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ABSTRACT

Many problems in application involve media with multiple scale, for example, in com-

posite materials, porous media. These problems are usually computationally challenging

since fine grid computation is extremely expensive. Therefore, one may need to develop a

coarse grid model reduction for this type of problems. In this dissertation, we will consider

a multiscale method called generalized multiscale finite element method (GMsFEM).

GMsFEM follows the framework of multiscale finite element method. Instead of using 

one basis function per coarse grid node, GMsFEM uses several basis functions for one 

coarse grid node. Since the media is highly heterogeneous and may involves high 

contrast, having more than one basis function per node is important to reduce the error 

significantly.

Due to the varying heterogeneity in the domain, we may require different numbers of

basis functions in different regions. Then the question is how to determine the number of

basis functions in each region. In this dissertation, we will discuss an adaptive enrichment

algorithm for enriching basis functions for the regions with large error. We will consider

two different types of basis function for enrichment. One is using the pre-computed offline

basis functions. We call this method offline adaptive enrichment. The other method uses

online constructed basis functions called online adaptive enrichment.

In applications, non-conforming basis functions can give us more flexibility on grid-

ding. The discontinuous Galerkin method also makes the mass matrix block diagonal,

which enhances the computation speed in solving time-dependent problem with an ex-

plicit scheme. In this dissertation, we will discuss offline and online adaptive methods

for the generalized multiscale discontinuous Galerkin method (GMsDGM). We will also

discuss using GMsDGM for simulating wave propagation in heterogeneous media.
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NOMENCLATURE

MsFEM Multiscale Finite Element Method
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uh The fine-grid solution
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Vh The fine-scale space

Nc The number of coarse-grid nodes
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χi The partition of unity

ψ
(i)
k The snapshot multiscale basis functions
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(i)
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1. INTRODUCTION

1.1 Motivation

In real life applications, many multiscale problems are involved in different areas (for

example, in engineering, mathematics, physics, chemistry, computational biology and

computer science problems). One can use an extremely fine mesh to solve these mul-

tiscale problems, however, it is computationally experience. Therefore, some types of

model reduction technique is required for solving these problems efficiently. There are

many different mutliscale model reduction methods. They are basically fall into two types

of approach. One is called global model reduction [1, 2, 3]. The other is called local model

reduction techniques [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 3, 19, 20, 21, 22, 23].

Global model reduction techniques basically use global basis functions or global infor-

mation to construct a reduced global model to approximate the original model. Since these

methods using some global information in the offline stage, it may require a huge amount

of computational power and also lack local adaptivity. In this dissertation, we will mostly

focus on local model reduction techniques. In order to capture the global information of

the model, we will present an online basis construction technique which uses the residual

information obtained from solving the global equation. We remark that these online basis

functions are constructed locally, therefore, it is time effective and compute these online

basis function in parallel.

There are many different local multiscale model reduction techniques developed previ-

ously. They solve some underlying fine-scale problems on a coarse grid. These approaches

can be classified into two categories. One is upscaling type approach. The other is multi-

scale method type approach. Upscaling approaches [4, 5] basically involve computation of

some effective mediums in the coarse grid level which give an approximate model. Mul-
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tiscale methods [7, 9, 16, 17, 18, 3, 19, 20, 21, 22] basically involve construction of some

local basis functions in coarse grid level. These basis functions are constructed to capture

the local multiscale information of the problem. We will briefly discuss some examples of

upscaling and multiscale approach in Chapter 1 later.

There are many papers [24, 25, 26] discussed on using few local multiscale basis func-

tions to approximate the solution. In this dissertation, we will mainly focus on a recent

developed local model reduction method called Generalized Multiscale Finite Element

method (GMsFEM) [27, 20, 22, 28, 29]. GMsFEM can be viewed as a generalization

of the Multiscale Finite Element Method (MsFEM) ([30]). It gives a systematic way to

enrich the basis functions in the coarse grid space. Enriching these basis functions are

essential to reduce the error significantly. GMsFEM involves two stages of computation,

which are offline stage and online stage. We will construct a small dimensional multiscale

finite element space in the offline stage and use it to compute an approximate solution with

a given source term and boundary condition in the online stage. We remark that one can

use the multiscale finite element space for solving the problem with different source term

and boundary condition without recomputing the basis functions. The most important part

of the construction of offline spaces is the choice of local spectral problems and the choice

of the snapshot space. We will discuss it in Chapter 2 in detail.

In practice, one may need to use different number of basis functions in different coarse

elements (coarse neighborhoods) to obtain an accurate representation of the solution. We

can use a small amount of basis functions in the regions with less heterogeneous property.

In contrast, we will need to use more basis functions in the regions with more hetero-

geneities and high contrast. Therefore, we will need an adaptive enrichment algorithm to

determine how many basis functions are required in each coarse region. In [31], the au-

thors proposed a residual based local error estimator for adaptive enrichment of GMsFEM.

In this dissertation, we will discuss on using residual based local error estimator to preform

2



basis enrichment for generalized multiscale discontinuous Galerkin method (GMsDGM).

We will also use this residual based local error estimator to preform our online basis con-

struction algorithm for GMsFEM and GMsDGM. There are many existing research papers

[32, 33, 31] discussing on using local error estimator to preform mesh refinement or basis

enrichment. Our analysis follows the same idea and do not consider the error coming from

the fine grid discretization. We will discuss the adaptivity enrichment method for GMs-

DGM in detail in Chapter 3. We remark that there are many related activities in designing

a-posteriori error estimates [34, 35, 36, 37, 38, 39] for global reduced models. The main

difference is that our error estimators are based on special local eigenvalue problem and

use the eigenstructure of the offline space. We also discuss an approach that adaptively

selects multiscale basis functions from the offline space by selecting a basis with the most

correlation to the local residual (cf. [40]). Adaptivity is important for local multiscale

methods as it identifies regions with large errors. However, after adding some initial basis

functions, one needs to take into account some global information as the distant effects

can be important. In this dissertation, we discuss the development of online basis func-

tions for both GMsFEM and GMsDGM that substantially accelerate the convergence of

the method. The online basis functions are constructed based on a residual and motivated

by the analysis. We will discuss the online basis construction in the adaptivity enrichment

method for GMsFEM in Chapter 2 and GMsDGM in Chapter 4.

GMsDGM has many applications in different areas, for example, flow problem, wave

simulation problem. In Chapter 5, we will discuss on using GMsDGM to simulate wave

propagation in heterogeneous media. The discontinuous Galerkin framework give us a

block diagonal mass matrix and more flexibility on gridding process which improve the

computational performance and handle complex geometry of the computational domain.

3



1.2 Introduction of upscaling method and multiscale finite element method

In this section, we will briefly discuss about homogenization, numerical homogeniza-

tion and multiscale finite element method for the flow problem with periodic media pa-

rameter, that is, solving uε satisfying

−∇ · (κ(
x

ε
)∇uε) = f(x), x ∈ Ω

with periodic parameter κ(x
ε
) in the computational domain Ω = [0, 1]d ⊂ Rd, where ε is

assumed to be extremely small.

1.2.1 Homogenization

In this subsection, we will introduce the homogenization technique for the flow prob-

lem. The basic idea of homogenization is to approximate the solution uε by a solution u0

of the flow problem with a constant coefficient κ∗, which is,

−∇ · (κ∗∇u0) = f(x), x ∈ Ω.

Next, the question is how to find out the constant coefficient κ∗. We assume uε can

written as a asymptotic expansion which is

uε = u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · ·

where y = x
ε

is fast variable and the functions ui(x, y) are periodic in y with period T . It

is easy to see ∇ = ∇x + ε−1∇y. By comparing the coefficient of ε in O(ε−2) order, we

have,

−∇y ·
(
κ(y)∇yu0(x, y)

)
= 0.
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By solving the above equation with periodic boundary condition in y, we have u0 is inde-

pendent of y, that is, u0(x, y) = u0(x). Next, by comparing the coefficient of ε in O(ε−1)

order, we have

−∇y ·
(
κ(y)∇yu1(x, y)

)
= ∇y ·

(
κ(y)∇xu0(x)

)
=
(
∇yκ(y)

)
·
(
∇xu0(x)

)
(1.1)

We consider Nj = Nj(y) to be the solution to the following "cell problem":

−∇y ·
(
κ(y)∇yNj

)
=

∂

∂yj
κ(y),

with periodic boundary condition in y. Then, the solution of (1.1) can be written in form

of

u1(x, y) = Nj
∂

∂xj
u+ ũ1(x).

By comparing the coefficient of ε in O(1) order, we have

−∇x ·
(
κ(y)(∇xu0(x) +∇yu1(x, y))

)
−∇y ·

(
κ(y)(∇xu1(x, y) +∇yu2(x, y))

)
= f(x)

(1.2)

Finally, integrating (1.2) over periodic cell Y , we have the homogenized equation is given

as

−∇x ·
(
κ∗∇xu0(x)

)
= f

where

κ∗ij =
1

|Y |

∫
Y

κ(δij +
∂

∂yj
Ni)dy.
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We remark that even if the parameter coefficient κ(y) is a scalar coefficient, the homoge-

nized coefficient κ∗ can be a symmetric tensor.

1.2.2 Numerical Homogenization

In this subsection, we will briefly introduce numerical homogenization technique.

Similar to homogenization, we would like to compute the homogenized coefficient for

the problem. However, it is not easily to determine the periodic cell Y in practice. Some-

times, the parameter coefficient is even not periodic. Therefore, we may need to fix the

coarse regions of the "cell problem" numerically. In numerical homogenization approach,

we will first partition the computational domain into a coarse grid (see 1.1). Using this

Figure 1.1: Illustration of the coarse grid for numerical homogenization.

coarse grid, we will compute the "cell problem" in each coarse element K where the "cell

problem" is defined as: finding N nh
j with

−∇(κ(
x

ε
)∇N nh

j ) = 0 x ∈ K

6



subjecting to the boundary condition N nh
j = xj on ∂K.

Then the numerical homogenized coefficient κ∗,nh
ij is defined by

κ∗,nh
ij =

1

|K|

∫
K

κ∇N nh
i .

We remark that the numerical homogenized coefficient κ∗,nh
ij is a symmetric tensor.

In fact, the "cell problem" in numerical homogenization is similar to the "cell problem"

in homogenization case in the sense of N nh
j − xj satisfying

−∇y ·
(
κ(y)∇y(N nh

j − xj)
)

=
∂

∂yj
κ(y),

with zero Dirichlet boundary condition and

κ∗,nh
ij =

1

|K|

∫
K

κ(δij +
∂

∂yj
(N nh

i − xi))dy.

That is, instead of solving the local problem with periodic boundary condition in periodic

cell Y , we solve the local problem with boundary condition (can be Dirichlet, Mixed

Dirichlet-Neumann or even periodic) in each coarse element K.

1.2.3 Multiscale finite element method (MsFEM)

In this subsection, we briefly introduce multiscale finite element method. In contrast

to numerical homogenization, multiscale finite element method constructs the basis func-

tions instead of the homogenized coefficient. Multiscale finite element method follows the

framework of the standard finite element method, for example, it considers the variational
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problem for flow problem: find u ∈ H1(Ω) satistying

∫
Ω

κ∇u · ∇v =

∫
Ω

fv ∀v ∈ H1(Ω).

Multicale finite element method will approximate the variational solution u ∈ H1(Ω) by a

solution ums satisfying the variational equation in a finite dimensional multsicale subspace

Vms ⊂ H1, that is, finding ums ∈ Vms such that

∫
Ω

κ∇ums · ∇v =

∫
Ω

fv ∀v ∈ Vms. (1.3)

The main idea of multiscale finite element method is constructing a multiscale basis func-

tion per coarse grid node which can capture the multiscale feature of the solution u.

We consider the computational domain Ω is partition into a coarse grid T H which is

similar to the coarse grid in numerical homogenization. For each coarse vertices xi, the

coarse neighborhood ωi is defined by

ωi =
⋃
{Kj ∈ T H ; xi ∈ Kj}, (1.4)

that is, ωi is the union of the coarse elements K ∈ T H containing the coarse grid node xi.

In Figure 1.2, we show an illustration of the coarse mesh and coarse neighborhood.

To construct the multiscale basis functions φ(i), we will solve a local problem in each

coarse neighborhood ωi which is:

−∇ ·
(
κ(x)∇φ(i)

)
= 0 ∀K ∈ T H (1.5)

φ(i)(xj) = δi,j for all coarse node xj,

and φ(i) is piecewise linear in each coarse edge, where δi,j is the Kronecker delta function.
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Figure 1.2: Illustration of a coarse neighborhood and a coarse element.

The multiscale finite element space is defined as the span of these local basis functions,

namely,

Vms = span{φ(i)| 1 ≤ i ≤ Nc}

where Nc is the number of coarse-grid nodes. After constructing the multiscale finite

element space, one can use this space repeatedly for solving (1.3) with different source

terms and boundary conditions.

The methods introduced in this section can basically handle the problems with scale

separation quite well. However, in some applications, one may need to handle some more

complicated cases, for example, high contrast media with multiple inclusions and chan-

nels. In these cases, we will require a more complex coarse grid upscaling model or

enriching the multiscale finite element space to capture the complex multiscale feature of

the solution. In the next chapter, we will discuss on the GMsFEM which is a generaliza-

tion of the multiscale finite element method for handling the flow problem in high contrast

medium.
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2. RESIDUAL-BASED ONLINE GENERALIZED MULTISCALE FINITE

ELEMENT METHODS

2.1 GMsFEM for high contrast flow

2.1.1 Overview

In this section, we will introduce the GMsFEM ([27, 20, 22, 28, 29]) for flow prob-

lem. Let Ω be the computational domain. We are considering the flow problem in highly

heterogeneous media defined as

−∇ ·
(
κ∇u

)
= f in Ω, (2.1)

u = 0 on ∂Ω (2.2)

where κ is the permeability coefficient in L∞(Ω), f is a source function in L2(Ω). We as-

sume the coefficient κ is highly heterogeneous, which can involve multiple non-separable

scale and high contrast.

The GMsFEM starts with partitioning the computational domain Ω into a coarse mesh

T H with mesh size H . The coarse mesh is then refined into a fine mesh T h with fine

mesh size h << H . We assume this fine mesh is fine enough to restore the multiscale

properties of the problem. To simplify the discussion, we will consider the coarse mesh

and fine mesh are both uniform rectangular mesh. Let Nc be the number of nodal points of

the coarse mesh. We consider the set Nx = {xi |1 ≤ i ≤ Nc} containing all of the coarse

Reprinted with permission from "Residual-driven online generalized multiscale finite element methods"
by Eric T Chung, Yalchin Efendiev and Wing Tat Leung, 2015. Journal of Computational Physics, 302, 176-
190, Copyright [2017] by Elsevier.
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grid nodes. For each coarse grid node xi, the coarse neighborhood ωi is defined by

ωi =
⋃
{Kj ∈ T H ; xi ∈ Kj}, (2.3)

that is, ωi is the union of the coarse elements K ∈ T H containing the coarse grid node xi.

In Figure 1.2, we show an illustration of the coarse mesh and coarse neighborhood.

Next, we denote the conforming piecewise bilinear fine-scale finite element space as

Vh, that is Vh = {v ∈ H1(Ω)| v|K ∈ Q1(K), ∀K ∈ T H}. This finite element space is

used to compute some local problems for constructing the multsicale finite element space

and the fine-scale reference solution for comparison. The finite-scale reference solution

uh is defined by the following variational problem: find uh ∈ Vh such that

a(uh, v) = (f, v), for all v ∈ Vh, (2.4)

where a is the bilinear form which is defined as a(u, v) =
∫

Ω
κ∇u · ∇vdx. We define

the energy norm, ‖v‖a, by ‖v‖2
a = a(v, v). Since the fine mesh is fine enough to resolve

the multiscale properties of the problem, we notice that the reference solution is a good

approximation of the exact solution. We would like to construct a multiscale finite element

space Vms which is a subspace of the the fine-scale finite element space Vh in the coarse

mesh with multiscale basis function resolve the local multiscale behaviors of the exact

solution.

Next, we will present the general framework of GMsFEM ([27, 20, 22, 28, 29]). It

follows the standard continuous Galerkin framework. We seek for a multiscale numerical

solution ums ∈ Vms such that

a(ums, v) = (f, v), for all v ∈ Vms ⊂ Vh. (2.5)
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The basis functions of the multiscale finite element space are constructed in coarse neigh-

borhoods, and therefore, they are nodal based and supposed on coarse neighborhoods.

That is, Vms = span{φ(i)
j ∈ Vh| supp{φ(i)

j } ⊂ ωi, for 1 ≤ i ≤ N}. The most important

part of GMsFEM is how to construct these local basis functions in order to obtain a good

approximation of the solution. We will discuss it in detail in the latter subsection. By

[27, 20, 22, 28, 29], we will use some basis functions which is called offline basis function

to span our initial multiscale finite element space. These basis functions are called offline

basis function since they are constructed in the offline stage. These basis functions are not

always sufficient to give us a good approximation of the solution. Therefore, we may need

to construct some local basis functions in online stage to give a rapid convergence to the

reference solution.

2.1.2 Construction of offline basis functions for GMsFEM

In this section, we discuss how to construct the offline basis function in GMsFEM (see

e.g. [27, 20, 22, 28, 29]). For each coarse neighbourhood ω, we consider the local fine-

scale finite element space V (i)
h to be the restriction of the global finite-scale finite element

space Vh, namely, V (i)
h = {v| ∈ H1(ω)| v = w|ω for some w ∈ Vh}. Next, we will

introduce a subspace of the local fine-scale finite element space which is called the local

snapshot space V (i)
snap. The local snapshot space is considered to be a space containing all

of the important components of the reference solution in the coarse neighbourhood ω. The

snapshot space is usually too large that will not be used directly to be our multiscale finite

element space. We will use a spectral problem to select some dominant modes in order to

obtain a low dimensional subspace, and our multiscale finite element space is consider to

be the sum of low dimensional subspace. Usually, there are two choices for the snapshot

space. One is using the local fine-scale finite element space directly. Another choice is

using the space containing all κ - harmonic extensions.
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Next, we discuss the construction of harmonic extension snapshot space V (i)
snap. Let

Jh(ω) be the set of all finite grid nodal points on the coarse neighbourhood boundary ∂ω.

For each finite grid nodal point xj ∈ Jh(ω), we construct a local snapshot basis function

ψsnap,j by solving

−div(κ(x)∇ψsnap,j) = 0, in ω,

ψsnap,j(xk) = δhk,j, for all xk ∈ Jh(ω).

(2.6)

where δhj is the discrete delta function defined by

δhk,j =


1, k = j

0, k 6= j

.

The local snapshot space V (i)
snap is the space spanned by these snapshot basis functions,

namely, V (i)
snap = span{ψsnap,j| ∀xj ∈ Jh(ω)}. Therefore, the dimension of the local snap-

shot space is equal the number of finite grid nodes on on the coarse neighbourhood bound-

ary ∂ω. To construct this snapshot space, we need to solve a number of local problems.

To reduce the computational cost of the construction, we can use randomized snapshots

with oversampleing technique [41]. For each coarse neighbourhood ω, we can define an

oversampled domain ω+ by extending several fine grid layers around ω. We will construct

K snapshot basis functions ψ+
snap,j by solving the κ - harmonic extension with random

boundary conditions, that is, solving

−div(κ(x)∇ψ+
snap,j) = 0, in ω+,

ψ+
snap,j = rj, on ∂ω+, .

(2.7)

where rj are independent identically distributed (i.i.d.) Gaussian random vectors on the
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fine-grid nodes on ∂ω+. The local snapshot space V (i)
snap is the space spanned by these

snapshot basis functions restricted in ω, namely, V (i)
snap = span{ψ+

snap,j|ω| for 1 ≤ j ≤ K}.

K can be chosen as the number of offline basis function per coarse neighbourhood plus a

small number pbf , for example, pbf = 4. Therefore, we only need to solve about n + 4

local problems if we need n offline basis functions.

Next, we will discuss about the construction of offline basis functions. We will use

a spectral problem to perform a local model reduction. From the analysis in [16], we

consider the spectral problem to be: find (φ, λ) ∈ V (i)
snap × R such that

∫
ω

κ(x)∇φ(i)
j · ∇v dx = λ

(i)
j

∫
ω

κ̃(x)ψ
(i)
j v dx, ∀v ∈ V (i)

snap (2.8)

where κ̃(x) is defined by

κ̃ = κ
Nc∑
i=1

H2|∇χi|2,

with χi being the nodal multiscale basis function for the coarse node xi.

We assume the eigenvalues λ(i)
j from (2.8) are in ascending order. For each ωi, the first

li eigenfunctions corresponding to the small eigenvalues are chosen to construct the offline

space. The offline space Voff is spanned by the basis χiφ
(i)
j , namely Voff = span{χiφ(i)

j |1 ≤

i ≤ N, 1 ≤ j ≤ li}. After constructing the offline space, we can set the multiscale finite

element space to be this offline space and compute the numerical solution by solving (2.5).

2.2 Offline Adaptive GMsFEM

In the previous section, we introduced a multiscale offline space to a coarse-scale ap-

proximation of the exact solution. However, using a pre-defined number of basis functions

li in the coarse neighborhood ωi may not be enough to restore all of the scale of the exact

solution. Therefore, we may need to use an adaptive approach to select the number of

basis functions used in each coarse neighborhood. In [31], there is an adaptive enrichment
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algorithm for choosing li is introduced and analyzed. The general idea of this adaptive

enrichment algorithm is using the local residual of the equation to indicate the regions

which require more basis functions. We will first compute a numerical solution by using

the offline multiscale space and use it to compute the local residual for each coarse neigh-

borhood. Next, for each coarse neighborhood with large residual, we enrich more basis

functions by using the next eigenfunctions in (2.8), namely adding χiφ
(i)
li+1, . . . , χiφ

(i)
li+p

to

finite element space. We repeat the basis enrichment process until the residual is smaller

than a tolerance. We call this algorithm the offline adaptive GMsFEM since we only add

the predefined offline basis functions to multiscale finite element space.

Next, we will discuss the offline adaptive GMsFEM in more details. We assume ums ∈

Voff to be the solution obtained in (2.5). For a given coarse neighborhood, we can define

the local residual functional, Ri : V
(i)
h → R, by

Ri(v) :=

∫
ωi

fv −
∫
ωi

a∇ums · ∇v

The operator norm of the residual functional is defined by ‖Ri‖ := sup
|Ri(v)|
‖v‖V

. Follow

the result in [31], we have a posteriori error estimate for GMsFEM which is

‖uh − ums‖2
V ≤ Cerr

Nc∑
i=1

‖Ri‖2(λ
(i)
li+1)−1, (2.9)

where Cerr is a uniform constant, and λ(i)
li+1 is the (li + 1)-th eigenvalue for the spectral

problem (2.8) which corresponds to the first eigenfunction that do not used in the offline

basis construction.

Next, we will present the adaptive enrichment algorithm. The index m ≥ 1is used to

denote the enrichment level. To enrich the multiscale finite element space, we will use the
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Dorlfer’s bulk marking strategy [34] to select the number of enriching local regions. We

first define a constant 0 < theta < 1 independent of m. At each enrichment level m, we

compute the numerical solution umms by computing the corresponding solution obtained in

(2.5) with Vms = V m
ms where V m

ms is the corresponding multiscale finite element space in

m-th level. Next, we compute the local error indicator ηi for each coarse neighborhood ωi

with

η2
i = ‖Ri‖2(λωilmi +1)−1, i = 1, 2, · · · , N,

where lmi is the number of basis functions used in the coarse neighborhood ωi and Ri(v)

is defined using umms, namely,

Ri(v) =

∫
ωi

fv −
∫
ωi

a∇umms · ∇v, ∀v ∈ Vi.

We will use the error indicator to identify the regions where basis enrichment is required.

We first rearrange the order of the coarse neighborhoods such that the error indicator η2
i

are in decreasing order, that is, η2
1 ≥ η2

2 ≥ · · · ≥ η2
N . Let k be the smallest integer such

that

θ
Nc∑
i=1

η2
i ≤

k∑
i=1

η2
i . (2.10)

We then add the next eigenfunction χiφ
(i)
lmi +1 to the multiscale finite element space for

1 ≤ i ≤ k where i is in the new arranged order. We call the enriched space V m+1
ms , namely,

V m+1
ms = V m

ms + span{χiφ(i)
lmi +1| 1 ≤ i ≤ k}.

In [31], the above enrichment algorithm can give a fast convergent rate if the eigen-

values in (2.8) increase rapidly. Although rapid eigenvalue growth occur in many cases,

this offline enrichment algorithm may be give a rapid convergence in some situations since

the offline constructed basis functions may not contain the global information of the prob-

lem. Thus, we may need to construct some basis functions involving global information
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to accelerate the convergence. In next section, we will introduce an adaptive algorithm by

using online constructed basis functions where these basis functions can capture the global

behaviors of the solution and thus give a rapid convergent rate.

2.3 Residual based online adaptive GMsFEM

In previous sections, we discussed about the offline adaptive enrichment method and

mentioned that online constructed basis functions may be important in some cases. In this

section, we will present the online basis function construction algorithm in more details.

We call the adaptive algorithm using the online constructed basis functions online adaptive

GMsFEM. Based on the analysis and numerical result, we show that using sufficient num-

ber of offline basis functions is necessary to give a rapid convergence for online adaptive

GsFEM.

Basically, the online adaptive GMsFEM following a similar framework as the offline

adaptive GMsFEM. Thus, we will use similar notations as in the previous section. In

online adaptive GMsFEM, instead of, using the next eigenfunction constructed in 2.8, we

will add a online constructed basis function φ(i)
on to the multiscale finite element space Vms.

Therefore, the resulting multiscale finite element space contain both offline constructed

and online constructed basis functions.

Next, we will discuss how to construct the online basis functions. In the m- th enrich-

ment level, similar to the offline adaptive GMsFEM, we will obtain the numerical solution

umms by solving (2.5) with Vms = V m
ms . The main point is how to find a suitable basis

function φon with support in ωi such that the next level multiscale finite element space

V m+1
ms = V m

ms + span{φon} can give a good approximation of the reference solution.

Let um+1
ms be the numerical solution for the next enrichment level. By using Galerkin

17



orthogonal property of the numerical solution. We have

‖uh − um+1
ms ‖2

a = inf
v∈Vm+1

ms

‖uh − v‖2
a.

By taking v = umms + φon, we have

‖uh−um+1
ms ‖2

V ≤ ‖uh−umms−αφon‖2
V = ‖uh−umms‖2

V − 2a(uh−umms, φon) + a(φon, φon).

To reduce the error for next level enrichment, we will minimize the last two terms in

the above inequality. That is, we will find φon ∈ V (i)
h such that,

φon = argmin
φ∈V (i)

h
{−2a(uh − umms, φ) + a(φ, φ)} (2.11)

Since Ri(φ) =
∫
ωi
fφ−

∫
ωi
a∇umms · ∇φ = a(uh − umms, φ), we have

φon = argmin
φ∈V (i)

h
{−2Ri(φ) + a(φ, φ)}

and by simple variation argument, we have φon ∈ V (i)
h satisfying

a(φon, v) = Ri(v) ∀v ∈ V (i)
h . (2.12)

Moreover, we know the error of next level is reduced by 2Ri(φon) − a(φon, φon) =

a(φon, φon) = ‖Ri‖2, namely,

‖uh − um+1
ms ‖2 ≤ ‖uh − umms‖2 − ‖Ri‖2. (2.13)

We consider the spaces V m
ms contains the first ni offline basis functions for the coarse
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neighborhood ωi for all level m. Therefore, by (2.9), we obtain

‖u− umms‖2
V ≤ Cerr

Nc∑
i=1

‖Ri‖2(λωini+1)−1. (2.14)

Combining (2.13) and (2.14), we obtain

‖u− um+1
ms ‖2

V ≤
(

1− λωini+1

Cerr

‖Ri‖2(λωini+1)−1∑Nc
j=1 ‖Rj‖2(λ

ωj
nj+1)−1

)
‖u− umms‖2

V .

The above inequality show the error decay rate for enriching one basis function with

support in ωi per iteration. To increase the rate of convergence of the method, we can

enrich multiple basis functions with non-overlapping support in each iteration. For ex-

ample, we can choose a index set of some non-overlapping course neighborhoods I ⊂

{1, · · · , N}, that is ωi ∩ ωj = ∅ for all i, j ∈ I with i 6= j. Next, we can construct a set of

basis functions, {φ(i)
on ∈ V (i)

h | ∀i ∈ I}, by solving (2.12) for each coarse neighborhood ωi

with i ∈ I . It is easy to check that, using the same argument as above, we can obtain the

following inequality

‖u− um+1
ms ‖2

V ≤ ‖u− umms‖2
V −

∑
i∈I

‖Ri‖2. (2.15)

if the coarse neighborhoods ωi, ∀i ∈ I are non-overlapping. Consequently, we have

‖u− um+1
ms ‖2

V ≤
(

1− Λ
(I)
min

Cerr

∑
i∈I ‖Ri‖2(λωini+1)−1∑Nc
j=1 ‖Rj‖2(λ

ωj
nj+1)−1

)
‖u− umms‖2

V (2.16)

where

Λ
(I)
min = min

i∈I
λωini+1. (2.17)

Form the above inequality, we can see that the convergence of the online enrichment
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method is determined by Λ
(I)
min which related to the number of basis functions of the offline

space. To obtain a rapid convergence, we need to take enough offline basis function such

that Λ
(I)
min is large enough and

Λ
(I)
min

Cerr

∑
i∈I r

2
i (λ

ωi
ni+1)−1∑Nc

j=1 r
2
j (λ

ωj
nj+1)−1

≥ θ0

for some 0 < θ0 < 1 which is independent of the contrast in κ(x).

Hence, we obtain the following convergence for the online adaptive GMsFEM:

‖u− um+1
ms ‖2

V ≤ (1− θ0)‖u− umms‖2
V .

We note that Λ
(I)
min can be very small when there are channels in the domain. This is

extensively discussed in [42]. For this reason, we introduce a definition.

Definition 2.3.1. We say Voff satisfies Online Error Reduction Property (ONERP) if

Λ
(I)
min

Cerr

∑
i∈I r

2
i (λ

ωi
ni+1)−1∑Nc

i=1 r
2
i (λ

ωi
ni+1)−1

≥ θ0,

for some θ0 > δ > 0, where δ is independent of physical parameters such as contrast.

We remark that if Voff is ONERP, then the error will decrease independent of physical

parameters such as the contrast and scales. We will show in our numerical results that if

we do not choose Voff with ONERP, the online basis functions will not decrease the error.

One of easiest way to determine Voff being ONERP is to guarantee that Λ
(I)
min is sufficiently

large. In general, one can use the sizes of Λ
(I)
min and

∑
i∈I r

2
i (λ

ωi
ni+1)−1 to determine the

switching between offline and online.

We remark that one can derive apriori error estimate for ‖u − um+1
ms ‖2

V . To do so, we

can use an error estimate for the GMsFEM that uses initial multiscale basis functions ([31,
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29, 16]) and obtain estimate for ‖u−u0
ms‖2

V , where u0
ms denotes the multiscale solution that

uses the initial basis functions. This convergence rate depends on the use of oversampling

and is proportional to 1/Λ∗, where Λ∗ is the largest eigenvalue that the corresponding

eigenvector is not used in constructing the initial multiscale space.

2.4 Numerical result

In this section, we will present some numerical examples to demonstrate the perfor-

mance of the online adaptive enrichment method. We first briefly introduce the algorithm

for online adaptive GMsFEM. As we mentioned before, the online adaptive enrichment

will start constructing a offline space with a fixed number of offline basis functions for

each coarse neighborhood. The offline space is denoted as Voff. We consider the initial

multiscale finite element space V 1
ms be the offline space Voff. Next, the coarse neighbor-

hoods are denoted by ωi,j , where i = 1, 2, · · · , Nx and j = 1, 2, · · · , Ny and Nx and

Ny are the number of coarse nodes in the x and y directions respectively. We consider

Ix,odd and Ix,even as the set of odd and even indices from {1, 2, · · · , Nx}. Similarly, Iy,odd

and Iy,even are the set of odd and even indices from {1, 2, · · · , Ny}. In each iteration of

our online adaptive GMsFEM, we will perform 4 sub-iterations which add online basis

functions in the non-overlapping coarse neighborhoods ωi,j with (i, j) ∈ Ix,odd × Iy,odd,

(i, j) ∈ Ix,odd × Iy,even, (i, j) ∈ Ix,even × Iy,odd and (i, j) ∈ Ix,even × Iy,even respectively.

The computational domainD is considered as [0, 1]2 and the coarse mesh is an uniform

square mesh with mesh size H = 1/16. The fine mesh is an uniform square mesh with

mesh size H = 1/256. In Figure 2.1, we will show the permeability field κ and the source

function f . In the following sections, we will use the following error quantities to measure

the accuracy of our algorithm.

e2 =
‖u− ums‖L2(D)

‖u‖L2(D)

, ea =
‖u− ums‖V
‖u‖V

,
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Figure 2.1: Left: Permeability field κ. Right: Source function f .

2.4.1 Comparison of using different number of initial basis

In this subsection, we will present the numerical result to compare the convergence rate

of using different number of initial basis functions. In Table 2.1, we will show the result

of using one basis function per coarse neighborhood for the offline space. In the table, we

will show the number of basis functions used in each coarse neighborhood and the degrees

of freedom (DOF), which is the total number of basis functions. In the table, we will

consider two different contrast level. In the left table, we have the contrast
maxκ

minκ
= 104.

In the right table, we have a contrast
maxκ

minκ
= 106 which is 100 times larger than the

contrast in the left table. That is, we have a permeability field with permeability equal

to 106 in the inclusion and channels in Figure 2.1. We know that the first few eigenvalue

are dependent on the contrast([42]). For using 100 times contrast, we will have 100 times

smaller eigenvalues for the first few eigenfunctions. By comparing the convergence history

for using different level of contrast (in Table 2.1), we can see the convergence rate is

dependent on the contrast if we do not have enough initial basis functions. Similarly, in

Table 2.2, we can see the convergence rate is slower for the higher contrast case if we use

two initial basis functions. However, in Table 2.3, we show that the convergence rate does
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not dependent on the contrast since Λmin is independent of the contrast. In Figure 2.2,

we plot the relative errors in energy norm and the logarithm of relative errors in energy

norm against total number of degrees of freedom. for various number of the initial basis

functions for two different contrasts. We observed that the convergence rates are similar

for using 3 and 4 initial basis functions. Therefore, we can conclude that the convergence

rate is independent of contrast if we have enough initial basis functions. Moreover, we can

see the error decay exponentially for using online adaptive method.

From Figure 2.2, we can observe the following facts. First, we observe if we choose the

number of initial basis functions to be 2 (which satisfies ONERP), it will give the smallest

error for a fixed coarse space dimension. Indeed, if we start with the smallest number of

initial basis functions (that satisfy ONERP), then at every iteration of the online stage, the

error will reduce more compared to the offline-stage basis addition (i.e., adding the basis

functions computed in the offline stage). On the other hand, if we would like to reduce

the online cost associated with computing basis functions, then it is more advantageous to

choose more offline basis functions. Indeed, by choosing a larger number of initial offline

basis functions will give us a better result, as we observe from Figure 2.2. For example,

if we compare the errors for one online basis addition, we will find that the case with 4

initial offline basis functions gives smallest error. This is because the initial error for the

four offline basis functions is smallest among those shown in Figure 2.2. In general, one

needs to be careful as more offline basis functions will increase the dimension of the online

system and, consequently, the cost of solving the coarse-grid system.

Next, we will present an example with a different medium parameter κ shown in Figure

2.3 to show the importance of ONERP. The source function f is taken as the constant 1.

The domain D is divided into 8 × 8 coarse blocks consisting of uniform squares. Each

coarse block is then divided into 32× 32 fine blocks also consisting of uniform squares.

The convergence history for the use of one initial basis and the corresponding total
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number of basis (DOF) ea e2

1(225) 60.71% 33.87%
2(450) 33.10% 13.38%
3(675) 14.38% 3.25%
4(900) 4.28% 1.02%

5(1125) 1.33% 0.24%
6(1350) 0.065% 0.0028%
7(1575) 0.00083% 2.96e-05%
8(1800) 1.59e-05% 4.87e-07%
9(2025) 2.35e-07% 2.10e-08%

number of basis (DOF) ea e2

1(225) 60.90% 34.15%
2(450) 35.90% 15.87%
3(675) 35.00% 15.29%
4(900) 25.77% 8.77%

5(1125) 14.17% 4.39%
6(1350) 7.79% 2.78%
7(1575) 6.83% 2.06%
8(1800) 4.15% 1.20%
9(2025) 2.60% 0.64%

Table 2.1: Convergence history for the permeability field in Figure 2.1 and for the case
with one initial basis. Left: Lower contrast(1e4). Right: Higher contrast(1e6).

number of degrees of freedom (DOF) are shown in Table 2.4. In this case, Λmin = 0.0033,

which is considered to be very small, and we observe very slow convergence of the online

adaptive procedure. In Table 2.5, we present the convergence history for the use of two

to five initial basis, where we only show the results for the last 4 iterations. We see that

the values of Λmin increase as we increase the number of initial basis. We also observe

that the convergence rate increase when we raise the number of initial basis from 2 to 4.

For the use of 5 initial basis, we again see rapid convergence and a faster convergence

compared when using 4 initial basis functions. In particular, we observe (based on 3

iterations following the initial one) that the error decays at 130-fold when 5 initial basis

functions are selected, while the error decay is about 90-fold when 4 initial basis functions
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num of basis(DOF) ea e2

2 (450) 26.60% 6.92%
3 (675) 1.46% 0.060%
4 (900) 0.017% 0.000079%

5 (1125) 0.000021% 1.06e-05%
6 (1350) 3.56e-06% 1.65e-07%

num of basis (DOF) ea e2

2 (450) 27.17% 7.53%
3 (675) 4.99% 0.79%
4 (900) 0.20% 0.0073%

5 (1125) 0.0017% 8.16e-05
6 (1350) 2.71e-05% 1.09e-06%

Table 2.2: Convergence history for the permeability field in Figure 2.1 and for the case
with two initial basis. Left: Lower contrast(1e4). Right: Higher contrast(1e6).

are selected. A comparison of error decay for the use of 1 to 5 initial basis functions is

shown in Figure 2.4. We have also tested harmonic basis functions and the results are

similar, i.e., the convergence rate is very slow unless sufficient number of offline basis

functions is selected.

In conclusion, we observe

• If Vms does not satisfy ONERP, then the error decay is slower as the contrast becomes

larger.

• If Vms does not satisfy ONERP, in some cases, we have observed the error does not

decrease as we add online basis functions (see Table 2.4, 2.5).

• If Vms satisfies ONERP, then we observe a fast convergence, which is independent

of contrast.
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num of basis (DOF) ea e2

3 (675) 16.95% 2.53%
4 (900) 0.54% 0.023%

5 (1125) 0.011% 0.00040%
6 (1350) 9.07e-05% 3.79e-06%
7 (1575) 1.38e-06% 6.05e-08%

num of basis (DOF) ea e2

3 (675) 16.96% 2.54%
4 (900) 0.54% 0.023%

5 (1125) 0.011% 0.00041%
6 (1350) 9.07e-05% 3.79e-06%
7 (1575) 1.58e-06% 5.49e-07%

Table 2.3: Convergence history for the permeability field in Figure 2.1 and for the case
with three initial basis. Left: Lower contrast(1e4). Right: Higher contrast(1e6).
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Figure 2.2: Comparison for the permeability field in Figure 2.1 with different choices of
the number of initial basis. Left: The contrast is 104. Right: The contrast is 106.
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Figure 2.3: Permeability field κ for second case.

DOF ea e2

81 17.24% 4.35%
162 2.80% 1.02%
243 2.65% 0.88%
323 2.64% 0.87%
401 1.09% 0.081%
478 0.74% 0.094%
555 0.73% 0.090%
632 0.48% 0.039%
709 0.37% 0.026%

Table 2.4: Convergence history for the permeability field in Figure 2.3 and for the case
with one initial basis. (The value of Λmin = 0.0033).

DOF ea e2

162 13.29% 2.90%
405 1.60% 0.17%
486 0.33% 0.025%
567 0.30% 0.022%

DOF ea e2

405 7.24% 0.92%
486 0.0684% 0.0028%
567 0.00049% 1.51e-05%
635 3.80e-06% 2.49e-06%

Table 2.5: Convergence history for the permeability field in Figure 2.3. Left: Two initial
basis (Λmin = 0.026). Right: Five initial basis (Λmin = 319.32).
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2.4.2 Adaptive online enrichment

In this section, the online enrichment is performed only for regions with the residual

that is larger than a certain threshold. In the first case, the online enrichment is performed

for the coarse regions with a residual error bigger than a certain threshold which will be

taken 10−3, 10−4, and 10−5. In the second case, the online enrichment is performed for

coarse regions that have cumulative residual that is θ fraction of the total residual. One of

our objectives is to show that one can drive the error down to a number below a threshold,

adaptively.

In our numerical results, we will consider three tolerances (tol) 10−3, 10−4 and 10−5.

We will enrich coarse regions, if theH−1-norm of the residual is bigger than the tolerance.

In Table 2.6, we show the errors when using 1 initial basis function for tolerances 10−3,

10−4 and 10−5. We first observe a very slow reduction in errors similar to the results

presented in the previous section. Another observation is that the energy error of the

multiscale solution is in the same order of the tolerance, and the error cannot be further

reduced if we perform more iterations. This allows us to compute a multiscale solution

with a prescribed error level by choosing a suitable tolerance in the adaptive algorithm. In

Table 2.7 and Table 2.8, we show the errors for the last three iterations when using 2 and

3 initial basis functions respectively for tolerances 10−3, 10−4 and 10−5. We observe that

the convergences are much faster. In addition, the energy errors are again have the same

magnitude as the tolerances. From these results, we obtain the following conclusions.

• Using smaller tolerances, we can reduce the final error below desired threshold er-

rors.

• We have observed that the number of initial basis functions are important to achieve

better results. For example, we observe a slow decay of the error when 1 initial basis

function is selected. Moreover, if the contrast is higher, the decay becomes slower.
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DOF ea e2

225 60.71% 33.87%
447 33.10% 13.39%
652 14.43% 3.28%
776 4.37% 1.06%
824 1.83% 0.37%
847 1.10% 0.25%
863 0.50% 0.029%

DOF ea e2

225 60.71% 33.87%
449 33.10% 13.38%
674 14.38% 3.25%
883 4.28% 1.02%

1031 1.33% 0.24%
1125 0.082% 0.0036%
1136 0.052% 0.0023%

DOF ea e2

225 60.701% 33.87%
450 33.10% 13.38%
675 14.38% 3.25%
899 4.28% 1.02%
1114 1.33% 0.24%
1275 0.065% 0.0028%
1338 0.0048% 0.00017%

Table 2.6: Convergence history with a fixed tolerance (tol) and one initial basis for the
permeability field in Figure 2.1. Left: tol = 10−3. Middle: tol = 10−4. Right: tol = 10−5.

In our next numerical example, the online enrichment is performed for coarse regions

that have a cumulative residual that is θ fraction of the total residual. Assume that the local

residuals are arranged so that

r1 ≥ r2 ≥ r3 ≥ · · · .

Then, we only add the basis φ1, · · · , φk for the coarse neighborhoods ω1, · · · , ωk such that

k is the smallest integer with

θ

Nc∑
i=1

r2
i ≤

k∑
i=1

r2
i .

In Table 2.9, we present numerical results for the last 4 iterations when using 1, 2

and 3 initial basis functions with the tolerance 10−4 and θ = 0.7. We observe that one

can reduce the total number of basis functions compared to the previous case to achieve

a similar error. Our conclusions regarding the importance of ONERP condition for Vms is
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DOF ea e2

450 26.60% 6.92%
649 1.49% 0.063%
666 0.53% 0.028%

DOF ea e2

450 26.60% 6.92%
674 1.46% 0.059%
802 0.048% 0.0022%

DOF ea e2

675 1.46% 0.060%
885 0.017% 0.00079%
925 0.0043% 0.00019%

Table 2.7: Convergence history with a fixed tolerance (tol) and two initial basis for the
permeability field in Figure 2.1. Left: tol = 10−3. Middle: tol = 10−4. Right: tol = 10−5.

DOF ea e2

675 16.96% 2.54%
863 0.63% 0.027%
867 0.44% 0.018%

DOF ea e2

675 16.96% 2.54%
898 0.054% 0.023%
993 0.046% 0.0015%

DOF ea e2

900 0.54% 0.023%
1087 0.011% 0.00043%
1106 0.0050% 0.00019%

Table 2.8: Convergence history with a fixed tolerance (tol) and three initial basis for the
permeability field in Figure 2.1. Left: tol = 10−3. Middle: tol = 10−4. Right: tol = 10−5.

the same as before.
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DOG ea e2

620 1.10% 0.23%
709 0.49% 0.082%
787 0.050% 0.0024%
789 0.046% 0.0022%

DOF ea e2

450 26.60% 6.92%
576 1.94% 0.12%
690 0.20% 0.0099%
744 0.051% 0.0023%

DOF ea e2

675 16.96% 2.54%
827 1.02% 0.045%
957 0.091% 0.0033%
987 0.048% 0.0017%

Table 2.9: Convergence results using cumulative errors with θ = 0.7, tol = 10−4 and the
permeability field in Figure 2.1. Left: One initial basis. Middle: Two initial basis. Right:
Three initial basis.
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3. AN ADAPTIVE GENERALIZED MULTISCALE DISCONTINUOUS GALERKIN

METHOD (GMSDGM) FOR HIGH-CONTRAST FLOW PROBLEMS

3.1 GMsDGM for high-contrast flow problems

3.1.1 Overview

In this section, we will introduce the GMsDGM ([43]) for the flow problem. As in the

chapter 2, we denote the computational domain by Ω. We will consider the flow problem

(2.1) with high-contrast medium coefficient κ(x) and Dirichlet boundary condition u = g

on boundary ∂Ω. Instead of using continuous Galerkin approach, we would like to in-

troduce an efficient coarse grid discontinuous Galerkin approach to capture the multiscale

feature of the solution.

We denote the coarse grid by T H as in the previous chapter. We then denote consider

the fine grid T h to be a refinement of the coarse grid. To simplify the discussion of

the methodology, we will consider a conforming refinement only. We remark that the

conforming refinement is not necessary in the discontinuous Galerkin case.

GMsDGM also consists of two main ingredients, which are the construction of local

basis functions and the global coarse grid level coupling. For the local basis functions, a

snapshot space V (i)
snap is first constructed for each coarse grid blockKi ∈ T H . The snapshot

space contains a large library of basis functions, which can be used to obtain a fine scale

approximate solution to (2.1). A spectral problem is then solved in the snapshot space V (i)
snap

and eigenfunctions corresponding to dominant modes are used as the final basis functions.

The resulting space is called the local offline space V (i)
off for the i-th coarse grid block

Ki. The global offline space Voff is then defined as the linear span of all these V (i)
off , for

i = 1, 2, · · · , N . This global offline space Voff will be used as the approximation space of
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our discontinuous Galerkin method, which can be formulated as: find uDG
H ∈ Voff such that

aDG(uDG
H , v) = (f, v), ∀v ∈ Voff, (3.1)

where the bilinear form aDG is defined as

aDG(u, v) = aH(u, v)−
∑
E∈EH

∫
E

(
{{κ∇u · nE}}[[v]]+{{κ∇v · nE}}[[u]]

)
+
∑
E∈EH

γ

h

∫
E

κ[[u]][[v]]

(3.2)

with

aH(u, v) =
∑
K∈TH

aKH(u, v), aKH(u, v) =

∫
K

κ∇u · ∇v, (3.3)

where γ > 0 is a penalty parameter, nE is a fixed unit normal vector defined on the coarse

edge E ∈ EH . Note that, in (3.2), the average and the jump operators are defined in the

classical way. Specifically, consider an interior coarse edge E ∈ EH and let K+ and K−

be the two coarse grid blocks sharing the edge E. For a piecewise smooth function G, we

define

{{G}} =
1

2
(G+ +G−), [[G]] = G+ −G−, on E,

where G+ = G|K+ and G− = G|K− and we assume that the normal vector nE is pointing

from K+ to K−. Moreover, on the edge E, we define κ = (κK+ + κK−)/2 where κK±

is the maximum value of κ over K±. For a coarse edge E lying on the boundary ∂D, we

define

{{G}} = [[G]] = G, and κ = κK on E,

where we always assume that nE is pointing outside of D. We note that the DG coupling

(3.1) is the classical interior penalty discontinuous Galerkin (IPDG) method [44] with our

multiscale basis functions as the approximation space.
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3.1.2 Construction of offline basis functions

In this subsection, we will give a detailed description of the method. We will first give

the construction of the snapshot space, and then give the definitions of the local spectral

problems for the construction of the offline space. Furthermore, a priori estimate of the

method will be derived.

Let Ki ∈ T H be a given coarse grid block. We will define two types of snapshot

spaces. The first type of local snapshot space V (i)
1,snap for the coarse grid block Ki is defined

as the linear span of all harmonic extensions. Specifically, given a function δk defined on

∂Ki, we find ψi,snap
k ∈ Vh(Ki) by

∫
Ki

κ∇ψi,snap
k · ∇v = 0, ∀ v ∈ V 0

h (Ki),

ψi,snap
k = δk, on ∂Ki,

(3.4)

where Vh(Ki) is the standard conforming piecewise polynomial finite element space with

respect to the fine grid defined on Ki, V 0
h (Ki) is the subspace of Vh(Ki) containing func-

tions vanishing on ∂Ki and δk is piecewise polynomial on ∂Ki with respect to the fine

grid such that δk has the value one at the k-th fine grid degree of freedom and value zero

at all the remaining fine grid degree of freedoms. The linear span of the above harmonic

extensions is the local snapshot space V (i)
1,snap, namely

V
(i)

1,snap = span{ψi,snap
k , k = 1, 2, · · · ,M i,snap},

where M i,snap is the number of basis functions in V (i)
1,snap, which is also equal to the number

of fine grid degree of freedoms on ∂Ki. The second type of local snapshot space V (i)
2,snap

for the coarse grid block Ki is defined as V (i)
2,snap = V 0

h (Ki). It is easy to see that Vh(Ki) =

V
(i)

1,snap+V
(i)

2,snap, namely the space Vh(Ki) is decomposed as the sum of harmonic extensions
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and functions vanishing on the boundary ∂Ki. Moreover, the global snapshot space V1,snap

is defined so that any v ∈ V1,snap if v|Ki ∈ V (i)
1,snap. The space V2,snap is defined similarly.

We will perform dimension reductions on the above snapshot spaces by the use of

some carefully selected spectral problems. Based on our analysis to be presented in this

section, we define the spectral problem for V (i)
1,snap as finding eigenpairs (φ

(i)
k , λ

(i)
1,k), k =

1, 2, · · · ,M i,snap, such that

∫
Ki

κ∇φ(i)
k · ∇v =

λ
(i)
1,k

H

∫
∂Ki

κ̃φ
(i)
k v, ∀v ∈ V (i)

1,snap, (3.5)

where κ̃ is the maximum of κ over all coarse edges E ∈ ∂Ki. Moreover, we assume that

λ
(i)
1,1 < λ

(i)
1,2 < · · · < λ

(i)

1,M i,snap .

For the space V (i)
2,snap, we define the spectral problem as finding eigenpairs (ξ

(i)
k , λ

(i)
2,k), k =

1, 2, · · · , such that

∫
Ki

κ∇ξ(i)
k · ∇v =

λ
(i)
2,k

H2

∫
Ki

κξ
(i)
k v, ∀v ∈ V (i)

2,snap, (3.6)

where we also assume that

λ
(i)
2,1 < λ

(i)
2,2 < · · ·

In the spectral problems (3.5) and (3.6), we will take respectively the first l1,i and l2,i

eigenfunctions to form the offline space for the coarse grid block Ki. The local offline

spaces are then defined as

V
(i)

1,off = span{φ(i)
l , l = 1, 2, · · · , l1,i},

V
(i)

2,off = span{ξ(i)
l , l = 1, 2, · · · , l2,i}.
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We define V (i)
off = V

(i)
1,off + V

(i)
2,off. The global offline space V off

1 is defined so that the re-

striction of any function v ∈ V off
1 on the coarse grid block Ki belongs to V i,off

1 . The

definition for V off
2 is defined similarly. In addition, we define Voff = V1,off + V2,off. This

space is used as the approximation space in (3.1). We remark that we assume the eigen-

values in the spectral problems (3.5) and (3.6) are simple only to simplify the notations. If

there is a non-simple eigenvalue, then there are multiple eigenfunctions correspond to this

eigenvalue. In this case, we will include all these eigenfunctions in the space when this

eigenvalue is chosen in our adaptive process.

Now we will analyze the method defined in (3.1). For any piecewise smooth function

u, we define the DG-norm by

‖u‖2
DG = aH(u, u) +

∑
E∈EH

γ

h

∫
E

κ[[u]]2 ds.

Let K be a coarse grid block and let n∂K be the unit outward normal vector on ∂K.

We denote Vh(∂K) by the restriction of the conforming space Vh(K) on ∂K. For any

u ∈ V snap
1 , the normal flux κ∇u · n∂K is understood as an element in Vh(∂K) and is

defined by ∫
∂K

(κ∇u · n∂K) · v =

∫
K

κ∇u · ∇v̂, v ∈ V h(∂K), (3.7)

where v̂ ∈ Vh(K) is the harmonic extension of v inK. By the Cauchy-Schwarz inequality,

∫
∂K

(κ∇u · n∂K) · v ≤ aKH(u, u)
1
2 aKH(v̂, v̂)

1
2 .

By an inverse inequality and the fact that v̂ is the harmonic extension of v

aKH(v̂, v̂) ≤ κKC
2
invh

−1

∫
∂K

|v|2, (3.8)
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where we recall that κK is the maximum of κ over K and Cinv > 0 is the constant from

inverse inequality. Thus,

∫
∂K

(κ∇u · n∂K) · v ≤ κ
1
2
KCinvh

− 1
2‖v‖L2(∂K) a

K
H(u, u)

1
2 .

This shows that ∫
∂K

|κ∇u · n∂K |2 ≤ κKC
2
invh

−1aKH(u, u). (3.9)

We remark that the above steps show that the inequality (3.9) holds for any u in the snap-

shot space V snap
1 . On the other hand, for any function u ∈ V snap

2 , one can show that (3.9)

holds, with possibly a different constant Cinv, by using arguments based on inverse in-

equality. See also Lemma 2 in [22]. Furthermore, the relation (3.7) will be used in the

proof of Theorem 3.1.2.

Our first step in the development of an a priori estimate is to establish the continuity

and the coercivity of the bilinear form (3.2) with respect to the DG-norm.

Lemma 3.1.1. Assume that the penalty parameter γ is chosen so that γ > C2
inv. The

bilinear form aDG defined in (3.2) is continuous and coercive, that is,

aDG(u, v) ≤ a1‖u‖DG ‖v‖DG, (3.10)

aDG(u, u) ≥ a0‖u‖2
DG, (3.11)

for all u, v, where a0 = 1− Cinvγ
− 1

2 > 0 and a1 = 1 + Cinvγ
− 1

2 .

Proof. By the definition of aDG, we have

aDG(u, v) = aH(u, v)−
∑
E∈EH

∫
E

(
{{κ∇u · nE}}[[v]]+{{κ∇v · nE}}[[u]]

)
+
∑
E∈EH

γ

h

∫
E

κ[[u]][[v]].
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Notice that

aH(u, v) +
∑
E∈EH

γ

h

∫
E

κ[[u]] · [[v]] ≤ ‖u‖DG ‖v‖DG.

For an interior coarse edge E ∈ EH , we let K+, K− ∈ T H be the two coarse grid blocks

having the edge E. By the Cauchy-Schwarz inequality, we have

∫
E

{{κ∇u · nE}} · [[v]] ≤
(
h

∫
E

{{κ∇u · nE}}2(κ)−1
) 1

2
(1

h

∫
E

κ[[v]]2
) 1

2
. (3.12)

Notice that

h

∫
E

{{κ∇u · nE}}2(κ)−1 ≤ h
(∫

E

(κ+∇u+ · nE)2(κK+)−1 +

∫
E

(κ−∇u− · nE)2(κK−)−1
)

where u± = u|K± , κ± = κ|K± . So, summing the above over all E and by (3.9), we have

h
∑
E∈EH

∫
E

{{κ∇u · nE}}2(κ)−1 ≤ h
∑
K∈TH

∫
∂K

(κ∇u · n∂K)2(κK)−1 ≤ C2
invaH(u, u).

Thus we have

∑
E∈EH

∫
E

{{κ∇u · nE}}[[v]] ≤ CinvaH(u, u)
1
2

( ∑
E∈EH

1

h

∫
E

κ[[v]]2 ds
) 1

2
. (3.13)

Similarly, we have

∑
E∈EH

∫
E

{{κ∇v · nE}}[[u]] ≤ CinvaH(v, v)
1
2

( ∑
E∈EH

1

h

∫
E

κ[[u]]2 ds
) 1

2
.

Summing the above two inequalities, we have

∑
E∈EH

∫
E

(
{{κ∇u · nE}}[[v]] + {{κ∇v · nE}}[[u]]

)
≤ Cinvγ

− 1
2‖u‖DG ‖v‖DG. (3.14)
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This proves the continuity (3.10).

For the coercivity (3.11), we have

aDG(u, u) = ‖u‖2
DG −

∑
E∈EH

∫
E

(
{{κ∇u · nE}} · [[u]] + {{κ∇u · nE}} · [[u]]

)
.

By (3.14), we have

aDG(u, u) ≥ (1− Cinvγ
− 1

2 )‖u‖2
DG,

which gives the desired result.

�

In the following, we will prove an a priori estimate of the method (3.1). First, we let

V h
DG = {v ∈ L2(D) : v|K ∈ Vh(K)}. (3.15)

Let uh ∈ V DG
h be the fine grid solution which satisfies

aDG(uh, v) = (f, v), ∀v ∈ V DG
h . (3.16)

It is well-known that uh converges to the exact solution u in the DG-norm as the fine mesh

size h → 0. Next, we define a projection u1 ∈ V1,snap of uh in the snapshot space by

the following construction. For each coarse grid block Ki, the restriction of u1 on Ki is

defined as the harmonic extension of uh, that is,

∫
Ki

κ∇u1 · ∇v = 0, ∀ v ∈ V 0
h (Ki)

u1 = uh, on ∂Ki.

(3.17)

The following theorem gives an a priori estimate for the GMsDGM (3.1).

40



Theorem 3.1.2. Let uh ∈ V DG
h be the fine grid solution defined in (3.16) and uH be the

GMsDGM solution defined in (3.1). Then we have

‖uh − uH‖2DG ≤ C
( N∑
i=1

H

κ̃λ
(i)
1,l1,i+1

(1 +
γH

hλ
(i)
1,l1,i+1

)

∫
∂Ki

(κ∇u1 · n∂K)2

+
∑
K∈TH

H2

λ
(i)
2,l2,i+1

‖f‖2L2(K) + C2
inv

∑
E∈EH

1

h

∫
E
κ[[uh]]

2
)
,

where u1 is defined in (3.17).

Proof. First, we write uh = u1 + u2 where u2 = uh − u1. Notice that, on each coarse

grid block Ki, the functions u1 and u2 can be represented by

u1 =

Mi∑
l=1

clφ
(i)
l and u2 =

∑
l≥1

dlξ
(i)
l (3.18)

where Mi = M i,snap and we assume that the functions φ(i)
l and ξ(i)

l are normalized so that

∫
∂Ki

κ̃(φ
(i)
l )2 = 1 and

∫
Ki

κ(ξ
(i)
l )2 = 1.

Notice that, the functions u1 and u2 belong to the snapshot spaces V1,snap and V2,snap re-

spectively. We will need two functions û1 and û2, which belong to the offline spaces V1,off

and V2,off respectively. These functions are defined by

û1 =

l1.i∑
l=1

clφ
(i)
l and û2 =

l2.i∑
l=1

dlξ
(i)
l on Ki.

We remark that û1 and û2 are the truncation of u1 and u2 up to the eigenfunctions selected

to form the offline space.

Next, we will find an estimate of ‖u1 − û1‖DG. Let Ki ∈ T H be a given coarse grid
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block. Recall that the spectral problem to form V
(i)

1,off is

∫
Ki

κ∇φ(i)
k · ∇v =

λ
(i)
1,k

H

∫
∂Ki

κ̃φ
(i)
k v, ∀v ∈ V (i)

1,snap.

By the definition of the flux defined in (3.7), the above spectral problem can be represented

as ∫
∂Ki

(κ∇φ(i)
k · n∂Ki)v ds =

λ
(i)
1,k

H

∫
∂Ki

κ̃φ
(i)
k v.

By the definition of the DG-norm, the error ‖u1 − û1‖DG can be estimated by

‖û1 − u1‖2
DG ≤

N∑
i=1

(∫
Ki

κ|∇(û1 − u1)|2 +
γ

h

∫
∂Ki

κ̃(û1 − u1)2
)
.

Note that, by (3.18), we have

∫
Ki

κ|∇(û1 − u1)|2 =

Mi∑
l=l1,i+1

λ
(i)
1,l

H
c2
l ≤

H

λ
(i)
1,l1,i+1

Mi∑
l=l1,i+1

(
λ

(i)
1,l

H
)2c2

l

and
1

h

∫
∂Ki

κ̃(û1 − u1))2 =
1

h

Mi∑
l=l1,i+1

c2
l ≤

H2

h(λ
(i)
1,l1,i+1)2

Mi∑
l=l1,i+1

(
λ

(i)
1,l

H
)2c2

l .

Furthermore,

Mi∑
l=l1,i+1

(
λ

(i)
1,l

H
)2c2

l ≤
Mi∑
l=1

(
λ

(i)
1,l

H
)2c2

l = (κ̃)−1

∫
∂Ki

(κ∇u1 · n∂Ki)2.

Consequently, we obtain the following bound

‖u1 − û1‖2
DG ≤

N∑
i=1

H

κ̃λ
(i)
1,l1,i+1

(1 +
γH

hλ
(i)
1,l1,i+1

)

∫
∂Ki

(κ∇u1 · n∂K)2.
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Next, we will find an estimate of ‖u2 − û2‖DG. By definition of the bilinear form aDG,

aDG(u2, v) = −aDG(u1, v) + (f, v) =
∑
E∈EH

∫
E

(
{{κ∇v · nE}}[[u1]]

)
+ (f, v)

which holds for any v ∈ V2,snap. In addition, by the fact that any function in V2,snap is zero

on boundaries of coarse grid blocks, we have

‖u2 − û2‖2
DG = aDG(u2 − û2, u2 − û2) = aDG(u2, u2 − û2),

where it follows from the fact that the eigenfunctions of (3.6) are κ-orthogonal on every

coarse grid block. Therefore we have

‖u2 − û2‖2
DG =

∑
E∈EH

∫
E

(
{{κ∇(u2 − û2) · nE}}[[u1]]

)
+ (f, u2 − û2). (3.19)

The second term on the right hand side of (3.19) can be estimated as

(f, u2 − û2) ≤
∑
K∈T H

‖f‖L2(K)‖κ
1
2 (u2 − û2)‖L2(K).

By (3.6), for every Ki ∈ T H , we have

∫
Ki

κ|(u2 − û2)|2 =
∑

l≥l2.i+1

d2
l ≤

( H2

λ
(i)
2,l2,i+1

) ∑
l=l2.i+1

λ
(i)
2,l

H2
d2
l =

H2

λ
(i)
2,l2,i+1

∫
Ki

κ|∇(u2 − û2)|2.

For the first term on the right hand side of (3.19), we use inequality (3.13) to conclude that

∑
E∈EH

∫
E

(
{{κ∇(u2 − û2) · nE}}[[u1]]

)
≤ Cinvγ

− 1
2‖u2 − û2‖DG

( ∑
E∈EH

γ

h

∫
E

κ[[u1]]2
) 1

2
.

Consequently, from (3.19) and the fact that [[u1]] = [[uh]] for all coarse edges, we obtain the
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following bound

‖u2 − û2‖2
DG ≤ C

(
C2

inv

∑
E∈EH

1

h

∫
E

κ[[uh]]
2 +

∑
K∈TH

H2

λ
(i)
2,l2,i+1

‖f‖2
L2(K)

)
.

Finally, we will prove the required error bound. By coercivity,

a0‖û1 + û2 − uH‖2
DG ≤ aDG(û1 + û2 − uH , û1 + û2 − uH)

= aDG(û1 + û2 − uH , û1 + û2 − uh)

+aDG(û1 + û2 − uH , uh − uH).

Note that aDG(û1 + û2−uH , uh−uH) = 0 since û1 + û2−uH ∈ Voff. Using the above

results,

‖û1 + û2 − uH‖2
DG

≤ C
( N∑
i=1

H

κ̃λ
(i)
1,l1,i+1

(1 +
γH

hλ
(i)
1,l1,i+1

)

∫
∂Ki

(κ∇u1 · n∂K)2

+
∑
K∈TH

H2

λ
(i)
2,l2,i+1

‖f‖2
L2(K) + C2

inv

∑
E∈EH

1

h

∫
E

κ[[uh]]
2
)
.

The desired bound is then obtained by the triangle inequality

‖uh − uH‖DG ≤ ‖uh − û‖DG + ‖û− uH‖DG,

where û = û1 + û2. This completes the proof.

�
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We remark that, the term

N∑
i=1

H

κ̃λ
(i)
1,l1,i+1

(1 +
γH

hλ
(i)
1,l1,i+1

)

∫
∂Ki

(κ∇u1 · n∂K)2 (3.20)

corresponds to the error for the space V1,off and the term

∑
K∈TH

H2

λ
(i)
2,l2,i+1

‖f‖2
L2(K)

corresponds to the error for the space V2,off. Moreover, the term

C2
inv

∑
E∈EH

1

h

∫
E

κ[[uh]]
2

is the error in the fine grid solution uh. This is the irreducible error, and an estimate of

this can be derived following standard DG frameworks. In particular, the fine grid so-

lution uh satisfies (3.16), which is the standard interior penalty discontinuous Galerkin

(IPDG) method with the use of the DG space defined in (3.15). One can find the er-

ror analysis of this method, for example, in [44]. More precisely, one can show that∑
E∈EH

1
h

∫
E
κ[[uh]]

2 ≤ Cerrh
2p where p is the degree of the piecewise polynomial in

Vh(K). We note that the constant Cerr depends on the derivatives of the true solution

and can be large. However, we assume that the fine mesh size h is small enough to resolve

all scales of the true solution so that this error term is small.

h Λsnap
K

1/48 1.0021e+03
1/96 1.0193e+03
1/192 1.3094e+03

h Λsnap
K

1/48 7.7650e+05
1/96 1.6569e+06

1/192 3.3254e+06

Table 3.1: Left: oversampling basis, Right: no-oversampling basis
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Remark 3.1.3. It is important to note that one can also replace (3.8) by

aKH(v̂, v̂) ≤ Λsnap
K κ̃

∫
∂K

|v|2, (3.21)

where Λsnap
K is the largest eigenvalue for the spectral problem (3.5). Therefore, (3.9) can

be replaced by ∫
∂K

|κ∇u · n∂K |2 ≤ Λsnap
K κ̃ aKH(u, u). (3.22)

By following the above steps, we see that one can choose γ in (3.20) so that

γ > Cκh max
K⊂T H

Λsnap
K

where the constant Cκ is defined as

Cκ = max
K⊂T H

maxE⊂∂K κ

minE⊂∂K κ
.

We remark that this constant Cκ is order one if we assume that every coarse element has

a high contrast region.

One can take smaller values of γ if oversampling is used (oversampling method is dis-

cussed in Section 3.3). The main idea of the oversampling is to choose larger regions for

computing snapshot vectors. For every coarse block Ki, we choose an enlarged region

K+
i , and find oversampling snapshot functions ψi,over

k by solving (3.34). We have per-

formed numerical experiments and computed Λsnap
K with and without oversampling. De-

note Λsnap
K+ to be the largest eigenvalue corresponding to the oversampled problem. In our

numerical results (see Table 3.1), we have removed linearly dependent snapshot vectors

with respect to the inner product corresponding to
∫
∂K
|v|2 before computing the largest

eigenvalue. Our numerical results show that one can have about three orders of magnitude
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smaller value for Λsnap
K+ compared to Λsnap

K . Moreover, our numerical results show a weak h-

dependence for Λsnap
K+ as we decrease h, while Λsnap

K behaves as h−1 (when no-oversampling

is used).

Our error analysis holds when oversampling snapshot space is used. The term in

(3.20) will become

N∑
i=1

H

κ̃λ
(i)
1,l1,i+1

(1 +
αCκ maxK⊂T H Λsnap

K+H

λ
(i)
1,l1,i+1

)

∫
∂Ki

(κ∇u1 · n∂K)2 (3.23)

when γ = αCκhmaxK⊂T H Λsnap
K+ . If Λsnap

K+ is a weak function of h, e.g., if it is bounded

with respect to h, then the terms involving Λsnap
K+ doesnt influence the error and the error is

dominated by the first term. We emphasize that our discussions in this Remark are based on

our numerical studies and their analytical studies are difficult because it requires interior

estimates for solutions. We plan to study them in future.

Remark 3.1.4. From the remark above as well as (3.21) and (3.22), one sees that the

penalty term in (3.2) can be replaced by

βΛsnap
max

∫
E

κ[[u]][[v]]

where β is an O(1) constant and Λsnap
max := maxK⊂T H Λsnap

K . Moreover, it is easy to show

that the result in Theorem 3.1.2 becomes

‖uh − uH‖2
DG ≤ C

( N∑
i=1

1

κ̃λ
(i)
1,l1,i+1

(1 +
βΛsnap

max

λ
(i)
1,l1,i+1

)

∫
∂Ki

(κ∇u1 · n∂K)2

+
∑
K∈TH

H2

λ
(i)
2,l2,i+1

‖f‖2
L2(K) +

∑
E∈EH

Λsnap
max

∫
E

κ[[uh]]
2
)
.

Remark 3.1.5. We note that while the solution can be well approximated by using our
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basis functions within coarse elements, the jumps of the solutions across coarse edges may

not be well controlled (particularly, for a small number of multiscale basis functions). One

reason for this is because we use a constant penalty parameter γ > 0 and a very large

penalty factor (scaled as h−1). In general, the solution has multiscale structure on coarse

edges, and the use of multiscale penalty (instead of constant penalty) is desirable and is

important in order to capture the jumps of the solution (e.g., similar to HDG methods).

Despite these limitations, the IPDG formulation performs well in practical applications.

The method is easy to implement in parallel using unstructured coarse meshes and avoids

overlaps.

3.2 A-posteriori error estimate and adaptive enrichment

In this section, we will derive an a-posteriori error indicator for the error uh − uH

in energy norm. We will then use the error indicator to develop an adaptive enrichment

algorithm. The a-posteriori error indicator gives an estimate of the local error on the coarse

grid blocks Ki, and we can then add basis functions to improve the solution. Our indicator

consists of two components, which correspond to the errors made in the spaces V1,snap

and V2,snap. By using the indicator, one can determine adaptively which space has to be

enriched. This section is devoted to the description of the a-posteriori error indicator and

the corresponding adaptive enrichment algorithm. The convergence analysis of the method

will be given in the Section 3.4.

Recall that V h
DG is the fine scale DG finite element space, and the fine scale solution uh

satisfies

aDG(uh, v) = (f, v) for all v ∈ V h
DG. (3.24)

Moreover, the GMsDGM solution uH satisfies

aDG(uH , v) = (f, v) for all v ∈ Voff. (3.25)

48



We remark that Voff ⊂ V DG
h . Next we will give the definitions of the residuals.

Definitions of residuals:

Let Ki be a given coarse grid block. We will define two residuals corresponding to

the two types of snapshot spaces. First, on the space V (i)
1,snap, we define the following linear

functional

R1,i(v) =

∫
Ki

fv − aDG(uH , v), v ∈ V (i)
1,snap. (3.26)

Similarly, on the space V (i)
2,snap, we define the following linear functional

R2,i(v) =

∫
Ki

fv − aDG(uH , v), v ∈ V (i)
2,snap. (3.27)

These residuals measure how well the solution uH satisfies the fine-scale equation (3.24).

Furthermore, on the snapshot spaces V (i)
1,snap and V (i)

2,snap, we define the following norms

‖v‖2
V1(Ki)

= H−1

∫
∂Ki

κ̃v2 and ‖v‖2
V2(Ki)

= H−2

∫
Ki

κv2 (3.28)

respectively. The norms of the linear functionals R1,i and R2,i are defined in the standard

way, namely

‖R1,i‖ = sup
v∈V (i)

1,snap

|R1,i(v)|
‖v‖V1(Ki)

and ‖R2,i‖ = sup
v∈V (i)

2,snap

|R2,i(v)|
‖v‖V2(Ki)

. (3.29)

The norms ‖R1,i‖ and ‖R2,i‖ give estimates on the sizes of fine-scale residual errors with

respect to the spaces V (i)
1,snap and V (i)

2,snap.

We recall that, for each coarse grid block Ki, the eigenfunctions of the spectral prob-

lem (3.5) corresponding to the eigenvalues λ(i)
1,1, · · · , λ(i)

1,l1,i
and the eigenfunctions of the

spectral problem (3.6) corresponding to the eigenvalues λ(i)
2,1, · · · , λ(i)

2,l2,i
are used in the

construction of Voff. In addition, the energy error in this section and Section 3.4 is mea-
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sured by ‖u‖2
a = aDG(u, u), which is equivalent to the DG norm.

In Section 3.4, we will prove the following theorem, and we see that the norms ‖Rj,i‖

give indications on the size of the energy norm error ‖uh − uH‖a.

Theorem 3.2.1. Let uh and uH be the solutions of (3.24) and (3.25) respectively. Then

‖uh − uH‖2
a ≤ Cerr

N∑
i=1

2∑
j=1

‖Rj,i‖2(λ
(i)
j,lj,i+1)−1. (3.30)

where Cerr is a uniform constant.

We will now present the adaptive enrichment algorithm. We use m ≥ 1 to represent

the enrichment level, Voff(m) to represent the solution space at levelm and umH to represent

the GMsDGM solution at the enrichment level m. For each coarse grid block Ki, we use

lmj,i to represent the number of eigenfunctions in V (i)
j,off used at the enrichment level m for

the coarse region Ki. Assume that the initial offline space Voff(0) is given.

Adaptive enrichment algorithm: Choose 0 < θ < 1. For each m = 0, 1, · · · ,

1. Step 1: Find the solution in the current space. That is, find umH ∈ Voff(m) such that

aDG(umH , v) = (f, v) for all v ∈ Voff(m). (3.31)

2. Step 2: Compute the local residuals. For each coarse grid block Ki, we compute

η2
j,i = ‖Rj,i‖2(λ

(i)
j,lmj,i+1)−1, j = 1, 2.

where the residuals and their norms are defined in (3.26)-(3.29). In particular, the

residuals are the L2 projections with respect to the inner products (3.28) and their

norms are L2 norms of these projections. After we computed the residual norms,

we re-enumerate the above 2N residuals in the decreasing order, that is, η2
1 ≥ η2

2 ≥
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· · · ≥ η2
2N , where we adopted single index notations. That is, each single index k

corresponds to a double index (j, i) for the i-th coarse block Ki and the space V (i)
j,off.

3. Step 3: Find the coarse grid blocks and spaces where enrichment is needed. We

choose the smallest integer k such that

θ
2N∑
J=1

η2
J ≤

k∑
J=1

η2
J . (3.32)

The above is the standard Dorfler marking strategy. It is also a criterion to select the

coarse regions with large errors. The numbers of regions and spaces to enrich are

determined by the parameter θ.

4. Step 4: Enrich the space. For each J = 1, 2, · · · , k, chosen by the above criterion,

we add basis functions in V (i)
j,off according to the following rule. Let s be the smallest

positive integer such that λ(i)
j,lmj,i+s+1 is large enough (see the proof of Theorem 3.2.2)

compared with λ(i)
j,lmj,i+1. Then we will add the eigenfunctions φ(i)

k or ξ(i)
k from the

spectral problem (3.5) or (3.6) for k = lmj,i+1, · · · , lmj,i+s, depending on the value of

j, in the construction of the basis functions. We note that j = 1 or 2 corresponds to

the space defined by eigenfunctions the spectral problem (3.5) or (3.6). The resulting

space is denoted as Voff(m+ 1).

We remark that the choice of s above will ensure the convergence of the enrichment algo-

rithm, and in practice, the value of s is easy to obtain. Moreover, contrary to classical adap-

tive refinement methods, the total number of basis functions that we can add is bounded

by the dimension of the snapshot space. Thus, the condition (3.32) can be modified as

follows. We choose the smallest integer k such that

θ
2N∑
J=1

η2
J ≤

∑
J∈I

η2
J ,
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where the index set I is a subset of {1, 2, · · · , k}.

Finally, we state the convergence theorem.

Theorem 3.2.2. There are sequence {Lm}Mm=1 and positive constants τ, ε0, ρ independent

of m such that the following contracting property holds

‖uh − um+1
H ‖2

a +
τ

1 + τLm+1

2N∑
J=1

(Sm+1
J )2 ≤ ε

(
‖uh − umH‖2

a +
τ

1 + τLm

2N∑
J=1

(SmJ )2
)
.

Note that 0 < ε < 1 and

ε = 1− ε0θ2 τ

2Cerr(1 + τLM)

where we can take any value of θ with the following condition

0 < θ < min
{

1,
(Cerr(1 + τLM)

τ

) 1
2
}
. (3.33)

We remark that the precise definitions of SmJ as well as the constants τ, ε0, ρ and the

sequence Lm are given in Section 3.4.

3.3 Numerical Results

In this section, we will present some numerical examples to demonstrate the perfor-

mance of the adaptive enrichment algorithm. The domain Ω is taken as the unit square

[0, 1]2 and is divided into 16 × 16 coarse blocks consisting of uniform squares. Each

coarse block is then divided into 32× 32 fine blocks consisting of uniform squares. Con-

sequently, the whole domain is partitioned by a 512 × 512 fine grid blocks. We will use

the following error quantities to compare the accuracy of our algorithm

e2 =
‖uH − uh‖L2(Ω)

‖uh‖L2(Ω)

, ea =

√
aDG(uH − uh, uH − uh)√

aDG(uh, uh)
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esnap
2 =

‖uH − usnap‖L2(Ω)

‖usnap‖L2(Ω)

, esnap
a =

√
aDG(uH − usnap, uH − usnap)√

aDG(usnap, usnap)

where uH and uh are the GMsDGM and the fine grid solutions respectively. Moreover,

usnap is the snapshot solution obtained by using all snapshot functions generated by an

oversampling strategy, see below.

We consider the permeability field κ which is shown in Figure 3.1. The boundary

condition is set to be bi-linear, g = x1x2. We will consider two examples with two different

source functions f . We will compare the result of V1 enrichment, V1 − V2 enrichment,

oversampling basis enrichment, uniform enrichment and the exact indicator enrichment.

The following gives the details of these enrichments.

• V1 enrichment: We use the error indicator, η2
1,i to perform the adaptive algorithm

by enriching the basis functions in V1 space only, that is, basis functions obtained by

the first spectral problem (3.5). We use 4 basis functions from (3.5) and zero basis

function from (3.6) in the initial step.

• V1−V2 enrichment: We use both the error indicators, η2
1,i, η

2
2,i to perform the adap-

tive algorithm by enriching the basis functions in both V1 and V2 spaces, that is, basis

functions from both spectral problems (3.5) and (3.6). We use 4 basis functions from

(3.5) and zero basis function from (3.6) in the initial step.

• Oversampling enrichment: For every coarse block Ki, we choose an enlarged

region K+
i (in the examples presented below, we enlarge the coarse block in each

direction by a length H , that is K+
i is a 3×3 coarse blocks with Ki at the center).
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Then we find oversampling snapshot functions ψi,over
k ∈ Vh(K+

i ) by solving

∫
Ki

κ∇ψi,over
k · ∇v = 0, ∀ v ∈ V 0

h (K+
i ),

ψi,over
k = δk, on ∂K+

i .

(3.34)

The linear span of these snapshot functions is called V i,over. Then we choose 40

dominant oversampling basis functions by POD method. Specifically, we solve the

following eigenvalue problem

∫
Ki

ψi,over
k v = λik

∫
∂K+

i

ψi,over
k v, ∀v ∈ V i,over.

and choose the first 40 eigenfunctions with largest eigenvalues. Then we use these

40 functions as boundary conditions in (3.4) and repeat the remaining construction

of the offline space.

• Uniform enrichment: We enrich the basis functions in V1 space uniformly with 4

basis functions from the V1 space in the initial step.

• The exact indicator enrichment: We use the exact error as the error indicator to

perform the adaptive algorithm by enriching the basis functions in V1 space only

with 4 basis functions in the space V1 in the initial step. Here, the exact error is

defined as ‖u− uH‖a.

3.3.1 Example 1

In our first example, we take the source function f = 1. The fine grid solution is shown

in Figure 3.1. In Table 3.2 and Table 3.3, we present the convergence history of our algo-

rithm for enriching in V1 space only, enriching in both V1 and V2 spaces and enriching by

the oversampling basis functions. We remark that, in the presentation of our results, DOF
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Figure 3.1: Left: Permeability field κ. Right: Fine grid solution with f = 1.

means the total number of basis functions used in the whole domain. We see from Table

3.2 that the behaviour of enriching in V1 space only and enriching in both V1 and V2 spaces

are similar. The is due to the fact that the source function f is a constant function, and the

space V2 will not help to improve the solution. This is in consistent with classical theory

that basis functions obtained by harmonic extensions are good enough to approximate the

solution. In Table 3.3, the convergence behaviour is shown for the oversampling case,

and we see again that a clear convergence is obtained. For this case, we use 40 snapshot

basis functions per coarse grid block giving a total DOF of 10240, and the corresponding

snapshot errors (that is, the difference between the solution obtained by these 10240 basis

functions and the solution uh) of 4.5195×10−4 and 9.8935×10−4 in relative L2 norm and

relative a-norm respectively. In addition, we observe that the oversampling basis provides

more efficient representation of the solution than the non-oversampling basis. To further

demonstrate the efficiency of our algorithm, we compare our result with the uniform en-

richment scheme. The convergence history for using uniform enrichment is shown in Table

3.3, and we see that our adaptive enrichment algorithm performs much better than uniform

enrichment. Finally, a comparison among all the above cases and the enrichment by exact

error is shown in Figure 3.2, in which the energy error is plotted against DOF. From the

figure, we clearly see that our enrichment algorithm performs much better than uniform
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enrichment. Moreover, our enrichment algorithm performs equally well compared with

enrichment by the exact error. This shows that our indicator is both reliable and efficient.

DOF e2 ea
1024 0.1082 0.0479
1769 0.0456 0.0178
2403 0.0156 0.0105
3135 0.0070 0.0067
5607 0.0016 0.0031

DOF e2 ea
1024 0.1082 0.0479
1639 0.0802 0.0239
2584 0.0194 0.0114
3822 0.0061 0.0063
5660 0.0021 0.0037

Table 3.2: Convergence history with θ = 0.4 for Example 1. Left: Enrich in V1 space only.
Right: Enrich in both V1 and V2 spaces.

DOF e2 ea esnap
2 esnap

a

1024 0.0940 0.0469 0.0939 0.0469
1975 0.0204 0.0121 0.0202 0.0121
2648 0.0087 0.0077 0.0084 0.0077
3422 0.0046 0.0056 0.0043 0.0056
6748 0.0009 0.0022 0.0006 0.0020

DOF e2 ea
1024 0.1082 0.0479
2048 0.0671 0.0199
3328 0.0423 0.0150
5888 0.0161 0.0059
8448 0.0128 0.0044

Table 3.3: Left: Convergence history for oversampling basis with θ = 0.4 for Example 1
and enrichment in V1 space only. Right: Convergence history for uniform enrichment in
V1 space only.

Next, we will numerically demonstrate in Figure 3.3 the result of Theorem 3.1.2. In

particular, we will show that the error decay is inversely proportional to the smallest eigen-

value corresponding to the un-used eigenfunctions. To better show this relation, we will

consider basis function enrichment only in the V1 space and we fix the number of basis in

the V2 space. Thus, we consider only the relation between error decay and the reciprocal

of eigenvalues from the V1 space. In the left graph of Figure 3.3, the decay in relative error
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Figure 3.2: A comparison of different ways of enrichment for Example 1.

with respect to the number of basis functions per coarse element is shown, and in the right

graph of Figure 3.3, the decay in reciprocal of eigenvalue with respect to the number of

basis functions per coarse element is shown. We can see that the decay behaviours are very

similar. Indeed, the correlation of these two curves is 0.9863, which confirms our result in

Theorem 3.1.2. We remark that we conducted a similar test for the space V2 and obtained

the same conclusion.
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Figure 3.3: Relation of error and eigenvalue decays for Example 1. The correlation co-
efficient of these two curves is 0.9863. Left: Relative error decay. Right: Eigenvalue
decay.
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Finally, we will show numerically that the error indicator (3.26)-(3.27) gives a good

approximation of the error. In Figure 3.4, we plot the ratio of error to residual with respect

to the dimension of the approximation space, which contains both basis functions from V1

and V2. The error and the residual are the quantities appeared in (3.30). We see that the

ratio remains bounded andO(1), and is independent of the dimension of the approximation

space. This shows that the constant in (3.30) is O(1). This also shows that the residual

gives a good indication of the level of error.
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0.2
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0.3

0.35

0.4

0.45

0.5

DOF

Figure 3.4: The ratio of error to residual with respect to the dimension of the approxima-
tion space for Example 1.

3.3.2 Example 2

In our second example, we will take the source f to be the function shown in the

left plot of Figure 3.5 and the corresponding fine grid solution shown in the right plot

of Figure 3.5. In Table 3.4 and Table 3.5, we present the convergence history of our

algorithm for enriching in V1 space only, enriching in both V1 and V2 spaces and enriching

by oversampling basis. We see from Table 3.4 that enrichment in both V1 and V2 spaces

provides much more efficient methods than enrichment in V1 space only. In particular,

58



for an error level of approximately 1%, we see that enrichment in both V1 and V2 spaces

requires 3144 DOF while enrichment in V1 space only requires 3483 DOF. In Table 3.5,

the convergence behaviour is shown for the oversampling case, and we see again that a

clear convergence is obtained. For this case, we use 40 snapshot basis functions per coarse

grid block giving a total DOF of 10240, and the corresponding snapshot errors (that is, the

difference between the solution obtained by these 10240 basis functions and the solution

uh) of 0.0078 and 0.0093 in relative L2 norm and relative a-norm respectively. In addition,

we observe again that the oversampling basis provides more efficient representation of the

solution than the non-oversampling basis. To further demonstrate the efficiency of our

algorithm, we compare our results with the uniform enrichment scheme. The result for

using uniform enrichment is shown in Table 3.5 and we clearly observe that our adaptive

method is more efficient. Moreover, a comparison of the performance of various strategies

is shown in Figure 3.6, where the errors against DOF are plotted. From the figure, we see

that our method is much better than uniform enrichment. Furthermore, enrichment in both

V1 and V2 spaces has the best performance, which suggests that both V1 and V2 spaces are

important for more complicated source functions.
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Figure 3.5: Left: The source function f for the second example. Right: The fine grid
solution.
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DOF e2 ea
1024 0.2052 0.0554
2028 0.0362 0.0191
2717 0.0152 0.0140
3483 0.0111 0.0118
5116 0.0084 0.0102

DOF e2 ea
1024 0.2052 0.0554
2023 0.0486 0.0206
3144 0.0113 0.0105
4456 0.0050 0.0066
7407 0.0013 0.0034

Table 3.4: Convergence history with θ = 0.4 for Example 2. Left: Enrich in V1 space only.
Right: Enrich in both V1 and V2 spaces.

DOF e2 ea esnap
2 esnap

a

1024 0.1882 0.0540 0.1865 0.0532
1926 0.0296 0.0182 0.0269 0.0156
2626 0.0137 0.0135 0.0098 0.0098
3368 0.0105 0.0116 0.0057 0.0070
6677 0.0080 0.0097 0.0007 0.0025

DOF e2 ea
1024 0.2052 0.0554
2048 0.0923 0.0282
3328 0.0659 0.0215
5888 0.0278 0.0135
8448 0.0226 0.0121

Table 3.5: Left: Convergence history for oversampling basis with θ = 0.4 for Example 2
and enrichment in V1 space only. Right: Convergence history for uniform enrichment in
V1 space only.

3.3.3 Adaptive enrichment algorithm

3.3.3.1 Adaptive enrichment algorithm with basis removal

In our adaptive enrichment algorithm, we can add basis functions to the offline space

by using the error indicators. However, the addition of the basis functions must follow

the ordering of the eigenfunctions. There may be cases that some of the intermediate

eigenfunctions are not required in the representation of the solution. Therefore, we propose

a numerical strategy to remove basis functions that do not contribute or contribute less to

the representation of the solution. In the following, we will present this numerical strategy.

Basically, the first 4 steps are the same as before. We introduce Step 5 below to remove

unnecessary basis functions.

Adaptive enrichment algorithm with basis removal: Choose 0 < θ < 1. For each
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Figure 3.6: A comparison of different ways of enrichment.

m = 0, 1, · · · ,

1. Step 1: Find the solution in the current space. That is, find umH ∈ Voff(m) such that

aDG(umH , v) = (f, v) for all v ∈ Voff(m). (3.35)

2. Step 2: Compute the local residuals. For each coarse grid block Ki, we compute

η2
j,i = ‖Rj,i‖2(λ

(i)
j,lmj,i+1)−1, j = 1, 2.

Then we re-enumerate the 2N residuals in the decreasing order, that is, η2
1 ≥ η2

2 ≥

· · · ≥ η2
2N , where we adopted single index notations.

3. Step 3: Find the coarse grid blocks where enrichment is needed. We choose the

smallest integer k such that

θ

2N∑
J=1

η2
J ≤

k∑
J=1

η2
J . (3.36)

4. Step 4: Enrich the space. For each J = 1, 2, · · · , k, we add basis function in V (i)
j,off
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according to the following rule. Let s be the smallest positive integer such that

λ
(i)
j,lmj,i+s+1 is large enough (see the proof of Theorem 3.2.2) compared with λ(i)

j,lmj,i+1.

Then we include the eigenfunctions in the construction of the basis functions. The

resulting space is denoted as V̂ off(m+ 1). Note that this is the offline space without

basis removal.

5. Step 5: Remove basis. In this step, we will remove basis functions that have lit-

tle contribution to the solution. For each coarse grid block Ki, we can write the

restriction of the current solution umH on Ki as

lm1,i∑
l=1

α1,lφ
(i)
l +

lm2,i∑
l=1

α2,lξ
(i)
l .

Fixed a tolerance ε > 0, which specify the importance of basis functions. Then the

basis function φ(i)
l or ξ(i)

l is removed from V̂ off(m+ 1) if

α2
1,l < ε

( lm1,i∑
l=1

α2
1,l +

lm2,i∑
l=1

α2
2,l

)
or α2

2,l < ε
( lm1,i∑
l=1

α2
1,l +

lm2,i∑
l=1

α2
2,l

)

is satisfied. The resulting space is called Voff(m+ 1).

To test this strategy, we consider our second example with the source function f de-

fined in Figure 3.5. We will consider three choices of ε, with values 10−12, 10−13 and

10−14. The convergence history of these cases are shown in Table 3.6. We can see that our

basis removal strategy gives more efficient representation of the solution. For example,

comparing the errors with DOF of around 2000 with basis removal (Table 3.6) and with-

out basis removal (Table 3.4), we see that the method with basis removal gives a solution

with smaller errors in both L2 norm and a-norm. On the other hand, we see that the choice

of ε = 10−14 performs better than ε = 10−12. In particular, for DOF of around 2200, the
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error with ε = 10−14 is around 2% while the error with ε = 10−12 is around 4%. However,

one expects that smaller choices of ε are not as economical as larger choices of ε.

DOF L2-error a-error
1024 0.2052 0.0554
951 0.1824 0.0502
1074 0.1158 0.0415
1742 0.0461 0.0174
2218 0.0404 0.0153

DOF L2-error a-error
1024 0.2052 0.0554
996 0.1767 0.0501
1107 0.1236 0.0431
2006 0.0266 0.0154
2824 0.0192 0.0123

DOF L2-error a-error
1024 0.2052 0.0554
1048 0.1774 0.0500
1185 0.1280 0.0434
2235 0.0223 0.0150
3275 0.0147 0.0117

Table 3.6: Enrichment with θ = 0.4 and basis removal as well as enrichment in V1 space
only. Left: ε = 10−12. Middle: ε = 10−13. Right: ε = 10−14

3.3.3.2 Adaptive enrichment using local basis pursuit

In this section, we discuss an algorithm that follows basis pursuit ideas [40] and iden-

tify the basis functions which need to be added based on the residual. The main idea is to

find multiscale basis functions that correlate to the residual the most and add those basis

functions. More precisely, we identify basis functions that has the largest correlation co-

efficient with respect to the residual and add those basis functions. In the following, we

will present the details of the numerical algorithm. The key components of the algorithm

are Step 2 and Step 3, which determine the basis functions that correlate to the residual the

most.

Adaptive enrichment algorithm using local basis pursuit: Choose 0 < θ < 1. For

each m = 0, 1, · · · ,
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1. Step 1: Find the solution in the current space. That is, find umH ∈ Voff(m) such that

aDG(umH , v) = (f, v) for all v ∈ Voff(m). (3.37)

2. Step 2: Compute the local residuals. For each coarse grid block Ki, we compute

ζ2
j,i,l =

|Rj,i(vl)|2

‖vl‖2
Vj(Ki)

, j = 1, 2, ∀vl ∈ Vj(Ki).

Note that |Rj,i(vl)| is the inner-product that identifies the basis functions that have

the largest correlation to the residual. More precisely,

|Rj,i(vl)| = |
∫
Ki

fvl − aDG(umH , vl)|

which is just the local inner-product of the residual vector and basis function vl. We

remark that vl denotes generically the l-th basis functions in the space Vj(Ki). The

above quantity ζ2
j,i,l has triple indices. But we re-enumerate these residuals using

single indices in the decreasing order, that is, ζ2
1 ≥ ζ2

2 ≥ · · · . More precisely, each

single-index residual η2
k corresponds to a triple-index residual ζ2

j,i,l for some (j, i, l).

3. Step 3: Find the coarse grid blocks where enrichment is needed. We choose the

smallest integer k such that

ζk ≥ θζ1. (3.38)

More precisely, if ζ2
k is selected by (3.38), then by Step 2, η2

k corresponds to a triple-

index residual ζ2
j,i,l for some (j, i, l). We will then add the basis function vl in the

space Vj(Ki) to the new approximation space. (See Step 4).

4. Step 4: Enrich the space. For each J = 1, 2, · · · , k, we add the basis function
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vl ∈ Vj(Ki) corresponding to ζJ . The resulting space is denoted as V̂ off(m + 1).

Note that this is the offline space without basis removal.

5. Step 5: Remove basis. For each coarse grid block Ki, we can write the restriction

of the current solution umH on Ki as

lm1,i∑
l=1

α1,lφ
(i)
l +

lm2,i∑
l=1

α2,lξ
(i)
l .

Fixed a tolerance ε > 0. Then the basis function φ(i)
l or ξ(i)

l is removed if

α2
1,l < ε

( lm1,i∑
l=1

α2
1,l +

lm2,i∑
l=1

α2
2,l

)
or α2

2,l < ε
( lm1,i∑
l=1

α2
1,l +

lm2,i∑
l=1

α2
2,l

)

is satisfied. The resulting space is called Voff(m+ 1).

To demonstrate the performance of this strategy, we will consider two examples. In

the first example, the source function f is defined as in Figure 3.5 and the rest of the

parameters as in the Example 2. In the second example, we will take the solution (see

Figure 3.7) which only contain the component of the 1st, 17th and 30th eigen-basis. The

boundary conditions are as in Example 2 and the source term is calculated based on this

sparse solution. The convergence history for the first example is shown in Table 3.7.

Comparing these results to Table 3.6, we can see that the adaptive enrichment provides a

better convergence. The convergence history is substantially improved if we consider the

sparse solution as in our second example. The numerical results are shown in Table 3.8.

3.4 Convergence analysis

In this section, we will provide the proofs for the a-posteriori error estimates (Theorem

3.2.1) and the convergence of the adaptive enrichment algorithm (Theorem 3.2.2).

For each coarse grid block Ki, i = 1, 2, · · · , N , we define two projection operators
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DOF e2 ea
1024 0.2052 0.0554
1036 0.1474 0.0405
1259 0.0585 0.0230
2096 0.0129 0.0125
2643 0.0099 0.0111

Table 3.7: Enrichment using basis pursuit with θ = 0.8 and basis removal as well as
enrichment in V1 space only.
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Figure 3.7: Solution with sparse coefficient

Pj,i : V
(i)
j,snap → V

(i)
j,off, j = 1, 2, from the local snapshot spaces to the corresponding local

offline spaces by

∫
∂Ki

κ̃P1,i(v)w =

∫
∂Ki

κ̃vw ∀w ∈ V (i)
1,off,∫

Ki

κP2,i(v)w =

∫
Ki

κvw ∀w ∈ V (i)
2,off.

For any v ∈ V (i)
1,snap, we can write v =

∑Mi

l=1 c1,lφ
(i)
l . By orthogonality of eigenfunctions,

we have P1,i(v) =
∑l1,i

l=1 c1,lφ
(i)
l . Therefore, by the equivalence of ‖ · ‖a and ‖ · ‖DG, we

have

‖P1,i(v)‖2
a ≤ a1

∫
Ki

κ|∇P1,i(v)|2 +
γ

h

∫
∂Ki

κ̃P1,i(v)2

 .
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DOF e2 ea
1024 0.0150 0.0424
941 0.0069 0.0286
934 0.0032 0.0135
688 0.0001 0.0010
744 1.20e-06 2.13e-05

DOF e2 ea
1024 0.0150 0.0424
997 0.0150 0.0424

1327 0.0108 0.0412
2447 0.0023 0.0154
889 0.0003 0.0022

Table 3.8: Enrichment with θ = 0.8 . Left: basis pursuit. Right: standard enrichment

By the spectral problem (3.5) and the fact that the eigenvalues are ordered increasingly,

we have

‖P1,i(v)‖2
a ≤ a1

 l1,i∑
l=1

λ
(i)
1,l

H
c2

1,l +
γ

h

∫
∂Ki

κ̃P1,i(v)2


≤ a1

λ(i)
1,l1,i

H
+
γ

h

 l1,i∑
l=1

c2
1,l = a1

λ(i)
1,l1,i

+
γH

h

 ‖v‖2
V1(Ki)

.

Similarly, for v =
∑

l≥1 c2,lξ
(i)
l , we have P2,i(v) =

∑l2,i
l=1 c2,lξ

(i)
l . Therefore, by the equiv-

alence of ‖ · ‖a and ‖ · ‖DG, we have

‖P2,i(v)‖2
a ≤ a1

(∫
Ki

κ|∇P2,i(v)|2
)
.

By the spectral problem (3.6) and the fact that the eigenvalues are ordered increasingly,

we have

‖P2,i(v)‖2
a ≤ a1

 l2,i∑
l=1

λ
(i)
2,l

H2
c2

2,l

 ≤ a1

λ(i)
2,l2,i

H2

 l2,i∑
l=1

c2
2,l = a1λ

(i)
2,l2,i
‖v‖2

V2(Ki)
.
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Thus the projections Pj,i satisfy the following stability bound

||Pj,i(v)||a ≤ a
1
2
1

λ(i)
j,lj,i

+
γH

h


1
2

‖v‖Vj(Ki), j = 1, 2, i = 1, 2, · · · , N. (3.39)

Next, we will establish some approximation properties for the projection operators Pj,i.

Indeed, by the definitions of the operators Pj,i, for any v ∈ V (i)
j,snap,

‖v − Pj,i(v)‖2
Vj(Ki)

= H−j
∑

l≥lj,i+1

c2
j,l ≤ (λ

(i)
lj,i+1)−1

∑
l≥lj,i+1

λ
(i)
j,l

Hj
c2
j,l

= (λ
(i)
j,lj,i+1)−1

∫
Ki

κ|∇v|2,

and therefore the following convergence result holds

‖v − Pj,i(v)‖Vj(Ki) ≤
(
λ

(i)
j,lj,i+1

)− 1
2
(∫

Ki

κ|∇v|2
) 1

2
. (3.40)

For the analysis presented below, we define the projection Π : Vsnap → Voff by Πv =∑N
i=1

∑2
j=1 Pj,i(v).

3.4.1 Proof of Theorem 3.2.1

Let v ∈ V DG
h be an arbitrary function in the space V DG

h . Using (3.24), we have

aDG(uh − uH , v) = aDG(uh, v)− aDG(uH , v) = (f, v)− aDG(uH , v).
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Therefore,

aDG(uh − uH , v) = (f, v)− aDG(uH , v)

= (f, v − Πv) + (f,Πv)− aDG(uH ,Πv)− aDG(uH , v − Πv).

Thus, using (3.25), we have

aDG(uh − uH , v) = (f, v − Πv)− aDG(uH , v − Πv). (3.41)

Since the space V DG
h is the same as Vsnap, we can write v =

∑N
i=1

∑2
j=1 v

(i)
j with v(i)

j ∈

V
(i)
j,snap. Hence, (3.41) becomes

aDG(uh − uH , v) =
N∑
i=1

2∑
j=1

(∫
Ki

f(v
(i)
j − Pj,iv(i)

j )− aDG(uH , v
(i)
j − Pj,iv(i)

j )
)
. (3.42)

We remark that, in the computation of the term aDG(uH , v
(i)
j −Pj,iv(i)

j ) in (3.42), we assume

that the second argument is zero outside the coarse grid block Ki.

Using the definition of Rj,i, we see that (3.42) can be written as

aDG(uh − uH , v) =
N∑
i=1

2∑
j=1

Rj,i(v
(i)
j − Pj,iv(i)

j ).

Thus, we have

aDG(uh − uH , v) ≤
N∑
i=1

2∑
j=1

‖Rj,i‖‖(v(i)
j − Pj,iv(i)

j )‖Vj(Ki).
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Using (3.40),

aDG(uh − uH , v) ≤
N∑
i=1

2∑
j=1

‖Rj,i‖
(
λ

(i)
j,lj,i+1

)− 1
2
(∫

Ki

κ|∇v(i)
j |2
) 1

2
.

The inequality (3.30) is then followed by taking v = uh − uH and

N∑
i=1

2∑
j=1

∫
Ki

κ|∇v(i)
j |2 ≤ ‖v‖2

DG ≤ a0‖v‖2
a.

3.4.2 An auxiliary lemma

In this section, we will derive an auxiliary lemma which will be used for the proof of

the convergence of the adaptive enrichment algorithm stated in Theorem 3.2.2. We use the

notation Pm
j,i to denote the projection operator Pj,i at the enrichment level m.

In Theorem 3.2.1, we see that ‖Rj,i‖ gives an upper bound of the energy error ‖uh −

uH‖a. We will first show that, ‖Rj,i‖ is also a lower bound up to a correction term (see

Lemma 3.4.1). To state this precisely, we define

Smj,i = (λ
(i)
j,lmj,i+1)−

1
2 sup
v∈V (i)

j,snap

|Rj,i(v − Pm
j,i(v))|

‖v‖Vj(Ki)
. (3.43)

Notice that the residual Rj,i is computed using the solution umH obtained at enrichment

level m. We omit the index m in Rj,i to simplify notations. Next, we will obtain

(Smj,i)
2 = ‖Rj,i‖2(λ

(i)
j,lmj,i+1)−1. (3.44)

Indeed, by the fact that Pm
j,i(v) ∈ V (i)

j,off,

Rj,i(P
m
j,i(v)) =

∫
Ki

fPm
j,i(v)− aDG(umH , P

m
j,i(v)) = 0.
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Thus,

Smj,i = (λ
(i)
j,lmj,i+1)−

1
2 sup
v∈V (i)

j,snap

|Rj,i(v − Pm
j,i(v))|

‖v‖Vj(Ki)

= (λ
(i)
j,lmj,i+1)−

1
2 sup
v∈V (i)

j,snap

|Rj,i(v)|
‖v‖Vj(Ki)

= (λ
(i)
j,lmj,i+1)−

1
2‖Rj,i‖.

This implies (3.44).

To prove Theorem 3.2.2, we will need the following recursive properties for Smj,i (see

Lemma 3.4.1). Notice that, the notation ‖u‖a,Ki is defined as

‖u‖2
a,Ki

= aDG(u, u) =

∫
Ki

κ|∇u|2 −
∑
E∈∂Ki

2

∫
E

{{κ∇u · nE}}[[u]] +
∑
E∈∂Ki

γ

h

∫
E

κ[[u]]2.

Lemma 3.4.1. For any α > 0, we have

(Sm+1
j,i )2 ≤ (1 + α)

λ
(i)
j,lmj,i+1

λ
(i)

j,lm+1
j,i +1

(Smj,i)
2 + (1 + α−1)a1D‖um+1

H − umH‖2
a,Ki

(3.45)

where the enrichment level dependent constant D is defined by by

D =

 Λj,i

λ
(i)

j,lm+1
j,i +1

+
γH

hλ
(i)

j,lm+1
j,i +1


with Λj,i = maxl λ

(i)
j,l .
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Proof. By direct calculations, we have

∫
Ki

f(v − Pm+1
j,i (v))− aDG(um+1

H , v − Pm+1
j,i (v))

=

∫
Ki

fv − aDG(um+1
H , v)

=

∫
Ki

fv − aDG(umH , v) + aDG(umH − um+1
H , v)

=

∫
Ki

f(v − Pm
j,i(v))− aDG(umH , v − Pm

j,i(v)) + aDG(umH − um+1
H , v).

(3.46)

By definition of Smj,i, we have

Smj,i = (λ
(i)
j,lmj,i+1)−

1
2 sup
v∈V (i)

j,snap

|
∫
Ki
f(v − Pm

j,i(v))− aDG(umH , v − Pm
j,i(v))|

‖v‖Vj(Ki)
. (3.47)

Multiplying (3.46) by (λ
(i)
j,lmj,i+1)−

1
2‖v‖−1

Vj(Ki)
and taking supremum with respect to v, we

have

Sm+1
j,i ≤

( λ
(i)
j,lmj,i+1

λ
(i)

j,lm+1
j,i +1

) 1
2
Smj,i + I, (3.48)

where

I = (λ
(i)
j,lmj,i+1)−

1
2 sup
v∈V (i)

j,snap

|aDG(umH − um+1
H , v)|

‖v‖Vj(Ki)
.

To estimate I , we note that

aDG(umH , P
m
j,i(v)) =

∫
Ki

fPm
j,i(v) = aDG(um+1

H , Pm
j,i(v)).

Therefore, we have

aDG(umH −um+1
H , v) = aDG(umH −um+1

H , v−Pm
j,i(v)) ≤ ‖umH −um+1

H ‖a,Ki‖v−Pm
j,i(v)‖a,Ki ,
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where we remark that v has value zero outside Ki. By the stability bound (3.39),

‖v − Pm
j,i(v)‖a ≤ a

1
2
1

Λj,i +
γH

h


1
2

‖v − Pm
j,i(v)‖Vj(Ki) ≤ a

1
2
1

Λj,i +
γH

h


1
2

‖v‖Vj(Ki).

Thus we have

I ≤ a
1
2
1 (λ

(i)
j,lmj,i+1)−

1
2

Λj,i +
γH

h


1
2

‖um+1
H − umH‖a,Ki .

Using (3.48), we get

Sm+1
j,i ≤

( λ
(i)
j,lmj,i+1

λ
(i)

j,lm+1
j,i +1

) 1
2
Smj,i + a

1
2
1

 Λj,i

λ
(i)

j,lm+1
j,i +1

+
γH

hλ
(i)

j,lm+1
j,i +1


1
2

‖um+1
ms − umms‖a,Ki .

Hence, (3.45) is proved.

3.4.3 Proof of Theorem 3.2.2

In this section, we prove the convergence of the adaptive enrichment algorithm. First

of all, we recall that

η2
j,i = ‖Rj,i‖2(λ

(i)
j,lmj,i+1)−1 = (Smj,i)

2. (3.49)

We let the single index J = (j, i), and we will use the single index notation ηJ and SmJ

for ηj,i and Smj,i respectively. Note that there is an one-to-one mapping of the set of single

indices J and the set of integers {1, 2 · · · , 2N}.

Let 0 < θ < 1. We choose an index set I so that

θ2

2N∑
J=1

η2
J ≤

∑
J∈I

η2
J . (3.50)
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We will then add basis function from V
(i)
j,snap with J = (j, i) ∈ I . Then, using Theorem

3.2.1 and (3.50), we have

θ2‖uh − umH‖2
a ≤ θ2Cerr

2N∑
J=1

η2
J ≤ Cerr

∑
J∈I

η2
J .

By (3.49), we also have

‖uh − umH‖2
a ≤

Cerr

θ2

∑
J∈I

(SmJ )2. (3.51)

On the other hand,

N∑
J=1

(Sm+1
J )2 =

∑
J∈I

(Sm+1
J )2 +

∑
J /∈I

(Sm+1
J )2.

By Lemma 3.4.1, for any J ∈ I , we have

(Sm+1
J )2 ≤ (1 + α)

λ
(i)
j,lmj,i+1

λ
(i)

j,lm+1
j,i +1

(SmJ )2 + (1 + α−1)a1D‖um+1
H − umH‖2

a,Ki
.

If J /∈ I , then there is no enrichment involved. So λ(i)
j,lmj,i+1 = λ

(i)

j,lm+1
j,i +1

, which implies

(Sm+1
J )2 ≤ (1 + α)(SmJ )2 + (1 + α−1)a1D‖um+1

H − umH‖2
a,Ki

.

Combining the above two cases, we have

2N∑
J=1

(Sm+1
J )2 ≤

∑
J∈I

(
(1 + α)

λ
(i)
j,lmj,i+1

λ
(i)

j,lm+1
j,i +1

(SmJ )2 + (1 + α−1)a1D‖um+1
H − umH‖2

a,Ki

)
+
∑
J /∈I

(
(1 + α)(SmJ )2 + (1 + α−1)a1D‖um+1

H − umH‖2
a,Ki

)
.
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We assume the enrichment is obtained so that

δ := max
J∈I

λ
(i)
j,lmj,i+1

λ
(i)

j,lm+1
j,i +1

≤ δ0 < 1,

where δ0 is independent of m. We then have

2N∑
J=1

(Sm+1
J )2 ≤

∑
J∈I

(
(1 + α)δ0(SmJ )2

)
+
∑
J /∈I

(
(1 + α)(SmJ )2

)
+

2N∑
J=1

(1 + α−1)a1D‖um+1
H − umH‖2

a,Ki
.

Since δ0 = 1− (1− δ0), the above can be written as

2N∑
J=1

(Sm+1
J )2 ≤ (1 + α)

2N∑
J=1

(SmJ )2 − (1 + α)(1− δ0)
∑
J∈I

(SmJ )2 + Lm+1‖um+1
H − umH‖2

a,

where

Lm+1 = NE(1 + α−1)a1

(
max

1≤i≤N
max
1≤j≤2

D
)
, (3.52)

where NE is the maximum number of edges of coarse grid blocks, and we also emphasise

that Lm+1 depends on m. By (3.50),

2N∑
J=1

(Sm+1
J )2 ≤ (1 + α)

2N∑
J=1

(SmJ )2 − (1 + α)(1− δ0)θ2

2N∑
J=1

(SmJ )2 + Lm+1‖um+1
H − umH‖2

a.

Let ρ = (1 + α)(1− (1− δ0)θ2). We choose α > 0 small enough so that 0 < ρ < 1. We

remark that α is fixed if we fix the values of δ0 and θ, which are user inputs. The above

inequality can then be written as

2N∑
J=1

(Sm+1
J )2 ≤ ρ

2N∑
J=1

(SmJ )2 + Lm+1‖um+1
H − umH‖2

a. (3.53)
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Note that, by Galerkin orthogonality, we have

‖um+1
H − umH‖2

a = ‖uh − umH‖2
a − ‖uh − um+1

H ‖2
a. (3.54)

We let τ > 0 which will be specified in the following. Then, by using (3.53) and (3.54),

we have

‖uh − um+1
H ‖2

a + τ

2N∑
J=1

(Sm+1
J )2 ≤ ‖uh − umH‖2

a + τρ
2N∑
J=1

(SmJ )2 + τLm+1‖um+1
H − umH‖2

a.

Using (3.54), the above can be written as

‖uh − um+1
H ‖2

a + τ
2N∑
J=1

(Sm+1
J )2 ≤ ‖uh − umH‖2

a + τρ
2N∑
J=1

(SmJ )2

+τLm+1

(
‖uh − umH‖2

a − ‖uh − um+1
H ‖2

a

)

which implies

‖uh − um+1
H ‖2

a +
τ

1 + τLm+1

2N∑
J=1

(Sm+1
J )2 ≤ ‖uh − umH‖2

a +
τρ

1 + τLm+1

2N∑
J=1

(SmJ )2.

Next, we let 0 < β < 1 which will be specified in the following. Using (3.51), we

have

‖uh − um+1
H ‖2

a +
τ

1 + τLm+1

2N∑
J=1

(Sm+1
J )2 (3.55)

≤
(

1− β
)
‖uh − umH‖2

a +
(βCerr

θ2
+

τρ

1 + τLm+1

) 2N∑
J=1

(SmJ )2. (3.56)
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We choose β by the following

β = θ2
(
θ2 + Cerrτ

−1(1 + τLm)
)−1(

1− ρ 1 + τLm
1 + τLm+1

)
.

Then (3.55) becomes

‖uh − um+1
H ‖2

a +
τ

1 + τLm+1

2N∑
J=1

(Sm+1
J )2 ≤

(
1− β

)
‖uh − umH‖2

a +
τ(1− β)

1 + τLm

2N∑
J=1

(SmJ )2.

(3.57)

Finally, we will see that one can choose τ such that β > 0. Since {Lm} is a decreasing

sequence, we have
1 + τLm

1 + τLm+1

≤ 1 + τL1.

Then we have

1− ρ 1 + τLm
1 + τLm+1

≥ ε0 > 0 ⇐⇒ τ <
1− ρ− ε0

L1

where we take ε0 < 1 − ρ. Using the above choice of τ , we see that β > 0. On the other

hand, the condition β < 1 is obvious. To complete the proof, we let M be the maximum

number of adaptive iterations, so that we have

LM = a1NE(1 + α−1) max
1≤i≤N

max
1≤j≤2

(1 + γHh−1Λ−1
j,i ).

Using the condition (3.33), we obtain

β ≥ ε0θ
2
(
Cerrτ

−1(1 + τLM) + Cerrτ
−1(1 + τLm)

)−1

≥ ε0θ
2
(

2Cerrτ
−1(1 + τLM)

)−1

which gives the required convergence rate ε. This completes the proof of Theorem 3.2.2.
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4. AN ONLINE GENERALIZED MULTISCALE DISCONTINUOUS GALERKIN

METHOD (GMSDGM) FOR FLOWS IN HETEROGENEOUS MEDIA

4.1 Overview

In this chapter, we will discuss about the online basis construction for GMsDGM for

the high-contrast flow problem (2.1). In order to obtain a good convergence result for the

online adaptive enrichment method, we need to use different multiscale offline space as in

the Chapter 3. Instead of using a different offline space, the offline stage of the method

is basically the same as in Chapter 3. Therefore, we will use the same set of notations

defined before.

Let we recall the framework of our GMsDGM. The methodology consists of two main

ingredients, namely, the construction of local basis functions and the global coarse grid

level coupling. For the coarse grid level coupling, we will apply the interior penalty dis-

continuous Galerkin (IPDG) method. That is, we find uH ∈ VH such that

aDG(uH , v) = (f, v), ∀v ∈ VH , (4.1)

where the bilinear form aDG is defined as

aDG(u, v) = aH(u, v)−
∑
E∈EH

∫
E

(
{{κ∇u · nE}}[[v]]+{{κ∇v · nE}}[[u]]

)
+
∑
E∈EH

γ

h

∫
E

κ[[u]][[v]]

(4.2)

with

aH(u, v) =
∑
K∈TH

aKH(u, v), aKH(u, v) =

∫
K

κ∇u · ∇v, (4.3)

In the previous chapter, we already proved the continuity and coercivity of the bilinear

form aDG in DG-norm ‖ · ‖DG. Therefore, this bilinear form is well pose for any offline
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subspace Voff ⊂ V DG
h .

One main result of the chapter is a convergence estimate of an adaptive procedure

for the problem (4.1). For this purpose, we will compare the multiscale solution uH to a

fine-scale solution uh defined in the following way. We first let

V DG
h = {v ∈ L2(D) : v|K ∈ V h(K)},

where V h(K) is the space of continuous piecewise bilinear functions defined on K with

respect to the fine grid. The fine-scale solution uh ∈ V h
DG is defined as the solution of the

following

aDG(uh, v) = (f, v), ∀v ∈ V h
DG. (4.4)

It is well-known that uh gives a good approximation to the exact solution u up to a coarse

grid discretization error.

The second main component of our method is the construction of local basis functions,

which contains two stages, namely the offline stage and the online stage. In the offline

stage, a snapshot space V (i)
snap is first constructed for each coarse grid block Ki ∈ T H . The

snapshot space contains a rich space of basis functions, which can be used to approximate

the fine-scale solution defined (4.4) with a good accuracy. A spectral problem is then

solved in the snapshot space V (i)
snap and eigenfunctions corresponding to dominant modes

are used as the basis functions. The resulting space is called the local offline space V (i)
off

for the i-th coarse grid block Ki. The global offline space Voff is then defined as the linear

span of all these V (i)
off , for i = 1, 2, · · · , N . This global offline space Voff will be used as the

initial space of our method. We denote this initial space as V (0)
H . Using the initial space,

an initial solution u(0)
H can be computed by solving (4.1). Local residuals in coarse grid

blocks can then be computed based on the initial solution u(0)
H . In coarse grid blocks with
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large residuals, new basis functions are computed and added to the approximation space.

This procedure is continued until certain tolerance is reached. Next, we present a general

outline of the method.

Assume that the initial space V (0)
H is given and the initial solution u(0)

H is computed.

For any m ≥ 0, we repeat the following until the solution u(m)
H satisfies certain tolerance

requirement.

Step 1: Solve (4.1) using the space V (m)
H to obtain the solution u(m)

H ∈ V (m)
H .

Step 2: Compute local residuals based on the solution u(m)
H .

Step 3: Construct new basis functions in regions, where the residuals are large.

Step 4: Add these basis functions to V (m)
H to form a new space V (m+1).

In the following, we will give the details of Step 2 and Step 3. We will also explain

how one chooses the initial space V (0)
H .

4.2 Locally online adaptivity

In this section, we will give details of our locally online adaptivity for the problem

(4.1). As presented in the general outline of the method from the previous section, our

adaptivity idea contains the choice of initial space as well as construction of new local

multiscale basis functions. In the following, we will give the construction of these in

detail.

4.2.1 Initial space

We present the definition of the initial space V (0)
H . Let xi be a node in the coarse grid

T H , referred to as the i-th coarse node, for i = 1, 2, · · · , Nc, where Nc is the number of

nodes in the coarse grid T H . We will then define the i-th coarse neighbourhood ωi as the

union of all coarse grid blocks having the node xi, see Figure 1.2. Moreover, for each
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coarse grid block K ∈ T H , we let χK(j), j = 1, 2, 3, 4, be the partition of unity functions,

having value 1 at one vertex yj and value 0 at the remaining three vertices, where yj ,

j = 1, 2, 3, 4, are the four vertices of K. Note that there is exactly one value of j such

that the vertex yj is the same as the vertex xi. In the case, we write χK(j) = χKi . One can

use the standard multiscale basis functions or bilinear functions as the partition of unity

functions. Note that we do not require any continuity of these partition of unity functions

across coarse grid edges. The partition of unity functions are all supported on coarse grid

blocks. Furthermore, we define the space V h(ωi) by

V h(ωi) = {v ∈ L2(ωi) : v|K ∈ V h(K), K ∈ T H , K ⊂ ωi}.

where V h(K) is the space of continuous piecewise bilinear functions defined onK. We re-

mark that functions in V h(ωi) are supported in ωi and belong to the space V h(K) for each

coarse grid block K ⊂ ωi. Note that there is no continuity condition across boundaries of

coarse grid blocks. We consider V h(ωi) as the snapshot space in ωi, that is V (i)
snap = V h(ωi),

and perform a dimension reduction through a spectral problem. For this purpose, we de-

fine EHi be the set of coarse grid edges lying in the interior of ωi, and the following bilinear

form

aωi(u, v) =
∑

K∈T H ,K⊂ωi

aKH(u, v) +
∑
E∈EHi

γ

h

∫
E

κ[[u]][[v]], ∀u, v ∈ V h(ωi). (4.5)

Based on our analysis to be presented next, we solve the following spectral problem

aωi(u, v) = λsωi(u, v), ∀v ∈ V h(ωi), (4.6)
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where

sωi(u, v) =
∑

K∈T H ,K⊂ωi

∫
K

κ|∇χKi |2u v +
∑
E∈EHi

γ

h

∫
E

κ[[χKi ]]2{{u}} {{v}}, ∀u, v ∈ V h(ωi).

(4.7)

We use the notations λωik and Φωi
k to denote the k-th eigenvalue and the k-th eigenvector

of the above spectral problem (4.6). Each eigenfunction Φωi
k corresponds to a function in

φωik ∈ V h(ωi) defined by

φωik =

ni∑
j=1

(Φωi
k )jw

ωi
j , (4.8)

where ni is the dimension of V h(ωi) and {wωij }nij=1 is a basis for V h(ωi). In the above

definition, (Φ
(i)
k )j is the j-th component of the eigenvector Φωi

k .

For each ωi, we solve the spectral problem (4.6) and the first Li eigenfunctions are used

to form the initial space. Each eigenfunction φωik will be first multiplied by the partition

of unity function χKi , for each K ⊂ ωi, and is then decoupled across coarse grid edges to

form 4 basis functions. In particular, the 4 new basis functions have support in one of the

coarse grid block forming ωi and are zero in the other three coarse grid blocks forming ωi.

For example, if K ⊂ ωi, the basis function is χKi φ
ωi
k . We write V (i)

off as the space spanned

by IK(χKi φ
ωi
k ), for all K ⊂ ωi, where IK is the standard bilinear interpolation operator.

Therefore, V (i)
off is a subspace of V h. See Figure 4.1 for an illustration. The initial space

V
(0)
H is obtained by the linear span of all functions constructed in the above procedure.

Notice that V (0)
H ⊂ V DG

h .

4.2.2 Construction of online basis functions

In this section, we will discuss the construction of our local online basis functions. The

purpose is to add basis functions locally in some coarse neighborhoods to obtain rapidly

decaying errors. Assume that the space V (m)
H at the m-th iteration and the corresponding
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solution u(m)
H are given. For each coarse neighborhood ωi, we define the local residual by

R
(m)
i (v) = (f, v)− aDG(u

(m)
H , v), v ∈ V h

0 (ωi) (4.9)

where V h
0 (ωi) ⊂ V h(ωi) contains functions that are zero on ∂ωi and

V h(ωi) = {v ∈ L2(ωi) : v|K ∈ V h(K), K ∈ T H , K ⊂ ωi},

The residual R(m)
i can be seen as a linear functional defined on V h

0 (ωi) with norm ‖R(m)
i ‖

defined by

‖R(m)
i ‖ = sup

v∈V h0 (ωi)

|R(m)
i (v)|
‖v‖ωi

, (4.10)

and ‖v‖2
ωi

= aωi(v, v). We will then find the new online basis function φ ∈ V h
0 (ωi) by

solving

aωi(φ, v) = R
(m)
i (v), ∀v ∈ V h

0 (ωi). (4.11)

The new online basis function φ is added to V (m)
H to form V

(m+1)
H .

The motivation of finding a new basis function φ by solving (4.11) can be explained as

follows. We define the A-norm by

‖u‖2
A = aDG(u, u), ∀u ∈ VH .

We notice that the A-norm is equivalent to the DG-norm ‖u‖DG by Lemma 3.1.1. From

(4.1) and (4.4), we have the following Galerkin orthogonality condition

aDG(uh − u(m)
H , v) = 0, ∀v ∈ V (m)

H . (4.12)
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Thus, we see that the following optimal error bound holds

‖uh − u(m)
H ‖2

A ≤ ‖uh − ũ‖2
A, ∀ũ ∈ V (m)

H . (4.13)

Notice that (4.12) and (4.13) hold for any m ≥ 0.

We will enrich the space V (m)
H by adding a basis function φ in the space V h

0 (ωi) to form

V
(m+1)
H . First, (4.13) implies

‖uh − u(m+1)
H ‖2

A ≤ ‖uh − ũ‖2
A, ∀ũ ∈ V (m+1)

H . (4.14)

Taking ũ = u
(m)
H + αφ, for some scalar α, in (4.14), we have

‖uh − u(m+1)
H ‖2

A ≤ ‖uh − u(m)
H − αφ‖2

A

which implies

‖uh − u(m+1)
H ‖2

A ≤ ‖uh − u(m)
H ‖2

A − 2α aDG(uh − u(m)
H , φ) + α2‖φ‖2

A.

Taking α = aDG(uh − u(m)
H , φ)/‖φ‖2

A, we obtain

‖uh − u(m+1)
H ‖2

A ≤ ‖uh − u(m)
H ‖2

A −
aDG(uh − u(m)

H , φ)2

‖φ‖2
A

. (4.15)

By the definition of the residual R(m)
i in (4.9), we see that (4.15) becomes

‖uh − u(m+1)
H ‖2

A ≤ ‖uh − u(m)
H ‖2

A −
(R

(m)
i (φ))2

‖φ‖2
A

. (4.16)

From (4.16), we see that the quantity (R
(m)
i (φ))2/‖φ‖2

A measures the amount of reduction

in error when the basis function φ is added in V (m)
H to form V

(m+1)
H . We will construct the
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function φ ∈ V h
0 (ωi) to obtain the most reduction in error. Thus, we find φ ∈ V h

0 (ωi) that

maximizes R(m)
i (φ)/‖φ‖A. Equivalently, we find φ ∈ V h

0 (ωi) by solving

aωi(φ, v) = R
(m)
i (v), ∀v ∈ V h

0 (ωi).

Notice that, we have used the fact that ‖φ‖A = ‖φ‖ωi when φ ∈ V h
0 (ωi).

Next, we summarize our online GMsDGM:

• Initialization: We will construct the initial space V (0)
H . For each coarse neighbor-

hood ωi, we solve the following spectral problem in the space V h(ωi):

aωi(u, v) = λ sωi(u, v).

Then we obtain the eigenfunctions ψωik by (4.8), and we will consider the restriction

of ψωik in each coarse element in ωi as an individual function. Using the first Li of

these eigenfunctions, we obtain the basis functions IK(χLi ψ
ωi
k ).

• Iteration: For each m ≥ 0, we perform the following iterations.

1. Find u(m)
H ∈ V (m)

H by solving

aDG(u
(m)
H , v) = (f, v), ∀v ∈ V (m)

H .

2. Choose non-overlapping coarse neighborhoods ωi and find new basis functions

φ ∈ V h
0 (ωi) by

aωi(φ, v) = R
(m)
i (v), ∀v ∈ V h

0 (ωi).

3. Add those basis functions to V (m)
H to form V

(m+1)
H .
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4.2.3 Convergence of the adaptive procedure

In this section, we analyze the convergence of the above online enrichment procedure.

Before proving the convergence, we need the following lemma which will can be proved

by standard techniques.

Lemma 4.2.1. There exists a positive constant CI such that

‖I(v)‖DG ≤ CI‖v‖DG, ∀v ∈ V DG
h (4.17)

where I(v)|K = IK(v) for all K ∈ T H .

We begin the convergence analysis at the inequality (4.16). Notice that, this inequality

can be written as

‖uh − u(m+1)
H ‖2

A ≤ ‖uh − u(m)
H ‖2

A − ‖R(m)
i ‖2, (4.18)

when the basis function φ is obtained as in (4.11).

On the other hand, we will show that the error ‖uh − u
(m)
H ‖A can be controlled by

the residual norm ‖R(m)
i ‖. To do so, we consider an arbitrary function v ∈ V DG

h . Let

vi ∈ V h(ωi) be the restriction of v in ωi, and let v(0)
i ∈ V (i)

off be the component of vi in the

offline space V (i)
off . By the GMsDGM (4.1), the fine-grid problem (4.4) and the Galerkin

orthogonality (4.12), we have

aDG(uh − u(m)
H , v) = aDG(uh − u(m)

H , v − v(0)), ∀v(0) ∈ V (0)
H ,

where we define v(0) =
∑Nc

i=1 v
(0)
i ∈ V (0)

H and use the fact that V (0)
H ⊂ V

(m)
H for all m ≥ 0.

By (4.4), we have

aDG(uh − u(m)
H , v) = (f, v − v(0))− aDG(u

(m)
H , v − v(0)).
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Using the property
∑4

j=1 χ
K
(j) = 1 for all K ∈ T H and the linearity of interpolation

operator I ,

aDG(uh− u(m)
H , v) =

∑
K∈T H

4∑
j=1

(
(f, IK(χK(j)(v− v(0)

i )))− aDG(u
(m)
H , IK(χK(j)(v− v(0)

i )))
)
.

Writing the above sum over coarse neighborhoods ωi, we have

aDG(uh − u(m)
H , v) =

Nc∑
i=1

∑
K⊂ωi

(
(f, IK(χKi (v − v(0)

i )))− aDG(u
(m)
H , IK(χKi (v − v(0)

i )))
)
.

For each coarse neighborhood ωi, we define the following modified local residual by

R̃
(m)
i (v) =

∑
K⊂ωi

(
(f, IK(χKi v))− aDG(u

(m)
H , IK(χKi v))

)
, v ∈ V h(ωi). (4.19)

The modified residual R̃(m)
i can be seen as a linear functional defined on V h(ωi) with norm

‖R̃(m)
i ‖ defined in the following way

‖R̃(m)
i ‖ = sup

v∈V h(ωi)

|R̃(m)
i (v)|

‖∑K⊂ωi IK(χKi v)‖ωi

In the above definitions, χKi is considered to be defined only on K, and has zero value

outside K.

Using the definition of the modified residual R̃(m)
i , we have

aDG(uh − u(m)
H , v) ≤

Nc∑
i=1

‖R̃(m)
i ‖ ‖

∑
K⊂ωi

IK(χKi (v − v(0)
i ))‖A (4.20)
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where we used the fact that
∑

K⊂ωi IK(χKi (v− v(0)
i )) is zero on ∂ωi. Using Lemma 3.1.1,

‖
∑
K⊂ωi

IK(χKi (v − v(0)
i ))‖A ≤ a

1
2
1 ‖
∑
K⊂ωi

IK(χKi (v − v(0)
i ))‖DG. (4.21)

By the definition of the DG-norm and Lemma 4.2.1,

‖IK(χKi (v − v(0)
i ))‖2

DG ≤ C2
I ‖χKi (v − v(0)

i )‖2
DG (4.22)

= C2
I

( ∑
K⊂ωi

∫
K

κ|∇(χKi (v − v(0)
i ))|2 (4.23)

+
γ

h

∑
e

∫
e

κ[[χKi (v − v(0)
i )]]2

)
. (4.24)

For each K ⊂ ωi, we have

∫
K

κ|∇(χKi (v − v(0)
i ))|2 ≤ 2

∫
K

κχ2
i |∇(v − v(0)

i )|2 + 2

∫
K

κ|∇χKi |2(v − v(0)
i )2. (4.25)

For each e ∈ EHi , we have

∫
e

κ[[χKi (v − v(0)
i )]]2 ≤ 2

∫
e

κ{{χKi }}2[[v − v(0)
i ]]2 + 2

∫
e

κ[[χKi ]]2{{v − v(0)
i }}2. (4.26)

Combining inequalities (4.25) and (4.26) in (4.24), we have

‖IK(χKi (v − v(0)
i ))‖2

DG (4.27)

≤ 2C2
I ‖v − v(0)

i ‖2
Ai

(4.28)

+2C2
I

(∫
ωi

κ|∇χKi |2(v − v(0)
i )2 +

γ

h

∑
e∈EHi

∫
e

κ[[χKi ]]2{{v − v(0)
i }}2

)
(4.29)
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where ‖v‖2
Ai

= aωi(v, v). Using the spectral problem (4.6), we have

‖v − v(0)
i ‖2

Ai
= aωi(vi − v(0)

i , vi − v(0)
i ) ≤ aωi(vi, vi) = ‖v‖2

Ai

and

∫
ωi

κ|∇χKi |2(v − v(0)
i )2 +

γ

h

∑
e∈EHi

∫
e

κ[[∇χKi ]]2{{v − v(0)
i }}2

= sωi(vi − v(0)
i , vi − v(0)

i ) ≤ 1

λωiLi+1

‖v‖2
Ai
.

Thus, (4.29) and (4.21) impleis

‖IK(χKi (v − v(0)
i ))‖2

A ≤ 2a1C
2
I

(
1 +

1

λωiLi+1

)
‖v‖2

Ai
.

Hence, (4.20) becomes

aDG(uh − u(m)
H , v) ≤

( Nc∑
i=1

2a1C
2
I (1 +

1

λωiLi+1

)‖R̃(m)
i ‖2

) 1
2
( Nc∑
i=1

‖v‖2
Ai

) 1
2
.

We remark that the above inequality holds for any v ∈ V DG
h . Taking v = vh − v(m)

H and

using Lemma 3.1.1, we finally obtain

‖uh − u(m)
H ‖2

A ≤ 2a−1
0 a1C0C

2
I

Nc∑
i=1

(
1 +

1

λωiLi+1

)
‖R̃(m)

i ‖2, (4.30)

where C0 = maxK∈T H nK and nK is the number of vertices of the coarse grid block K.

We define

θ = ‖R(m)
i ‖2/η2, and η2 = 2a−1

0 a1C0C
2
I

Nc∑
i=1

(
1 +

1

λωiLi+1

)
‖R̃(m)

i ‖2. (4.31)
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From (4.18) and (4.30), we see that the following convergence holds

‖uh − u(m+1)
H ‖2

A ≤ (1− θ)‖uh − u(m)
H ‖2

A.

We summarize the above results in the following theorem.

Theorem 4.2.2. Let uh be the solution of (4.4) and u(m)
H , m ≥ 0, be the solution of (4.1)

in the m-th iteration. Then the following residual bound holds

‖uh − u(m)
H ‖2

A ≤ 2a−1
0 a1C0C

2
I

Nc∑
i=1

(
1 +

1

λωiLi+1

)
‖R̃(m)

i ‖2. (4.32)

Moreover, the following convergence holds

‖uh − u(m+1)
H ‖2

A ≤ (1− θ)‖uh − u(m)
H ‖2

A (4.33)

where θ is defined in (4.31).

We remark that one can derive a priori error estimate for the error ‖uh − u(m)
H ‖DG, for

every m ≥ 0. Since the purpose of this chapter is an a posteriori error estimate (4.32) and

the convergence of an adaptive enrichment algorithm (4.33), we will not derive a priori

error estimate.

Finally, we remark that by using more basis functions in the initial space V (0)
H , the

values of the eigenvalues λωiLi+1 are larger. Thus, the value of θ is further away from zero,

and this fact enhances the convergence rate. In particular, the convergence rate is affected

by the quantity Λmin = min1≤i≤Nc λ
ωi
Li+1. The convergence is slow when Λmin is small

(cf. [45, 46]). We also remark that one can add online basis functions in multiple coarse

neighborhoods to speed up the convergence. Let S be the index set for which online basis
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functions are added in ωi for i ∈ S. By using similar arguments as above, we obtain

‖uh − u(m+1)
H ‖2

A ≤ (1− θ̃)‖uh − u(m)
H ‖2

A

where

θ̃ =
∑
i∈S

‖R(m)
i ‖2/η2.

4.3 Numerical Results

In this section, we will present some numerical examples to show the performance of

the proposed method. The implementation procedure of online adaptive GMsDGM is de-

scribed below. First, we choose a fixed number of functions for every coarse neighborhood

by solving the local spectral problem. This fixed number for every coarse neighborhood

is called the number of initial basis. After that, we split these functions into the basis

functions of the offline space such that each basis function is supported in one coarse grid

block. We denote this offline space as Voff and set V (0)
H = Voff.

The coarse neighborhoods are denoted by ωi,j , where i = 1, 2, · · · , Nx and j =

1, 2, · · · , Ny and Nx and Ny are the number of coarse nodes in the x and y directions

respectively. We consider Ix,odd and Ix,even as the set of odd and even indices from

{1, 2, · · · , Nx}. Similarly, Iy,odd and Iy,even are the set of odd and even indices from

{1, 2, · · · , Ny}. In each iteration of our online adaptive GMsDGM, we will perform 4

sub-iterations which add online basis functions in the non-overlapping coarse neighbor-

hoods ωi,j with (i, j) ∈ Ix,odd × Iy,odd, (i, j) ∈ Ix,odd × Iy,even, (i, j) ∈ Ix,even × Iy,odd and

(i, j) ∈ Ix,even × Iy,even respectively.

We will take γ = 2 andD = [0, 1]2. The domain is divided into 10×10 uniform square

coarse blocks. Each coarse block is then divided into 10 × 10 fine blocks consisting of

uniform squares. Namely, the whole domain is partitioned by 100× 100 fine grid blocks.
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The medium parameter κ is shown in Figure 4.2. The source function f is taken as the

constant 1. To compare the accuracy, we will use the following error quantities

e2 =
‖uh − uH‖L2(D)

‖uh‖L2(D)

, and ea =
‖uh − uH‖DG

‖uh‖DG
.

4.3.1 Comparison of using different number of initial basis

In Table 4.1, we present the convergence history of our algorithm for using one, two,

three, four initial basis per coarse neighborhood. Notice that, in the presentation of our

results, DOF means the total number of basis functions used in the whole domain and

m denotes the number of iterations. We use the continuous multiscale basis functions as

the initial partition of unity. In the tables, we obtain a fast error decay which give us a

numerical solution with error smaller than 0.1% in two or three iterations. We can see the

error decay of using one initial basis is slower than the error decay of using two or more

initial basis since Λmin for using one initial basis is too small.

m DOF ea e2

0 324 44.50% 24.88%
1 648 9.92% 2.18%
2 972 0.78% 7.54e-2%
3 1296 3.24e-2% 2.13e-3%
4 1620 2.42e-4% 1.10e-5%

m DOF ea e2

0 648 17.73% 3.58%
1 972 0.31% 1.80e-2%
2 1296 3.52e-3% 1.62e-4%
3 1620 1.81e-5% 8.58e-7%
4 1948 1.04e-7% 4.68e-9%

m DOF ea e2

0 972 11.30% 1.72%
1 1296 0.45% 2.44e-2%
2 1620 3.05e-3% 1.37e-4%
3 1944 1.06e-5% 4.08e-7%
4 2240 4.59e-8% 2.14e-9%

m DOF ea e2

0 1296 8.38% 1.00%
1 1620 7.98e-2% 3.13e-3%
2 1944 9.93e-4% 3.57e-5%
3 2268 1.39e-5% 5.15e-7%
4 2540 4.23e-8% 1.55e-9%

Table 4.1: Top-left: One initial basis (Λmin = 4.89e − 4). Top-right: Two initial basis
(Λmin = 0.9504). Bottom-left: Three initial basis (Λmin = 1.4226). Bottom-right: Four
initial basis (Λmin = 2.2045).
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To further study the importance of the initial basis, we will present another example

with a different medium parameter κ shown in Figure 4.3. The domain D is divided into

5× 5 coarse blocks consisting of uniform squares. Each coarse block is then divided into

40 × 40 fine blocks also consisting of uniform squares. The convergence history for the

use of one, two, three, four initial basis and the corresponding total number of degrees

of freedom (DOF) are shown in Table 4.2, Table 4.3, Table 4.4, Table 4.5 respectively.

We consider two different contrasts. On the right table, we increase the contrast by 100

times. More precisely, the conductivity of inclusions and channels in Figure 2 (left figure)

is multiplied by 100. In this case, the first 4 eigenvalue that are in the regions with channels

become 100 times smaller. The decrease in the eigenvalues will slow down the error decay.

In Table 4.2, we can observe that the error decay for the lower contrast case is much faster

than the higher contrast case. In the higher contrast case, the error stop decreasing in some

iterations. Similar observations are obtained when we use 2 or 3 initial basis. For using

four initial basis, we observe a rapid convergence for both higher and lower contrast case.

m DOF ea e2

0 64 25.44% 6.67%
1 128 1.20% 0.23%
2 192 0.47% 0.10%
3 256 0.26% 5.79e-2%
4 320 0.10% 2.30e-2%
5 384 6.22e-2% 1.02e-2%
6 448 3.70e-4% 1.57e-5%

m DOF ea e2

0 64 25.45% 6.67%
1 128 1.45% 0.27%
2 192 1.39% 0.27%
3 256 0.84% 0.15%
4 320 0.34% 7.98e-2%
5 384 0.34% 7.91e-2%
6 448 0.15% 3.71e-2%

Table 4.2: One initial basis. Left: Lower contrast(1e4)(Λmin = 0.0062). Right: Higher
contrast(1e6)(Λmin = 6.22e− 5).
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m DOF ea e2

0 128 18.22% 4.42%
1 192 1.14% 0.12%
2 256 0.50% 4.95e-2%
3 320 4.17e-2% 2.06e-3%
4 384 5.73e-3% 5.38e-4%
5 448 7.12e-4% 2.89e-5%

m DOF ea e2

0 128 18.56% 4.62%
1 192 1.37% 0.16%
2 256 1.25% 0.14%
3 320 1.23% 0.13%
4 384 0.41% 3.22e-2%
5 448 3.63e-2% 3.56e-3%

Table 4.3: Two initial basis. Left: Lower contrast(1e4)(Λmin = 0.027). Right: Higher
contrast(1e6)(Λmin = 2.72e− 4).

m DOF ea e2

0 192 10.69% 1.86%
1 256 0.80% 6.66e-2%
2 320 0.34% 2.24e-2%
3 384 1.51e-2% 6.24e-4%
4 448 2.25e-4% 1.61e-5%
5 508 1.72e-6% 6.70e-8%

m DOF ea e2

0 192 11.55% 2.14%
1 256 1.13% 0.10%
2 320 0.98% 8.85e-2%
3 384 0.96% 8.95e-2%
4 448 0.30% 1.39e-2%
5 508 2.00e-3% 8.39e-5%

Table 4.4: Three initial basis. Left: Lower contrast(1e4)(Λmin = 0.0371). Right: Higher
contrast(1e6)(Λmin = 3.75e− 4).

4.3.2 Setting tolerance for the residual

In this section, we will show the performance for the online enrichment implementing

it only for regions with a residual error bigger than a certain threshold. We consider the

medium parameter shown in Figure 4.2. We show the results for using three different

tolerances (tol) 10−3, 10−4 and 10−5. We will enrich for the coarse regions with residual

larger than the tolerance. In Table 4.6, we show the errors when using 1 initial basis

function for tolerances 10−3, 10−4 and 10−5. We can see that the convergence history in

the first few iteration is similar to the result shown in previous section. Moreover, the

energy error of the multiscale solution is in the same order of the tolerance and the error

will stop decreasing even if we perform more iterations. Therefore, we can compute a
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m DOF ea e2

0 248 7.92% 1.14%
1 312 0.25% 2.42e-2%
2 376 5.09e-3% 2.72e-4%
3 440 5.18e-5% 2.62e-6%
4 484 1.39e-6% 6.40e-8%

m DOF ea e2

0 242 9.63% 1.59%
1 306 0.51% 5.40e-2%
2 370 1.38e-2% 9.46e-4%
3 434 2.10e-4% 1.59e-5%
4 494 1.74e-6% 1.27e-7%

Table 4.5: Four initial basis. Left: Lower contrast(1e4)(Λmin = 0.4472). Right: Higher
contrast(1e6)(Λmin = 0.3844).

multiscale solution with a prescribed error level by choosing a suitable tolerance in the

adaptive algorithm. In Table 4.7 and Table 4.8, we show the errors for the last three

iterations when using 2 and 3 initial basis functions respectively for tolerances 10−3, 10−4

and 10−5. We have the same observation that the energy errors have the same magnitude

as the tolerances.

m DOF ea e2

0 324 44.50% 24.88%
1 648 9.92% 2.18%
2 924 0.81% 7.72e-2%
3 976 0.29% 2.49e-2%

m DOF ea e2

0 324 44.50% 24.88%
1 648 9.92% 2.18%
2 972 0.78% 7.54e-2%
3 1176 4.12e-2% 2.88e-3%
4 1184 2.65e-2% 1.57e-3%

m DOF ea e2

0 324 44.50% 24.88%
1 648 9.92% 2.18%
2 972 0.78% 7.54e-2%
3 1284 3.24e-2% 2.13e-3%
4 1364 2.56e-3% 1.55e-4%

Table 4.6: One initial basis. Left: tol = 10−3. Middle: tol = 10−4. Right: tol = 10−5.
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m DOF ea e2

0 648 17.73% 3.58%
1 964 0.33% 1.85e-2%
2 972 0.30% 1.63e-2%

m DOF ea e2

0 648 17.73% 3.58%
1 972 0.31% 1.80e-2%
2 1136 2.53e-2% 1.24e-3%

m DOF ea e2

0 972 0.31% 1.80e-2%
1 1248 3.99e-3% 1.85e-4%
2 1276 2.49e-3% 1.19e-4%

Table 4.7: Two initial basis. Left: tol = 10−3. Middle: tol = 10−4. Right: tol = 10−5.

m DOF ea e2

0 972 11.30% 1.72%
1 1248 0.50% 2.57e-2%
2 1276 0.24% 9.98e-3%

m DOF ea e2

0 972 11.30% 1.72%
1 1296 0.45% 2.44e-2%
2 1436 2.60e-2% 9.70e-4%

m DOF ea e2

0 1296 0.45% 2.44e-2%
1 1564 3.52e-3% 1.56e-4%
2 1576 2.49e-3% 1.04e-4%

Table 4.8: Three initial basis. Left: tol = 10−3. Middle: tol = 10−4. Right: tol = 10−5.

4.3.3 Adaptive online enrichment

In this section, we will show the performance for the online enrichment implementing

it only for regions that have a cumulative residual that is θ fraction of the total residual.

We consider the medium parameter shown in Figure 4.3 (4 channels medium).

Assume that the local residuals are arranged such that

r1 ≥ r2 ≥ r3 ≥ · · ·

where ri is the norm of the local residual ‖Ri‖. We only add the basis φ1, · · · , φk for the
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coarse neighborhoods ω1, · · · , ωk such that k is the smallest integer with

θ
Nc∑
i=1

r2
i ≤

k∑
i=1

r2
i .

We will also consider two ways to compute the local residual ri, one is based on L2 norm

and the other is based on an energy norm. For the L2 norm based approach, we will

compute ri = ‖Ri‖where the norm is the L2 norm. This is an inexpensive way to compute

ri. The energy norm based residual is to compute ri = ‖Ri‖ using an energy norm, which

is defined in (4.10). In particular, we will solve a local problem to compute this norm.

This requires a larger computational cost, but it provides a better solution.

In Table 4.3.3, we present the error for the last 5 iterations when using 1 initial basis

functions with the tolerance 10−5 and θ = 0.5. We also present a comparison of using

the L2 based residual and the energy norm based residual. Comparing the result to the

previous case, we can observe that this can use less number of basis functions to achieve a

similar error. We also see that the energy norm based residual produces better solutions. In

Figure 4.4, we present the distribution of number of basis functions in coarse blocks, and

see that the number of basis functions is larger near the channels (c.f. Figure 4.3). Thus,

online basis functions can be adaptively added in some regions using an error indicator.

m DOF ea e2

0 336 0.35% 3.80e-2%
1 352 0.27% 1.74e-2%
2 368 7.71e-3% 5.88e-4%
3 384 2.47e-3% 2.15e-4%
4 396 8.77e-4% 6.94e-5%

m DOF ea e2

0 348 0.16% 5.19e-2%
1 368 0.10% 4.03e-2%
2 392 7.13e-2% 9.34e-3%
3 412 6.04e-3% 6.60e-4%
4 424 1.51e-3% 1.25e-4%

Table 4.9: The results using cumulative errors with θ = 0.5, tol = 10−5 and 1 initial basis.
Left: using energy norm based residual. Right: using L2 norm based residual.
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Figure 4.1: Illustration of the initial basis construction. Left: An eigenfunction χKi ψ
ωi
k is

defined in ωi. Right: 4 basis functions are obtained by splitting χKi ψ
ωi
k into 4 pieces, and

each has support in K ⊂ ωi.
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Figure 4.2: Permeability field κ for first case.
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5. GENERALIZED MULTISCALE FINITE ELEMENT METHODS FOR WAVE

PROPAGATION IN HETEROGENEOUS MEDIA

5.1 Overview

Numerical modeling of wave propagation is important in many applications that in-

clude geophysics, material science, and so on. For example, in geophysics applications,

wave propagation simulations play an important role in determining subsurface properties

[47, 48, 49, 50, 51, 52]. These approaches include finite difference methods, finite ele-

ment methods, and spectral methods that use polynomials basis [53, 54, 55, 56, 57, 58,

59, 60, 61, 62, 63, 64]. While these methods have different strengths and weaknesses, all

of them tend to have limitations associated with discretization, especially in 3-D applica-

tions as frequency content of the simulated wavefield increases. Though the solutions to

the wave equation have been shown to be accurate when the grid is fine enough [65], the

practical limitations in discretization caused by limitations in computational power restrict

this accuracy. An example of an application where this may be important is in the mod-

eling of fractured media, where establishing reliable and accurate relationships between

the properties of reflected seismic wavefields and variations in the density, orientation and

compliance of fractures may help provide important constraints for hydrocarbon produc-

tion. While more general finite element and spectral element methods may be able to

address some problems by adapting grids to conform to heterogeneous structures, there

are basic limitations associated with representing fine-scale features, and there is therefore

a need to find approaches that reliably and accurately incorporate fine-scale features in a

coarsely gridded model.

Reprinted with permission from "Generalized multiscale finite element methods for wave propagation in
heterogeneous media" by Eric T Chung, Yalchin Efendiev and Wing Tat Leung, 2014. Multiscale Modeling
& Simulation, 12, 1691–1721, Copyright [2017] by Society for Industrial and Applied Mathematics.
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In this chapter, we present GMsDGM for wave propagation simulations on a coarse

grid. We will focus our discussions on two-dimensional problems. The methodology can

be applied to three-dimensional problems without significant conceptual difference. Let

Ω ⊂ R2 be a bounded domain of two dimensions. The aim is to develop a multiscale

method for the following wave equation

∂2u

∂t2
= ∇ · (a∇u) + f in [0, T ]× Ω (5.1)

with the homogeneous Dirichlet boundary condition u = 0 on [0, T ] × ∂Ω. The function

f(x, t) is a given source. The problem (5.1) is supplemented with the following initial

conditions

u(x, 0) = g0(x), ut(x, 0) = g1(x).

We assume that the coefficient a(x) is highly oscillatory, representing the complicated

model in which the waves are simulated. It is well-known that solving (5.1) by standard

methods requires a very fine mesh, which is computationally prohibited. Thus a coarse

grid solution strategy is needed. Next we present our fine scale solver. The fine scale solu-

tion is considered as the exact solution when we discuss the convergence of our multiscale

method in the following sections. We assume that the domain Ω is partitioned by a set of

rectangles, called fine mesh, with maximum side length h > 0. We denote the resulting

mesh by T h and the set of all edges and vertices by Eh and N h respectively. We assume

that the fine-mesh discretization of the wave equation provides an accurate approximation

of the solution. The fine scale solver is the standard conforming bilinear finite element

method. Let Vh be the standard conforming piecewise bilinear finite element space. We

find uh ∈ Vh such that

(
∂2uh
∂t2

, v) + a(uh, v) = (f, v), ∀v ∈ Vh, (5.2)
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where the bilinear form a is defined by

a(u, v) =

∫
Ω

a∇u · ∇v, ∀u, v ∈ Vh (5.3)

and (·, ·) represents the standard L2 inner product defined on Ω.

The numerical results are presented for several representative examples. We inves-

tigate the GMsDGM’s accuracy and, in particular, how choosing modes from different

snapshot spaces can affect the accuracy. Our numerical results show that choosing the

basis functions from interior modes can improve the accuracy of GMsDGM substantially

for wave equations. These results differ from those we observe for flow equations [27].

The chapter is organized as follows. In Section 5.2, we will present the multiscale

method. Numerical results are shown in Section 5.3. Stability and spectral convergence of

the semi-discrete scheme are proved in Section 5.4. In Section 5.5, the convergence of the

fully-discrete scheme is also proved. Finally, conclusions are presented.

5.2 The generalized multiscale discontinuous Galerkin method

In this section, we will give a detailed description of our generalized multiscale dis-

continuous Galerkin method for wave equation. The method gives a numerical solver on

a coarse grid, providing an efficient way to simulate waves in complicated media.

5.2.1 Global IPDG solver

We will apply the standard symmetric IPDG approach as in Chapter 3 to solve (5.1) on

the coarse grid T H . The method follows the standard framework as discussed in [67, 44],

but the finite element space will be replaced by the space spanned by our multiscale basis

functions. We emphasize that the use of the IPDG approach is an example of the global

coupling of our local multiscale basis functions, and other choices of coarse grid methods

are equally good. The key to our proposed method’s success of is the construction of our
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local multiscale basis functions.

Let VH be a finite dimensional function space which consists of functions that are

smooth on each coarse grid blocks but are in general discontinuous across coarse grid

edges. We can then state the IPDG method as: find uH(t, ·) ∈ VH such that

(
∂2uH
∂t2

, v) + aDG(uH , v) = l(v), ∀ v ∈ VH , (5.4)

where the bilinear form aDG(u, v) and the linear functional l(v) are defined by

aDG(u, v) =
∑
K∈T H

∫
K

a∇u · ∇v +
∑
e∈EH

(
−
∫
e

{a∇u · n}e [v]e

−
∫
e

{a∇v · n}e [u]e +
γ

h

∫
e

a[u]e [v]e

)
l(v) = (f, v)

where γ > 0 is a penalty parameter and n denotes the unit normal vector on e. The jump

and average operator are defined as Chapter 3. The initial conditions for the problem (5.4)

are defined by uH(0) = PH(g0) and (uH)t(0) = PH(g1), where PH is the L2-projection

operator into VH .

Let T > 0 be a fixed time and ∆t = T/N be the time step size. The time discretization

is done in the standard way, we find un+1
H ∈ VH such that

(un+1
H , v) = 2(unH , v)− (un−1

H , v)−∆t2
(
aDG(unH , v)− l(v)

)
, ∀ v ∈ VH (5.5)

in each time step. Throughout the chapter, the notation un represents the value of the
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function u at time tn. The initial conditions are obtained as follows

u0
H = PH(g0),

u1
H = u0

H + ∆t PH(g1) +
∆t2

2
ṽ,

where ṽ ∈ VH is defined by

(ṽ, v) = (f(0), v)− aDG(g0, v), ∀ v ∈ VH .

We will use the offline space defined in Chapter 3 to be our multiscale finite element

space VH . We recall that the basis construction process follows the offline construction in

Chapter 3 in Section 3.1.2. That is, we will construct VH as a sum of two spaces V 1, off

and V2,off, namely,

VH = V1,off + V2,off.

where V1,off and V2,off are the sum of the local offline space V (i)
1,off and V (i)

2,off, where

V
(i)

1,off = span{w̃l,Ki , l = 1, 2, · · · , l1,i},

V
(i)

2,off = span{zl,Ki , l = 1, 2, · · · , l2,i}.

with φ(i)
k and ξ(i)

k satisfying the spectral problem in (3.5) and (3.6). That is,

∫
Ki

κ∇w̃l,Ki · ∇v =
λk,K
H

∫
∂Ki

κ̃w̃l,Kiv, ∀v ∈ V (i)
1,snap, (5.6)

and ∫
Ki

κ∇zl,Ki · ∇v =
µk,K
H2

∫
Ki

κzl,Kiv, ∀v ∈ V (i)
2,snap, . (5.7)
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Given a function w ∈ V (i)
1,off, we can define a discrete normal flux a∂w

∂n
∈ ∂T h(Ki) on

∂Ki by ∫
∂Ki

a
∂w

∂n
v =

∫
Ki

a∇w · ∇v̂, v ∈ ∂T h(Ki) (5.8)

where v̂ is any a-harmonic extension of v in Ki. This is well-defined since w is also

obtained by an a-harmonic extension.

Quasi-orthogonality of V (i)
1,off and V

(i)
2,off. Finally, we point out the following quasi-

orthogonality condition which will be used in our analysis. For any v ∈ V
(i)

1,off and u ∈

V
(i)

2,off, we conclude by (3.4) that

∫
Ki

a∇v · ∇u = 0. (5.9)

5.3 Numerical Results

In this section, we will present some numerical examples to show the performance of

our multiscale method. The media that we will consider is a heterogeneous field which is a

modified Marmousi model (see the left plot of Figure 5.1). We have also considered more

regular periodic highly heterogeneous fields and observed similar results. We will compare

both the accuracy and efficiency of our method with the direct fine scale simulation defined

in (5.2). To compare the accuracy, we will use the following error quantities

e2 =
‖uH − uh‖L2(Ω)

‖uh‖L2(Ω)

, e2 =

√∑
K |
∫
K
uH −

∫
K
uh|2√∑

K |
∫
K
uh|2

, eH1 =
‖∇(uH − uh)‖L2(Ω)

‖∇uh‖L2(Ω)

which are the relative L2 norm error, the relative L2 norm error for coarse grid averages

and the relative L2 norm error of the gradient. We will also consider the jump error on
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coarse grid edges defined by

eJump =
∑
e∈EH

∫
e

[uH ]2e.

Moreover, we let toff be the time needed for offline computations and ton be the online

computational time. These quantities are used to compare the efficiency of our method

with direct fine scale simulation. To perform a fair comparison, we will use the same time

step size for both of our GMsFEM and the fine scale method, since we only consider spa-

tial upscaling in this chapter. However, we note that multiscale basis functions can be used

for different source terms and boundary conditions which will provide a substantial com-

putational saving. Furthermore, we will take γ = 2 and Ω = [0, 1]2 for all of our examples.

The initial conditions g0 and g1 are zero. Throughout the chapter, all computational times

are measured in seconds.

The Ricker wavelet with frequency f0 = 20

f(x, y, t) = (10)2e−102((x−0.5)2+(y−0.5)2)(1− 2π2f 2
0 (t− 2/f0)2)e−π

2f20 (t−2/fo)2

is used as the source term. We will compute the solution at time T = 0.4. The coarse

mesh size is taken as H = 1/16. Each coarse grid block is divided into a 32 × 32 grid,

that is, n = 32. Thus, the fine mesh size h = 1/512 and there are totally 128 and 961 local

basis functions in the space V (i)
1,off and V (i)

2,off respectively on each coarse grid block. The

time step size for both GMsFEM and the fine grid solver is taken as ∆t = h/80 in order

to meet the stability requirement and the computation time for fine grid solution is 55.06.

We will compare the accuracy and efficiency of our method using the solution computed

at the time T = 0.2, which is shown in the right figure of Figure 5.1.

In Table 5.1 and Table 5.2, we present the errors and computational times for the case

withm = 1, that is, we only use the first eigenfunction in the space V2,off. We see that if we
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use 80% of the total energy, the number of basis functions is between 33 and 40 on each

coarse grid while the computational time for the offline procedure is 1019.06 and the time

for online computations is 32.43. Note that the online computational time is about 59%

of that of the online computational time of the direct fine grid simulation. The relative L2

error and the relative error for cell averages are only 3.92% and 2.74% respectively. In

addition, the relative error for the gradient is 14.86% and the jump error is 0.003. When

75% of the total energy is used, the number of basis functions is reduced to a number

between 24 and 29 while the computational time for the offline procedures is 326.83 and

the time for online computations is 18.21. The time for the online computation is 33% of

the time required for direct fine grid simulation. The relative L2 error and the relative error

for cell averages are increased slightly to 4.23% and 3.12%, respectively. In Table 5.1, we

also present the values of µmin for the space V1,off. Moreover, the eigenvalues are shown

in Figure 5.3. The numerical solutions for these cases are shown in Figure 5.2. We note

that the error decay is not fast mostly due to the error contribution because of the modes

corresponding to the interior. Even though the error between the GMsFEM solution and

the solution computed using the entire snapshot space V1,off is very small, the overall error

between the GMsFEM solution and the fine-scale solution may not be small because we

have only used one basis function in V2,off. Next, we will add more basis functions from

V2,off and compare the errors.

Next, we will investigate the use of more eigenfunctions in the space V2,off that will

allow reducing the overall error. To do so, we consider the first case where 75% energy in

the space V1,off is used and we consider using various number of eigenfunctions in V2,off.

The errors and computational times are shown in Table 5.3 and Table 5.4. In general,

we obtain better numerical approximations as more eigenfunctions are used. When two

eigenfunctions are used (this corresponds to using less than 3% of the total local degrees

of freedom in constructing all GMsFEM basis functions), the relative error is 3.52% and
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the online computational time is 18.64. When five eigenfunctions are used, the relative

error is 1.93% and the online computational time is 18.21. Thus, we see that adding a

few eigenfunctions in the space V2,off will improve the multiscale solution. This indicates

that for the multiscale wave simulations, the modes that represent the interior nodes can

improve the accuracy of the method and play an important role in obtaining an accurate

solution. We also report the largest eigenvalue used in Table 5.3. Furthermore, for the use

of the central frequency f0 = 20, 75% energy in the space V 1
H and m = 5 in the space

V2,off, there are about 35 basis functions per coarse-grid block and the number of points per

wavelength is approximately 30, where the number of points per wavelength is computed

as 2π
√
Ntotal/f0 and Ntotal is the total number of basis functions. On the other hand, since

the fine grid solution is computed on a 512 × 512 fine grid, the number of points per

wavelength is about 160. Therefore, the fine grid solution has sufficient resolution.

We would like to remark that the computational gain will be higher when implicit

methods are used or we employ finer grids to resolve the problem. In the latter case, the

CPU time for coarse-grid simulations will not change.

5.3.1 The use of oversampling

In this section, we present the performance of the method when the basis functions in

the space V1,off are obtained by oversampling. We consider the previous example. The

oversampling technique is used and the harmonic extension problems are solved on en-

larged coarse grids, which are obtained by extending the original coarse grids by H/16 on

each side. The results for using one basis functions in V2,off and various number of basis

functions in V1,off are shown in Table 5.5. Moreover, we compute the errors using 73%

energy for V1,off and various number of basis functions in V2,off. The results are presented

in Table 5.6. We observe that there is no improvement in this case. This is due to the error

from the modes representing internal nodes.
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5.4 Stability and convergence

In this section, we will prove the stability and convergence of the generalized multi-

scale finite element method constructed in Section 5.2. We will first state and prove some

preliminary results, and then prove the main convergence theorem for the semi-discrete

scheme (5.4).

5.4.1 Preliminaries

Before we analyze the convergence of our GMsFEM, we first prove some basic results.

To do so, we introduce some notations and state the assumptions required in our analysis.

For functions u, v ∈ H1(T H), we define the bilinear form a(·, ·) by

a(u, v) =
∑
K∈T H

∫
K

a∇u · ∇v.

Moreover, for any function u ∈ H1(T H), we define the a-norm by

‖u‖a =

a(u, u) +
γ

h

∑
e∈EH
‖a 1

2 [u]e‖2
L2(e)


1
2

and the a-semi-norm by

|u|a = a(u, u)
1
2 .

Furthermore, the broken H1-norm for u ∈ H1(T H) is defined as

‖u‖H1(T H) =

 ∑
K∈TH

|u|2H1(K) +
γ

h

∑
e∈EH
‖[u]e‖2

L2(e)


1
2

.

Assumption 1. The function a(x) is bounded, that is, there exist positive numbers a0 and
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a1 such that

a0 ≤ a(x) ≤ a1, ∀x ∈ Ω.

This assumption implies that the norms ‖ · ‖a and ‖ · ‖H1(T H) are equivalent.

In the following, we will describe the consistency of the method (5.4). We define the

consistency error by

Ruh(v) = l(v)− (
∂2uh
∂t2

, v)− aDG(uh, v), ∀ v ∈ VH , (5.10)

where uh is the fine grid finite element solution defined in (5.2). Clearly, we have

Ruh(v) = 0, ∀ v ∈ V2,off (5.11)

since V2,off ⊂ Vh. Thus, we only need to estimate Ruh(v) for v ∈ V1,off. The following

lemma states that the method (5.4) is consistent with the fine grid solution defined by (5.2).

The proof will be presented in the Appendix.

Lemma 5.4.1. Let uh and u be the finite element solution defined in (5.2) and the ex-

act solution of the wave propagation problem (5.1) respectively. Assume that u, ut ∈

L∞(0, T ;H2(Ω)) and that u ∈ W 3,1(0, T ;H1(Ω)). We have

|Ruh(v)| ≤ C(u)h‖v‖a, v ∈ V1,off (5.12)

where C(u) is a constant which depends on the solution u but independent of the fine mesh

size h. This inequality gives the consistency of our method.

The coercivity and continuity conditions of the bilinear form aDG are followed from

Lemma 3.10 and 3.11 in Chapter 3.
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Next, we will prove the convergence of the semi-discrete scheme (5.4). First, we define

the following error quantities. Let

η = uh − wH , ξ = uH − wH , and ε = uh − uH , (5.13)

where wH ∈ VH is defined by solving the following elliptic projection problem

aDG(wH , v) = aDG(uh, v) +Ruh(v), ∀ v ∈ VH . (5.14)

Notice that ε is the difference between the multiscale solution uH and the fine grid finite

element solution uh. Moreover, η measures the difference between the fine grid solution

uh as its projection wH . In the following, we will prove estimates for ε. First, we let

‖ε‖L∞([0,T ];L2(Ω)) = max
0≤t≤T

‖ε‖L2(Ω) and ‖ε‖L∞([0,T ];a) = max
0≤t≤T

‖ε‖a.

Then we will prove the following two inequalities, which estimate the error for the solution

ε by the error for the projection η and the initial errors I1 and I2, which are defined in the

statements of the theorems.

Theorem 5.4.2. Let ε, η and ξ be the error quantities defined in (5.13). Then we have the

following error bound

‖εt‖L∞([0,T ];L2(Ω)) + ‖ε‖L∞([0,T ];a)

≤ C
(
‖ηt‖L∞([0,T ];L2(Ω)) + ‖η‖L∞([0,T ];H1(T H)) + ‖ηtt‖L1([0,T ];L2(Ω)) + I1

)
,

(5.15)

where I1 = ‖ξt(0)‖L2(Ω) + ‖ξ(0)‖H1(T H).
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Proof: First, using (5.4) and the definition of ξ, we have

(ξtt, v) + aDG(ξ, v) = (f, v)− ((wH)tt, v)− aDG(wH , v).

Then by (5.12), we have

(ξtt, v) + aDG(ξ, v) = (ηtt, v). (5.16)

Taking v = ξt in (5.16), we have

(ξtt, ξt) + aDG(ξ, ξt) = (ηtt, ξt),

which implies

1

2

d

dt

(
‖ξt‖2

L2(Ω) + aDG(ξ, ξ)
)
≤ ‖ηtt‖L2(Ω)‖ξt‖L2(Ω).

Integrating from t = 0 to t = τ , we have

‖ξt(τ)‖2
L2(Ω) +

1

2
‖ξ(τ)‖2

a ≤ ‖ξt(0)‖2
L2(Ω) + 2‖ξ(0)‖2

a + 2

∫ τ

0

‖ηtt‖L2(Ω)‖ξt‖L2(Ω)

≤ ‖ξt(0)‖2
L2(Ω) + 2‖ξ(0)‖2

a + 2 max
0≤t≤T

‖ξt‖L2(Ω)

∫ T

0

‖ηtt‖L2(Ω).

Therefore, we obtain

‖ξt‖2
L∞([0,T ];L2(Ω)) + ‖ξ‖2

L∞([0,T ];a) ≤ C
(
‖ξt(0)‖2

L2(Ω) + ‖ξ(0)‖2
a + (

∫ T

0

‖ηtt‖L2(Ω) dt)
2
)
.

Finally, (5.15) is proved by noting that ε = η − ξ.

�

Theorem 5.4.3. Let ε, η and ξ be the error quantities defined in (5.13). Then we have the
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following error bound

‖ε‖L∞([0,T ];L2(Ω)) ≤ C
(
‖ηt‖L1([0,T ],L2(Ω)) + ‖η‖L∞([0,T ];L2(Ω)) + I2

)
, (5.17)

where I2 = ‖ξ(0)‖L2(Ω).

Proof: Integrating by parts with respect to time in (5.16), we have

−(ξt, vt) + ∂t(ξt, v) + aDG(ξ, v) = ∂t(ηt, v)− (ηt, vt).

Taking v(x, t) =
∫ γ
t
ξ(x, τ)dτ , we have vt = −ξ and v(γ) = 0. So,

(ξt, ξ)− ∂t(ξt, v)− aDG(vt, v) = ∂t(ηt, v) + (ηt, ξ),

which implies that

1

2

d

dt
‖ξ‖2

L2(Ω) − ∂t(ξt, v)− 1

2

d

dt
aDG(v, v) = ∂t(ηt, v) + (ηt, ξ).

Integrating from t = 0 to t = γ, we have

1

2
‖ξ(γ)‖2

L2(Ω) −
1

2
‖ξ(0)‖2

L2(Ω) + (ξt(0), v(0)) +
1

2
aDG(v(0), v(0))

=(ηt(0), v(0)) +

∫ γ

0

(ηt, ξ).

Since ξt − ηt = (uH − uh)t, we obtain

(ξt(0)− ηt(0), v(0)) = ((uH − uh)t(0), v(0)) = 0.
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Using the coercivity of aDG, we have

‖ξ(γ)‖2
L2(Ω) ≤ ‖ξ(0)‖2

L2(Ω) + 2

∫ γ

0

‖ηt‖L2(Ω) ‖ξ‖L2(Ω)

≤ ‖ξ(0)‖2
L2(Ω) + 2 max

0≤t≤T
‖ξ‖L2(Ω)

∫ T

0

‖ηt‖L2(Ω).

Hence (5.17) is proved by noting that ε = η − ξ.

�

From Theorem 5.4.2 and Theorem 5.4.3, we see that, in order to estimate the error

ε = uh−uH , we will need to find a bound for η given that the initial values ξt(0) and ξ(0)

are sufficiently accurate.

5.4.2 Convergence analysis

In this section, we will derive an error bound for η = uh − wH . Notice that, on each

coarse grid block K, we can express uh as

uh =
n∑
i=1

ci,Kw̃i,K +

n0∑
i=1

di,Kzi,K = u1,K + u2,K

for some suitable coefficients ci,K and di,K determined by a L2-type projection, where n0

is the dimension of V 0
h (K). We write uh = u1 + u2 with ui|K = ui,K for i = 1, 2. More-

over, we recall that C(u, f), defined in (5.38), is the constant appearing in the consistency

error estimate in Lemma 5.4.1. In the following theorem, we will give an estimate for the

difference between the fine grid solution uh and the projection of uh into the coarse space

VH defined in (5.14). The theorem says that such difference is bounded by a best approxi-

mation error ‖uh−v‖a and a consistency error hC(u, f). We emphasize that, even though

the coarse mesh size H is fixed, but the fine mesh size h can be arbitrary small, and hence

the consistency error is small compared with the best approximation error ‖uh − v‖a.
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Theorem 5.4.4. Let wH ∈ VH be the solution of (5.14) and uh be the solution of (5.2).

Then, for a fixed time t ∈ [0, T ], we have

‖uh − wH‖a ≤ C(‖uh − v‖a + hC(u, f)), ∀ v ∈ VH . (5.18)

Proof: By the definition of wH , we have

aDG(wH , v) = aDG(uh, v) +Ruh(v), ∀ v ∈ VH .

So, we have

aDG(wH − v, wH − v) = aDG(uh − v, wH − v) +Ruh(wH − v).

By (3.11), (3.10) and (5.12), we get

‖wH − v‖2
a ≤ 2aDG(wH − v, wH − v)

= 2aDG(uh − v, wH − v) + 2Ruh(wH − v)

≤ C(‖uh − v‖a + hC(u, f))‖wH − v‖a.

Finally, we obtain

‖uh − wH‖a ≤ ‖uh − v‖a + ‖wH − v‖a

≤ C(‖uh − v‖a + hC(u, f)).

�

From the above theorem, we see that the error ‖uh−wH‖a is controlled by the quantity
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‖uh − v‖a for an arbitrary choice of the function v ∈ VH . Thus, to obtain our final error

bound, we only need to find a suitable function v ∈ VH to approximate the finite element

solution uh. In the following theorem, we will choose a specific v in Theorem 5.4.4 and

prove the corresponding error estimate.

Theorem 5.4.5. Let uh ∈ Vh be the finite element solution. Then, for a fixed time t ∈

[0, T ], we have

‖uh − φ‖2
a ≤

∑
K∈T H

( H

µp+1,K

(1 +
2a1γH

hµp+1,K

)

∫
∂K

(a
∂u1

∂n
)2 +

H2

λm+1,K

‖f − (uh)tt‖2
L2(K)

)
,

(5.19)

where the function φ ∈ VH is defined as

φ|K =

p∑
i=1

ci,Kw̃i,K +
m∑
i=1

di,Kzi,K = φ1,K + φ2,K .

Proof: For a given coarse grid block K, using the orthogonality condition (5.9), we

have ∫
K

a|∇(uh − φ)|2 =

∫
K

a|∇(u1 − φ1)|2 +

∫
K

a|∇(u2 − φ2)|2

which implies

‖uh − φ‖2
a = ‖u1 − φ1‖2

a + |u2 − φ2|2a,

where we write φ = φ1 + φ2 and φi|K = φi,K , for i = 1, 2. We will first estimate
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‖u1 − φ1‖2
a. By the definition of a-norm, we have

‖u1 − φ1‖2
a =

∑
K∈T H

(∫
K

a|∇(u1 − φ1)|2 +
∑
e∈EH

γ

h

∫
e

a|[(u1 − φ1)]e|2
)

≤
∑
K∈T H

∫
K

a|∇(u1 − φ1)|2 +
2γ

h

∫
∂K

a|(u1 − φ1)|2


≤
∑
K∈T H

∫
K

a|∇(u1 − φ1)|2 +
2a1γ

h

∫
∂K

|(u1 − φ1)|2
 .

(5.20)

Next, we will estimate the right hand side of (5.20) for each K.

We note that the eigenvalue problem (3.5) is motivated by the right hand side of (5.20).

In particular, based on the right hand side of (5.20), we consider

∫
K

a∇wµ · ∇v +
1

H

∫
∂K

wµv = µ̂

∫
K

R(wµ) ·R(v), ∀ v ∈ V (i)
1,off, (5.21)

where the choice of R, e.g., R =
√
a∇wµ, depends on how we would like to bound the

error. Indeed, choosing the eigenvectors that correspond to the largest LK eigenvalues, one

can guarantee that the best LK dimensional space in the space of snapshots is given by the

first LK dominant eigenvectors. The choice of R(·) is important and can influence the

eigenvalue behavior. For example, the use of oversampling domains both for the snapshot

space and the eigenvalue can provide a faster convergence. In this chapter, we take

R =
√
a∇wµ,

which allows estimating the right hand side of (5.20) by the energy norm. Note that, in

(3.5), we use the smallest eigenvalues to determine the basis functions which is the same
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as choosing the largest eigenvectors that correspond to the largest eigenvalues of (5.21)

because µ̂ = 1 + 1
µ

.

Note that the eigenvalue problem (3.5) is equivalent to

a
∂wµ
∂n

=
µ

H
wµ on ∂K

where the normal flux a∂wµ
∂n

is defined discretely in (5.8). So, for each K,

∫
∂K

(a
∂u1,K

∂n
)2 =

∫
∂K

(a
∂

∂n
(
n∑
i=1

ci,Kwi,K))2 (5.22)

=

∫
∂K

(
n∑
i=1

µi,K
H

ci,Kwi,K)2 =
n∑
i=1

(
µi,Kci,K
H

)2, (5.23)

where we have used the fact that
∫
∂K
wi,Kwj,K = δij . Then, by using the eigenvalue

problem defined in (3.5), we have

1

h

∫
∂K

|(u1,K − φ1,K)|2 =
1

h

n∑
i=p+1

c2
i,K ≤

H2

hµ2
p+1,K

n∑
i=p+1

(µi,K
H

)2

c2
i,K

and ∫
K

a|∇(u1,K − φ1,K)|2 =
n∑

i=p+1

µi,K
H

c2
i,K ≤

H

µp+1,K

n∑
i=p+1

(
µi,K
H

)2c2
i,K .

Note that, by using (5.23), we have,

n∑
i=p+1

(
µi,K
H

)2c2
i,K ≤

n∑
i=1

(
µi,K
H

)2c2
i,K =

∫
∂K

(a
∂u1,K

∂n
)2.
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Therefore

‖u1 − φ1‖2
a ≤

∑
K∈T H

( H

µp+1,K

(1 +
2a1γH

hµp+1,K

)
n∑

i=p+1

(
µi,K
H

)2c2
i,K

)

≤
∑
K∈T H

( H

µp+1,K

(1 +
2a1γH

hµp+1,K

)

∫
∂K

(a
∂u1

∂n
)2
)
.

(5.24)

Next, we will estimate |u2 − φ2|2a. Since uh satisfies

∫
K

a∇uh · ∇v =

∫
K

(f − (uh)tt) v, ∀ v ∈ V 0
h (K).

Putting v = zi,K , we obtain

λi,K

H2
di,K =

∫
K

a∇uh · ∇zi,K =

∫
K

(f − (uh)tt) zi,K .

We define fi,K =
∫
K

(f − (uh)tt) zi,K . Then we have fi,K =
λi,K

H2
di,K and

n0∑
i=1

f 2
i,K ≤ ‖f − (uh)tt‖2

L2(K).
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Hence,

|u2 − φ2|2a =
∑
K∈T H

∫
K

a|∇(u2 − φ2)|2

=
∑
K∈T H

∑
i≥m+1

λi,K

H2
d2
i,K

≤
∑
K∈T H

H2

λm+1,K

∑
i≥m+1

λ2
i,K

H4
d2
i,K

=
∑
K∈T H

H2

λm+1,K

∑
i≥m+1

f 2
i,K

≤
∑
K∈T H

H2

λm+1,K

‖f − (uh)tt‖2
L2(K).

�

We note that, by the technique in [66], we can also derive a bound for ‖u1 − φ1‖a as

follows

‖u1 − φ1‖2
a ≤

∑
K∈T H

∑
i≥p+1

c2
i,K .

This bound shows the decay of the error when more basis functions are used.

The bound in (5.19) gives the spectral convergence of our GMsFEM. Notice that, the

term

H
∑
K∈T H

∑
∂K

(a
∂u1

∂n
)2

is uniformly bounded and can be considered as a norm for u1. Thus, (5.19) states that the

error behaves as O(µ−1
p+1,K + λ−1

m+1,K). We note that the eigenvalues increase (and go to

the infinity as the fine mesh size decreases) and thus the error decreases as we increase the

coarse space dimension.
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Combining the results in Theorem 5.4.4 and Theorem 5.4.5, we obtain

‖η‖2
a ≤ C

∑
K∈T H

( H2

λm+1,K

‖f − (uh)tt‖2
L2(K) (5.25)

+
H

µp+1,K

(1 +
2a1γH

hµp+1,K

)

∫
∂K

(a
∂u1

∂n
)2
)

+ h2C(u)2. (5.26)

Similarly, we obtain

‖ηt‖2
a ≤ C

∑
K∈T H

( H2

λm+1,K

‖ft − (uh)ttt‖2
L2(K)

+
H

µp+1,K

(1 +
2a1γH

hµp+1,K

)

∫
∂K

(a
∂(u1)t
∂n

)2
)

+ h2C(ut)
2.

Finally, using these bounds for η, as well as the estimates proved in Theorem 5.4.2 and

Theorem 5.4.3, we obtain estimates for the error ε.

5.5 Convergence of the fully discrete scheme

In this section, we will prove the convergence of the fully discrete scheme (5.5). To

simplify the notations, we define the second order central difference operator δ2 by

δ2(un) =
un+1 − 2un + un−1

∆t2
.

By the definition of the consistency error (5.10), at the time tn, we have

((uh)
n
tt, v) + aDG(unh, v) = (fn, v)−Runh

(v). (5.27)
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The fully discrete scheme (5.5) can be written using the operator δ2 as

(δ2(unH), v) + aDG(unH , v) = (fn, v), for n ≥ 1. (5.28)

Moreover, we define

rn =


untt − δ2(wnH), for n ≥ 1,

∆t−2(ξ1 − ξ0), for n = 0,

(5.29)

and

Rn = ∆t
n∑
i=0

ri.

In order to prove the convergence for the fully discrete scheme, we first prove the

following lemma. The result will be needed in the derivation of an upper bound for the

time step size ∆t.

Lemma 5.5.1. There exists a positive constant β(h) such that

aDG(v, v) ≤ β(h)−1‖v‖2
L2(Ω), ∀ v ∈ VH .

Moreover, the constant β(h) can be taken as h2a−1
1 (24 + 32

√
3Λ + 16Λa2

1a
−2
0 )−1.

Proof: We first note that, if p is a linear function defined on the interval I = [x1 −

h/2, x1 + h/2], then we have

‖p‖2
L∞(I) ≤

4

h
‖p‖2

L2(I) (5.30)

|p|2H1(I) ≤
12

h2
‖p‖2

L2(I). (5.31)
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Then by the definition of aDG and the Cauchy-Schwarz inequality, we have

aDG(v, v)

≤
∑
K∈T H

∫
K

a|∇v|2 − 2
∑
e∈EH

(∫
e

{a∇v · n}e · [v]e +
γ

h

∫
e

a[v]2e

)
≤
∑
K∈T H

∫
K

a|∇v|2 + 2(
∑
K∈T H

h‖a ∂v

∂n∂K
‖2
L2(∂K))

1
2 (
∑
e∈EH

h−1‖[v]‖2
L2(e))

1
2

+
γ

h

∑
e∈EH

∫
a[v]2e.

Then by using the discrete trace inequality , a ≤ a1 and estimating the jump terms by

L2(∂K) norms, we have

aDG(v, v)

≤ a1

( ∑
K∈T H

∫
K

|∇v|2 + 2(
∑
K∈T H

Λ

∫
K

|∇v|2)
1
2 (
∑
e∈EH

h−1‖[v]‖2
L2(e))

1
2 +

γ

h

∑
e∈EH

∫
[v]2e

)
≤ a1

( ∑
K∈T H

∫
K

|∇v|2 + 4(
∑
K∈T H

Λ

∫
K

|∇v|2)
1
2 (
∑
K∈T H

h−1‖v‖2
L2(∂K))

1
2

+
2γ

h

∑
K∈T H

‖v‖2
L2(∂K)

)
.

(5.32)

Thus, it remains to estimate ‖∇v‖L2(K) and ‖v‖L2(∂K) by the norm ‖v‖L2(K). The tech-

niques used are the same as those used for standard finite element inverse inequalities. We

include the derivation below for the explicit expression of β(h).

We will estimate the term ‖∇v‖L2(K) first. For a given coarse grid block K, we can

write it as the union of fine grid blocks K = ∪F⊂KF , where we use F to represent a

generic fine grid block. Since the fine grid blocks are rectangles, we can write F as a
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tensor product of two intervals, namely, F = IFx × IFy . For any v ∈ VH we can also write

the restriction of v on F as v(x, y) = vF,1(x)vF,2(y).

∫
K

|∇v|2 =
∑
F⊂K

∫
F

|∇v|2

=
∑
F⊂K

(
h(v′F,2)2

∫
IFx

(vF,1(x))2 + h(v′F,1)2

∫
IFy

(vF,2(y))2

)

=
∑
F⊂K

(∫
IFy

(v′F,2(y))2

∫
IFx

(vF,1(x))2 +

∫
IFx

(v′F,1(x))2

∫
IFy

(vF,2(y))2

)
.

Then, using (5.31), we have

∫
K

|∇v|2 ≤ 12h−2
∑
F⊂K

(∫
IFy

(vF,2(y))2

∫
IFx

(vF,1(x))2 +

∫
IFx

(vF,1(x))2

∫
IFy

(vF,2(y))2

)

= 24h−2
∑
F⊂K

∫
F

|v|2.

Next, we estimate the term ‖v‖L2(∂K). For a generic fine grid cell F , we write IFx =

[x1, x2] and IFy = [y1, y2]. Then, we defineBy1 = ∂F∩(Ix×{y1}),By2 = ∂F∩(Ix×{y2}),

Bx1 = ∂F ∩ ({x1} × Iy) and Bx2 = ∂F ∩ ({x2} × Iy). By using (5.30),
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‖v‖2
L2(∂K) =

∑
F⊂K

∫
∂F∩∂K

(vF )2

=
∑
F⊂K

(∫
By1

(vF,2(y1)vF,1(x))2 +

∫
By2

(vF,2(y2)vF,1(x))2

)

+
∑
F⊂K

(∫
Bx1

(vF,1(x1)vF,2(y))2 +

∫
Bx2

(vF,1(x2)vF,2(y))2

)

≤
4

h

∑
F⊂K

(∫
By1

∫
[y1,y1+h]

vF,2(y)2vF,1(x)2 +

∫
By2

∫
[y2−h,y2]

vF,2(y)2vF,1(x)2
)

+
4

h

∑
F⊂K

(∫
Bx1

∫
[x1,x1+h]

vF,1(x)2vF,2(y)2 +

∫
Bx2

∫
[x2−h,x2]

vF,1(x)vF,2(y)2
)

≤
4

h

∑
F⊂K

(∫
F

(vF,2(y)vF,1(x))2 +

∫
F

(vF,1(x)vF,2(y))2

)

=
8

h
‖v‖2

L2(K).

Consequently, combining the above results and using (5.32),

aDG(v, v) ≤ a1

h2

(
24 + 32

√
3Λ + 16γ

)
‖v‖2

L2(Ω).

Furthermore, using the lower bound of γ, we see that we can take β(h) as

β(h) = h2a−1
1 (24 + 32

√
3Λ + 16Λa2

1a
−2
0 )−1.

�

Finally, we will state and prove the convergence of the fully discrete scheme (5.5).

125



Theorem 5.5.2. Assume that the time step size ∆t satisfies the stability condition ∆t2 <

4β(h). We have

max
0≤n≤N

‖εn‖L2(Ω) ≤ C

(
‖ε0‖L2(Ω) + max

0≤n≤N
‖ηn‖L2(Ω) + ∆t

N∑
n=0

‖Rn‖L2(Ω)

)
. (5.33)

Proof: Subtracting (5.28) by (5.27), we have

(δ2(unH)− (uh)
n
tt, v) + aDG(unH − unh, v) = Runh

(v), for n ≥ 1,

which implies

(δ2(unH − wnH + wnH), v) + aDG(unH − unh, v) = ((uh)
n
tt, v) +Runh

(v).

Using the fact that ξ = uH − wH and the definition of the elliptic projection wH given in

(5.14), we have

(δ2(ξn), v) + aDG(ξn, v) = (rn, v), for n ≥ 1,

where rn is defined in (5.29). Using the definition of the operator δ2, we have

(
ξn+1 − ξn

∆t
, v)− (

ξn − ξn−1

∆t
, v) + ∆t aDG(ξn, v) = ∆t(rn, v).

Summing the above equations, we get for n ≥ 1,

(
ξn+1 − ξn

∆t
, v)− (

ξ1 − ξ0

∆t
, v) + ∆t

n∑
i=1

aDG(ξi, v) = ∆t
n∑
i=1

(ri, v). (5.34)
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To simplify the notations, we define

Ξn = ∆t
n∑
i=1

ξi, for n ≥ 1; and Ξ0 = 0.

Using the above definition and the definition of Rn, we can write (5.34) as

ξn+1 − ξn

∆t
, v

+ aDG(Ξn, v) = (Rn, v), n ≥ 1.

Substituting v = ξn+1 + ξn, we have

‖ξn+1‖2
L2(Ω) − ‖ξn‖2

L2(Ω) + ∆t aDG(Ξn, ξn+1 + ξn) = ∆t(Rn, ξn+1 + ξn),

and summing for all n ≥ 1, we have

‖ξn+1‖2
L2(Ω) − ‖ξ1‖2

L2(Ω) + ∆t
n∑
i=1

aDG(Ξi, ξi+1 + ξi) = ∆t
n∑
i=1

(Ri, ξi+1 + ξi). (5.35)

By the definition of Ξn, we have Ξn+1 − Ξn−1 = ∆t(ξn+1 + ξn) for n ≥ 1. So

∆t
n∑
i=1

aDG(Ξi, ξi+1 + ξi) =
n∑
i=1

aDG(Ξi,Ξi+1 − Ξi−1)

=
n∑
i=1

aDG(Ξi,Ξi+1)−
n−1∑
i=0

aDG(Ξi,Ξi+1)

= aDG(Ξn,Ξn+1).
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Moreover,

aDG(Ξn,Ξn+1) = aDG(
Ξn + Ξn+1

2
,
Ξn + Ξn+1

2
)− aDG(

Ξn − Ξn+1

2
,
Ξn − Ξn+1

2
)

≥ −
∆t2

4
aDG(ξn+1, ξn+1).

So, (5.35) becomes

‖ξn+1‖2
L2(Ω) −

∆t2

4
aDG(ξn+1, ξn+1) ≤ ‖ξ1‖2

L2(Ω) + ∆t
n∑
i=1

(Ri, ξi+1 + ξi), n ≥ 1.

Using the assumption ∆t2 < 4β(h), we define Cs = 1−
∆t2

4β(h)
> 0. By Lemma 5.5.1,

Cs‖ξn+1‖2
L2(Ω) ≤ ‖ξ1‖2

L2(Ω) + ∆t
n∑
i=1

(Ri, ξi+1 + ξi)

≤ ‖ξ1‖2
L2(Ω) + 2∆t max

1≤i≤n+1
{‖ξi‖L2(Ω}

n∑
i=1

‖Ri‖L2(Ω)

≤ ‖ξ1‖2
L2(Ω) +

Cs

2
max

1≤i≤n+1
{‖ξi‖L2(Ω)}2 +

2

Cs

(
∆t

n∑
i=1

‖Ri‖L2(Ω)

)2

.

Therefore, we have

max
1≤i≤n+1

{‖ξi‖L2(Ω)} ≤ C
(
‖ξ1‖L2(Ω) + ∆t

n∑
i=1

‖Ri‖L2(Ω)

)
.

Since ξ1 = ξ0 + ∆t2r0, we have

max
1≤i≤n+1

{‖ξi‖L2(Ω)} ≤ C

(
‖ξ0‖L2(Ω) + ∆t2‖r0‖L2(Ω) + ∆t

n∑
i=1

‖Ri‖L2(Ω)

)
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and using the definition of R0,

max
1≤i≤n+1

{‖ξi‖L2(Ω)} ≤ C

(
‖ξ0‖L2(Ω) + ∆t

n∑
i=0

‖Ri‖L2(Ω)

)
.

Thus,

max
0≤i≤n+1

{‖ξi‖L2(Ω)} ≤ C

(
‖ξ0‖L2(Ω) + ∆t

n∑
i=0

‖Ri‖L2(Ω)

)
.

Finally, by using the relation ε = η − ξ, we obtain (5.33).

�

From Theorem 5.5.2, we see that the error εn of the fully discrete scheme mainly

depends on two quantities, which are ηn and Rn. Recall that, ηn can be estimated as in

(5.26). Therefore, it remains to get a bound for Rn. To do so, we will prove the following

two lemmas for an upper bound of rn.

Lemma 5.5.3. We have

‖r0‖L2(Ω) ≤ C(∆t−1‖ηt‖L∞([0,T ];L2(Ω)) + ∆t‖(uh)ttt‖C([0,T ];L2(Ω))).

Proof: By (5.29), we have r0 = ∆t−2(ξ1 − ξ0) and by the definition of u0
H , we have

(u0
H − u0, v) = 0, ∀ v ∈ VH .

Then using the definitions of ξ1 and ξ0, we have

(ξ1 − ξ0, v) = (u1
H − w1

H , v)− (u0
H − w0

H , v)

= (u1
h − w1

H , v) + (u1
H − u1

h, v)− (u0
h − w0

H , v)

= ((u1
h − u0

h)− (w1
H − w0

H), v) + (u1
H − u1

h, v).
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The first term can be estimated in the following way

|((u1
h − u0

h)− (w1
H − w0

H), v)| ≤
∣∣∣(∫ t1

0

∂t(uh − wH), v)
∣∣∣

≤ ∆t ‖ηt‖L∞([0,T ];L2(Ω))‖v‖L2(Ω).

To estimate the second term, by the Taylor’s expansion, we get

u1
h = u0

h + ∆t (uh)
0
t +

∆t2

2
(uh)

0
tt +

∆t3

6
(uh)ttt(·, s), where 0 < s < t1.

By the definition of u1
H ,

(u1
H , v) = (u1

h, v) = (u0
h + ∆t(uh)

0
t +

∆t2

2
(ṽ, v)

Thus,

(u1
H − u1

h, v) =
∆t2

2
(ṽ − (uh)

0
tt, v)−

∆t3

6
((uh)ttt(·, s), v)

=
∆t2

2
[(f 0, v)− a(u0

h, v) + ((uh)
0
tt, v)]−

∆t3

6
((uh)ttt(·, s), v)

= −
∆t3

6
((uh)ttt(·, s), v)

which proves the Lemma.

�

Lemma 5.5.4. For n ≥ 1, we have

‖rn‖L2(Ω) ≤ C(∆t−1

∫ tn+1

tn−1

‖ηtt(·, τ)‖L2(Ω) + ∆t

∫ tn+1

tn−1

‖(uh)tttt(·, τ)‖L2(Ω)).
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Proof: By the definition of rn,

‖rn‖L2(Ω) = ‖(uh)ntt − δ2wnH‖L2(Ω)

≤ ‖δ2(wnH − unh)‖L2(Ω) + ‖(uh)ntt − δ2unh‖L2(Ω).

Using the identity

vn+1 − 2vn + vn−1 = ∆t

∫ tn+1

tn−1

1−
|τ − tn|

∆t

 vtt(τ)dτ,

the first term can be estimated as follows

(δ2(wnH − unh), v) =
1

∆t

∫ tn+1

tn−1

(1−
|τ − tn|

∆t
) (((wH)tt − (uh)tt), v) (τ)dτ

≤
1

∆t

∫ tn+1

tn−1

‖ηtt(·, τ)‖L̃2(Ω) ‖v‖L̃2(Ω)dτ.

To estimate the term ‖(uh)ntt − δ2unh‖L2(Ω), we use

δ2unh = (uh)
n
tt +

1

6∆t2

∫ tn+1

tn−1

(∆t− |τ − tn|)3(uh)tttt(·, τ)dτ.

This implies

‖(uh)ntt − δ2unh‖L2(Ω) ≤
∆t

6

∫ tn+1

tn−1

‖(uh)tttt(·, τ)‖L2(Ω)dτ.

�
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Using the definition of Rn and the above two lemma, we get

‖Rn‖L2(Ω)

≤ C
(∫ tn

0

‖ηtt(·, τ)‖L2(Ω) + ‖ηt‖L∞([0,T ];L2(Ω))

+ ∆t2
∫ tn

0

‖(uh)tttt(·, τ)‖L2(Ω) + ∆t2‖(uh)ttt‖C([0,T ];L2(Ω))

)
.

Hence we obtain

∆t
N∑
n=0

‖Rn‖L2(Ω)

≤ 2T max
0≤n≤N

‖Rn‖L2(Ω)

≤ C
(∫ T

0

‖ηtt(·, τ)‖L2(Ω) + ‖ηt‖L∞([0,T ];L2(Ω))+

∆t2
∫ T

0

‖(uh)tttt(·, τ)‖L2(Ω) + ∆t2‖(uh)ttt‖C([0,T ];L2(Ω))

)
.

Combining the estimates of η proved in Section 3 and Theorem 5.5.2, we obtain the error

estimate for the fully discrete scheme (5.5).

5.6 Proof of the Lemma 5.4.1

In this section, we will prove Lemma 5.4.1. Let v ∈ V1,off. By assumption, u ∈ H2(Ω)

for all time t ∈ [0, T ]. Thus aDG(u, v) is well-defined, the normal flux is continuous across

coarse edges and we have

∑
K∈T H

(
∂2u

∂t2
, v)L2(K) + aDG(u, v) =

∑
K∈T H

(f, v)L2(K), ∀ v ∈ H1(T H). (5.36)
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Moreover, the following standard finite element error estimate holds

‖ ∂
∂t

(u− uh)‖L2(Ω) + |u− uh|H1(Ω)

≤ Ch
(
|u|L∞(0,T ;H2(Ω)) + |u|W 2,1(0,T ;H1(Ω))

)
, ∀ t ∈ [0, T ]

and

‖ ∂
2

∂t2
(u− uh)‖L2(Ω) + | ∂

∂t
(u− uh)|H1(Ω)

≤ Ch
(
|ut|L∞(0,T ;H2(Ω)) + |u|W 3,1(0,T ;H1(Ω))

)
, ∀ t ∈ [0, T ].

We remark that, for simplicity, we assume the initial conditions belong to the fine space

Vh. In the following derivations, we will fix the time variable t. By the definition of the

consistency error and equation (5.36), we have

Ruh(v) = (
∂2u

∂t2
− ∂2uh

∂t2
, v) + aDG(u, v)− aDG(uh, v), ∀ v ∈ H1(T H). (5.37)

Next, we define vc ∈ Vh in the following way. For each vertex in the triangulation, the

value of vc is defined as the average value of v at this vertex. Then by direct calculations,

we have ∑
K∈T H

|v − vc|2H1(K) ≤ C
1

h

∑
e∈EH
‖[v]‖2

L2(e)

and ∑
K∈T H

‖v − vc‖2
L2(K) ≤ Ch

∑
e∈EH
‖[v]‖2

L2(e).
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Clearly, we have [v − vc]e = [v]e for all e ∈ EH since vc ∈ C0(Ω). Therefore we get

‖v − vc‖2
H1(T H) ≤ C

1

h

∑
e∈EH
‖[v]‖2

L2(e).

By (5.37) and (5.2) as well as the fact that aDG(uh, vc) = a(uh, vc), we have

Ruh(v) =
∑
K∈T H

(
∂2(u− uh)

∂t2
, v − vc)L2(K) + aDG(u− uh, v − vc).

Next, we will estimate the two terms on the right hand side. For the first term, we have

∑
K∈T H

(
∂(u− uh)

∂t2
, v − vc)L2(K)

≤‖∂
2(u− uh)
∂t2

‖L2(Ω)

( ∑
K∈T H

‖v − vc‖2
L2(K)

) 1
2

≤Ch ‖∂
2(u− uh)
∂t2

‖L2(Ω)

1

h

∑
e∈EH
‖[v]‖2

L2(e)


1
2

≤Ch2
(
|ut|L∞(0,T ;H2(Ω)) + |u|W 3,1(0,T ;H1(Ω))

)1

h

∑
e∈EH
‖[v]‖2

L2(e)


1
2

.
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For the second term, by the definition of aDG and the Cauchy-Schwarz inequality, we have

aDG(u− uh, v − vc)

=
∑
K∈T H

∫
K

a∇(u− uh) · ∇(v − vc)−
∑
e∈EH

∫
e

{a∇(u− uh) · n}[v]

≤
∑
K∈T H

a1|u− uh|H1(K) |v − vc|H1(K)

+

( ∑
K∈T H

∫
∂K

(a∇(u− uh) · n)2

) 1
2
(∑
e∈EH

∫
e

[v]2

) 1
2

.

To estimate the flux term above, we let IK be the standard finite element interpolant. Then

we have

∑
K∈T H

∫
∂K

(a∇(u− uh) · n)2

≤ 2

( ∑
K∈T H

∫
∂K

(a∇(u− IK(u)) · n)2

)
+ 2

( ∑
K∈T H

∫
∂K

(a∇(IK(u)− uh) · n)2

)

≤ Ca1

h|u|2H2(K) +
1

h
|IK(u)− uh|2H1(K)


≤ Ca1

h|u|2H2(K) +
1

h
|IK(u)− u|2H1(K) +

1

h
|u− uh|2H1(K)


≤ Ca1h|u|2H2(K).
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Next we will estimate the term
∑

K∈T H a1|u− uh|H1(K) |v − vc|H1(K). We have

∑
K∈T H

a1|u− uh|H1(K) · |v − vc|H1(K)

≤ Ca1(
∑
K∈T H

|u− uh|2H1(K))
1
2 (
∑
K∈T H

|v − vc|2H1(K))
1
2

≤ Ca1(
1

h

∑
K∈T H

|u− uh|2H1(K))
1
2 (
∑
e∈EH
‖[v]‖2

L2(e))
1
2

≤ Ca1h|u|H2(Ω)(
1

h

∑
e∈EH
‖[v]‖2

L2(e))
1
2 .

Combining the above estimates, we get

|Ruh(v)|

≤
C

a0

h
(
h
(
|ut|L∞(0,T ;H2(Ω)) + |u|W 3,1(0,T ;H1(Ω))

)

+ a1|u|L∞(0,T ;H2(Ω))

)1

h

∑
e∈EH
‖a[v]‖2

L2(e)


1
2

,

for all t ∈ [0, T ]. Finally, the constant C(u) in the lemma can be chosen as

C(u) ≈ |ut|L∞(0,T ;H2(Ω)) + |u|W 3,1(0,T ;H1(Ω)) + |u|L∞(0,T ;H2(Ω)). (5.38)
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Figure 5.1: Left: a subset of the Marmousi model. Right: fine grid solution.

Energy Number of basis e2 e2 eH1 eJump µmin
75% 24-29 0.0423 0.0312 0.1542 4.7304e-04 1.9414
80% 33-40 0.0392 0.0274 0.1486 3.0671e-04 2.9992

Table 5.1: Errors for various choices of energy for the space V1,off.

Energy toff ton
75% 326.83 18.21
80% 1019.06 32.43

Table 5.2: Offline and online computational times.
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Figure 5.2: Left: 75% energy. Right: 80% energy.
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Figure 5.3: Eigenvalues for the space V1,off.

m e2 e2 eH1 eJump λmin
1 0.0423 0.0312 0.1542 4.7304e-04 3.4805e+04
2 0.0352 0.0259 0.1346 4.7030e-04 3.4873e+04
3 0.0227 0.0187 0.0945 4.5931e-04 5.5906e+04
5 0.0193 0.0163 0.0833 4.5910e-04 6.9650e+04

Table 5.3: Errors for various number of eigenfunctions in V2,off for using 75% energy in
V1,off.

m toff ton
1 326.83 18.21
2 368.89 18.64
3 405.73 19.88
5 528.47 25.96

Table 5.4: Offline and online computational times for various number of eigenfunctions in
V2,off for using 75% energy in V1,off.
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Energy Number of basis e2 e2 eH1 eJump µmin
73% 24-30 0.0673 0.0583 0.1866 5.2038e-04 1.6755
79% 33-40 0.0640 0.0548 0.1827 3.4797e-04 2.5681
84% 45-55 0.0626 0.0534 0.1809 2.6388e-04 3.7918

Table 5.5: Simulation results with one basis function in V2,off.

m e2 e2 eH1 eJump λmin
1 0.0673 0.0583 0.1866 5.2038e-04 3.4805e+04
2 0.0596 0.0524 0.1666 5.1865e-04 3.4873e+04
3 0.0488 0.0449 0.1332 5.0929e-04 5.5906e+04
5 0.0449 0.0419 0.1220 5.0793e-04 6.9650e+04

Table 5.6: Errors and computational times for various number of eigenfunctions in V2,off

for using E = 73%.
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6. SUMMARY AND CONCLUSIONS

In this section, we will have a summary of this dissertation. In Chapter 2, we discuss

about a residual-based online basis construction for GMsFEM. The main idea of the pro-

posed method is to construct the online basis functions by solving local problems based

on a computed residual. In particular, in each coarse region, an online multiscale basis

function is constructed by solving local problems with a right hand side that is a residual

computed at the current solution iterate. We show that the offline space needs to satisfy

ONERP condition in order to guarantee that adding online basis function will decrease the

error independent of the contrast and small scales. The online basis functions account for

global effects that are missing in local GMsFEM basis functions. However, the first several

GMsFEM basis functions are needed in order to guarantee that the online basis functions

will decrease the error independent of the contrast. This method is applied in conjunction

with an adaptivity where online basis functions are added in selective regions. The overall

procedure results to a local multiscale approach where one can adaptively select regions

and compute multiscale basis functions without resorting to global solves. We test our

approaches on several examples and present some representative numerical results. Our

numerical results show that with the offline spaces that satisfy ONERP, one can achieve

a rapid decay of the error. We propose some strategies to reduce the computational cost

associated with calculating the online basis functions.

In Chapter 3, we an offline adaptive Generalized Multiscale Discontinuous Galerkin

Method (GMsDGM) for a class of high-contrast flow problems, and derive a-priori and a-

posteriori error estimates for the method. Based on the a-posteriori error estimator, we de-

Reprinted with permission from "Residual-driven online generalized multiscale finite element methods"
by Eric T Chung, Yalchin Efendiev and Wing Tat Leung, 2015. Journal of Computational Physics, 302, 176-
190, Copyright [2017] by Elsevier.
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velop an adaptive enrichment algorithm for our GMsDGM and prove its convergence. The

adaptive enrichment algorithm gives an automatic way to enrich the approximation space

in regions where the solution requires more basis functions, which are shown to perform

well compared with a uniform enrichment. We also discuss an approach that adaptively

selects multiscale basis functions by correlating the residual to multiscale basis functions

(cf. [40]). The proposed error indicators are L2-based and can be inexpensively computed

which makes our approach efficient. Numerical results are presented that demonstrate the

robustness of the proposed error indicators.

In Chapter 4, we discuss about the online basis construction for GMsDGM. Though

the use of offline basis functions is important for multiscale finite element methods, adding

online basis functions in some regions can improve the convergence dramatically. The

construction of online basis functions for various applications and discretizations require a

careful analysis. In particular, as we have shown earlier [45] for GMsFEM within continu-

ous Galerkin framework that one needs a certain number of offline basis functions in order

to guarantee that the online basis functions can result to a convergence independent of

physical parameters. In this chapter, we develop an online basis procedure for GMsDGM

that can provide a convergence independent of the contrast and small scales. Because

multiscale basis functions are discontinuous across coarse-grid boundaries, we construct a

special offline space as well as online basis functions. We show that our construction will

guarantee a convergence independent of the contrast and small scales if we select a cer-

tain number of offline basis functions based on a local spectral problem. Furthermore, we

apply an adaptive procedure to add online basis functions in only some selected regions.

Numerical results are presented to back up our theoretical findings.

In Chapter 5, we present a multiscale wave simulation method based on GMsDGM

for highly heterogeneous media. This wave simulation method is based on GMsDGM

which preform a local model reduction by solving a spectral problem in each local snap-
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shot space. The local spectral problems is used to select the important modes in that local

neighborhood. The local spectral problems are designed to achieve a high accuracy and

motivated by the global coupling formulation. The use of multiple snapshot spaces and

multiple spectral problems is one of the novelties of this work. Using the dominant modes

from local spectral problems, multiscale basis functions are constructed to represent the

solution space locally within each coarse block. These multiscale basis functions are cou-

pled via the symmetric interior penalty discontinuous Galerkin method which provides a

block diagonal mass matrix, and, consequently, results in fast computations in an explicit

time discretization. Numerical examples are presented. In particular, we discuss how the

modes from our snapshot spaces can affect the accuracy of the method. Our numerical

results show that one can obtain an accurate approximation of the solution with GMsFEM

using less than 3% of the total local degrees of freedom.
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