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ABSTRACT 

 

Lyme disease (LD) is the most prevalent arthropod borne illness in the US.  

Currently, there is no vaccine to prevent infection with LD in humans, rather, prevention 

of this disease relies on avoiding exposure to the tick vector or treating for LD 

retroactively. Present research towards a new LD vaccine has focused on the idea of 

using multimeric, chimeric, and multivalent molecules. The antigens targeted in this 

approach are highly heterologous between strains and species of Borrelia burgdorferi, 

and as such, this vaccine may require reformulation of antigens to remain relevant. As 

such, this dissertation explored the idea of using a novel, highly conserved peptide 

antigen derived from B. burgdorferi to prevent infection with LD. This approach utilized 

reverse vaccinology, in silico and in vitro analysis of potential protein candidates, and in 

vivo vaccination studies using selected proteins and peptides to evaluate the feasibility of 

a novel peptide vaccine with potential to be broadly protective against LD. Using this 

methodology, a previously uncharacterized vonWillebrand factor A domain containing 

protein, BB0173, was characterized and found to localized to the inner membrane with 

the VWFA domain exposed to the periplasmic space. Further, a novel, highly-conserved 

peptide antigen of B. burgdorferi (PepB) was identified the extracellularly exposed 

VWFA domain containing protein BB0172 that demonstrated the ability to generate a 

protective immune response against B. burgdorferi challenge both using the needle and 

tick based methods of infection.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Lyme disease agents 

Lyme disease (LD) is the most prevalent arthropod borne illness in the United 

States, with more than 30,000 cases reported annually according to the Centers for 

Disease Control and Prevention (CDC). Recent studies, however, suggest the true 

number of cases is actually 300,000 cases per year in the United States alone [1, 2]. LD 

is a zoonotic disease caused by wave-like spirochetes in the genus Borrelia.  Lyme 

disease is found throughout the temperate regions of the world where competent Ixodes 

vectors are present. In the United States, the majority of cases are located in the 

Northeast, although the Pacific coast is also a focal point for B. burgdorferi infection. It 

is worth noting that in 2015, a new pathogenic strain of Borrelia was detected in the 

northern regions of the Midwestern US - Borrelia mayonii. Unlike B. burgdorferi, B. 

mayonii is associated with nausea and vomiting and a higher number of spirochetes in 

the blood. Infection also presents with a diffuse rash that differs from the characteristic 

bulls-eye rash. Although symptoms resemble Relapsing Fever, presently, B. mayonii is 

currently genetically classified as LD infection [3].  

In Europe and Asia, B. afzelii and B. garinii in addition to B. burgdorferi s.s. are 

the major etiological agents of Lyme disease. Notably, B. garinii is associated with 

neuroborreliosis more often than the other species of Borrelia [4], while B. afzelii has 
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been found more often to cause skin related symptoms, notably acrodermatitis chronica 

atrophicans [5]. There are several other Borrelial pathogens that are minor contributors 

to human disease, such as B. speilmanii and B. lusitaniae [6]. On a more general scale, 

each species and serotype of Borrelia carries minor genetic and protein differences that 

make vaccinating against these pathogens using one antigen difficult.  

Ixodes life cycle and pathogen transmission 

The Ixodid tick vector and B. burgdorferi are found in temperate regions around 

the world. Ixodes scapularis, Ixodes pacificus (USA), Ixodes ricinus, and Ixodes 

persculatus (Eurasia) are the primary vectors of LD transmission that are known to bite 

humans. Ixodes affinis and Ixodes minor are also present in the USA and vector Borrelia 

species. These ticks, however, are maintained on wildlife and rarely bite humans [7-10]. 

The ticks that vector LD are three host ticks with four life stages: egg, larvae, nymph, 

and adult. The pathogen B. burgdorferi is thought to be transmitted transtadially, and as 

such, eggs hatch into uninfected larvae. Acquisition of B. burgdorferi infection occurs 

after feeding on an infected host, such as the reservoir host, Peromyscus leucopus (P. 

leucopus) [11]. After acquisition, Borrelia is transtadially transmitted between tick life 

stages, and thus the tick can transmit LD to naïve hosts as a nymph or adult, if the early 

host was infected with B. burgdorferi. Ticks attach, take a blood meal, and drop off the 

host to molt to the next life cycle stage. Adult females feed to repletion and release the 

host before oviposition. New research suggests that Borrelia may be transmitted 

transovarially in rare instances, however, so the acquisition and transmission of Borrelia 

by its tick vectors may not be as clear-cut as previously thought [12].  
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The complete life cycle of Ixodid ticks takes approximately 2 years, and human 

risk for infection with LD correlates with the tick life stages. Due to the activity of 

nymphal I. scapularis peaking in late spring and summer, the majority of human cases 

are acquired during this high-risk time.  Hosts for I. scapularis range from small 

mammals like mice and rabbits to larger mammals such as raccoons and deer. Humans, 

dogs, and other domestic animals are incidental hosts for the ticks, and may show signs 

of B. burgdorferi infection [13, 14]. The nymphal blood meal can last up to 8 days, 

while adult Ixodes ticks may feed up to 12 days. Once an infected tick has attached to a 

human, transmission of LD is typically regarded to occur after 36 to 48 hours of 

attachment, although there are reports of transmission in animal models taking just over 

16 hours [15]. Transmission to humans occurs predominately by nymphs because their 

small size makes them difficult to notice before the blood meal and pathogen 

transmission is completed [13].  

In the tick vector, spirochetes are acquired during a blood meal on an infected 

host and are maintained in the tick midgut after acquisition. B. burgdorferi persists in the 

lumen until after molting and are transmitted to a naïve host during the following blood 

meal. As such, the midgut plays a key role in transmission of many tick-borne 

pathogens. Interestingly, Ixodes ticks express a ligand known as the tick receptor for 

OspA (TROSPA), that was discovered to bind OspA on the B. burgdorferi surface. The 

interaction between the ligand and receptor are thought to be instrumental in maintaining 

spirochete density in the tick. As such, the midgut plays an even more important role in 

B. burgdorferi transmission [16].  
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Once the infected tick has attached and the blood meal has started, B. burgdorferi 

begins to alter gene expression. The ability to rapidly alter gene expression is key to the 

survival of B. burgdorferi in the tick vector and mammalian host, due to the need to 

adapt to changes in environmental pH, temperature, oxygen, and nutrient availability 

[17, 18]. As a result, surface expression of OspA decreases, thereby decreasing 

interaction with the TROSPA receptor. OspC expression increases, and the bacteria 

begin to rapidly multiply in the midgut. During this time, the spirochete begins migrating 

to the tick salivary glands in preparation for transmission to the mammalian host. After 

localizing to the salivary glands, B. burgdorferi is introduced into the host along with the 

tick salivary secretions. During the blood meal, the ticks take up blood, nutrients are 

removed from the blood while saliva with excess water and ions that are unnecessary for 

the tick are returned back to the host, creating a cycle of feeding that allows for the 

transmission of pathogens [14, 19].   

Tick saliva is key to the tick blood meal as well as to transmission of the 

spirochete. The functions of the saliva include the release of compounds to reduce pain 

sensation and inflammation at the bite site, as well as increase blood flow and inhibit 

clotting. The tick must also compete with the host’s innate and adaptive immunity 

during this time to complete the blood meal. In the presence of salivary proteins, blood 

continues flowing into the pool the tick feeds from under the host’s skin, and the tick can 

feed unnoticed by the host [20-23].  With the contribution of the tick saliva, it has been 

shown that B. burgdorferi is capable of enhanced transmission and infection versus 

studies where the spirochetes are administered without the salivary pharmacy [24-26].  
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For example, the salivary protein Salp15 has been shown to bind the surface of 

the spirochete through interaction with OspC. Further, Salp15 inhibited complement 

mediated killing of spirochetes by preventing formation of the membrane attack 

complex, and also suppresses CD4(+) T cell responses [26, 27]. Bearing in mind these 

characteristics, Salp15 has been shown to promote transmission of B. burgdorferi into 

mice [28]. Another salivary protein, the tick salivary lectin pathway inhibitor (TSLPI) 

also functions in inhibition of B. burgdorferi lysis in the host by also inhibiting 

complement mediated lysis. TSLPI also has been shown to decrease neutrophil 

chemotaxis and phagocytosis, leading to enhanced Borrelia transmission [24]. Tick 

histamine release factor (tHRF) has been shown to stimulate histamine release in the 

host, and increase blood flow and vascular permeability. The presence of tHRF has been 

shown to play a role in the transmission and colonization in mice [29]. Thus, there is a 

notable difference in vaccine studies when infection is performed artificially using a 

needle compared to infections performed via the tick vector [30].  

Differential gene expression of Lyme disease spirochetes 

The differential gene regulation of B. burgdorferi contributes to its ability to live 

in a range of disparate environments. The spirochete exists in the unfed tick midgut, 

migrates to the salivary glands during the blood meal, is transmitted to the mammalian 

host during feeding, and adapts to the mammalian host after transmission during the 

blood meal. In order to study the differential gene expression, conditions in the 

laboratory have been standardized to mimic these events. The tick condition is 

represented by growth of the spirochetes in BSK-II at a temperature of 23ºC and a pH of 
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7.6. The mammalian condition is represented by growth at 37ºC and a pH of 6.8. To look 

at the transition between these phases, spirochetes are grown under the tick condition 

until adapted and grown to late log phase, then subcultured into the mammalian 

conditions and analyzed before adaptation. Utilization of these conditions allows for the 

evaluation of changes in gene expression of the spirochetes [18, 31-36]. Examples of 

differentially regulated genes expressed in Borrelia are described in Table 1-1.  

The outer membrane of B. burgdorferi has been shown to contain a relatively 

high density of lipoproteins compared to other bacteria, and a number of these outer 

proteins have been shown to be differentially regulated [33, 37, 38]. Differentially 

regulated, surface exposed proteins found on the spirochete’s surface change during the 

course of the enzootic cycle. These proteins function in a multitude of roles, ranging 

from immune response, to metabolism, to adhesion within the vector or host 

environment [39]. Due to the inherent immunogenic nature of  

lipoproteins and the role of these proteins in disease pathogenesis, lipoproteins serve as 

prime targets for anti-Lyme vaccines [40]. Although expressed in the unfed tick, OspA 

was targeted in the only vaccine licensed for human use against Lyme disease, 

LYMErix™. Once the mechanism of action behind the LYMErix™ vaccine was 

discovered, it was also shown to be the first transmission blocking vaccine [41]. OspC is 

expressed during the bloodmeal and in the mammalian host, and has been used as a 

vaccine target in several canine formulations [42-47].   

Other differentially regulated proteins of B. burgdorferi have been studied as 

potential vaccine candidates, including decorin binding protein A (dbpA), bbk32, and 
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bb0172. These upregulated proteins correspond to the microbial surface components 

recognizing adhesive matrix molecules (MSCRAMM) protein family that function 

through binding to mammalian extracellular matrix proteins. These proteins have been 

determined to play a role in the colonization and dissemination processes of the 

spirochete in the host. Elimination of these proteins may attenuate the pathogen’s 

virulence, highlighting the importance of these genes in  

pathogenesis [48, 49].  

 

 

 

Table 1-1: Differentially regulated genes of B. burgdorferi 

Gene Location Expression  Function Citation 

ospA (outer surface protein 

A) 

lp54 UT Lipoprotein; binds Tick Receptor for 

OpsA (TROSPA) 

[18, 34, 

50] 

bptA (borrelia persistence in 

ticks A)  

lp25 FT/M Lipoprotein; necessary for tick 

persistence 

[33, 51] 

bicA (borrelia iron- and 

copper- binding protein A) 

formerly napA 

Chrom FT Necessary for persistence in ticks  [31, 52] 

bba52 lp54 FT Outer membrane protein; functions in 

transmission 

[53] 

bb0365 Chrom FT Lipoprotein; necessary for persistence in 

tick 

[54] 

ospC (outer surface protein 

C) 

cp26 FT Required for infectivity [18, 34, 

50] 

vlsE (variable major protein-

like sequence, expressed) 

lp28-1 M Immune evasion; required for infectivity, 

expressed after OspC 

[34, 55] 

dpbA/B (decorin binding 

protein A/B) 

lp54 M Adhesin; binds 

decorin/glycosaminoglycans 

[56] 

ospE (outer surface protein 

E) 

cp32 FT/M Adhesin/Immune evasion; Binds Factor 

H 

[57] 

ospF (outer surface protein 

F) 

cp32 FT/M Adhesin; binds heparan 

sulfate/glycosaminoglycans 

[58] 

bb0172 Chrom FT/M Adhesin; binds integrin α3β1 [59] 

bbk32  lp56 FT/M Adhesin/immune evasion; fibronectin 

binding protein 

[60, 61] 

cspA (complement regulator-

acquiring surface protein A) 

lp54 UT Immune evasion; Binds Factor H [35, 62] 

p66 Chrom FT/M Adhesin/Porin; Binds β3 chain integrins [63, 64] 

pncA (pyrazinamidase/ 

nicotinamidase) 

lp25 FT/M Metabolism; Nicotinamidase activity [65, 66] 

bba34 (oligopeptide 

permease A5) 

lp25 FT/M Transporter; Putatively binds Sodium 

Acetate or Sodium Bicarbonate 

[67] 

Chrom = Chromosomally encoded, UT = Unfed tick, FT = Fed Tick, M = Mammal 
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One of the most notable differentially regulated genes of B. burgdorferi is the 

variable major protein-like sequence, expressed (VlsE) is a surface exposed, 

immunodominant protein of B. burgdorferi. VlsE is upregulated in the mammalian host, 

and functions in immune evasion. VlsE consists of two invariable regions flanking the 

cassette region, that is made up of an alternation of 6 variable and 6 invariable regions, 

as denoted in Figure 1-1. VlsE is capable of recombination with upstream, silent cassette 

regions, generating proteins with a range of variable regions exposed on the protein’s 

surface [68, 69]. 

Invariable region 6 (IR6) is the most conserved invariable region, and 

surprisingly, is the most immunodominant epitope of the cassette region [70]. It is 

predicted that IR6 serves as a decoy epitope, and may function through diversion of the 

immune system away from potentially protective epitopes of VlsE [70]. The C6 ELISA 

was developed as a diagnostic assay to detect infection of individuals that has shown 

high specificity and precision based on this conserved IR6 sequence of VlsE [71-74]. 

Although immunodominant, IR6 is thought to have limited surface exposure on the 

parent protein, as determined by X-ray crystallography and immunoprecipitation. 

Further, VlsE C6 antibodies cannot interact with the molecule on the surface of the 

spirochete, likely due to the confirmation of the protein in the native form on the 

spirochete, further supporting the hypothesis that IR6 is a decoy epitope [70, 75, 76].  
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Pathogenesis, detection, and treatment  

Symptoms of LD are classified as local and disseminated. Infected patients 

develop symptoms from few days up to approximately a month after infection. Erythema 

migrans (EM, the bulls-eye rash) presents early during infection in approximately 70% 

of patients. The presence of this distinctive rash can streamline the diagnosis of LD. 

Additionally, early infection may present with nonspecific flu-like symptoms such as 

headache, malaise, and fever. Multiple EM lesions are possible during the early-

disseminated phase of LD, and late-disseminated LD may present with neurologic, 

cardiologic, and rheumatologic complications. Arthritis in the joints is a common 

symptom of late LD, especially in the US [77]. The discovery of LD by Dr. Alan Steere 

occurred while investigating the prevalence of arthritis in patients in Connecticut in 1977 

[78].  In terms of vaccine production, long term inflammation is troublesome when seen 

in any vaccine candidate, but especially so for LD vaccines as it may be interpreted as a 

symptom of the disease rather than a vaccine side effect [79, 80].  

 

Figure 1-1: Arrangement of the vlsE gene. The lipoprotein leader sequence, which directs surface localization is 

shown in gray, the unique conserved regions flanking the protein are shown in white. The direct repeats flank the 

cassette region and are shown in red. Additionally, the cassette region is shown between the direct repeats, with 

the invariable (light green) and variable regions (dark green) described for each of the 6 sections of the cassette 

region. The dark green region noted with white stripes is invariable region 6 (IR6).  
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 Once risk of infection is established through either tick bite, location in an 

endemic area, or presence of EM, patients can be evaluated for LD infection using 

laboratory diagnostics. The CDC recommends a two-tiered protocol for testing for Lyme 

disease that limits the amounts of false positives conveyed by the testing. Initially, the 

patient will undergo the first tier of the test, an enzyme immunoassay (EIA). The EIA 

consists of identifying host antibodies generated against either the previously described 

VlsE C6 antigen or against whole-cell Borrelia lysate. A positive or indeterminate test 

then progresses to the second tier, an immunoblot against either purified, diagnostically 

significant antigens or Borrelia whole cell lysate. These antigens were detected in 

infected patients and used as diagnostic markers of Borrelia infection [81]. Depending 

on the length of time a patient has been symptomatic, and thereby likelihood of 

seroconversion, serum will be evaluated for either IgM or IgG antibodies. Samples will 

be tested for IgM if symptoms have occurred for less than or equal to 30 days, and for 

IgG if symptoms have occurred for longer than 30 days, due to seroconversion. Samples 

tested for IgM will be considered positive upon reaction with 2 of 3 bands (OspC, 

BmpA, Fla), and samples tested for IgG will be considered positive upon reaction with 5 

of 10 bands (OspC, BmpA, Fla, and antigens designated by their molecular weights: 18, 

28, 30, 45, 58, 66, and 93 kDa proteins) [81-83].  

Treatment for LD after exposure to the tick vector consists of antibiotics such as 

doxycycline, amoxicillin, and cefuroxime axetil. These treatment options are also 

effective after development of the EM [84]. However, avoiding exposure to the tick 

vector is the most effective method of avoiding LD infection. According both to the 
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CDC and the American Veterinary Medicine Association, avoidance of ticks can be 

accomplished through a range of methods, including: wearing long sleeved and light 

colored clothing to prevent skin contact with ticks and make visualizing ticks easier, 

using repellents, and doing tick checks on yourself and your pets after activity in areas 

that may contain ticks [85, 86].  These recommendations are particularly important for 

pets that move between the home and outdoors. Pets can carry ticks into proximity of 

humans, particularly in endemic areas, and as such should be treated with tick 

preventatives or with the available canine Lyme disease vaccines [86]. Currently there 

are no available LD-specific methods to prevent infection in humans in the event of a 

failure of the previously described methods of vector avoidance. 

Early Lyme disease vaccine history 

After the discovery of B. burgdorferi in 1977, much research was done to 

understand the infectious process of the organism, as well as vaccination and challenge 

protocols to identify a means of preventing infection with the spirochete.  One of the 

earliest studies performed by Johnson et al. [87] evaluated the contributions of 

antibodies to preventing infection with spirochetes upon challenge using passive transfer 

methodology. To this end, immune rabbit serum was transferred to naïve hamsters prior 

to challenging with spirochetes using a dose of 1000 × ID50. From this study, it was 

determined that hamsters were completely protected from challenge after transfer of 

immune sera, and as such, vaccines capable of generating a similar antibody based 

immune response would also be capable of preventing infection with B. burgdorferi 

[87].  
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The natural next step, completed later the same year by Johnson et al. [88], was 

to evaluate active immunization of hamsters. During this study, hamsters were 

immunized with a single dose of inactivated B. burgdorferi and challenged at a dose of 

1000 × ID50 B. burgdorferi cells. When animals were immunized with a dose 

corresponding to 50 µg of B. burgdorferi cells, nearly complete protection (86-100%) 

was seen. Less protection was seen with lower amounts of vaccine, and similar 

protection was seen when the amount was doubled [88].  

For further vaccine experiments, the mouse model was determined to be an 

effective model system due to the ability to generate a protective immune response 

against B. burgdorferi in mice with functional immune systems. Using this ideology, the 

first bacterin vaccine was designed and approved for use in dogs, and a range of these 

whole cell based vaccines are still employed today in veterinary medicine [42]. A 

working mouse model for LD was identified in 1990 that showed some similarity to the 

human course of infection. Although not all murine strains are susceptible to LD 

symptoms, susceptible strains such as C3H/He develop carditis and arthritis upon 

infection. Further, these susceptible mice generate an enhanced antibody immune 

response when compared to resistant strains (C57Bl/6) [89].  Later that same year, the 

first manuscript documenting the utilization of OspA as a vaccine antigen was published 

using the described C3H/HeJ mouse model. From this work, Fikrig and colleagues 

determined that by both passive and active immunization of mice with OspA, 

immunized mice were protected during challenge with B. burgdorferi. Further, these 
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animals developed a strong antibody response against OspA, and demonstrated no 

clinical manifestations of LD [90].  

Although antibodies were thought to be involved in the protection mediated by 

OspA due to successful passive transfer experiments, the mode of protection for OspA 

based vaccines was unknown. Interestingly, after the licensing of the human OspA based 

LD vaccine LYMErix™, the mode of action was identified. LYMErix™ was the first 

vaccine licensed for use in humans that functioned to protect individuals by blocking the 

transmission of the pathogen to the host from the vector. Due to differential gene 

regulation, OspA is not found on the spirochetal surface in the gut of fed ticks, but is 

present prior to the start of the blood meal. The transmission blocking aspect of 

LYMErix™ was discovered through passively transferring antibodies against OspA to 

naïve mice at various times during the blood meal of infected I. scapularis. The 

spirochete presence and location within the vector as well as the infection status of the 

mice was then evaluated, and revealed that only when antibodies against OspA were 

administered prior to the blood meal there was protection against LD seen. Further, in 

ticks feeding on mice receiving antibodies before the blood meal, spirochetes were found 

to be limited both in terms of replication and migration to the tick salivary glands [41].  

Expanding upon this idea, other outer surface proteins were determined to be 

visible to the immune system during infection with B. burgdorferi, and thus were 

utilized in active immunization experiments. The most utilized surface protein after 

OspA is OspC, a protein that is used in a range of canine Lyme vaccines. OspC is 

upregulated on the spirochete surface during tick feeding and early in infection 
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(approximately 10 days post-transmission), and as such, antibodies directed against 

OspC target the pathogen in the host. To evaluate protection of OspA, OspB, OspC, and 

OspD, mice were immunized with recombinant versions of each of the proteins prior to 

challenge with live B. burgdorferi [91]. From this study, Probert et al. [91] found that of 

these antigens, only OspD was not capable of generating an antibody response, 

demonstrating the utility of OspC as another LD vaccine candidate. Although OspC is 

expressed in the tick salivary glands, it has not been shown to function as a transmission 

blocking vaccine [91]. Although these outer surface proteins are protective, the 

variability of OspC and to a lesser degree OspA will make the generation of a globally 

relevant vaccine more challenging than it would be if a more conserved antigen was 

utilized [92-97].  

LYMErix™: a licensed, human Lyme vaccine 

In the history of LD, one vaccine has been licensed for use in humans. This 

vaccine, LYMErix™ (SmithKline Beecham), was based on the lipoprotein outer surface 

protein A (OspA) and licensed in 1998 by the FDA. The vaccine was released in 

December 1998 and voluntarily removed from the market February 2002.  Notably, 

another OspA vaccine candidate was also generated in the late 1990s, ImuLyme™ 

(Pasteur Mérieux Connaught), and made it to phase III clinical trials. Pasteur Mérieux 

Connaught, however, opted not to apply for licensure for unspecified reasons [98, 99]. A 

comparison of LYMErix™ and ImuLyme™ can be found in Table 1-2.  
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Table 1-2: Characteristics of human LD vaccines at Phase III clinical trials 

Name Company 
FDA 

License 
Borrelia Antigen Adjuvant 

Efficacy

*  
Location Citations 

LYMErix™ 
SmithKline 

Beecham 
Yes 

Full length, 

lipidated OspA 

from strain Z S7 

Lipidation,

Aluminum 

Hydroxide 

76% IM 
[100, 

101] 

ImuLyme 

Pasteur 

Mérieux 

Connaught 

No 

Full length, 

lipidated OspA 

from strain B31 

Lipidation 

only 
92% IM [99, 102] 

*Efficacy is after 3 doses of vaccine. 

Both vaccines were administered intramuscularly at a dose of 30 µg and a frequency of 0, 1, and 12 months with required 
annual boosts. 

 

 

 

OspA was selected as the antigen of these vaccines because of its role in the life 

cycle of B. burgdorferi, as well as its relative conservation across the LD causing 

Borrelia species when compared to other outer surface proteins, such as OspC [16, 41, 

103, 104]. Immunization with a lipidated version of OspA in conjunction with an 

aluminum hydroxide adjuvant (LYMErix™ only) was found to generate a long-lasting 

antibody response that targeted B. burgdorferi within the tick. The maintenance of an 

elevated level of these anti-OspA titers in the host is a necessity due to the mechanism of 

action in targeting the spirochetes within the tick vector, and may account for the 76% 

efficacy of the vaccine [41, 105-107]. The vaccine worked because the ticks take up the 

antibodies and complement factors as well as blood while feeding. Thus, these factors 

could kill spirochetes within the tick gut, and prevent infection with B. burgdorferi [108, 

109].  As such, using an OspA based vaccine requires frequent boosting to maintain 

titers high enough to induce killing of the spirochetes in the tick vector.  
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While SmithKline Beecham did not give a specific reason for the removal of the 

LD vaccine from the market, low sales were likely the cause. Use of the vaccine fell 

after suggestions that the vaccine caused an autoimmune response resulting in 

inflammation like that seen during infection. It was thought that this reaction was due to 

the similarity between OspA (amino acids: 163-175), the immunodominant T cell 

epitope in a subset of patients post vaccination, and human lymphocyte function 

associated antigen (LFA)-1 (amino acids: 332-340) [110, 111].  These peptides bind 

certain major histocompatibility complex (MHC)-II alleles. HLA-DRB1*0401 and HLA-

DRB1*0404 in particular were found to bind OspA163-175, and would be expected to bind 

to the LFA-1 autoantigen as well, causing an autoimmune response and antibiotic 

refractory Lyme arthritis. The binding of OspA to these alleles caused the production of 

a Th1 cytokine environment, and could cause the resulting joint damage. These alleles 

have also been linked to rheumatoid arthritis, however, this linkage has not been clearly 

demonstrated in vivo for B. burgdorferi [80, 111-113]. Studies in OspA vaccinated 

hamsters demonstrated this link, prompting investigation into the human reports, but no 

linkage between homology and autoimmune response resulting from vaccination was 

shown in humans [114, 115].  As such, public perception is another hurdle that a vaccine 

for LD must be able to overcome.  

Vaccines after LYMErix™: multivalent and chimeric molecules 

OspA based vaccines were not abandoned with the demise of LYMErix™. 

Before the generation of LYMErix™, Golde et al. [95] found that the OspA antigen was 

protective as a vaccine against tick challenge, with some cross protection against strains 
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of Borrelia carrying marginally heterogeneous OspA proteins. However, even in 1995, it 

was known that OspA varied between serotypes and strains. In order to generate a 

broadly protective vaccine that would be applicable in the US as well as in Europe and 

Asia, a multivalent OspA vaccine would have to be generated, or a more conserved 

antigen would have to be utilized [95]. Further, other outer surface antigens have been 

tested for utility as Lyme disease vaccine candidates, and have demonstrated even more 

heterogeneity. Similar to OspA, OspC has been through trials in various formulations, 

and faces some of the same challenges as OspA. As described previously, OspC is 

present during mammalian infection and shows a greater amount of heterogeneity than 

OspA. The lack of conservation between OspC epitopes is one of the contributing 

reasons as to why OspC was not the primary target of Lyme vaccine studies. Consistent 

with this idea, Earnhart and Marconi evaluated the OspC epitopes phylogenetically and 

found that to generate a complete, broadly protective vaccine against LD using the OspC 

antigen, 34 epitopes would be required [93]. The C-terminal region of OspC has been 

found to be more conserved than the protein as a whole, and as such, is likely being 

targeted in future vaccine studies. Although there are difficulties with these antigens, it is 

likely that these antigens are still targeted as candidates due to the extensive safety 

profiles completed for each of these molecules due to previous use in veterinary and 

human vaccines.  

Taking into consideration the high amount of variability in currently targeted 

antigens, present LD vaccine research is moving forward through the utilization of 

multimeric and chimeric molecules to generate a protection against a broad range of 
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Lyme disease causing spirochetes. Advances using this approach include one such 

vaccine developed by Comstedt et al. [116]. To generate protection, this vaccine 

includes 6 of the most clinically relevant OspA antigens. The utilized antigens include 3 

coming from varied OspA serotypes of B. garinii, and one epitope each from B. 

burgdorferi, B. afzelii, and B. bavariensis. Additionally, these OspA antigens have been 

formulated to lack the region of potential homology by using the B. afzelii sequence for 

this region of the protein, likely removing the concern for autoimmune responses [116, 

117]. This vaccine candidate has gone through Phase I/II clinical trials, where it was 

determined by Wressnigg et al. to be safe and immunogenic. Phase III clinical trials will 

be pursued with the intention of evaluating efficacy [97]. This candidate is being 

pursued by Valneva and is now referred to as VLA15 [118].  

OspC has also been studied as a candidate for multivalent vaccine development. 

To this end, chimeric tetravalent and octavalent OspC anti-Lyme vaccine candidates 

have been evaluated [47, 96]. Through this work, Earnhart et al. has demonstrated 

immunogenicity of the antigen constructs in the murine model with potential for 

antibodies to recognize spirochetal surface antigens. Both in the tetravalent and 

octavalent formulations, antibodies specific to each spirochete included in the 

formulation have been detected in immunized animals. 

Although the outer surface proteins have promise as LD vaccine candidates, the 

utility of a novel and conserved antigen that does not require the use of multivalent 

antigens is still clear. Another concern for LD vaccines based on the outer surface 

proteins is public perception due to the negative publicity LYMErix™ received.  
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Additionally, the antigens utilized are from the most common genospecies responsible 

for LD infection, however, there are other pathogenic Borrelia that are not accounted for 

by this formulation. These formulations thus do not offer complete protection from all 

LD spirochetes. This concept is particularly important when considering the recent 

discovery of B. mayonii [3].  

In addition to the multivalent OspA and OspC vaccines, several other antigens 

are being evaluated as LD vaccine candidates, including: BBA52, BBK32, and DbpA. A 

multicomponent vaccine was generated with the idea of using the protection from 

BBK32, DbpA, and OspC in tandem. From this study, the differences between single, 

double, and triple component vaccines are clearly seen, as each change had a distinct 

effect on amount and isotype of antibody production as well as on protection. Changing 

antigen amounts during immunizations were not seen to yield a linear change in 

protection, but rather, changing concentrations of any or all members of the 

multicomponent vaccine had an effect on immune response. For example, decreasing 

DbpA compared to the other components yielded lower bacterial recovery than using all 

three antigens in the same amounts. As such, further studies are required to better 

understand the complex response of the immune system to dose and antigen combination 

in order to optimize the protection of this multicomponent construct [119].  

Veterinary Lyme disease and vaccines 

Dogs become infected with B. burgdorferi through the bite of an infected Ixodes 

tick, particularly due to their propensity to move between the outdoors and inside the 

home. Once infected, dogs may develop symptoms of ranging severity, including: 
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lethargy, fever, joint swelling and intermittent lameness, and in some cases 

nephrological symptoms that can end in renal failure and death [120, 121].     

Presently there are 5 distinct vaccines against B. burgdorferi produced by 4 

different companies that are licensed for use in canids by the United States Department 

of Agriculture. Additionally, there are combination vaccines produced by Boehringer 

Ingelheim Vetmedica, Inc. that consist of antigens against B. burgdorferi, Leptospira 

interrogans, and a range of viral illnesses including canine distemper, adenovirus type 2, 

coronavirus, parainfluenza, and parvovirus [122].  

 

 

 

Table 1-3: Characteristics of presently licensed canine LD vaccines 

Name Company Borrelia Antigen Adjuvant Frequency Citations 

Duramune 

Lyme ® 

Boehringer 

Ingelheim 

Vetmedica, Inc.  

Bacterin; 

Strains: 2 

Proprietar

y 

0, 2-3 weeks. 

Annual 

boosts.  

[42, 45, 

124, 125] 

Nobivac® 

Lyme 

Merck Animal 

Health (Formerly 

Schering-Plough) 

Bacterin; 

Strains: 2 
Oil 

0, 2-4 weeks. 

Annual 

boosts.  

[43] 

LymeVax® 

Zoetis (Formerly 

Pfizer and Fort 

Dodge) 

Bacterin; 

Strains: 2 

Aluminum 

hydroxide 

0, 2-3 weeks. 

Annual boosts 
[44] 

Recombitek® 

Lyme 
Merial Limited 

Recombinant: 

Lipidated OspA 

 

OspA 

Lipidation 

0, 2-3 weeks. 

Annual 

boosts. 

[46] 

VANGUARD

® crLyme 
Zoetis 

Chimeric: OspA 

(epitopes: 1) 

OspC (epitopes: 

7) 

Aluminum 

hydroxide 

0, 3 weeks.  

Annual 

boosts. 

[96, 123] 

All listed vaccines are administered at 1 mL per dose administered subcutaneously.  

 

 

 

The trend towards using multivalent and recombinant antigens to prevent Lyme 

disease has also been applied to veterinary vaccines. In the last quarter of 2015, Zoetis 
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released a recombinant, multivalent LD vaccine, VANGUARD ® crLyme. 

VANGUARD ® crLyme contains heptavalent OspC formulated with a single OspA 

antigen, allowing the vaccine to target B. burgdorferi within the vector (OspA) or 

mammalian host (OspC) [123]. More details on VANGUARD® crLyme and other 

available veterinary vaccines available in 2017 can be found in Table 1-3.  

Although domestic cats are less often thought of as animals that may present with 

LD, it has been shown experimentally that cats can become infected with B. burgdorferi. 

LD in cats generally presents with minimal symptoms, however may include fever, 

lethargy, and lameness [120, 126].   

To the contrary, horses may become infected with LD and develop symptomatic 

illness. Horses may present with lethargy, weight loss, uveitis, lameness, muscle 

tenderness, hyperesthesia, as well as neurological complications including facial nerve 

paralysis and meningitis [127, 128]. Chang et al. [129] demonstrated in 1999 that 

vaccination of ponies with OspA was protective from subsequent challenge with B. 

burgdorferi. It is therefore possible to utilize an LD vaccine to protect equids from LD 

infections, and could be particularly useful in endemic areas [129]. However, no LD 

vaccines are currently licensed for use with horses.   

In cattle, LD may present with fever, swollen and stiff joints, lameness, weight 

loss, and may result in abortion in pregnant cows [130, 131].  There have not been any 

attempts to vaccinate cattle against LD specifically, rather, the anti-tick vaccine 

approach has been utilized in conjunction with acaricides to prevent tick infestation of 

livestock. The effect ticks have on production animals include: damage to skin, weight 
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loss, decreased milk production, induction of abortion, death, and transmission of a 

range of tick borne diseases (TBDs).   

Vector targeted alternatives  

 Vector targeted vaccines are not a novel approach to TBDs. Notably, the Cattle 

Fever Tick Eradication Program’s efforts targeted the one host ticks Rhipicephalus 

(Boophilus) microplus and R. (B.) annulatus in the US. The cattle fever ticks vector the 

protozoan parasites Babesia bovis and B. bigemina. Upon transmission, these parasites 

can cause death in up to 90% of naïve, susceptible cattle. Another TBD of concern 

transmitted by cattle fever ticks is Anaplasma marginale that can also cause lethargy, 

weight loss, and death. Due to an integrated approach that encompasses the use of 

acaricides, vaccination, and tightly monitored quarantine zones, these ticks have been 

limited in the US to the southern border of the US and Mexico [132, 133]. As resistance 

to acaricides and ivermectin increases, vaccination may take a more prominent role in 

the control of tick vectors, particularly as the eradication program faces a resurgence of 

CFTs in 2017 [134, 135]. 

 The anti-tick vaccines TickGardPlus and Gavac™ are based on the BM86 

antigen from R. (B.) micrplus ticks, and are used to control cattle fever ticks (CFTs). 

BM86 is a glycoprotein found on epithelial cells in the tick gut lumen. Immunization of 

cattle with the BM86 antigen has been shown to decrease the endocytic activity of gut 

cells and overall fitness of the female tick [136, 137]. Taken together, immunization of 

cattle with BM86 based vaccines decreases the number of ticks and therefore potential 

exposure and transmission of TBDs, as well as minimize acaricide resistance and 
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environmental contamination thus contributing to the cattle fever tick eradication effort. 

Although the BM86-based vaccine can control species outside of R. (B.) microplus, 

including Boophilus decoloratus and Hyalomma dromedarii, the vaccine is not effective 

against all tick species.  BM-86 based vaccines show no effect against Amblyomma 

cajennense, Amblyomma variegatum, Rhipicephalus appendiculatus [138, 139].   

 

 

 
Table 1-4: Selected tick vaccine antigens currently under investigation  

Antigen Tick Class Result Citation 

Bm86 R. microplus Gut epithelium; 

Glycoprotein 

Impaired feeding; reduced 

survival; decreased egg 

mass; decreased larval 

infestations  

[137, 142] 

Serine protease 

inhibitor 19 (AAS19)  

A. americanum Salivary protein; 

Serpin 

Impaired feeding; reduced 

survival; reduced oviposition 

[143, 144] 

Ixodes ricinus serpin-

2 (IRS-2) 

I. ricinus Salivary protein; 

Serpin 

Impaired feeding; decreased 

weight 

[20, 144, 

145] 

Tick histamine 

release factor (tHRF) 

I. scapularis Salivary Protein; 

Immunoactive 

Impaired feeding; decreased 

transmission of B. 

burgdorferi 

[29] 

Subolesin I. scapularis Homeostasis Impaired feeding; reduced 

survival; reduced weight; 

reduced oviposition; 

decreased pathogen 

acquisition 

[146-149]  

Aquaporin R. microplus 

 

Homeostasis Reduced tick survival; 

reduced molting; reduced 

ticks per animal; reduced 

tick weight 

[150-152] 

Ferritin 2 I. ricinus Homeostasis Reduced number of ticks per 

infestation; reduced weight; 

reduced fertility  

[153, 154] 

64P R.  appendiculatus  Salivary Protein; 

Cement 

Reduced infestation; 

increased mortality; 

impaired feeding; decreased 

egg mass 

[155, 156] 

 

 

 

Additionally, experiments utilizing Ixodes orthologs of BM86 did not prove 

successful to inhibit feeding or oviposition of I. ricinus on immunized rabbits. It is 

therefore likely that this approach would not be successful for I. scapularis control, and 
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therefore have no impact on transmission of LD [140]. More promising approaches to an 

anti-tick vaccine that could apply to I. scapularis utilize a range of tick antigens, 

including salivary proteins, gut proteins, and proteins involved in homeostasis and 

regulation. Some of the targeted tick antigens, such as the TSLPI and TROSPA are used 

with the primary focus of inhibiting transmission or infection of ticks with B. 

burgdorferi rather than specifically targeting vector longevity [16, 24]. In contrast, there 

are a range of proteins being evaluated as vaccines that have effects on the tick vector in 

terms of ability to take a full blood meal or reproduce [141]. A few examples of these 

targets include proteins involved in tick homeostasis and immune evasion, as described 

in Table 1-4.  

Although the eradication effort focused on the protection of livestock, the CFT 

has other host in the US, including white tailed deer and exotic animals such as nilgai 

and red deer. As such, the ticks may be maintained even if cattle are removed from 

infected areas and treated for ticks, thus posing a risk for reinfestation of cattle. Deer and 

exotic animals in pens may be treated similarly to cattle, however, free range animals 

pose more of a challenge for the elimination of ticks. These animals may be treated 

using feeders  2- or 4-poster device, that features ivermectin treated corn as a bait source 

and permethrin infused rubbing posts [133, 157, 158].  

Wildlife vaccination using oral bait 

A bait-vaccination approach similar to that utilized for rabies has been used to 

decrease LD prevalence in reservoir hosts and thereby decrease transmission to humans. 

Bait based vaccination is useful for LD in particular due to the lack of a human vaccine.  
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In 1991, Fikrig et al. demonstrated that oral recombinant OspA (rOspA) vaccination 

using OspA expressing E. coli was sufficient to protect mice from Borrelia challenge 

[159]. From this knowledge, Tsao et al. [160] demonstrated that the natural reservoir for 

B. burgdorferi, P. leucopus (white-footed mouse), could be immunized with OspA 

derivatives using subcutaneous inoculation resulting in a modest decrease in the number 

of infected I. scapularis nymphs in the test area (Connecticut) [160]. Building on this 

idea, Gomes-Solecki et al. [161] developed a method of bait delivery, and in laboratory 

experiments were able to show that mice immunized with OspA based bait vaccines 

were able to resist infection with B. burgdorferi, and even decreased pathogen load in 

the vector [161].  In 2011, further studies found that the OspA based bait vaccine could 

be optimized for use in the field and generate a year-long response in the white-footed 

mouse against B. burgdorferi [162]. A field study in New York then demonstrated a time 

dependent decrease in I. scapularis nymphal infection of 76% after 5 years of treating 

with bait vaccine [163].  

Although there is promise with bait-based vaccination of reservoir hosts to 

decrease transmission to humans, the utilization of a bait program requires large 

quantities of vaccine, manpower to distribute bait, and cannot guarantee complete 

elimination of the pathogen. Other animals are capable of maintaining B. burgdorferi 

infection that will not be targeted by the vaccine, and not all mice will ingest the vaccine 

bait.  For this reason, there is still a need for a human vaccine to increase the likelihood 

of protection from LD infection in humans. A program utilizing the reservoir targeted 

vaccine could reduce the pathogen in the wild in endemic areas, but people in endemic 
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areas that lack vaccine coverage would still be at risk. This method also would likely not 

be employed in areas that have lower prevalence of Borrelia, leaving people at risk in 

these areas as well.     

Reverse vaccinology 

 The concept of reverse vaccinology began when the approach was used to 

identify novel antigens against Neisseria meningitidis serogroup B, a bacterium that had 

been problematic to vaccinate against due to antigenic variability and similarity to 

human proteins. Pizza et al. [164] performed whole genome sequencing of N. 

meningitidis serogroup B strain (MC58) to determined potential vaccine candidates 

using the reverse vaccinology approach. To identify a candidate antigen, outer 

membrane vesicles were targeted due to the ability to generate antibody response and 

protection data showing that the vesicles were able to prevent N. meningitidis infection. 

To this end genes were amplified, cloned, expressed, selected and screened in the murine 

model for protection. Proteins were then evaluated for protection as determined from 

sera by determining antibody response and bactericidal activity [164]. Today, reverse 

vaccinology starts with a known genome, proceeds with in silico analysis and antigen 

predictions, and ends with vaccine candidates for screening.  

Comparative genomics may serve as a starting point for identifying conserved 

proteins between related organisms.  The genome of B. burgdorferi strain B31 was 

published in 1997 and was updated in 2000 [165, 166]. With this information, a 

comparison of the genomes of B. burgdorferi and the distantly related spirochete 

Treponema pallidum was performed by Subramanian et al. in 2000. Using this approach, 
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conserved genes between Borrelia and Treponema were identified, and these genes are 

likely to be conserved across the family Spirochaetaceae. In this analysis, a family of 

proteins with particular interest to the identification of a vaccine candidate was 

described.  

To develop a novel vaccine against B. burgdorferi, the target product profile 

must be considered. LYMErix™ required 3 doses over 1 year to generate an efficacy of 

76% in individuals aged 15 – 70, and was potentially responsible for generating 

inflammation and cross-reactivity in humans [101]. Therefore, the ideal qualities of a 

new LD vaccine include: safety in humans and animals, >76% efficacy in only 2 doses, 

affordable to produce, strong IgG antibody response, generation of immunologic 

memory, and capability to be scaled up for affordable large scale production. Minimally, 

the vaccine must still be safe for use in humans and animals, achieve an efficacy of 

greater than 76% after 3 doses, generate a strong IgG and memory antibody response, 

and have potential to be produced commercially in a cost-efficient manner. LYMErix™ 

was on the market in 1998, and the cost for the series consisting of 3 doses at 0, 1, and 

12 months with annual boosts was approximately $60 per dose [167, 168]. The 

recombinant OspA antigen used in LYMErix™ was produced on a large scale in E. coli 

because the antigen was a bacterial lipoprotein that could be produced efficiently by the 

E. coli expression system, and likely would still be a viable expression systems for 

future LD vaccine constructs [169, 170] However, because the OspA antigen was 

lipidated, expression was lower comparatively to non-lipidated constructs [171]. New 

approaches to LD vaccines would ideally cost less than LYMErix™, either due to 
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decreased number of immunizations, or more cost effective production methodology or 

expression platforms.  

Utilizing the reverse vaccinology approach to select a protein, and eventually an 

antigenic peptide epitope, makes it possible to put together a “shopping list” of 

characteristics required for a new LD vaccine candidate [172]. These characteristics 

include conservation across the genus Borrelia in an effort to generate protection across 

both the US and Eurasian strains of B. burgdorferi sensu lato complex: extracellular 

exposure as potentially indicated by the presence of transmembrane domains and signal 

peptides, and predictions of functional domains likely to be involved in colonization and 

dissemination within the mammalian host. Following in silico analysis, these 

characteristics will be confirmed in vitro if demonstrated in a previously uncharacterized 

protein, and further analysis to determine regions of antigenicity will be performed both 

using in silico analysis and in vivo experiments [172].   

To accomplish these goals, the ideal result of this work would be the discovery of 

a peptide antigen capable of preventing transmission of LD from tick vector to 

mammalian host. A peptide antigen is readily producible and amenable to formulation 

through a range of methods including linking to carrier molecules, scaffolding, and 

immunization with immunostimulatory molecules and adjuvants.   

The VWFA domain containing proteins 

The vonWillebrand Factor A (VWFA) domain protein family is found broadly in 

eukaryotes, bacteria, and archaea [173]. The localization and function of VWFA domain 

containing proteins differs across this range of organisms, however, the VWFA domain 
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containing proteins maintain Rossmann structural folds and the ability to coordinate 

divalent cations. This ion interaction takes place due to the presence of a non-contiguous 

sequence – the metal ion dependent adhesion site (MIDAS) motif [174]. VWFA domain 

containing proteins are found in a range of capacities in eukaryotes, bacteria, and 

archaea (as reviewed by Whittaker and Hynes [175]). In mammals, the VWFA domains 

are found in integrins, extracellular matrix proteins, and the vonWillebrand factor, a 

multimeric glycoprotein [176, 177].  In prokaryotes, many VWFA domain containing 

proteins have unknown functions, but some function as chelatases and through binding 

to mammalian host proteins. In addition, intracellular VWFA domain containing 

proteins are found in prokaryotes and eukaryotes, and function in a range of cellular 

functions, including DNA repair and protein degradation [173, 178].  

An analysis performed by Subramanian et al. [179] demonstrated the 43% of the 

genomes of Treponema pallidum and B. burgdorferi were orthologous. Of the genes 

highlighted in this analysis, the VWFA domain containing genes were identified as a 

newly identified protein family in the spirochetes. In B. burgdorferi, 4 VWFA domain 

containing genes were identified on the bacterial chromosome: bb0172, bb0173, bb0175, 

and bb0325 [173, 179]. Although these genes were identified in the comparative genome 

analysis, the Borrelia VWFA domain containing proteins were not found to be highly 

similar to the VWFA proteins in Treponema [179].  

Further, Subramanian et al. [179] also highlighted the similarity of the B. 

burgdorferi VWFA domain containing proteins to the Plasmodium thrombospondin-

related adhesive protein (TRAP), and idea that was further confirmed through 
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alignments with Borrelia protein sequences [59, 179]. TRAP acts through adhesion to 

mammalian liver cells, and thus is reasonable to expect that similar proteins of B. 

burgdorferi could facilitate a similar function [180]. As such, BB0172 was characterized 

by Wood et al. [59] and shown to be exposed on the surface of B. burgdorferi and to 

bind integrin α3β1. It is of interest, therefore, to also characterize BB0173 in order to 

further expand on the interactions of B. burgdorferi with its environment. Further, 

characterization of BB0173 may yield another candidate protein for use in a Lyme 

disease vaccine. BB0175 contains the VWFA domain, however, does not contain any 

putative transmembrane domains, and as such, likely is not surface exposed. BB0325 

also lacks putative transmembrane domains and is not found in the same highly 

conserved region of the chromosome that bb0170 – bb0176 are located in. For these 

reasons, BB0175 and BB0325 will not be evaluated further in this work as potential 

vaccine antigens.  

Spirochaetal and host cells interact through protein binding events to facilitate 

the migration of B. burgdorferi within the mammalian host away from the tick bite to 

areas of long term survival, such as the skin, joints, heart and bladder. These host-

pathogen interactions are required for the pathogenicity of Borrelia, particularly as the 

pathogen responds to changes in temperature, pH, oxygen, and the structural 

environment through differential gene expression [181-184]. With regards to the 

endothelial cells, B. burgdorferi has been shown to bind the extracellular matrix (ECM) 

components: fibronectin, laminin, collagens (type I, III, and IV), and integrins, among 

other components, through Borrelial proteins such as BBK32, BBA33, ErpX, P66, 
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BBA07, BB0172 respectively [59, 183-191]. Due to the role of BB0172 and the 

similarities between BB0172 and BB0173, it is probable that BB0173 is involved in 

colonization of dissemination in the mammalian host due to the highly-conserved nature 

of the protein, the presence of a VWFA domain with MIDAS motif, and the Bacteroides 

aerotolerance domain.  

Taken together, the common themes of the VWFA domain containing proteins 

are the ability to coordinate divalent cations and facilitate protein binding to either 

assemble a protein complex or to bring cells into contact. Further, the VWFA domain 

containing genes are highly conserved across the genus Borrelia, and as such, have 

potential to serve as anti-Lyme vaccine candidates.  The overall goal of this work is to 

identify a highly-conserved antigen derived from B. burgdorferi that can be used to 

develop a novel anti-Lyme disease vaccine for use in humans and companion animals. 

The VWFA domain containing proteins of B. burgdorferi are prime targets for anti-

Lyme vaccine development due to their conservation in pathogenic Borrelia and their 

potential to function during times that are key for mammalian infection: colonization and 

dissemination. The VWFA domain containing protein BB0173 will be further 

investigated to determine potential for use as an anti-Lyme disease vaccine antigen.  
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Central hypothesis and specific aims 

Based on the literature, my central hypothesis is that a novel, highly conserved 

vaccine candidate for LD can be identified with the ability to induce protective immunity 

in the murine model and that could potentially act as an alternative to the presently 

employed heterogenous surface proteins.  

To evaluate this hypothesis experimentally, the following specific aims will be 

carried out using in silico, in vitro, and in vivo methodologies.  

 

Aim I:   Characterize vonWillebrand factor A-domain containing protein BB0173 

from Borrelia burgdorferi and determine potential for use as a vaccine candidate. 

 

Aim II:  Evaluate the protection against Lyme disease induced by the surface 

exposed protein BB0172 and derived peptides in the murine model. 

 

Aim III:   Develop delivery methods that will enhance immunogenicity of candidate 

vaccine peptides in the murine model for Lyme disease. 

 

The objective of this work is to identify a novel vaccine candidate derived from a 

vonWillebrand factor A containing protein that is highly-conserved in B. burgdorferi. 

This work is significant because current vaccine development has focused on using 

complex, multimeric antigens derived from variable surface targets to generate 

protection against B. burgdorferi s.l. pathogens. As such, a novel candidate may pave the 
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way for a safer and more effective LD vaccine for use in companion animals. Further, 

the development of a novel antigen could also advance the development of a human LD 

vaccine.  
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CHAPTER II 

EVALUATION OF BB0173, A MEMBRANE PROTEIN COMPONENT OF AN 

AEROTOLERANCE MEDIATED GENE COMPLEX 

 

Introduction 

B. burgdorferi has a fragmented genome composed of a linear chromosome and 

more than 20 extrachromosomal elements [165].  Genes required for virulence are often 

localized in the extrachromosomal elements of the bacteria. In contrast, the linear 

chromosome contains the majority of housekeeping genes required for bacterial 

replication and homeostasis in the tick and mammalian environments, and thus are often 

required for the basic survival of the spirochete. Due to stabilizing selection, the 

chromosomal genes of B. burgdorferi also demonstrate low levels of genetic variability, 

unlike the virulence genes found on the extrachromosomal elements (as reviewed by 

Brisson et al. [192]). As a result of these general characteristics of stability and necessity 

for survival of the pathogen, chromosomal genes are ideal targets for LD vaccine 

development.   

Comparative genome analysis between Treponema and Borrelia identified a 

range of conserved genes between the spirochetes [179]. Using this methodology, genes 

coding for bb0172 and bb0173 were identified on the linear chromosome that are highly 

conserved across pathogenic Borrelia and have a potential role in pathogenesis of B. 

burgdorferi due to the presence of the VWFA domain and transmembrane domains 
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contained within the same gene. Further, bb0170 and bb0173 contain a domain 

identified originally in the aerotolerant anaerobe Bacteriodes fragilis, the BatI 

(Bacteriodes aerotolerance) complex [193]. This conserved genomic region has also 

been described in Rhizobium leguminosarum and Leptopsira interrogans, although no 

definite function has been determined [193, 194]. Previous studies indicate that BB0172 

has a functional VWFA domain and MIDAS motif capable of biding integrin α3β1, and 

is inserted into the outer membrane. Further bb0172 is differentially expressed, and 

found only during the transition between tick vector and mammalian host. Due to the 

similarities between bb0172 and bb0173, it is worthwhile to further evaluate the 

localization, expression, and function of bb0173 in regards to the survival and 

pathogenicity of B. burgdorferi in order to better evaluate the antigenic potential of these 

genes for vaccine design.   

Attempts to understand the signaling and gene expression in B. burgdorferi have 

utilized a global analysis of genes in a variety of conditions mimicking the tick and 

mammalian host. Differential gene expression may be an indicator of the physiological 

role of the protein, as upregulation will occur when the differentially expressed gene 

product is required. In global analyses of B. burgdorferi gene expression, expression 

changes in bb0173 have been noted. In 2003, Ojaimi et al. [36] used whole genome 

arrays to evaluate the effect of temperature on gene expression in B. burgdorferi. In this 

study, BB0175 was found to be upregulated at 37ºC compared to 23ºC, a result that was 

confirmed by Tokarz et al. [35] in 2004 a study on the effect of blood and temperature 

on B. burgdorferi gene expression. Building on this understanding of gene regulation, 
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Rogers et al. [195] studied the function of the two-component signaling response 

regulator 1 (Rrp1) and hybrid histidine kinase-response regulator (Hpk1). In these 

studies, microarray analysis was used to determine expression changes in between 

wildtype B. burgdorferi or B. burgdorferi lacking rrp1. In this study, expression of 140 

genes was found to be altered by the absence of rrp1, including bb0170, bb0173, 

bb0174, and bb0175. To evaluate the change in expression, a ratio of wildtype/mutant 

hybridization values were used, demonstrating that the ratios for bb0170 and bb0173 

were greater than 100, while bb0174 presented a much lower ratio (27) and bb0175 was 

found to be very low (<5). Genes under the control of rrp1 are expected to be induced in 

the tick condition (25ºC, pH 7.6), and as such, the low ratio for bb0175 agrees with the 

previous literature showing bb0175 upregulation under at 37ºC [35, 36, 195]. 

In order to better understand the contribution of bb0170 – bb0176 genes to the 

survival and pathogenicity in B. burgdorferi and other Borrelia species, BB0173 will be 

evaluated and characterized. BB0173 is a conserved hypothetical protein that contains 

several predicted transmembrane regions, a VWFA domain and a metal binding motif. 

Through evaluation beginning with an in silico analysis and progressing to in vitro DNA 

and protein studies, the membrane topology of this protein is explored in order to 

evaluate its cellular localization and potential function. Taken together, the investigation 

of these genes will enhance the understanding of the biology of B. burgdorferi, and may 

lead to an increased ability to target the pathogen using novel therapeutics.    
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Materials and methods 

Growth conditions of Borrelia burgdorferi 

DNA used for experiments was extracted from Borrelia burgdorferi B31 A3 

strain, as described in Table 2-1. Cells were grown in BSK II with 6% inactivated 

normal rabbit serum (iNRS) and 1% CO2 at either pH 6.8 and 37°C (mammalian, 

37°C/pH 6.8) or pH 7.6 and 25°C (tick, 25°C/pH 7.6). Additionally, B. burgdorferi 

grown under shifted conditions between tick and host were started under tick growth 

conditions [59]. Once the culture reaches a density of 2–3 × 107 spirochetes/ml a 

subculture is started and grown under mammalian conditions until reach a density of 5 × 

107 spirochetes/ml.  Low oxygen conditions were generated using Oxyrase® for Broth 

(Mansfield, Ohio) at 0.025 mL Oxyrase® per 1.0 mL BSK II media. If no growth 

condition was specified, cells were grown in BSK II pH 7.6 at 32°C with 6% iNRS and 

1% CO2.   

RNA and genomic DNA purification for detecting bb0173 transcript by PCR 

RNA was extracted as previously described [59, 196, 197]. Briefly, B. 

burgdorferi cultures were grown to a density of 2–3 × 107 spirochetes/ml under the 

shifting conditions outlined above. RNA was extracted by re-suspending the bacterial 

pellets with 0.2 ml RNA-Bee (Tel-Test, Inc., Friendswood, TX) for every 106 cells. 

Following extraction with chloroform, RNA was precipitated with isopropanol, washed 

with 75% ethanol, air dried, and re-suspended in RNase-free water. To remove 

contaminating DNA, the RNA was treated twice with DNase I at 37°C for 45 min. Then 

the total RNA was quantified spectrophotometrically, and reverse transcribed to cDNA 
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using TaqMan reverse transcription reagents (Applied Biosystems, Foster City, CA). 

From B. burgdorferi cultures growing under tick-feeding conditions (pH 6.8 and 37ºC) 

and regular growing condition (pH 7.6, 32ºC), genomic DNA was obtained by general 

phenol:chloroform extraction.  

 

 

 
Table 2-1: Bacterial strains and plasmids used in this study 

Bacterial Strain or Plasmid Genotype Source 

Borrelia burgdorferi 

B31A3 

cp9−, wild type Rocky Mountain Labs 

[200] 

E. coli strains   

OneShot Top10 Cloning host; F− mcrA Δ(mrr-hsdRMS-

mcrBC) ϕ80lacZΔM15 ΔlacX74 recA1 

araD139 Δ(ara leu)7697 galU galK 

rpsL(Strr) endA1 nupG 

Invitrogen 

Rosetta(DE3)pLysS Expression host;  F- ompT hsdSB(rB
- mB

-) gal 

dcm (DE3) pLysSRARE (CamR) 

Novagen 

Plasmids   

pCS1-5 pCR2.1(bb0173T) This study 

pCS1-9 pET23a(bb0173T) This study 

 

 

 

Gene expression 

RNA, cDNA, and genomic DNA (positive control) samples from each growing 

condition were used to detect when bb0173 was expressed. A 501-bp fragment of 

bb0173 was amplified using primers BB0173cDNA-F (B. burgdorferi nucleotides 

175811-175860 and BB0173cDNA-R (B. burgdorferi nucleotides 175334-175357) 

(Table 2-2). Primers specific to the flaB, ospC, and p66 genes were also included as 

controls for the temperature and pH shift as previously described [59, 198, 199]. PCR 

products were separated on 0.8% agarose gels and imaged using the Bio-Rad Gel DocTM 

XR system. 
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To evaluate the potential contributions of the Bat domains in BB0173 and 

BB0175, cultures were grown to late log phase under microaerophilic (standard oxygen 

with 1% CO2) or low oxygen conditions, and transcripts of bb0170 – bb0176 were 

analyzed. Low oxygen conditions were generated by including Oxyrase® for broth. 

Expression from genes bb0170 – bb0176 was evaluated by conventional PCR to 

qualitatively evaluate a change in gene expression.  

Computer-assisted analysis of BB0173 transmembrane regions 

Putative insertion of hydrophobic regions (HR) from BB0173 proteins was 

predicted using the ΔG Prediction Server v1.0 using standard parameters combined with 

subsequent detection of the lowest apparent free energy differences (ΔGapp values) 

([201]; http://dgpred.cbr.su.se/). Models of tertiary structure were generated using 

template 4jdu.1.A, an aerotolerance related membrane protein, using SWISS-MODEL 

[202-204].  

Cloning of putative transmembrane regions 

For the membrane insertion of isolated BB0173-segments, HR1 (residues 7 – 

25), HR2 (residues 55 – 77), HR3 (residues 163-185) and HR4 (residues 310 – 328) 

fragments were independently amplified and introduced into the modified E. coli leader 

peptidase (Lep) sequence from the pGEM1 plasmid [205] using the SpeI/KpnI sites. 

After an overnight ligation, constructs were electroporated into TOP10 cells. Positive 

clones were selected on ampicillin plates (100 µg/ml). The primary sequence of each 

construct was confirmed by DNA sequencing  

http://dgpred.cbr.su.se/
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Alternatively, we prepared templates for the in vitro transcription of the truncated 

BB0173 mRNA with a 3´-glycosylation tag. BB0173 truncated constructs were obtained 

by using forward primers that include the T7 promotor sequence at the 5’ end. The 3´ 

reverse primers were designed to have approximately the same annealing temperature as 

the 5` forward primer, contained an optimized glycosylation C-terminal tag followed by 

tandem translational stop codons, TAG and TAA, and annealed at specific positions to 

obtain the desired polypeptide length as previously described [206]. Primers described in 

Table 2-2.  

Agarose gels (2%) were used to verify PCR product size then samples were 

cleaned using the Wizard® SV Gel and PCR Clean-up System (Promega, Madison, WI). 

After an overnight ligation, constructs were electroporated into TOP10 cells. Positive 

clones were selected on ampicillin plates (100 µg/ml) and verified by sequencing (Eton 

Biosciences, San Diego, CA). After sequencing confirmation, clones found to be in 

frame with Lep protein were selected for use in the in vitro transcription-translation 

experiments. E. coli strains and plasmids used in this study are found in Table 2-1.   

.  
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 Table 2-2: Oligonucleotide primers used in this study 

Primer Pair RS Sequence (5’3’) Application 

bb0173T-NdeI-F NdeI ACG CCA TAT GGC TTT AGC AGG TCC TTC Amplification of bb0173 for cloning into 

pCR2.1 and expression vector pET23a  bb0173T-XhoI-R XhoI ACG CCT CGA GTA GTA TCT CTT TTA AG 

bb0173cDNA-F(nt249-

272) 

 GAA GAT GAT ACA TCT TAG TGC TGG Amplification of bb0173 cDNA from RNA 

bb0173cDNA-R(nt725-

749) 

 CTT CCC TGA TAA AAT TTT CCA GAT 

bb0173TM1-SpeI-F 
SpeI ACG CAC TAG TGG AGG ACC AGG AAA TGA 

GCC TTT ATA TTT G 

Amplification of the first putative bb0173 

transmembrane sequence in frame with the 

Lep construct  
bb0173TM1-KpnI-R 

KpnI ACG CGG TAC CCC TCC TGG TCC CTT TAT CTT 

GCC TCC TCT 

bb0173TM1-2-SpeI-F 
SpeI ACG CAC TAG TGG AGG ACC AGG AGA TTA 

TAG ATT AA TTT G 

Amplification of the second putative 

bb0173 transmembrane sequence in frame 

with the Lep construct  
bb0173TM2-KpnI-R 

KpnI ACG CGG TAC CCC TCC TGG TCC AAC TGA AGG 

ACC TGC TAA AGC 

bb0173TM2b-SpeI-F 
SpeI ACG CAC TAG TGG AGG ACC AGG ACT AGA 

TGA TAT TTA TAT TAT G 

Amplification of the third putative bb0173 

transmembrane sequence in frame with the 

Lep construct  
bb0173TM2b-KpnI-R 

KpnI AGC CGG TAC CCC TCC TGG TCC AGC CTC AGA 

ATG CTT TAA ATG 

bb0173TM3-SpeI-F 
SpeI ACG CAC TAG TGG AGG ACC AGG AGA TAT TTA 

TAA AGA ATT TTT AG 

Amplification of the fourth putative 

bb0173 transmembrane sequence in frame 

with the Lep construct  
bb0173TM3-KpnI-R 

KpnI ACG CGG TAC CCC TCC TGG TCC CTC TTT TAA 

GAA AAT TTT TG 

bb0173-NcoI-F.1 
NcoI ACG CCC ATG GAT GTT AAC ATT TAA TGA G Common amplification start site for 

truncated insertion constructs  

bb0173-50aa-KpnI-R.1 
KpnI ACG CGG TAC CTT AAG TTT TAA AGA G Amplification of the first 50 amino acids of 

bb0173 for truncated insertion constructs 

bb0173-150aa-KpnI-

R.1 

KpnI ACG CGG TAC CCT ATC TGT TAT AGG CAC TAC 

TAT TG 

Amplification of the first 150 amino acids 

of bb0173 for truncated insertion 

constructs 

bb0173-250aa-KpnI-

R.1 

KpnI ACG CGG TAC CTC TTT AAA ACT TCC CTG ATA 

AAA TTT TCC 

Amplification of the first 250 amino acids 

of bb0173 for truncated insertion 

constructs 

bb0173-FL-KpnI-R.1 
KpnI ACG CGG TAC CGC TAG TAT CTC TTT TAA G Amplification of full length bb0173 for 

truncated insertion constructs 
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In vitro transcription-translation 

The BB0173 Lep-derived constructs were transcribed and translated using the 

TNT SP6 Quick Coupled System (Promega, Madison, WI). The reactions contained 75 

ng of DNA template, 0.5 μl of [35S]Met (5μCi), and 0.25 μl of microsomes (tRNA 

Probes) were incubated for 90 min at 30 °C. The translation products were 

ultracentrifuged (100,000 g for 15 min) on a sucrose cushion, and analyzed by SDS-

PAGE. The bands were quantified using a Fuji FLA-3000 phosphoimager and Image 

Reader 8.1j software.  

For the proteinase K protection assay, 2 μl of proteinase K (1 mg/ml) was added 

to the sample, and the digestion reaction was incubated for 15 min on ice. Before SDS-

PAGE analysis, the reaction was stopped by adding 1 mM phenylmethanesulfonyl 

fluoride (PMSF).  

For EndoH (New England Biolabs, Beverly, MA) treatment, 1 μl of 10X 

Glycoprotein Denaturing Buffer, 1 μl of 10X GlycoBuffer, 1 μl of EndoH and 7 μl of 

H20 were added to make a 10 μl total reaction volume and incubated for 1 h at 37°C with 

0.1 mU of EndoH. The samples were analyzed by SDS-PAGE.  

Expression and purification of rBB0173T 

The first two transmembrane domains of the BB0173 protein were excluded 

during cloning, in order to enhance the ability and viability of E. coli cells used to 

express bb0173. This N-terminally truncated version of bb0173 will be referenced in this 

paper as bb0173T (Figure 2-1B). The construct was generated using primers summarized 

in Table 2-2 by amplifying the gene from B. burgdorferi B31A3 genomic DNA and 
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introduced restriction enzyme sites NdeI (5’) and XhoI (3’) prior to introduction into 

pCR 2.1 – TOPO™ (Invitrogen™ LifeTechnologies®) following manufacturer’s 

recommendations. Positive clones were confirmed by sequencing (Eton Biosciences, San 

Diego, CA, USA) and sub-cloned into the expression vector pET23a (Novagen, 

Madison, WI) using XhoI and NdeI restriction sites [59]. The plasmid constructs 

containing inserts of expected sizes were sequenced and used to transform the E. coli 

expression host. 

Truncated recombinant BB0173 (rBB0173T) with a C-terminal 6 × histidine tag 

was overexpressed by inducing the E. coli strain containing pET23a-bb0173T with 1 mM 

IPTG for 3 hours and purified as described [59]. Fractions with the highest concentration 

of rBB0173T were combined and dialyzed against a buffer consisting of 50 mM sodium 

phosphate and 300 mM NaCl (pH 7.4; Slide-A Lyzer™ G2 dialysis cassette; Thermo 

Scientific, Waltham, MA) prior application to Amicon® Centrifugal Filters (EMD 

Millipore, Billerica, MA) to concentrate the protein. Quantification of protein 

concentration was achieved using a bicinchoninic acid (BCA; Pierce/Thermo Scientific, 

Waltham, MA) assay. Aliquots of the protein were stored at -80ºC until further use.  

Generation and purification of polyclonal antibodies against BB0173 

Antibodies against BB0173 were generated to detect this Borrelial protein in 

immunoblot assays. Chickens were utilized as model for the generation of specific 

antibodies, and were housed at the Texas A&M University poultry farm.  A 30-amino 

acid peptide (BB0173pep) was generated (Peptide 2.0 Inc., Chantilly, VA) from the 

region found within the large loop predicted to contain the VWFA domain and just 
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beyond the Metal Ion Dependent Adhesion Site (MIDAS) motif (Figure 2-1B).  

BB0173pep was rehydrated using 50% ethanol and was used to immunize chickens in 

parallel with rBB0173T in order to compare antibody response, sensitivity, and 

specificity. Each hen (n=3 per antigen) received 50µg of either the truncated protein or 

the peptide using equal parts protein and TiterMax™ Gold adjuvant (Sigma-Aldrich, St. 

Louis, MO). Chickens were immunized intramuscularly through the breast at days 0, 14, 

and 28 to allow for the generation of a sufficient memory antibody response. From days 

35 to 45, eggs were collected daily and frozen at -20ºC until antibodies were purified 

from the yolk as previously described [207]. Antibodies were determined to recognize 

both the truncated antigen as well as full length BB0173 in Borrelial whole cell lysates 

via ELISA and western blot (data not shown). For this study, detection was carried out 

using BB0173pep specific antibodies. 

Protease treatment of B. burgdorferi 

Proteinase K degradation of proteins exposed to the extracellular environment 

was conducted using B. burgdorferi cells grown at 32°C in BSK II pH 7.6 following 

previously standardized protocols [59]. Briefly, B. burgdroferi B31 A3 strain cells were 

washed in Hank’s Balanced Salt Solution (HBSS) containing 5 mM MgCl2 and 50 mM 

sucrose to enhance membrane stabilization. After washing, a whole cell lysate aliquot 

was separated, washed further, and stored at -20°C until use. The rest of the cells were 

then treated with 0, 10, 20, 50, 100, or 200 μg Proteinase K and incubated at 37°C for 30 

minutes. After incubation, PMSF was added to each sample at a final concentration of 1 
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mM to stop Proteinase K activity. Cells were then washed in supplemented HBSS 

containing 1 mM PMSF. Treated cells were stored at -20°C until use.  

Detergent phase partitioning 

Triton X-114 phase partitioning was conducted using B. burgdorferi B31 A3 

grown at 32°C in BSK II pH 7.6, pelleted and washed in HBSS. Cells were treated with 

1% Triton X-114 in HBSS and incubated at 4°C overnight with gentle agitation. Cells 

were then centrifuged at 8,000 x g and the pellet containing the protoplasmic cylinders 

(PC) was saved. The supernatant was treated with 2% then 10% Triton X-114. The 

detergent (DT) and aqueous (AQ) phases were washed in HBSS then precipitated with 

10 fold volume of ice cold acetone, stored at -20°C overnight and pelleted as previously 

described [208].  The supernatant was discarded and samples were stored at -20°C until 

use.  

Protein resolution and detection 

Both Triton X-114 and Proteinase K treated samples were analyzed using SDS-

PAGE and immunoblot analyses. In both cases, SDS—12% PAGE gels were used to 

separate proteins from treated or untreated whole cell lysates from B. burgdorferi. After 

protein separation, gels were either stained or transferred to membranes for immunoblot. 

Gels for visualization were treated with either Coomassie brilliant blue in the case of 

Proteinase K treatment or Silver Stain Plus (Bio-Rad Laboratories, Inc., Hercules, CA) 

for Triton X-114 treated samples. For immunoblot analysis, gels were transferred to 

PVDF membranes (Hybond-P; GE Healthcare, Piscataway, NJ) as previously described 

[59]. The PVDF membranes were blocked overnight at 4ºC in Tris-buffered saline 
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containing 0.2% Tween 20 (TBS-T) and 10% skim milk. After blocking, membranes 

were probed with chicken anti-BB0173pep.  

Primary control antibodies included: OMPs OspC and P66, and the cytosolic 

proteins superoxide dismutase A (SodA, cytosolic), oxidative stress regulator (BosR, 

periplasmic), and Flagellin B (FlaB, periplasmic)  [196]. OspC, VlsE, and P66 were 

utilized to determine proteinase K activity on outer membrane proteins, while BosR and 

FlaB served intracellular controls. OspC (OMP) and FlaB (periplasmic) were used to as 

controls for the Triton X-114 detergent phase separation assay. [209]. Blots were 

developed following incubation with appropriate dilutions of HRP-conjugated secondary 

antibodies and detected using ECL western blotting reagents (GE Healthcare, 

Piscataway, NJ) as previously described [67, 196, 197, 209]. All gels and blots were 

imaged using a ChemiDoc ™ Touch Imaging System (Bio-Rad Laboratories, Inc. 

Hercules, CA)



 

47 

 

 

 

Figure 2-1: Organization and conservation of BB0173.  
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Figure 2-1, continued.  (A) Schematic demonstrating the similarity between the Bat region of Borrelia burgdorferi (BB), Borrelia hermsii 

(BH), Leptospira interrogans (LB), Leptospira biflexa (LBF), and Bacteroides fragilis (BF). Note the similarities across BB0172 through 

BB0176. (B) Map demonstrating the pertinent domains of BB0173. The map demonstrates the three transmembrane domains (amino acids: 

7-25, 57-77, 310-328), VWFA domain (amino acids: 87-328), MIDAS motif (amino acids: 99-103), BatA domain (amino acids: 9-86), and 

N-glycosylation sites (amino acids 170-172, 265-267). Additionally, a 30-mer peptide is denoted, BB0173pep, which was used to generate 

chicken anti-BB0173 antibodies. BB0173T, the truncated BB0173 protein, was also used to generate chicken anti-BB0173 antibodies. (C) 

Clustal W (v1.83) alignment of B. burgdorferi B31 BB0173 (bold) against homologues in B. burgdorferi ZS7 (BB0173 BbZS7) Borrelia 

garinii (BG0172), Borrelia afzelii (BAPKO_0175), and the relapsing fever species Borrelia hermsii (BH0173) and Borrelia turicatae 

(BT0173). Alignments are also made to B. burgdorferi B31 BB0172 (BB0172 B31), which was found to be very similar in sequence and 

topology. There is also homology seen to Plasmodium falciparum membrane protein TRAP (Pf TRAP) as well as to the human adhesins 

LFA-1 (hLFA-1) and CD11b (hCD11b). Conserved residues corresponding to the MIDAS motif are highlighted, including the DXSXS as 

well as the threonine (T) required for MIDAS function.  
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Results 

Homology of B. burgdorferi aerotolerance mediating genes 

Upon investigating proteins surrounding bb0173 on the B. burgdorferi linear 

chromosome, other similarities appeared between bb0170 to bb0176 and similar regions 

of B. fragilis, R. leguminosarum, L. interrogans, and L. biflexa [210]. The domains are 

highly conserved in each of these organisms, including the VWFA, Bat, SH3, 

transmembrane domains, TPR repeats, a domain of unknown function (DUF58), and the 

presence of a MoxR type ATPase, as seen in Figure 2-1A. It has been well documented 

that MoxR ATPases are found near VWFA domain containing proteins [211], and has 

been found to be the case in the Borrelia species evaluated in this paper.  Further, 

bb0170 appears to be a fusion protein with homology to both bf2416 and bf2415, 

consolidating the BatD, TPR, and SH3 domains into a single protein in B. burgdorferi 

and B. hermsii. Although the B. fragilis genome encodes duplicates of the BatA (bf2419 

and bf2418) and BatD domains (bf2420 and bf2416), these domains are only predicted to 

be present singly in this region of the genomes of both Borrelia and Leptospira. 

Interestingly, spirochete Treponema has VWFA domain containing proteins that are 

much less similar to the VWFA domain containing proteins of B. burgdorferi [59, 179].   

Protein features of BB0173 

Initially, bb0173 was predicted to contain four transmembrane domains, in 

addition to the BatA and VWFA domain containing the MIDAS motif. The arrangement 

of the features present in BB0173 after analysis is seen in Figure 2-1B, showing the 



 

50 

 

predicted transmembrane domains, aerotolerance domain, VWFA domain, MIDAS 

motif, glycosylation sites, and regions utilized for antibody production. Moreover, 

alignments with other VWFA domain containing proteins make a strong case for a 

functional MIDAS motif, when comparing conserved residues DXSXS and the 

downstream conserved location of aspartic acid (TDG motif) known to be required for 

coordination of metal ions (Figure 2-1C).  

Expression of Bat-like genes  

Prior to studying the protein, the expression conditions of bb0173 were assessed. 

From the cellular mRNA levels, we evaluated the expression of bb0173 under tick 

growth conditions as well as during conditions shifted from tick to mammalian 

conditions. As shown in Figure 2-2A, the expression of bb0173 was observed at both 

ambient temperature as well as during mammalian conditions. Controls for the PCR are 

shown in Figure 2-2B. The differentially regulated ospC is expressed only during 

mammalian conditions, and the constitutively expressed flaB and p66 are present under 

both tick and mammalian conditions, as expected.  

Due to the presence of Bat domains and the localization of BB0172 and BB0173 

to different membranes, evaluation of oxygen levels on gene transcripts was performed.  

B. burgdorferi cultures were grown under standard or low oxygen conditions, and 

bb0170 – bb0176 were evaluated for gene expression changes between the two 

environments. Qualitative evaluation of expression of bb0170-bb0176 was performed 

using conventional PCR (Figure 2-3). BB0172 is known to be expressed only during 

shifting temperature conditions, and no amplification was observed when growing B. 



 

51 

 

burgdorferi at constant 32ºC and pH7.6, regardless of the presence or absence of oxygen 

in the culture conditions. Notably, several genes appear upregulated under low oxygen 

conditions, including bb0170, bb0174, and, to a lesser extent, bb0171. No major changes 

in the level of expression of bb0173 were observed by conventional PCR.  

 

 

 

 

 

 

Insertion of BB0173 hydrophobic regions into ER-derived microsomal membranes 

To identify the hydrophobic regions (HRs) of the human BB0173 amino acid 

sequence was parsed to test the performance of the ΔG Prediction Server. Given the 

amino acid sequence, this algorithm predicts the corresponding apparent free energy 

 
Figure 2-2: Expression of bb0173 cDNA upon temperature shift. B. burgdorferi B31A3 strain was grown 

under tick conditions to late log phase then shifted to mammalian conditions before collection of mRNA. The 

purified mRNA was reverse transcribed to cDNA, and PCR was performed to detect bb0173, flaB, p66, and 

ospC. Water was used as a negative control (-). (A) RNA samples were tested for DNA contamination in lanes 3 

and 6.  Genomic DNA was run in lanes 2 and 5 and served as the positive control. In lanes 1 and 4, cDNA 

samples were evaluated. To confirm functionality of primers, a second genomic DNA sample was applied in lane 

7. (B) The same shifting conditions were used to generate DNA samples as previously. cDNA samples are in 

lanes 1 and 3, RNA in lanes 2 and 4, and genomic DNA is labeled as (+). Negative control is water, as above. On 

the left of the figure, the DNA ladder is shown and sizes are denoted in basepairs.  
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difference, ΔGapp, for insertion of each hydrophobic region into the ER membrane by 

means of the Sec61 translocon [201, 205]. Figure 2-4A shows the predicted ΔGapp values 

for the hydrophobic regions predicted. The negative ΔGapp value for the HR1, HR2 and 

HR4 regions predict a TM disposition, whereas the positive values computed for HR3 

predicts that this sequence does not integrate into ER membrane.  

 

 

 

 

 

 

To test these predictions, we assayed the membrane insertion capabilities of these 

HRs using an in vitro experimental system based on the E. coli inner membrane protein 

leader peptidase (Lep) [205], which accurately determines the integration of TM helices 

into ER membranes. Lep consists of two TM segments (H1 and H2) connected by a 

cytoplasmic loop (P1) and a large C-terminal domain (P2) (Figure 2-4B), and inserts into 

ER-derived rough microsomal membranes (RMs) with both termini located in the 

 
Figure 2-3: Expression of bb0170 – bb0176 under decreased oxygen conditions. Gene expression of the Bat-

like genes is compared under atmospheric oxygen and decreased oxygen conditions. Qualitative expression of 

each gene under both conditions as determined by PCR with flaB included as positive control. Gene expression 

under each condition is evaluated on the left, with controls for each PCR reaction using genomic DNA is shown 

on the right. All negative controls using water lacked bands (not shown).  
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lumen. The analyzed segment (HR tested) is engineered into the luminal P2 domain and 

is flanked by two acceptor sites (G1 and G2) for N-linked glycosylation. Single 

glycosylation (i.e., membrane integration) results in a molecular mass increase of 2.5 

kDa relative to the observed molecular mass of Lep expressed in the absence of 

microsomes (Figure 2-4B, left). A molecular mass shift of 5 kDa occurs upon double 

glycosylation (i.e., membrane translocation of the HR-tested) (Figure 2-4B, right). This 

system has the obvious advantage that the insertion assays are performed in the context 

of a biological membrane.  

Translation of Lep chimeric constructs harbouring the BB0173 regions predicted 

by the ΔG Prediction Server (Figure 2-4A) resulted mainly in single-glycosylated forms 

for HR1, HR2 and HR4 regions (Figure 2-4C, lane 2,5 and 11), except for HR3 

containing construct (Figure 2-4C, lane 8). In this last case, translation products were 

found mostly triple-glycosylated. It should be mentioned that BB0173 sequence includes 

a native potential N-glycosylation site at position 187, i.e. within HR3 region (see Figure 

2-5A), adding an N-glycosylation motif that would be modified only if this region is not 

inserted into the lipid bilayer. (Figure 2-4C, lane 8). These results were confirmed by 

proteinase K (PK) treatment. Digestion with PK degrades membrane protein domains 

located exclusively towards the cytosol, while membrane-embedded or lumenally 

exposed domains are protected. As expected, Lep chimeras bearing HR1, HR2 and HR4 

regions were sensitive to PK digestion (Figure 2-4C, lanes 3, 6 and 12). However, Lep 

constructs containing HR3 sequence were partially resistant to the protease treatment 
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due to its luminal P2 localization (Figure 2-4C, lane 9, arrowhead, expected size ≈33.5 

kDa).  

 

 

 

 
Figure 2-4: Insertion of hydrophobic regions of BB0173 into membranes. (A) Schematic representation 

of the Lep construct used to report insertion of hydrophobic regions of BB0173 into endoplasmic reticulum 

membranes. The TM segment under investigation (HR-tested) was introduced into the P2 domain of Lep, 

flanked by two artificial glycosylation acceptor sites (G1 and G2). Recognition of the tested sequence as a 

TM domain by the translocon machinery results in the location of only G1 in the luminal side of the ER 

membrane, preventing G2 glycosylation (left). The Lep chimera will be doubly glycosylated when the 

sequence being tested is translocated into the lumen of the microsomes (right). (B) In vitro translation of 

different Lep constructs containing BB0173 HR1 (TM1), HR2A (TM2A), HR3 (TM2B) and HR4 

sequences in the presence (CON), absence (SIN) of membranes and in the presence of membranes and 

proteinase K (PK). (C) Table with the hydrophobic regions (HR) detected in BB0173, their sequence and 

predicted DG.  
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Membrane insertion and topology of BB0173 into the ER membrane 

To experimentally map the membrane insertion and topology of BB0173 protein, 

we prepared a series of polypeptide truncates containing an added C-terminal 

glycosylation tag (NST), which has been proven to be efficiently modified in the in vitro 

translation system [206]. 

 

 

 

 

 

 

 
 
Figure 2-5: Transmembrane domain insertion of BB0173. (A) Cloned constructs for detection of membrane 

insertion of sequential putative transmembrane domains evaluated via in vitro translation. (B) In vitro translation 

of the different BB0173 constructs containing BB0173 HR1, HR1 and2 (HR2Ct), HR3 with 2 glycosylation sites, 

one on HR3 and one on the C-terminus (HR2BNStT), HR3 with 2 glycosylation sites, one on HR3 and one before 

the C-terminus (HR2BAmpli274) and HR4CT which comprises the BB0173 full length sequences and 3 

glycosylation sites on H#, before HR4 and on the C-terminus. The experiment was done in the presence (+), 

absence (-) of reticulocyte membranes (RM) and in the presence of a glycosidase (QST). (C) Schematic of 

BB0173 topology as determined by in vitro translation studies.  
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The constructs used are shown in Figure 2-5A. As shown in Figure 2-5B, 

translation products containing the N-terminal 56 residues of BB0173 sequence, 

including the first predicted TM segment (HR1) plus an optimized glycosylatable C-

terminal tag (56-mer NST), were efficiently singly-glycosylated in the presence of 

microsomal membranes (Figure 2-5B, lane 2). The nature of these higher molecular 

weight polypeptide species was analysed by translating the first 56 residues with a C-

terminal tag that includes a non-acceptor site for N-glycosylation (56-mer QST), 

rendering the elimination of the higher molecular mass band (Figure 2-5B, lane 3), 

confirming the sugar source of their retarded electrophoretic mobility and suggesting 

56mer insertion into the microsomal membrane with an N-terminal cytoplasmic 

orientation (see Figure 2-5D for a scheme).  

Truncated 162-mer polypeptides, which include the first two HR (Figure 2-5B, 

lane 5), were efficiently glycosylated (45 ± 4% of glycosylation), depicting two possible 

situations. Either the glycosylation observed could be obtained as result of the HR2 

translocation (Figure 2-5C, option A), or a topology inversion of HR1 could lead to the 

insertion of HR1-HR2 and the translocation of the C-terminal tag (Figure 2-5C, option 

B). To distinguish between both situations, an N-glycosylation acceptor site was 

introduced at the N-terminus of BB0173 (position 5), creating construct NtglycBB0173. 

Translation of 162-mer NtglycBB0173 with an N- glycosylation acceptor site as a C-

terminal tag rendered singly- and doubly-glycosylated forms (Figure 2-5c, lane 5). The 

presence of double-glycosylated forms suggests the inversion of the HR1 and the 

subsequent insertion of HR2 into the ER membrane (Figure 2-5C, option B). When a 
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non-acceptor (QST) site as C-terminal tag was used, a singly-glycosylated forms were 

observed, consistent with the N-terminal translocation of the polypeptide chain (Figure 

2-5C, lane 7).  

The insertion of the third predicted TM segment (HR3) was tested by translating 

a 278-residue truncation with the same C-terminal glycosylatable tag (278-mer). As 

mentioned before, wild type BB0173 carries a potential glycosylation site at position 187 

(see Figure 2-5A). In case of translocation across the microsomal membrane, both 

Asn187 and the added C-terminal glycosylation tag should be modified rendering 

doubly-glycosylated forms. Translation of construct 278-mer produced singly (41%) and 

double (59 %) glycosylated forms indicating that predominantly HR3 is translocated 

(Figure 2-5B, lane 8). When the same chimera was translated with a C-terminal tag 

harbouring a non-acceptor site (QST), only singly glycosylated forms were detected 

(Figure 2-5B, lane 11), confirming native Asn187 glycosylation.  

Finally, the insertion of the predicted HR4 was analyzed by translating full-

length bb0173 gene (341-mer). It should be noted that wild type BB0173 carries another 

glycosylation site at position 273 (see Figure 2-5A).  Translation of C-terminal tagged 

full-length constructs either with an acceptor (NST) or a non-acceptor (QST) 

glycosylation sites rendered double glycosylated forms (Figure 2-5B, lanes 14 and 15), 

indicating that HR4 is efficiently inserted. Overall, these results evidenced that BB0173 

protein inserts into the ER membrane with Nt-cytosol/Ct-lumenal orientation, where 

HR1, HR2 and HR4 are truly transmembrane segments (Figure 2-5D). 
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Cellular localization of BB0173 within B. burgdorferi 

With combined knowledge, both from the predicted model of BB0173 insertion 

into the membranes and expression conditions, we evaluated the actual cellular 

localization of BB0173 within B. burgdorferi cells using both a protease protection assay 

and detergent phase separation assay.  

 

 

 

 

 

 

 

The Triton X-114 detergent phase separation assay evaluated localization of 

proteins within the cell to either the inner or outer membrane or to the cytoplasm. This 

separation method was used to evaluate BB0173 localization from cells grown at 

 
Figure 2-6: Localization of BB0173 to the aqueous and inner membrane fractions after 

treatment with detergent. B. burgdorferi cells disrupted using the detergent Triton X-114 separated 

into three distinct fractions, the aqueous (AQ), protoplasmic cylinders (PC), and detergent (DT) 

phases. The phases were separated using SDS-12% PAGE and either stained using Silver Stain Plus 

(Biorad) (A) or were transferred to a PVDF membrane and probed using anti-BB0173T and a 

secondary anti-chicken HRP-conjugated antibody (B). Controls for outer membrane and inner 

membrane proteins were OspC and FlaB.  
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32°C/pH 7.6, which were then silver stained to evaluate equal loading (Figure 2-6A).  

Using western blotting with chicken-anti-BB0173, the protein was detected in both the 

AQ phase and PCs, and no band was seen in the DT phase (Figure 2-6B). Control 

proteins were observed in the expected fractions based on their described localization 

(Figure 2-6B) including: OspC (DT and PC) and FlaB (AQ and PC). Therefore, these 

results suggest that BB0173 is associated to the inner membrane of B. burgdorferi.  

 

 

 

 

 

 

In order to confirm the intracellular localization of BB0173, degradation of 

extracellularly-exposed proteins of B. burgdorferi was performed using the protease 

Proteinase K treatment protocol. After treating B. burgdorferi cells grown at both 

 

 
 

Figure 2-7: Protection of BB0173 from protease degradation. Surface proteins of B. burgdorferi are 

degraded by serine protease Proteinase K (PK).  Whole cell lysates were treated with doses ranging 

from 0 to 200 μg/mL PK prior to separation using SDS-12% PAGE. Gels were either visualized using 

Coomassie blue staining (A) or transferred to a PVDF membrane and probed with antibodies (B).  

BB0173 was detected using anti-BB0173pep and anti-chicken HRP-conjugated antibody. Controls for 

PK mediated degradation and cell integrity during treatment included intercellular protein BosR and 

periplasmic protein FlaB, as well as outer membrane proteins OspC, VlsE, and P66.  
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25°C/pH 6.8 and 37°C/pH 7.6 with Proteinase K at a concentration of 200 μg/mL, no 

apparent change in size was observed in the band corresponding to BB0173, nor did any 

smaller bands become apparent. To ensure more accurate results, a titration of Proteinase 

K ranging from 0 to 200 μg/mL was used to treat B. burgdorferi cells. Samples were 

Coomassie blue stained for equal loading (Figure 2-7A) prior to blotting for proteins 

(Figure 2-7B). In each experiment, regardless of concentration of Proteinase K used, 

bands corresponding to OM anchored proteins P66, OspC and VlsE observed a decrease 

in visualization with treatment. Moreover, periplasmic FlaB and intracellular BosR were 

unaffected. BB0173 was seen to be unaffected by protease treatment. 

 

 

 

 

 
 

Figure 2-8: Localization of the tertiary structures of BB0172 and BB0173 within B. burgdorferi. 

Models of the tertiary structures of BB0172 and BB0173 were generated and superimposed onto either 

the inner or outer membrane as predicted from localization studies.  
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Cellular localization model 

There is a likelihood that these proteins function together due to the gene 

arrangement, cellular localization, and presence of domains with potential for 

protein:protein interaction. In Figure 2-8, tertiary structures have been predicted for each 

protein, taking into consideration exposure of the VWFA domain and MIDAS motif.  

Discussion 

On the B. burgdorferi linear chromosome, bb0172, bb0173, bb0175, and bb0325 

were identified as genes encoding for proteins containing VWFA domains. Within B. 

burgdorferi, BB0173 is only the second VWFA domain containing protein to be 

characterized, the other being BB0172 [59]. Based on the similarity between predicted 

motifs of BB0172 and BB0173, expression, localization, and ultimately functions were 

expected to be quite similar. However, our studies revealed that there are key 

distinctions between BB0172 and BB0173.  

BB0172, was determined to be a VWFA domain-containing protein that contains 

two transmembrane helices with extracellular exposure [59]. In contrast to BB0172, we 

demonstrated that BB0173, a VWFA domain-containing borrelial protein, is anchored to 

biological membranes through three TM helices. Further, we have demonstrated that the 

first TM segment functions as a signal sequence that must emerge from the ribosome to 

bind the signal recognition particle and thereby enable nascent BB0173 targeting to the 

membrane. 
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The potential role of BB0173 is definitively unique from BB0172, which 

functions through the binding of mammalian integrin α3β1 [59]. However, the 

localization of BB0173 strictly within the cell coupled with the extracellular function of 

BB0172 could support each other. The MIDAS motif is seen to be accessible to 

interaction partners in both cases, albeit to the host environment in the case of BB0172 

and to the periplasm of B. burgdorferi in the case of BB0173. Partial support for this 

idea comes from the presence of the TPR-like sequences found in BB0170 and BB0171, 

which have been suggested by Tang et al. to play a role in protein complexing of the 

BatI-like proteins [210, 212]. In addition to the known ability of BB0172 to bind human 

integrin α3β1, differential gene regulation of the Bat-like genes is seen both under 

shifting conditions of pH and temperature, as well as after exposure to varied oxygen 

levels [59].   

BatI-like genes have also been noted in other spirochetes, such as Leptospira 

interrogans and Treponema denticoloa [179, 193]. In each of these cases as well as in B. 

burgdorferi, the VWFA domain containing proteins are found to be associated with a 

methanol dehydrogenase regulatory (MoxR) ATPase Associated with Diverse Cellular 

Activities (AAA). These genes have been suggested to function together as an operon 

system, although there is no clear function associated to the operon [193, 194, 210, 213]. 

In Rhizobium leguminosarum, it has been observed that cells with defects in these genes 

demonstrated envelope and cell morphology changes. This operon is referred to as 

complex media growth deficient (cmdA-cmdD) [194, 214]. It is interesting to note that 

both R. leguminosarum and B. burgdorferi encounter stark changes of environment, with 
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both moving from conditions of higher oxygen conditions, (Rhizobium: free living, 

Borrelia: tick) to decreased oxygen conditions (Rhizobium: plant host, Borrelia: 

mammalian host) [194, 214, 215]. Interestingly, Rhizobium DNA has also been detected 

in tick microbiome studies and as such, the environments may be more similar than 

previously thought [216]. This may also act as an interface between these two bacteria 

that could allow for gene sharing events.   

Bearing the ideas of differential gene expression, indicating a specific cellular 

function, and the possibility of these genes functioning as a complex, a few ideas for the 

function of these genes exist. One idea, proposed in relation to both B. fragilis and L. 

biflexa, is the potential for these genes to protect the organisms from oxidative stress 

[193, 210]. This idea is particularly attractive in B. burgdorferi, which lacks in 

traditional mechanisms to combat oxidative stress [217]. Taking into consideration the 

ability to differentially regulate protein expression, namely BB0172, and the lack of 

mechanisms to deal with oxidative stress, it is possible that these proteins work together 

to subdue effects of oxidative damage, although this hypothesis has not been specifically 

proven to be the case in either Bacteroides or Leptospira. This may occur through 

signaling after the recognition of the mammalian environment and consequent 

transportation causing the generation of a periplasmic environment rich in reducing 

power [193, 210].  

The second functional prediction for these genes was proposed by Vanderlinde et 

al., in which R. leguminosarum cells with mutations of these genes demonstrated defects 

in envelope integrity when stressed [194]. In relation to B. burgdorferi, this idea may 
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also be a feasible function of the gene complex. Compared to Escherichia coli or other 

gram-negative organisms, the cell wall of B. burgdorferi lacks LPS, potentially causing 

the membrane to be more sensitive to physical stressors [218]. As such, these genes may 

play a role in supporting cell wall function, particularly in the tick during the blood meal 

or mammalian infection. As the tick vector engorges, the spirochete must survive a 

drastic increase in pressure before migrating to the salivary glands and being transmitted 

to the host [219]. After transmission, gene expression must again change to support the 

spirochete as it colonizes the host, avoiding the protective mechanisms of the immune 

system, and disseminates through the tissues [33, 36, 220].  

Evaluation of hypothetical proteins of organisms such as B. burgdorferi, 

pathogens that are presently not well understood, is a worthwhile endeavor to identify 

potential targets for diagnostics, prevention, and treatment of disease. Lyme disease, in 

particular, is an important consideration, as missing the window for treatment can cause 

a lifetime of ongoing symptoms and prevention or enhanced treatment could change the 

outcome for these individuals [221, 222]. Particularly due to their highly-conserved 

nature, elucidation of the function of the bb0170 – bb0176 gene complex transcends 

spirochete biology, and can apply broadly to a wide range of bacteria. To better 

understand the function of bb0173, qPCR to evaluate the expression changes of bb0173 

under changing conditions will be performed in a future study. Additionally, pull down 

assays to determine if the proteins are binding to each other or other proteins of B. 

burgdorferi could help illuminate the purpose of these genes. Conservation of these 

genes across such a wide variety of bacteria implies that these genes likely impart a 
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function useful for survival. As such, an understanding of the roles of such proteins may 

facilitate enhanced detection, prevention, and treatment options for Lyme disease as well 

as other infectious diseases.  
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CHAPTER III 

IMMUNIZATION WITH A Borrelia burgdorferi BB0172-DERIVED PEPTIDE 

PROTECTS MICE AGAINST LYME DISEASE 

 

Introduction 

Lyme disease (LD) is the most prevalent arthropod-borne infection in the United 

States with 30,831 cases of LD reported to the Centers for Disease Control and 

Prevention (CDC) in 2012. A significant increase in the number of reported cases has 

been observed in the past few years, classifying LD as a re-emerging infection. Borrelia 

burgdorferi, the causative agent of Lyme disease, is transmitted to humans through the 

bite of infected Ixodes ticks [13, 223-225]. This pathogen is maintained in nature 

through a very complex enzootic cycle in which small mammals and birds serve as 

reservoirs [226-228]. This pathogen is accidentally transmitted to humans and 

companion animals where it causes disease. The ability of this spirochetal pathogen to 

colonize mammals is dependent on its ability to rapidly alter gene expression in response 

to highly disparate environmental signals following transmission from infected ticks [17, 

229-233]. Consequently, a lot of interest has been devoted to the study of proteins 

differentially expressed in the tick and the mammalian host as a way to identify potential 

targets for vaccine development. One of the first targets identified using this approach 

*Reproduced in accordance with the Creative Commons Attribution (CC BY) license and with the 

permission of PLOS ONE. Small CM, Ajithdoss DK, Rodrigues Hoffmann A, Mwangi W, Esteve-Gassent 

MD. Immunization with a Borrelia burgdorferi BB0172-Derived Peptide Protects Mice against Lyme 

Disease. PloS one. 2014;9(2):e88245.  
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was the borrelial outer surface protein A (OspA) which was the target in the only 

licensed human Lyme vaccine, LYMErix (SmithKline Beecham) [234]. In the arthropod 

tick, the OspA protein is expressed by B. burgdorferi, adhering to the tick receptor for 

OspA (TROSPA) located in the tick mid-gut [16]. Upon tick feeding, OspA is down 

regulated allowing the bacteria to migrate from the tick mid-gut into the salivary glands 

and from there into the mammalian host [16, 103, 235]. Taking this into account, the 

OspA-based vaccine induced high antibody levels in laboratory animals as well as in 

humans and consequently conferred protection by blocking the transmission of B. 

burgdorferi from the tick to the mammalian host [41, 107, 236]. Despite the fact that this 

vaccine showed good protection in phase III human clinical trials, the company 

voluntarily discontinued the distribution of this vaccine [111, 234, 237, 238]. This was 

due to a number of reasons including a significant reduction in the vaccine demand, the 

appearance of adverse reaction to the vaccine, the complicated immunization protocol 

with periodic boosts to maintain high antibody titers and age limitations [234, 238-240].  

This vaccine formulation has been used to develop vaccines administered to wild 

life (small rodents in particular) to lower B. burgdorferi burden in the mammalian 

reservoirs and the tick vectors, thus reducing the risk for human infection [160, 161, 

241-243]. In addition, the OspA-based vaccine has been used in veterinary medicine for 

some time (Nobivac® Lyme from Merk Animal Health; LymeVax® formulated by Fort 

Dodge and Recombitek® Lyme y Merial) to prevent Lyme disease in dogs [43, 44, 46, 

244-246]. Unfortunately there is no Lyme vaccine currently available for use in humans 

and horses.  
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Other differentially expressed proteins such as BBA52, OspC, BBK32 and 

DbpA, have been evaluated as potential vaccine targets [47, 53, 93, 96, 119, 247]. 

However, none of these have been tested in human or veterinary clinical trials. 

Nevertheless, these target proteins are not optimal vaccines for differentiating infected 

from vaccinated animals (DIVA vaccines) since both immunized and infected animals 

respond to these antigens [248-251]. 

In our study, we have selected the chromosomally encoded membrane-associated 

protein BB0172 of B. burgdorferi to develop a DIVA vaccine. We have previously 

shown that BB0172 [59] inserts into the Borrelia outer membrane and through its von 

Willebrand Factor A domain (VWFA) binds to the human integrin α3β1. BB0172 is 

expressed only when shifting B. burgdorferi cultures growing at room temperature and 

pH7.6 (unfed tick conditions) to 37ºC/pH6.8 (fed tick conditions). In addition, BB0172 

is not expressed in cultures adapted to either of the conditions and furthermore is not 

recognized by serum from infected animals nor animals immunized with the full length 

protein [59]. Thus, a conserved domain in the VWFA-domain of BB0172 could be an 

excellent candidate for developing a DIVA vaccine due to the highly conserved nature of 

BB0172 among B. burgdorferi sensu lato complex genospecies which cause LD in 

Europe and the US [59]. In this study, we designed a series of short peptides from the 

VWFA domain of BB0172 and conjugated them to KLH as potential vaccine candidates. 

We immunized C3H/HeN mice with each one of the peptides following conventional 

immunization protocol. Our first goal was to identify the most antigenic peptide, 

therefore, safety of each one of the peptides was evaluated as well as the protective 
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response they induced in the murine model of Lyme disease. Our second goal was to 

determine the potential of these peptides to protect against Lyme disease in the murine 

model, using the tick challenge as the natural way of disease transmission, and elucidate 

the role of antibodies and T cells in protection against Lyme disease. 

 

Materials and methods 

Ethics statement 

All animal experiments were done following the Texas A&M University IACUC 

approved animal use protocol #2010-124. Texas A&M has adopted the “U.S. 

Government Principles for the Utilization and Care of Vertebrate Animals Used in 

Testing, Research and Training,” and complies with all applicable federal, state, and 

local laws which impact the care and use of animals. 

Borrelia burgdorferi strains and growing conditions: identification phase 

B. burgdorferi B31 A3 (Bb) virulent isolate was used throughout this study. In 

order to obtain an antigenic profile similar to that observed in the natural infection, we 

grew this bacterium at room temperature (RT) and pH 7.6 to mimic the unfed tick 

conditions. Once the cultures reached a cell density of 1-2×107 spirochetes/ml a 

subculture was transferred to 37ºC, 1% CO2, and pH 6.8 mimicking the conditions in the 

tick upon feeding. To run the ELISA tests using whole cell lysates, B. burgdorferi was 

grown in 500ml cultures shifted from RT/pH 7.6 to 37ºC/pH 6.8 and 1% CO2. After 

cultures reached a cell density of 3-5×107 spirochetes/ml, cells were harvested, washed 

three times with HBSS buffer (HyClone, Thermo Scientific Inc.), quantified, and lysed 
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using 0.1mm glass beads in 2ml screw cap tubes in a BeadRuptor 24 (Omni 

International, Inc). After the lysis cycle, the glass beads were sedimented by quick 

centrifugation and the supernatants were stored at -20ºC in 1ml aliquots until use in the 

ELISA assays. For the needle infection experiments, Bb cultures were similarly 

prepared. The bacterial cultures were shifted from RT/pH 7.6 to 37ºC/pH 6.8 and 

reaching a density of 3-5×107 spirochetes/ml prior to being harvested, washed three 

times with HBSS buffer, and re-suspended in HBSS containing inactivated normal rabbit 

serum (50:50, v:v).  The cultures were then quantified and diluted to the appropriate cell 

density (103 or 105 spirochetes/ml).  

Peptide design 

The BB0172 antigen is a B. burgdorferi membrane protein, poorly immunogenic 

in the murine model of Lyme disease [59]. Four peptides within the VWFA domain of 

BB0172 were designed considering their probability of being exposed to the external 

environment and distance from a potential internal glycosylation site. The peptides have 

been designated by the letters A through D (pepA, PepB, pepC and PepD). Peptides 

were synthetized at Peptide 2.0 Inc. (Chantilly, VA) at 98% purity and conjugated to 

Keyhole Limpet Hemocyanin (KLH) to ensure immunogenicity. The same peptides were 

synthetized without conjugation to KLH for in vitro T-cell and ELISA assays.  

Immunization protocol: identification phase 

 The protective immunity elicited by each one of the KLH-conjugated BB0172 

peptides (A, B, C or D), was evaluated in mice. Groups of 6-8 week old female 

C3H/HeN mice (n=12) were inoculated subcutaneously with each one of the KLH-
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conjugated peptide at a dose of 50µg/mouse formulated in TitterMax® Gold (v:v, 

Sigma-Aldrich, St. Louis, MO) at days 0, 14 and 21 (Figure 3-1). A group of six mice 

similarly inoculated but with adjuvant alone served as the negative controls. One week 

after the last boost and prior to challenge, four mice per group were euthanized and 

sampled to evaluate the antibody levels in serum and T-cell proliferation in draining 

lymph nodes and spleens. Samples from the heart and tibiotarsal joint from these mice 

were evaluated histologically to rule out possible side effects due to the antigen 

administration. Mice were infected by needle inoculation one week after the last boost as 

described below. 

 

 

 

 

 

 

 
Figure 3-1: Schematic representation of the target identification phase. C3H/HeN mice were immunized 

with peptides derived from the VWFA domain of BB0172 (A, B, C and D) conjugated to KLH and 

administered at 50µg/mouse with equal volume of TiterMax® Gold (Sigma-Aldrich) at days 0, 14, and 21. 

Four weeks post-priming, 4 mice per treatment were sampled to evaluate vaccine safety and antibody levels to 

each one of the peptides used. The other eight mice were infected with either 103 (n=4) or 105 (n=4) 

spirochetes/mouse. Four weeks post-challenge, mice were euthanized and blood collected to determine 

antibody levels. Tissues were sampled to determine bacterial burden by growth and qPCR as well as to 

determine any pathology by histology. 
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B. burgdorferi challenge protocols: identification phase 

To determine which peptide elicited protection in the murine model of Lyme 

disease, four mice per immunized group were challenged by subcutaneous needle 

inoculation with 103 (low) or 105 (high) Bb/mouse 28 days post-priming as described 

above (Figure 3-1). The challenge doses used correspond to 10× and 1000× the 

infectious dose-50 (ID50), respectively. Control mice were infected with only one dose, 

103 spirochetes/mouse (10× ID50).  

To evaluate protection, the mice were euthanized 28 days post-challenge and 

blood samples were collected to evaluate antibody levels. Skin, spleen, inguinal lymph 

nodes, heart, bladder and tibiotarsal joint were collected from each mouse for bacterial 

recovery in BSK-II media complemented with 6% inactivated normal rabbit serum and 

incubated at 32ºC and 1% CO2. Five days post inoculation cultures were blind passed to 

prevent inhibition of bacterial growth by tissue degradation. Blind passaged cultures 

were incubated at 32ºC and 1% CO2 for 15 days before evaluating bacterial growth by 

dark field microscopy [252]. One piece of heart and a tibiotarsal joint were collected for 

histopathology. Finally, a piece of skin, a small piece of spleen, one inguinal lymph node 

and one joint were collected for evaluation of bacterial burden by qPCR as previously 

described [209]. All animal experiments were conducted following the Institutional 

Animal Care and Use Committee and the Biosafety committee recommendations.  

Histopathology: identification phase 

Mouse tissues were collected 4-weeks post-priming and 4 weeks after challenge 

as described above. Tissues were fixed in 10% buffered formalin, processed for routine 
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histopathology, paraffin embedded, sectioned and stained with H&E. The tibiotarsal 

bones and joints were decalcified in 10% EDTA prior to being processed for 

histopathology. A board-certified pathologist blindly evaluated all tissues. Inflammation 

in selected tissues were scored from 0-4 based on the following scale: normal = 0 (no 

inflammation), minimal =1 (one small foci of inflammation), mild = 2 (2-5 foci of 

inflammation with increased numbers of inflammatory cells), moderate = 3 (multifocal 

inflammation with significant number of inflammatory cells), and severe =4 (multifocal 

to diffuse, with more than 30% of section infiltrated with inflammatory cells) [253].  

Enzyme linked immuno-sorbent assay: identification phase 

Sera from immunized mice (0, and 4 weeks post-priming) as well as from 

animals immunized and then challenged (4 weeks post-challenge) were evaluated for 

IgG and IgM levels by ELISA. 96-well MaxiSorb® plates (Nunc, Thermo Scientific, 

Ltd.) were coated overnight at 4ºC with either 500ng/well of each one of the BB0172 

peptides or with the whole cell lysate of B. burgdorferi A3 strain (107 Borrelia/well) 

grown at RT/pH7.6 and shifted to 37ºC/pH 6.8 as described above. Carbonate buffer 

pH9.1 was used for coating the ELISA plates and after coating, the plates were washed 

three times in Phosphate Buffered Saline (PBS) containing 0.2% Tween 20 (PBS-T) and 

blocked for 2 hours at room temperature in PBS-T containing 3% Bovine Serum 

Albumin (BSA). Blocked plates were washed three times in PBS-T and mouse serum 

samples were added in duplicates and in 2-fold serial dilutions ranging from 1:100 to 

1:102,400 in PBS-T containing 1% BSA. Plates were incubated for 1 hour at room 

temperature and unbound primary antibodies were removed by washing plates three 
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times in PBS-T. Secondary anti-mouse HRP conjugated antibody was added to the plates 

at 1:3000 dilution in PBS-T containing 1% BSA. After washing, plates were incubated 

with OPD (o-phenylenediamine dihydrochloride) color substrate following manufacturer 

recommendations (Pierce, Thermo Scientific, Ltd). After a 20-minute incubation in the 

dark, plates were read at a wavelength of 450nm and analyzed by using the BMI 

LABTECH OMEGA plate reader and software. All samples were evaluated in 

triplicates. 

B. burgdorferi growing conditions: efficacy phase 

 Bb B31 A3 virulent isolate was also used throughout this section of the study. 

Culture conditions were the same as described above. In addition, Bb used for in vitro 

infection of Ixodes scapularis nymphs was grown in BSK-II media pH 7.6 and 1% CO2 

until cultures reached a cell density of 2×107 spirochetes/ml.  

Immunization protocol: efficacy phase 

The same immunization protocol as described in the target identification phase 

above was used in the efficacy study (Figure 3-4A). PepB was used to immunized mice 

(n=12) since it was the only peptide that conferred protection in the target identification 

phase. PepD (n=12) served as an internal negative control since it did not confer 

protection and in addition, a control group receiving adjuvant only was also included 

(n=12). Vaccine safety was evaluated at 8 and 12 weeks post-priming (Figure 3-4A). 

Protection was evaluated 12-weeks post-priming following challenge using Bb-infected 

ticks (Figure 3-4A). Four-weeks post-challenge, the mice were euthanized and 

protection and safety were evaluated as described below. 
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Passive transfer protocol 

 To evaluate the role of antibodies and lymphocytes in the protection induced 

against Lyme disease in mice immunized with PepB, we conducted passive transfer 

studies in which groups of donor mice (control, PepB and PepD) were immunized 

following the immunization protocol described above (Figure 3-4B). Twelve weeks 

post-priming, the mice were euthanized, and blood and spleens were collected. 

Splenocytes were isolated from each of the groups as well as serum following 

procedures described elsewhere [254], and pooled splenocytes and serum were passively 

transferred to recipient mice (Figure 3-4B). Recipient mice were divided into 6 groups 

(n=10). Three groups were inoculated with 300µl/mouse of serum samples from control, 

PepB or PepD-immunized mice, whereas the other three groups were similarly 

inoculated but with 4×107splenocytes/mouse from control, PepB, or PepD-immunized 

mice, respectively. Forty-eight hours post-transfer, all the mice were challenged by 

needle inoculation with either a low or a high dose of B. burgdorferi as described below. 

Four weeks post-infection, the mice were euthanized and protection evaluated (Figure 3-

4B). 

B. burgdorferi challenge protocols: efficacy phase 

 The protection elicited by the peptides B and D in the murine model of Lyme 

disease was evaluated by challenging the mice with infected I. scapularis ticks (Figure 

3-4A) 12-weeks post-priming. 
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Figure 3-2: Average inflammation in tibiotarsal joint and heart after challenge. Representative 

histological images of the average level of inflammation observed in each treatment group (control, 

pepA, pepB, pepC, and pepD) after immunization and/or infection with the low 

(103 spirochetes/mouse) or high (105 spirochetes/mouse) doses in the tibiotarsal joint (A) and the heart 

(B).Tissues were histologically evaluated at four weeks post priming, as well as four weeks post needle 

inoculation. Average scores for areas of inflammation were classified as 0 =  none; 1 =  minimal; 2 =  

mild; 3 =  moderate; 4 =  severe. Peptide B induces minimal inflammation in hearts and tibiotarsal joints 

after administration in the mouse model for Lyme disease. Of all the peptides evaluated after 

immunization, only peptide B showed inflammation comparable to the negative control group in both 

heart and joints. Similar results were observed after infection with low doses of B. burgdorferi. Images 

were captured using an Olympus BX41 microscope at 200X magnification. Average ± SD are 

presented in the graphs. 
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To conduct this study, naïve I. scapularis nymphs were purchased from the 

Oklahoma State University Tick Laboratory. Briefly, nymphs were desiccated for 4 days 

at 79% relative humidity (RH) in a chamber, followed by dipping the ticks in a 

suspension of 108 spirochetes/ml for 45 minutes. After the 45 minute infection, the ticks 

were washed and placed in the same 79% RH chamber for 3 days in order to improve 

attachment of the nymphs to mice [255]. Prior to the challenge, a group of 10 ticks was 

used to evaluate the level of infection with B. burgdorferi by quantitative real time PCR 

(qPCR). Immunized C3H/HeN mice were infested with 5 infected nymphs per mouse 

and housed in wire bottom cages following standard operational procedures. Ticks were 

left to feed on mice until repletion.  

The challenge protocol described in the target identification phase was used to 

evaluate the protection conferred by passive transfer of specific serum or adoptive 

transfer of splenocytes (Figure 3-4B). In both needle and tick challenge, mice were 

euthanized 28 days post-infection and blood samples were collected to evaluate antibody 

levels. Skin, spleen, inguinal lymph nodes, heart, bladder and tibiotarsal joint were 

collected from each mouse for bacterial recovery in BSK-II media as previously 

described [252]. One ear, a piece of liver, one kidney, a piece of heart and a tibiotarsal 

joint were collected for histopathology. Finally, a piece of skin, a small piece of spleen, 

one inguinal lymph node and one joint were collected for evaluation of bacterial burden 

by qPCR as previously described [209].  
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Enzyme linked immuno-sorbent assay: efficacy stage 

Sera from immunized mice (0, 4, 8, and 12 weeks post-priming) as well as from 

animals immunized and then challenged (4 weeks post-challenge) were evaluated for 

IgG and IgM levels by ELISA as described above. 

Histopathology: efficacy phase 

Mouse tissues were collected after immunization (4, 8, and 12 weeks post-

priming) and 4 weeks after challenge as described above. Tissues were processed in the 

same way as described in the target identification phase above. A board-certified 

pathologist blindly evaluated all tissues, and inflammation in selected tissues was scored 

from 0-4 as described above.  

T-cell proliferation assay 

 Priming of Bb PepB-specific T-cell responses was tested by proliferation assays 

using cells isolated from the lymph nodes or spleens as previously described [256, 257]. 

Two months post-immunization, single cell suspensions were isolated from pooled 

lymph nodes or spleens from four mice immunized with the KLH-PepB conjugate or 

from three control mice. Proliferation assay was conducted using 5×105 cells/well in 

triplicate-wells of 96-well plates in a total volume of 100 µl of complete medium 

containing different doses of PepB (0.01, 0.1, 1, 2.5, 5, or 10 µg/ml). The positive 

control was 1.25µg/ml concanavalin A (conA), whereas medium alone served as a 

negative control. In addition, whole cell lysates of B. burgdorferi B31 A3 isolate was 

included in this assay (serial dilutions as above). The cells were cultured for 72 hours at 

37°C with 5% CO2 then labeled with 0.25 µCi of 3H-thymidine for 6 hours, collected 
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using an automated cell harvester (Tomtec). The incorporated 3H-thymidine was counted 

with a liquid scintillation counter. The incorporation of 3H-thymidine by the proliferating 

lymphocytes was presented as mean counts per minute (cpm) of triplicate wells. 

In a second experiment, cells were isolated from the lymph nodes and spleens 

from mice 3 months post-immunization with the KLH-PepB conjugate and proliferations 

assays were conducted as above. Naïve mice and mice immunized with KLH-PepD 

conjugate served as controls. The positive control was 1.25µg/ml conA, whereas 

medium alone served as a negative control. In addition, whole cell lysates of B. 

burgdorferi B31 A3 isolate was also included in this assay. The cultures were labeled 

and processed as above. 

Statistical analysis 

Bacterial recovery from tissues was analyzed using the Two-way ANOVA to 

determine significant differences in between treatments. Quantitative real time PCR data 

were analyzed using the Mann Whitney U test to determine differences in the bacterial 

burden determined in each group compared with the control group. In addition, antibody 

levels were also analyzed utilizing a Two-way ANOVA with the Bonferroni multiple 

comparison test, in which all groups were compared to the control group. All tests and 

graphics were performed using Prism 6.0d (GraphPad Software, Inc.). 
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Results 

BB0172 Peptide B protects mice against Lyme disease after needle challenge 

Potential vaccine candidates were identified in the target identification phase of 

the study. In this phase, safety and efficacy of four putative antigens were evaluated in 

the murine model in order to identify the most promising vaccine candidate that would 

then progress to the efficacy phase of experiments. In the efficacy phase, the most 

protective and safest candidate identified in phase one will be more thoroughly 

characterized as a Lyme disease vaccine candidate in the murine model.  

 The B. burgdorferi chromosomally encoded BB0172 protein has been shown by 

our laboratory to be a membrane protein containing a VWFA domain exposed to the 

extracellular milieu [59]. In our efforts to obtain specific antibodies against this protein 

we observed that BALB/c mice or C3H/HeN mice could not raise specific antibodies to 

the full-length BB0172 protein (Esteve-Gassent, personal observation).  
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Table 3-1: Peptide B protects after needle inoculation of 10×ID50 in the murine model of Lyme disease. 

Strain and dose No. of tissues positive/No. of tissues tested No. animals infected/ No. animals tested 

Skin Spleen Lymph node Bladder Heart Joint All sites 

Control 

103 spirochetes/mouse 

 

4/4 

 

4/4 

 

4/4 

 

4/4 

 

4/4 

 

4/4 

 

24/24 

 

4/4 

PepA 

103 spirochetes/mouse 

105 spirochetes/mouse 

 

4/4 

4/4 

 

4/4 

4/4 

 

4/4 

4/4 

 

4/4 

4/4 

 

4/4 

4/4 

 

4/4 

4/4 

 

24/24 

24/24 

 

4/4 

4/4 

PepB 

103 spirochetes/mouse 

105 spirochetes/mouse 

 

0/4 

4/4 

 

0/4 

4/4 

 

0/4 

4/4 

 

0/4 

4/4 

 

0/4 

4/4 

 

0/4 

4/4 

 

0/24 

24/24 

 

0/4*** 

4/4 

PepC 

103 spirochetes/mouse 

105 spirochetes/mouse 

 

4/4 

4/4 

 

4/4 

4/4 

 

4/4 

4/4 

 

4/4 

4/4 

 

4/4 

4/4 

 

4/4 

4/4 

 

24/24 

24/24 

 

4/4 

4/4 

PepD 

103 spirochetes/mouse 

105 spirochetes/mouse 

 

4/4 

4/4 

 

4/4 

4/4 

 

4/4 

4/4 

 

4/4 

4/4 

 

4/4 

4/4 

 

4/4 

4/4 

 

24/24 

24/24 

 

4/4 

4/4 

* Denotes statistically significant differences (* P value <0.05; ** P value < 0.01; *** P value < 0.001) when compared with the control group  
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After analyzing the amino acid sequence of the VWFA-domain in BB0172, 

peptides A, B, C and D with B-epitope qualities were designed and conjugated to KLH. 

Following immunization of groups of mice at days 0, 14, and 21, immune protection was 

tested by challenging the mice 28 days post-priming by needle inoculation of some mice 

with low dose (10×ID50) and some mice with high dose of (1000×ID50) borrelial 

cells/mouse. Twenty-one days post-infection, the mice were euthanized and blood and 

tissues were collected to evaluate antibody responses, bacterial load, and histopathology. 

B. burgdorferi was recovered from tissues (skin, spleen, inguinal lymph node, bladder, 

heart and joint) from all treatment groups except from tissues collected from mice 

immunized with PepB and challenged with 10 × ID50 (Table 3-1). Evaluation of bacterial 

burden in the tissues from PepB vaccinees by q-PCR revealed low to undetectable 

infection levels (data not shown).  

Vaccine or B. burgdorferi-induced inflammation in joints and heart was 

evaluated by histological analysis of these tissues collected 4 weeks post-priming and 4 

weeks post-infection, respectively (Figure 3-2). PepB-vaccinees developed a minimal 

inflammation in the tibiotarsal joint similar to the background inflammation observed in 

the control non-immunized group (Figure 3-2A).  
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Figure 3-3: Low IgM and IgG antibodies were detected 4-weeks post priming in all groups. Antibody levels 

were evaluated 4-weeks post-priming as well as 4-weeks post needle infection. (A) Peptide-specific IgM 

antibodies. (B) B. burgdorferi-specific IgM antibodies. (C) Peptide-specific IgG antibodies. (D) B. burgdorferi-

specific IgG antibodies. * Denotes statistically significant differences (* P value <0.05; ** P value < 0.01; *** P 

value < 0.001) when compared with the control group. 
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Peptides C and D vaccinated mice had moderate to severe inflammation in the 

tibiotarsal joint after immunization (Figure 3-2A). Severe inflammation was observed in 

mice challenged with 1000 × ID50 with mice immunized with PepD having the most 

severe tibiotarsal joint inflammation among the groups tested. Histological evaluation of 

the heart revealed that PepB vaccinees had no signs of inflammation after immunization 

and after low dose challenge (Figure 3-2B). PepD treatment induced the highest 

inflammation in the heart as was observed in the joints.  

Evaluation of antibody responses showed that peptide specific IgG and IgM were 

relatively low in all groups regardless of the treatment received, with slight increase in 

antibody levels after immunization with peptides C and D (Figure 3-3A and C). In 

addition, the presence of B. burgdorferi specific antibodies was very low in all groups 

after the immunization schedule was completed. Nevertheless, B. burgdorferi specific 

antibody titers (Figure 3-3B and D) were significantly amplified in all groups after 

challenge infection, except for the IgG levels in the PepB vaccines challenged with the 

low borrelial dose. Moreover, serum cross-reactivity in between peptides was not 

observed (data not shown). 

Since PepB induced the best protection, immunization and needle challenge was 

repeated two more times and similar results were observed with no recovery of bacteria 

from tissues of mice challenged with 103 Borrelia/mouse. Consequently, PepB and PepD 

(which showed no protection) were selected for the subsequent studies using tick 

infection to evaluate protection (Table 3-1). 
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Figure 3-4:  Summary of the study design. (A) Schematic representation of the efficacy study. C3H/HeN mice 

were immunized with peptide B or D derived from the VWFA domain of BB0172 conjugated to KLH and 

administered at 50 µg/mouse with equal volume of TiterMax® Gold (Sigma-Aldrich) at days 0, 14 and 21. Eight 

weeks post-priming, a subgroup of mice (4/treatment) were sampled to determine antibody levels and 

pathological side effects. Twelve weeks post-priming a second subgroup of mice (4/treatment) were euthanized 

and sampled for antibody levels in blood, T-cell activity (from draining lymph nodes and spleens) and tissue 

damage. At the same time, a final group of 4 mice/treatment was infected by tick challenge, utilizing 8 

infected Ixodes scapulars nymphs/mouse (containing around 150 Borrelia/nymph). Sixteen weeks post-priming 

mice were euthanized and protection evaluated by determining bacterial recovery from tissues as well as bacterial 

burden, tissue damage and antibody levels in blood. (B) Schematic representation of the passive transfer 

experiment conducted during phase II. Donor C3H/HeN were immunized with peptide B or D administered at 

days 0, 14, and 21. Eight weeks post-priming, donor mice were euthanized and blood and spleens were collected. 

Serum and splenocytes were isolated and passively transferred to recipient mice. Two-days after transfer mice 

were infected with either a low (103 spirochetes/mouse) or a high (105 spirochetes/mouse) dose of B. 

burgdorferi B31 by subcutaneous inoculation. Four weeks post-challenge mice were euthanized and protection 

was evaluated.  
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BB0172 Peptide B–specific antibody titers peak 8-weeks post-priming 

Once a suitable target antigen was determined in phase one, a second efficacy 

phase was performed to specifically evaluate the immune response and protection 

induced by the target antigen, PepB. Mice were immunized with PepB as described 

above (Figure 3-4A) and blood samples for serum were collected at the time of priming, 

4, 8, and 12-weeks post-priming. PepB-specific IgG antibodies peaked at 8-weeks post-

priming and decreased to levels closer to basal at 12-weeks post-priming (Figure 3-5A). 

The negative control mice immunized with peptide D had a small IgG antibody peak 4-

weeks post-priming (Figure 3-5B) and this outcome was similar to the result observed in 

the previous screening experiment (Figure 3-3).  

In addition, none of the serum samples from immunized mice reacted with B. 

burgdorferi whole cell lysates. Twelve weeks post-priming, the antibody levels had 

reduced to basal levels and mice were challenged by applying 5 B. burgdorferi infected 

ticks per mouse. Four weeks post-challenge, all the mice were euthanized and blood 

samples were collected.  PepB-immunized mice had the highest peptide-specific IgG 

antibody levels as well as the anti-B. burgdorferi IgG levels (Figure 3-5C). Notice that 

the antibody titers were also significantly higher in the PepB-immunized group starting 

at 4-weeks post-priming with maximum titers of 102,400 observed at 8-weeks post-

priming (Figure 3-5A). Four weeks post-tick challenge, PepB-immunized mice showed 

peptide-specific IgG titers of 6,800 significantly higher than those observed in naïve 

infected mice and PepD-immunized mice (Figure 3-5C). Similar results were observed 

when Bb-specific IgG titers were evaluated.  
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The PepB vaccinees had IgG antibody titers of 4,266 post-challenge, which was 

significantly higher than the titers observed in the naïve infected mice and the PepD 

vaccinees post-challenge mice (925 and 1,925 respectively). In addition, IgM antibody 

levels remained very low throughout this experiment (data not shown) as observed in the 

previous study (Figure 3-3A and B). PepD-specific IgM antibodies increased slightly 

after tick challenge (Figure 3-5D), whereas PepB-specific IgM antibodies remained at 

basal level similar to the results observed in the earlier study (Figure 3-3A and B). 

Protective IgG antibody levels specific for PepB started peaking at 4-weeks post 

priming, reaching maximum levels at 8-weeks post-priming.  

In addition, we measured the levels of IgG1 and IgG2a in the PepB-immunized 

group at 4, 8, and 12-weeks post-priming as well as at 4-weeks post-tick challenge (16 

weeks). As observed in Figure 3-5E, IgG1 titers were significantly higher than IgG2a 

with a peak at 12 weeks post-priming (307,200 and 78,400 respectively). Four weeks 

post-challenge, IgG1 titers (23,200) remained similar to those observed at 12-weeks 

post-priming (38,400) and were significantly higher than levels measured for IgG2a at 

the same time points (850, 12-weeks post-priming and 1,250 post-challenge). This 

observation suggests that the immune response after immunization and tick infection 

skewed towards Th2. 
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BB0172 Peptide B partially protects against Lyme disease after tick challenge 

After tracking antibody responses in the mice immunized with PepB, the mice 

were challenged to determine whether or not the high antibody levels could protect mice 

 
Figure 3-5: Peptide B-specific antibodies peaked 8-weeks post immunization and were significantly 

stimulated 4 weeks post-tick infection. (A) IgG antibodies specific to Peptide B (open bars) and B. 

burgdorferi (grey bars) at weeks 0, 4, 8, and 12 post-priming. (B) IgG antibodies specific to Peptide D (open 

bars) and B. burgdorferi (grey bars) at weeks 0, 4, 8, and 12 post-priming. IgG (C) and IgM (D) antibody levels 

specific to each of the BB0172 peptide (open bars) and B. burgdorferi (gray bars) in control and animals 

immunized with either Peptide B or D 4-weeks post tick infection. (E) IgG1 and IgG2b antibody levels after 4, 

8, 12 and 16 weeks post-priming with PepB. Titer represented in parenthesis. * Denotes statistically significant 

differences (* P value <0.05; ** P value < 0.01; *** P value < 0.001) when compared with the control group.  
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against Lyme disease. At 12-weeks post-priming, mice were housed individually in wire 

bottom cages and challenged by applying 5 infected I. scapularis nymphs with an 

average of 100 B. burgdorferi cells per nymph.  The mice were euthanized 4 weeks after 

ticks were applied. Analysis of skin, spleen, inguinal lymph node, bladder, heart and 

tibiotarsal joint tissues showed that PepB-immunized group had a significantly lower 

percent of positive cultures, compared with control and PepD-treated mice (Figure 3-

6E). Importantly, the outcome from this challenge study using the tick infection model, a 

50% vaccine efficacy was achieved. In addition, the bladders of the PepB-immunized 

mice had lower less bacterial load when compared with the control and PepD-

immunized groups (Figure 3-6E).  

Furthermore, the bacterial burden in skin and spleens of mice immunized with 

PepB were significantly lower compared with the control group (Figure 3-6A and B). 

Lymph nodes and joints had very low bacterial burden in both immunized groups 

regardless of the peptide used (Figure 3-6C and D). Overall, the PepB-immunized mice 

had the lowest bacteria burden following challenge using infected ticks suggesting that 

this is a good candidate for the development of a Lyme disease vaccine of use in 

veterinary medicine.  

Peptide B–specific antibodies are responsible for protection against Lyme disease 

To determine whether the protection observed in the PepB-immunized mice was 

due to the high antibody titers or the cellular immune response, donor mice were 

immunized with PepB, PepD, or adjuvant only (control). When the peptide-specific 

antibody titers peaked at eight-weeks post-priming (Figure 3-7A, peptide B: 100,000; 
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peptide D: 300; control: 50) serum and splenocytes from each donor group were 

transferred to recipient mice, and then challenged 48hr after transfer. PepB-specific 

antibodies protected mice challenged with low doses of B. burgdorferi B31 (10 × ID50) 

while no protection was observed in the other groups (Figure 3-7B). In addition, 

splenocytes from PepB-immunized mice conferred partial protection, which suggests a 

protective role of splenocytes (Figure 3-7C).  

Analysis of bacterial burden in different tissues of the recipient mice showed that 

animals that received anti-PepB specific antibodies had very low bacterial numbers in 

tissues, specifically skin and spleen, compared to the control group or the anti-peptide D 

treated group (Figure 3-7 D-G). The mice that received splenocytes had higher bacterial 

burden than those that received antiserum. Moreover, mice that received splenocytes 

from PepB vaccinees had the lowest bacterial burden in lymph nodes and joints, 

compared to those that received splenocytes from the control and PepD-immunized mice 

(Figure 3-7 F and G). No difference in bacterial burden was observed between 

treatments in the skins and spleens (Figure 3-7 D and E). These results suggest the 

relevance of specific antibodies to block colonization. 
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Figure 3-6: Peptide B induces partial protection in mice infected by using the tick model. Bacterial 

burden in tissues was significantly lower in animal immunized with Peptide B especially in skin (A) and 

spleen (B). Lymph nodes (C) and Joints (D) show lower bacterial burden in both Peptide B and D 

immunized mice. Nevertheless, the bacterial recovery in cultures (E) was significantly reduced in mice 

receiving the Peptide B formulation compared with Peptide D or the control group. * Denotes statistically 

significant differences (* P value <0.05; ** P value < 0.01) when compared with the control group. 
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BB0172 peptide derived antigens are safe when injected subcutaneously in C3H/HeN 

mice 

The safety and tolerability of PepB immunogen was evaluated in C3H/HeN mice 

by histological evaluation of tissues at 4, 8, and 12 weeks post-inoculation. Most 

significant inflammation was mainly observed after infection with high bacterial doses, 

regardless of the vaccine candidate used (Figure 3-2). This was observed consistently 

throughout the challenge experiments with high dose B. burgdorferi infection. Only 

minimal myocarditis and synovitis were observed in mice after immunization with 

PepB, as described above. Furthermore, no histological changes or areas of 

inflammation were observed in additional tissues evaluated at 8 and 12 weeks post-

priming (skin, heart, tibiotarsal joint, liver and kidney, data not shown). Taken together, 

in the murine model, the BB0172 PepB antigen was shown to be particularly safe. As 

such, further studies with PepB should be performed in other animal models in order to 

demonstrate the safety of this vaccine candidate.   
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Figure 3-7: Peptide B-specific antibodies confer protection against B. burgdorferi infection. Antibody titers 

of control, peptide B-immunized, and peptide D-immunized animals. Open bars represent the anti-B. burgdorferi 

titers and black bars represent the peptide-specific antibody titers in each group (A). Bacterial recuperation from 

tissues of animals infected after passively transferring peptide specific serum (B) or splenocytes (C) to naïve 

mice. Bacterial burden was evaluated by qPCR in skin (D), spleen (E), lymph nodes (F), and joints (G). 

Bacterial recuperation from tissues and quantification was done 21 days-post infection. * Denotes statistically 

significant differences (* P value <0.05; ** P value < 0.01) when compared within the passive transfer 

treatment, while a (P value <0.05) and b (P value < 0.01) denote significant differences in between animals 

receiving serum or splenocytes from the same treatment (peptide B or peptide D).  
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T-cell response 

PepB-specific T-cell responses in mice immunized with the KLH-PepB 

conjugate or the control KLH-peptide D conjugate was tested by proliferation assays 

using cells isolated from lymph nodes or spleens. At 8 weeks post-priming, significant 

PepB-specific T-cell responses and PepD-specific T cell responses were detected in the 

cells isolated from the lymph nodes draining the immunization sites but not in 

splenocytes (Figure 3-8A). This outcome was rather unusual given that primed antigen-

specific T cells were also expected to be detected in the spleen. However, at 12 weeks 

post-priming, no PepB-, PepD-, nor B. burgdorferi B31 A3-specific T-cell responses 

were detected in the lymph nodes (Figure 3-8B) or splenocytes (Figure 3-8C). The cells 

from these tissues responded well to conA mitogen suggesting that the cells were healthy 

(Figure 3-8B and C). 

 

Discussion 

Currently there is no commercial LD vaccine available in the market to protect 

humans, and hence we primarily rely on other preventive measures to control the 

incidence of this disease, especially in endemic areas. A number of vaccine candidates 

have been studied and tested in the mouse model for Lyme disease as well as in wild life 

[160, 161, 241-243], in an effort to control the spread of this disease. Most of the 

approaches used in the last few years are based on the outer-membrane lipoproteins 

OspA and OspC [43, 44, 46, 244-246], together with a few novel antigens such as 

BBA52 [53, 247]. 
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Dogs and horses have been identified as sentinels for Lyme disease across the US 

[258-260]. Under this scenario, and since Lyme disease affects both humans and 

companion animals, the development of a DIVA vaccine (differentiating infected from 

vaccinated animals) will be of great value in the control of Lyme disease utilizing a 

global health approach [261-264]. The DIVA vaccine strategy will not only improve our 

diagnostic capabilities, but also helps us in the prevention of Lyme disease in companion 

 
Figure 3-8: Proliferation assay of T-cells isolated from lymph nodes and spleens of mice immunized 

with peptide B, peptide D and controls.  (A) Proliferation assay at 8 weeks post-priming. Notice the high 

activity of cells isolated from lymph nodes of immunized compared with the control mice without any 

stimulation of the cultures. Proliferation assay of cell isolated from lymph nodes (B) and spleens (C) at 12 

weeks post- priming. Concavalin A (ConA) was used as positive control for stimulation of the cell cultures. 

Specific peptides and B. burgdorferi B31 A3 strain whole cell lysates were used as test antigens to stimulate 

the cultures. Mean ± standard error of the mean, is represented for each lymphocyte proliferation measured. 

* Denotes statistically significant differences (* P value <0.05; ** P value < 0.01) when compared with the 

control group.  
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animals and in the reduction of reservoir competence. Therefore, a new Lyme DIVA 

vaccine can significantly impact the prevention of LD in humans and animals.  

Our previous studies have identified BB0172, a chromosomally encoded 

borrelial protein anchored to the outer membrane through two hydrophobic domains 

[59]. In addition, BB0172 is conditionally expressed and has been shown to bind to 

integrins α3β1 in vitro as it is relatively conserved among Borrelia species [59]. 

Therefore, we hypothesized that this protein could be an effective vaccine candidate due 

to both its function as an adhesin and the fact that sera from naturally infected animals 

did not react to this protein in ELISA and immunoblot assays [59].  

Consequently, we developed a number of short peptides conjugated to a hapten 

(KLH). Our results showed that mice immunized with the PepB formulation were 

protected against infection with pathogenic B. burgdorferi administered by injection at 

low infectious doses. These results supported the hypothesis that PepB could be a strong 

vaccine candidate to prevent Lyme disease. In addition, no inflammation was observed 

in hearts and joints from animals receiving this vaccine formulation, even after infecting 

with low doses of B. burgdorferi. Very low peptide-specific antibody titers were 

observed in this first screening experiment. After infection, only high B. burgdorferi 

specific antibody titers were generated in all groups except in animals immunized with 

PepB and infected with low borrelial doses.  

Following low dose B. burgdorferi challenge, PepB conferred the highest 

vaccine efficacy (100%) compared with the other peptides tested, and therefore was 

selected as a potential DIVA vaccine antigen. We also selected PepD as a negative 
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control as it is a peptide from the same protein but it did not confer protection. In our 

studies, the antibody titers for PepB consistently increased during the weeks following 

the immunization schedule, peaking at 8-weeks post-priming. We evaluated the 

protection acquired after vaccination by exposing the mice to B. burgdorferi through the 

natural route of infection. Using infected I. scapularis ticks directly after the antibody 

levels returned to basal level, we consistently observed that PepB-immunized mice were 

significantly protected against infection.  

Passive transfer of sera from PepB-immunized, but not from PepD-immunized 

mice, to naïve recipients conferred protection upon challenge. This suggested that 

antibodies play a role in protection, an outcome which is consistent with previous 

demonstrations that anti-B. burgdorferi antibodies play a significant role in protection 

[162, 265-268]. Analysis of PepB-specific antibody isotypes revealed IgG1 dominance, 

suggesting a Th2-type immune response, which was consistent with previous findings 

[269-271]. Adoptive transfer of splenocytes from PepB-immunized, but not from PepD-

immunized mice, conferred partial protection. This outcome could have been due, in 

part, to the presence of PepB-specific antibodies secreted by memory B cells in 

splenocytes. If the presence of memory B-cells was responsible for the partial protection, 

it is not clear why the cells did not undergo recall upon challenge, but it was notable that 

no PepB-specific T cells were detected in spleens by proliferation assay. In addition, 

PepB-specific splenocytes were transferred to recipient mice through intravenous 

administration while B. burgdorferi was administered by subcutaneous needle injection. 

The discrepancy in administration of both splenocytes and the infectious agent could 
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explain why the B-cells injected did not generate enough antibodies to neutralize B. 

burgdorferi after infection. Under these circumstances, B-cells will tend to migrate to 

the spleen while the borrelial cells will prefer the draining lymph nodes, skin and joints 

[48, 200, 225]. The disparity in tissue tropisms may account for the discrepancy in the 

results observed, where passive transfer of PepB-specific antibodies induce protection, 

and the transfer of PepB-specific splenocytes did not [272]. Additional studies are 

needed to define the role played by T cells in protection. 

Further studies need to be done in order to improve the protection, mostly by 

improving the delivery method as well as the hapten/adjuvant with which this antigen is 

administrated. In particular, delivery of the vaccine antigen utilizing viral particles [273, 

274], as well as the use of microneedles [275-278] for the delivery of vaccines can 

significantly improve the immune response and consequently protection after both 

needle and tick infection. In addition, by using transdermal inoculation we will be 

stimulating the cell types that most likely will be the encountered by the bacterium after 

the tick bite [277, 278].  

Taken together, an improved DIVA vaccine will significantly impact the 

prevention and control of Lyme diseases as well as its surveillance since it will be 

compatible with currently available tests for the detection of Lyme diseases in animals 

such as IFA, ELISA and immunoblot assay (in particular, the C6 base technology 

(IDEXX laboratories Inc)), without the necessity of developing further tests to detect 

infected animals. With the vaccine antigen PepB, regular ELISA tests can differentiate 

which animals have been vaccinated (react to PepB antigen only) from those that have 
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been infected (react to B. burgdorferi extract only), and also those that had received the 

vaccine and are undergoing infection (react to both PepB and B. burgdorferi extract in 

ELISA), making PepB a suitable candidate for the development of a DIVA vaccine. 
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CHAPTER IV 

DESIGN AND IMMUNOGENICITY OF A SCAFFOLDED PEPTIDE ANTIGEN 

 

Introduction 

 There is a range of methods and combinations employed to enhance the immune 

response against a peptide antigen based vaccine. The use of carrier proteins like KLH 

and CRM-197, immunostimulatory molecules such as IL-1 and CpG motifs, and 

adjuvants such as aluminum hydroxide and emulsions may all contribute to an enhanced 

immune response as opposed to using a small peptide alone. Formulation of the vaccine 

candidate may also decrease the amount of peptide required to generate a protective 

immune response [279].  

In order to enhance the immunogenicity of the peptide antigen, PepB will be 

substituted into a protein scaffold. This scaffolded antigen will be used in conjunction 

with an adjuvant with the goal of increasing the protective antibody immune response by 

increasing the size of the peptide. Further, this method will still be in line with the ideal 

target product profile of using a recombinant protein vaccine candidate with potential to 

be scaled up using commonly utilized protein expression and purification methods.  

 Two B. burgdorferi proteins were considered to be PepB scaffolds. Each protein 

has been evaluated individually in the murine model, however, have proven not to be 

protective when utilized alone. Nevertheless, each protein was capable of generating a 

strong humoral immune response upon immunization. Ideally, by combing these 
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proteins with the protective epitope, PepB, a stronger PepB immune response will be 

stimulated. Further, neither scaffold protein will limit the DIVA functionality of PepB, 

making it possible to continue surveillance of companion animals. The scaffold proteins 

investigated in this study are VlsE and BBA34, and they are introduced in more detail 

below.  

One of the most important antigens present during LD infection is the 31 kDa 

Variable major protein-Like Sequence, Expressed (VlsE). This surface exposed 

lipoprotein is immunodominant, and the conserved region, C6, is present both in B. 

burgdorferi s.s. and in Eurasian strains, making VlsE an ideal candidate for detection in 

diagnostics [68]. The role of VlsE in B. burgdorferi is thought to be immune evasion for 

two reasons: VlsE is highly immunogenic and undergoes antigenic variation through 

recombination with 15 silent cassettes found upstream of the expression site [69, 280]. 

The result of these two functions is that much of the host antibody response is directed 

against a protein that changes as infection progresses, causing misdirection of the 

immune system limited control of the pathogen [281, 282].  

VlsE plays an important role in the detection of LD. To confirm infection with 

LD in the laboratory, patients undergo a two-tiered testing protocol. The C6 ELISA is 

used in the first tier of testing, that consists of identifying host antibodies to either the 

VlsE C6 23-mer peptide or to whole-cell Borrelia lysate [82]. To use VlsE as a scaffold, 

it is important to eliminate the C6 epitope to conserve the ability to detect naturally 

infected patients as opposed to vaccinated individuals, allowing the serological detection 
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of a natural B. burgdorferi infection to remain relevant even in VlsE-scaffold vaccinated 

individuals.  

B. burgdorferi contains one peptide transport system of the ABC family type that 

bears similarity to the Escherichia coli oligopeptide permease (Opp) transport system. 

BBA34 is one of 5 oligopeptide permease A homologs in B. burgdorferi and is denoted 

as OppA5. The bba34 gene is located on linear plasmid 54 (lp54), while OppA1-3 are 

found on the linear chromosome, and OppA4 is found on circular plasmid 26. BBA34 

was found to be upregulated in spirochetes in fed ticks and the mammalian host.  

Studies done by Raju et al. [67] implicate that BBA34 functions in the transport 

of molecules like acetate and bicarbonate rather than heptapeptides, as is performed by 

OppA1-3.  Further, the putative binding domain of BBA34 bears homology to outer 

surface protein P66, a porin capable of binding integrins [64]. 

Interestingly, BBA34 and OppA4 were both predicted to be exposed to the 

periplasmic environment, a prediction that Raju et al. [67] confirmed for BBA34. As 

such, BBA34 is a lipoprotein that anchors to the outer membrane, but is exposed to the 

B. burgdorferi periplasm. This is useful for application as a scaffold protein, as intact B. 

burgdorferi will not be recognized by antibodies generated against BBA34. For this 

reason, it will be possible to determine strength and duration of antibody responses 

specifically against the BBA34 scaffold or PepB both before and after challenge with B. 

burgdorferi, allowing for the quantification and comparison of the scaffolded construct 

to previous PepB-KLH studies. For comparison, the control proteins BBA34 (no 

substitution) and OspC will be utilized.  
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Materials and methods 

Cloning and expression of scaffolded antigen 

The scaffolded BBA34:PepB (BP) construct was synthesized in the expression 

vector pET23a by Genscript (Piscataway, NJ). Upon receipt, the plasmid was 

electrotransformed into Rosetta™(DE3)pLysS E. coli (Novagen, Madison, WI) and 

stored at -80°C. BP was overexpressed at 37°C using 1mM isopropyl-β-D-

thiogalactopyranoside (IPTG) for 4 hours. The cells were pelleted immediately after 

overexpression, and were disrupted via sonication for a total sonication time of 10 

minutes in lysis buffer (20 mM imidazole; pH 7.4) in the presence of the protease 

inhibitor cocktail, HALT™ (Thermo Scientific, Inc.). The lysed cells were then clarified 

by centrifugation, and the supernatants underwent affinity purification with a His60 Ni 

Superflow resin (Clontech, Mountain View, CA) according to the manufacturer's 

protocol. Bound proteins were washed with 2 column volumes of wash buffer (40 mM 

imidazole; pH 7.4) prior to elution. Elution buffer (300 mM imidazole; pH 7.4) was used 

to elute the bound 6×His-tagged proteins. Fractions were then analyzed using SDS–

12.5% PAGE.  

Purification of scaffolded antigen 

After detection on SDS-12.5% PAGE, fractions containing the highest relative 

amounts of protein were pooled and concentrated using Spin-X™ centrifugal filters 

(Corning, Lowell, MA) with a 10 kDa MWCO. Concentrated BP was then applied to a 

column containing Sephadex G-75 resin for size-exclusion chromatography. Proteins 

were eluted using immunization buffer. Fractions were analyzed using Bradford reagent 
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(Bio-Rad, Hercules, CA) detected at a wavelength of 595 nm and fractions with the 

highest relative concentration of protein were pooled. Pooled fractions were 

concentrated as previously described and applied to a PD-10 desalting column (GE 

Healthcare, Piscataway, NJ). Fractions were then analyzed by SDS-12.5% PAGE, and 

fractions containing the highest concentration of protein were pooled and concentrated 

as described. A 61.5-kDa (BP) was purified and the protein was stored at 4°C until 

further use.   

Expression of control proteins 

Control proteins OspC or BBA34 previously cloned into pET23a and 

transformed into Rosetta™(DE3)pLysS Escherichia coli (Novagen, Madison, WI) 

before being stored at -80. Proteins were overexpressed at 37°C using 1mM isopropyl-β-

D-thiogalactopyranoside (IPTG) for 1 hour (OspC) or 3 hours (BBA34). The cells were 

pelleted immediately after overexpression, and were disrupted via sonication for a total 

sonication time of 10 minutes in lysis buffer (20 mM imidazole; pH 7.4) in the presence 

of the protease inhibitor cocktail, HALT™ (Thermo Scientific, Inc., Rockford IL). The 

lysed cells were then clarified by centrifugation, and the supernatants underwent affinity 

purification with a His60 Ni Superflow resin (Clontech, Mountain View, CA), according 

to the manufacturer's protocol. Bound proteins were washed with 2 column volumes of 

wash buffer (40 mM imidazole; pH 7.4) prior to elution. Elution buffer (300 mM 

imidazole; pH 7.4) was used to elute the bound 6×His-tagged proteins. Fractions were 

then analyzed using SDS–12.5% PAGE.  
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Purification of control proteins 

After SDS-12.5% PAGE, fractions containing the highest relative amounts of 

protein were dialyzed into immunization buffer (50 mM Sodium Phosphate, 300 mM 

Sodium Chloride, 0.1% Triton X-100; pH 7.4) using Slide-A-Lyzer dialysis cassettes 

(Thermo Scientific, Inc., Rockford, IL). Dialyzed protein was then applied to Amicon 

centrifugal filters (EMD Millipore, Billerica, MA) with a 10 kDa MWCO were then 

utilized to concentrate the proteins. From these purifications, two proteins with weights 

of 23-kDa (OspC) and 61-kDa (BBA34), were purified and quantified using the Pierce™ 

BCA Protein Assay (Thermo Scientific, Inc., Rockford, IL). Proteins were stored at 4°C 

until further use. 

Immunization protocol 

Mice were immunized either at days 0, 14, and 28 with decreasing antigen 

dosages (BP Group A (n=3), BBA34 Group A (n=3), OspC (n=2)) or were immunized at 

days 0, 28 with decreasing antigen doses (BP Group B (n=3), BBA34 Group B (n=3)), 

as shown in Figure 4-1A. Previous work demonstrated that Adjuplex adjuvant utilized at 

either 5 or 10% could protective immunity similar to that seen with the commonly 

utilized TiterMax Gold adjuvant (data not shown). Antigens and controls were diluted in 

immunization buffer with 5% Adjuplex™ adjuvant.  Control mice (n=3) were 

immunized at days 0, 14, and 28 with 5% Adjuplex™ in immunization buffer only. The 

immunization schematic shown in Figure 4-1B highlights the dates for immunizations, 

and also shows that mice are euthanized at 8 weeks days post priming, as antibodies 

against PepB have been seen previously to peak at this time [283]. Blood and tissues 
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(joint, heart, kidney, lymph node, spleen, and bladder) were collected. In addition, serum 

was collected from the blood by centrifugation to evaluate antibody titers by ELISA 

(described above).  

 

 

 

 

 

 

Enzyme-linked immunosorbent assay 

Sera from fully immunized mice was evaluated for IgG antibody titers using the 

enzyme-linked immunosorbent assay (ELISA). 96-well MaxiSorb® plates (Nunc; 

Thermo Scientific, Inc. Rockford, IL) were coated either with 500 ng/well of antigen or 

107 Borrelia/well of B. burgdorferi A3 whole cell lysate in coating buffer (15 mM 

Sodium Carbonate, 35 mM Sodium Bicarbonate; pH 9.1). After coating, plates were 

 
Figure 4-1: Dosing groups and schedule for scaffolded vaccine antigen. (A) Immunization plan for the 

scaffolded peptide antigens and controls. Two immunization schedules were used for the experimental 

constructs, differing in number of immunizations and amount of antigen utilized. Group A was 

administered in 3 doses (50, 10, 5 µg antigen) two weeks apart, and consisted of BBA34:PepB, BBA34, 

OspC. Group B was 2 doses (50 and 15 µg) administered 4 weeks apart. Control mice received only 

adjuvant, and were immunized according to the group A schedule.   (B) Schematic visually describing 

immunization protocol. Animals were immunized at either 0, 2 and 4 weeks, or at 0 and 4 weeks. All 

animals were euthanized at 8 weeks post priming.  
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washed 3 times with Phosphate Buffered Saline (PBS) containing 0.1% Tween-20 (PBS-

T). Plates were then blocked in PBS-T containing 3% Bovine Serum Albumin (BSA) at 

room temperature for 2 hours. After blocking, plates were again washed 3 times with 

PBS-T. Mouse serum samples were applied to the plate in duplicates serially diluted 

from 1:100 to 1:102,400 in PBS-T containing 1% BSA and incubated for 1 hour at room 

temperature. Unbound antibodies were removed by washing 3 times with PBS-T prior to 

application of a 1:3000 dilution of secondary anti-mouse HRP conjugated antibody 

diluted in PBS-T containing 1% BSA. After incubating for 1 hour at room temperature, 

unbound secondary antibody was removed by washing 3 times with PBS-T. Plates were 

developed using the o-phenylenediamine dihydrochloride (OPD) color substrate 

following the manufacturer’s recommendations (Pierce; Thermo Scientific, Inc. 

Rockford, IL). Plates were incubated for 20 minutes at room temperature in the dark 

before evaluation at a wavelength of 450 nm using the Bio-Tek Synergy™ H1 

microplate reader and Gen5™ software (BioTek Instruments Inc., Winooski, VT).  

SDS-PAGE gels and immunoblot analysis 

B. burgdorferi whole-cell lysates (prepared from cultures grown at RT and pH 

7.6) or purified protein aliquots were separated using SDS–12.5% PAGE. The separated 

proteins visualized by either Coomassie brilliant blue staining or immunoblot analysis. 

For immunoblot analysis, proteins were transferred onto a PVDF membrane (Bio-Rad, 

Hercules, CA). Membranes were then blocked overnight at 4°C in Tris-buffered saline 

containing both 0.1% Tween 20 (TBS-T) and 10% skim milk. Membranes were then 

probed with mouse anti-PepB polyclonal antibodies or anti-His tag monoclonal 
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antibodies (GE Healthcare, Piscataway, NJ). Blots were washed 3 times with TBS and 

secondary HRP conjugated anti-mouse IgG antibody was applied at a dilution of 1:3000 

in TBS-T with 10% skim milk. Membranes were washed 6 times with TBS-T then 

developed using Amersham ECL Prime Western Blotting Detection Reagent (GE 

Healthcare, Piscataway, NJ).  

B. burgdorferi growing conditions 

Bb B31 A3 virulent isolate was also used throughout this section of the study. B. 

burgdorferi was grown in BSK-II media at pH 7.6 with 1% CO2 at RT until reaching a 

density of 5×107 spirochetes/ml. Cells were then pelleted and lysed for use as whole cell 

lysates in ELISAs and immunoblots.  

 

Results 

Modeling of substitution constructs 

Initially, constructs for the VlsE scaffolded constructs were generated. In these 

models, the PepB antigen was used to substitute for IR6 (VIR6P) or the entire cassette 

region (VCP), as demonstrated in Figure 4-2A.  Further, to screen the potential for 

surface exposure of the PepB antigen on the construct surfaces, protein structure 

modeling was performed using PyMOL. The models for VIP and VCP are found in 

Figure 4-2B, and show that PepB is predicted to be exposed on the surface of the 

proteins.  
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Figure 4-3A shows a comparison of BBA34 (top) and the substitution construct 

that replaces the putative interaction domain of BBA34 with PepB (bottom). The models 

of the parent BBA34 protein (top) to the substituted BBA34:PepB scaffolded construct 

(bottom) are found in Figure 4-3B. These models also demonstrate the possibility of 

PepB exposure on the surface of the scaffolded antigen.  

 

 

 

 

 

 
Figure 4-2: Schematic and model of VlsE scaffolded antigens. (A) The arrangement of VlsE is 

visualized at the top of the figure, denoted VlsE. The lipoprotein leader sequence, which directs surface 

localization is shown in gray, the unique conserved regions flanking the protein are shown in white. The 

direct repeats flank the cassette region and are shown in red. Additionally, the cassette region is shown 

between the direct repeats, with the invariable (light green) and variable regions (dark green) described for 

each of the 6 sections of the cassette region. The putative vaccine constructs VIR6P and VCP are shown 

below. In VIR6P, the invariable region 6 (blue) is replaced by PepB (pink). In VCP, the entire cassette 

region (between direct repeats shown in red) is replaced with PepB. (B) Models of immunization 

constructs. Far left demonstrates VlsE secondary structure. Invariable Region 6 is denoted in blue.  The 

middle shows the predicted secondary structure of VIR6P after PepB (pink) substitution of the IR6 region. 

On the right is the VCP predicted secondary structure modeled after VlsE, with PepB substitution against 

shown in pink. All models visualized in PyMOL.  

 



 

110 

 

Test expressions of substitution constructs 

Once plasmids were cloned into maintenance and expression strains of E. coli, 

the conditions for expression were optimized. In small scale expression experiments 

(Figure 4-4), it was found that the VlsE based constructs were not highly expressed after 

4 hours at 37ºC.  

 

 

 

 
Figure 4-3: Schematic and model representations of the BBA34 based scaffolding constructs. (A) The 

arrangement of BBA34 is visualized at the top of the figure, denoted BBA34. The lipoprotein leader 

sequence, which directs surface localization is shown in gray, and a putative interaction domain 

(ENELDVP), is shown in blue. The scaffolded vaccine antigen is shown below, denoted as BBA34:PepB. In 

this construct, the putative interaction domain is replaced by the PepB sequence, shown in pink. (B) Models 

of the BBA34 based immunization construct. The top shows native BBA34 with the interaction domain 

highlighted in blue, shown at 90º rotations. The bottom models show BBA34:PepB and the resultant 

predicted structural changes in the protein.   
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Small scale expression of the BP constructs under the same conditions were more 

successful, and a band corresponding to 61 kDa was seen in the induction samples taken 

after 4 hours in the BP expressing cells. Expression of full length VlsE is notably 

difficult, although it is possible [284]. Due to these difficulties, expression of VlsE was 

suboptimal for the protein quantities needed for a vaccine study. BBA34 was more 

readily manipulated, and as such, was pursued as the protein scaffold for PepB to 

evaluate the validity of the concept of scaffolding.   

Large scale expression of BP 

Using the same conditions described for small scale purification, BP was purified 

on a larger scale. Contrary to the BBA34 and OspC control proteins (Figure 4-5A), 

immobilized metal ion affinity chromatography (IMAC) and spin column filtration were 

not sufficient to purify BP (Figure 4-5B, Lane 1). As such, size exclusion 

 
Figure 4-4: Small scale expression of putative vaccine constructs. For both VIP and BP, 

the uninduced samples (U) were not exposed to IPTG and were incubated for 4 hours at 

37ºC, while the induced sample (I) was induced with 1 mM IPTG and incubated for 4 hours 

at 37ºC. No expression of VIP was visualized (expected: 64.2 kDA; 35 kDa + GST tag), 

while expression of BBA34:PepB was seen (expected: 62 kDa; 61 kDa + histidine tag). 
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chromatography was used after IMAC and spin column filtration to enhance the purity 

of BP (Figure 4-5B lanes 2-4).   

 

 

 

 

 

 

Antibody response against scaffolded PepB 

Antibody levels were evaluated for each group by ELISA against either the 

immunizing antigen or B. burgdorferi lysate (Figure 4-6A, B). Sera from each group 

were capable of detecting the antigen used for immunization, as seen in Figure 4-6A. 

Further, the animals were only immunized and not challenged, and as such the serum 

samples did not react strongly against B. burgdorferi lysate (Figure 4-6B). Only BP 

contained the PepB sequence, however, there seemed to be little antibody recognition of 

the PepB antigen (Figure 4-6C).    

 
Figure 4-5: Purification of protein antigens. (A) BBA34 and OspC after 

purification. (B) BP purification fraction after IMAC and spin column filtration. 

Lanes 2-4 represent elution fractions collected after size exclusion 

chromatography performed on concentrated IMAC elution fractions.  
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Discussion  

 Previously, the 12-mer peptide PepB was shown to be partially protective as a 

LD vaccine antigen, with 50% efficacy in tick challenge models. In order to improve the 

immunogenicity of the peptide, this work has addressed increasing the size of PepB by 

scaffolding the peptide into a protein scaffold derived from B. burgdorferi.   

Due to the previous complications with human vaccines for Lyme, it is of the 

utmost importance to utilize antigens and adjuvants that are immunostimulatory without 

generating adverse reactions. The scaffold utilized, BBA34, has been previously 

evaluated in the murine model without any notable adverse effects (Dr. Esteve-Gassent, 

unpublished data). Further, we have used Adjuplex™ (Advanced BioAdjuvants LLC, 

 
Figure 4-6: Evaluation of specific antibody levels at 8 weeks post priming. (A) Sera from 

each group was evaluated against the corresponding vaccine candidate. For each group, control 

serum was evaluated in addition to the immunized groups (antigen:CTRL). (B) Antibody levels 

for each group were evaluated against B. burgdorferi B31 A3 lysate. (C) BP immunized mice 

were evaluated for ability to bind PepB.  
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Omaha NE), a carbomer-lecithin adjuvant that is free of oils, detergents, and 

preservatives. Studies have shown that Adjuplex generates antibody titers equivalent to 

those seen with Aluminum Hydroxide, however lower than Monophosphoryl Lipid 

[285]. TiterMax Gold® was utilized for the initial efficacy studies for PepB, however, 

TiterMax lesions to form at the injection site in mice (Brock, personal observation; 

[286]). For these reasons, Adjuplex was utilized in this study.  

Before selecting the final protein scaffold, we cloned and expressed VIP, VCP, 

and BP. From these studies, it was seen that VlsE based constructs were difficult to 

clone into competent E. coli, and that colonies rendered from cloning did not have the 

VIP or VCP inserts. Once a clone was identified containing either a VIP or VCP insert, 

small scale expression results demonstrated that the sequence was either not expressed, 

not expressed efficiently, or the protein was degraded upon expression for all of the 

clones. Longer expression conditions, varied IPTG concentrations, and lower expression 

temperatures were evaluated and did not yield improved expression. As such, efforts 

shifted to focus on the BBA34 based scaffold.  

BBA34 was successfully cloned into competent E. coli at a much higher 

efficiency than that seen with VlsE based constructs, and the presence of the insert was 

confirmed by sequencing analysis. Small-scale expression showed that BP was 

expressed successfully upon exposure to 1 mM IPTG for 4 hours at 37ºC (Figure 4-4). 

However, progression to large-scale purification was not as straightforward as expected, 

and the construct produced low quantities of protein compared to the BBA34 control 

construct that was generated previously in our lab. Attempts to reclone BP are underway 
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with sequence modification to remove the signal peptide that was included in the BP 

construct, as seen in Figure 4-3. Inclusion of the signal sequence will target protein to 

the cell membranes, and can cause decreased expression [287]. The amount of protein 

produced was in line with the expression seen in OspA constructs that also retain an 

intact signal sequence [171]. However, for the purposes of this study, the clone including 

the signal sequence was used.  

Further, it was determined that protein loss occurred at any step that exposed the 

BP protein to regenerated cellulose membranes, such as those used in centrifugal 

concentrator units and dialysis membranes. Further purification using items with 

polyethersulfone membranes enhanced the retention of BP. Regenerated cellulose 

products could be used with BBA34 control protein purification, either owing to the 

absence of PepB, or more likely, due to the quantity of protein. Retention of the lower-

expressing BP was detrimental to yield, however, the BBA34 control plasmid is highly 

overexpressed. It is possible that even if the regenerated cellulose membrane saturated 

with BBA34, total yield would not be severely affected.  

Purification of BP was also substantially more difficult than that of BBA34. To 

obtain a purer sample than that gained from standard metal-affinity chromatography, 

pooled BP elution fractions were subjected to size exclusion chromatography (SEC). 

Utilizing IMAC in conjunction with SEC yielded a purer product than seen previously. 

Evaluating the post-purification fractions with Bradford reagent revealed the presence of 

a large singular peak early in the elution fractions (data not shown). However, upon 

SDS-PAGE analysis, some contaminants persisted (Figure 4-5B). The decreased 
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comparative purity between BP and BBA34 and this may account for the slight decrease 

in reactivity of BP against itself and the reactivity of BBA34 against BBA34.  

Evaluation of the antibody response reactivity against pure PepB revealed that 

the scaffolded antigens obscured the recognition of PepB, rather than enhanced the 

response against PepB. One disadvantage of using small peptide antigens is the lack of 

reactivity when used independently as a vaccine without other immunostimulators. In 

this experiment, however, it was shown that the scaffold obscured the recognition and 

reactivity of PepB, particularly compared to the high antibody response seen when PepB 

was used in conjunction with KLH [283]. A previous study utilizing PepB linked to an 

immunostimulatory region of IL-1 administered with TiterMax Gold® adjuvant also 

demonstrated the same lack of specific antibody response in spite of using smaller and 

less bulky antigen scaffold (data not shown). As such, using scaffolds to enhance the 

immunogenicity has not proven successful, and other approaches should be utilized to 

increase the immunogenicity of PepB.  

An alternative to scaffolding is the use of other carrier proteins. The efficacy of 

PepB was initially described in conjugation with the carrier KLH [283]. KLH has not 

been utilized in human vaccines. In order to both enhance PepB immunogenicity and to 

utilize carrier molecules already used in licensed human vaccines, the carrier proteins 

CRM-197 or tetanus toxoid could be explored as alternatives to KLH.  The usage of 

carrier proteins may be advantageous in the generation of a strong immune response, 

however, may increase the cost of production in the long-term. Adverse reactions may 
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occur in a small subset of people due to the utilization of toxoid-based carriers, and as 

such, eliminating the need for carriers would be ideal [288].  

Building on the ideal parameters of the LD vaccine, a new vaccine should be 

amenable to a simple large-scale production scheme, be capable of reproducibly 

generating protective immunity in a range of individuals, and be affordable to produce. 

Therefore, modifying the peptide to synthetically generate a better antigen as well as 

using that antigen in a multi-copy peptide. It has been shown that multi-copy peptide 

antigens are capable of generating a better antibody response than that seen with a single 

copy peptide used in conjunction with KLH [289, 290]. One concern, however, is that 

linking the antigen to generate the multi-copy peptide may incur the same issues as those 

seen in the previous scaffolding constructs.  

PepB is a highly promising antigen in the development of a novel LD vaccine. 

Scaffolding approaches have not proven successful to increase the immunogenicity of 

PepB in the murine model. As such, other novel approaches must be utilized to 

formulate a successful PepB-based LD vaccine capable of generating a PepB specific 

humoral immune response in order to enhance the efficacy of PepB.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

LD is a globally relevant pathogen and is the most prevalent arthropod borne 

illness in the United States. Due to the discovery of B. mayonii and the potentially 

expanding range of B. burgdorferi in the US as well as the increasing resistance to 

acaricides, it is more important now than ever before to take a novel approach to 

vaccination against LD. Through this work, the goal of eliminating the need for antigens 

based on variable proteins requiring chimeric and multivalent constructs is closer to 

being accomplished. The identification of a highly-conserved novel LD vaccine antigen 

has the potential to apply to new pathogenic Borrelia, as well as the existing infectious 

species and strains both in the US and in Europe and Asia. This concept makes the novel 

antigen found through this dissertation more applicable to the global public and therefore 

more marketable for commercialization.  

To this end, the work in this dissertation addressed three main aims to approach 

the development of a novel vaccine antigen against LD. Initially, the reverse 

vaccinology approach was utilized to identify regions of the B. burgdorferi genome that 

were highly conserved in pathogenic Borrelia, and more broadly, within the family 

Spirochaetaceae. Selection of the BB0170-BB0176 proteins was enhanced greatly by the 

work of Subramanian et al. and the analysis performed comparing spirochetes T. 

pallidum and B. burgdorferi.  Of these, BB0172, BB0173, BB0175, and BB0325 were 
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predicted to have a VWFA domain, and BB0172 and BB0173 were predicted to have 

extracellularly exposed domains. 

Upon selecting a family of proteins, these previously uncharacterized proteins 

with similarity to known proteins of other bacteria were analyzed for vaccine potential 

by looking at a range of characteristics including extracellular exposure, membrane 

localization and expression to narrow down the search to two potential candidate 

proteins, BB0172 and BB0173. While BB0173 was predicted initially to be anchored to 

the outer membrane, in vitro analysis demonstrated that BB0173 localized to the inner 

membrane of B. burgdorferi. BB0173 was found to be expressed constitutively in B. 

burgdorferi, and expression did not change under conditions relating to the tick, 

mammalian, or transitory conditions. In contrast, work by Wood et al. determined that 

BB0172 was identified to be inserted into the outer membrane and exposed to the 

extracellular environment. Further, BB0172 was transiently expressed during conditions 

simulating the transmission from the tick vector to mammalian host, and was found to 

bind integrin α3β1. Taken together, BB0172 was determined to be a more promising 

candidate for the development of a novel LD vaccine.  

Although immunization with the full-length protein was not found to be 

protective, peptide antigens were selected from BB0172 using in silico prediction 

techniques by looking at localization in relation to features of the protein and secondary 

structure. From BB0172, 4 peptide antigens were tested in the murine model to evaluate 

for safety and efficacy in the murine model. These studies demonstrated that PepB, when 

conjugated to KLH, had the ability to generate a protective immune response against B. 
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burgdorferi challenge by both needle (low dose challenge) and tick challenge. Further, 

the determinants of protection were more closely evaluated, and it was found that 

passive transfer of antibodies generated by PepB immunized mice could protect naïve 

mice from B. burgdorferi challenge and were primarily of the IgG1 isotype that is 

indicative of a primarily Th2 antibody response. This finding was in agreement with the 

literature, which has shown that a strong humoral response is sufficient to protect against 

LD infection upon passive transfer.   

Building on the use of PepB as a vaccine candidate, PepB was scaffolded with B. 

burgdorferi proteins to eliminate the need for the previously used KLH carrier protein. 

Two proteins were considered as scaffold proteins, VlsE and BBA34. Attempts to 

generate VlsE constructs were unsuccessful, and as such, BBA34 was utilized as a 

scaffold for PepB. Immunization with the scaffolded antigen, however, did not yield 

specific antibodies capable of targeting PepB. These findings were in line with a 

previous study that utilized PepB in conjunction with a small immunostimulatory region 

of IL-1 and a short linker sequence. This construct was also that was also unable to 

generate high and specific antibody titers, although there was was less non-PepB protein 

present. At this point, the future of the PepB-based LD vaccine will involve 

reformulation of the peptide, either using alternative carrier proteins and adjuvants, or 

generation of repetitive, synthetic PepB antigens.  

Further, the most effective PepB antigen formulation must be tested against B. 

afzelii, B. garinii, and B. mayonii in addition to B. burgdorferi. This work will expound 

on the idea that using a highly-conserved antigen is capable of protecting against a range 
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of pathogenic Borrelia capable of causing LD both in the US and in Europe and Asia.  

Upon success with protection against a range of pathogenic Borrelia, the logical next 

step is progression to the canine model for safety and efficacy studies to move the 

vaccine towards clinical licensure. Within the realm of veterinary medicine, utilizing the 

PepB based vaccine for horses would be another reasonable and welcome advancement. 

Long term, however, the goal for the PepB based LD vaccine is licensure and use in 

humans. A broadly protective human LD vaccine could be employed worldwide and 

potentially protect the majority of people in the northern hemisphere from LD.   

An additional interesting idea of the future of LD prevention is the utilization of 

an anti-tick vaccine. Building on this idea, the coupling of an anti-tick antigen with PepB 

has the potential to produce a vaccine that can not only inhibit tick feeding and 

survivability but also prevent LD transmission in the event of a successful blood meal. 

This would be a strong advantage in the realm of preventing TBDs and be a welcome 

safeguard particularly in LD endemic areas.          

Taken together, this work has advanced an alternative approach to LD 

vaccination using new ideas in vaccinology and novel antigens of B. burgdorferi. The 

success found in these studies has potential to advance to clinical phases of development 

and may one day yield a functional vaccine both in veterinary and human medicine.  
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