
A GRID-BASED PATH PLANNING APPROACH FOR A TWO VEHICLE TEAM

WITH LOCALIZATION CONSTRAINTS

A Thesis

by

MARK GARBER

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Sivakumar Rathinam
Committee Members, Swaroop Darbha

Lewis Ntaimo
Head of Department, Andreas A. Polycarpou

August 2017

Major Subject: Mechanical Engineering

Copyright 2017 Mark Garber

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/154406122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

This research proposes a path-finding method for two unmanned vehicles with local-

ization constraints using a modified shortest-path algorithm. A beacon vehicle has GPS

or other absolute positioning information, and a target vehicle has only bearing informa-

tion taken relative to the beacon vehicle or known stationary landmarks. A method for

calculating edge costs is described based on factoring the covariance associated with an

Extended Kalman filter. By gridding the region and discretizing the position error, the

path-planning problem for two vehicles can be formulated in state space and solved using

a dynamic programming algorithm. To improve the computation time of the algorithm, a

heuristic is also introduced. In simulation, paths found from the dynamic programming

method and heuristic consistently outperform a greedy algorithm and find paths that favor

localizable regions and result in relatively low amounts of error.

ii

NOMENCLATURE

Acronyms

EIF Extended Information filter

EKF Extended Kalman filter

GPS Global Position System

IMU Inertial Measurement Unit

SLAM Simultaneous Localization and Mapping

UV Unmanned Vehicle

Model and Simulation

B Control Jacobian

error Error level

F System Jacobian

H Measurement Jacobian

h Bearing measurement equation

inc Error level increment

P Covariance Matrix

Q Covariance of control input noise

ts Timestep (s)

Xk State vector at step k

Y Information Matrix

ŷk Information vector

iii

ψ Vehicle heading (rad)

µw Controller error

σv Velocity input standard deviation

σw Turn rate standard deviation

σψ,0 Initial heading standard deviation

λ Eigenvalue

ηij Bearing measurement from vehicle i w.r.t. j

Shortest Path Algorithm

Q Priority queue of current set

R Stores vertices reserved for future exploration

C Stores previously explored vertices

P Path composed of ordered sequence of vertices

v Vertex

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professors Sivakumar

Rathinam and Swaroop Darbha of the Department of Mechanical Engineering and Profes-

sor Lewis Ntaimo of the Department of Industrial and Systems Engineering.

The Matlab simulation model used in the Simulation section was provided by Dr. Ra-

jnikant Sharma of the University of Cincinnati.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Graduate study was supported by a Research Assistantship from Texas A&M Uni-

versity. This material is based upon work supported by the National Science Foundation

under Grant No. 1527748.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

NOMENCLATURE . iii

CONTRIBUTORS AND FUNDING SOURCES v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . x

1. INTRODUCTION . 1

2. LITERATURE REVIEW . 3

3. PROBLEM STATEMENT . 6

4. MODEL DESCRIPTION . 10

5. ERROR LEVEL ESTIMATION . 15
5.0.1 Overview and Model-Based Estimation 15
5.0.2 Factoring the Covariance . 16

6. INTEGER PROGRAM FORMULATION . 21

7. ALGORITHM* . 24
7.0.1 Implementation Details . 26
7.0.2 Algorithm Summary . 28
7.0.3 Problem Setup and Tuning Parameters 30

8. HEURISTICS . 32
8.0.1 Fixed Target Path Heuristic . 32

9. SIMULATION* . 34
9.0.1 Comparison to Greedy Algorithm 34
9.0.2 Beacon Assist Vehicle . 38
9.0.3 Fixed Target Path Heuristic . 39

vi

9.0.4 Run Time . 39

10. CONCLUSIONS . 45
10.0.1 Limitations . 45
10.0.2 Future Work . 45

REFERENCES . 47

vii

LIST OF FIGURES

FIGURE Page

3.1 Ordered Target and Beacon Vehicle Paths. c©2017 IEEE [1] 7

3.2 Position uncertainty is rounded up to the next error level. 8

3.3 Error levels as target and beacon vehicles travel. c©2017 IEEE [1] 8

7.1 Example of a graph solved using the shortest path algorithm. Nodes are
visited in order from a to k. Error levels are shown in each vertex. All edge
costs are one. c©2017 IEEE [1] . 26

7.2 Flow chart of the algorithm process. 27

9.1 Top: Path from greedy path algorithm across a region with scattered land-
marks. Numbers indicate vehicle travel beginning at the labeled position.
The target vehicle travels two edge lengths from position 0, then loiters
while the beacon vehicle travels one edge length from position 2, and so
forth. Large circles show the region in landmark range. Bottom: Posi-
tion error from a single simulation and the position uncertainty from the
covariance matrix are shown with vehicle position corresponding to top
figure. c©2017 IEEE [1] . 36

9.2 Path and error generated by modified shortest path algorithm. Error is
similar for most of the path to the greedy algorithm, but does not jump like
the greedy algorithm. c©2017 IEEE [1] 37

9.3 Beacon vehicle assisting the target vehicle, then returning near its original
location . 38

9.4 Path generated by the modified shortest path algorithm and corresponding
simulated error and covariance over a single run. 40

9.5 Path generated by the levels based fixed target path heuristic and corre-
sponding simulated error and covariance over a single run. 41

9.6 Path generated by the single layer fixed target path heuristic and corre-
sponding simulated error and covariance over a single run. 42

viii

9.7 Solve time using the dynamic algorithm and fixed single level target path
heuristic. Maximum path length was limited to 1.5x the minimum possible
path length on the grid for the dynamic algorithm. The greater of 2 or (# of
grid points)/50 landmarks were placed randomly on the grid, with a sensor
range of 25m. 43

ix

LIST OF TABLES

TABLE Page

7.1 Order of vertex exploration in Fig.7.1. c©2017 IEEE [1] 28

x

1. INTRODUCTION

Over the past several years, unmanned vehicles (UVs) have seen increased usage in

underwater, ground-based, and aerial applications. With uses ranging from pipeline and

power line inspection to border surveillance to search and rescue, UVs are suitable for a

wide variety of tasks. One common scenario is for a human operator to be in charge of

a team of vehicles. The operator assigns high level missions and objectives, which the

vehicles attempt to complete autonomously. There are many subproblems associated with

completing these missions. Included in these are localization, path planning, and control.

The vehicles must be able to gather information about their location, either through GPS

or by sensing their environment. They must be able to use that information with a control

system that manages vehicle motion, and they need a path planning method that tells them

where in the environment to go, and how to navigate toward that location.

Path planning that considers multiple vehicles navigating an environment in the ab-

sence of GPS is one problem to consider. Based on the known information about the

environment, a path is selected for the vehicles before they begin travel. The path should

avoid states where the position of the vehicles is highly uncertain. Localization is impor-

tant for UVs, because GPS information is not always available. In indoor environments,

it rarely is. Even outdoors, it is not guaranteed. GPS signals are easily jammed, both in-

tentionally and on accident. In one incident, a personal GPS jammer in a truck, intended

to prevent an employer tracking the vehicle, interfered with air traffic control systems at

Newark airport.

This research will consider a fundamental path planning problem with two vehicles.

One vehicle receives GPS information, while the other does not. By utilizing bearing

measurements to known landmarks, the vehicles can improve position estimates based on

1

dead reckoning. Additionally, the vehicle receiving GPS information communicates its

location to the vehicle without GPS information to use as an additional landmark. The

bearing sensors on the vehicles can only take measurements within a limited range. This

paper will develop a grid-based method that can be used to plan paths for each vehicle to

manage position uncertainty of the vehicle lacking GPS information [1].

The current literature in this field either considers path planning for a single vehicle in

an environment with observable landmarks, or path planning for multiple communicating

vehicles without additional sensor information about the environment. While observability

analysis has been done which considers both multiple vehicles and available landmarks

in the environment [2], path planning while considering localization constraints based

on the expected uncertainty in the vehicles’ positions has not. This research presents a

possible formulation for a path planning problem with two communicating vehicles. The

environment contains stationary known landmarks, which the vehicles are able to take

bearing measurements of to estimate their relative position. An algorithm to solve the

problem is presented, as well as an associated heuristic. A vehicle model with an Extended

Information filter to estimate position is described, as well as a method to estimate the

error associated with the position. Finally, results based on the algorithm and heuristic are

discussed.

2

2. LITERATURE REVIEW

Over the past decade, there has been a substantial interest in control and path planning

for unmanned vehicles (UVs). UVs are useful for a wide variety of applications rang-

ing from power line inspection [3] to air quality measurements [4] to border surveillance

[5]. One specific area of research related to UVs has been path planning when faced by

localization constraints. Often, UVs will have absolute position information from GPS

measurements. In some cases, however, GPS information may not be available due to ei-

ther operating in a GPS denied environment, or a lack of GPS capability on the UV. In lieu

of GPS, other localization techniques may be employed. The simplest technique is dead-

reckoning, which extrapolates an estimate of the vehicles current position relative to a pre-

vious known or estimated position based on velocity estimates from an internal accelerom-

eter or IMU (Inertial Measurement Unit). While simple to implement, error is propagated

quickly in a dead-reckoning estimate. Calibration errors and noise in controllers and IMU

information mean that initially small errors grow rapidly, rendering dead-reckoning alone

useless for many applications that require localization estimation. To overcome this, dead

reckoning position estimates are often fused with other techniques in an attempt to cre-

ate more robust localization techniques. One popular technique, Simultaneous Location

and Mapping (SLAM), generates a map of the environment and its current position as it

travels. SLAM often operates using computer vision or range measurements, and often

requires additional onboard processing equipment. However, its versatility, especially in

a feature-rich environment, has made a popular technique. Other localization techniques

attempt to combine the dead-reckoning estimate with other measurements using filtering

or probabilistic techniques. Measurements may be taken relative to landmarks of known

location, or multiple UVs may be working together and sharing information to perform

3

cooperative localization in order to minimize error propagation. Several works deal with

the observability of vehicles when using such techniques.

In a 2D reference frame, three independent measurements typically are necessary for

complete observability. However, in some configurations, two beacons is sufficient to

localize a moving vehicle [6]. Several works ([7, 8, 9, 2]) provide similar analysis of the

local observability when a system is not fully observable. Even when not sufficient for

full observability, bearing measurements can provide a significant improvement in state

estimation [7].

When performing localization, there is always an uncertainty associated with the po-

sition and orientation estimate, or pose, of the vehicle. With GPS measurements, this

uncertainty may be relatively constant, but when relative localization techniques are used,

the uncertainty depends on the previous uncertainty used to generate the current position

estimate, and the uncertainty associated with the measurements used to estimate the cur-

rent position. In addition to knowing the position estimate, it is also important to know the

uncertainty associated with the position estimate. Combining the estimate and uncertainty

produces a region of varying size where the UV is likely to be, centered at the maximum

likelyhood location, which is useful for path planning and collision avoidance.

Mourikis and Roumeliotis [10] develop techniques to predict upper bounds on posi-

tioning uncertainty for networks of mobile robots performing cooperative localization. If a

single vehicle in the network has access to GPS or other absolute positioning information,

the uncertainty in the position uncertainty of all the vehicles in the network converges with

time, and one can find an upper bound on this uncertainty. However, if there is no absolute

information available and only relative position measurements are made, the error bounds

will continue to increase over time. Relative position measurements consist of both a bear-

ing and range measurement, as well as an absolute orientation measurement. Hence, for

this system, a single relative position measurement is sufficient for complete observability.

4

When path planning with restricted GPS information, it is often necessary to consider

localization constraints and reduce position uncertainty. In these cases, the path plan-

ning problems include objectives or constraints to maximize observability, or to bound

the uncertainty. Several papers address the problem of single vehicle path planning with

localization constraints [11, 12]. In some cases, Simultaneous Localization and Mapping

(SLAM) techniques are used in conjunction with path planning techniques to determine

an optimal path [13, 14]. Prentice and Roy develop a Belief Roadmap for a region with

known landmarks with nodes determined by Probabilistic Random Sampling. In order to

reduce computational time, the covariance of the Extended Kalman Filter is factored and

a transfer function to calculate covariance in a single step is developed [12].

Multi-vehicle path planning has also been addressed [15, 16], where some vehicles

are denied absolute positioning information. These methods typically attempt to maintain

complete observability of the vehicles and deal with the paths of the vehicles relative to

each other rather than to the final location, which can result in longer paths and may not

be feasible when the vehicles have separated origin or goal waypoints. Additionally, these

methods typically only consider measurements relative to each other, and do not attempt

to take advantage of measurements to external landmarks that may be available to improve

localization.

5

3. PROBLEM STATEMENT

This fundamental path planning problem considers a top-down view of two vehicles

traversing a region. A target vehicle and beacon vehicle must each travel from specified

starting locations to specified goal locations. The target vehicle does not have GPS, and

so it must rely on the landmarks or other nearby vehicles to localize its position. The

beacon vehicle is equipped with GPS and can assist the target vehicle in localization while

the vehicles travel. The path of both the target and the beacon vehicles are not initially

specified. The objective of the problem is to find optimal paths for both the vehicles such

that the maximum uncertainty in estimating the position of the target vehicle along the is

minimized, and the total path length is also considered. In order to simplify the problem,

the motion of the vehicles is restricted, and graph-based approach is used. A grid overlays

a map of the environment containing known landmarks. Each vertex of the grid is used as

a possible waypoint for both the target vehicle and the beacon vehicle. Vehicles can travel

up, down, left, or right to neighboring vertices on the grid. To further limit the complexity

of the problem, only one vehicle may move at a time. While one vehicle is traveling,

the other vehicle will loiter at its current location. Once a vehicle reaches another vertex,

it can travel again, or it can loiter while the other vehicle travels (Fig. 3.1). Only one

vehicle at a time is allowed to occupy any given waypoint. Because the problem deals

with localization uncertainty, it is also necessary to account for this in the graph-based

approach. Depending on the position of the target vehicle relative to the beacon vehicle

and fixed landmarks, the position uncertainty of the target vehicle will change. Position

uncertainty is discretized into ranges referred to as error levels. When the final uncertainty

of the target vehicle position is calculated after traveling an edge, the error is rounded up

to the nearest error level, based on a preselected error increment size inc as shown in Fig.

6

Active Beacon Vehicle Waypoint

Active Target Vehicle Waypoint

Optional Vehicle Waypoint

1

2

5

3

4

7

8

6

9

10

Figure 3.1: Ordered Target and Beacon Vehicle Paths. c©2017 IEEE [1]

3.2. Each vertex of the graph will consist of the target vehicle location, the beacon vehicle

location, and the error level of the target vehicle. Fig. 3.3 shows possible changes in the

error level as the target and beacon vehicles traverse the first section of the path in Fig.

3.1.

The beacon vehicle is assumed to have absolute positioning information, such as from

GPS, and negligible position error. The target vehicle does not have any absolute position

information. At each timestep it utilizes an Extended Kalman Filter (EKF) to first pre-

dict its current state with accelerometer measurements and previous state estimates, then

updates that prediction with bearing readings from landmarks or the beacon vehicle, if in

range.

Error levels are determined based on the Extended Kalman filter. The maximum eigen-

value of the covariance matrix corresponding to position error generated by the EKF is

used to determine the error level. The objective is to plan a path for the target and beacon

vehicles such that they each arrive at their respective goal destinations, and the maximum

intermediate error of the target vehicle is as low as possible. This is accomplished using a

7

1

2

3

4

5
Error Level

Figure 3.2: Position uncertainty is rounded up to the next error level.

tj tk tl

e5

e7

e4

e2

e4bp

bp

bp to bq

br to bsbq to br

br

t - Target Vehicle location
e - Error level

b - Beacon Vehicle Location

ti

e1

e2

bs

Figure 3.3: Error levels as target and beacon vehicles travel. c©2017 IEEE [1]

8

shortest path algorithm that starts by searching vertices at the lowest error level and adds

higher error level vertices until a feasible path is found. The method in this paper does

not directly consider observability, however observability does effect the localization er-

ror, which is considered. Vehicles will likely travel through regions with fewer than two

bearing measurements available, and depending on landmark distribution may never be

fully observable [1].

9

4. MODEL DESCRIPTION

A Matlab model is used to simulate vehicle travel. The model was utilizes a variant of

an Extended Kalman Filter to predict the vehicle states, then update them based on external

sensor information [17]. Both the target and beacon vehicle positions are determined in

this manner, however, the beacon vehicle receives absolute position information at each

timestep, while the target vehicle receives only bearing information. The true state of

the two vehicles is Xk = [xt yt ψt xb yb ψb]
T , where x and y are the position, and ψ is

the heading of the target vehicle t and the beacon vehicle b. There is also X̂k, the state

estimated by the filter. The state at timestep k + 1 can be written as

Xk+1 = Xk+

Vt,k ∗ cos(ψk)

Vt,k ∗ cos(ψk)

ψt,k+1

Vb,k ∗ cos(ψk)

Vb,k ∗ cos(ψk)

ψb,k+1

(4.1)

With no turn radius constraint, the controller always attempts to set the heading towards

the next waypoint. In order to estimate current state, an Information Filter (IF) is used.

The IF is a variant on the Extended Kalman filter, and employs prediction and update steps

to first estimate the position based on the the previous position and IMU information about

velocity and orientation, then updates that estimate with any available bearing information.

If bearing information is available, the filter will combine the information from the position

and update steps in a way that minimizes the covariance. Using an Extended Information

10

filter instead of a standard Extended Kalman filter makes calculating multiple updates for

a single timestep faster, but is mathematically identical to the Extended Kalman filter. The

information vector ŷk and information matrix Yk are related to the state estimate X̂k and

covariance matrix Pk of the Extended Kalman filter as follows:

Yk = P−1
k (4.2)

ŷk = YkX̂k (4.3)

The Information filter consists of two steps. The first step predicts the state based on

the previous state and IMU information.

Yk+1|k = (FkY
−1
k|k F

T
k +BkQkB

T
k)−1 (4.4)

ŷk+1|k = Yk+1|kX̂k+1|k (4.5)

X̂k+1|k = Xk|k + tsf(X̂k|k, uk) (4.6)

Fk is the system Jacobian and is derived from 4.1 to be

Fk =

F1 0

0 F2

 (4.7)

where

Fi =

1 0 −Vitssin(ψ)

0 1 Vitscos(ψ)

0 0 1

 |i = 1, 2 (4.8)

11

Bk =

tscos(ψt,k) 0

tssin(ψt,k) 0

0 ts

tscos(ψb,k) 0

tssin(ψb,k) 0

0 ts

(4.9)

Q =

σ2
v 0

0 σ2
w

 (4.10)

If bearing measurements are available, the update step is performed. Bearing mea-

surements µij are taken relative to the current position and heading of vehicle i and the

position of landmark or vehicle j. In the simulation, they are measured as:

ηij = tan−1

(
yj − yi
xj − xi

)
− ψi (4.11)

The bearing estimate hij(xk+1|k) is similar to the measurement ηij . For bearing esti-

mates between the two vehicles i and j,

hij = tan−1

(
ŷj − ŷi
x̂j − x̂i

)
− ψ̂i (4.12)

For bearing estimates between a single vehicle i and a landmark j of a known position,

hij = tan−1

(
yj − ŷi
xj − x̂i

)
− ψ̂i (4.13)

12

The update step is:

Yk+1|k+1 = Yk+1|k +
∑

HT
ij|kσ

−1
ij Hij,k (4.14)

ŷk+1|k+1 = ŷk+1|k +
∑

Hij,kR
−1 × (µ+Hij,k

ˆ̄Xk) (4.15)

where µij = ηij − hij(xk+1|k) is the difference between the measured bearing ηij and

estimated hij(xk+1|k) bearing of landmark or vehicle j relative to vehicle i.

Hij is the measurement Jacobian, and is defined as:

Hij|k =
∂hij
∂X
|X=Xk

(4.16)

For bearing estimates from the vehicle i to vehicle j (the target and beacon vehicles,

in either order)

Hij = [Hij,1 Hij,2]′ (4.17)

Hij,1 =

[
(ŷj − ŷi)

(x̂j − x̂i)2 + (ŷj − ŷi)2
,

−(x̂j − x̂i)
(x̂j − x̂i)2 + (ŷj − ŷi)2

,−1

]
(4.18)

Hij,2 =

[
−(ŷj − ŷi)

(x̂j − x̂i)2 + (ŷj − ŷi)2
,

(x̂j − x̂i)
(x̂j − x̂i)2 + (ŷj − ŷi)2

, 0

]
(4.19)

For bearing estimates from vehicle i to landmark j,

Hij =

[
(yj − ŷi)

(xj − x̂i)2 + (yj − ŷi)2
,

−(xj − x̂i)
(xj − x̂i)2 + (yj − ŷi)2

,−1

]
(4.20)

The sequence of prediction and update steps produces an estimate of the position of

each vehicle at each timestep, and the corresponding covariance matrices provide a mea-

sure of the uncertainty associated with that estimate.

13

GPS information is provided to the beacon vehicle as an additional measurement,

where

HGPS =

1 0 0

0 1 0

0 0 0

 (4.21)

and the measurement are the coordinates of the beacon vehicle. This model was used

in Matlab [17], and the error estimation is based off of the covariance of the Extended

Information filter.

14

5. ERROR LEVEL ESTIMATION

5.0.1 Overview and Model-Based Estimation

As discussed in the previous chapter, a discrete time system is used for a vehicle model,

and an information filter is used to improve positioning accuracy by using bearing esti-

mates. The simplest approach to determining error levels is by using the same model that

is used for simulation. The simulation is run over each edge, with position uncertainty of

inc × level used to initialize the covariance matrix, where inc is the error increment and

level is the error level associated with the starting vertex, up to a maximum error level n.

Initial heading uncertainty σψ,0 is held constant across all error levels. The final error of

the edge is determined by
√
λmax, where λmax is the largest eigenvalue of the covariance

matrix corresponding to position uncertainty. Each edge is simulated multiple times and

the median covariance used. One limitation of using position covariance as the measure of

uncertainty is that σφ is held constant. Error growth in the prediction stage of filtering is

primarily dependent on orientation and velocity error. However, in simulation, orientation

uncertainty follows the same patters as position uncertainty. When position uncertainty is

kept reasonably low, orientation uncertainty also remains low. In simulation, assuming a

reasonable constant initial uncertainty produces reasonable results, but does mean that the

final error level is not a bound.

If the target and beacon vehicles occupy the same location on the grid, or a vehicle

will travel outside the grid after traveling along an edge, the edge is not created. Up to

eight edges are created from each vertex, with the target or beacon vehicle traveling to an

adjacent waypointwhile the remaining vehicle loiters.

If the error level matrix is generated ahead of time in Matlab via simulation, a value

must be assigned for every edge, even those that it may not be possible to reach. Calculat-

15

ing the error level matrix is the computationally expensive part of the problem. An X by

Y grid with n error levels will have approximately 4(XY)2 ∗ n edges to simulate. Many

of these edges are duplicates that need only be calculated once, but the cost of finding the

error level matrix increases rapidly with the number of edges. For the 15x8 grids used in

simulations, calculating the error levels takes approximately 90 minutes per grid depend-

ing on landmark density. Error levels were calculated in Matlab running parallel loops on

a quad core Intel i5 CPU. In addition to the runtime, the resulting array also requires a

sizeable amount of memory.

5.0.2 Factoring the Covariance

To improve the performance of the algorithm and reduce the resource requirements for

the error estimation, it is desirable to develop a faster function that can be called inside

the algorithm each time an error level is needed. Because error levels are computed only

as they are needed in the algorithm presented, it is not necessary to generate and store

a matrix containing the error levels for every single possible edge. Even for the integer

programming formulation, which requires all error levels ahead of time, the computation

below is faster than Matlab simulation. The first step is to simplify the model. By making

some assumptions about the beacon vehicle, a more computationally efficient algorithm

can be developed. Recall that while it is subject some controller error, the uncertainty in

the positioning of the beacon vehicle is always very low due to GPS information. If the

beacon vehicle position error is assumed negligible in simulation, the beacon vehicle can

be treated as another landmark. If the target vehicle is traveling and the beacon vehicle is

loitering, the beacon vehicle can be treated as a single stationary landmark. If the beacon

vehicle is traveling in direction φ with velocity Vj while the target vehicle loiters, the

16

beacon vehicle can be treated as a landmark whose position at timestep T is given as

Xj =

x0

y0

+ T ∗

V ∗ ts ∗ cos(ψ)

V ∗ ts ∗ sin(ψ)

 (5.1)

where [x0 y0]T is the starting point of the beacon vehicle along the edge. If Vj = 0, the

equation reduces to the stationary case [x0, y0]′.

Using the simulation model to calculate error levels has several drawbacks. The results

it produces vary if an edge is simulated multiple times, it can be difficult to incorporate

individual edge cost calculation directly into the algorithm, meaning that the entire matrix

of error levels may need to be pre-generated, and the simulation may be slower than other

methods. For the model used in this research, the inverse of 6 × 6 matrices must be

taken at every step, which is an expensive operation. Performance can be improved by

implementing part of the results found in [12] and factoring the covariance updates. This

removes the need for matrix inverses at each timestep and producing consistent results

independent of random noise in the system.

In order to implement the factored covariance, the target vehicle is assumed to be

at its maximum likelihood position (xi, yi). When is moving, it is assumed to be along

the straight edge, and when loitering, it is assumed to hold a constant position. When

combined with the assumption about beacon vehicle position described previously, this

means that the position of both vehicles is assumed (although there is still an uncertainty

associated with the target vehicle position). A summary of the derivation and results from

[12] are included below.

From [18],

17

Lemma 1.

(A+BC−1)−1 = (ACC−1 +BC−1)−1 = C(AC +B)−1 (5.2)

Theorem 2. The covariance matrix P of the target vehicle can be factored as P = UV −1,

where Uk+1 and Vk+1 are found from the Extended Kalman Filter process as linear func-

tions of Uk and Vk

Proof. Proof by induction

Base Case. The theorem is trivially true, as

P0 = U0V0 = P0I
−1 (5.3)

Induction Step Given

Pk = UkV
−1
k (5.4)

Recall equation 4.2 and 4.4

Yk = P−1
k

Ȳk = (FkY
−1
k F T

k +BkQkB
T
k)−1

then

P̄k+1 = Fk+1PkF
T
k+1 +Bk+1Qk+1B

T
k+1 (5.5)

Let Rk = BkQkB
T
k (5.6)

P̄k+1 = Fk+1UkV
−1
k F T

k+1 +Rk+1 (5.7)

P̄k+1 = (Fk+1Uk)(F
−T
k+1Vk)

−1 +Rk+1 (5.8)

18

From 5.2

P̄k+1 =
((
F−Tk+1Vk

) (
Fk+1Uk +Rk+1

(
F−Tk+1Vk

))−1
)−1

(5.9)

P̄k+1 =
(
D̄k+1Ē

−1
k+1

)−1 (5.10)

⇒ P̄k+1 = Ēk+1D̄
−1
k+1 (5.11)

Where D̄k+1 = F−Tk+1Vk and Ēk+1 = Fk+1Uk +Rk+1

(
F−Tk+1Vk

)
.

This factored form of P̄k+1 is preserved while maintaining the update process. Similarly,

recalling equation 4.14

Ȳk+1 = Ȳk +
∑

HT
ij,kσ

−1
ij Hij,k

Then

P̄k+1 =
(
P̄−1
k +

∑
HT
ij,kσ

−1
ij Hij,k

)−1

(5.12)

Letting Mk =
∑
HT
k σ
−1
t Hk and substituting in equation 5.11

Pk+1 =
(
D̄k+1Ē

−1
k+1 +Mk+1

)−1 (5.13)

From 5.2

P̄k+1 = Ēk+1

(
D̄k+1 +MtĒk+1

)−1 (5.14)

⇒ P̄k+1 = Uk+1V
−1
k+1 (5.15)

where Uk = Ēk and Vk = D̄k+MkĒk
. Collecting terms,

Uk+1 = Ēk = F̄k+1Uk +Rk+1(F−Tk+1Vk) (5.16)

19

and

Vk+1 = D̄k+1 +Mk+1Ēk+1 (5.17)

= F−Tk+1Vk +Mk+1(Fk+1Uk +Rk+1 +Rk+1(F−Tk+1Vk)) (5.18)

Collecting terms again, the expression can be rewritten as,

U
V

k+1

=

 0 I

I M

k+1︸ ︷︷ ︸

A1|k+1

 0 F−T

F RF−T

k+1︸ ︷︷ ︸

A2|k+1

U
V

k

(5.19)

The factorization method can be initialized using equation 5.3. Note that only M in

A1 changes as an edge is traversed, and A2 remains constant along an edge. Furthermore,

in order to calculate A1, it is not necessary to take a matrix inverse. The final covariance

can then be calculated as

Pk = UkV
−1
K (5.20)

where

[
U V

]
k

= A1|kA2 ∗ A1|k−1A2 ∗ ... ∗ A1|1A2 ∗

P0

I

 (5.21)

Calculating error using this method is significantly faster than finding it directly from

the simulation, and provides consistent results.

20

6. INTEGER PROGRAM FORMULATION

One possible approach is to formulate and solve the path planning problem as an inte-

ger program. The integer program considers edges connecting adjacent vertices and finds

a set of active edges that connect the origin state to the goal state. The first edge of the

path should start with the target and beacon vehicles at their respective origin positions,

and the last edge should end with the target and beacon vehicles at their respective goal

positions. The intermediate edges should form a continuous path (Fig. 3.3).

There are two types of edges. A beacon edge refers to an edge where the beacon

vehicle travels from i to j, the target vehicle loiters a waypoint u, and the error level of the

target vehicle changes from x to y. A beacon edge is expressed as βijuxy. A target edge

refers to an edge where the target vehicle travels from u to v, the beacon vehicle loiters

at waypoint i, and the error level of the target vehicle changes from x to y. A target edge

is expressed as τiuvxy. Target edges and beacon edges are binary, taking a value of one if

the edge is part of the optimal solution, and zero otherwise. The uncertainty level of the

target vehicle at its origin waypoint is initially assumed to be one, although this can be

changed in the problem formulation. The origin set So1 consists of all target and target

edges entering an origin vertex. The set Sg1 consists of all target and target edges entering

a goal vertex. Similarly, the sets So2 and Sg2 consists of the edges exiting an origin vertex

and a goal vertex, respectively.

An integer programming formulation of the path planning problem is shown below.

21

Minimize T

s.t.

− T + y ∗ τiuvxy ≤ 0 ∀t (6.1)

− T + y ∗ βijuxy ≤ 0 ∀b (6.2)∑
u,x

τjuvxy +
∑
i,x

βijvxy

−
∑
u,x

τjvuyx −
∑
i,x

βjivyx = 0 τ, β /∈ So2 and τ, β /∈ Sg1 (6.3)

∑
τ∈So2

τ +
∑
β∈So2

β = 1 (6.4)

∑
τ∈Sg1

τ +
∑
β∈Sg1

β = 1 (6.5)

∑
τ∈So2

τ +
∑
β∈So1

β = 0 (6.6)

∑
τ∈Sg2

τ +
∑
β∈Sg2

β = 0 (6.7)

τ, β are binary

This objective minimizes the maximum error level of the path. Once T is found, the

program can be run again with the shortest path objective and an additional constraint on

the vertex error level. Constraints 6.1 and 6.2 define T , the variable in the objective used to

minimize the maximum error level. Constraint 6.3 states that for all intermediate vertices,

the number of edges entering a vertex must be equal to the number exiting. A vertex is

entered when either a beacon or target vehicle travels to a new waypoint resulting in the

state corresponding to the vertex, and exited when either vehicle travels again resulting in

a new state. Constraints 6.4 and 6.5 state that either a target edge or beacon edge must

22

exit the origin vertex, and either a target edge or beacon edge must enter the final vertex.

Finally, constraints 6.6 and 6.7 prevent loops back to the origin and goal vertices that

would satisfy 6.3 instead of forcing a complete path by preventing edges from entering an

origin vertex or exiting a goal vertex.

This formulation finds the lowest possible maximum error level. Modifying the objec-

tive to Minimize T + α(
∑
τ +

∑
β) for α� 1 finds the shortest path whose maximum

error level does not exceed the maximum error level T associated with the original objec-

tive value.

This program was implemented and tested using the Julia programming language and

Gurobi. It produced paths with objective values identical to the paths produced by the

shortest path algorithm. However, the solution time for finding an optimal solution using

this integer programming approach increased rapidly as the number of waypoints on the

grid was increased. In the next section, we propose a faster, more efficient algorithm to

directly solve the path planning problem with a single goal for each vehicle.

23

7. ALGORITHM*

Algorithm 1 Shortest Path Algorithm
1: procedure SHORTESTPATH

2: create vertex PriorityQueue Q

3: create vertex sets C[], R[]

4: for level = 1 : numlevels do
5: for r in R[level] do
6: Add r to Q with priority dist[r] + length(r, goal)

7: add v(to, bo, level) to Q with priority 0

8: while Q is not empty do
9: remove lowest priority vertex u from Q

10: if u is a goal vertex then
11: return prev, dist, u

12: for all vertices v adjacent to u do
13: if v.e ≤ numlevels then
14: cost = dist[u] + length(u, v)

15: est = cost+ length(v, goal)

16: if v is not in C[v.error] then
17: if v.e ≤ level then
18: add v to Q with priority est

19: else
20: add v to R[v.error]

21: dist[v] = cost

22: prev[v] = u

23: add v to C[v.error]

24

Algorithm 1 Continued
24: else
25: if cost < dist[v] then
26: dist[v] = cost
27: prev[v] = u
28: if v is in Q then
29: update priority of v to est
30: else if v.e ≤ level then
31: add v to Q with priority est

The path planning problem can also be formulated as a dynamic program. A modified

shortest path algorithm described here solves the dynamic problem by exploring adjacent

vertices in an efficient way to produce an equivalent solution to the integer program. ∗ The

algorithm is a modified version of A∗, but the entire accessible region will be searched at

each error level before searching higher error levels. Limiting the searched region is dis-

cussed later in this section. This algorithm runs much faster than the integer programming

formulation.

The positions of the target and beacon vehicles are placed as vertices on a directed

graph. The vertices’s states are composed of [t, b, error], where t is the target vehicle

position, b is the beacon vehicle position, and error is the error level of the target vehicle.

For two connected vertices, either t or b will change, but not both. error is based on the

error estimation results. An origin vertex is a vertex [to, bo, error] where to and bo are the

origin locations of the target and beacon vehicles, and error is any error level. Similarly,

a goal vertex is any vertex [tgoal, bgoal, error] where tgoal and bgoal are the goal locations of

the target and beacon vehicles, and error is any error level. Typically the optimal path will

contain an origin vertex at error level one. If the initial position is uncertain, the algorithm

∗Reprinted with permission from “A grid-based path planning approach for a team of two vehicles with
localization constraints” by M. Garber, S. Rathinam and R. Sharma, 2017. 2017 International Conference
on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 2017, pp. 516-523, Copyright 2017 by IEEE.

25

a,1

b,1

f,3

i,3

d,2

h,2

j,3
3

1

3

2

1

1

Goal Vertex

Origin Vertices

1

c,2

e,3 g,12

Figure 7.1: Example of a graph solved using the shortest path algorithm. Nodes are visited
in order from a to k. Error levels are shown in each vertex. All edge costs are one. c©2017
IEEE [1]

can be modified to start with a higher error level.

7.0.1 Implementation Details

Fig. 7.2 shows the process of the algorithm. The algorithm is initialized by setting

the active error level to one and adding the origin vertex with the active error level to the

priority queue Q. If the initial error level is higher, the active error level can be adjusted

appropriately. After initialization, the vertex u with the lowest estimated cost is removed

from Q and explored (initially the origin vertex). For this problem, cost is measured by

length of the path, with all edges having length one. The estimated cost is the length of the

path to the current vertex, plus the shortest path following the grid edges from the current

vertex to the goal locations. length(i, j) is the sum of the shortest possible path for the

target and beacon vehicles traveling along grid edges from vertex i to vertex j.

Vertices vi that can be reached directly from u are examined. Any vi with no current

cost, or with a current cost greater than the sum of current cost of u and the cost from u

to vi is updated to reflect the lower cost and corresponding path. If the error level of an

26

Start at error
level l=1

Push origin node
at level l into Q

with priority
cost(u,goal)

Is R[l] empty?
Push nodes v from R[l]

into Q with priority
dist[v]+cost(v,goal)

Remove the lowest
priority vertex from Q

and set as curr

Have all valid
directions from

curr been
explored?

Explore a new
direction, find

vertex v

Is Q
empty?

Increase
error level l

by 1

Is curr a goal
vertex?

Path
Found

Is there already
a shorter path

to v?

Is error
level(v) ≤l?

Add v to R[l]

Add v to Q at
priority

dist(v)+cost(v,goal)

Update
dist[v], cost[v]

A

AB

B
YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

Explore current vertex

Sort/Update adjacent vertices

Initialize error level

Set current vertex

Figure 7.2: Flow chart of the algorithm process.

updated vi is less than or equal to the active error level, vi is added to Q if not already

present, and its priority in Q is updated to be equal to its new estimated cost. Otherwise, it

is saved for later exploration in R[vi.error]. Once all the vertices directly reachable from

u are explored, a new u is removed from Q. This process is repeated until Q is empty, or

a path to a goal vertex is found. If no path is found, the active error level is increased by

one. Previously discovered vertices in R[active error level] with error levels equal to the

new active error level are added to Q, and the graph is explored at the current error level.

C[] is used to track which vertices have been explored.

Fig. 7.1 and Table 7.1 shows an example path explored using the algorithm. Vertex

f is explored twice. It is initially discovered and explored at error level two. A shorter

path to f is found at error level three, so f is explored again. The final path traverses

g − h− f − i− j to reach the goal vertex.

27

Table 7.1: Order of vertex exploration in Fig.7.1. c©2017 IEEE [1]

Error Vertices
Level Explored
1: a, b
2: c, d, e, f
3: g, h, f, i, j

The algorithm described finds a path for which the error level of all vertices in the path

is equal to or less than the current error level. The path found will be the shortest path

from an origin vertex to a goal vertex using only the vertices at or below the current error

level.

With minor changes to the algorithm, the objectives and constraints associated with

the problem can be changed. A path length constraint can be added by not considering

vertices that exceed an estimated final cost. An initial error level greater than one may be

specified, and if multiple paths below that error level exist, the shortest will be found. The

stopping criterion can be changed so that only the target vehicle has a goal destination.

Finally, the search could be continued to a set number of error levels above the lowest

error level with a feasible solution in order to search for shorter paths.

7.0.2 Algorithm Summary

The standard A∗ algorithm attempts to find the shortest path to a goal vertex. If it

fails to find a solution, it will explore all accessible nodes. Because the heuristic used

in this problem to estimate remaining cost can never exceed the true remaining cost, A∗

is guaranteed to find the shortest path, if it exists. However, because this problem also

considers minimizing the error level, a standard shortest path algorithm such as A∗ cannot

be used directly.

28

The objective for this problem is to first minimize the maximum error level of the

target vehicle, then minimize the total path length for that maximum error level. The path

edges for target and beacon vehicle travel can be weighted differently, but will always

be positive, that is length(vx, vy) > 0 for all connected vertices vx and vy. For paths

simulated in this article, all edges are weighted equally. Paths begin at any origin vertex

vo and consist of an ordered sequence of connected vertices. Every explored vertex has

a previous vertex associated with it that is part of its shortest path. By tracing back the

previous vertices from the goal vertex to the origin vertex, the optimal path can be found

once the algorithm is run.

So long as each vertex is connected to the previous vertex in its shortest path, the algo-

rithm is guaranteed to find an optimal solution. However, this is dependent on searching

vertices in order of lowest cost. There are two differences between the standard A∗ al-

gorithm with a priority queue and the one presented here. First, vertices are added to the

queue as they are discovered, so only vertices accessible from an origin vertex are ex-

plored. As the vertices in any path must be accessible an origin vertex (all paths start at

the source and all vertices in any path are therefore necessarily accessible from an origin

vertex), this does not affect results. Second, additional vertices are added if the vertices

that are accessible with the current error level have all been explored and no path to an ori-

gin vertex has been found. This addition of new vertices may allow access to previously

inaccessible vertices, as well as creating shorter paths to previously explored vertices.

Newly available unexplored vertices, either just added or previously inaccessible, will

be explored as normal. If the new vertices result in a new optimal path for a previously

explored vertex vi, the cost and optimal path for vi are updated as normal. However, any

vertices directly accessible from vi must also be checked again. If the vi is part of the

previously optimal path for some adjacent vertex vj , the path of vj is updated implicitly

with vi. However, the cost of vj must be updated as well. If vi was not previously part

29

of vj’s optimal path, but it becomes part of the optimal path due to the reduced cost of vi,

then both the path and cost of vj must be updated. Since vj has also been updated, it must

also be added again to the queue and re-explored. This can result in chains of updated

vertices that must be explored again when the active error level is increased. By re-adding

vertices to the priority queue whenever they are updated and exploring them along with

other vertices in order of cost, optimality of the algorithm is maintained [1].

7.0.3 Problem Setup and Tuning Parameters

There are several factors that contribute to the success of the algorithm. A maximum

path length, lmax, can be added to limit the length of the path relative to its maximum

possible length. If the total estimated cost of a vertex vi being explored exceeds lmax, that

is, the sum of cost of the current best path to vi and the shortest path cost from vi to the

goal is greater than lmax, then vi is not added to the priority queue Q. vi may be revisited

later if a shorter path to vi is found at a higher error level. This serves the dual purposes of

adding a length constraint and reducing time wasted exploring directions that lead further

from the goal, especially at error levels which must be fully explored but do not contain

a complete path from origin to goal. Typically if the target and beacon vehicles start and

end close to each other, a 1.2-1.5 times the shortest possible combined path with not have

an effect on the final path. In a few cases, this may not be true, but these cases should be

apparent from simple visual inspection.

A second parameter to be considered is the error increment size inc. A large inc

decreases the fidelity of the error estimation, meaning that two paths that result in a sig-

nificantly different final error are rounded to the same error level and treated equivalently

in the algorithm. This can lead to inferior solutions that would be significantly improved

through use of a smaller error level. On the other hand, setting the error level too low can

lead to constant backtracking, and number of error levels explored before a final solution

30

is reached may increase substantially, although the number of vertices explored per error

level will be lower. Backtracking can often be discouraged by setting a low maximum

path length, or forbidding returning to the previous target and beacon location. A large

number of error levels becomes a major limitation if it is necessary to generate error levels

ahead of time, as explored vertices are not known in advance and so error levels must be

calculated for all edges. If the error levels are calculated within the algorithm, the number

of error levels may not be an issue, although the larger number of explored vertices may

still result in an increased runtime. Edge length or grid size is also an important factor

to consider. While larger edge lengths will reduce the number of vertices that must be

explored in the graph, it also further restricts travel of the target and beacon vehicles. If

the edge length is greater than the bearing sensor range, the target vehicle will never be

close enough to the landmark vehicle to receive bearing information. The edge length

should be less Range/
√

(2), where Range is the range of the bearing sensor. Smaller

edge lengths will improve results, but also increase the number of vertices and the time to

run the algorithm.

31

8. HEURISTICS

While the shortest path algorithm presented in the previous section prodduces good

paths in a variety of situations, it can become expensive quite quickly. The upper limit

of the solve time is proportional to grid size squared, or linear proportional to the total

number of target and beacon location combinations. This means that, while the shortest

path algorithm is able to handle smaller problems, it can become impractical for path

planning over larger regions. One approach to handling this is to develop heuristics that,

while they may not find the best path, still find a satisfactory path. Towards that end, a

heuristic is presented and discussed.

8.0.1 Fixed Target Path Heuristic

The heuristic attempts to improve solve time by breaking the problem into two steps.

The first step disregards the beacon vehicle entirely, and only considers finding a path for

the target vehicle. In the second step, the modified shortest path algorithm is run, but the

target vehicle is only allowed to visit waypoints that are on the path found in the first step.

This type of algorithm typically results in paths with a comparable maximum error to the

shortest path algorithm, but slightly longer paths.

There are two possible approaches to finding the initial target vehicle path. The first ap-

proach, levels-based, is to solve the problem using the shortest path algorithm, but without

the beacon vehicle. Error levels are still used, and a vertex consists of the target vehicle

position and error level. The algorithm essentially attempts to minimize the the longest

section of the path without localization information from landmarks.

The second option is to solve the target vehicle path problem as a single layer shortest

path problem using A∗. In this case, the cost of an edge is the final error after traveling

along that edge. Error is determined using the same methods described in the previous

32

sections, but is not rounded up to the closest error level. All edges are assumed to start

at the same error level, regardless of what the final error of other edges connecting to the

edge.

The first approach has the advantage of attempting to limit the maximum error over

the entire path. This is a more conservative approach than the single layer shortest path

problem, which may choose a more direct path and depending how far from the direct

path they are, ignore all landmarks entirely. The single layer approach solves slightly

faster since there are not multiple error levels to be considered, but it also does not place

as much emphasis on the shortest path. In general, both approaches perform similarly

and produce paths similar to the direct algorithm. Typically, if a heuristic is necessary the

single layer path should be used first because of the faster solve time. If the result is not

satisfactory, the levels based approach may be used.

Once a target vehicle path is determined, the original modified shortest path algorithm

is run. However, only vertices in which the target vehicle remains on the path determined

in the first step of the algorithm are explored. The beacon vehicle is still free to roam

across the grid. Because the number of possible target vehicle waypoints is reduced, the

total number of vertices is also reduced from (# of waypoints)2 ∗ (max error level)

to (# of waypoints) ∗ (target path length) ∗ (max error levels). Since the beacon

vehicle will typically remain close to the target vehicle when possible (otherwise traveling

towards the goal), the number of these possible vertices that are actually explored drops

further.

This heuristic typically produces results with similar maximum error and slightly longer

paths than the original algorithm. In some cases the path may actually be shorter if the er-

ror level is higher. However, the heuristic will never be able to find a path with a lower

maximum error level than the shortest path algorithm.

33

9. SIMULATION*

Simulation was performed in Matlab with an EKF. 10 meter grid edges were used,

with increments of 0.1 meters per error level (inc = 0.1). The sensor range on the target

vehicle was 25 meters. The maximum error level was minimized, and the shortest path

was found that did not exceed the maximum error level.∗

9.0.1 Comparison to Greedy Algorithm

For comparison, a greedy algorithm was used to generate an alternate path. The states

for the greedy algorithm consist of the target and beacon vehicle locations [t, b]. The

greedy algorithm (1) selects the directions of travel along the grid that decrease the total

distance to the desired state, up to two for each vehicle, (2) selects the vehicle and direction

of travel from the previous step that has the lowest error level and penalties associated with

it, and (3), updates the current state and repeats steps (1)-(3) until reaching the destination.

In order to remain feasible, the greedy algorithm keeps a constant initial error level

at all vertices and uses the error levels of candidate vertices as costs. A penalty is added

to the error level proportional to the distance between the target and beacon vehicles to

increase the likelihood that they will remain within range. Because target vehicle travel

typically results in higher error levels than beacon vehicle travel, another penalty is added

to error levels for beacon vehicle travel. If a penalty is not used, the beacon vehicle will

travel to its goal before the target vehicle begins to travel.

The greedy algorithm works best if the origins and goals of the target and beacon

vehicles are close to each other. If the origins or the goals are separate the vehicles may

not even be able to get within range of each other. Furthermore, the vehicles can not move

∗Reprinted with permission from “A grid-based path planning approach for a team of two vehicles with
localization constraints” by M. Garber, S. Rathinam and R. Sharma, 2017. 2017 International Conference
on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 2017, pp. 516-523, Copyright 2017 by IEEE.

34

towards each other or regions with more bearing information if it means moving away

from their goal waypoints. If the target vehicle moves toward another landmark, it may be

impossible for the landmark and target vehicles to move back towards each other.

When finding a greedy path, if the two vehicles start separated, or are drawn apart

because the target vehicle follows stationary landmarks to lower error, they are unable

to find each other again and the advantage of cooperative localization is lost, and the

target vehicle only receives bearing information from stationary landmarks. Because of

this, the number and location of landmarks more heavily influences localization accuracy

when using the greedy algorithm. The optimized algorithm can attempt to ensure the

target vehicle is always close to the beacon vehicle or a stationary landmark, while the

greedy algorithm often must rely on the beacon vehicle or landmarks being within nearby.

By following a longer path, the localization uncertainty over the path can be decrease.

Conversely, the length of the path generated by the greedy algorithm will always be the

shortest path possible (while following the grid), but the localization error may be much

higher [1].

An example of paths generated by the greedy algorithm and optimized algorithm as

well and their position errors is shown in Figs. 9.1 and 9.2. In the greedy path, the target

and beacon vehicles alternate travel over most of the path, until position 24, when the target

vehicle travels continuously to its goal destination. The beacon vehicle then completes its

path. Vehicles often get separated when localization information from another landmark

is available,and are unable to reconnect. Vehicles take the shortest path possible along

the grid. Over the path from the modified shortest path algorithm, the target vehicle takes

a longer path in order to take advantage of bearing information from nearby landmarks.

While the overall path is longer, and the error is not always lower than that from the greedy

algorithm, the path found here does not have the large spike in error present in the greedy

algorithm path.

35

Figure 9.1: Top: Path from greedy path algorithm across a region with scattered land-
marks. Numbers indicate vehicle travel beginning at the labeled position. The target vehi-
cle travels two edge lengths from position 0, then loiters while the beacon vehicle travels
one edge length from position 2, and so forth. Large circles show the region in landmark
range. Bottom: Position error from a single simulation and the position uncertainty from
the covariance matrix are shown with vehicle position corresponding to top figure. c©2017
IEEE [1]

36

Figure 9.2: Path and error generated by modified shortest path algorithm. Error is sim-
ilar for most of the path to the greedy algorithm, but does not jump like the greedy
algorithm. c©2017 IEEE [1]

37

Figure 9.3: Beacon vehicle assisting the target vehicle, then returning near its original
location

9.0.2 Beacon Assist Vehicle

Figure 9.3 shows a scenario where the target vehicle has a goal destination across the

map, while the beacon vehicle is available to assist the target vehicle, but has its goal close

to the origin waypoints of the vehicles. The beacon can also use the same waypoint as its

origin in destination, but in the figure, the beacon origin and goal waypoints are separated

to more clearly show the path of the beacon vehicle. The beacon vehicle travels far enough

to assist the target vehicle with localization as it travels to its destination, and then returns

as the target vehicle continues to its destination. Additionally, the target vehicle takes a

longer path in order to remain within range of the stationary landmarks.

38

9.0.3 Fixed Target Path Heuristic

The paths produced by the fixed target path heuristic are typically similar to, but not

identical to, those produced by the original algorithm. Figs. 9.5, 9.6 show paths generated

by the levels based fixed target path heuristic and single layer fixed target path heuristic.

In this example, the path in figure 9.4) from the original algorithm is quite similar to the

path from the heuristic with the single layer shortest target path. The path from the levels

target path uses the bottom landmark to reduce the length of the longest section of the

target vehicle path.

9.0.4 Run Time

Run time is a limiting factor for the shortest path algorithm presented in this paper. As

shown in Fig. 9.7, solve time varies significantly with the location of landmarks, but in

worst cases increases proportionally to the square of the number of grid points, or linearly

with the total number of vertices (composed of a target location, beacon location, and error

level). When the error levels of edges are precalculated and provided to the algorithm, the

runtime is reduced to less than five percent of the values shown in Fig. 6. The variance in

solve time is typically related to the maximum error level of the path. Generally, when a

feasible path exists at a low error level, fewer vertices are explored and so the algorithm

finds a solution more quickly. Often when the algorithm runs, the first few error levels will

have relatively few vertices to be explored, typically between a few hundred and a few

thousand, depending on the size of the map and location of the landmarks. At a certain

error level, the target and beacon vehicles can travel together over a large region of the

grid, and the number of vertices to explore at that and subsequent error levels increases

by several orders of magnitude. If a solution is found before that error level, the solve

time is relatively low. If a solution is found at that error level, the solve time is higher, but

because of the estimated cost heuristic from A∗, it is not necessary to explore the entire

39

Figure 9.4: Path generated by the modified shortest path algorithm and corresponding
simulated error and covariance over a single run.

40

Figure 9.5: Path generated by the levels based fixed target path heuristic and corresponding
simulated error and covariance over a single run.

41

Figure 9.6: Path generated by the single layer fixed target path heuristic and corresponding
simulated error and covariance over a single run.

42

Figure 9.7: Solve time using the dynamic algorithm and fixed single level target path
heuristic. Maximum path length was limited to 1.5x the minimum possible path length on
the grid for the dynamic algorithm. The greater of 2 or (# of grid points)/50 landmarks
were placed randomly on the grid, with a sensor range of 25m.

43

error level. If the solution exists at an error level after then size of each error level has

increased significantly, then the algorithm takes much longer to run.

Using the single level target path heuristic, the solve time can be significantly reduced.

Fig. 9.7 shows solve time for the target path heuristic, with the initial target vehicle path

found using error as edge costs. Note the difference in scales between the two figures.

Around 600 waypoints, the worst case solutions take approximately an hour to solve, while

the largest heuristic solve time is 11 minutes, with most grids taking closer to 6 minutes.

On the other hand, there were some configurations of landmarks for which the solve time

using the original algorithm was also around 6 minutes, or even significantly less. This is

by no means guaranteed, however, and the maximum and average solve times using the

heuristic are much lower than the shortest path algorithm. The solve time also varies by

landmark density. The solve times for Figs. 9.4, 9.5, 9.6, which considered a 20 × 20

grid with 400 points were 45 seconds using the levels based fixed target path heuristic,

30 seconds using the single layer fixed target path heuristic, and 916 seconds using the

modified shortest path algorithm. In these cases, the heuristics found solutions much more

quickly than the shortest path algorithm.

44

10. CONCLUSIONS

This paper proposes a path finding algorithm for two vehicles with localization con-

straints, as well as a heuristic based on the algorithm. The problem formulation is based

on gridding the region, and discretizing the position uncertainty into discrete levels. A

method of estimating error based on factored covariance is described. Simulation vali-

dates that the methods proposed outperforms a greedy algorithm and finds paths that favor

localizable regions and result in relatively low amounts of error.

10.0.1 Limitations

The largest limiting factor is currently the computation costs. The size of the problem

grows quickly with the size of the region. As a result of this and the edge cost calculation,

the size of the region that can be reasonably considered is limited. Additionally, while

the method is well suited to many different landmark densities, it is not always the best

choice. By forcing paths along grid edges, directions that may be otherwise preferable

are not available, and initial and goal positions are limited to points on the grid. When

landmarks are dense, methods that attempt to maximize observability may serve better. If

landmarks are too sparse, it may be better to find the shortest length path using landmarks

as nodes, and sending the target and beacon vehicle side by side, or traveling in a pattern

to maximize observability similar to [15]. Vehicles are also limited to those which have a

negligible or near-negligible turning radius

10.0.2 Future Work

The current method is limited by error level calculation costs. Developing or adapting

a method to more quickly estimate error levels would allow for solving problems over

larger regions with more possible states. Additional, faster-performing heuristics could

45

also allow for path finding over larger regions. In addition to allowing for larger regions,

faster solve times would also allow for expansion of the problem. Additional vehicles

can easily be added to the states, or the states can be altered to account for both vehicles

traveling simultaneously. Doing so would increase the number of states, but the proposed

algorithm could still be applied with minor modifications. Diagonal edges could also

be considered, allowing the vehicles more flexibility in their paths. While this research

has established one possible framework for approaching the two-vehicle path planning

problem described, there is room for significant future improvement and expansion on this

work.

46

REFERENCES

[1] M. Garber, S. Rathinam, and R. Sharma, “A grid-based path planning approach for a

team of two vehicles with localization constraints,” in 2017 International Conference

on Unmanned Aircraft Systems (ICUAS), pp. 516–523, June 2017.

[2] R. Sharma, R. W. Beard, C. N. Taylor, and S. Quebe, “Graph-based observability

analysis of bearing-only cooperative localization,” IEEE Transactions on Robotics,

vol. 28, pp. 522–529, April 2012.

[3] Y. Zhang, X. Yuan, Y. Fang, and S. Chen, “Uav low altitude photogrammetry for

power line inspection,” ISPRS International Journal of Geo-Information, vol. 6,

p. 14, Jan 2017.

[4] T. F. Villa, F. Gonzalez, B. Miljievic, Z. D. Ristovski, and L. Morawska, “An

overview of small unmanned aerial vehicles for air quality measurements: Present

applications and future prospectives.,” Sensors (14248220), vol. 16, no. 7, pp. 1 – 29,

2016.

[5] A. R. Girard, A. S. Howell, and J. K. Hedrick, “Border patrol and surveillance mis-

sions using multiple unmanned air vehicles,” in 2004 43rd IEEE Conference on De-

cision and Control (CDC) (IEEE Cat. No.04CH37601), vol. 1, pp. 620–625 Vol.1,

Dec 2004.

[6] P. Bonnifait and G. Garcia, “Design and experimental validation of an odometric and

goniometric localization system for outdoor robot vehicles,” IEEE Transactions on

Robotics and Automation, vol. 14, pp. 541–548, Aug 1998.

[7] A. Martinelli and R. Siegwart, “Observability analysis for mobile robot localiza-

tion,” in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,

47

pp. 1471–1476, Aug 2005.

[8] I. Shames, A. N. Bishop, and B. D. O. Anderson, “Analysis of noisy bearing-only

network localization,” IEEE Transactions on Automatic Control, vol. 58, pp. 247–

252, Jan 2013.

[9] S. Wang, L. Chen, H. Hu, and D. Gu, “Single beacon based localization of auvs

using moving horizon estimation,” in 2013 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp. 885–890, Nov 2013.

[10] A. I. Mourikis and S. I. Roumeliotis, “Analysis of positioning uncertainty in reconfig-

urable networks of heterogeneous mobile robots,” in Robotics and Automation, 2004.

Proceedings. ICRA ’04. 2004 IEEE International Conference on, vol. 1, pp. 572–579

Vol.1, April 2004.

[11] S. D. Bopardikar, B. Englot, and A. Speranzon, “Multiobjective path planning: Lo-

calization constraints and collision probability,” IEEE Transactions on Robotics,

vol. 31, pp. 562–577, June 2015.

[12] S. Prentice and N. Roy, “The belief roadmap: Efficient planning in belief space by

factoring the covariance,” The International Journal of Robotics Research, vol. 28,

no. 11-12, pp. 1448–1465, 2009.

[13] R. Valencia, J. Andrade-Cetto, and J. M. Porta, “Path planning in belief space with

pose slam,” in 2011 IEEE International Conference on Robotics and Automation,

pp. 78–83, May 2011.

[14] H. K. Nguyen and M. Wongsaisuwan, “A study on unscented slam with path plan-

ning algorithm integration,” in 2014 11th International Conference on Electrical En-

gineering/Electronics, Computer, Telecommunications and Information Technology

(ECTI-CON), pp. 1–5, May 2014.

48

[15] Y. T. Tan, R. Gao, and M. Chitre, “Cooperative path planning for range-only localiza-

tion using a single moving beacon,” IEEE Journal of Oceanic Engineering, vol. 39,

pp. 371–385, April 2014.

[16] M. Suresh and D. Ghose, “Group coordination and path replan tactics in gps de-

nied environments,” in 2016 International Conference on Unmanned Aircraft Sys-

tems (ICUAS), pp. 31–39, June 2016.

[17] R. Sharma, S. Quebe, R. Beard, and C. Taylor, “Bearing-only cooperative local-

ization: Simulation and experimental results.,” Journal of Intelligent and Robotic

Systems: Theory and Applications, vol. 72, no. 3-4, pp. 429–440, 2013.

[18] D. Vaughan, “A nonrecursive algebraic solution for the discrete riccati equation,”

IEEE Transactions on Automatic Control, vol. 15, pp. 597–599, Oct 1970.

49

