchical and are arranged in a tree-

like structure. Each task in the system belongs to exactly one cgroup in the hierarchy with 

a set of subsystems, which are associated with some specific tasks. Each cgroup has its 

own virtual file system. 

These cgroups are managed by root users who can create, destroy and query using the 

cgroup name about the processes attached to it and its hierarchy.   

The main functions of cgroups are:  

1. Access: - Attaching devices to cgroups. 

2. Resource Allocation: - Limiting memory, CPU, device accessibility, block I/O. 

3. Prioritization: - Setting priority of processes; deciding who gets more CPU 

4. Accounting: - Resource usage per cgroup 

5. Control: -  Freezing and checkpoint 

6. Injection: - Network Packet tagging 

cgroup functionality are exposed as ‘resource controllers’ also known as subsystems, 

which are mounted on the filesystem. Top-level subsystem mount is the root cgroup and 

directories under this top level mount represent root mounts per cgroup.  

Some of the cgroup subsystem include:  

1. blkio: Limits IO access to and from block devices. 

2. CPU: Scheduler for tasks in cgroups 

3. cpuacct: Reporting subsystem for CPU resources. 

4. cpuset: Assigns individual CPUs and memory. 
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5. devices: Manages device access per cgroup. 

6. freezer: This subsystem suspends/resumes tasks. 

7. memory: This is used to provide memory caps and restrictions. 

8. net_cls: It tags network packets with class ids that allows Linux TC to identify 

packets. 

9. net_prio: Deals with prioritizing network bandwidth per cgroup 

10. ns: Namespace subsystem. 

11. perf_event: It is used to evaluate performance. 

  

Figure 3.2 Linux Cgroup FS Layout. 
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Control groups are created per container in each cgroup subsystem to limit access 

and provide priority. An example [6] of a container using cgroups is demonstrated in figure 

3.3.  

 
Figure 3.3 Container Cgroup Realization [6]. 

 
For each container a cgroup subsystem is created that provides a virtual FS, IO Access, 

Network access, CPU time and memory to the applications that reside inside the cgroup. 

ii. Namespaces 

The most important technology for container isolation is namespaces. [7] Historically, 

the Linux kernel had maintained a single process tree which contained references to all 

the processes running on the system in a parent-child manner. However, with the addition 

of the namespace concept, it became possible to have nested process trees. Each process 

tree can have an entirely isolated set of process. The Linux kernel guarantees that 

processes belonging to one namespace cannot interfere with the process of another 
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namespace. This can be visualized as a variable declared in namespace x in a C++ program 

has no visibility in namespace y. 

 When a Linux system starts up, it has one parent process with PID 1. This process 

is the root of the tree, and then it further spawns other processes by starting up daemonized 

services. Down the line, further services have their parent as PID 1. With namespaces, the 

system makes a child subtree to be its own root. On this child subtree, the processes that 

are spawned have an illusion that they have been spawned by root(PID 1), but in reality, 

they are present in an isolated subtree system. This processes in this child namespace have 

no way of knowing of the grand parent's existence. 

Nesting of namespaces is possible and associating more than one PID to a  

Figure 3.4 Container Namespace Tree. 
 

namespace is also possible. Processes in namespaces have an illusion that they are the only 

process on the system.  
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The functionality [8] of namespaces is to provide process level isolation of global 

resources like: - 

• PID (process) 

• MNT (mount points, filesystems) 

• IPC (System V IPC resources) 

• NET (NICs, routing) 

• USER (UID + GID) 

• UTS (host and domain name) 

The MNT namespace isolates the mount table. These include /, /proc, /mnt/ etc. This 

is typically used with chroot or pivot_root to effectively isolate root FS. The UTS 

namespace provides per namespace Hostname and NIS domain name. These allow 

containers to have their fully qualified domain name (FQDN).  

The PID namespace is used for PID Mapping. As discussed earlier, the parent process 

can make a child process its own root, in other words the child process is assigned with a 

PID of 1. However, the parent process has a different PID associated with the child process 

(which is only visible to the parent process). This mapping of IDs is maintained by the 

PID namespace.  

The IPC name space is used for interprocess communication and provides isolation 

for Semaphores, Shared Memory, Message Queues, Signals, Memory polling, Sockets, 

Pipes and file descriptors. 

The NET namespace creates per name space network objects such as Network 

Devices, Bridges, Routing Tables, IP Addresses, Ports. The USER namespace is the most 
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security critical namespace and provides mapping of GID/UID outside the container to 

UID/GID inside the container. A root inside the container will never be root outside it.  

An example of creating a namespace: 

#define _GNU_SOURCE 

#include <sched.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <sys/wait.h> 

#include <unistd.h> 

static char child_stack[1048576]; 

static int child_fn() { 

  printf("PID: %ld\n", (long)getpid()); 

  return 0; 

} 

int main() { 

  pid_t child_pid = clone(child_fn, child_stack+100011, CLONE_NEWPID | SIGCHLD, 

NULL); 

  printf("clone() = %ld\n", (long)child_pid); 

  waitpid(child_pid, NULL, 0); 

  return 0; 

} 
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iii. LINUX CHROOT and L.S.M. 

CHROOT changes the root directory of the calling process to that is specified in the 

path. The root directory is inherited by all the children of the parent process. This again 

provides isolation for containers. The process running in this environment cannot access 

files outside the jailed environment. In containers, this is used to mount the root FS system, 

launch and clone init process in a new MNT namespace. 

Linux implements around 300 system calls, some of which should only be accessed 

by the host's privileged users.  For example, say modifying the system clock and date time 

or changing the nice values of processes. With multiple containers running, this can be 

disastrous if not prevented. This is achieved by modules 'Linux Capabilities', 'seccomp', 

and 'Linux Security Module'. The LSM comprises of AppArmour or SELinux. They attach 

a label to each file and allow the process to access these file only if they are associated 

with the tagged label. If by any means a container "jail breaks" then the LSM denies 

escalated calls to the host system. 

 

3.3 Performance Evaluation of Containers 

This work will be contributing towards development of container management in 

cloud using OpenStack and Chef. We will be forking the LXD repository which is backed 

by canonical, the parent company of Ubuntu. 
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Figure 3.5 LXD Technology Stack [16]. 

 
LXD is an open source tool that provides a means to manage machine containers. 

These act more like virtual machines on traditional hypervisor than application container 

like Docker. Canonical terms this as ‘pure container hypervisor’. LXD uses LXC at its 

backend and provides APIs to create, delete, move, clone and to perform administrative 

operations. 

Here, in the scope of this chapter, we will examine the performance of one instance of 

LXD vs. VM. 

Boot Time (VS Virtual Machine) 

In this test [9] we create a container using LXD and a virtual machine using KVM. 

We measure the performance by recording the time taken to boot and reboot five times. 

The container takes around 46 seconds for the entire sequence, in contrast the virtual 

machine instance takes around 651 seconds. This behavior is expected. As we discussed 

earlier, virtual machines need to load the entire OS including the kernel before loading the 

desired applications. 
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Block IO (VS Bare Metal) 

We claimed earlier that, container’s performance is comparable to bare metal 

systems. In this test we perform IO operation for both the scenarios. The performance is 

almost equivalent. 

 
Figure 3.6 Performance Comparison. 
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CHAPTER IV 

ORCHESTRATION MANAGEMENT USING OPENSTACK 

 

4.1 Introduction 

In this chapter, we will be dealing with methodologies for bootstrapping and managing 

an infrastructure of containers. In other words, it is called 'orchestration management.' We 

will be looking at the widely used framework 'OpenStack' for the management of virtual 

machines and will be reprogramming it to work with LXD Containers. 

OpenStack [10] is an open source software platform for cloud computing, mostly 

deployed as infrastructure-as-a-service (IaaS). This framework has various components to 

control a diverse multivendor pool of resources like processing power, networking, block 

storage, image storage, etc. OpenStack also incorporates a web-based graphical user 

interface for easier management. This GUI dashboard, in the backend, uses RESTful APIs 

to call the core services. 

 

Figure 4.1 OpenStack Framework. 
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4.2 OpenStack Architecture 

All components of OpenStack are modular that provide a set of core services that 

run independently. This facilitates elasticity and scalability. 

 
Figure 4.2 OpenStack Architecture [12]. 

 
The core modules can be categorized into: - 

1. Compute Service (Nova) 

2. Networking Service (Neutron) 

3. Object Storage Service (Swift) 

4. Dashboard (Horizon) 

5. Identity Service (Keystone) 

6. Block Storage Service (Cinder) 

7. Image Service (Glance) 

8. Orchestration Service (Heat) 

9. Telemetry Service (Ceilometer) 

10. Database Service (Strove) 
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Figure 4.3 expands on the preceding block diagram and depicts the different 

relationships amongst the different services. 

 
Figure 4.3 Service Relationship. 

 
Keystone 

OpenStack Identity (Keystone) provides an authentication system consisting of 

users mapped to the OpenStack services they are authorized to access. It also provides 

identity and access management for all the components of OpenStack. It has internal 

services such as identity, resource, assignment, token, catalog, and policy, which are 

exposed as an HTTP frontend. Keystone provides CAS for various operating system that 

can involve pluggable authentication module and active directory services. It supports a 

number of authentication mechanisms like clear text password, key, and tokens. Services 

that are available can be queried programmatically. This service is equivalent to the IAM 

service of the AWS public cloud. 
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Horizon 

Horizon is the frontend of the stack and provides dashboard services to 

administrators and users. It has a graphical user interface hosted as a web page. It connects 

with the CLI APIs to perform the backend tasks. VM's, Networks, Subnets, Storage, can 

be managed through the Horizon interface. It also provides plugins for 3rd party apps. 

Most of the automation of building the infrastructure is done through the horizon. It can 

be branded as per the requirements of commercial vendors and service providers. This 

works on top of all other services. All functionality it provides can also be directly 

accessed by using the REST APIs.  It can be compared to the AWS console used to create 

and configure the services. 

Nova  

Nova provides computing resources. It is programmed in a way to provide an 

automated pool of machines that can be used for computation.  It is designed to work with 

most of the virtualization protocols using hypervisors like KVM, VMWare, Oracle, and 

Hyper-V. This can also be used to work with leading container technologies like docker, 

LXC and LXD. The main job of Nova is to load balance jobs that are assigned to it in the 

resource pool. It can be considered equivalent to the EC2 service of AWS. 

Swift 

Swift is an easily scalable and redundant storage system that is primarily used to 

store and retrieve Binary Large Object (BLOBs). Multiple disk drives that spread 

throughout servers in the data center are used to write objects and files. The OpenStack 

software is responsible for ensuring that data is not replicated and integrity is maintained 
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throughout the cluster. Storage clusters simply add new servers and scale horizontally. In 

the case of a server or hard drive failure, OpenStack duplicates the content from other 

active nodes to a new location in the cluster. Inexpensive commodity hard drives and 

servers can be utilized as OpenStack uses software logic to perform data replication and 

ensure distribution across different devices. It provides a variety of sub-services such as a 

ring, container server, updater, and auditors that have a proxy server as the frontend. The 

swift service is used predominantly to store Glance images. It is comparable to the EC2 

AMIs that are stored in an S3 bucket where Swift is equivalent to AWS' S3 storage service. 

Glance 

Glance provides image services. It holds the OS images that are distributed across 

the stack. It interacts with REST APIs streaming images. It is aso used to generate 

backups. A number of OpenStack modules interact with Glance to exchange meta-

information. 

Cinder 

This is one of the most important components of the stack. It provides block level 

storage and serves them as devices to different components in the system. These block 

level storage appear as standard disks when attached and can be formatted into any file 

system depending on the requirement of that particular system. Creating, attaching, 

detaching and destroying these devices are managed by Cinder. These actions are 

completely merged into OpenStack Compute and the dashboard Horizon, making it 

convenient for users to deal with storage and allowing them access to raw block level 

storage. It provides snapshots for data backup of block level storage. These snapshots can 
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be restored or utilized to create a new block storage volume. The subsystems include a 

volume manager, an SQL database, an authentication manager, etc. The client uses an 

AMQP such as Rabbitmq to provide its services to Nova. This service provides similar 

features to the EBS service of AWS. 

Neutron 

Neutron, previously known as Quantum, is a system for the management of 

networks and IP addresses. OpenStack Networking confirms that the network does not act 

as congestion or a limiting factor in cloud deployment. It also ensures that users receive 

self-service ability, even when it comes to network configurations. 

Different applications or user groups are provided with networking models by 

OpenStack Networking based on their needs. Models can be used to separate the traffic 

flow from servers using VLANS. Neutron manages the IP's featuring both static and 

dynamic configuration. Maintenance mode is built into it so as it can redirect traffic. 

It also supports modern networking protocols like SDNs (Software designed 

Networks) to provide high availability.  

It provides several other functionalities such as Load Balancer as a Service and 

Firewall as a Service. As it is an optional service, we can choose not to use this, as basic 

networking is already built into Nova. Also, Nova networking is being phased out.  

The system, when configured, can be used to create multi-tiered isolated networks. 

An example of this could be a full three-tiered network stack for an application that needs 

it. It is equivalent to multiple services in AWS such as ELB, Elastic IP, and VPC. 
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Heat 

Heat defines standardized templates to manage cloud applications. It makes use of 

OpenStack-native REST API and a CloudFormation-compatible Query API. It means that 

you can script the different components that are being spun up in order. It is incredibly 

useful when deploying multicomponent stacks. The system integrates with a majority of 

the services and makes API calls to create and configure various components. 

The template used in Heat, known as the Heat Orchestrator Template (HOT), is a 

single file which can script multiple actions. For example, we can write a template to 

create an instance, some floating IPs or security groups, and even create users in Keystone. 

The equivalent for Heat in AWS is the cloud formation service. 

Celiometer 

Ceilometer is a service that provides a single point of contact for billing systems. 

It contains all the counters needed to establish customer billing, over all present and future 

OpenStack units. The delivery of counters can be traced and audited, the counters must be 

easily extensible to support new projects and agents, and performing data collections 

should be independent of the complete system. A variety of subsystems is integrated into 

the Ceilometer such as polling agent, notification agent, collector, and API. It also 

facilitates the saving of alarms extracted by a storage abstraction layer to supported 

databases such as Mongo DB, SQL server or HBase. 

Trove 

Trove, a database-as-a-service provisioning relational and non-relational database 

engine, uses Nova to create the computer resource to run DBaaS. It is introduced to the 
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system as a bundle of integration scripts that run with Nova. The service requires the 

creation of unique images that can be stored in Glance. It is similar to the RDS service 

from AWS 

Designate 

DNS is managed by this multi-tenant service called Designate. It opens up several 

REST APIs to interact with  DNS. It abstracts out the complexity and generalizes 

commands over a diverse range of DNS providers like PowerDNS and BIND. It supports 

binding to custom made drivers as well. The main purpose of designated is not to provide 

a DNS service but rather to provide an interface with existing DNS servers to create zones 

per tenants. The service has various subsystems such as API, the Central/Core service, the 

Mini DNS service, and Pool Manager. The Designate service offers DNS services 

equivalent to Route 53 of the AWS. 

 

4.3 OpenStack Networking 

We would be using the OpenStack Networking service to setup and define network 

connectivity. The networking service consists of the neutron-server, a persistent database, 

and other plug-in agents. We will be using the Linux bridge mechanism driver and 'veth' 

pairs as interconnection devices. We will be managing Linux bridges at layer-2 on 

compute node, and in other nodes, we will use layer-3 protocols to provide routing, DHCP, 

and DNS. Figure 4.4 describes the layout of the networking using Linux bridge 

mechanism. It uses two networks, namely ‘Management Network’ and ‘Provider 

Network’. The compute node and the DHCP agent resides on the same network. 
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The modular network 2 plugin network allows layer 2 networking technologies that is 

found in all complex real world data centers. Each network type is managed by a driver 

that validates the specific information and is responsible for the allocation of free segment 

in the project networks. 

 

 
Figure 4.4 Network Layout. 
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CHAPTER V  

CONFIGURATION MANAGEMENT WITH CHEF  

 

5.1 Introduction 

Today's IT infrastructure are a collection of complex integrated networks that include 

a variety of interdependent software and tools. With the agile workflow, starting from the 

development to deployment requires attention to configuration to keep the applications 

and hardware running smoothly. At the most intuitive level, configuration problems can 

lead to catastrophic system failures stopping critical services to work. This can also affect 

performance levels and degrade the productivity of business. With the systems not 

receiving proper upgrades and patches, it hides several security breaches keeping it 

vulnerable to hackers.  

With DevOps coming into the picture, it is almost impossible to maintain a continuous 

integration and continuous delivery pipeline without having a proper configuration 

management. 

On a not so intuitive level, if systems are kept running as is, at some point in time, an 

organization may not be able to upgrade them without a significant downtime and costing 

thousands of dollars. It might also cause deployment failures for software that worked in 

the development environment. As software developers keep their systems updated, critical 

libraries might be missing or may be incompatible with the older production systems. 
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5.2 Configuration Management 

“Configuration management [11] is the process of creating a logical view and maintaining 

versions of the IT infrastructure keeping records of all configuration files and 

environments, so as, at any given time, the entire infrastructure can be spawned from 

scratch by running a set of codes. It maintains the relationship between the infrastructure's 

assets and the build”. 

What Makes Configuration Management Difficult? 

The main challenge arises with integrated systems. As systems get more 

integrated, more relationships and dependencies develop. A change in configuration in 

one module can break other modules. Without versioning or having a way to trace back, 

it creates difficulties in debugging. As the infrastructure gets bigger and systems are 

replicated, keeping the configuration files in sync is a challenge. With the use of 

containerized services felicitating continuous integration and delivery, it is vital to closely 

couple development, staging, and production environments. With configuration 

management tools, failures in app delivery are significantly less, mostly eliminating 

human errors. 

 

5.3 IAAS and Chef Framework 

The key concept of 'Infrastructure as a code' is that it should be possible to build 

our infrastructure as if it were code - that is to abstract, design, implement and deploy the 

IT infrastructure the very same way using tools as we do with any modern software 

projects. In other words, is to visualize infrastructure as a redeployable code repo that 
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works with the day to day software development methodologies of writing and developing 

software. 

This approach gives us a number of benefits mainly, : - 

1. Repeatability 

Since we are now building our infrastructure with programming languages, 

committing our code, we can be confident that our infrastructure will be ordered and 

repeatable. Given the same input to our infrastructure system, it will generate the same 

infrastructure output. This means that we can rebuild our entire IT infrastructure executing 

these set of codes at any given point of time. 

2. Automation 

Since we are abstracting the infrastructure and capturing a meta code that can deploy 

the infrastructure, we can very well automate it. 

3. Agility 

The commitment to a code repo means we can move the infrastructure state forward 

or backward with time. In the event of problems, we can look at what has changed and 

who has changed it. This will bring down the downtime and will help expedient root cause 

analysis. 

4. Scalability 

With Repeatability and automation, we can bring up similar infrastructure by just 

executing a set of codes. This will enable us to set up an environment rapidly. For example, 

if we already have written codes to bring up a web server 1, we can bring up new 'n' web 

servers by executing the code n times in different hardware or containers.  
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5. Reassurance 

Since the infrastructure is represented in codes written in a high-level programming 

language, anyone can look at it to get a glance of the system eliminating the dependency 

on an sys admin who can be a single point of failure. 

6. Disaster Recovery 

In the event of catastrophic disasters that might potentially wipe out the entire 

infrastructure, we can bring it back quickly as it has been broken down into modular 

components that are described as codes. 

Chef is an open source framework that works with the concepts of IAAC. It provides 

a set of libraries and functions to build tools to managing infrastructure. It abstracts the 

underlying OS and tries to generalize the key concepts. It introduces the term 

'convergence' which means with each Chef run, the infrastructure is converged to the 

targeted state. 
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Figure 5.1 Chef Component Relationships. 

 
Figure 5.1 shows the major components of the Chef [12] framework and the 

relationship that exists between them. Now we will look into each of the component with 

greater detail. 

Chef Server 

The Chef server the central element of the Chef framework. It serves as the central 

repository that holds the node objects, cookbooks, recipes, roles, data bags, and keys. All 

communications in the framework are routed via the Chef server. It has information of 

each node that is stored in the form of metadata which are connected to the Chef server.  

It also provides a web interface for managing the nodes and resources. 
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Cookbooks 

Cookbooks are codes written in Ruby and in Chef DSL which defines the rules, 

regulations, and formation of an infrastructure. It contains recipes, templates, files, and 

necessary tests. These cookbooks are downloaded by the Chef-client depending on roles 

and are used to converge a system to the desired state. Broadly it contains: - 

Recipes, that is the specification of a module of the IT infrastructure. 

Resources, which are methods, or functions that are cross platform and are reused. 

Attributes, these are variables that serve as inputs to the recipes. These are mainly the 

values of configuration files.  

Files and Templates, which serves as configurations of various modules. 

Resource providers, which are library functions to enhance the functionality of recipes. 

Tests, Unit and smoke tests to check the state of convergence of a run. 

Node Objects 

Attributes and recipes are important aspects of the Chef client-run.  However, the 

Chef system needs to keep track of data that relates to the node. These data are but not 

limited to the type of node, its operating system family, the list of users, software installed, 

etc. These data are stored in the node object. The node object is also responsible for 

resolving dependencies as more than one cookbook can be in the run-list, and these 

cookbooks can be dependent on some other cookbooks.  

The node object has all these data stored in JSON format. Each time a client-run 

happens, the Chef-client reads data using the OHAI plugin and updates the node object in 

the server. 
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Run List 

A run-list is an arranged way of keeping the recipes and roles. This is exactly how 

the node will converge. It is the specification of the node. The order is strictly maintained 

by the Chef-client and will never execute a recipe twice. The same run-list can exist for 

various nodes who share a similar role. 

Role 

A role defines a node. It is a collection of various paths for a node to achieve its 

final state. For example, a IOT server will have a role of IOT Server that comprises of 

cookbooks like,  Apache Tomcat, RADIUS, LDAP, and some custom attributes. 

Whenever a role is made to run on a node, the node object of that node is matched against 

that role and the run-list is compiled. 

Data Bags 

Data bags contain variable data which are specific to the deployment machine. 

Data that are sensitive are generally kept in data bags as they can be encrypted.  

Workstation 

This is the developer side of the Chef infrastructure. This is where Chef cookbooks 

are written. It uses Chef development kit and knife to communicate with the Chef server.   

The roles of a workstation are:  

1. To maintain the cookbook repository and properly version it with version control tools 

like Git. 

2. Develop recipes and cookbook. 

3. Interact with nodes and bootstrap a node. 
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4. Set up roles and environment. 

Knife is mainly used to communicate with the Chef server. It provides a command line 

interface to execute Chef commands. 

 

5.4 Chef Client Run 

A Chef-client run is a program that runs on each node to perform all the desired state 

that are necessary to take the node to the state of convergence. Each client node must have 

been registered with the Chef server for this to happen. The registration process is done 

by bootstrapping the client node from the server with proper keys.  

RSA public key-pairs are used for the authentication process. Figure 5.2 shows the 

sequential steps that occur during a Chef-client run. 

 

 

Figure 5.2 Chef Server Client Protocol. 
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Figure 5.3 Chef Client Steps. 

 
The following shows an example recipe to configure nova, the compute service of 

OpenStack. (Source is found at my GitHub https://github.com/sidxz/openlab-chef-

cookbooks/) 

# SOURCE: www.github.com/sidxz 

# Cookbook Name:: openlab_nova 

# Recipe:: configure_compute 

# 

#Install nova 

%w(nova-compute nova-compute-lxd).each do |pkg| 

  package pkg do 

    action [ :install ] 

  end 
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end 

#Configure nova 

template "/etc/nova/nova.conf" do 

  source "nova_compute.conf.erb" 

  owner 'nova' 

  group 'nova' 

  mode 0711 

  variables :nova_user_pass => node['openlab-compute']['install']['nova-user-pass'], 

:rabbit_pass => node['com_rabbitmq']['rabbit_pass'], :neutron_user_pass => 

node['openlab-compute']['install']['neutron-user-pass'] 

  notifies :restart, 'service[nova-compute]', :delayed 

end 

#SERVICES 

service "nova-compute" do 

  action :nothing 

end# 

 

5.5 Continuous Integration and Continuous Delivery 

The CI/CD [13] pipeline is one of the important aspects of the thesis, that in further 

chapters (chapter 6), we will see, how it sparks the idea of creating an app streaming 

service for Internet of Things.  Knowing the concepts of Chef, let us now see how the 

Chef framework supports CI/CD at its core. But first, let us understand what CI/CD is. 



 

 45 

Continuous Integration 

Continuous integration is a practice of frequently integrating and testing newer 

codes as they are being developed. All developers in the team commit the changes to their 

branch of the Git code repo. As soon as the commit is pushed a set of CI tools builds the 

temporarily merged code base and runs an automated test suite. When a change in code 

causes a test to fail or breaks the system in the test environment, it is very clear which set 

of change caused it. Feedback is tremendously fast. The smaller the commits the faster 

problems are surfaced and fixed. To keep the CI pipeline effective, all failures are 

addressed immediately. 

Continuous Delivery 

  CI addresses the challenges for work done in a single code base. Various 

developers work on the same code base simultaneously and push them to the source so 

that issues are addressed immediately. Continuous Delivery expands this principle to the 

entire infrastructure. The aim of CD is to ensure that all the pushed code are continuously 

validated against the entire system and can be termed production ready.  

Without CD, people work independently with the approach that if the pieces work 

in isolation, there should be no problem in putting them together. This idea has been 

proven wrong and wrong again. 

It is very critical that, the deployable isolated components are continuously pushed 

and validated with the entire system. The frequent tests build up confidence as we test 

them in different stages in the pipeline. If the changes are about to break production it will 

surely break the deployment pipeline to production first. 
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Chef CI/CD Pipeline 

 

Figure 5.4 Chef CI/CD Pipeline. 
 

The Chef's CI/CD pipeline gives the team a common platform to develop, build, 

test, and deploy cookbooks and applications to the infrastructure. It enables multiple teams 

to work simultaneously on systems made up of multiple modules which are interdependent 

on each other. The pipeline conducts a series of automated and manual test gates that flows 

the software changes from development to delivery. Pipelines have six stages: Verify, 

Build, Acceptance, Union, Rehearsal, and Delivered. Changes flow from one stage to 

another passing a set of validation tests. These tests include lint, syntax, unit, security, 

quality, smoke and functional tests. As the changed code flows along the pipeline passing 

these tests confidence is build up till it reached the final stage 'delivered,' where it is 

production ready. 
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CHAPTER VI  

INSPEC HANDLER AND BUILDING THE OPEN LAB STACK 

 

6.1 What Have We Seen So Far? 

In the previous chapters, we had been looking into fragmented parts of relatively large 

systems and architectures. In the first and second chapter, we discussed virtualization and 

the benefits of containerization over virtualization. It formed the core components of our 

bigger picture. In the third chapter, we saw how to bootstrap these containers and manage 

the orchestration processes using OpenStack. This forms our bare infrastructure. Now we 

have a virtual data center with containers installed with operating system images ready to 

be configured. This configuration management is done with Chef that we read about in 

chapter 4. Now we will look into integrating all of them to form a lightweight data center. 

Then we will validate our infrastructure using InSpec handler. 

 

6.2 Implementation 

We use an Intel Core i7 processor with 16 gigabytes of memory. The host OS runs 

Ubuntu 14.04 LTS. Following is the complete hardware details: 

Architecture:  x86_64 

CPU op-mode(s):  32-bit, 64-bit 

Byte Order:  Little Endian 

CPU(s): 8 

On-line CPU(s) list:   0-7 
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Thread(s) per core:    2 

Core(s) per socket: 4 

Socket(s): 1 

NUMA node(s): 1 

Vendor ID: GenuineIntel 

CPU family: 6 

Model: 60 

Model name: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz 

Stepping: 3 

CPU MHz:  3509.171 

CPU max MHz: 3900.0000 

CPU min MHz: 800.0000 

BogoMIPS: 6784.72 

Virtualization:  VT-x 

L1d cache: 32K 

L1i cache: 32K 

L2 cache: 256K 

L3 cache: 8192K 

NUMA node0 CPU(s):     0-7 

The hard drive is partitioned into  

sda 

sda1 
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├─sda2     488M  0 part /boot 

└─sda3      1.0T    0 part 

  ├─ubuntu--vg-root   252:0    0  1.0T  0 lvm  / 

  └─ubuntu--vg-swap_1 252:1    0 15.8G  0 lvm [SWAP]   

sdb 1.0T 

‘sda’ holds the necessary mounts for the host OS to work. ‘sdb’ is used to create a 

ZFS Pool. 

ZFS provides integrated storage by combining the file system and the logical 

volume manager. File systems were earlier constructed on top of a single physical device. 

In a bid to address multiple devices and as to provide for data redundancy, the concept of 

a volume manager was introduced. It would provide a representation of a single device, 

making sure that file systems would not require alteration to take advantage of multiple 

devices. The design added another layer of complexity and ultimately prevented certain 

file system advances. It was because the file system could not control the physical 

placement of data on virtualized volumes. ZFS does away with volume management 

completely. Instead of creating virtualized volumes, ZFS allows one to combine devices 

into a storage pool. Storage space is allocated from a shared pool of physical storage 

devices. All file systems receive adequate space, and it can also be increased by only 

adding a new storage device to the pool. 

We create the ZFS pool by using 

zpool create container-pool /dev/sdb 
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The next step is installing LXD on top of the host OS. This is achieved by pulling 

it from the apt repo. 

apt-get install lxd 

We configure LXD to create a network bridge named ‘lxdbr0’ and use NAT 

forwarding via IPV4. To deploy OpenStack we will be using four containers namely 

i) openlab-compute 

ii) openlab-controller 

iii) openlab-network 

iv) openlab-storage 

All of them use ubuntu 14.04 LTS as guest OS. They are created using the LXD 

Command 

openlab-create {openlab-compute, openlab-controller, openlab-network, openlab-

storage} 

openlab-create is a shell script that is used to create containers. Source of this script 

can be found at https://github.com/sidxz/LinuxTools.  

The /etc/hosts of each container is modified so that domain name of all the 

containers can be translated to respective IPs and be reachable from one another. 

OpenStack can be installed by manually installing each of the required services, 

however our aim is to create an automated platform to deploy OpenStack. This will 

remove all the complexities and will install OpenStack in minutes. We create Chef 

Cookbooks for each of the OpenStack Services. The basic template of the Chef cookbook 

can be created using  
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chef generate cookbook <cookbook name> 

where cookbook name = { com-mariadb, com_rabitmq, openlab-chef-client, openlab-

utils, openlab_compute, openlab_dashboard, openlab_global, openlab_identity, 

openlab_image, openlab_network } 

Each of these cookbook contains recipe to automate the installation of their 

respective service. The openlab_global cookbook stores attributes that are used in more 

than one cookbook. The source code for all these cookbooks can be found at 

https://github.com/sidxz/openlab-chef-cookbooks. Industry standard pratices have been 

followed while creating these cookbooks. All configuration files have been parsed into 

templates. Values of these configurations can be set using the Chef attributes file. An 

example recipe of cookbook com-mariadb that performs a secure installation of mariadb 

is as follows:  

package "mariadb-server" do 

  action [ :install ] 

end 

package "python-pymysql" do 

  action [ :install ] 

end 

template "/etc/mysql/mariadb.conf.d/99-openstack.cnf" do 

  source "99-openstack.cnf.erb" 

  owner 'root' 

  group 'root' 
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  mode 0600 

  variables :bind_address => node['com-mariadb']['mysql-bind-address'] 

  notifies :restart, 'service[mysql]', :delayed 

end 

cookbook_file '/etc/mysql/mariadb.conf.d/50-server.cnf' do 

  source '50-server.cnf' 

  mode '0755' 

  owner 'root' 

  group 'root' 

  notifies :restart, 'service[mysql]', :delayed 

end 

template "/tmp/mysql_secure_installation_silent.sh" do 

  source "mysql_secure_installation_silent.sh.erb" 

  owner 'root' 

  group 'root' 

  mode 0700 

  variables :mysql_password => node['com-mariadb']['mysql-password'] 

end 

directory '/root/.chefvars' do 

  owner 'root' 

  group 'root' 

  mode '0700' 
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  action :create 

end 

execute 'mysql_secure_installation_silent' do 

  command '/tmp/mysql_secure_installation_silent.sh && touch 

/root/.chefvars/mysql_secure_installation_silent.bool' 

  not_if {::File.exist?("/root/.chefvars/mysql_secure_installation_silent.bool")}   

end 

service "mysql" do 

  action :nothing 

end 

The next step is to upload these cookbooks to the Chef Server.  

berks install && berks upload 

This is done by running the above command inside each cookbook.  

The containers are ready to be bootstrapped with Chef. This would perform the 

automated installation. To bootstrap we again use a script  

openlab-bootstrap <ip/fqdn> <node-name> <roles/cookbooks>  

This takes a while. After the bootstrap process completes we can see these nodes 

listed in the Chef server. 
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Figure 6.1 Chef Dashboard. 

 
This completes the installation process. Since we have created the Chef 

Cookbooks, subsequent installations can reuse these cookbooks by changing the required 

attributes. 

 

 

Figure 6.2 Platform as a Service. 
 

The above figure shows the OpenLab framework in action. Chef further can be used 

for the compute nodes to maintain app specific delivery pipeline. 
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6.3 Validation of the Framework Using INSPEC Handler 

InSpec is an open-source testing framework with a human-readable language for 

infrastructure testing as well as compliance testing which is optimized for DevOps. We 

develop a Heavy Weight Resource Provider(HWRP) called 'InSpec Handler' for Chef to 

perform automated inspec tests at the end of each Chef-client run. HWRPs in Chef are 

native ruby classes that are used to implement providers and handlers in Chef.  They 

interact directly with Chef's native classes.  

The InSpec handler [14] automatically detects the run list and runs their respective 

tests. It also takes care of the environment in which it is being run. In production 

environments, it runs only when there is a change in the state of the machine. It is 

implemented by wrapping it inside a cookbook. It takes the following parameters: 

inspec_handler 'name' do 

  run_path    String 

  log_path     String 

  log_shift_age            String 

  enforced                 TrueClass, FalseClass 

  abort_on_fail            TrueClass, FalseClass 

  whitelist                Array 

  blacklist                Array 

  test_environment      Array 

  production_environment  String 

  track_attributes        TrueClass, FalseClass 
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  action                 Symbol, :hard_run if not specified 

end 

This provides an efficient way to validate the infrastructure that has been 

converged by Chef by firing up tests as soon as all the machine reaches the desired state. 

 
Figure 6.3 InSpec Handler. 

 
The above figure shows a capture of InSpec Handler running inside a Chef client 

run for Radius Server that is running in the OpenLab framework. Source code for InSpec 

Handler can be found at https://github.com/sidxz/inspec-handler.  
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CHAPTER VII  

APP ISOLATION AND ON DEMAND APP DELIVERY FOR A MULTI-TENANT 3-

TIER IOT ARCHITECTURE 

 

7.1 Introduction 

The world has gone through a dramatic transformation, moving from isolated systems 

to Internet-enabled ‘things’ that connect to a common infrastructure and work 

ubiquitously. They generate data that are analyzed, extracting valuable information to take 

informed decisions. The 2-tier server-client model has evolved into a 3-tier model [15] 

that incorporates a middleware known as a ‘gateway’ that is placed in-between the server 

and the client. These gateways are embedded devices that have computational power. 

Activities like cleansing, processing, quick filtering, analyzing the processed data, and 

even on-site decisions, are computed at the gateway level. Information that needs more 

computation is sent over to the IoT Server. The ‘IoT Server’, the gateway (also known as 

the ‘IoT Gateway’), and the ‘End devices’ work together to form this edge intelligence 

that results in a much more efficient architecture. For this 3-tier architecture, there is a vast 

diversity of IoT applications that are being developed by a number of vendors. Each of 

these vendor desires to take more control of the gateway device. Gateway devices are 

analogous to the internet router placed in one's home (with more roles and 

responsibilities). Like the routers are shared by different devices that want internet access, 

the gateway needs to be shared among various end devices that need IoT services, pushing 

the gateway towards multi-tenancy. The majority of these gateways run Linux or UNIX-
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like environment on which a diversity of IoT gateway applications reside. These apps 

usually prefer having elevated access and acquire control of the entire system. In day-to-

days IoT scenario, with no proper standardization and with more vendors having 

proprietary solutions, sharing of these proprietary apps in the gateway may inflict on each 

other affecting their functionality and performance.  

For example, think of two apps from two different vendors, both trying to bind over 

port 80 to host their APIs, or imagine a public IoT gateway of a smart city, in which 

multiple vendors are interested in publishing their presence. This can inadvertently result 

in a catastrophic failure for one or more apps. Isolation of these apps are of paramount 

importance. 

Unlike proprietary gateways, in which the apps are burnt into the gateway's firmware, 

in a multi-tenant gateway, as the firmware is shared, installing and updating the apps is 

another challenge. Canonical’s finding suggests that only 31% of the consumer update 

their apps as soon as it is available, 40% never update, and 40% believe that it is the 

responsibility of the vendor to perform these updates on their connected devices. In this 

shared scenario of apps in gateways, no well-defined app delivery mechanism exists.  

Our main contribution in this work is to reuse our work in chapters 1 through 6, 

constructing bridges between them to develop an IoT architecture for on demand app 

delivery and isolation of apps at the IoT gateway with a minimum performance overhead. 

 The architecture is based on the spirit that whenever a new end device from a specific 

vendor is detected by the gateway, it's corresponding IoT server is contacted and necessary 

apps are downloaded on demand to an isolated environment in the gateway, forming the 



 

 59 

3-tier architecture for the vendor. It establishes a dedicated pipeline for the vendor to 

install newer apps and push updates. 

 

7.2 Proposed Architecture 

The expectation from the proposed architecture are five folds:  

1. Leverage existing production-ready tools to maximize code reusability. 

2. Provide vendors with their personal isolated space in gateways to which they have 

full control. 

3. Provide a platform through which vendors can configure their space and push their 

apps to it. 

4. Rely less on the 'Honor System' for believing users to update their apps. Move 

control of updates from users to vendors. 

5. Automate all of the above. 

In chapter 2 we saw LXD containers could provide deep isolation yet yielding bare 

metal performance. The LXD Daemon makes creating and managing containers easy and 

provides REST APIs for it. In chapter 4 we walked over Chef that is used to configure and 

install packages to systems remotely. 

Here we introduce two new services namely 'IoT App Store' and 'IoT Gateway Client,' 

functions of it are discussed later in the section. 
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Figure 7.1 Proposed IoT Architecture. 

 
The architecture consists of 3 layers, the Vendors 'IoT Server,' the 'IoT Gateway,' and 

the 'End Device.' Multiple end devices connect to an IoT gateway. The IoT gateway can 

interact with multiple IoT Servers from different vendors depending on the diversity of 

end devices that are connected to it. Each vendor's IoT Server can serve request to multiple 

IoT gateways.  The 'IoT Gateway' comprises of three major modules.  

1. The 'IoT gateway Client'  

2. LXD Daemon 

3. and a number of Chef Clients. 

The 'IoT gateway Client' works as an administrator, collecting information from end 

devices; interacting with the IoT Server and considering the present configuration of the 

IoT gateway, provisions the personal isolated vendor's space by managing the LXD 

Daemon to either spawn new containers or make use of existing one. The LXD Daemon 

is a fresh install of well tested Canonical's LXD, that opens up API's for the IoT gateway 

client to use. The Chef clients run inside isolated containers and are responsible for 

creating the app delivery pipeline with the IoT Server. It should be noted that the vendor 



 

 61 

specific app resides inside these containers; dedicating a container per vendor app, or a 

container per a group of apps from the same vendor. This distribution is decided by the 

vendor. 

The Vendors IoT Server can be divided into four components. 

1. The 'IoT Daemon' 

2. Chef Server 

3. IOT App Store 

4. Server Side instances of IoT Apps 

The ‘IoT Daemon’ is a service that runs on the vendor's IoT Server. This service is the 

one that interacts with the IoT gateway client present in the middleware IoT gateway. It 

receives meta information about the end device from the gateway, validates it and 

responds back the requirements that need to be provisioned in the gateway. The 

requirements can include asking the IoT gateway client to create a new container for it. 

The ‘Chef Server’ is used to bootstrap the newly formed container. Together with the 

instance of Chef-client running inside the container of the IoT gateway, the on-demand 

app delivery pipeline is formed. 

The ‘IoT App Store’ is the repository of gateway apps that the vendor provides. 

Chef Streams these apps to the gateway as required. 

The ‘Server Side instances of IoT apps’ forms the Server tier of the 3-tier 

architecture. These are completely vendor specific, interacting with the corresponding 

vendor specific app at the container in the gateway and further down to the end device. 
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Figure 7.2 Proposed IoT Architecture Protocols. 
 

The above figure describes the logical approach to the architecture. 

 

7.3 Protocols 

The following are the protocols that are followed when a new end device is 

detected. 

1.  The end device connects to the IoT gateway and sends it’s meta information to 

the IoT gateway Client. The meta has information about its device type, signature and to 

which app store it should connect. If the device has been already provisioned, it is 

forwarded to its respective container. If it has not been provisioned, IoT gateway client 

connects it to the specified app store. 

2.  Upon receiving the information, the IoT Daemon at the Vendor’s IoT Server, 

verifies the authenticity of the device and generates the build requirement for the device. 

It might instruct the IoT Gateway Client, to either attach it to one of the vendor’s container 

or create a new one for it. 
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3.  After downloading the build information from the Vendor’s IoT Daemon, the 

IoT Gateway Client, sends a notification to the user for approval. The notification can be 

sent to a paired mobile device or via a web portal. Approved requests are forwarded to the 

container provisioning sub module of the IoT Gateway Client. 

4.  The container provisioning sub module, talks with the LXD Daemon to spawn 

a new container or get the information of an existing one. Information such as IP address 

are captured. This is again sent to the IoT Daemon at the Vendors’ IoT Server.  

5.  The IoT Daemon now builds up the run list, which has roles and cookbooks 

depending on the apps that are to be installed in the container for the end device to work. 

6.  Having the IP of the container, Chef bootstraps it with the run list and provisions 

the container with Chef-client and the listed apps. 

7.  After this bootstrap process, a pipeline is created between the Chef Server, the 

container at the gateway and the end device. 

8.   New apps and app updates can now be delivered by changing the run list at the 

Chef server. This also enables the vendor to automatically push updates. 

One of the strengths of this system is, with Chef, there are several community 

cookbooks available and are developed by a large open source community. They include 

the best practices for configuring systems and are less vulnerable. With the quick updates 

being pushed, it makes the system secure. Also, since the apps are jailed inside their 

respective container, if one of those apps are compromised it will not have any effect on 

other apps.  
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7.4 Benchmarks and Results 

Considering the potential benefits introduced by the proposed architecture, 

together with the significant increase in the diversity of applications, our further 

experiments show that the performance of  IoT apps in the jailed environment of the 

architecture is as good as running them on bare metal boards. For the further experiments, 

we deployed IoT gateway in a System on Chip device, Raspberry Pi II having one gigabyte 

of memory and a dual-core ARM processor and on a HP Enterprise Edgeline EL10 which 

has an Intel E3826 dual-core Atom, operating at 1.46GHz with 4GB DDR3L 1333MHz 

memory.  

We ran few standard benchmarks to support our claim. 

1)  CPU 

We use sysbench [16] to compute prime numbers, comparing the performance 

between the proposed IoT Framework and running them in native raspberry pi. We 

performed the same experiment again using HPE Edgeline EL10. 

Figure 7.3a CPU Benchmark, R Pi Thread =1. 
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Figure 7.3b CPU Benchmark, R Pi Thread =4. 
 

 

Figure 7.3c CPU Benchmark, HPE EL10 Thread =1. 
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Figure 7.3d CPU Benchmark, HPE EL10 Thread =4. 
 

The X axis represents the range up to which prime numbers are calculated. Y axis 

represents time in second that was required to do the computation. Figure 5.1a and 5.1c 

shows the run using one thread while 5.1b and 5.1d uses four threads. HP EL 10 having 

more computational power, runs the test faster. However, in both the devices, the lines for 

bare metal and IoT Architecture, run through the same trace, conveying that there was 

negligible loss in performance. 

2) File IO 

 

Figure 7.4 File IO Benchmark. 
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To evaluate file input output performance, we execute random read and write 

operations transacting one gigabyte of data. We record the time taken for both the cases, 

which are nearly similar. The IoT Architecture took 300.7 seconds and the bare metal took 

300.5 seconds. This graph was similar both for R Pi and HP EL10, considering same type 

of IO devices used in both the cases. 

3) Database Transaction 

This was performed to test real database performance. It was done in a similar way 

in which IoT devices push data to the gateway. We transacted 100,000 records and plotted 

the performance by increasing the number of worker threads. From the graph, it can be 

observed how there is no relevant difference regarding performance between the bare 

metal and the proposed IoT Architecture. 

 

Figure 7.5 Database Transaction Benchmark. 
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4) App Delivery 

In this, we test the time taken by the proposed IoT Architecture to receive an app 

from the IoT Server. This involves the continuous delivery pipeline following all the 

protocols to deliver an app on demand. Since this is a new feature of the architecture, 

benchmarking against bare metal  is not in the scope. On one axis we keep increasing the 

size of the app, starting from 10 Megabytes and increasing it up to 750 Megabytes. On the 

other side we record the time taken for the end to end process to happen. 

 
Figure 7.6 App Delivery Benchmark. 

 
With the increase in app size, as expected, the time taken for the transfer also increase. 

5) Container Density 

In this experiment we study the effect in memory when the container density is 

increased. We record the memory used in the host machine as we keep increasing the 

number of container instances. 
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We see a consumption of around 16 MB of memory per container that is spawned, 

however this is the trade off to fully utilize the IoT architecture and its features. It should 

be noted that apps inside the container run in near bare metal performance, which we 

showed in the first three benchmarks. 

 

 

Figure 7.7a Memory Profile Benchmark for R Pi. 
 



 

 70 

 
Figure 7.7b Memory Profile Benchmark for HPE. 

 

6) Security 

We run the architecture against the Lynis, which is an open source security 

auditing tool. It is used to detect security vulnerabilities of Linux and UNIX-like systems. 

We make use of some Chef cookbooks which are inbuilt in the framework and that 

provides basic hardening of the container image. Lynis reports a score of 74 out of 100. 

(Lynis score of a fresh copy of OS was 60). Things like minimum password age, maximum 

password age, default umask, configuration for DNS, Apache modsecurity configuration, 

SSH configuration, and others were hardened. 
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CHAPTER VIII 

CONCLUSIONS 

 

The architecture forms a logical partition of the gateway giving an illusion to the 

vendors as if they completely own the 3-tier architecture. This approach has many 

benefits. First, with machine containers, it enjoys all the privileges of virtualization and at 

the same time keeps the memory overhead low. The isolations make the overall system 

more secure. If one of the vendor's IoT architecture is compromised, tainted codes only 

flow to its corresponding container in the IoT gateway. Since the container is jailed, it 

won't affect apps of other vendors. A quick recovery can be made by disposing of the 

compromised container. Second, with Chef, an app delivery pipeline is maintained. 

Pushing new apps is as easy as publishing it to the Chef Server. Chef also maintains a 

supermarket that consists of cookbooks for the various commonly used application. These 

cookbooks are versioned in Git and leverage code sharing following the best practices in 

the industry. This makes a vendor more confident for their configurations of systems as 

they follow a certain industry standard. Third, it makes full use of the IoT gateway for 

proprietary apps. We believe, till standards are created for IoT (given the complexity, it 

might be a long way), this approach is the best way to address the present challenges.  

One of the challenges that we did not address was the availability of domain names. In the 

current architecture, each container to work with Chef will require its own fully qualified 

domain name. It might not be a challenge for the larger organization but certainly is a 
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problem for home IoT users. However, the answer to this problem lies on dynamic DNS. 

More efforts are required to integrate it into the proposed framework. 
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