
AN ENERGY FORMULATION OF SURFACE TENSION OR WILLMORE FORCE

FOR TWO-PHASE FLOW

A Dissertation

by

SPENCER ROBERT PATTY

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Andrea Bonito
Committee Members, Jean-Luc Guermond

Anastasia Muliana
Jay Walton

Head of Department, Emil Straube

August 2017

Major Subject: Mathematics

Copyright 2017 Spencer Robert Patty

ABSTRACT

The motion of a biological cell in liquid is a rich subject for modeling. In the early

1970’s, it was realized by Canham that biological vesicles with lipid bilayer membranes

reach a steady state shape that minimizes bending. Helfrich soon after mathematically

quantified the related bending energy and showed that the shapes from minimizing this

bending energy match the types of shapes observed in nature. The resulting Canham-

Helfrich energy, consisting of bending energy and a constant surface area and volume

constraint, is a major component of any model of cellular motility.

To this end, we consider the cellular vesicle to be a closed interface between two fluids

and we present a finite element model for a two-phase flow coupling the minimization of

some given energy defined on the interface to the incompressible flow of the two fluids,

which is then advected according to the resulting velocity field. We provide a general

framework for incorporating the energies on the interface and then focus on three appli-

cations of energy on the interface: the first is surface tension minimizing the surface area

energy, the second minimizes the bending energy without explicit surface area or volume

constraints, the third minimizes the Canham-Helfrich energy including the constraints. We

present a semi-implicit model for bending energy which uses an implicit levelset formu-

lation for the interface and couples the forces from the interface to the two phase incom-

pressible Navier-Stokes system through the use of an approximate Dirac delta function

defined on a band around the interface. By using energies to describe the motion, our

model is immediately provided with a sense of energy stability.

We provide various numerical simulations and validations of flow under these three

energies in two and three dimensions. Our simulations confirm that enforcing the volume

constraint in the incompressible flow is vital to achieve the desired steady state shapes.

ii

DEDICATION

To my Grandma and Grandpa Smutney who taught me the value of an education and to

my wife who has stood by me through thick and thin on this journey we call a PhD, I

dedicate this work. I love you so much! Thank you all for your sacrifices on my behalf!

iii

ACKNOWLEDGMENTS

I am grateful to my advisor, Andrea Bonito, for his patience and the many insgihtful

discussions through the years. I have learned much from you! I am also grateful to my

other committee members for their insights and contributions to this work. I have enjoyed

many discussions with various other students and professors at Texas A&M that have

given me opportunity to see new perspectives on the use of math and scientific computing

to describe the world.

I am grateful to my parents for always encouraging me when times were tough and

rejoicing with me when I had little victories. I am especially grateful to my wife, Keri, for

being my constant companion and keeping my life at least somewhat balanced. You are a

light in my life and because of you, I have been able to accomplish and experience more

in the last few years than I would ever have been able to do on my own. I am grateful to

my two little girls, Camille and Corinne, for helping me see the world through their eyes

of wonder.

Finally, I am grateful for the other friends and family that have been such good influ-

ences through the last few years. My family and I have been blessed by good friends that

have helped us have fun and keep strong!

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Andrea

Bonito, Professor Jean-Luc Guermond and Professor Jay Walton of the Department of

Mathematics and Professor Anastasia Muliana of the Department of Mechanical Engi-

neering.

All the work conducted for the dissertation was completed by the student indepen-

dently.

Funding Sources

Graduate study was supported by a fellowship from Texas A&M University and par-

tially funded through the National Science Foundation under the grant DMS-1254618.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES v

TABLE OF CONTENTS . vi

LIST OF FIGURES . xi

LIST OF TABLES . xvii

1. INTRODUCTION . 1

2. LEVEL SET METHOD . 5

2.1 Level set filters . 10
2.1.1 Sinusoidal level set filter . 12
2.1.2 Hyperbolic tangent level set filter 13
2.1.3 Distance function with thresholding for level set filter 15

2.2 Level set reinitialization . 17
2.2.1 A continuous approach to reinitialization 20

2.3 Spatial and temporal discretization notation 22
2.3.1 Temporal discretizations . 25
2.3.2 Adaptive time stepping . 26

2.3.2.1 The CFL number and the Coupez reinitialization param-
eter, λ . 27

2.4 Level set stabilization . 29
2.4.1 General explicit entropy viscosity method 29
2.4.2 Entropy viscosity stabilization for the level set method 33

2.5 Semi-discrete and fully-discrete formulations with stabilization 35
2.5.1 Semi-discrete formulation . 35
2.5.2 Time integration schemes . 36

2.5.2.1 Strong stability preserving property 36

vi

2.5.2.2 Butcher tableau representation of explicit Runge-Kutta
schemes . 38

2.5.2.3 Alpha-Beta representation of explicit SSP Runge-Kutta
schemes . 43

2.5.3 Fully-discrete formulation of stabilized level set equation 46
2.5.3.1 Artificial viscosity using Butcher tableau algorithm . . . 48
2.5.3.2 Artificial viscosity using α− β algorithm 49

2.6 Choosing parameters for level set method 50
2.6.1 Some implementation details . 50
2.6.2 Optimal level set filter parameters 50
2.6.3 Optimal CFL and spatial adaptivity parameters 51
2.6.4 Optimal reinitialization parameters 52
2.6.5 Optimal artificial viscosity parameters 54
2.6.6 Summary of optimal parameters for level set method 54

2.7 Numerical results and validation for stabilized level set method 55
2.7.1 Runge-Kutta transport tests . 55
2.7.2 Zalesak disk rotation . 56
2.7.3 Periodic single vortex . 59
2.7.4 Analysis of volume preserving properties 62

3. APPROXIMATIONS TO DIRAC DELTA FUNCTION 67

3.1 A review of methods for integrating along an implicitly defined curve . . 69
3.1.1 A family of Dirac delta functions 72

3.2 Notations . 73
3.3 Approximating integrals on a surface . 77

3.3.1 Analytic error, Eanalytic . 78
3.3.1.1 Differential geometry 78
3.3.1.2 Estimate on analytic error 81

3.3.2 FEM error Efem . 85
3.3.3 Quadrature error, Equad . 86

3.3.3.1 Quadrature analysis for T ∈ T edge
h,ε , cells intersecting

boundary of Bh,ε . 87
3.3.3.2 Quadrature analysis for T ∈ T int

h,ε, cells completely inte-
rior to Bh,ε . 89

3.3.3.3 Full quadrature error 91
3.3.4 Full error bound . 91

3.3.4.1 Example Dirac kernels 92
3.4 Numerical results . 94

3.4.1 Test cases . 95
3.4.2 Convergence rates . 96

4. TWO PHASE FLOW WITH INCOMPRESSIBLE NAVIER-STOKES 102

vii

4.1 Incompressible Navier-Stokes . 103
4.1.1 Weak form of continuous Navier-Stokes system 106
4.1.2 A discretization in space . 108
4.1.3 A discretization in time . 109

4.1.3.1 Backward difference formulae for time derivatives . . . 111
4.1.4 Tracking the interface, Γ . 112

4.2 The rotational incremental pressure-correction model 114
4.2.1 The pressure correction algorithm 116
4.2.2 A penalty method instead of a projection method 117
4.2.3 Summary of fully-discrete pressure correction algorithm 118

4.3 Boundary conditions on velocity and pressure increment 121
4.3.1 Standard boundary conditions 121

4.3.1.1 Mean value of pressure 122
4.3.2 Open boundary conditions everywhere 123

4.4 Additional stabilization techniques . 124
4.4.1 Consistent transport term for unconditional stability 125
4.4.2 Grad-div stabilization for high Reynolds number 125
4.4.3 Stabilization with streamlined upwind / Petrov Galerkin (SUPG)

scheme . 126
4.4.4 SUPG scheme for time-dependent incompressible Navier-Stokes . 127

4.5 Numerical results . 130

5. ENERGY FLOW . 134

5.1 Preliminary computations and some useful terms 140
5.2 Computing the variation of energy, ∂E(ϕ)(θ|∇ϕ|) 153
5.3 Stability of the force balance algorithm 160

5.3.1 Stability of coupled system . 162
5.4 Comparison to the method of virtual power in continuum mechanics . . . 163

6. ENERGY FLOW APPLICATION: SURFACE TENSION FLOW 166

6.1 Implementation of surface tension . 167
6.1.1 Fully implicit scheme . 168
6.1.2 Semi-implicit scheme . 168

6.1.2.1 Summary of semi-implicit scheme 170
6.2 Connections to other models . 171

6.2.1 A more efficient model for surface tension 173
6.2.1.1 Semi-implicit formulation 174

6.3 Numerical experiments and validations 176

7. ENERGY FLOW APPLICATION: WILLMORE FLOW 182

7.1 Willmore energy . 183

viii

7.2 Semi-implicit form for Willmore flow 186
7.2.1 Coupling velocity and curvature and decoupling curvature from

the level set . 187
7.2.2 A semi-implicit in time splitting for Willmore flow 190
7.2.3 Summary of semi-implicit Willmore system 191
7.2.4 Spatial discretization of semi-implicit Willmore flow 195

7.3 Sub-iterating Willmore flow scheme . 195
7.3.1 Sub-iterating scheme to approximate fully-implicit algorithm . . . 196

7.3.1.1 Explicit energy gradient flow right hand side 196
7.4 Comparison to other models . 200

7.4.1 A continuum surface forces approach 200
7.4.2 A level set formulation for the Willmore flow 202

7.5 Numerical experiments and validations 203
7.5.1 The 2× 1 ellipse in 2D . 206
7.5.2 The 4× 1 ellipse in 2D . 207
7.5.3 The 8× 1 ellipse in 2D . 211

8. ENERGY FLOW APPLICATION: CANHAM-HELFRICH FLOW 224

8.1 Volume constraints . 226
8.2 Surface area and volume constraints . 227

8.2.1 Variation of surface area functional 227
8.2.2 Variation of volume functional 227
8.2.3 Linearization of system with constraints 229
8.2.4 Semi-implicit Canham-Helfrich algorithm 230
8.2.5 Sub-iterating Canham-Helfrich algorithm 233
8.2.6 The Newton-like algorithm for enforcing constraints 236

8.3 Numerical results and validations . 244
8.3.1 The 2× 1 ellipse in 2D . 245
8.3.2 The 4× 1 ellipse in 2D . 246
8.3.3 The 8× 1 ellipse in 2D . 248
8.3.4 The 3× 3× 1 ellipsoid in 3D 256
8.3.5 The 5× 5× 1 ellipsoid in 3D 259
8.3.6 The 7× 7× 1 ellipsoid in 3D 263
8.3.7 The 8× 1× 1 ellipsoid in 3D 266

9. CONCLUSIONS . 274

REFERENCES . 277

APPENDIX A. CONVERGENCE RATES OF DIRAC MEASURE WITH SIM-
PLER QUADRATURE RULES . 287

ix

A.0.0.1 Convergence for trapezoidal quadrature for periodic func-
tions in W r,1

per . 288

APPENDIX B. CONVERGENCE THEORY FOR NAVIER-STOKES PROJEC-
TION ALGORITHMS . 290

B.1 Constant density, incompressible Navier-Stokes 290
B.1.1 Algorithm in standard form . 290
B.1.2 Algorithm in rotational form . 292

B.2 Variable density incompressible Navier-Stokes 292
B.2.1 Algorithm in standard form . 292
B.2.2 Algorithm in rotational form . 294

x

LIST OF FIGURES

FIGURE Page

2.1 Region Λ containing a closed interface Γ as boundary of subregion Ω.
These regions are defined implicitly by a level set function, ϕ(t, x). The
outer normal, n, to Γ and outer normal, ν, to ∂Λ are denoted as well. . . . 5

2.2 The skeleton of Γ is the set of points equidistant from more than one point
on Γ, as seen in these two examples. 7

2.3 The normal to Γ profile of the sinusoidal level set function, equation (2.8),
plotted with the normal profile of |∇ϕ|. 13

2.4 The normal to Γ profile of the hyperbolic tangent level set function, equa-
tion (2.11), plotted with the normal profile of |∇ϕ|. 14

2.5 The normal to Γ profile of the distance with hyperbolic tangent threshold-
ing level set function, equation (2.13), plotted with the normal profile of
|∇ϕ|. 17

2.6 The level set function with distance function and hyperbolic tangent thresh-
olding for a 2D ellipse with 2 to 1 ratio. The graded adaptive mesh is
depicted. 23

2.7 Level set parameters cd and cf and approximate Dirac delta and Heaviside
function widths ed ≤ eH . 51

2.8 Zalesak disk rotating under divergence free velocity v(t, x) = [−y;x] plot-
ted at various times through rotation. 59

2.9 Zalesak disk comparison after 1 rotation using various add-ons to the basic
SSP RK3 algorithm. The white line is the exact solution and the black is
the simulated solution. 60

2.10 A comparison of Zalesak’s disk after one rotation using the level set method
with SSP RK3 + artificial viscosity and using a single R = 1 profile reini-
tialization time step (with linear viscosity) every T = 200 transport time
steps. 61

xi

2.11 The quantity, ϕ(x)−ϕexact(x)
max |vpexact| at time t = 2 of the single vortex system after a

single period using SSP RK3 + artificial viscosity and R = 1 reinitializa-
tion steps for every T = 5 transport steps. 63

2.12 Single vortex solution at various times using SSP RK3 + artificial viscosity
with R = 1 reinitialization steps for every T = 5 transport steps. 64

3.1 Region Λ containing a closed interface Γ as boundary of subregion Ω.
These regions are defined implicitly by a signed distance function, d(x).
The outer normal, n, to Γ and outer normal, ν, to ∂Λ are denoted as well. 74

3.2 The ε band around Γh, denoted by Bh,ε intersects with two types of cells,
those completely interior, T ∈ T int

h,ε and those not completely in Bh,ε but
which the quadrature rule can see, T ∈ T edge

h,ε . An example of a cell which
intersects Bh,ε but is not seen by the quadrature so is not in Th,ε is also given. 76

3.3 Capsule shape for testing the convergence using δε. 95

3.4 Error rates and plot of δε(x) with fully refined Bh,ε band around Γh. Note
that the average and maximum errors for f2 and f3 are overlaid. 97

3.5 Error rates and plot of δε(x) with fully refinedBh,ε band around Γh. θ = π
6
,

L = 1.0, a = 0.2
√

2, ε = h3/4 using kernel ψ1,4(t). 99

4.1 Region Λ including a subdomain Ω. The outside pointing normal to Ω is n
while the outside pointing normal to Λ is ν. 104

6.1 The circularity, rise velocity and center of mass in case 1. 178

6.2 The surface area and volume of interior region in case 1. 178

6.3 Case 1 timeseries. 179

6.4 Final state of simulation with semi-implicit version for small surface ten-
sion coefficient, σst = 1.96. This solution compares well with the other
benchmark solutions published in [64]. 180

6.5 The initial (t = 0.0) and final (t = 2.0) states of simulation of case 1 in
3D with half the domain cut away to see the interior bubble. 181

7.1 The energy, surface area and volume statistics for the 2x1 ellipse with
Willmore force. 208

7.2 The energy, surface area and volume statistics for the 2x1 ellipse with
Willmore force and explicit volume constraint. 209

xii

7.3 The initial and final shapes of 2 × 1 ellipse with Willmore flow at t = 0
and t = 2. 210

7.4 The initial and final shapes of 2×1 ellipse with Willmore flow and explicit
volume constraint at t = 0 and t = 4. 210

7.5 The energy, surface area and volume statistics for the 4x1 ellipse with
Willmore force. 212

7.6 The shapes of 4 × 1 ellipse with Willmore flow are displayed at t = 0,
t = 0.2, t = 2.0, t = 4.0 and t = 6.0 (from left to right and top to bottom).
It appears to be converging toward the final profile of a circle with bending
energy, π. 213

7.7 The energy, surface area and volume statistics for the 4x1 ellipse with
Willmore force and explicit volume constraint. 214

7.8 The initial and final shapes of 4×1 ellipse with Willmore flow with volume
constraint at t = 0 and t = 6. 215

7.9 The velocity field of 4× 1 ellipse with Willmore flow and explicit volume
constraint at (from top to bottom) t = 0.002, t = 0.02, t = 0.4 and t = 2.0. 216

7.10 The energy, surface area and volume statistics for the 8 × 1 ellipse with
Willmore force. 218

7.11 The initial and final shapes of 8× 1 ellipse with Willmore flow at t = 0.0
and t = 10.0. 219

7.12 The energy, surface area and volume statistics for the 8 × 1 ellipse with
Willmore force and explicit volume constraint. 220

7.13 The shapes of 8 × 1 ellipse with Willmore flow and explicit volume con-
straint at (top to bottom) t = 0.0, t = 1.0, t = 3.0 and t = 6.0. By t = 6.0
we have reached a steady state shape. 221

7.14 The velocity field of 8× 1 ellipse with Willmore flow and explicit volume
constraint at (from top to bottom) t = 0.5, t = 1.0, t = 3.0 and t = 10.0. . 222

7.15 A comparison of the final shape for 8 × 1 ellipse with and without the
volume constraint being explicitly enforced. Without enforcing the volume
constraint, mass is lost over time leading to a different steady state shape.
The wider one is with the volume constraint being enforced. 223

xiii

8.1 The energy, surface area and volume statistics for the 2x1 ellipse with
Canham-Helfrich force. 247

8.2 The initial and final shapes of 2× 1 ellipse with Canham-Helfrich flow at
t = 0 and t = 0.5. 248

8.3 The energy, surface area and volume statistics for the 2x1 ellipse with
Canham-Helfrich force and explicit volume constraint. 249

8.4 The initial and final shapes of 2×1 ellipse with Canham-Helfrich flow and
explicit volume constraint at t = 0 and t = 0.5. 250

8.5 The comparison between Canham-Helfrich flow with and without explicit
volume constraint does not make a difference when the time length is short
enough. 250

8.6 The energy, surface area and volume statistics for the 4x1 ellipse with
Canham-Helfrich force. 251

8.7 The shapes of 4 × 1 ellipse with Canham-Helfrich flow are displayed at
t = 0 and t = 6.0. 252

8.8 The energy, surface area and volume statistics for the 4x1 ellipse with
Canham-Helfrich force and explicit volume constraint. 253

8.9 The initial and final shapes of 4 × 1 ellipse with Canham-Helfrich flow
with explicit volume constraint at t = 0 and t = 6. 254

8.10 A comparison at time t = 6.0 between the Canham-Helfrich solutions of
4× 1 ellipse with and without explicit volume constraint. 254

8.11 The energy, surface area and volume statistics for the 8 × 1 ellipse with
Canham-Helfrich force. 255

8.12 The initial and final shapes of 8× 1 ellipse with Canham-Helfrich flow at
t = 0.0 and t = 12.0. 256

8.13 The energy, surface area and volume statistics for the 8 × 1 ellipse with
Canham-Helfrich force and explicit volume constraint. 257

8.14 The shapes of 8×1 ellipse with Canham-Helfrich flow and explicit volume
constraint at (top to bottom) t = 0.0, t = 1.0, t = 2.0 and t = 5.0 and
t = 15.0. By t = 15.0 we have reached a steady state shape. 258

xiv

8.15 A comparison of the final shape at t = 15.0 for the 8× 1 ellipse with and
without the volume constraint being explicitly enforced with the Canham-
Helfrich flow. Without enforcing the volume constraint, mass is lost over
time leading to a different steady state shape. The wider necked shape has
the explicit volume constraint being enforced. 259

8.16 The initial and final shapes of 3 × 3 × 1 ellipsoid with Canham-Helfrich
flow and explicit volume constraint at t = 0.0 and t = 0.112. 260

8.17 A view of the surface, Γ, evolution of 3× 3× 1 ellipsoid at t = 0.112 with
respect to the cut away bulk mesh. 261

8.18 The energy, surface area and volume statistics for the 3 × 3 × 1 ellipsoid
with Canham-Helfrich force and explicit volume constraint. 262

8.19 The energy statistics for the 5×5×1 ellipsoid with Canham-Helfrich force
and explicit volume constraint. We see that the diffusive energy dominates
this portion of the simulation whereas the bending energy is much smaller,
but still decreasing. 264

8.20 The initial and intermediate shapes of 5 × 5 × 1 ellipsoid with Canham-
Helfrich flow at t = 0.0 and t = 0.0159. 265

8.21 A view of the surface, Γ, evolution of 5 × 5 × 1 ellipsoid at t = 0.1 with
respect to the cut away bulk mesh. 265

8.22 The energy statistics for the 7×7×1 ellipsoid with Canham-Helfrich force
and explicit volume constraint. We see that the diffusive energy dominates
this portion of the simulation whereas the bending energy is much smaller,
but still decreasing. 267

8.23 The initial and intermediate shapes of 7 × 7 × 1 ellipsoid with Canham-
Helfrich flow and explicit volume constraint at t = 0.0 and t = 0.0133. . . 268

8.24 A view of the surface, Γ, evolution of 7 × 7 × 1 ellipsoid at t = 0.0133
with respect to the cut away bulk mesh. 269

8.25 A view of the velocity field for a slice of surface, Γ, an evolution of 7×7×1
ellipsoid at t = 0.0133. 269

8.26 The energy statistics for the 8×1×1 ellipsoid with Canham-Helfrich force
and explicit volume constraint. We see that the diffusive energy dominates
this portion of the simulation whereas the bending energy is much smaller,
but still decreasing. 271

xv

8.27 The initial and intermediate shapes of 8 × 1 × 1 ellipsoid with Canham-
Helfrich flow and explicit volume constraint at t = 0.0 and t = 0.0122. . . 272

8.28 A view of the surface, Γ, evolution of 8 × 1 × 1 ellipsoid at t = 0.0122
with respect to the cut away bulk mesh. 272

8.29 A view of the velocity field for a slice of surface, Γ, an evolution of 8×1×1
ellipsoid at t = 0.0122. 273

xvi

LIST OF TABLES

TABLE Page

2.1 A list of various options for measuring magnitude of velocity in the level
set reinitialization scheme. The reinitialization speed depends on the choice
of norm of velocity. 28

2.2 A list of optimal level set parameters for simulation of two-phase flow
models. These are to be taken as the starting default values but should be
modified on a case by case basis. 55

2.3 Transport of exact solution ϕ(x, t) = 2 + sin(πxt) sin(πyt) under velocity
field v(x, t) = [sin(t + x) sin(t + y); cos(t + x) cos(t + y)] using Runge-
Kutta 3 time integration and Q3 (T) elements with T a uniformly refined
mesh of [0, 1]2. The estimated CFL number

(
∆tmax |v|

(h/p)

)
is 0.12. 57

2.4 Transport of a circle (2.50) under single vortex velocity field equation (2.49)
with Tc = 1 using Runge-Kutta 3 time integration and Q3 (Th) elements
with Th a uniformly refined mesh of [0, 1]2 and uniform time steps for
t ∈ [0, Tfinal = 2]. The estimated CFL number

(
∆tmax |V |

(h/p)

)
is 0.24. 62

2.5 Estimates of volume(mass) loss for a 2D rising bubble with surface ten-
sion with ∆t = 0.0005 and hmin = 0.00390625 which corresponds to
a CFL condition of CFL = 0.07. We choose the ∆treinit to satisfy a
reinitialization CFL of CFLreinit = 0.2. We vary the number of trans-
port (T) steps to number of reinitialization (R) steps and observe a linear
scaling in relative volume loss, computed as (V (t) − V (0))/V (0) where
V (t) =

∫
Λ
Hε(ϕ(t, x))dx and Hε(ϕ), defined in equation (4.11) is an ap-

proximate indicator function for Ω. 65

2.6 Estimates of volume(mass) loss for a 2D rising bubble with medium val-
ued (σst = 24.5) surface tension coefficient. We fix the number of trans-
port (T) steps to reinitialization steps (R) for two standard usage cases
and vary the timestep and minimal mesh size under a CFL = 0.24 con-
dition. We observe a linear scaling in relative volume loss, computed as
(V (t)− V (0))/V (0) where V (t) =

∫
Λ
Hε(ϕ(t, x))dx and Hε(ϕ), defined

in equation (4.11) is an approximate indicator function for Ω. 66

xvii

3.1 Capsule with θ = π
4
, L = 1.4 and a = 0.1

√
2 using ε = h3/4. Computation

performed using 25 shifts of grid. We use Q2(Th) and dh(x) = Ihd(x), the
Lagrange interpolant of d(x). Gaussian quadrature is used with two points
in each dimension which is exact for polynomials of degree 3. Integrating
f1(x) = 1 to give perimeter. 98

3.2 Capsule with θ = π
4
, L = 1.4 and a = 0.1

√
2 using ε = h3/4. Computation

performed using 25 shifts of grid. We use Q2(Th) and dh(x) = Ihd(x), the
Lagrange interpolant of d(x). Gaussian quadrature is used with two points
in each dimension which is exact for polynomials of degree 3. Integrating
f2(x) = xy sin2(x). 98

3.3 Capsule with θ = π
4
, L = 1.4 and a = 0.1

√
2 using ε = h3/4. Computation

performed using 25 shifts of grid. We use Q2(Th) and dh(x) = Ihd(x), the
Lagrange interpolant of d(x). Gaussian quadrature is used with two points
in each dimension which is exact for polynomials of degree 3. Integrating
f3(x) = x2. 99

3.4 Capsule with θ = π
6
, L = 1.0 and a = 0.2

√
2 using ε = h3/4. Computation

performed using 25 shifts of grid. We use Q2(Th) and dh(x) = Ihd(x), the
Lagrange interpolant of d(x). Gaussian quadrature is used with two points
in each dimension which is exact for polynomials of degree 3. Integrating
f1(x) = 1 to give perimeter. 100

3.5 Capsule with θ = π
6
, L = 1.0 and a = 0.2

√
2 using ε = h3/4. Computation

performed using 25 shifts of grid. We use Q2(Th) and dh(x) = Ihd(x), the
Lagrange interpolant of d(x). Gaussian quadrature is used with two points
in each dimension which is exact for polynomials of degree 3. Integrating
f2(x) = xy sin2(x). 100

3.6 Capsule with θ = π
6
, L = 1.0 and a = 0.2

√
2 using ε = h3/4. Computation

performed using 25 shifts of grid. We use Q2(Th) and dh(x) = Ihd(x), the
Lagrange interpolant of d(x). Gaussian quadrature is used with two points
in each dimension which is exact for polynomials of degree 3. Integrating
f3(x) = x2. 101

4.1 Convergence rates for the standard algorithm with BDF1 time derivative,
computed with 10 MPI processors . 132

4.2 Convergence rates for the rotational algorithm with BDF1 time derivative,
computed with 10 MPI processors . 132

4.3 Convergence rates for the standard algorithm with BDF2 time derivative,
computed with 2 MPI processors . 133

xviii

4.4 Convergence rates for the rotational algorithm with BDF2 time derivative,
computed with 2 MPI processors . 133

6.1 Parameters for 2 test cases of surface tension. 176

7.1 Time and Space complexity of inverting an n×nmatrix representing finite
element approximation to Laplacian operator on a well behaved mesh with
a direct solver using method of nested dissection. 193

xix

1. INTRODUCTION

The modelling of biological vesicles like for instance the red blood cell or the various

white blood cells or in general any object with a lipid bilayer membrane is important. Both

to better understand the biological components but also for solving problems in medical

research that could more efficiently use the white blood cells to fight disease. In addi-

tion, the mathematics and scientific comupting approaches involved in modelling cellular

motility are complex, fascinating and offer much room for improvement.

To this end, we will develop a model for the dynamic flow of a single closed lipid

bilayer vesicle in a fluid. The inside and outside fluids of the vesicle can be thought

of as two phases of a fluid with an interface each having their respective density and

viscosity. The fluids associated with this type of flow move at relatively slow speeds and

small pressures so that an appropriate model for the fluid dynamics is the incompressible

Navier-Stokes system, described in Chapter 4.

The interface between the two phases is a vesicle wall composed of a lipid bilayer

membrane. The steady state shape of normal red blood cells are often described as a

pin cushion shape or more technically as a discocyte. Canham in [1] proposed that the

minimization of bending energy might be the dominant contributor to the shape of red

blood cells and later Helfrich in [2] offered a more general bending energy description.

By taking the variation of this energy he showed it was possible to obtain a differential

equation for the steady state shape of the vesicle and indeed the solutions did match the

shapes that were being observed by cell biologists. This bending energy coupled with the

constraints of constant surface area and constant volume of the interior is referred to as the

Canham-Helfrich energy.

We will incorporate the forces from minimizing this Canham-Helfrich energy into the

1

Navier-Stokes system and thus obtain the beginnings of a model for red blood cells or more

generally any closed lipid bilayer vesicle. We have not yet added in the internal structure

of organelles or the semi-rigid structure of the actin-myosin complex which can generate

independent motion, or the complex set of chemical signals that dictate which directions to

push or the myriad of other functionalities they accomplish including changing the amount

of liquid volume inside the vesicle or the surface area of the vesicle itself. These are all

future items to be added once we have the basic physics of the background fluid and the

vesicle membrane itself. Note that at this stage this is a decent model of the passive red

blood cells and less of a model for the various types of white blood cells who take a more

active role in their motility.

We will use an implicit level set method approach to modelling the interface itself

where the interface is described as the zero levelset of a smooth function, called the level

set function, which will evolve in time so that the interface always stays as the zero lev-

elset. We introduce the levelset method and describe the finite element approximation to

transport in Chapter 2 where given a time-varying velocity field, the interface is trans-

ported along that velocity field through time. Now, the velocity field is not know a priori

but is dependent on the interface itself as well as the liquid properties inside and outside the

interface. We describe in Chapter 4, the finite element approximate to the two phase flow

incompressible Navier-Stokes system that will be solved to generate the velocity field. We

will describe in Chapter 5 a general model for coupling the minimization of an energy

defined on the interface with the incompressible Navier-Stokes flow. Since these energies

are defined as integrals along the interface we must have a method of integrating along it,

so in Chapter 3, we introduce an approximate Dirac delta function that can use the implicit

level set function to obtain integrals along the interface. It expands the integral to be over

a band around the interface and thereby can use the standard quadrature rules often used

by the finite element method on a discretization of the full region on which we are tracking

2

the vesicle.

Finally, we include three chapters with specific choices of energy building up to the

Canham-Helfrich energy. Chapter 6 couples surface tension on the interface to the veloc-

ity flow which minimizes the surface area energy. We include some simulations of a rising

bubble acting under gravity and various coefficients of surface tension. Chapter 7 gives a

formulation of the Willmore energy a simplification of the bending energy described above

without the surface area and volume constraints, although coupling these forces to the in-

compressible Navier-Stokes system preserves the volume due to the incompressibility of

the liquids. Finally in Chapter 8 we add to the Willmore energy, the explicit constraints of

constant surface area of the interface and constant volume of the interior which constitutes

a model for the Canham-Helfrich energy. Several 2D and 3D simulations of flow from var-

ious initial shapes and ratios of surface area to volume are included in these chapters. The

classic red blood cell shape can be observed in the numerical simulations of Section 8.3.4.

The finite element software behind the simulations presented her have been written

using the deal.II version 8.5.0 [3] finite element library in the C++ language and using

MPI(Message Passing Interface) [4] for using multiple processors. The discretized mesh

is distributed over the MPI processors using the p4est library [5], version 1.1 so that each

processor works on a portion of the computational domain. We use Trilinos [6] version

12.10.1 for all of the linear algebra with SuperLU_dist [7] version 5.1.2 accessed through

the Amesos interface as a parallel direct solver for the 2D simulations of the Willmore en-

ergy of Chapter 7 and the General Minimum Residual (GMRes) iterative solver with the

Algebraic Multi-grid (AMG) solver or the Successive Symmetric Overrelaxation (SSOR)

algorithm as preconditioners for all the other models. We acknowledge the Texas A&M

University Brazos HPC cluster, [8], that contributed to the research reported here as some

of the simulations have been performed therein. We are also grateful for access to vari-

ous other computational resources for scientific computing provided by the Texas A&M

3

University Mathematics Department on which we have performed the remainder of the

simulations.

4

2. LEVEL SET METHOD

We are interested in a method to track the motion of an initial closed smooth (codimen-

sion one) hypersurface Γ0 as it evolves under the motion of a given velocity field, v(t, x).

We track its motion in some closed region Λ ⊂ Rd for d = 2, 3 that can be treated either

as a snapshot of a larger region or as a physical region. The surface or interface at time

t ∈ [T0, T1] will be denoted as Γ(t) or when it is clear which time we are talking about,

just as Γ. We will denote by Ω, the region on the interior of Γ and n, the outer unit normal

to Γ. We also denote by ν, the outer unit normal for the boundary of the containing region,

∂Λ. See Figure 2.1 for an illustration.

Λ

∂Λ

Γ = ∂Ω = {x | ϕ(t,x) = 0}

Ω = {x | ϕ(t,x) > 0}

ν

n

Λ\Ω = {x | ϕ(t,x) < 0}

Figure 2.1: Region Λ containing a closed interface Γ as boundary of subregion Ω. These
regions are defined implicitly by a level set function, ϕ(t, x). The outer normal, n, to Γ
and outer normal, ν, to ∂Λ are denoted as well.

To desribe the evolution of Γ, we use a level set method. In this setting, Γ(t) is de-

scribed as the zero level set of some function ϕ(t, x) for x ∈ Λ. Evolving the surface Γ with

a velocity v(t, x) requires us to extend the velocity to Λ and advect ϕ with it. We choose

5

to let ϕ be positive inside of Γ and negative outside, that is Ω = {x ∈ Λ | ϕ(t, x) > 0} and

Λ\Ω = {x ∈ Λ | ϕ(t, x) < 0}.

In order to obtain the equation that will accomplish this, we consider for a given t ∈

[T0, T1], the set of points {x ∈ Λ | ϕ(t, x) = 0}. This set of points then is transported with

the velocity field, v(t, x). That is, we can consider them as particles dependent on time

and having the velocity, ∂x
∂t

= v(t, x). Then for each x ∈ Γ0 = {x ∈ Λ | ϕ(T0, x) = 0}

we require that for t ∈ (T0, T1] we have ϕ(t, x(t)) = 0. Applying the total derivative, we

obtain

0 =
d

dt
ϕ(t, x(t)) =

∂ϕ

∂t
+
∂x
∂t
· ∇ϕ =

∂ϕ

∂t
+ v · ∇ϕ.

Then the level set method is then fully defined by the system

∂ϕ
∂t

(t, x) + v (t, x) · ∇ϕ (t, x) = 0, x ∈ Λ, t ∈ (T0, T1]

ϕ (T0, x) = ϕinit(x), x ∈ Λ

ϕ (t, x) = ϕinflow(t, x), {x ∈ ∂Λ | ν(x) · v(t, x) < 0}

(2.1)

where ϕinit embeds the initial Γ0 as it’s zero level set and ϕinflow characterizes the inflow

values of the function ϕ.

Notice that the above derivation is not particular about which level set we are tracking

but it tranports each level set with the velocity field, v. It is common in the literature to

choose the level set function to be a signed distance function

d(t, x) :=

min

y∈Γ(t)
‖x− y‖2, x ∈ Ω(t)

− min
y∈Γ(t)

‖x− y‖2, otherwise.
(2.2)

but it is not a requirement. Notice that a property of the signed distance function is that

6

|∇d| = 1 for almost every x ∈ Λ. Thus the outer normal to Γ is n = − ∇d|∇d| = −∇d. This

implies that it is simple for x ∈ Λ close to Γ(t) to find the closest point y ∈ Γ(t) on the

surface,

y = x + d(t, x)∇d(t, x).

The literature is full of reasons why the signed distance function is a useful choice for our

level set function. However, there are some down sides as well. When there are points that

are equidistant from multiple places on Γ, the distance function looses regularity, in fact

∇d is no longer well defined at these places. We call this set of points the skeleton as in

Figure 2.2.

skeleton

Γ

Γ

Figure 2.2: The skeleton of Γ is the set of points equidistant from more than one point on
Γ, as seen in these two examples.

In addition, the distance function treats and tracks all level sets equally where as we

only care about tracking the zero levelset. For these reasons, we choose to use a different

shape of level set function. We will initially depend on the distance function, but will then

7

apply a filter to get a new shape that avoids the above problems. We discuss the choice

of filters in Section 2.1. The filter will threshold the distance function to a narrow band

around Γ and we will try to make sure that our narrow band does not touch the skeleton

although this is not always possible. In doing this, we ensure sure that our levelset gradient

is for the most part well defined.

Another problem that arises in the advection of our levelset function is that over time,

the levelset shape drifts away from the desired initial profile shape. For instance if we

started with a signed distance function, we would desire that our levelset function maintain

the signed distance function as it advects. This is however not the case for the above

sytem as written and so much work has been dedicated to finding ways to maintain the

desired shape over time. We will describe in Section 2.2 some techniques for resolving

this problem of maintaining the proper shape over time.

Finally, this system is hyperbolic and so we describe in Section 2.4 an artificial entropy

viscosity stabilization scheme to maintain smoothness and stability. We implement an

adaptive Lagrange finite element scheme and use an explicit strong stability preserving

(SSP) Runge-Kutta algorithm for the time integration. The time integration scheme is

discussed in Section 2.5.2. We present the semi-discrete algorithm in Section 2.5.1 and

the fully discrete algorithm in Section 2.5.3. Finally we discuss the choice of optimal

parameters in Section 2.6 and give some numerical results and validation in Section2.7.

Remark. There are in fact many methods for tracking the interface, Γ. Some of the better

known explicit methods are the Volume of Fluid (VOF) method [9] the Marker and Cell

(MAC) method [10] and the Immersed Boundary method [11] where the interface is pa-

rameterized and tracked explicitly. A recent advance in particle methods is given by [12]

whre they discuss handling topological changes. The level set method (starting with [13])

and the phase field method (starting with [14] and [15]) are somewhat related implicit

methods which rely on the interface being extracted from a specified level set. Another

8

approach is the parametric finite element method (see [16]) for modelling the interface

directly. See also [17] for a direct comparison between the phase field method and para-

metric finite element methods. Likewise, it is possible to fit the bulk mesh to have Γ be

explicitly described by edges of bulk elements as is common in the Arbitrary Eulerian-

Lagrangian method (starting with [18]). However, mesh quality is now more difficult to

maintain for large deformations. There are likely many others, but we have chosen to use

the level set method as it is simple to implement and does not require any special meshing

and can easily handle topological changes. The explicit methods are acceptable when no

topological changes occur like pinching or self intersection, however it is not clear how

to properly handle the topological changes. In addition, as transport, including stretching

occurs, the mesh quality of the explicit methods can deteriorate if something is not done

to re-distribute the nodes of the mesh. There are solutions to some of these problems in

the literature but we prefer the simplicity of the level set method.

However, the use of the level set method with it’s implicit surface introduces a new

complication. Mainly, that integration along Γ is no longer a simple thing and so incorpo-

rating forces like surface tension or the Willmore force that are described as a differential

equation on Γ is more complicated. We will discuss in Chapter 3, the use of an approx-

imate Dirac delta function in conjuntion with this level set function to resolve this issue

and then in Chapter 4 the use of the level set method to construct an extended velocity

field representing two-phase flow. Finally in Chapters 5 - 8, we use the approximate Dirac

delta function and level set function to incorporate forces like surface tension, Willmore

and Canham-Helfrich energy flow on Γ into the construction of our velocity field. end

Remark.

9

2.1 Level set filters

As we transport the level set function ϕ through time, we are doing so with the goal of

tracking the interface Γ. If we use a distance function, then we not only have Γ, the zero

level set, but all of the other level sets. In addition, it is not clear what the inflow values

should be at the boundary ∂Λ and nor do we really care. We are led to consider that we only

care about tracking the zero levelset and maybe a band around it that might accomodate

the use of an approximate Dirac delta function. Thus we can think of thresholding the

level set function in some smooth way to remove the need to know precisely how far every

single point is from Γ as is provided by the signed distance function. We will introduce a

filter function f : R→ R which has the properties that f(0) = 0, f is non decreasing and

f is differentiable at 0 with f ′(0) = 1. We then introduce a filter width c > 0 and given a

distance function d(t, x), we define our filtered level set function to be

ϕ(t, x) = cf

(
d(t, x)

c

)
. (2.3)

By a judicious choice of c and f , we can avoid the complications of the inflow values and

the ambiguity of∇ϕ introduced at points which are equidistant from multiple points on Γ.

Given a triangulation, T of Λ with minimal mesh size, h, we will often choose our filter

width c > 0 to scale with the mesh size c = mhs with 0 < s ≤ 1 and m > 0. Thus the

band around Γ scales with the mesh size. The filter being used and problem being solved

will dictate the parameters s and m. Often the choice of approximate Dirac delta function

will determine how wide of a band we need to maintain.

There are many possible filters that fit the basic description above, but we will restrict

ourselves to filters that can be expressed in the form of an ordinary differential equation

as follows. Notice that since the signed distance function grows(decreases) linearly from

0 at Γ, the application of filter is in the normal direction. The distance function has the

10

property that |∇d(t, x)| = 1. Then supposing f is differentiable,

|∇ϕ| =
∣∣∣∣c∇f (d(t, x)

c

)∣∣∣∣ =

∣∣∣∣f ′(d(t, x)

c

)∣∣∣∣ |∇d(t, x)| =
∣∣∣∣f ′(d(t, x)

c

)∣∣∣∣ = f ′
(
d(t, x)

c

)

since f is non decreasing. In addition, the value of |∇ϕ| is constant along each level set

and varies only in the normal direction according to the derivative of f . Thus, we choose

filters f that can be written in the ode form f ′ = L(f) with initial conditions f(0) = 0.

This results in the Eikonal equation that defines the level set equation profile

|∇ϕ| = S(ϕ) (2.4)

with ϕ = 0 on Γ for some cut-off function S : R → R resulting from the ode right hand

side L(f) function. We will use this cut-off function S when we discuss the reinitialization

of the level set function in Section 2.2.

It turns out that the identity function f(s) = s is one such filter since f ′(s) = 1 and

f(0) = 0. So the distance function is a (not very interesting) example of a filtered level

set. In [19], Coupez introduced some other more interesting examples using the sinusoid

and hyperbolic tangent filters for thresholding. These are given respectively by

f(s) =

1 s > π

2

sin (s) |s| ≤ π
2

−1 s < −π
2

(2.5)

and

f(s) = tanh (s) . (2.6)

We will subsequently discuss each of these filters in more details and then finally introduce

11

a new filter that we have found most useful for cases where an approximate Dirac delta

function is being used to integrate along Γ. It preserves the distance function in a band

and then thresholds with the hyperbolic tangent filter. This final filter will be the one we

implement in most of our simulations.

2.1.1 Sinusoidal level set filter

The sinusoidal filter

f(s) =

2
π

s > 1

2
π

sin
(
π
2
s
)
|s| ≤ 1

− 2
π

s < −1

(2.7)

is in C1(R). Since d
ds

sin(s) = cos(s) =
√

1− sin2(s) this filter satisfies the ode system

f ′(s) =

√

1−
(
π
2
f(s)

)2
, |f(s)| ≤ 2

π

0, otherwise,

with f(0) = 0. Combining with the scaling coefficient, cf > 0 and applying this filter to

the distance function, the resulting level set function is

ϕ(t, x) =

2cf
π

d(t, x) > cf

2cf
π

sin
(

π
2cf
d(t, x)

)
|d(t, x)| ≤ cf

−2cf
π

d(t, x) < −cf

(2.8)

12

with the normal profile and it’s derivative depicted in Figure 2.3. The corresponding

Eikonal equation for the level set profile is

|∇ϕ| = S(ϕ) :=

√

1−
(

π
2cf
ϕ
)2

|ϕ| < 2cf
π

0, otherwise

with ϕ = 0 on Γ.

− 2cf
π

−cf cf

1

2cf
π

− 2cf
π

2cf
π

Figure 2.3: The normal to Γ profile of the sinusoidal level set function, equation (2.8),
plotted with the normal profile of |∇ϕ|.

2.1.2 Hyperbolic tangent level set filter

The hyperbolic tangent filter

f(s) = tanh (s) (2.9)

13

is in C∞(R) and owing to d
ds

tanh(s) = sech2(s) = 1− tanh2(s), satisfies the ode system

f ′(s) = 1− f(s)2 (2.10)

with initial conditions f(0) = 0. Combining with the scaling coefficient, cf > 0 and

applying the filter to the distance function, the resulting level set function is

ϕ(t, x) = cf tanh

(
d(t, x)

cf

)
(2.11)

with the normal profile and it’s derivative depicted in Figure 2.4. The corresponding

Eikonal equation for the level set profile is

|∇ϕ| = S(ϕ) := 1−
(
ϕ

cf

)2

.

with ϕ = 0 on Γ.

−cf

−cf cf

cf

2cf 3cf−2cf−3cf

1

cf

−cf

Figure 2.4: The normal to Γ profile of the hyperbolic tangent level set function, equa-
tion (2.11), plotted with the normal profile of |∇ϕ|.

14

Remark. In addition to being useful for the level set method, the tanh filter shape is what

many phase field models converge to when using the standard double well potential. In

actuality, they converge to something more like ϕ(t, x) = tanh
(
d(t,x)

cf
√

2

)
, without the ver-

tical scaling. However, in the phase field models, the width of the filter is either a fixed

constant independent of the mesh size if the physical diffuse interface is of a reasonable

scale or they choose to scale linearly with the meshsize. In our case the width (and height)

always changes with the minimal mesh size. end Remark.

2.1.3 Distance function with thresholding for level set filter

This final filter preserves the distance function in a band around Γ and then thresholds

with the hyperbolic tangent function outside that band. In studying convergence properties

of some approximate Dirac delta functions, we observed that they seem to behave much

better when used with a signed distance function. Thus, we choose to keep the distance

function in a band that contains the support of the approximate Dirac delta function we are

using. We introduce two coefficients, cd > 0 which is the half width of the band where

we preserve the distance function and then cf > 0 which will be used for the hyperbolic

tangent width. As there are two coefficients now, it is simpler to define the filter with

the coefficients already built into the definition. To this end, we define the distance with

hyperbolic tangent thresholding filter to be

f(s) =

cd + cf tanh

(
s−cd
cf

)
, cd < s

s, |s| < cd

−cd + cf tanh
(
s+cd
cf

)
, s < −cd.

(2.12)

15

Notice that this is in C2(R) and is the solution to the ordinary differential equation

f ′ =

1−

(
f−cd
cf

)2

, f > cd

1, |f | < cd

1−
(
f+cd
cf

)2

, f < −cd

with initial conditions f(0) = 0. Combining with the scaling coefficient, cf > 0 and

applying the filter to the distance function, our resulting level set function is

ϕ(t, x) =

cd + cf tanh

(
d(t,x)−cd

cf

)
, cd < d(t, x)

d(t, x), |d(t, x)| < cd

−cd + cf tanh
(
d(t,x)+cd

cf

)
, d(t, x) < −cd

(2.13)

with the normal profile and it’s derivative depicted in Figure 2.5. The corresponding

Eikonal equation for the level set profile is

|∇ϕ| = S(ϕ) :=

1−

(
ϕ−cd
cf

)2

, ϕ > cd

1, |ϕ| < cd

1−
(
ϕ+cd
cf

)2

, ϕ < −cd.

with ϕ = 0 on Γ.

16

cd

−cd

cd + cf

cd + cf

−(cd + cf)

−(cd + cf)

−cd cd

1

Figure 2.5: The normal to Γ profile of the distance with hyperbolic tangent thresholding
level set function, equation (2.13), plotted with the normal profile of |∇ϕ|.

2.2 Level set reinitialization

As the level set is advected, it tends to drift away from the desired profile shape. There

are many suggestions in the literature for how to deal with this problem. The most common

and simple suggestion is to periodically pause and reinitialize the level set to the proper

shape. This can be done using something like the Fast Marching Method or using an

artificial time relaxation of the Eikonal equation

|∇ϕ| = S(ϕ)

with ϕ = 0 on Γ. The artificial time relaxation for the level set profile ϕ(t, x) at time

t ∈ (T0, T1] is accomplished by introducing an artificial time τ ∈ [0,∞) and auxiliary

17

function, ψt(τ, x) : [0,∞]× Λ→ R that satisfies the reinitialization equation

dψt

dτ
(τ, x) + sign

(
ψt(τ, x)

) (∣∣∇ψt(τ, x)
∣∣− S (ψt(τ, x)

))
= 0 (2.14)

with initial conditions ψt(τ = 0, x) = ϕ(t, x). The sign function

sign(s) =

1, s > 0

0, s = 0

−1, s < 0

(2.15)

will be replaced in the approximate system by the discrete sign function

sign(s) :=

1, s > εS

0, |s| < εS

−1, s < −εS

where εS = cf(yS
c

) is the filter applied to yS and yS is the distance around the the zero

level set we don’t want to be reinitialized. Keeping this value small but positive ensures we

don’t accidentally move the zero level set too much in the discrete reinitialization process.

If we use a p-th order Lagrange finite element basis for our approximation, then we will

have it dependent on the minimal mesh size per degree of freedom, yS = O
(
hmin
p

)
. The

zero level set will undoubtedly move, but this helps to minimizes the shifting.

The newly reinitialized profile is then the steady state solution, ψt(τ = ∞, x). Notice

that we have used the total derivative instead of the partial derivative, but in fact they are

the same thing for this system since x ∈ Γ does not depend at all on τ and the rest are

18

simply shifted relative to where the initial Γ is located. That is, we have the equality

∂ψt

∂τ
(τ, x) =

dψt

dτ
(τ, x).

Then as needed, we pause our level set simulation and solve this system until it is steady

and then begin anew with the newly reinitalized solution. We will introduce two integer

coefficients, T and R that will govern this usage. They are used as follows: For every T

steps of transport, apply R steps of reinitialization. Then the system alternates between

transport and reinitialization. It is also convenient to think of the reinitialization step as a

post processing operation to the transport step that is triggered only according to T and R.

Remark. If done frequently enough, it is not necessary to always reinitialize to steady

state. Sometimes taking T = 1 steps of transport and R = 1 steps of reinitialization or

some small ratio of the two is all that is needed to continuously maintain the solution near

steady state. end Remark.

Remark. The reinitialization step solves a transport equation and so will need stabilization.

As the wave traveling out from Γ can be quite strong and sharp, we will use an explicit lin-

ear artificial viscosity to stabilize it. This provides some extra smoothness to the solution

but can lead to shifting of Γ, the zero level set, and so we sometimes see a volume or mass

loss. In addition, as we will be using a Lagrange finite element scheme to approximate this

system, the approximation also carries some inherent variance in volume or mass. We will

show in Section 2.7.4 that the relative mass loss is linear in the amount of reinitialization

being applied and linear in the mesh/time step size. Thus there will likely be mass loss

over time but it can be managed by choosing the amount of reinitialization and mesh size

properly. end Remark.

19

2.2.1 A continuous approach to reinitialization

In [20], Coupez proposes a way to integrate the transport and reinitialization step into a

single system. We will describe this approach here and discuss it’s relative merits. This ap-

proach, which we will distinguish from the standard reinitialization scheme as the Coupez

reinitialization scheme, seems to work quite well for the sinusoidal and hyperbolic tangent

filter cases especially if the filter widths cf = O(hmin) scale with the mesh size. However,

we have not found a way to achieve the right mix of reinitialization and stabilization for

the distance with hyperbolic tangent filter which has a significantly larger profile width. In

that case, we find that the alternating with specified T and R is sufficient. Nevertheless,

we review the derivation of this integrated reinitialization/transport scheme.

Using the two time scales, t and τ we introduce a unitless scalar function, λ, represent-

ing the relative scales of time

λ =
∂τ

∂t
.

We will eventually allow the relative scaling to vary in space but for now consider it to be

simply a scalar. Then using the chain rule and thinking of τ = τ(t) we have

dψt

dτ
=

1

λ

dψt

dt

Thus, we can rewrite the reinitialization equation (2.14) with respect to t and then substi-

tuting the initial conditions, ie replacing ψt(τ(t), x) with ϕ(t, x) we have

dϕ

dt
+ λsign (ϕ) (|∇ϕ| − S (ϕ)) = 0.

Finally, we recognize the first term as a total (material) derivative, so using the level set

20

equation (2.1), we obtain the transport with reinitialization evolution equation

∂ϕ

∂t
+ v · ∇ϕ+ λsign (ϕ) (|∇ϕ| − S (ϕ)) = 0.

Notice that |∇ϕ| = ∇ϕ
|∇ϕ| · ∇ϕ so by introducing the reinitialization velocity,

U := sign(ϕ)
∇ϕ
|∇ϕ|

we obtain the transport equation

∂ϕ

∂t
+ (v + λU) · ∇ϕ = λsign(ϕ)S (ϕ) .

The true velocity is offset by the artificial reinitialization velocity based on the λ parameter.

Notice that the velocity field v may induce an inflow condition but the U velocity is pushing

toward the boundaries from Γ. Likewise the reinitialization velocity is artificial so that

when we check for inflow conditions, we should use only the true velocity, v. However,

any CFL condition should use the velocity v + λU. We thus obtain the level set with

reinitialization system

∂ϕ
∂t

+ (v + λU) · ∇ϕ = λsign(ϕ)S (ϕ) , (t, x) ∈ (T0, T1]× Λ

ϕ(t, x) = ϕinflow(t, x), v(t, x) · ν(x) < 0, x ∈ ∂Λ

ϕ(T0, x) = ϕinitial(x), x ∈ Λ.

(2.16)

Remark. We will discuss how to choose the scalar function, λ, in section 2.3.2.1 after we

have discussed the CFL condition as it is best understood in that context. end Remark.

21

2.3 Spatial and temporal discretization notation

Now that we have written down the continuous level set and level set with reinitializa-

tion systems, we can discuss our spatial and temporal discretizations. For each t ∈ [T0, T1],

we discretize Λ with rectangular (2D) or hexagonal (3D) elements to obtain an adaptive,

unfitted, graded mesh, T (t). We choose to fully refine to some given smallest mesh size

in a band around Γ(t) so that it is essentially a uniform mesh where the level set filter is

varying and then grade the mesh to some given coursest mesh size as quickly as will be

allowed by the refinement protocol and mesh data structure in use.

For a specific t ∈ (T0, T1], the size of an element, K ∈ T (t), is denoted hK and

calculated as the maximal distance between vertices divided by
√
d so that the reference

element has mesh size hK̂ = 1. The minimal mesh size, h = hmin, is calculated over all

cells in the triangulation,

h = hmin := min
K∈T (t)

hK . (2.17)

Remark. In our case, we implement our system using the deal.II finite element library ([3])

with p4est ([5]) for the mesh. The data structure being used for the mesh is a forest of

octtrees. Each level of a tree represents a refinement (halving in each coordinate direction)

of a mesh and the leaves represent the active elements of the mesh. In 2D, an element

being refined would have 4 children whereas in 3D it would have 8 children. The deal.II

library assumes that for a given active element, K in the mesh, if we consider the set of

neighboring cells on the same level as K (active and not) their active children differ by

no more than two levels from K’s level. That is, there is a limit on how fast you can

coursen or refine. Needless to say, we grade the mesh appropriately away from this band

of smallest refinement. end Remark.

Now, we leave open the possibility that the velocity or any other added component

could have an adaptive refinement estimator incorporated into the system. The process

22

Figure 2.6: The level set function with distance function and hyperbolic tangent thresh-
olding for a 2D ellipse with 2 to 1 ratio. The graded adaptive mesh is depicted.

would be to run through the estimators for those other components and combine them to

obtain a refine/coarsen flag for each cell, then we loop through the cells and make sure that

all the cells on the band of interest stay or become fully refined. We will finally impose

a user specified maximal and minimal level of refinement as well. We will ideologically

prefer refinement to coarsening and enforce the level set grading last of all.

In order to avoid unnecessary initial memory usage, the initial mesh will be uniformly

refined to a somewhat coarse level somewhere between the maximal and minimal accepted

levels and then we will run the above procedure of marking for refinement and coarsening

enough times so that the mesh reaches a steady state. As the level set filter parameter may

depend on the current minimal mesh size, it may be necessary with the initial refinements

to periodically project or interpolate the given initial level set function and if the exact

distance function (or filter applied to distance function) is not known for the initial shape,

23

run the reinitialization scheme to get the new initial level set function starting from the

characteristic function of Ω.

The band width will be chosen based on the maximal value the level set will obtain,

ϕmax which is related to the filter width and a user defined parameter ca ∈ [0, 1] so that we

refine a cell K if the value of the level set at the barycenter, xB ∈ K of that cell is smaller

than a given value,

|ϕ(t, xB)| ≤ caϕmax. (2.18)

Otherwise we mark for coursening and let the refinement protocol sort out the details.

Typically we will choose ca = 0.9 or there abouts so that we are fully refined on the region

where large changes in the level set might be taking place.

Remark. If the level set filter we are using does not have a maximal value, (e.g. distance

function) then we must specify the band width ourselves. end Remark.

We will use a pth order Lagrange finite element subordinate to our mesh, Qp (T (t))

typically with p = 2. Since we are not dealing with a uniform mesh, the standard subscript

h notation ϕh(t) ∈ Qp (T (t)) denoting the discrete solution does not have meaning. We

will instead denote the discrete solutions by a capital letter, Φ(t) ∈ Qp (T (t)) and the

continuous solutions by a lower case letter, ϕ(t). On a given cell, K ∈ T (t), to scale

properly with h-adaptivity and polynomial degree, p, the correct unit of size is mesh size

per polynomial degree, hK
p

. This measures the distance between degrees of freedom not

just between nodes. Likewise the proper scaling minimal measure of the mesh is minimal

mesh size per polynomial degree, hmin

p
or h

p
. We will use these terms in the subsequent.

24

2.3.1 Temporal discretizations

We will discretize our time interval, [T0, T1] into N timesteps, t0 = T0 < t1 < t2 <

· · · < tk−1 < tk < · · · < tN = T1 with time step

∆tk = tk − tk−1.

This can be a uniform time step or an adaptive one based on a Courant-Friedrich-Lewy

(CFL) condition. We note that the level set method can stabily support uniform or adaptive

time stepping, but we will for most cases use a uniform time step since our velocity model

does not provably remain stable and convergent under adaptive time stepping (see [21]).

We will discuss the CFL condition for the level set system in Section 2.3.2 which could be

used for an adaptive time stepping strategy.

We will denote by superscript

ϕk(x) := ϕ(tk, x) (2.19)

the discrete in time solution at a specific time step, tk. Likewise we will denote the mesh

at our discrete times by a superscript,

T k := T (tk). (2.20)

Thus the discrete in space and time level set solution will be denoted

Φk ∈ Qp
(
T k
)
. (2.21)

25

2.3.2 Adaptive time stepping

We will apply the standard Courant-Friedrichs-Lewy (CFL) condition to our adap-

tive time stepping system. Given a constant 0 < cCFL, and a previous discrete velocity Vk,

we choose ∆tk+1 in preparation for solving discrete velocity, Vk+1, and discrete level set,

Φk+1, such that

∆tk+1 ≤ cCFL
minK∈T (hK/p)

‖Vk‖L∞(Λ)

(2.22)

where hK is mesh diameter for cell K and p is the polynomial degree of the level set

finite element space. When we use the Navier-Stokes system (Chapter 4) to specify the

velocity, we will choose the finite element spaces for velocity and level set to have the

same polynomial degree. We discuss the use of the explicit Runge-Kutta 3,3 (RK33) time

integration scheme for the level set method in Section 2.5.3. Thus we will typically choose

p = 2 so that the spatial L2-error rate will match the RK33 time error rate. For stability

purposes, is often needful to choose cCFL < 1. A common value used is cCFL = 0.3

although this needs to be adjusted based on how well the system performs under it. In our

case, a value between cCFL = 0.2 and cCFL = 0.4 seem to be most reasonable and stable.

Remark. The SSP RK3 time integrator scheme is stable under this above CFL condition,

however the SSP RK2 and first order Forward Euler schemes need a more stringent rela-

tionship between mesh size and time step size. For code testing purposes we may use these

other schemes and so understanding that for forward Euler, we need ∆t = O
((

hmin/p
|v|

)2
)

and RK2 we need ∆t = O
((

hmin/p
|v|

)4/3
)

is important (here v is the representative veloc-

ity field). end Remark.

Remark. As pointed out before, the adaptive time stepping is fine for the level set system

however it is not yet well understood for our pressure correction type splitting of the in-

compressible Navier-Stokes system as described in Section 4. Thus in practice we will use

26

a uniform time step that obeys the above discussed CFL conditions. In addition, for the

various energy minimization models (described in Chapters 6 - 8), we will use a smeared

Dirac delta function (described in Chapter 3) which will limit our accuracy in space to

O(h
3/2
min) and also will introduce a first order splitting in time. It will be advantageous in

these cases to make these consistent. That is, let ∆t ∼ h
3/2
min which is essentially replacing

the CFL condition with a consistency condition. end Remark.

2.3.2.1 The CFL number and the Coupez reinitialization parameter, λ

Now that we have introduced the CFL condition, we can specify exactly how to cal-

culate our scalar function, λ, from the reinitialization scheme introduced in Section 2.2.

Recall that we defined λ = ∂τ
∂t

. We will approximate this with our time discretization as

λ =
∂τ

∂t
≈ ∆τ

∆t

where ∆τ and ∆t are the reinitialization and real time steps respectively. Adapting our

CFL condition to both types of time steps,

CFL =
∆t|v|
h/p

and CFLreinit =
∆τ |U|
h/p

we can compute (using |U| =
∣∣∣sign(ϕ) ∇ϕ|∇ϕ|

∣∣∣ = 1)

λ ≈ ∆τ

∆t
=
CFLreinit · h
|U|

|v|
CFL · h =

CFLreinit

CFL

|v|
|U| = cλ

|v|
|U| = cλ|v|

which is a unit less quantity because of the hidden reinitialization velocity |U| = 1. We

will let cλ := CFLreinit
CFL

> 0 be a user given parameter representing the relative rates of

reinitialization vs actual time flow. For instance, if cλ = 0.1, it essentially says for every

ten time steps we take one reinitialization step. While it is happening continuously, we get

27

|v| - Norm Description
‖ |v|`2 ‖L∞(K) Local Max Norm on cell K (piecewise constant)

max
(
cr, ‖ |v|`2 ‖L∞(K)

)
Thresholding of Local Max Norm (bounded away from 0)

‖ |v|`2 ‖L∞(w(K)) Max over patch w(K) around cell K (more intensive to compute)
‖ |v|`2 ‖L∞(Λ) Global Maximum of Velocity

hK
∆t

Global Maximum of Allowed Numerical Velocity

Table 2.1: A list of various options for measuring magnitude of velocity in the level set
reinitialization scheme. The reinitialization speed depends on the choice of norm of ve-
locity.

roughly the same effect.

Finally, the velocities of our level set can vary quite a bit but since we are using the

filters to threshold, we only really care about what is happening near the zero level set. We

are free to choose what we mean by |v| in the above definition and there are a few options

available. They range from local to global definitions and it is up to the user to choose

the best approach for their specific problem. Ideally a localized solution will be best since

we are scaling our reinitialization effort to the behavior of the velocity field, however

if the velocity field locally goes to 0, the reinitialization is essentially turned off and in

practice, problems can arise. Thus at times, adding in a global aspect can be convenient and

lead to better behavior. The simplest solution is to threshold our local velocity size away

from 0 with some user given parameter cr. That is, use |v||K = max
(
cr, ‖ |v|`2 ‖L∞(K)

)
.

However, it can also be good to give the reinitialization a global view of what is happening

with the maximum global velocity. A list of a few options for the velocity is given in

Table 2.1.

For most applications, we find that the Global Maximum

λ|K := cλ‖ |v|`2 ‖L∞(Λ).

28

and the Thresholding of Local Max Norm with cr = 0.2,

λ|K := cλ max
(
cr, ‖ |v|`2 ‖L∞(K)

)
behave roughly the same and seem to do better than the other approaches but again this

can be very problem specific.

2.4 Level set stabilization

An efficient method for stabilizing a hyperbolic equation to minimize oscillations is

to add a diffusion term with cellwise constant artificial viscosity, ν, to the level set equa-

tion. We choose the artificial viscosity term to apply larger diffusion where it is needed

to smooth oscillations and smaller where it is not; the goal being to only apply smooth-

ing where it is needed. To this end, we use the explicit entropy residual viscosity method

analyzed in [22] of which we will give a brief overview in Section 2.4.1 for the general

hyperbolic conservation law system (2.23).

∂y
∂t

(t, x) +∇ · k(y(t, x)) = g(t, x), (t, x) ∈ (T0, T1]× Λ

y (T0, x) = y0(x), x ∈ Λ,

(2.23)

with inflow boundary conditions, where k ∈ C1 (R;R), and g ∈ C1
(
[T0, T1]× Rd;R

)
.

Then in Section 2.4.2, we will discuss the application to our specific level set transport

problem.

2.4.1 General explicit entropy viscosity method

To begin with, given the system of equations (2.23) we must choose an entropy - en-

tropy flux pair (E,F), where the entropy, E(y) ∈ C1 (R;R), is a strictly convex function

29

and the entropy flux, F(y) ∈ C1
(
R;Rd

)
, is related to E by

F′(y) := E ′(y)k′(y) or equivalently F(y) :=

∫
E ′(y)k′(y)dy (2.24)

For many sytems, there is such an entropy- entropy flux pair that naturally arrises from the

physical problem description, however this is not always the case. The use of this entropy

pair will give rise to physical solutions but in the case that no entropy pair is known, we

can choose one that yields the desired properties for stabilization that we are looking to

add.

Remark. To be clear, in the subsequent we are sweeping many of the technical parts of

this problem "under the rug"; specifically, dealing with the boundary conditions and ap-

plying appropriate restrictions on the flux and entropy to guarantee that a solution, y, to

equation (2.23) physically exists and is well behaved. For a more detailed discussion, see

[22]. end Remark.

Now given our entropy solution, y, this entropy - entropy flux pair satisfies the inequal-

ity condition

∂tE(y) +∇ · F(y)− E ′(y)g ≤ 0

with equality if y ∈ C1. We define our entropy residual, R(y) to be

R(y) = ∂tE(y) +∇ · F(y)− E ′(y)g

When we proceed to the discretization, we will overload the definition by using a dis-

crete finite element current solution Ynew and previous solution Yold and time step τ , to

approximating the partial time derivative, ∂t, by a first order backward difference,

R (Ynew, Yold, τ) =
E (Ynew)− E (Yold)

τ
+∇ · F (Ynew)− E ′ (Ynew) g. (2.25)

30

Then our entropy viscosity is defined locally using the maximal entropy residual on each

cell, K,

νE(y)|K =
cE

(
hK
p

)2

‖ |R (y)| ‖L∞(K)

‖E (y)− ave (E (y)) ‖L∞(Λ)

(2.26)

or using the discrete notation,

νE|K (Ynew, Yold, τ) =
cE

(
hK
p

)2

‖ |R (Ynew, Yold, τ)| ‖L∞(K)

‖E (Ynew)− ave (E (Ynew)) ‖L∞(Λ)

(2.27)

where cE > 0 is a user defined coefficient and

ave (E (Ynew)) =
1

|Λ|

∫
Λ

E (Ynew) dx

is the average entropy value over the region, Λ. Thus

‖E (Ynew)− ave (E (Ynew)) ‖L∞(Λ)

is the maximal entropy deviation over Λ and scales the residual to remove units of entropy

so that the resulting quantity has the correct units of viscosity.

We define the linear viscosity, νL, using the maximum local wave speed, βK =

‖ |k′(y)|`2 ‖L∞(K), as

νL(y)|K = cL

(
hK
p

)
βK = cL

(
hK
p

)
‖ |k′(y)|`2 ‖L∞(K) (2.28)

where cL > 0 is a user defined linear viscosity coefficient.

Remark. We will describe in Section 2.6 the method of choosing the entropy and linear

viscosity coefficients, cE and cL. end Remark.

Now we can compute our piecewise constant artificial (stabilizing) viscosity, ν using

31

entropy viscosity, equation (2.26), and linear viscosity, equation (2.28) as the minimum of

the two viscosities on each cell K

ν(y)|K = min (νE(y)|K , νL(y)|K) . (2.29)

The discrete artificial viscosity is computed similarly using the discrete entropy viscosity,

equation (2.27) and linear viscosity, equation (2.28) as

ν (Ynew, Yold, τ)|K = min (νE (Ynew, Yold, τ)|K , νL(Ynew)|K) . (2.30)

The key is that when the solution is smooth, the entropy residual is small and so entropy

viscosity is selected and a higher order smoothing is applied, but when the solution loses

smoothness due to shocks or large oscillations, the entropy residual becomes large and

so the linear viscosity is the smaller term and we apply a first order smoothing. This

attempts to maintain a consistent application of diffusion in relation to the smoothness of

the solution.

Now, for t ∈ (T0, T1] and given a Lagrange finite element approximation space Qp (T (t)),

the semidiscrete Galerkin + artifical viscosity approximation for our hyperbolic conserva-

tion equation (2.23) is: For a.e. t ∈ (T0, T1], find Y (t) ∈ Qp (T (t)) such that for all

V ∈ Qp (T (t)),

∫
Λ

(∂tY +∇ · k(Y))V dx +
∑
K∈T

∫
K

ν(Y)|K ∇Y · ∇V dx =

∫
Λ

gV dx.

Remark. This artificial viscosity can be applied explicitly or implicitly based on the prob-

lem at hand. We will apply it explicitly to be consistent with our explicit Runge Kutta time

integration routine. A stability analysis of a single forward Euler step with this explicit

artificial viscosity stabilization will show that the CFL number should also factor in the

32

viscosity when entropy viscosity is being applied since it is O(h2). Numerically, this can

be observed in that if we choose our entropy parameter, cE , too large we see blowup of the

solution instead of smoothing. end Remark.

2.4.2 Entropy viscosity stabilization for the level set method

Now that we have introduced the theory and method for a general hyperbolic equation,

we will focus in on our level set method with reinitialization. Ideally, the entropy function,

E(y), is something with a physical meaning attached to the problem being solved, but in

the case of the level set method, there is no recognized physical entropy function so we

are free to choose a stand-in entropy function that gives us the behavior we are looking

for, that is which keeps the normal direction of the level sets near the zero level set smooth

and dampens oscillations far away from the zero levelset. It is useful to consider entropy

functions that are convex and differentiable. For instance, we could choose our entropy to

be polynomial

E(y) = ys, E ′(y) = sys−1

for s an even integer. It is common to choose a value of s = 2 or s = 4 but even higher

values like s = 20 could be appropriate. However, when we use the hyperbolic tangent

filters as described in Section 2.1 above, these seem to place not enough smoothing near

the zero level set and instead spread out the viscosity a little too much so that instabilities

in the solution are not smoothed away. Instead we choose to use a log-type entropy that

seems to give a better distribution of viscosity to our system. Supposing that our level set

has a horizontal asymptote and max(or min) at C(or −C), we define

E(y) = log ((C − y)(C + y)) , E ′(y) = − 2y

(C − y)(C + y)
.

33

This would be perfect if our approximate scheme were maximum-preserving so that we

were guaranteed to always stay between−C andC. However, since ours is not a maximum

preserving transport scheme, we take the first four terms of the Taylor series expansion

around 0 to be our entropy function:

E(y) = log(C2)−
(y
C

)2

− 1

2

(y
C

)4

− 1

3

(y
C

)6

, E ′(y) = − 2y

C2
− 2y3

C4
− 2y5

C6
(2.31)

This gives a similar behavior to the log definition without the blowup at the max(min)

values if they are exceeded.

In the case of our level set method, our flux and rhs sources are in fact linear and given

by

∇ · k(ϕ) = k′(ϕ) · ∇ϕ = (v + λU) · ∇ϕ (2.32)

and

g(t, x) = λ sign(ϕ)S. (2.33)

Thus,

∇ · F(ϕ) = F′(ϕ) · ∇ϕ

= E ′(ϕ)k′(ϕ) · ∇ϕ

= E ′ (ϕ) (v + λU) · ∇ϕ (2.34)

So, the entropy residual, R(ϕ), for the level set method with reinitialization is given by

R(ϕ) = ∂tE(ϕ) +∇ · F(ϕ)− E ′(ϕ)g

= ∂tE(ϕ) + E ′ (ϕ) (v + λU) · ∇ϕ− E ′(ϕ) (λ sign(ϕ)S(ϕ))

34

and our disrete entropy residual is

R(ϕnew, ϕold,∆t) =
E (ϕnew)− E (ϕold)

∆t
+ E ′ (ϕnew) (v + λU) · ∇ϕnew

− E ′ (ϕnew) (f + λ sign (ϕnew)S(ϕ))

(2.35)

The linear viscosity is computed using the speed,

βK = ‖ |v + λU|`2 ‖L∞(K).

Then the level set artificial viscosity is computed from the descrete entropy residual and

speed as in equations (2.27), (2.28) and (2.29). We will discuss the specific discrete algo-

rithm with regards to our time integration scheme and our choice of explicit stabilization

in Section 2.5.3.

2.5 Semi-discrete and fully-discrete formulations with stabilization

We have now described the continuous model with stabilization and have introduced

the notation for space and time discretizations. We will present in Section 2.5.1, the semi-

discrete formulation of the level set Galerkin system with stabilization. We will describe

the use of the explicit Runge-Kutta time integration schemes in Section 2.5.2 to discretize

time and then we will write down the fully discrete formulation in Section 2.5.3.

2.5.1 Semi-discrete formulation

Now that we have defined the discretization spaces (Section 2.3) and the stabilization

scheme (Section 2.4) being used, our semi-discrete Galerkin + stabilization approxima-

tion to the level set method is:

35

For a.e. t ∈ [T0, T1], find Φ(t) ∈ Qp(T (t)) such that for all W ∈ Qp (T (t)),

∫
Λ

∂

∂t
ΦWdx +

∫
Λ

(v + λU) ·∇ΦWdx +
∑
K

∫
K

ν(Φ)|K ∇Φ · ∇Wdx

=

∫
Λ

λ sign(ϕ)S(Φ)Wdx
(2.36)

and inflow boundary conditions Φ(t, x) = I (ϕinflow(t, x)) where v(t, x) · ν(x) < 0 on

x ∈ ∂Λ and initial conditions Φ(T0) = I (ϕinitial). Here, I is a projection onto Qp(T (t)).

2.5.2 Time integration schemes

We choose to implement the time integration using one of the family of explicit Runge-

Kutta schemes. In particular, we choose from the schemes which have the (SSP) Strong

Stability Preserving property (see Section 2.5.2.1). We will describe an algorithm for the

explicit Runge-Kutta schemes using a Butcher Tableau in Section 2.5.2.2 and then using

the so called Alpha-Beta (α−β) scheme in Section 2.5.2.3. The SSP property reduces the

α− β scheme to a convex combination of forward Euler steps. Using the Butcher Tableau

approach would require us to lag the stabilization whereas the α − β scheme lets it be

applied in real time on each Euler step. We therefore will primarily use the SSP RK3 in

α− β form for our time integration scheme for the level set method.

2.5.2.1 Strong stability preserving property

As described in [23] and [24], when we say a time integration scheme has the strong

stability preserving (SSP) property, we mean that given some norm ‖ · ‖ under which

the first order explicit Euler scheme is strongly stable,

‖uk+1‖ ≤ ‖uk‖

36

with a condition

∆t ≤ ∆tFE,

then this SSP scheme preserves that same stability for the higher order multistep scheme

under a possibly more stringent condition

∆t ≤ c∆tFE.

In [23], it is shown that c = 1 for SSP RK2 and SSP RK3, so we can use the same

time step in both cases that we would for the forward Euler scheme. The SSP schemes

were originally developed for solving hyperbolic conservation laws and also have the total

variation diminishing (TVD) property but the SSP property is in fact a stronger property

that preserves any convex functional bound, like positivity, that might be satisfied by the

forward Euler step.

Remark. Note that while it could be useful, our SSP-RK schemes are not built with the

maximum preserving property. We are only exploiting the SSP property to be able to write

the system as a sequence of forward Euler steps. There are cases however where having a

maximum preserving property would be useful but this requires the use of flux correction

techniques. For instance, when adding in more detailed parts of the biological cell’s motil-

ity, one is led to include various chemical signals in the interior of the cell which need to

be advected along with the cell itself. This could be cast as a mixture theory type prob-

lem where one would track concentrations of signals and require that the concentration of

each component be non negative and sum to 1. Thus positivity preserving and maximum

preserving properties would be necessary. See [25] and [26] for more details on how this

could be done for a general transport conservation law. end Remark.

37

2.5.2.2 Butcher tableau representation of explicit Runge-Kutta schemes

The general explicit Runge-Kutta of order s solving the equation

y′ = L(t, y)

is typically described by a Butcher tableau.

c1

c2 a21

c3 a31 a32

...
...

... . . .

cs as1 as2 . . . as(s−1)

b1 b2 . . . bs−1 bs.

We use the notation of Section 2.3 for our discrete time steps and consider for now contin-

uous in space but discrete in time solutions yk+1 := y(tk+1). Then the Runge-Kutta update

is given by

yk+1 = yk + ∆t
s∑

m=1

bmLm

The intermediate steps, denoted by y(1), . . . , y(s) and intermediate derivatives denoted by

L1, . . . , Ls are computed for n = 1, . . . , s as

y(n) = yk + ∆t
n−1∑
m=1

anmLm

Ln = L
(
tk + cn∆t, y(n)

)
.

The Butcher tableau algorithm for the tableau set (A, b, c), is summarized by Algorithm 1.

We have used the functions apply_inflow_bc(t, y) and apply_intermediate_inflow_bc(t, y)

38

which are defined in Algorithm 2 and 3 respectively. The intermediate inflow condition

is only required if the boundary values are variable in time and provides the full sth order

convergence rate in this case (see [27] and [28] for details).

Remark. Notice that for memory usage, we must store yk and yk+1 and then the s interme-

diate right hand side vectors Ln and a temporary vector ytmp representing the desired y(n)

to compute Ln. More practically once we have solved for yk+1, yk can be deleted, so we

really only need memory for s + 3 vectors, however for convenience in our splittings we

keep track of two previous states yk and yk−1. end Remark.

Remark. Technically speaking, our system is a level set transport pde with stabilization of

the form

yt + (v + λU) · ∇y − div (ν∇y) = λ sign(y)S(y).

If we collect all the non-time derivative terms to the right hand side and let G(t, y) rep-

resent everything but the artificial viscosity term, then we have a transport + stabilization

decomposition:

yt = −(v + λU) · ∇y + λ sign(y)S(y) + div (ν∇y)

= G(t, y) + div (ν∇y) .

We discretize in space using a Lagrange finite element basis and Galerkin formulation to

obtain an ODE in time. Thus the explicit time integration update ytmp = yk+
∑n−1

m=1 anmLm

on stage n ∈ {1, . . . , s} is actually in the form

MY tmp = MY k +
n−1∑
m=1

anm(Gm + Sm)

with capital vectors, Y k, representing the coefficients vector for the basis functions at

39

time tk and M , the corresponding mass matrix. Likewise, since we are using an explicit

scheme, we obtain Gm and Sm as the right hand side vectors computed from G(t, y) and

the stabilization term. An equivalent formulation is obtained by multiplying through by

M−1

Y tmp = Y k +
n−1∑
m=1

anmM
−1 (Gm + Sm) .

And so by calling Ln = M−1 (Gn + Sn) we are in the recognizable format for a vector

ODE Runge-Kutta problem. Thus, for our s-stage explicit Runge-Kutta scheme, there

are s solves of a mass matrix inversion which can be efficiently done using the conjugate

gradient iterative method with a Jacobi preconditioner. end Remark.

Remark. The addition of the explicit artificial viscosity stabilization div(ν(n)∇y(n)) on

each stage n ∈ 1, . . . , s requires a little more attention. It turns out that one of the most

efficient schemes for the Butcher Tableau algorithm is an "on the fly" approach where we

skip applying it to the first stage, ν(1) = 0 and then the subsequent viscosities are lagged

one stage of the algorithm. That is, for stage n we compute the viscosity ν(n) as

ν(n) =

0, n = 1

ν
(
y(n−1), yk, cn−1∆t

)
, n > 1

(2.37)

using the discrete entropy viscosity notation of equation (2.27). Alternatively, we could

use ν(1) = ν(yk, yk−1,∆tk), but this requires storing yk−1. These terms are fairly simple

to implement but the viscosity for y(n) is lagged (not based on y(n) but on y(n−1)) and so if

large shocks occur, they are not immediately smoothed out. We will see in Section 2.5.2.3

that using the α− β scheme allows us to apply this artificial viscosity in real time without

the lag although the benefit is offset by an increase of s-extra mass matrix inversions per

time step, effectively doubling the amount of solver time. However, the mass matrix has

40

constant condition number with respect to n_dofs and so using the conjugate gradient

method with a simple Jacobi preconditioner reduces this to a small amount of extra work.

end Remark.

Algorithm 1: Explicit RK(s) with Butcher tableau algorithm.
Data: yk, the previous time step
bApplyIntermediateBC, a flag for whether to apply consistent boundary conditions
if boundary values are changing in time
Result: yk+1, the next time step

1 begin
2 for n = 1 . . . s do
3 ytmp = yk;
4 for m = 1 . . . n− 1 do
5 ytmp += ∆tanmLm;
6 end
7 if bApplyIntermediateBC then
8 apply_intermediate_inflow_bc(tk + cn∆t, ytmp);
9 end

10 Ln = L(tk + c[n]∆t, ytmp);
11 end
12 yk+1 = yk;
13 for n = 1 . . . s do
14 yk+1 += bn∆tLn
15 end
16 apply_inflow_bc(tk+1, yk+1);
17 end

Remark. We have implemented the explicit strong stability preserving Runge-Kutta 2 and

3 methods for respectively second and third order time integration errors. The Butcher

tableaus for the explicit SSP Runge-Kutta 2 (SSP RK2) and explicit SSP Runge-Kutta 3

41

Algorithm 2: apply_inflow_bc(t,y)
Data: t, the new time
y, the current solution at new time without boundary conditions applied
v, velocity field
ν(x), the outer normal unit vector for x ∈ ∂Λ
yinflow, The inflow function
Result: y, the solution at new time with boundary conditions applied

1 begin
2 For each degree of freedom xi ∈ ∂Λ if v(t, xi) · ν(xi) < 0 then
3 y(xi) = yinflow(t, xi).
4 end
5 end

Algorithm 3: apply_intermediate_inflow_bc(t,y)
Data: i, the intermediate stage number
ti = t+ ci∆t, the intermediate time
y, the current solution at t+ ci∆t without boundary conditions applied
v, velocity field
ν(x), the outer normal unit vector for x ∈ ∂Λ
yinflow, The inflow function
Result: y, the solution at new time with boundary conditions applied

1 begin
2 for each degree of freedom xj ∈ ∂Λ do
3 if v(ti, xj) · ν(xj) < 0 then
4 if i == 1 then
5 y(xj) = yinflow(ti, xj);
6 else if i == 2 then
7 y(xj) = yinflow(ti, xj) + ci∆ty

′
inflow(ti, xj);

8 else if i == 3 then
9 y(xj) = yinflow(ti, xj) + ci∆ty

′
inflow(ti, xj) + ∆t2 a32

a21
y′′inflow(ti, xj);

10 end
11 end
12 end

(SSP RK3) schemes are

0

1 1

1/2 1/2

0

1 1

1/2 1/4 1/4

1/6 1/6 2/3

42

end Remark.

2.5.2.3 Alpha-Beta representation of explicit SSP Runge-Kutta schemes

If our explicit s-stage Runge-Kutta scheme has the SSP property (Section 2.5.2.1), then

another representation called the α−β representation can be more convenient. There may

be more than one α − β representation for each Butcher tableau but there is at least one

set of matrices α and β and vector c where

α =

α11

α21 α22

...
... . . .

αs1 αs2 . . . αss

, β =

β11

β21 β22

...
... . . .

βs1 βs2 . . . βss

, c =

c1

c2

...

cs

.

Then defining our intermediate steps with y(0) = yk and for each n = 1 . . . s,

y(n) =
n∑

m=1

αnmy
(m−1) + βnm∆tL(tk + cm∆t, y(m−1))

Then our next step is yk+1 = y(s). By an algebraic manipulation we can always reduce this

scheme back to the standard Butcher tableau, but in the case of the explicit SSP Runge-

Kutta schemes, it is possible to write α and β in such a way that β is diagonal (and so

better represented as a vector)

β =

β11

0 β22

...
... . . .

0 0 . . . βss

=

β1

β2

...

βs

.

43

and where all of the αij’s are non negative. In this case the scheme is a sequence of forward

Euler steps with the previous state a convex combination of the previous intermediate stage

solutions, y(m), as follows: For the n-th (0 < n ≤ s) stage, if we define

ytmp =
n∑

m=1

αnmy
(m−1),

then

y(n) = ytmp + βn∆tL(tk + cn∆t, y(n−1))

is a forward Euler step with time-step size βn∆t. Instead of storing the right hand sides,

Ln’s, as in the Butcher tableau algorithm, we store the intermediate states y(n) and compute

the right hand side vectors L on the fly.

Remark. The level set transport pde with stabilization we are solving is of the form

yt + (v + λU) · ∇y − div (ν∇y) = λ sign(y)S(y).

If we collect all the non-time derivative terms to the right hand side and let G(t, y) repre-

sent everything there but the artificial viscosity term, then we have a transport + stabiliza-

tion decomposition:

yt = −(v + λU) · ∇y + λ sign(y)S(y) + div (ν∇y)

= G(t, y) + div (ν∇y) .

end Remark.

Now, in this α − β scheme, we can apply the stabilizing viscosity, ν, in real time

instead of lagging as in the Butcher tableau algorithm. We separate each Euler step of

the scheme into three steps where we compute the non-stabilized, Galerkin solution, y(n)
g ,

44

then use it to construct the artificial viscosity, ν(n), with equation (2.30) and then apply

the explicit stabilization. We summarize the n-th Euler step with real-time stabilization in

Algorithm 4.

Algorithm 4: The n-th stage Euler step of α − β RK(s) scheme with real-time sta-
bilization.

Data: ytmp, intermediate solution
y(n−1), solution at previous stage

Result: y(n), solution at next stage
1 y

(n)
g = ytmp + βn∆tL

(
tk + cn∆t, y(n−1)

)
// Galerkin solution

2 ν(n) = ν
(
y

(n)
g , ytmp, βn∆t

)
// construct artificial viscosity

3 y(n) = y
(n)
g + βn∆t div

(
ν(n)∇y(n)

g

)
// stabilize Galerkin solution

Remark. Again noting that the spatial discretization of our PDE converts our solution

into a vector ODE in time with a mass matrix term. When we use Algorithm 4 to apply

stabilization in real time, we must invert the mass matrix twice per stage: once for the

Galerkin solution, then again when applying the artificial viscosity stabilization. Thus

for an s-stage Runge Kutta algorithm using the α − β formulation with real time artifical

viscosity, we must invert the mass matrix 2s times. Since the mesh will not be refined

between stages, it is possible to use a direct method and compute the LU decomposition

once and apply forward and backward substitution for all 2s times. Alternatively, the mass

matrix has constant condition number so that the conjugate gradient method with a Jacobi

preconditioner is quick and has minimal complexity. end Remark.

Remark. All in all, we require storage room for yk, the s + 1 vectors {y(n)}sn=0, yk+1,

ytmp and a right hand side vector Ln. This makes s + 5 vectors but in reality this can be

reduced through removing redundancy (ie y(0) = yk and yk+1 = y(s)) to s + 3 vectors

45

which is the same amount of memory as the Butcher tableau algorithm. However, the

number of mass matrix inversions is doubled when we use the artificial viscosity since

we must assemble y(n)
g with a mass matrix inversion and then to apply the viscosity again

requires a mass matrix inversion on the explicit div-grad term. One might decide to try

using a mass lumping procedure to reduce the effect, but this limits the errors to second

order and does not seem to behave well in practice for this problem. However, through

the use of the preconditioned conjugate gradient solver and with a Jacobi preconditioner

the amount of time it takes to invert can be significantly reduced. Nevertheless, the mass

matrix inversion solver still occupies between 10 and 20 percent of the level set module run

time. The dominant operation is still assembly, in particular the assembly of the viscosity

and div-grad terms. However, when compared to the computation of the velocity system,

this increased cost is quite insignificant for the benefit it gives us. end Remark.

Remark. An α− β representation of the SSP RK2 method is

α =

 1 0

1/2 1/2

 , β =

 1

1/2

 , c =

 0

1

An α− β representation of the SSP RK3 method is

α =

1 0 0

3/4 1/4 0

1/3 0 2/3

 , β =

1

1/4

2/3

 , c =

0

1

1/2

end Remark.

2.5.3 Fully-discrete formulation of stabilized level set equation

When solving for the level set at time tk+1, each of the s stages of the Runge-Kutta

time integration lives at a certain time t(n) = tk + c[n]∆tk+1. We will need an estimate of

46

Algorithm 5: Explicit RK(s) with α− β algorithm.
Data: yk, the previous time step
Result: yk+1, the next time step

1 begin
2 y(0) = yk;
3 for n = 1 . . . s do
4 ytmp = 0;
5 for m = 1 . . . n do
6 ytmp += αnmy(m−1);
7 end
8 /* *********** Begin Euler Step ************* */
9 y(n) = ytmp + βn∆tL(tk + c[n]∆t, y(n−1));

10 if (use artificial viscosity) then
11 y(n) = add_explicit_viscosity(y(n), ytmp, βn∆t);
12 end
13 /* *********** End Euler Step *************** */
14 end
15 yk+1 = y(s);
16 apply_inflow_bc(tk+1, yk+1);
17 end

the velocity at each of these intermediate times. When solving for the velocity and level

set components at time tk+1, we solve first for velocity vk+1 = v
(
ϕk, ϕk−1

)
and then we

solve for the level set update ϕk+1 = ϕ
(
vk+1, vk

)
. Thus at stage n ∈ {0, . . . , s} in the

level set update, we must extrapolate the needed velocity v(n) from the known velocities

vk+1 and vk. This is done by setting

v(n) = v
(
tk + c[n]∆tk+1

)
≈ vk + c[n]

(
vk+1 − vk

)
. (2.38)

We likewise set the right hand side term f(n) = f(t(n)). The rest of the terms are dependent

on whether we use the α− β or Butcher Tableau approaches.

We start with the initial solution Φ0 ∈ Qp (T 0), with Φ0 = I(ϕinitial). As we refine

47

the mesh over time, we must interpolate the previous solutions that will be used onto the

current mesh. Because we are using hte explicit Runge-Kutta time integration, we only

ever need the previous solution. Thus if we are solving for Φk+1 ∈ Qp
(
T k+1

)
, we will

project Φk ∈ Qp
(
T k
)

onto Qp
(
T k
)
. To prevent the use of too much notation, we will

not denote this new interpolated solution differently. In particular, we are a uniform fully

refined mesh in a band around the zero level set, and since we are using a CFL condition,

we our solution will not move too far in a single step. Thus the mesh has not changed

on much of the band and the interpolation procedure only affects regions far from the

zero level set where we are essentially constant. Thus, we can consider the use of the

interpolant a non-issue.

Then given Φk ∈ Qp
(
T k+1

)
, we compute Φk+1 ∈ Qp

(
T k+1

)
as the final stage of the

explicit Runge-Kutta s time integration of

∫
Λ

ΦtWdx =

∫
Λ

L (Φ)Wdx−
∑

K∈T k+1

∫
K

ν(Φ)|K ∇Φ · ∇Wdx (2.39)

for all W ∈ Qp
(
T k+1

)
and

L(Φ, t) = −(V(t) + λU(t)) · ∇Φ(t) + λ sign(Φ(t))S (Φ(t)) (2.40)

using the Butcher Tableau Algorithm 1 or the α − β Algorithm 5. The computation of

the artificial viscosity will be different depending on the algorithm used. We discuss the

artificial viscosity for the Butcher Tableau algorithm in Section 2.5.3.1 and for the α − β

algorithm in Section 2.5.3.2.

2.5.3.1 Artificial viscosity using Butcher tableau algorithm

When we are using the Butcher Tableau format, we include the artificial viscosity term

in the right hand side and do so by lagging the dependence on Φ. For the first stage, Φ(1),

48

of solving for Φk+1 at time tk+1, there are two possibilities for the artificial viscosity. The

first option is the so called "on-the-fly" method mention in [22] and seems to work quite

well. It localized the information needed to only use data generated inside a Runge-Kutta

step. That is, we don’t need to store previous solutions. The second approach is a standard

lagged method which uses the previous data to initialize the first stage viscosity. The rest

of the residuals on each stage are computed in the standard lagged method. That is, to

solve for solutions at time tk+1 and for stage n ∈ {1, . . . , s} we compute the entropy

residual as

R(n) =

0, n=1, "on-the-fly" option

R
(
Φk,Φk−1,∆tk

)
, n=1, standard option

R
(
Φ(n−1),Φk, c[n− 1]∆tk+1

)
n>1.

(2.41)

This is a lagged application of the entropy viscosity and so it is can be computed offline

and included as a right hand side term so that there is only a single inversion of the mass

matrix per stage of the Runge-Kutta step.

2.5.3.2 Artificial viscosity using α− β algorithm

We have already discussed the application of the artificial viscosity on an Euler step in

Section 2.5.2.3 but add it here to be complete. For each stage, n ∈ {0, . . . , s}, of the SSP

Runge-Kutta algorithm with α− β representation we have a forward Euler step from Φtmp

to Φ(n) and time step c[n]∆tk+1. In this case we follow Algorithm 4 where we compute the

Galerkin without stabilization step, Φ
(n)
galerkin, then compute the viscosity using the entropy

viscosity residual

R(n) = R
(

Φ
(n)
galerkin,Φ

tmp, c[n]∆tk+1
)
. (2.42)

49

defined in equation (2.35). Then we apply the artificial viscosity stabilization to the

Galerkin solution. This approach applies artificial viscosity in real time at the expense

of an extra inversion of a mass matrix.

2.6 Choosing parameters for level set method

We briefly discuss techniques for choosing optimal parameters related to the transport,

reinitialization, and artificial viscosity components of our level set problem. Finally we

give a summary of the optimal parameters for our specific implementation.

2.6.1 Some implementation details

We implement all of these tools using the deal.II library in C++. The deal.II ([3]) finite

element library supports adaptive mesh refinement in 2D and 3D with general quadrilateral

and hexahedral cells. The corresponding finite elements on the mesh are constructed by

tensor products of the standard 1D finite elements. Each triangulation, T k, is represented

by a oct-tree forest data structure using the p4est library([5]) with the active cells as the

leaves of the forest and each level of the tree consisting of equal number of refinements

of the initial mesh. These libraries together support a completely distributed approach to

parallelization of the triangulation with each processor owning a disjoint set of degrees of

freedom on the mesh. The adaptive mesh refinement algorithm imposes a maximum of 2

level differences between neighboring cells so that the mesh refinement is well behaved

and the rate of grading is also bounded. Finally, we use the Trilinos library([6]) which

provides us with the iterative solvers and preconditions for solving our linear systems.

2.6.2 Optimal level set filter parameters

We choose the coefficients distance coefficient cd to be wide enough for the approx-

imate Dirac measure and Heaviside function as discussed in Chapter 3. In our case this

means having it be on the order of ω = h3/4. We find cd = 1.4h3/4 = 1.4ω is a good size

50

so that the Heaviside width parameter (eH = 1.0ω) and the Dirac delta width parameter

(ed = 1.0ω) are fully contained in our distance function band which gives a better error

approximation than when it overlaps the thresholding filter. In general we recommend to

choose ed ≤ eH ≤ cd but find that setting eD = eH works well in most cases. Finally,

we let cf = 2h be the thresholding filter (hyperbolic tangent) width. The parameters are

displayed together on the profile shape in Figure 2.7.

Figure 2.7: Level set parameters cd and cf and approximate Dirac delta and Heaviside
function widths ed ≤ eH .

2.6.3 Optimal CFL and spatial adaptivity parameters

Even though we are using uniform time steps, we still choose our time step so that

our maximal computed CFL number is around 0.3. Sometimes it is necessary to run

51

the simulation a few times with a coarse grid to determine the maximal velocities and

thereby choose the optimal time step. We adaptively refine so that we are fully refined

on |ϕ| ≤ ca(cd + cf) where ca ∈ (0, 1). Typically we will choose ca to be ca = 0.9 so

that we are fully refined where the Dirac measure and Heaviside function are being used,

and then a little beyond. Otherwise, we coarsen as quickly as is allowed by our program.

We coarsen the mesh away from the band as quickly as is allowed so as to minimize the

number of degrees of freedom. The idea is that the important quantities we are tracking

live near the zero level set of our band. The rest needs to be resolved enough to capture

the physics of the problem at hand.

Remark. It is often convenient to also provide an adaptive estimator for the velocity field

to be fully resolved. If this is the case, we choose to prefer refinement over coarsening

and always set the level set grading last with a check that we do not exceed the specified

minimum and maximum level of refinement of our triangulation as stored by the p4est

oct-tree forest. Then we can specify the maximal and minimal levels our mesh is allowed

to achieve and thereby control the minimal and maximal mesh sizes. In the end, we always

have the band of cells in a fully refined state and then possibly others based on the velocity

field in various states of refinement. end Remark.

2.6.4 Optimal reinitialization parameters

When we choose the basic tanh thresholding cut-off function, then the Coupez method

described above is enough to keep the profile in shape. We find that the reinitialization

coefficient, cR = 0.01, works great meaning 1 reinitialization step for every 100 trans-

portation steps. However, when we use the distance function with tanh thresholding the

coupez scheme is not in general able to keep up. We have tried cR ranging from 0.01 all

the way up to 1 but the larger cR is, the more instabilities and distortion of the solution

there is. We do use the entropy viscosity stabilization but were not able to find a good

52

combination of reinitialization and stabilization that preserved the proper advection of our

solutions. Thus, when we use the wider distance with tanh thresholding profile shape, we

need a different approach.

We can instead use the standard profile reinitialization scheme, equation (2.14) as a

post processing step to the transport step. We can choose a certain number of reinitial-

ization steps for each number of transport steps based on the needs of the problem. We

can specify the integers R -the number of reinitialization steps- and T -the number of

transport steps- before calling reinitialiation. These two user set integers fully specify the

reinitialization process. In general, we start with them both set to 1, meaning that for each

transport step we apply one reinitialization step. But it is necesary to tune these parameters

based on the specific problem being solved. In the case of solving for the Willmore forces,

we need the norm of the gradient |∇ϕ| to be as smooth as possible since the curvature and

Willmore quantities are related to first and second derivatives of ∇ϕ. We find in this case

that R = 1 reinitialization steps for every T = 1 transport step keeps ϕ smooth enough.

On the other side of the spectrum, for the 2D Zalesak disk (as in Section 2.7.2) we choose

R = 1 reinitialization step for every T = 200 transport steps.

As a final note, when we implement the reinitialization scheme, we also need a sta-

bilization scheme for it. In this case, we find that the artificial linear viscosity is perfect

and maintains the levelset set as smooth as we need it. Since there is no known physi-

cal entropy function for the reinitialization scheme, we must choose an entropy function

to use. However, the choices we have come up with do not yet capture the needs of the

reinitialization scheme. Thus the entropy viscosity scheme does not seem to work for our

reinitialization problem. So in the case of using the distance with tanh thresholding profile,

our aproach will be to transport with the entropy viscosity/ linear viscosity stabilization

and then reinitialize with linear viscosity stabilization.

Note that the separation of reinitialization and transport does not significantly affect the

53

total run time since the largest use of time is still in constructing the velocity field. Using

the explicit time integration for our transport schemes boil down to solving a mass matrix

system multiple times. Using the conjugate gradient iterative method for this results in

a constant number of steps to attain convergence. In experiments, we have not noted a

significant increase in time using this approach.

2.6.5 Optimal artificial viscosity parameters

To tune the parameters for our artificial viscosity, we start with the linear viscosity and

ignore the entropy viscosity term (ie set cE = ∞). We start with linear viscosity high

enough (usually around 1 is large enough to start) and work down until it is as small as can

be and still dampen the oscillations or instabilities. Use a test case that is not too simple

but on a somewhat coarse mesh. The idea is to be able to see if it the current parameter

works fairly quickly, but give it enough of a challenge to need the viscosity.

Remark. We find the Zalesak disk rotation example (section 2.7.2) to be a decent problem

for testing, but it allows us to set the entropy coefficient too small for two-phase flow

problems. end Remark.

Once we have set the linear viscosity parameter, we now start with a large, but not

too large, value for cE ≈ 200. If it is too large, the explicit artificial viscosity is now

introducing oscillations instead of dampening them. Then we work it down until we no

longer see smooth solutions. Then go back up a little into the smooth regime and you have

your cE value. We ended up with a linear viscosity coefficient of cL = 0.2 and an entropy

viscosity coefficient of cE = 0.8 for two-phase flow problems, but cE could be smaller

when the velocity field is nicer, as in the case of Zalesak disk rotations.

2.6.6 Summary of optimal parameters for level set method

For each problem, there may be a slightly better set of parameters, be it smaller linear

and/or entropy viscosity coefficient, or more or less reinitialization and smoothing being

54

applied. However, the parameters in Table 2.2 is a "best" general starting place and seems

to work well for our two-phase flow problems discussed in Chapters 6-8. For problems

with surface tension or when adding a willmore force along the surface, Γ, between the

two-phases, we expect our solutions to have a certain amount of smoothness, so having

a higher viscosity is not unreasonable, yet for pure transport problems we expect sharp

corners to stay sharp so a smaller amount of smoothing seems to be more appropriate. The

problem will dictate the fine tuning of the parameters, T and R.

cd cf cCFL ca cL cE T R

1.4w 2h 0.35 0.9 0.2 0.8 1 1

Table 2.2: A list of optimal level set parameters for simulation of two-phase flow models.
These are to be taken as the starting default values but should be modified on a case by
case basis.

2.7 Numerical results and validation for stabilized level set method

We now give a few validation results for our implementation of the level set method.

Unless otherwise noted, the α−β SSP Runge-Kutta 3 advection algorithm has been used.

We test pure advection with the Runge-Kutta Transport test in Section 2.7.1, then add

linear viscosity, then entropy viscosity, then the reinitialization scheme for the Zalesak disk

rotation test in Section 2.7.2. The periodic single vortex test is conducted with transport +

reinitialization + artificial viscosity in Section 2.7.3. Finally, we provide in Section 2.7.4

an analysis of mass/volume loss based on mesh size and reinitialization scheme, T and R.

2.7.1 Runge-Kutta transport tests

We test the Runge-Kutta convergence rates for transport without the artificial viscosity

and reinitialization schemes. We let Λ = (0, 1)2 and t ∈ [0, Tf] with the exact solution

55

ϕ(x, t) = 2 + sin(πxt) sin(πyt) moving under velocity field

v(x, t) =

 sin(t+ x) sin(t+ y)

cos(t+ x) cos(t+ y)

 . (2.43)

The transports equation ϕt + v · ∇ϕ = f yields the right hand side to be

f(x, t) =π [y sin(πxt) cos(πyt) + x cos(πxt) sin(πyt)]

+ tπ sin(πxt) cos(t+ x) cos(πyt) cos(t+ y)

+ tπ cos(πxt) sin(t+ x) sin(πyt) sin(t+ y).

(2.44)

We transport using a uniform spatial refinement of the mesh, T k = T , the SSP RK3

time integration with a uniform time step and Q3(T) spatial elements. The predicted

convergence rates for L2(Λ) in space are thus 4th order and in time, 3rd order. We use an

inflow Dirichlet boundary condition and simulate until T1 = 0.2. We uniformly refine in

both time and space in order to preserve the CFL number which is estimated to be

cCFL =

(
∆tmax |V |

(h/p)

)
= 0.12 (2.45)

The observed errors and convergence rates are given in Table 2.3.

2.7.2 Zalesak disk rotation

We let Λ = (−1, 1)2 and simulate the rotation of the slotted disk around a circle

and back to where it began. The slotted disk is a circle of radius R = 0.25 centered at

(cx, cy) = (0.5, 0.0) with the rectangle of horizontal half width w = 0.0375 and vertical

half length L = 0.25 centered at (sx, sy) = (0.5, 0.25). The signed distance function can

be described as the set subtraction of the signed distance function of the circle minus the

56

cycle ∆t n_steps min hK n_dofs L2(Tfinal) rate `∞(L2) rate `2(L2) rate
0 5.0000e-03 40 1.2500e-01 625 3.0407e-08 0.0000 3.0407e-08 0.0000 6.0253e-09 0.0000
1 2.5000e-03 80 6.2500e-02 2401 3.7918e-09 3.0035 3.7918e-09 3.0035 7.3992e-10 3.0256
2 1.2500e-03 160 3.1250e-02 9409 4.7366e-10 3.0009 4.7366e-10 3.0009 9.1693e-11 3.0125
3 6.2500e-04 320 1.5625e-02 37249 5.9188e-11 3.0005 5.9188e-11 3.0005 1.1411e-11 3.0064
4 3.1250e-04 640 7.8125e-03 148225 7.3868e-12 3.0023 7.3868e-12 3.0023 1.4210e-12 3.0055

Table 2.3: Transport of exact solution ϕ(x, t) = 2 + sin(πxt) sin(πyt) under velocity field
v(x, t) = [sin(t+x) sin(t+y); cos(t+x) cos(t+y)] using Runge-Kutta 3 time integration
and Q3 (T) elements with T a uniformly refined mesh of [0, 1]2. The estimated CFL
number

(
∆tmax |v|

(h/p)

)
is 0.12.

signed distance function of the rectangle in the following manner:

d(0, x) = min {dcircle(x), drect(x)}

= min

{
R−

√
(x− cx)2 + (y − cy)2,max {|x− sx| − w, |y − sy| − L}

}

Note that this works because we use d > 0 to denote the inside of our region. We then

apply the tanh thresholding filter

ϕ(0, x) =

cd + cf tanh

(
d(x)−cd
cf

)
, d(x) > cd

d(x), |d(x)| < cd

−cd + cf tanh
(
d(x)+cd
cf

)
, d(x) < −cd

(2.46)

to get our level set function with cd = 1.4h3/4 and cf = h. We fully refine on |d(x)| <

0.9 (cd + cf) and adaptively coarsen away from there which yields approximately 4, 000

mesh cells as seen in the multiple time views of Figure 2.8.

The level set is advected using the divergence free velocity

v(t, x) = [−y;x] (2.47)

57

which rotates counter clockwise completing a full rotation every 2π time units. A visual

comparison of the solution after a complete rotation (seen in Figure 2.10) with the ini-

tial surface shows us our SSP RK3 transport with reinitialization and artificial viscosity

method behaves fairly well.

Remark. Note that we can write down the exact solution at any time, t ≥ 0 using the

rotated coordinates

x̃(t) = (x− cx) cos(−t)− (y − cy) sin(−t) + cx

ỹ(t) = (x− cx) sin(−t) + (y − cy) cos(−t) + cy

as

ϕexact(t, x) = ϕ(0, x̃(t)).

end Remark.

For a more complete picture, we show the result in Figure 2.9 of one complete ro-

tation under pure advection, then adding in linear viscosity, then the artificial viscosity

using linear and entropy viscosity but no reinitialization then finally the full scheme with

reinitialization. Notice in Figure 2.9a that the SSP RK3 algorithm without viscosity or

reinitialization maintains the zero level set extremely well, but the rest of the solution is

highly distorted and so extra help is needed. We add linear viscosity and after a single ro-

tation, seen in Figure 2.9b, the zero level set is highly distorted but the solution is smooth.

We add in the higher order entropy viscosity (seen in Figure 2.9c) which keeps the solution

smooth but we still have a little distortion.

Finally, if we add in the profile reinitialization routine with linear viscosity stabilization

(seen in Figure 2.10) using T = 200 and R = 1 meaning one step of reinitialization

for every 200 steps of transport, we obtain a smooth solution with minimal distortion.

58

The linear viscosity does round off the sharp corners, but everywhere else is maintained

smooth.

(a) t = 0 (b) t = π/2 (c) t = π

(d) t = 3π/2 (e) t = 2π

Figure 2.8: Zalesak disk rotating under divergence free velocity v(t, x) = [−y;x] plotted
at various times through rotation.

2.7.3 Periodic single vortex

We let Λ = (0, 1)2 and run two tests based on a divergence free, 2Tc-periodic velocity

field which distorts and then returns to the original state. Our tests start with a circle of

radius R = 0.15 centered at (cx, cy) = (0.5, 0.75) with distance function

d(x) = R−
√

(x− cx)2 + (y − cy)2. (2.48)

59

(a) SSP RK3 only (b) SSP RK3 + Linear Viscosity (cL = 0.1)

(c) SSP RK3 + Artificial Viscosity (cL = 0.1,
cE = 0.2)

Figure 2.9: Zalesak disk comparison after 1 rotation using various add-ons to the basic
SSP RK3 algorithm. The white line is the exact solution and the black is the simulated
solution.

The velocity field is

V (x, y) =

 − sin(πx)2 sin(2πy) cos(πt/Tc)

sin(πy)2 sin(2πx) cos(πt/Tc)

 (2.49)

In the first test, we apply a tanh filter

ϕ(x) = 0.06 tanh

(
d(x)

0.06

)
(2.50)

to equation (2.48) which stays constant through the time and space refinements ensuring

that the results are comparable as we do refine. We choose a filter width small enough so

60

Figure 2.10: A comparison of Zalesak’s disk after one rotation using the level set method
with SSP RK3 + artificial viscosity and using a single R = 1 profile reinitialization time
step (with linear viscosity) every T = 200 transport time steps.

that the inflow boundary conditions are constant. We let Tc = 1 in our velocity field so

that a full periodic cycle happens every 2Tc = 2 time units. We integrate on t ∈ [0, 2] to

obtain a full periodic cycle and compare our final state to the original state. We start with

a uniform mesh and refine uniformly in both space and time for convergence analysis.

We use the Runge-Kutta 3 time integration with elements in Q3 (Th) but do not use the

reinitialization or artificial viscosity for this test. Using an estimated CFL number of 0.24

we obtain the results in Table 2.4

The second test is no longer a convergence analysis, but merely a comparison of initial

state and final state when we add back in the reinitialization, the artificial viscosity sta-

bilization and spatial adaptivity, ie the bells and whistles of our level set advection. We

observe that under the velocity field, our profile shape loses its sharp shape although it does

61

cycle ∆t n_steps minhK n_dofs L2 (Tfinal) rate
0 2.0000e-02 100 2.5000e-01 169 1.8542e-03 0.0000
1 1.0000e-02 200 1.2500e-01 625 1.9824e-04 3.2255
2 5.0000e-03 400 6.2500e-02 2401 1.4190e-05 3.8043
3 2.5000e-03 800 3.1250e-02 9409 1.0445e-06 3.7640

Table 2.4: Transport of a circle (2.50) under single vortex velocity field equation (2.49)
with Tc = 1 using Runge-Kutta 3 time integration and Q3 (Th) elements with Th a uni-
formly refined mesh of [0, 1]2 and uniform time steps for t ∈ [0, Tfinal = 2]. The estimated
CFL number

(
∆tmax |V |

(h/p)

)
is 0.24.

return the zero level set back to it’s initial condition. We can observe the final state after

a full period in Figure 2.11. The quantity, ϕ(x)−ϕexact(x)
max |vpexact| has been plotted to see how well

the reinitialization and viscosity system handles the large deformation while maintaining

consistent mass. We use the SSP RK3 time integration scheme with artificial entropy vis-

cosity and the reinitialization pattern with linear viscosity of T = 5 and R = 1; meaning

one reinitialization step for every 5 transport steps.

The profile shape is maintained through the simulation and the final state is almost

exactly the initial state.

2.7.4 Analysis of volume preserving properties

Given a flow under a divergence free velocity field, the level set method should pre-

serve the volume(mass) of the interior of Γ. However, we are not treating the level set

method as a conservation law but merely as an advection system with an artificial viscos-

ity for stabilization. We are not currently building any explicit volume(mass) conservation

properties into our system. In addition, the reinitialization step with linear viscosity tends

to smooth the solution (this is desirable) but this as well leads to volume(mass) loss. To

this end, we present a series of numerical tests which give evidence that the relative vol-

ume(mass) loss scales linearly with the amount of reinitialization being applied and also

62

Figure 2.11: The quantity, ϕ(x)−ϕexact(x)
max |vpexact| at time t = 2 of the single vortex system after a

single period using SSP RK3 + artificial viscosity and R = 1 reinitialization steps for
every T = 5 transport steps.

scales linearly with the mesh size (and time step size under constant CFL condition). Thus

we could choose our mesh size and the amount of reinitialization so as to balance the

relative volume(mass) loss with the smoothness properties we need.

Our first experiment is solving a 2D rising bubble problem with surface tension (see

Section 6.3 for full details of experimental setup). We perform the experiment twice, once

with a small surface tension coefficient (σst = 1.96) and the other time with a medium

sized surface tension coefficient (σst = 24.5). The small coefficient results in a large

deformation of Γ whereas the medium coefficient results in much less deformation but a

faster rise velocity. We evolve the system from t = 0 to t = 3 and compute the mass of

the interior of Γ at times t = 0, t = 1.5 and t = 3 using a smoothed Heaviside function

(equation (4.11)). We fix the mesh and timestep size and vary the ratio of transport (T)

63

(a) Time t = 0.0 (b) Time t = 0.25 (c) Time t = 0.5

(d) Time t = 0.75 (e) Time t = 1.0 (f) Time t = 1.25

(g) Time t = 1.5 (h) Time t = 1.75 (i) Time t = 2.0

Figure 2.12: Single vortex solution at various times using SSP RK3 + artificial viscosity
with R = 1 reinitialization steps for every T = 5 transport steps.

steps to reinitialization steps (R). Table 2.5 displays the results of this experiment. In

particular, we observe a linear scaling in the amount of relative mass loss with respect to

the amount of reinitialization (and artificial linear viscosity) being applied.

64

T R σst V (t = 0) V (t = 1.5) (%) V (t = 3.0) (%)
01 10 24.5 0.196406 0.167626 -14.7% 0.138848 -29.3%
01 01 24.5 0.196406 0.193525 -1.47% 0.190646 -2.93%
02 01 24.5 0.196406 0.194972 -0.73% 0.193543 -1.45%
05 02 24.5 0.196406 0.195259 -0.58% 0.194119 -1.16%
05 01 24.5 0.196406 0.195842 -0.28% 0.195285 -0.57%
01 10 1.96 0.196407 0.167681 -14.6% 0.138889 -29.3%
01 01 1.96 0.196407 0.193575 -1.44% 0.190692 -2.91%
02 01 1.96 0.196407 0.195021 -0.71% 0.193588 -1.44%
05 02 1.96 0.196407 0.195309 -0.56% 0.194163 -1.14%
05 01 1.96 0.196407 0.195892 -0.26% 0.195331 -0.55%

Table 2.5: Estimates of volume(mass) loss for a 2D rising bubble with surface tension
with ∆t = 0.0005 and hmin = 0.00390625 which corresponds to a CFL condition of
CFL = 0.07. We choose the ∆treinit to satisfy a reinitialization CFL of CFLreinit =
0.2. We vary the number of transport (T) steps to number of reinitialization (R) steps
and observe a linear scaling in relative volume loss, computed as (V (t) − V (0))/V (0)
where V (t) =

∫
Λ
Hε(ϕ(t, x))dx and Hε(ϕ), defined in equation (4.11) is an approximate

indicator function for Ω.

The second experiment now focuses on the medium surface tension coefficient experi-

ment. We choose two common ratios of transport (T) steps to reinitialization (R) steps and

do a series of time and space refinements that preserves the CFL condition. We record the

volume(mass) at times t = 0, t = −1.5 and t = 3.0. The results are displayed in Table 2.6

where we see evidence of linear scaling in the amount of volume loss with the minimal

mesh size.

65

∆t hmin T R V (t = 0) V (t = 1.5) (%) V (t = 3.0) (%)
0.0020 0.0078125 01 01 0.196496 0.193371 -1.59% 0.190306 -3.15%
0.0010 0.00390625 01 01 0.1964 0.194776 -0.83% 0.19318 -1.64%
0.0005 0.001953125 01 01 0.196367 0.195522 -0.43% 0.194682 -0.86%
0.0020 0.0078125 02 01 0.196496 0.194803 -0.86% 0.193153 -1.70%
0.0010 0.00390625 02 01 0.1964 0.195498 -0.46% 0.194629 -0.90%
0.0005 0.001953125 02 01 0.196367 0.195884 -0.25% 0.195411 -0.49%

Table 2.6: Estimates of volume(mass) loss for a 2D rising bubble with medium valued
(σst = 24.5) surface tension coefficient. We fix the number of transport (T) steps to reini-
tialization steps (R) for two standard usage cases and vary the timestep and minimal mesh
size under a CFL = 0.24 condition. We observe a linear scaling in relative volume loss,
computed as (V (t)− V (0))/V (0) where V (t) =

∫
Λ
Hε(ϕ(t, x))dx and Hε(ϕ), defined in

equation (4.11) is an approximate indicator function for Ω.

66

3. APPROXIMATIONS TO DIRAC DELTA FUNCTION

Given a level set function, d : Rn → R which is a signed distance function implicitly

describing a smooth closed hypersurface Γ in Rn, we need to be able to integrate along

Γ, the zero level set of d(x). There are many approaches to integrating along Γ. We

will discuss some of the approaches in the literature in Section 3.1 and then introduce our

approach in Section 3.1.1.

We have two criteria for the choice of which approach to use to integrate along Γ. The

first is that it must be provably convergent. The second is that it must be reasonably simple

to implement and use a standard quadrature. In fact, our implementation uses the deal.II

library ([3]) which only supports quadrilaterals (in 2D) or hexahedra (in 3D). This implies

that the quadrature we will allow are quadrature defined on such an element. We have

found there are many 2nd order or higher methods for triangular meshes but they rarely if

ever generalize to quadrilateral meshes. We will enumerate a few of the approaches that

are currently available and then discuss why we chose the method that we have chosen.

There different approaches can loosely be lumped into three groups. The first consists

of those approaches that directly extract the surface Γ and then integrate along it. The

second group builds a quadrature scheme on each cell that is conforming to Γ in some

manner and the third approximates the Dirac delta function, δΓ(x). For instance one might

use a one dimensional smeared Dirac delta function δε(t) : R→ R with support on [−ε, ε]

to approximate the Dirac delta function of the set {0} and use the signed distance function

to extend this to Γ. This will in theory work since Γ is the set of points such that d(x) = 0.

Thus for some smooth function f : Γ → R with smooth extension to the ε−band around

67

Γ which is contained in a closed region Λ ⊂ R,

∫
Γ

f(x)dx =

∫
Λ

f(x)δΓ(x)dx ≈
∫

Λ

f(x)δε(d(x))|∇d(x)|dx.

Notice that we have used the same notation for f and its extension. The |∇d(x)| term

is added to scale properly with the use of d(x), but |∇d(x)| = 1 so in most cases it can

be dropped. We will include it in the subsequent only when using the non-exact distance

function or when it is necessary for clarity. Often we will choose

δε(t) =

1
ε
ψ(t

ε
), |t| ≤ ε

0, otherwise

for some kernel function ψ : [−1, 1] → R. When the domain of integration, Λ, is par-

titioned, Th, into quadrilaterals (2D) or hexagonal (3D) elements, the resulting integral

can be performed using a standard composite quadrature rule with positive weights, for

instance using the Gauss quadrature. This is the approach we will follow but the choice of

ψ and ε requires some care as will be seen subsequently. We will prove in Section 3.3 the

following theorem:

Theorem 3.3.1. Let ` ≥ 1 and assume d ∈ W `+1,∞(Λ) is the signed distance func-

tion implicitly defining a hypersurface, Γ ⊂ Λ. Let (T̂ ,Q`(T̂),Σ) be the Lagrange fi-

nite element triple defined with the reference element, T̂ , as the unit square (2D) or

unit cube (3D) and Q`(T̂) := {Πdim
i=1pi(xi) | pi(t) ∈ P`([0, 1])}, the space of prod-

uct of polynomials of degree ` in each dimension. We let {Th}h>0 be a sequence of

partitions of Λ made of quadrilateral (2D) or hexagonal (3D) elements of size h and

68

dh ∈ Q`(Th) := {p(x) ∈ C(Λ) | p̂|T ∈ Q`(T̂)} satisfying

‖d− dh‖L∞(Λ) + h‖∇(d− dh)‖L∞(Λ) ≤ ch`+1‖d‖W `+1,∞(Λ),

for some c > 0 only dependent on Λ. Let ψ(t) = 693
512

(1 − t2)5, ε = ch3/4 and Bε

and Bh,ε to be defined later as the support of δε(d(x) and δε(dh(x)) repectively. Given

f ∈ W 6,∞(Bε ∪ Bh,ε) and a composite quadrature rule, QuadΛ(·) with positive weights

exact for Q5(T̂), then the error

E =

∣∣∣∣∫
Γ

f(x)dx− QuadΛ (f(x)δε(dh)|∇dh|)
∣∣∣∣

satisfies

E ≤ c1h
3/2‖f‖W 6,∞(Ωε) + c2h

`‖f‖L∞(Ωε),

where c1 and c2 are constants only dependent on Λ.

In [29], Tornberg provides the convergence rates of E for a family of polynomials,

ψm,k(t) defined in Section 3.1.1 (of which we will use ψ = ψ1,4) but the specifics of what

requirements were needed on the quadrature rule and what regularity was needed for the

function f(x) were not given in her proof. Thus we provide an alternate proof with all the

details we need below. This proof takes up most of the rest of this chapter. The notation

required is in Section 3.2 and then the proof is broken up into pieces through Section 3.3.

Once the theorem is proved, we will give some numerical results in Section 3.4 validating

our findings.

3.1 A review of methods for integrating along an implicitly defined curve

There are many approaches to integrating along a curve Γ using an unfitted bulk mesh,

Th. If a parameterization can be achieved, then it is simple enough to integrate along the

69

parameterization, but in our case Γ is implicitly defined so it is difficult to write down

an explicit parameterization. Another approach is to embed a mesh along Γ and then as

Γ is transported, we also transport the mesh. This leads to the well studied Immersed

Boundary methods as in [11]. Another approach is more direct and takes advantage of

the discretization of our distance function on a triangular mesh: Given a triangulation,

Th, composed of triangles in 2D or tetrahedra in 3D and a discrete approximation to the

distance function, dh(x) ∈ P 1(Th), which is continuous and piecewise linear on this mesh,

then the approximate surface Γh := {x ∈ Rn|dh(x) = 0} can be simply extracted from

the approximate distance function. In fact Γh cuts through the cells which change sign of

dh(x) on their vertices and is linear on that cell, since for example, dh|T = a + bx + cy.

So Γh|T = {x | a + bx + cy = 0} is linear. The zero levelset, Γh is found by computing

where on each edge the sign changes, of which there are always 2(in 2D) or 3(in 3D)

points. Then we connect these points to obtain a line (in 2D) or a plane (in 3D). Thus we

can loop through all cells, T , check if Γh is in that cell and if so, extract Γh|T which can

be integrated over directly. This does not however work with quadrilateral or hexahedral

elements where dh ∈ Q1(Th) since, for example in 2D, dh|T = (a + bx)(c + dy). Thus

Γh|T = {x | (a + bx)(c + dy) = 0} is a rational function. The approach with triangular

mesh elements can be generalized to higher order finite elements, dh ∈ P k(Th) as in [30]

but again does not seem to extend to rectangular meshes.

There are some approaches using a finite difference stencil that give second order con-

vergence as in [31], and [32] with their respecitive proofs in [33] and [34]. These only

work with uniform rectangular meshes and do not have clear generalizations to finite ele-

ment discretizations.

[35] provides a nice moment fitting approach that constructs a bulk quadrature scheme

on each cell that intersects Γ using higher order moments for any type of polygonal mesh.

It turns out to be a linear system in choosing the weights but is nonlinear in choosing the

70

quadrature nodes so is only practical if the resulting quadrature rules can be reused many

times. As Γ will be evolving in time, this is not the case. In addition, the resulting weights

are not guaranteed to be positive so that stability of our finite element matrix systems

cannot be guaranteed.

Another scheme which does work for higher order convergence rates on hyper-rectangles

is the method of Saye in [36]. It constructs a new quadrature scheme on each cell that

captures the integration region desired. The only down side is the complexity of imple-

mentation. It may however be justified in the higher order convergence rates achieved and

may be an option for future use in this area.

The quadrature schemes of Wen in [37], [38], [39] and [40] achieve higher order con-

vergence rates in 2 and 3 dimensions on rectangular meshes but are more complicated

than we want to implement at this time. Again a more detailed comparison between this

approach and the method of Saye in [36] would need to be done if a higher order method

via localized quadratures were to be implemented.

Now, it has been shown in [41] that naively using a smeared Dirac delta function may

not converge. They propose some fixes including to make the width variable based on

how Γ cuts through the cell relative to the coordinate axes. This is a simple fix and gives

reasonable convergence rates between first and second order but there is no proof of this.

another method proposed has a proof of second order convergence in 2D but is not simple

to implement and the extension to 3D is even more complicated. Another approach is

given in [42] to use an approximate Dirac function that does not have compact support

like the Gaussian or hyperbolic secant which is then cut off after a certain width based

on the desired accuracy. The resulting support widths are much larger than we want in

practice.

71

3.1.1 A family of Dirac delta functions

We will go back to an early suggestion by Tornberg in [29] where she presents a family

of one dimensional polynomials ψm,k(t) with support on [−1, 1] that can be used in the

smeared Dirac delta, δε(d(x)), per the formulation described above. The parameterm ∈ N,

represents the number of moments that the function satisfies where the n-th moment is

defined as

Mn(ψ) :=

∫ ∞
−∞

tnψ(t)dt =

∫ 1

−1

tnψ(t)dt, (3.1)

for n ≥ 0. We say that m moments are satisfied by ψ if

M0(ψ) = 1, M1(ψ) = 0, . . . , Mm(ψ) = 0.

The parameter k > 0 represents the smoothness: ψm,k ∈ Ck([−1, 1]). We will choose

our ε-band to scale with the meshsize, h, that is ε ∼ hβ with β ∈ (0, 1]. We would

like to always have β = 1 so that the band is always the same width with regards to the

number of mesh elements in the normal direction, but this does not always give the desired

convergence rates. In the end, β is chosen to maximize the error convergence rate and will

be based on the parameters m and k.

The function, ψm,k(t), is the minimal degree polynomial that satisfies the desired mo-

ments and continuity conditions. Tornberg proves there is a unique minimal poynomial

and provides methods for finding them.

The function we will choose for our simulations is

ψ1,4(t) =
693

512
(1− t2)5. (3.2)

72

which is the minimal degree polynomial defined on [−1, 1] that satisfies M0(ψ1,4) = 1

and M1(ψ1,4) = 0 and is continuous of degree k = 4, that is ψ1,4 ∈ C4(R). To obtain the

convergence rate of h3/2 with this approximate delta function, we choose ε ∼ h3/4. This

is close to scaling with h and gives a reasonable convergence rate that is better than first

order although not quite the desirable 2nd order.

Remark. The function ψ1,4 is also non negative which seems to be a desirable property

for these integrals in practice. Those polynomials, ψm,k which have positive and negative

regions do not seem to perform as well numerically as the ones which stay non negative.

end Remark.

3.2 Notations

Suppose we have a smooth closed hypersurface, Γ = ∂Ω with Ω ⊂ Λ ⊂ Rd as in

Figure 3.1 implicitly defined through a distance function, d(x), ie

Γ = {x ∈ Λ | d(x) = 0}. (3.3)

Let (T̂ ,Q`(T̂),Σ) be a Lagrange finite element triple defined with the reference element,

T̂ , as the unit square (2D) or unit cube (3D) andQ`(T̂) := {Πdim
i=1pi(xi)|pi(t) ∈ P`([0, 1])},

the set of products of polynomials of degree ` in each dimension. Let {Th}h>0 be a se-

quence of quasi-uniform partitions of Λ using quadrilateral (2D) or hexagonal (3D) ele-

ments. Let h denote the meshsize of Th. Given ` ≥ 1, define Q`(Th) to be the set of

globally continuous polynomials where the pull back to the reference element of the re-

striction to each element, T ∈ Th is in Q`(T̂). We let dh(x) ∈ Q`(Th) be a continuous

piecewise polynomial finite element approximation to d(x) with

‖d− dh‖L∞(Λ) + h‖∇(d− dh)‖L∞(Λ) ≤ ch`+1‖d‖W `+1,∞(Λ),

73

with c > 0, a constant dependent only on Λ, and provided that d ∈ W `+1,∞(Λ).

Λ

∂Λ

Γ = ∂Ω = {x | d(x) = 0}

Ω = {x | d(x) > 0}

ν

n

Λ\Ω = {x | d(x) < 0}

Figure 3.1: Region Λ containing a closed interface Γ as boundary of subregion Ω. These
regions are defined implicitly by a signed distance function, d(x). The outer normal, n, to
Γ and outer normal, ν, to ∂Λ are denoted as well.

Now given dh(x), we define

Γh = {x ∈ Λ | dh(x) = 0}.

Suppose f(x) ∈ W s,∞(Γ), with s ≥ 0, is a quantity we want to integrate on Γ. We

extend it smoothly to a neighborhood of Γ and since our mesh is not fitted to Γ, we convert

integrals over Γ to be bulk integrals against an approximate Dirac delta function, δε.

Remark. This extension is one of the most subtle parts of this process. If it can be extended

constant in the normal direction then that is best but any smooth extension will work. There

will be some regularity requirements (See Theorem 3.3.1) on the normal derivatives of the

extension to obtain the desired convergence rates. end Remark.

Instead of directly using δε as a function of x ∈ Rd, we will use a smooth 1D approxi-

74

mate Dirac delta function δε(t), t ∈ R with support on [−ε, ε] where

ε = chβ and 0 < β ≤ 1 (3.4)

and c is an absolute constant, typically 1, 2 or 3. Then using d(x), our distance function,

we extend to multiple dimensions

∫
Γ

f(x)dA =

∫
Λ

f(x)δΓ(x)dx ≈
∫

Λ

f(x)δε(d(x))|∇d(x)|dx =

∫
Λ

f(x)δε(d(x))dx.

(3.5)

Notice that the kernel δε(d(x)) has support on the ε-band

Bε := {x ∈ Λ | |d(x)| ≤ ε}.

around Γ. Likewise,

Bh,ε := {x ∈ Λ | |dh(x)| ≤ ε},

is the ε-band around Γh.

Remark. In reality we only need d(x) to be the distance function in the union of bands

Bε ∪ Bh,ε since any changes outside of that region are not reflected in the integrals. We

will choose our level set function as in Chapter 2 to be the distance function on the region

containing Bh,ε and then threshold with the hyperbolic tangent outside that region. end

Remark.

Given a composite quadrature rule QuadΛ(·) with positive weights and on each ele-

ment, with support points {xq} ⊂ T , we also define

Th,ε := {T ∈ Th | T ∩Bh,ε contains a quadrature point}. (3.6)

75

Thus Th,ε is the set of elements containing the band Bh,ε that would be recognized by our

quadrature rule, see Figure 3.2. Given a large enough quadrature rule, the set of cells that

intersect the band but do not contain a quadrature rule inside the band is very small and

since δε smoothly approaches 0 at the edge of the band, the contribution lost is minimal.

We break Th,ε into two distinct sets Th,ε = T int
h,ε ∪ T edge

h,ε where

T int
h,ε := {T ∈ Th ε | T ⊂ Bh,ε} (3.7)

are those cells completely inside the band Bh,ε and

T edge
h,ε = Th,ε\T int

h,ε (3.8)

are the set of cells that intersect the boundary of Bh,ε and that have at least one quadrature

point inside of Bh,ε as seen in Figure 3.2. We will use these two sets for quadrature error

T ⊂ Bh,ε

T ∩Bh,ε 6= ∅

ε

Γh

ε

T ∈ T edge
h,ε

T ∈ T int
h,ε

T ∩Bh,ε 6= ∅

T 6∈ Th,ε

quadrature points

Figure 3.2: The ε band around Γh, denoted byBh,ε intersects with two types of cells, those
completely interior, T ∈ T int

h,ε and those not completely in Bh,ε but which the quadrature
rule can see, T ∈ T edge

h,ε . An example of a cell which intersects Bh,ε but is not seen by the
quadrature so is not in Th,ε is also given.

76

analysis. In particular they are used in Section 3.3.3. Finally we define the following

regions as unions of cells to integrate over

Dh,ε :=
⋃

T∈Th,ε

T (3.9)

and likewise

Dint
h,ε :=

⋃
T∈T int

h,ε

T, Dedge
h,ε :=

⋃
T∈T edge

h,ε

T (3.10)

which are used in the analysis of quadrature error of Section 3.3.3.

3.3 Approximating integrals on a surface

The goal of this section is to estimate an upper bound on the error

E =

∣∣∣∣∫
Λ

f(x)δΓ(d(x))|∇d(x)|dx−QΛ(f(x)δε(dh(x))|∇dh(x)|)
∣∣∣∣ (3.11)

where QΛ is our composite quadrature rule with positive weights, exact for polynomials

of degree n on each cell T ∈ Th. The complete error bound and main result of this section

is found in equation (3.21) of Section 3.3.4. We follow the general ideas of [29], although

we had to modify some of the proof to explicitly track the regularity assumptions on f and

the requirements for the quadrature rule. We will show below that using ε ∼ h3/4 and

δε(t) =
1

ε
ψ1,4

(
t

ε

)
=

693
512

1
ε

(
1−

(
t
ε

)2
)5

, |t| ≤ ε

0, otherwise
,

we can obtain a rate ofE ≤ ch3/2 when we use quadrature exact for polynomials of degree

5, and FE space degree ` = 2 for dh(x) and f(x) ∈ W 6,∞ (Bh,ε ∪Bε) with 2 continuous

bounded derivatives normal to Γ. These are the necessary conditions for the rate but we

77

observe the same rate under much less restrictive conditions including FE space degree

` = 1, quadrature degree exact for polynomials of degree 3 and f(x) with much less

smoothness, even piecewise smooth f ∈ Q`(Th). We will offer suggestions of why this

might be in Appendix A.

We break the above error term into three parts and estimate each separately:

E =

∣∣∣∣∫
Λ

f(x)δΓ(d(x))|∇d(x)|dx−QΛ(f(x)δε(dh(x))|∇dh(x)|)
∣∣∣∣

≤
∣∣∣∣∫

Λ

f(x) [δΓ(d(x))− δε(d(x))] |∇d(x)|dx
∣∣∣∣

+

∣∣∣∣∫
Λ

f(x) [δε(d(x))|∇d(x)| − δε(dh(x))|∇dh(x)|] dx
∣∣∣∣

+

∣∣∣∣∫
Λ

f(x)δε(dh(x))|∇dh(x)|dx−QΛ(f(x)δε(dh(x))|∇dh(x)|)
∣∣∣∣

= Eanalytic + Efem + Equad

3.3.1 Analytic error, Eanalytic

Before we begin estimating the analytic error, we need to introduce a little bit of dif-

ferential geometry and notation. After this is established, we will show that the analytic

error only depends on bounded normal derivatives of f(x) and the number of moments,

m, that δε(t) satisfies.

3.3.1.1 Differential geometry

Suppose that we have a parameterization χ(u) of Γ with u = (u, v) for d = 3 and

u = u for d = 2. Note that it is sufficient to suppose we have a single chart for the

manifold Γ as otherwise we could introduce a partition of unity and then do all the results

locally on each chart. The use of the partition of unity adds no insight and only technical

complications so we simplify it away. We focus our efforts on d = 3, so that Γ is a 2D

78

manifold embedded in R3. Then

Γ = {χ(u) | u = (u, v) ∈ U ⊂ R2}.

where χ : U ⊂ R2 → Γ ⊂ R3.

For a function, g(x) defined on Γ, we can introduce the pull-back g∗(u) := g(χ(u))

and thus can rewrite integrals on Γ as

∫
Γ

g(s)ds =

∫
U

g∗(u)q(u)du

where the area element is q(u)du =
√
| detG|du with the first fundamental tensor G :=

∇uχ∇uχ
T ∈ R2×2 where∇uχ ∈ R2×3 is the gradient with the i-th row the gradient of χi.

Another equivalent definition of the area element is q(u)du = |∂1χ(u)×∂2χ(u)|du where

∂1χ(u) is the partial derivative with respect to the first variable u and likewise ∂2χ(u) is

the partial derivative with respect to v.

At each point χ(u) on Γ, there is a normal-to-Γ unit vector defined as

n(u) =
∂1χ(u)× ∂2χ(u)

|∂1χ(u)× ∂2χ(u)| .

We assume that Γ is a closed orientable surface so that the normals on Γ all point consis-

tently either outward or inward depending on our parameterization, χ. With n(u) defined,

we can introduce a parameterization for our ε-band around Γ,

Bε = {x | |d(x)| ≤ ε} = {x ∈ Λ | x = X(u, t) := χ(u) + tn(u), u ∈ U, −ε ≤ t ≤ ε}.

79

The map X from (u, t) 7→ x has Jacobian matrix

J(u, t) =

[
∂1χ(u) + t∂1n(u) ∂2χ(u) + t∂2n(u) n(u)

]
∈ R3×3

and so to find the volume element, we have dV = | det(J)|dudt. We turn to the triple

product to evaluate this determinant. Using the cross product definition of n, we have

det(J) = [∂1χ(u) + t∂1n(u)]× [∂2χ(u) + t∂2n(u)] · n(u)

= |∂1χ× ∂2χ|+ t (∂1n× ∂2χ+ ∂1χ× ∂2n) · n + t2 (∂1n× ∂2n) · n

Likewise, using Pn = I − n⊗ n,

∂in = (I − n⊗ n)
∂i (∂1χ× ∂2χ)

|∂1χ× ∂2χ|

=
1

|∂1χ× ∂2χ|
[Pn∂i (∂1χ× ∂2χ)] .

Recognizing q(u) = |∂1χ× ∂2χ|, we simplify the determinant to

det(J) = |∂1χ× ∂2χ|+ t [∂1n× ∂2χ+ ∂1χ× ∂2n] · n + t2 (∂1n× ∂2n) · n

= |∂1χ× ∂2χ|
(
1 + p1(u)t+ p2(u)t2

)
= q(u)

(
1 + p1(u)t+ p2(u)t2

)
where

p1(u) =

[
[Pn∂1 (∂1χ× ∂2χ)]× ∂2χ · n− [Pn∂2 (∂1χ× ∂2χ)]× ∂1χ · n

|∂1χ× ∂2χ|2
]

(3.12)

80

and

p2(u) =

[
[Pn∂1 (∂1χ× ∂2χ)]× [Pn∂2 (∂1χ× ∂2χ)] · n

|∂1χ× ∂2χ|3
]
. (3.13)

Thus for a function g(x) defined on Bε, we have

∫
Bε

g(x)dx =

∫ ε

−ε

∫
U

g∗(u, t)q(u)(1 + tp1(u) + t2p2(u))dudt.

Remark. Tornberg proves in [29] that for the simpler case of d = 2 we get dx = q(u)(1−

tκ(u))dudt with κ(u) the curvature of the curve, Γ, evaluated at the position, u. Here

q(u) = |χ′(u)| is the 1-dimensional area element for a curve. end Remark.

Finally, note that d(x) = d(X(u, t)) = d (χ(u) + tn(u)) = t so that δε(d(x)) = δε(t).

We also note that |∇d(x)| = 1 since we are using the exact distance function in this

computation.

3.3.1.2 Estimate on analytic error

We want a bound on

Eanalytic =

∣∣∣∣∫
Λ

f(x) (δΓ(d(x))− δε(d(x))) |∇d(x)|dx
∣∣∣∣ .

To this end, we define

IΓ :=

∫
Γ

f(x)dx =

∫
U

f ∗(u)q(u)du

and

Iε :=

∫
Bε

f(x)δε(d(x))|∇d(x)|dx =

∫
U

∫ ε

−ε
f ∗(u, t)δε(t)q(u)(1 + tp1(u) + t2p2(u))dtdu.

81

Expand f ∗(u, t) in a Taylor series of t centered at (u, 0). We assume that f ∗(u, t) has N

continuous derivatives in t and bounded N + 1 derivative in t. Then,

f ∗(u, t) =
N∑
i=0

ti

i!

∂if ∗(u, 0)

∂ti
+O(tN+1).

Plugging this into our formulation for Iε, we simplify in terms of moment functions (de-

fined in equation (3.1))

Iε =

∫
U

∫ ε

−ε

[
N∑
i=0

ti

i!

∂if ∗(u, 0)

∂ti
+O(tN+1)

]
δε(t)q(u)(1 + tp1(u) + t2p2(u))dtdu

=
N∑
i=0

1

i!

∫
U

∂if ∗(u, 0)

∂ti
q(u)

∫ ε

−ε
tiδε(t)(1 + tp1(u) + t2p2(u))dtdu

+

∫
U

∫ ε

−ε
O
(
tN+1

)
δε(t)q(u)(1 + tp1(u) + t2p2(u))dtdu

=

∫
U

f ∗(u, 0)q(u)du
∫ ε

−ε
δε(t)dt+

N∑
α=1

cα,fMα(δε(t)) +O (MN+1(δε(t)))

where

cα,f =
1

α!

∫
U

∂αf ∗(u, 0)

∂tα
q(u)du

+
1

(α− 1)!

∫
U

∂(α−1)f ∗(u, 0)

∂t(α−1)
q(u)p1(u)du

+
1

(α− 2)!

∫
U

∂(α−2)f ∗(u, 0)

∂t(α−2)
q(u)p2(u)du

for α ≥ 2 and only the first two terms when α = 1.

82

We note that for δε(t) := 1
ε
ψ
(
t
ε

)
, we have

Mα(δε(t)) =

∫ ε

−ε
tαδε(t)dt

=
1

ε

∫ ε

−ε
tαψ

(
t

ε

)
dt

=

∫ 1

−1

(ετ)αψ(τ)dτ

= εαMα(ψ(t))

so that

Iε = IΓM0(ψ(t)) +
N∑
α=1

Cα,fε
αMα(ψ) +O(εN+1).

Thus the analytic error depends entirely on the continuity of f(x) in the normal direc-

tion to Γ and on the moments of kernel ψ that we choose to use for our δε approximation

to δΓ. If M0(ψ) = 1, then

Eanalytic = |IΓ − Iε|

=

∣∣∣∣∣−
N∑
α=1

Cα,fε
αMα(ψ) +O

(
εN+1

)∣∣∣∣∣
≤

N∑
α=1

|Cα,f | εα |Mα(ψ)|+O
(
εN+1

)
(3.14)

where f has N + 1 bounded derivatives in the normal to Γ direction.

Remark. It is also interesting to notice that if the normal direction grows like a polynomial

of small enough degree compared to the moments of our Dirac kernel, then it is possible

to have no contribution whatsoever from the analytic error, ie Eanalytic = 0. In particular,

if f(x) is constant in the normal direction and M0(ψ) = 1., then there is no analytic error.

It is possible in this case to choose a different relationship between ε and meshsize h than

we will describe below to get higher convergence rate. end Remark.

83

Example 1

ψ1,2(t) :=

35
32

(1− t2)3, |t| ≤ 1

0, otherwise

has

M0(ψ1,2) = 1

M1(ψ1,2) = 0

M2(ψ1,2) = 1/9

so if we choose f with at least 2 bounded derivatives in the normal direction, then

we have

|Eanalytic| ≤ cε2. (3.15)

Example 2

ψ1,4(t) :=

693
512

(1− t2)5, |t| ≤ 1

0, otherwise

has

M0(ψ1,4) = 1

M1(ψ1,4) = 0

M2(ψ1,4) = 1/13

so if we choose f with at least 2 bounded derivatives in the normal direction, then

we have

Eanalytic ≤ cε2. (3.16)

84

3.3.2 FEM error Efem

We want an estimate on

Efem =

∣∣∣∣∫
Λ

f(x) [δε(d(x))|∇d(x)| − δε(dh(x))|∇dh(x)|] dx
∣∣∣∣ .

First, notice that by the triangle inequality and using relationship (3.2), |∇dh(x)| =

|∇dh(x) − ∇d(x)| + |∇d(x)| ≤ ch` + 1 where c > 0 is only dependent on Λ. Thus we

have the bound,

‖|∇dh| − 1‖L∞(Λ) = ‖|∇dh| − |∇d|‖L∞(Λ) ≤ ch`. (3.17)

Second, since δ′ε(τ) = 1
ε2
ψ′
(
τ
ε

)
≤ C

ε2
with C > 0 a constant dependent only on choice of

Dirac kernel, ψ, and |dh − d‖L∞(Λ) ≤ ch`+1, we have

‖δε(dh)− δε(d)‖L∞(Λ) ≤ max
τ∈R
|δ′ε(τ)| ‖dh − d‖L∞(Λ) ≤ C̃

h`+1

ε2
,

where C̃ > 0 is a constant dependent only on Λ and the Dirac kernel, ψ. Thus,

Efem =

∣∣∣∣∫
Λ

f(x) [δε(d(x))|∇d(x)| − δε(dh(x))|∇dh(x)|] dx
∣∣∣∣

=

∣∣∣∣∫
Λ

f(x) [δε(d(x))|∇d(x)| ± δε(d(x))|∇dh(x)| − δε(dh(x))|∇dh(x)|] dx
∣∣∣∣

≤
∣∣∣∣∫

Λ

f(x)δε(d(x)) ||∇d(x)| − |∇dh(x)|| dx
∣∣∣∣

+

∣∣∣∣∫
Λ

f(x) [δε(d(x))− δε(dh(x))] |∇dh(x)|dx
∣∣∣∣

≤
(
c
h`

ε
‖f(x)‖L∞(Bh,ε∪Bε) + c

h`+1

ε2
‖f‖L∞(Bh,ε∪Bε)

)∫
Bh,ε∪Bε

dx

≤ ‖f‖L∞(Bh,ε∪Bε)

(
ch` + c

h`+1

ε

)
|Γ| (3.18)

85

since |Bε ∪Bh,ε| ≤ cε|Γ|.

3.3.3 Quadrature error, Equad

We first calculate the error from quadrature on each cell

Equad
T =

∣∣∣∣∫
T

f(x)δε (dh(x)) |∇dh(x)|dx−QT (fδε (dh) |∇dh|)
∣∣∣∣ .

By adding and subtracting
∫
T
f(x)δε (dh(x)) |∇d|dx and QT (fδε (dh) |∇d|), and using

that

‖|∇dh| − |∇d|‖L∞(Λ) ≤ ch`,

we get (for quadrature with positive weights and thus
∑

j wj = |T |)

Equad
T ≤

∣∣∣∣∫
T

f(x)δε (dh(x)) (|∇dh| − |∇d|) dx
∣∣∣∣

+ |QT (fδε (dh) (|∇dh| − |∇d|))|

+

∣∣∣∣∫
T

f(x)δε (dh(x)) dx−QT (fδε (dh))

∣∣∣∣
≤
(
ch`
)
‖f(x)δε(dh(x))‖L∞(T)

(
|T |+

∑
wj

)
+

∣∣∣∣∫
T

f(x)δε (dh(x)) dx−QT (fδε (dh))

∣∣∣∣
≤ c

h`

ε
|T |‖f‖L∞(T) +

∣∣∣∣∫
T

f(x)δε (dh(x)) dx−QT (fδε (dh))

∣∣∣∣
since ‖δε(dh(x))‖L∞(T) ≤ c

ε
.

We will estimate the quantity

ET :=

∣∣∣∣∫
T

f(x)δε (dh(x))−QT (fδε (dh))

∣∣∣∣
using the Bramble-Hilbert lemma and then give estimates on the aggregate sum of errors.

86

It turns out that we have different smoothness of the term δε on the cell T depending on

whether T ∈ T int
h,ε is on the interior of the band Bh,ε or T ∈ T edge

h,ε intersects the boundary

of that region. Notice that we assumed ψ ∈ Ck on the closed set [−1, 1] and the k + 1

derivative is not continuous but is bounded. In fact, it has a jump at the edges of the band.

Thus δε(dh(x)) ∈ W k+1,∞(Λ). Finally, notice that δε(dh(x)) is polynomial on the cells

entirely in Dh,ε (see equation (3.9)) and so is infinitely smooth in that region. We will also

need to make assumptions on the smoothness of f which will be built up as needed. In the

end we will show that we need f ∈ W k+2,∞(Λ) to get the desired convergence rate.

3.3.3.1 Quadrature analysis for T ∈ T edge
h,ε , cells intersecting boundary of Bh,ε

We focus first on those cells T ∈ T edge
h,ε that intersect the boundary of Bh,ε, mainly

where dh(x) = ±ε at some x ∈ T . On these cells,

δε(dh(x)) ∈ W k+1,∞(T).

Recall that we denote the regularity of f by the parameter s > 0, f(x) ∈ W s,∞(T). So by

choosing s ≥ k + 1,

f(x) ∈ W s,∞(T) ⊂ W k+1,∞(T).

We will use a quadrature rule that is exact for polynomials of degree k on reference ele-

ment, T̂ , that is for Qk(T̂). Then using φ = f(x)δε(dh(x)) and mapping from the cell, T ,

to a reference cell, T̂ , we have

ET (φ) = c (detBT) ÊT̂

(
φ̂
)

87

where theˆnotation refers to objects defined on the reference element, T̂ , so that

ÊT̂

(
φ̂
)

:=

∣∣∣∣∫
T̂

φ̂(x̂)dx̂−QT̂

(
φ̂
)∣∣∣∣ .

Then

ÊT̂

(
φ̂
)
≤ c‖φ̂‖L∞(T̂) ≤ c‖φ̂‖Wk+1,∞(T̂).

So that the linear map φ̂ 7→ ÊT̂

(
φ̂
)

is bounded by c‖φ̂‖Wk+1,∞(T̂). Notice that by our

choice of quadrature rule, ÊT̂
(
φ̂
)

vanishes for φ̂ ∈ Qk(T̂), so by the Bramble-Hilbert

lemma,

ÊT̂

(
φ̂
)
≤ ĉ

∣∣∣φ̂∣∣∣
Wk+1,∞(T̂)

.

By using that d̂h ∈ Q`(T̂) and δε(t) = 1
ε
ψ
(
t
ε

)
, along with the product and chain rule,

we can bound

‖δε(dh(x))‖W j,∞(T) ≤
C

εj+1
, (3.19)

for all j ≥ 0. Thus using (3.19) and the Cauchy-Schwarz inequality,

ET (φ) ≤ c (detBT) ÊT̂

(
φ̂
)

≤ c (detBT)
∣∣∣φ̂∣∣∣

Wk+1,∞(T̂)

≤ c (detBT)
k+1∑
j=0

∣∣∣f̂ ∣∣∣
Wk+1−j,∞(T̂)

∣∣∣δ̂ε ◦ dh∣∣∣
W j,∞(T̂)

≤ c (detBT)hk+1

k+1∑
j=0

|f |Wk+1−j,∞(T) |δε ◦ dh|W j,∞(T)

≤ c (detBT)hk+1‖δε(dh(x))‖Wk+1,∞(T)‖f‖Wk+1,∞(T)

≤ c (detBT)
hk+1

εk+2
C‖f‖Wk+1,∞(T).

88

Now, since detBT = c|T | and noting that

∑
T∈T edge

h,ε

|T | = ch |Γ| ,

we have

∑
T∈T edge

h,ε

ET ≤ c|Γ|h
k+2

εk+2
C‖f‖Wk+1,∞(D

edge
h,ε)

≤ c|Γ|
(
h

ε

)k+2

‖f‖Wk+1,∞(D
edge
h,ε).

3.3.3.2 Quadrature analysis for T ∈ T int
h,ε, cells completely interior to Bh,ε

We focus next on those cells T ∈ T int
h,ε that are completely on the interior of Dh,ε. Then

in this case, pulling back to the reference element

̂δε(dh(x)) ∈ polynomial(T̂) ⊂ W k+2,∞(T̂)

and if we choose s ≥ k + 2, then

f(x) ∈ W s,∞(T) ⊂ W k+2,∞(T).

We now require a quadrature rule that is exact for polynomials of degree k + 1 on the

reference element, inQk+1(T̂). Then using φ = f(x)δε(dh(x)) and mapping from the cell

T to a reference cell T̂ , we have

ET (φ) = c (detBT) ÊT̂

(
φ̂
)

89

and

ÊT̂

(
φ̂
)
≤ c‖φ̂‖L∞(T̂) ≤ c‖φ̂‖Wk+2,∞(T̂)

so that the linear map φ̂ 7→ ÊT̂

(
φ̂
)

is bounded by c‖φ̂‖Wk+2,∞(T̂). Notice that by our

choice of quadrature rule, ÊT̂
(
φ̂
)

vanishes for φ̂ ∈ Qk+1(T̂), so by the Bramble-Hilbert

lemma,

ÊT̂

(
φ̂
)
≤ ĉ

∣∣∣φ̂∣∣∣
Wk+2,∞(T̂)

.

Thus using that ‖δε(dh)‖W j,∞(T) ≤ c
εj+1 and the Cauchy-Schwarz inequality,

ET (φ) ≤ c (detBT) ÊT̂

(
φ̂
)

≤ c (detBT)
∣∣∣φ̂∣∣∣

Wk+2,∞(T̂)

≤ c (detBT)
k+2∑
j=0

∣∣∣f̂ ∣∣∣
Wk+2−j,∞(T̂)

∣∣∣δ̂ε ◦ dh∣∣∣
W j,∞(T̂)

≤ c (detBT)hk+2

k+2∑
j=0

|f |Wk+2−j,∞(T) |δε ◦ dh|W j,∞(T)

≤ c (detBT)
hk+2

εk+3
‖f‖Wk+2,∞(T).

Now, since detBT = c|T | and noting that

∑
T∈T int

h,ε

|T | = cε |Γ| ,

we have ∑
T∈T int

h,ε

ET ≤ c|Γ|h
k+2

εk+2
‖f‖Wk+2,∞(Dint

h,ε).

90

3.3.3.3 Full quadrature error

If f ∈ W k+2,∞(Dh,ε) that is, s = k+ 2 and using a quadrature rule exact onQk+1(T̂),

then our results for both cases hold and we have the combined error bound

Equad =
∑
T∈Th,ε

Equad
T

≤
∑
T∈Th,ε

ET + ch`‖f‖L∞(T)

≤ c|Γ|h
k+2

εk+2
‖f‖Wk+2,∞(Dh,ε) + ch`‖f‖L∞(Dh,ε). (3.20)

3.3.4 Full error bound

We can now combine all of the above bounds together into a single bound.

E = Eanalytic + Efem + Equad

≤ cεm + c

(
h` +

h`+1

ε

)
‖f‖L∞(Dh,ε)

+ c
hk+2

εk+2
‖f‖Wk+2,∞(Dh,ε) + c|Γ|

(
h` +

h`+1

ε

)
‖f‖L∞(Dh,ε)

≤ C1ε
m + C2

hk+2

εk+2
‖f‖Wk+2,∞(Dh,ε) + C3

(
h` +

h`+1

ε

)
‖f‖L∞(Dh,ε) (3.21)

We are now able to describe how the rate, β ∈ (0, 1] in ε = chβ will been chosen.

Supposing that ` is large enough that the C3 term is higher order and as described before,

s = k + 2 and quadrature eqxact for polynomial of degree k + 1, the limiting terms are

C1ε
m and C2

hk+2

εk+2 which we enforce to be asymptotically equal. For a specific kernel, ψ,

91

the parameters m and k can be computed as above so we can solve for ε in terms of h

ε ∼ h
k+2

m+k+2 . (3.22)

There are additional simplifications and assumptions that can be made in certain cases

that are described fully by Tornberg in [29] to raise the exponential power slightly, but

the above analysis is sufficient for our case and in the below two examples, there are no

changes to be made.

3.3.4.1 Example Dirac kernels

Example 1

ψ1,2(t) :=

35
32

(1− t2)3, |t| ≤ 1

0, otherwise

has m = 2 and k = 2. Thus we choose ε = ch2/3 to balance the C1 and C2 terms,

so that we have the rate

E ≤ C1ε
2 + C2

h4

ε4
‖f‖Wk+2,∞(Λ) + C3

(
h` +

h`+1

ε

)
‖f‖L∞(Λ)

≤ ch4/3‖f‖Wk+2,∞(Λ) + ch`‖f‖L∞(Λ) (3.23)

so for FE degree ` ≥ 2, f(x) ∈ W s,∞(Λ) with s = k+ 2 = 4 and at least 2 bounded

derivatives in the normal direction to Γ, quadrature exact for degree n = k + 1 = 3

give us an expected convergence rate E ≤ ch4/3.

Example 2

ψ1,4(t) :=

693
512

(1− t2)5, |t| ≤ 1

0, otherwise

92

has m = 2 and k = 4. Thus we choose ε = ch3/4 to balance the C1 and C2 terms,

so that we have the rate

E ≤ C1ε
2 + C2

h6

ε6
‖f‖Wk+2,∞(Λ) + C3

(
h` +

h`+1

ε

)
‖f‖L∞(Λ)

≤ ch3/2‖f‖Wk+2,∞(Λ) + chl‖f‖L∞(Λ) (3.24)

so for FE degree ` ≥ 2, f(x) ∈ W s,∞(Λ) with s = k+ 2 = 6 and at least 2 bounded

derivatives in the normal direction to Γ, quadrature exact for degree n = k + 1 = 5

give us an expected convergence rate E ≤ ch3/2.

In all of our computations of the next few chapters we will use δε(t) = 1
ε
ψ1,4

(
t
ε

)
so

we will emphasize the above results with the following theorem.

Theorem 3.3.1. Let ` ≥ 1 and d ∈ W `+1,∞(Λ) be the signed distance function implicitly

defining a hypersurface, Γ ⊂ Λ. Let (T̂ ,Q`(T̂),Σ) be the Lagrange finite element triple

defined with the reference element, T̂ , as the unit square (2D) or unit cube (3D) and

Q`(T̂) := {Πdim
i=1pi(xi) |pi(t) ∈ P`([0, 1])}, the space of products of polynomials of degree

` in each dimension. We let {Th}h>0 be a sequence of partitions of Λ made of quadrilateral

(2D) or hexagonal (3D) elements of size h and dh ∈ Q`(Th) := {p(x) ∈ C(Λ) | p̂|T ∈

Q`(T̂)} satisfying

‖d− dh‖L∞(Λ) + h‖∇(d− dh)‖L∞(Λ) ≤ ch`+1‖d‖W `+1,∞(Λ),

for some c > 0 only dependent on Λ. Let ψ(t) = 693
512

(1 − t2)5, ε = ch3/4 and Bε

and Bh,ε to be defined respectively as the support of δε(d(x) and δε(dh(x)). Given f ∈

W 6,∞(Bε ∪ Bh,ε) and a composite quadrature rule, QuadΛ(·) with positive weights exact

93

for Q5(T̂), then the error

E =

∣∣∣∣∫
Γ

f(x)dx− QuadΛ (f(x)δε(dh)|∇dh|)
∣∣∣∣

satisfies

E ≤ c1h
3/2‖f‖W 6,∞(Ωε) + c2h

`‖f‖L∞(Ωε),

where c1 and c2 are constants only dependent on Λ.

Remark. It is interesting to note that in actual simulations, we often get the full h3/2 con-

vergence rate even with simple quadratures like the trapezoidal quadrature. We include in

Appendix A a discussion of why that might happen. Although it is not a proof, it gives

some intuition as to why we might be seeing the full rates. end Remark.

3.4 Numerical results

In [41], it is demonstrated that naively using an approximate Dirac function like the hat

function ψ(t) = 1−|t| and ε = mh for m some positive integer, leads to non convergence

when used in our multidimensional extension, δε(x) = 1
ε
ψ
(
dh(x)
ε

)
.

In their analysis, they point out that the main problem is that on a uniform grid, the

numerical integral of δε deteriorates as the normal line across Γ becomes unaligned with

the grid points. They note that one of the worst case scenarios for a closed boundary

embedded in 2D would be a long skinny capsule shaped boundary angled at 45 degrees

to the grid. In 3D, a worst case scenario would be with a 3D object which is as far from

orthogonal as it can be from the main axes. We therefore will perform our tests using

this scenario to verify the convergence rates. We perform our tests in 2D using a capusle

shaped region (see Figure 3.3) which is angled at θ degrees from the x axis with length

L and radius a. When L is large compared to a, we do not have as much cancellation of

errors as when the domain is more circular. This allows us to truly test the convergence

94

L

θ
a

Figure 3.3: Capsule shape for testing the convergence using δε.

properties of the approximation, δε.

Finally, we are working with a mesh which is independent of the interface involved.

The interface is defined implicitly as the zero level set of the function dh(x) and the uni-

form mesh is constructed independently. Note that this is part of the power of the level set

method, that the interface we are tracking can move independent of the mesh. We are also

running our simulations with a rectangular mesh as opposed to a triangular mesh.

3.4.1 Test cases

We demonstrate the above predicted rates for the dirac kernel ψ1,4. We compute three

quantities integrated around Γ for testing convergence. We approximate

∫
Γ

f(x)dx

withQ (f(x)δε(dh(x))|∇dh(x)|) using dh(x) = Ihd(x) the interpolant of the exact distance

function onto Ql(Th). The three functions f(x) are

f1(x, y) = 1, (3.25)

95

which gives the perimeter of Γ, |Γ| = 2L+ 2πa,

f2(x, y) = xy sin2(x) (3.26)

and

f3(x, y) = x2. (3.27)

The last two are computed accurately to 16 decimal points using Maple for the various

choices of θ, a and L of our capsule. In order to demonstrate convergence of this method

regardless of the position of the interface with respect to the grid, we calculate the average

error and the maximal error over multiple shifts in the grid. To be specific, for each mesh

size h, we subdivide the interval [0, h] into N pieces of size h
N

with starting point xi = i h
N

for i = 0 . . . N − 1. Then we use the product of this 1D subdivision to get Nd coordinates

xc = (x1
c1
, x2

c2
, . . . , xdcd) for c ∈ [0, . . . , N − 1]d which will be our center points for the

grid. We shift Γ and f by xc so that the value of the integral stays the same but the location

of the gridpoints has been changed. The maximal error and the average error is computed

over these Nd shifts and then the process is repeated on the next mesh size h.

3.4.2 Convergence rates

The rates are computed using the minimal mesh size per degree of freedom, (h/p). We

adaptively refine our mesh so that we are fully refined in the ε-band around Γh and coarsen

away from that region as fast as is computationally practical. Thus Ei ≈ chαi for

αi =
log(Ei/Ei−1)

log
(

(h/p)i
(h/p)i−1

) .
We observe in these Tables 3.1-3.6 that the errors for integrating the three functions, f1,

f2 and f3, defined in equations (3.25) - (3.27), are indeed of desired order, O(h3/2), over

96

the two capsule shapes consistent with Theorem 3.3.1. The first three tables, Table 3.1-

3.3 and Figure 3.4 give errors over the long skinny capsule with θ = π
4
, L = 1.4 and

a = 0.1
√

2. The last three tables Tables 3.4-3.6 and Figure 3.5 give errors over the shorter

and fatter capsule shape with π
6
, L = 1.0 and a = 0.2

√
2.

When we compute the perimeter on both domains, where the analytic error does not

contribute (see remark in Section 3.3.1.2) to the total error, then the quadrature and finite

element errors dominate and are observed to be on a smaller scale. In addition they seem

to be a little more erratic, which we hypothesize is due to how Γ cuts through the cells.

However, it still give the desired order of convergence over the long run.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 1e-05 0.0001 0.001 0.01

er
ro

r

h/p

f1 max
f1 ave
f2 ave
f2 ave
f3 ave
f3 ave

7

14

21

28

0.000e+00

3.063e+01
delta_eps

Figure 3.4: Error rates and plot of δε(x) with fully refined Bh,ε band around Γh. Note that
the average and maximum errors for f2 and f3 are overlaid.

We observe in these Tables 3.1-3.6 that the errors for integrating the three functions, f1,

f2 and f3, defined in equations (3.25) - (3.27), are indeed of desired order, O(h3/2), over

the two capsule shapes consistent with Theorem 3.3.1. The first three tables, Table 3.1-

3.3 and Figure 3.4 give errors over the long skinny capsule with θ = π
4
, L = 1.4 and

97

Table 3.1: Capsule with θ = π
4
, L = 1.4 and a = 0.1

√
2 using ε = h3/4. Computation

performed using 25 shifts of grid. We use Q2(Th) and dh(x) = Ihd(x), the Lagrange
interpolant of d(x). Gaussian quadrature is used with two points in each dimension which
is exact for polynomials of degree 3. Integrating f1(x) = 1 to give perimeter.

cycle dofs h/p f1 MaxError f1 MaxRate f1 AveError f1 AveRate
0 72937 1.9531e-03 5.7904e-07 - 2.3168e-07 -
1 166405 9.7656e-04 2.2464e-07 1.3660 7.1941e-08 1.6872
2 378149 4.8828e-04 6.5877e-08 1.7698 4.9009e-08 0.5538
3 851457 2.4414e-04 6.2776e-08 0.0696 3.5658e-08 0.4588
4 1869457 1.2207e-04 8.8137e-09 2.8324 4.4432e-09 3.0046
5 4304141 6.1035e-05 8.1088e-09 0.1203 4.6835e-09 -0.0760

Table 3.2: Capsule with θ = π
4
, L = 1.4 and a = 0.1

√
2 using ε = h3/4. Computation

performed using 25 shifts of grid. We use Q2(Th) and dh(x) = Ihd(x), the Lagrange
interpolant of d(x). Gaussian quadrature is used with two points in each dimension which
is exact for polynomials of degree 3. Integrating f2(x) = xy sin2(x).

cycle dofs h/p f2 MaxError f2 MaxRate f2 AveError f2 AveRate
0 72937 1.9531e-03 3.6134e-05 - 3.6093e-05 -
1 166405 9.7656e-04 1.2771e-05 1.5005 1.2761e-05 1.5000
2 378149 4.8828e-04 4.5130e-06 1.5007 4.5117e-06 1.5000
3 851457 2.4414e-04 1.5957e-06 1.4999 1.5951e-06 1.5000
4 1869457 1.2207e-04 5.6459e-07 1.4989 5.6396e-07 1.5000
5 4304141 6.1035e-05 1.9947e-07 1.5011 1.9939e-07 1.5000

a = 0.1
√

2. The last three tables Tables 3.4-3.6 and Figure 3.5 give errors over the shorter

and fatter capsule shape with π
6
, L = 1.0 and a = 0.2

√
2.

When we compute the perimeter on both domains, where the analytic error does not

contribute (see remark in Section 3.3.1.2) to the total error, then the quadrature and finite

element errors dominate and are observed to be on a smaller scale. In addition they seem

to be a little more erratic, which we hypothesize is due to how Γ cuts through the cells.

However, it still give the proper order of convergence.

98

Table 3.3: Capsule with θ = π
4
, L = 1.4 and a = 0.1

√
2 using ε = h3/4. Computation

performed using 25 shifts of grid. We use Q2(Th) and dh(x) = Ihd(x), the Lagrange
interpolant of d(x). Gaussian quadrature is used with two points in each dimension which
is exact for polynomials of degree 3. Integrating f3(x) = x2.

cycle dofs h/p f3 MaxError f3 MaxRate f3 AveError f3 AveRate
0 72937 1.9531e-03 1.0405e-04 - 1.0390e-04 -
1 166405 9.7656e-04 3.6779e-05 1.5003 3.6736e-05 1.5000
2 378149 4.8828e-04 1.2996e-05 1.5008 1.2988e-05 1.5000
3 851457 2.4414e-04 4.5965e-06 1.4995 4.5921e-06 1.5000
4 1869457 1.2207e-04 1.6259e-06 1.4993 1.6236e-06 1.5000
5 4304141 6.1035e-05 5.7459e-07 1.5006 5.7401e-07 1.5000

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 1e-05 0.0001 0.001 0.01

er
ro

r

h/p

f1 max
f1 ave
f2 ave
f2 ave
f3 ave
f3 ave

7

14

21

28

0.000e+00

3.063e+01
delta_eps

Figure 3.5: Error rates and plot of δε(x) with fully refined Bh,ε band around Γh. θ = π
6
,

L = 1.0, a = 0.2
√

2, ε = h3/4 using kernel ψ1,4(t).

99

Table 3.4: Capsule with θ = π
6
, L = 1.0 and a = 0.2

√
2 using ε = h3/4. Computation

performed using 25 shifts of grid. We use Q2(Th) and dh(x) = Ihd(x), the Lagrange
interpolant of d(x). Gaussian quadrature is used with two points in each dimension which
is exact for polynomials of degree 3. Integrating f1(x) = 1 to give perimeter.

cycle dofs h/p f1 MaxError f1 MaxRate f1 AveError f1 AveRate
0 14725 7.8125e-03 2.6859e-05 - 1.3647e-05 -
1 33622 3.9062e-03 9.1671e-06 1.5509 3.9492e-06 1.7889
2 74749 1.9531e-03 9.6633e-07 3.2471 4.6261e-07 3.0940
3 167081 9.7656e-04 2.0429e-07 2.2419 8.9133e-08 2.3758
4 375325 4.8828e-04 2.2573e-08 3.1780 1.0368e-08 3.1038
5 847725 2.4414e-04 6.4746e-09 1.8017 3.0246e-09 1.7773
6 1925989 1.2207e-04 8.0338e-09 -0.3113 3.6157e-09 -0.2575
7 4409953 6.1035e-05 1.7616e-09 2.1892 7.6421e-10 2.2422

Table 3.5: Capsule with θ = π
6
, L = 1.0 and a = 0.2

√
2 using ε = h3/4. Computation

performed using 25 shifts of grid. We use Q2(Th) and dh(x) = Ihd(x), the Lagrange
interpolant of d(x). Gaussian quadrature is used with two points in each dimension which
is exact for polynomials of degree 3. Integrating f2(x) = xy sin2(x).

cycle dofs h/p f2 MaxError f2 MaxRate f2 AveError f2 AveRate
0 14725 7.8125e-03 1.9421e-04 - 1.9308e-04 -
1 33622 3.9062e-03 6.8589e-05 1.5016 6.8266e-05 1.5000
2 74749 1.9531e-03 2.4162e-05 1.5053 2.4136e-05 1.5000
3 167081 9.7656e-04 8.5404e-06 1.5003 8.5336e-06 1.5000
4 375325 4.8828e-04 3.0179e-06 1.5008 3.0171e-06 1.5000
5 847725 2.4414e-04 1.0669e-06 1.5001 1.0667e-06 1.5000
6 1925989 1.2207e-04 3.7742e-07 1.4992 3.7713e-07 1.5000
7 4409953 6.1035e-05 1.3341e-07 1.5003 1.3334e-07 1.5000

100

Table 3.6: Capsule with θ = π
6
, L = 1.0 and a = 0.2

√
2 using ε = h3/4. Computation

performed using 25 shifts of grid. We use Q2(Th) and dh(x) = Ihd(x), the Lagrange
interpolant of d(x). Gaussian quadrature is used with two points in each dimension which
is exact for polynomials of degree 3. Integrating f3(x) = x2.

cycle dofs h/p f3 MaxError f3 MaxRate f3 AveError f3 AveRate
0 14725 7.8125e-03 7.8148e-04 - 7.7608e-04 -
1 33622 3.9062e-03 2.7597e-04 1.5017 2.7439e-04 1.5000
2 74749 1.9531e-03 9.7131e-05 1.5065 9.7012e-05 1.5000
3 167081 9.7656e-04 3.4332e-05 1.5004 3.4299e-05 1.5000
4 375325 4.8828e-04 1.2130e-05 1.5009 1.2127e-05 1.5000
5 847725 2.4414e-04 4.2884e-06 1.5001 4.2874e-06 1.5000
6 1925989 1.2207e-04 1.5172e-06 1.4990 1.5158e-06 1.5000
7 4409953 6.1035e-05 5.3629e-07 1.5004 5.3592e-07 1.5000

101

4. TWO PHASE FLOW WITH INCOMPRESSIBLE NAVIER-STOKES

We are studying the effects of various forces that live on a smooth closed interface,

modeled by a hyper-surface Γ ⊂ Rd, between two fluids on the dynamic flow of that inter-

face. Thus we will need to construct a global velocity field that must somehow incorporate

the forces from that interface into its system. The fluids we are studying are moving at a

slow enough speed and at pressures moderate enough to be considered incompressible.

In addition the interface will be considered as if it were a solid barrier so that the two

fluids are considered immiscible. For instance, if we were studying the motion of a red

blood cell, the interface would be the cell vesicle itself and the two fluids would be the

interior of the cell and the medium through which it is traveling. For small time scales, it

is reasonable to assume no exchange between the cell cytoplasm and extra cellular fluids.

In applications, we will typically assume that we are capturing the dynamics in only a

portion of a larger region that includes the interface we are modeling and we are free to

decide how large or that portion we are observing. Thus it is safe to assume that on the

time scales we are considering, the interface, Γ will stay away from the boundary of our

stated domain. There are many other applications that allow for Γ to intersect the bound-

ary of the domain, but we will not study them here. The two fluids (or phases) will have

their own density and viscosity which could be in general spatially variable, but for most

applications, will be considered to be constant within their individual regions and with the

jump at the interface.

With all these assumptions, we are left with a two-phase flow where the fluid velocity is

described by the incompressible time dependent Navier-Stokes equations. We will obtain

a velocity and pressure field that balance all the forces and will then update the interface

according to that velocity field. The level set method described in Chapter 2 will be used

102

to transport the interface using the generated velocity field.

In Section 4.1, we will write down the general two-phase incompressible Navier-

Stokes system. Then in Section 4.2, we will describe the discretization of time and space

via the Rotational Incremental Pressure Correction model, which is a splitting of the gen-

eral incompressible Navier-Stokes equations and which consists of determining the veloc-

ity field followed by a pressure correction. In Section 4.3, we will focus on the boundary

conditions that are applied to the pressure and velocity fields and how their interaction af-

fects the convergence rates. In Section 4.4 we will discuss the addition of an Streamlined

Upwind/Petrov Galerkin stabilization scheme to the velocity equation and other techniques

to stabilize and improve the discretized system behavior. Finally, in Section 4.5 we will

demonstrate some numerical results based on the described algorithm. The numerical re-

sults described in Section 4.5 will be for a single phase flow but will show the expected

rates for the incompressible Navier-Stokes rotational pressure correction algorithm. To be

complete, we have included in Appendix B, a review of theory and expected convergence

rates pertaining to the pressure correction splittings of the incompressible Navier-Stokes

equations.

The specific application of forces on the interface will be included in their own chap-

ters. We will study the application of surface tension in Chapter 6, of the Willmore force

in Chapter 7 and of the Canham-Helfrich force in Chapter 8.

4.1 Incompressible Navier-Stokes

We consider a two-phase flow on a Lipschitz domain Λ ⊂ Rd with boundary ∂Λ. The

domain, Λ is separated into two regions Ω and Λ\Ω where Ω is a smooth domain.

The fluid motion is described by its velocity u : [T0, T1] × Λ → Rd and pressure

p : [T0, T1] × Λ → R. The fluid is assumed to be incompressible so that the velocity and

pressure are related via the incompressible time dependent Navier-Stokes equations:

103

Λ

∂Λ

Γ = ∂Ω

Ω

ν

n

Λ\Ω

Figure 4.1: Region Λ including a subdomain Ω. The outside pointing normal to Ω is n
while the outside pointing normal to Λ is ν.

ρ
(
∂u
∂t

+ (u · ∇) u
)
−∇ · (2µ∇su− pI) = ρf + g in (T0, T1]× Λ

∇ · u = 0 in (T0, T1]× Λ

J2µ∇su− pIK · n = fΓ on (T0, T1]× Γ

JuK = 0 on (T0, T1]× Γ

u = ud on (T0, T1]× ∂Λd

(2µ∇su− pI) · ν = f∂Ω on (T0, T1]× ∂Λn

u · ν = 0, ((2µ∇su− pI) · ν)× ν = 0 on (T0, T1]× ∂Λs

u = u0 on {T0} × Λ

(4.1)

Here we have used density, ρ : [T0, T1] × Λ → R, the (dynamic) viscosity, µ : [T0, T1] ×

Λ → R, and the right hand side source terms, f, g : [T0, T1] × Λ → Rd. We denote by

∇s, the symmetric gradient ∇su := ∇u+∇uT

2
. We denote by n, the outward pointing unit

104

normal vector on Γ and by ν, the outward pointing unit normal vector on ∂Λ.

We will allow for a wide range of boundary conditions, including Dirichlet, natural,

slip (u · ν = 0 and ((2µ∇su− pI) · ν)× ν = 0) or no-slip (u = 0) boundary conditions,

to be applied to velocity on ∂Λ. However, at this time we will not distinguish them more

than Dirichlet, natural, and slip boundary conditions: ∂Λ = ∂Λd ∪ ∂Λn ∪ ∂Λs where

we can lump the no-slip type conditions into the set of Dirichlet-type conditions. These

sets must be non overlapping with ∂Λd a closed set. We will primarily use Dirichlet or

slip conditions but leave open the opportunity of using natural boundary conditions as

well. We allow for any combination of these three conditions and all three do not need

to appear, but when pure Neumann boundary conditions are used, we may need to add an

extra constraint to the system to maintain solvability. See Section 4.3.1 and in particular

Section 4.3.2 for more details on the application of these boundary conditions. The initial

velocity, u0, must be compatible with the chosen boundary conditions and be divergence

free.

Then we denote by ud : [T0, T1] × ∂Λd → Rd, the Dirichlet data and fν : [T0, T1] ×

∂Λn → Rd, the natural boundary condition data.

We use the standard jump notation, using n as the outward unit normal to the surface

we are jumping across,

Jr(x)K := lim
ε→0+

r(x + εn)− lim
ε→0+

r(x− εn).

Then we denote by fΓ : Γ × [T0, T1] → Rd the forcing data on Γ which could represent

surface tension or the Willmore force, or any other force which lives on the boundary,

Γ, and which needs to be balanced against the forces of the Navier-Stokes system. The

specific application of these forces and derivation of techniques to incorporate them into

the discretized model will be the subject of the application chapters and are the main

105

subject of this thesis.

We will for simplicity assume that density and viscosity are constant within each of

the two fluids with a possible jump at the interface, Γ. We then denote by ρin and µin, the

density and viscosity on Ω, the interior region to Γ, and ρout and µout on Λ\Ω, the region

outside of Ω. If Γ is not closed, then we designate the region into which the normal n

points, the outer region. We can combine these terms into a global definition using the

characteristic function, H(t, x) for Ω = Ω(t) at time t,

ρ(t, x) = H(t, x)ρin + (1−H(t, x)) ρout

µ(t, x) = H(t, x)µin + (1−H(t, x))µout

where

H(t, x) =

1, x ∈ Ω(t)

0, otherwise.

4.1.1 Weak form of continuous Navier-Stokes system

We define the following function spaces for the weak form of the continuous Navier-

Stokes equations

V0 = {v ∈
[
H1 (Λ)

]d | v = 0 on ∂Λd, v · ν = 0 on ∂Λs}

V = {v ∈
[
H1 (Λ)

]d | v = ud on ∂Λd, v · ν = 0 on ∂Λs}

M = L2 (Λ)

X = H1 (Λ)

X0 = {ψ ∈ H1(Λ) | ψ = 0 on ∂Λn ∪ ∂Λs}.

106

Remark. The space X0 is defined here to keep the function space definitions located to-

gether but will only be used for the pressure correction variable, ψ, in the rotational incre-

mental pressure correction splitting described in Section 4.2. end Remark.

Using these function spaces, a weak formulation of (4.1) reads: For a.e. t ∈ [T0, T1],

find (u(t), p(t)) ∈ V×M such that for all (v, q) ∈ V0 ×M,

∫
Λ

ρ

(
∂u
∂t

+ (u · ∇) u
)
· vdx +

∫
Λ

2µ∇su : ∇svdx

−
∫

Λ

p div vdx +

∫
Λ

q div udx−
∫
∂Λn

(2µ∇su− pI) · ν · vdx

−
∫

Γ

(J2µ∇su− pIK · n) · vdx =

∫
Λ

(ρf + g) · vdx

which using our boundary conditions simplifies to

∫
Λ

ρ

(
∂u
∂t

+ (u · ∇) u
)
· vdx +

∫
Λ

2µ∇su : ∇svdx−
∫

Λ

p div vdx

+

∫
Λ

q div udx =

∫
Λ

(ρf + g) · vdx +

∫
∂Λn

f∂Ω · vdx +

∫
Γ

fΓ · vdx
(4.2)

At this stage, we recognize that when directly discretized in space and time, equa-

tion (4.2) leads to a nonlinear saddle point problem. There are many good approaches to

solving the resulting problem but we will take a different route which will hopefully be

more efficient for our needs. Instead of directly discretizing, we will split the system into a

series of linear updates. This limits the convergence rates we can expect to at best second

order in space, but that is adequate for our needs We will also use a second order in time

backward difference discretization. We choose to work within the well known family of

pressure correction models originally introduced by Chorin and Temam in [43] to solve the

incompressible Navier-Stokes problem. In particular we implement the rotational, incre-

mental pressure correction method suggested by Timmermans, Minev and Van De Vosse

107

in [44] with a modification based on a penalty point of view for dealing with variable

density as discussed in [45] by Guermond and Salgado. This setup will obtain optimal

order of convergence rates for velocity and pressure in the various norms desired. A good

review of many of these projection type methods is given by Guermond, Minev and Shen

in [46]. A review of the expected orders of convergence and related theorems from these

types of time stepping methods is provided in Appendix B. We will discuss the necessary

algorithmic details below. Refer to [47] and [21] for modifications to recover optimal rates

in the case of natural boundary conditions on velocity and pressure.

4.1.2 A discretization in space

We consider a family of adaptive triangulations {T (t)}t∈[T0,T1] of Λ consisting of reg-

ular rectangular (2D) or hexagonal elements (3D). For a specific t ∈ [T0, T1], the element

size of an element K ∈ T (t) is denoted hK and calculated as the maximal distance be-

tween vertices divided by
√
d so that the reference element has mesh size hK̂ = 1. The

minimal mesh size, h = hmin, is calculated over all cells in the triangulation,

h = hmin := min
K∈T (t)

hK .

We use the Taylor-Hood finite element for the velocity-pressure unknowns, that is we

choose the d dimensional vector Lagrange finite element degree p > 1 on the reference

element, K̂ for velocity and the scalar Lagrange finite element of degree p − 1 for the

108

pressure space. Thus we define the discrete spaces for t ∈ [T0, T1],

V0 (T (t)) = {V ∈
[
C
(
Λ
)]d | ∀K ∈ T (t), V̂

∣∣∣
K̂
∈
[
Qp(K̂)

]d
,

V|∂Λd
= 0, V · ν|∂Λs

= 0}

V (T (t)) = {V ∈
[
C
(
Λ
)]d | ∀K ∈ T (t), V̂

∣∣∣
K̂
∈
[
Qp(K̂)

]d
,

V|∂Λd
= IpT (t) (fd) , V · ν|∂Λs

= 0}

M (T (t)) = {P ∈ C
(
Λ
)
| ∀K ∈ T (t), P̂

∣∣∣
K̂
∈ Qp−1(K̂)}

X (T (t)) = {P ∈ C
(
Λ
)
| ∀K ∈ T (t), P̂

∣∣∣
K̂
∈ Qp−1(K̂)}

X0 (T (t)) = {P ∈ X (T (t)) | P |∂Λn∪∂Λs
= 0}

where IpT (t) is the Lagrange interpolant from continuous vector functions on vector piece-

wise continuous polynomials of degree p subordinate to the triangulation T (t) and the hat

notation, V̂
∣∣∣
K̂

, denotes the standard bi-linear pull back onto the reference element K̂ from

real element K.

We will denote functions in these discrete spaces by a capital letter notation. For the

test functions, there is no explicit time dependence other than through the mesh that the

polynomials are subordinate to, so when it is clear enough by context, we will drop the

time notation. Thus our finite element solutions will be velocity, U(t) ∈ V (T (t)) and

pressure, P (t) ∈ M (T (t)) and the test functions will be respectively V ∈ V0 (T (t)) and

Q ∈M (T (t)).

4.1.3 A discretization in time

We discretize our time t ∈ [T0, T1] into N steps t0 = T0 < t1 < · · · < tk < tk+1 <

· · · < tN = T1 with time step

∆tk+1 := tk+1 − tk

109

We leave open the possibility for adaptive time stepping based on a CFL condition

described in Section 2.3.2 but note that no stability condition has been discovered as of

yet for the pressure correction algorithm with a higher order discretization of the time

derivative. Stability has been shown for a BDF1 time discretization in [47], but we will in

general use a higher order discretization. Thus in practice, we will choose a uniform time

step when the pressure correction algorithm is being utilized.

We denote the functions at a specific time with a superscript,

uk := u(tk)

pk := p(tk).

Since the density and viscosity are possibly variable, we also denote

ρk := ρ
(
tk
)

µk := µ
(
tk
)
.

Additionally, we use the subscript notation (f)∆t to mean the sequence {fk}Nk=0 of

solutions at the time steps tk. With this notation, we can discuss norms in both time and

space of our solutions. For instance, for any Banach space, (B, ‖·‖B), the maximum norm

in time of our velocity approximation error (u− U)∆t is

‖(u− U)∆t‖`∞(B) :=
N

max
k=0

∥∥u(tk)− Uk
∥∥
B

(4.3)

and the `2 norm in time is

‖(u− U)∆t‖`2(B) :=

(
N∑
k=0

∆tk
∥∥u
(
tk
)
− Uk

∥∥2

B

)1/2

. (4.4)

110

We do not distinguish notationally between norms of scalar functions and vector functions.

Finally, we combine the spatial and temporal discretizations to denote the finite ele-

ment function spaces at time tk. Using T k := T
(
tk
)
, we have

V0
(
T k
)
,V
(
T k
)

and M
(
T k
)
.

4.1.3.1 Backward difference formulae for time derivatives

The backward difference formula (BDF) class of approximations to the time derivative

can be described generally using the following notation: An m-th order (BDF-m) approxi-

mation of the first derivative in time uses a linear combination of the previous m time step

solutions. It is convenient to use the operator Dt,m to represent the BDF-m operation of

first derivative in time, mainly

∂f

∂t
(t, x)

∣∣∣∣
t=tk+1

= Dt,mf
k+1 +O

(
(∆tk+1)m

)
(4.5)

and

Dt,mf
k+1 =

β0

∆tk+1
fk+1 −

m∑
i=1

βi
∆tk+1

fk+1−i. (4.6)

Remark. When it is clear from context which order, m, we want to use, we will drop the

m from the notation and simply write Dtf
k+1 for the BDF time derivative approximation.

end Remark.

The first order (BDF1) approximation has β0 = β1 = 1 for uniform or adaptive time

steps so that

Dt,1f
k+1 =

fk+1 − fk
∆tk+1

. (4.7)

The second order (BDF2) approximation with uniform time steps has β0 = 3/2, β1 = 2

111

and β2 = −1/2, so that

Dt,2f
k+1 =

3

2∆t
fk+1 − 2

∆t
fk +

1

2∆t
fk−1. (4.8)

For the second order (BDF2) adaptive time stepping, we define the ratio

r :=
∆tk+1

∆tk
(4.9)

then let β0 = 1+2r
(1+r)

, β1 = 1 + r, β2 = − r2

(1+r)
giving

Dt,2f
k+1 =

1 + 2r

1 + r

1

∆tk+1
fk+1 − (1 + r)

1

∆tk+1
fk +

r2

1 + r

1

∆tk+1
fk−1. (4.10)

It is a simple calculation to show that this adaptive algorithm reduces to the uniform ver-

sion above with uniform time steps, i.e. r = 1. There are higher order BDF formulae, but

we will not use them here.

The adaptive BDF1 and BDF2 algorithms have truncation errors O
(
∆tk+1

)
and

O
((

∆tk + ∆tk+1
)

∆tk+1
)

respectively, where as the uniform algorithms are O(∆t) and

O(∆t2) respectively.

4.1.4 Tracking the interface, Γ

We use the level set method described in Chapter 2 to track the interface, Γ as it moves

in time. That is, at any given time, we have a level set function ϕ(t, x) : [T0, T1]×Λ→ R

such that Ω(t) = {x ∈ Λ | ϕ(t, x) > 0} and Γ(t) := {x ∈ Λ | ϕ(t, x) = 0}. We will

keep the level set function as a signed distance function in a neighborhood of Γ so that the

value of ϕ(t, x) describes roughly how far from Γ(t) we are. Outside a band, we will let

it taper off to flat since we don’t need to use distances except near the band. This level

set function will be provided or solved for independently of the Navier-Stokes method. It

112

is discussed in Chapter 2. Using, ϕ(t, x), we can make some simple modifications to our

density and viscosity as well. In particular, we smooth out the jump at Γ, with a smoothed

Heaviside function effectively creating a small ε-band where mixing of the fluids occurs:

Given ε > 0, define the approximate Heaviside function,

Hε(t, x) := Hε

(
ϕ(t, x)

ε

)
(4.11)

or in short hand, Hε(ϕ(t, x)) = Hε(t, x) where for s ∈ R, the Heaviside kernel is defined

as

Hε(s) =

0, s ≤ −1

1
2

+ 693
512

(s− 5
3
s3 + 2s5 − 10

7
s7 + 5

9
s9 − 1

11
s11), |s| < 1

1, 1 ≤ s.

(4.12)

so that H ′ε(s) = δε(s). We will let ε scale with the minimal mesh size ε = chmin, with

c ∈ {1, 2, ...} a positive integer. Then our two-phase smoothed density and viscosity are

given by

ρk(x) = ρ+Hε(t
k, x) + ρ−

(
1−Hε(t

k, x)
)

(4.13)

µk(x) = µ+Hε(t
k, x) + µ−

(
1−Hε(t

k, x)
)

(4.14)

Notice that the density and viscosity are piecewise constant everywhere except for the

small smoothed region around the boundary. For most cases, it is can be treated them as

if they are completely piecewise constant. If there are other advanced modifications to the

model, for instance a nonlinear shear thinning of the viscosity, then the above definitions

will need to be modified accordingly and it may become truly variable.

113

4.2 The rotational incremental pressure-correction model

We now describe a version of the rotational, incremental pressure correction splitting

with variable density as discussed in [45]. We will initially describe the splitting algo-

rithm using discrete in time but non discrete in space functions, then at the end, we will

write down the fully discrete algorithm with the appropriate discrete Lagrange polynomial

spaces. Now, the splitting we use separates the direct dependence of the velocity on the

pressure by first solving for an intermediate velocity that might not be divergence free and

which is based on the previous pressure. Then we update it to be divergence free by using

a Helmholtz-like decomposition into a solenoidal (or more simply a divergence free) term

and a gradient. We then use those terms to correct the previous pressure to be compatible

with the current divergence free velocity; hence the name pressure correction model.

So supposing that we have uk and uk−1, divergence free velocity solutions at times tk

and tk−1, we first seek the incremental velocity ũk+1 ∈ V
(
T k+1

)
which is not necessarily

divergence free. We use the BDF2 time derivative, Dτ,2ũk+1 = β0

∆tk+1 ũk+1 − β1

∆tk+1 uk −
β2

∆tk+1 uk−1 and linearize the convection term to be (u∗ · ∇) ũk+1, where we have introduced

the second order linear extrapolation at time tk+1 of the velocity

u∗ := uk +
∆tk+1

∆tk
(
uk − uk−1

)
using the previous divergence free velocities. This extrapolated velocity will also be used

as a proxy for the current velocity when calculating various scaling coefficients thus pre-

serving linearity or our system.

114

Thus, the first step is to find ũk+1 ∈ V such that for all v ∈ V0:

∫
Λ

ρk+1 β0

∆tk+1
ũk+1 · vdx +

∫
Λ

ρk+1 (u∗ · ∇) ũk+1 · vdx +

∫
Λ

2µk+1∇sũk+1 : ∇svdx

=

∫
Λ

pk div vdx +

∫
Λ

ρk+1

(
β1

∆tk+1
ukdx +

β2

∆tk+1
uk−1

)
· vdx

+

∫
Λ

(
ρk+1fk+1 + gk+1

)
· vdx +

∫
∂Λn

fk+1
ν · vdx +

∫
Γ

fk+1
Γ · vdx.

(4.15)

Next we seek the divergence free velocity uk+1 ∈ V, and the pressure correction, ψk+1 ∈

M as solution to

β0

∆tk+1

(
uk+1 − ũk+1

)
+ 1

ρk+1∇ψk+1 = 0

∇ · uk+1 = 0

uk+1 · ν
∣∣
∂Λd

= 0

(4.16)

and finally we seek the pressure, pk+1 ∈ M, as solution to the pressure update with rota-

tional term:

pk+1 = pk + ψk+1 −
(

min
Λ
µk+1(x)

)
div ũk+1. (4.17)

As written, this system is not directly implementable since we need both uk+1 and ũk+1

to solve for update ψk+1. However we can simplify by applying the divergence operator to

equation system (4.16) and use the divergence free properties of uk+1 to reduce the system

to only use the ũk+1 and ψk+1 variables:

−∇ ·

(
1

ρk+1∇ψk+1
)

= − β0

∆tk+1 div ũk+1, x ∈ Λ

∂ψk+1

∂ν
= 0, x ∈ ∂Λd

ψk+1 = 0, x ∈ ∂Λn.

(4.18)

Note that by our assumption of variable density, we cannot simply pull out the ρk+1 term

115

as is common in the literature. The weak form of equation system (4.18) is then the non-

constant coefficient Poisson equation given as: Find ψk+1 ∈ X0 which satisfies for all

w ∈ X0 the weak equality

∫
Λ

∇
(

1

ρk+1
ψk+1

)
· ∇wdx = − β0

∆tk+1

∫
Λ

div ũk+1wdx. (4.19)

Remark. Note that we are imposing homogeneous Dirichlet boundary conditions on the

pressure correction function in exactly the opposite locations of the Dirichlet boundary

conditions of the velocity component; that is, in the Neumann and slip regions. This turns

out to be a naturally compatible condition between pressure and velocity (See [46]). How-

ever it does in fact add a boundary layer to pressure where it is imposed and we do not

recover the full convergence rate in the L2-norm of pressure and H1-norm of velocity.

When open boundary conditions are used on velocity, we can modify the pressure cor-

rection system to also have open boundary conditions to avoid this boundary layer and

recover the full convergence rates. See Section 4.3.2 for more details. end Remark.

4.2.1 The pressure correction algorithm

In summary, the basic BDF2 splitting algorithm with rotational form is as follows:

Given (uk,uk−1, pk, pk−1, ρk+1, µk+1), solve equation (4.15) for ũk+1, then solve equation

(4.19) for ψk+1 which we use to update pk+1 in (4.17). Finally we update uk+1 from

equation (4.16) as

uk+1 = ũk+1 − ∆tk+1

β0

∇
(

1

ρk+1
ψk+1

)
. (4.20)

After this sequence of steps, we have our desired velocity, uk+1, and pressure, pk+1.

Remark. Note that the literature also calls this a projection method because under the

116

assumption of constant density, equation (4.20) can be rearranged as

ũk+1 = uk+1 +
∆tk+1

ρk+1β0

∇ψk+1 (4.21)

and we can think of uk+1 as the projection of ũk+1 into the divergence-free subset of

velocities. end Remark.

In the next section, we will discuss some additional improvements and simplifications

for our actual algorithm and implementation that take us away from the projection idea.

4.2.2 A penalty method instead of a projection method

In [45] by Guermond, it is pointed out that instead of thinking of the incremental

pressure correction scheme as a projection method, we can view it as a linear perturbation

method. Rannacher then pointed out in [48] that this can be viewed as a penalty method

on the divergence of the velocity. Once we have this point of view, we are not bound in

the pressure correction equation (4.16) to use the variable ρk+1 but can introduce instead a

penalty scaling factor

χ ∈
(

0,min
x∈Λ

ρ(0, x)

]
. (4.22)

This range is chosen solely based on the stability analysis. In practice we almost always

choose

χ = ρ0
min := min

x∈Λ
ρ(0, x). (4.23)

Thus our pressure correction equation (4.19) can be rewritten in the form

∫
Λ

∇ψk+1 · ∇wdx = − β0χ

∆tk+1

∫
Λ

div ũk+1wdx. (4.24)

See [45] for the complete details.

117

4.2.3 Summary of fully-discrete pressure correction algorithm

We must also start to distinguish between β0 values at different time steps if we are

using adaptive time stepping. At time tk, we denote by βk0 the β0 value at that time. When

no superscript is given, it is assumed to be at the current time value, tk+1. It might be just

as convenient to simply use β0, βold
0 and βoldold

0 when sitting at time tk+1 to denote β0’s at

times tk+1, tk and tk−1 respectively.

It is observed in the "Implementation" section of [46] that there is some ambiguity

about which velocity uk+1 or ũk+1 is really the right velocity. It is possible to adjust the

entire system (except for the nonlinear convection term) to use the incremental velocities,

ũk+1. We choose to always use the incremental velocity and never solve for the divergence

free velocities, uk+1. We will remove the divergence free velocity terms uk and uk−1

from equation (4.15) and replace them with the corresponding ũ velocity terms using the

relations

ρk+1 βi
∆tk+1

uk+1−i = ρk+1 βi
∆tk+1

ũk+1−i − ∆tk+1−i

∆tk+1

βi

βk+1−i
0

∇ψk+1−i, for i = 1, 2

which are scaled versions of equation (4.16) at previous time steps.

The only question that remains is how to handle the nonlinear convection term. We

will implement a semi-implicit linearization of the uk+1 · ∇ũk+1 using second order ex-

trapolations from previous incremental velocities. It is shown in [49] that this still leads to

a stable convergent solution. To this end, we define the second order extrapolation velocity

ũ∗ := ũk +
∆tk+1

∆tk
(
ũk − ũk−1

)
and use the semi implicit ũ∗ · ∇ũk+1 for the convection term.

At this point, we have completely removed the u terms and are left only with ũ terms.

118

We will use the incremental velocity everywhere as if it were our true velocity field, so

we will drop the tilde notation from here forward as it will always denote a ũ term in the

subsequent. We will also switch to the fully discrete in space solutions. Thus we seek

a velocity Uk+1 ∈ V
(
T k+1

)
, a pressure correction Ψk+1 ∈ X0

(
T k+1

)
and a pressure

P k+1 ∈M
(
T k+1

)
which are solved in the three sequential steps:

(i) Velocity Prediction: Given (Uk,Uk−1, P k, P k−1,Ψk,Ψk−1), find Uk+1 ∈ V
(
T k+1

)
that satisfies for all V ∈ V0

(
T k+1

)
,

∫
Λ

ρk+1 β0

∆tk+1
Uk+1 · Vdx +

∫
Λ

ρk+1 (U∗ · ∇) Uk+1 · Vdx

+

∫
Λ

2µk+1∇sUk+1 : ∇sVdx−
∫

Γ

fk+1
Γ · Vdx

=

∫
Λ

(
P k +

∆tk

∆tk+1

β1

βk0
Ψk +

∆tk−1

∆tk+1

β2

βk−1
0

Ψk−1

)
div Vdx

+

∫
Λ

ρk+1

(
β1

∆tk+1
Uk +

β2

∆tk+1
Uk−1

)
· Vdx

+

∫
Λ

(
ρk+1fk+1 + gk+1

)
· Vdx +

∫
∂Λn

fk+1
ν · Vdx.

(4.25)

(ii) Pressure Increment Correction: Now, given Uk+1, find Ψk+1 ∈ X0
(
T k+1

)
such that

for all W ∈ X0
(
T k+1

)
,

∫
Λ

∇Ψk+1 · ∇Wdx = − β0χ

∆tk+1

∫
Λ

div Uk+1Wdx. (4.26)

(iii) Pressure Update with Rotational Correction: Given Uk+1 and Ψk+1, find P k+1 ∈

M
(
T k+1

)
such that for all Q ∈M

(
T k+1

)
,

∫
Λ

P n+1Qdx =

∫
Λ

(
P k + Ψk+1

)
Qdx−min

x∈Λ
µk+1(x)

∫
Λ

div Uk+1Qdx (4.27)

With these three steps, we have our new solution (Uk+1,Ψk+1, P k+1).

119

Remark. We call the algorithm rotational when we add−minx∈Λ µ
k+1(x) div Uk+1 to the

pressure update equation (4.17) and in weak form, equation (4.27). The standard method

leaves this term off and only updates pressure with the pressure correction term, Ψk+1.

See Appendix B for a summary of theory and expect convergence results related to the

rotational and standard algorithms with BDF1 and BDF2 time derivative approximations.

end Remark.

Remark. Finally, we point out that in the case of uniform time steps, the pressure term

P] :=

(
P k +

∆tk

∆tk+1

β1

βk0
Ψk +

∆tk−1

∆tk+1

β2

βk−1
0

Ψk−1

)

of equation (4.25) simplifies to

P] =
7

3
P k − 5

3
P k−1 +

1

3
P k−2

=
1

3

(
3P k − 3P k−1 + P k−2

)
+

2

3

(
2P k − P k−1

)
≈ 1

3
P k+1 +

2

3
P k+1

≈ P k+1

which is a convex combination of a second and third order extrapolations of P k+1. We have

in this calculation ignored the divergence of velocity terms that come from the rotational

adjustment. When considered separately and combined via Taylor expansions, they can

be viewed as an extra consistent penalty term on the divergence of velocity pushing us

towards a divergence free velocity:

4

3
µmin div Uk − 1

3
µmin div Uk−1 ≈ µmin

(
div Uk+1 − 2

3
∆t div Uk+1

t +O(∆t3)

)
.

Thus, by switching to the incremental velocities everywhere, we have improved our pressure-

120

velocity coupling by using a better approximation to the current pressure in the momentum

equation (4.25). end Remark.

4.3 Boundary conditions on velocity and pressure increment

There are a number of configurations of boundary conditions on the various functions.

It turns out that there is some flexibility in what we want to do and how we model the

boundaries. Recall we defined ∂Λ = ∂Λd ∪ ∂Λn ∪ ∂Λs which represented where the

Dirichlet (d), Natural (n) and Slip(s) boundary conditions for velocity occurred. Some

configurations introduce an artificial boundary layer in pressure while others do not. We

review the possible configurations and then discuss how we can obtain optimal order of

convergence for each. In the subsequent, we will discuss them as if the entire boundary

is either ∂Λd, ∂Λn or ∂Λs but in reality this works for mixed boundary conditions and the

choices just need to be consistent on each part.

4.3.1 Standard boundary conditions

The first approach is the standard approach in most papers. We have two options

for velocity, either a Dirichlet condition or a natural/slip boundary condition. The basic

approach says that whichever one we choose, we apply the opposite condition on the pres-

sure correction, ψ term. The follow convergence results hold for the rotational scheme

with uniform time step and BDF2 time derivative. We lump the slip and no slip boundary

conditions here into the Dirichlet type conditions. Thus if a slip/no-slip condition is ap-

plied on the velocity, the pressure correction should have a Natural condition applied. In

general we do not consider a slip/no-slip condition on the pressure correction function.

U Ψ
∥∥(u− U)∆t

∥∥
`∞(L2(Λ)d)

∥∥(u− U)∆t

∥∥
`∞(H1(Λ)d)

∥∥(p− P)∆t

∥∥
`∞(L2(Λ))

Dirichlet= ud/Slip/No Slip Natural = 0 ∆t2 ∆t3/2 ∆t3/2

Natural = fν Dirichlet = 0 ∆t2 ∆t ∆t

121

The second case is precisely where an artificial boundary layer is created on the pres-

sure boundary, ∂Λ. We are not so concerned with this since we will be tracking our

boundary, Γ far away from ∂Λ so the distortions from this boundary layer will have mini-

mal effect on our accuracy. In other words, even though globally we may have a reduced

accuracy, we are only concerned with the solution near the boundary ∂Ω and inside of it

where the boundary layer has not affected the solution. Thus we still consider this tech-

nique to be viable for our situation.

4.3.1.1 Mean value of pressure

Note that when pure Dirichlet boundary conditions have been used for the velocity,

uk+1, and pure Neumann boundary conditions are used on the pressure correction, ψk+1,

then ψk+1 is defined only up to a constant. This means that the pressure, pk+1, is also

defined up to a constant. We choose in this case to set the mean value of pressure to be 0

or if we are doing a convergence analysis with known pressure, we set the average value of

our pressure equal to the average value of the known pressure. This allows us to observe

the predicted L2-norm convergence rates for pressure. This means that we must remove

the null space of constants in some manner to compute a solution for pressure correction

and then calculate the pressure update using this solution. There are solvers in the PETSc

linear algebra library that will do this automatically, or we can fix one of the degrees of

freedom and solve the full rank subsystem using any linear algebra solver. See [50] for a

discussion of various methods to solve the Laplacian with Neumann data problem.

Once we have computed the pressure, we then compute it’s mean value and subtract

it off to reach the desired mean value of pressure. Then we need to adjust the pressure

correction to match. That is, if we adjusted the mean value of pressure with

pk+1 → pk+1 − c

122

then taking our cues from equation (4.17), which we rearrange to be

ψk+1 = pk+1 − pk +

(
min
x∈Λ

µk+1(x)

)
div uk+1,

we must also adjust the pressure correction

ψk+1 → ψk+1 − c.

Thus, we maintain the relationship between all the splitting variables uk+1, ψk+1 and pk+1

for the next step. It is always possible to adjust the mean values of pressure and pressure

correction in this manner for any combination of boundary conditions but it is necessary

in the case of pure Dirichlet on the velocity and pure Neumann on the pressure correction.

4.3.2 Open boundary conditions everywhere

Another possible scenario for the second case is to try to remove the boundary layer by

using natural boundary conditions on ψ as well. However for stability reasons we need to

add some terms to each equation. Thus if we choose open or natural boundary conditions

on both velocity and the pressure increment, then we add a grad-div term to the left hand

side of the momentum equation (4.25)

− α0∇
(

div

(
Uk+1 − Uk

∆tk+1

))
(4.28)

or in weak form,

+

∫
Λ

α0 div

(
Uk+1 − Uk

∆tk+1

)
· div Vdx (4.29)

and a zeroth order term to our pressure correction equation (4.26) with constant, c > 0

∫
Λ

∇Ψk+1 · ∇W + cΨk+1Wdx = − β0χ

∆tk+1

∫
Λ

div Uk+1Wdx (4.30)

123

where α0 ≥ 1, is a user defined constant. We note that this grad-div term is consistent

since the continuous equations have incompressible velocity i.e. divergence of velocity

is zero. We add this term simply to give a bound on the ‖Ψk+1 − Ψk‖H1(Λ) term which

arises in the error analysis of the open boundary system. The momentum equation is then

supplemented with the new boundary conditions, for x ∈ ∂Λn

[
2µ∇sUk+1 −

(
P k − ∆tk

∆tk+1

β1

βk0
Ψk − ∆tk−1

∆tk+1

β2

βk−1
0

Ψk−1

)
I + α0

(
Uk+1 − Uk

∆tk+1

)]
·ν = fν .

(4.31)

We recommend the paper [47] for further details on this method in which they also

prove that with these modification for open boundary conditions, we obtain the optimal

order convergence rates:

U Ψ
∥∥(u− U)∆t

∥∥
`∞(L2(Λ)d)

∥∥(u− U)∆t

∥∥
`∞(H1(Λ)d)

∥∥(p− P)∆t

∥∥
`∞(L2(Λ))

Natural = f∂Λ Natural = 0 ∆t2 ∆t3/2 ∆t3/2

4.4 Additional stabilization techniques

It is necessary to add some consistency and stabilization terms to the model in or-

der to obtain the full convergence rates and maintain stability in various circumstances.

For instance, this fractional step algorithm works well for small Reynolds number but

begins to break down when we are in higher Reynolds number regimes losing the near

incompressible-ness of the velocity. Likewise when the convection term dominates the

diffusion term in our flow, we behave more like a hyperbolic system and stabilization

is necessary. We implement a grad-div stabilization and a Streamlined Upwind/ Petrov-

Galerkin (SUPG) stabilization to deal with each of these deficiencies as described below.

124

4.4.1 Consistent transport term for unconditional stability

We rewrite the convection term

u · ∇u −→ u · ∇u +
1

2
(div u) u

which is simply adding a consistent term, since at the continuous level (not necessarily

discretely) we have div u = 0. This gives us a skew symmetric formulation of the convec-

tion term and allows us to obtain unconditional stability for our time splitting scheme as

shown in [45] and later [51].

In our semi-implicit advection case when solving for the time step tk+1, we use the ex-

trapolated velocity term, U∗ and the as of yet unknown velocity term Uk+1 in the following

manner:

U∗ · ∇Uk+1 −→ U∗ · ∇Uk+1 +
1

2
(div U∗) Uk+1. (4.32)

4.4.2 Grad-div stabilization for high Reynolds number

The incremental pressure technique as described above has a deficiency that our veloc-

ity is the incremental velocity which is not divergence free. Recall that we have dropped

the tilde notation starting from Section 4.2.3 to the present for simplicity, but using the pre-

vious notation we have div ũk 6= 0. This deficiency is particularly true when we have high

Reynolds number flows, where the Reynolds number,Re = ρV L
µ

with L the characteristic

length scale and V the characteristic velocity scale, is approximated for x ∈ K ∈ T k+1 by

Rek+1(x) =
ρk+1(x)

∥∥Uk+1
∥∥
L∞(K)

(hK/p)

µk+1(x)
. (4.33)

125

The characteristic Reynolds number is then the maximum of all local Reynolds numbers.

To resolve this issue of divergence not being 0, we add a consistent grad-div penalty term

−∇
(
αk+1 div Uk+1

)
(4.34)

to the left hand side of momentum equation which forces the divergence of velocity to 0

with scalar coefficient αk+1 > 0. Let αD > 0, be a user defined constant, then for each

K ∈ T k+1, define

αk+1(x)
∣∣
K

:= αD
(
µk+1(x) + ρk+1(x)(hK/p)‖U∗‖L∞(K)

)
= αDµ

k+1(x)
[
1 +Rek+1(x)

]
.

With this coefficient, our penalty term matches the units of the momentum equation and

scales with the local Reynolds number. The discrete weak term we add to the left hand

side of the momentum equation is

+

∫
Λ

αk+1
(
div Uk+1

)
(div V) dx. (4.35)

4.4.3 Stabilization with streamlined upwind / Petrov Galerkin (SUPG) scheme

Our system needs some stabilization especially when we are in a convection dominated

flow. We apply the SUPG technique introduced by Brooks and Hughes in 1982 in [52].

A decent review of the work that has been done in SUPG since then is given by Fries in

[53]. We will define concepts in abstract at first and then apply the theory to our specific

Navier-Stokes problem:

Given an abstract differential equation Lu = f, the standard approach to solving this in

the Galerkin finite element framework is to solve for u ∈ V such that for all test functions,

126

w ∈ V0 we have ∫
Λ

w · (Lu− f) dx = 0. (4.36)

The SUPG scheme adds a stabilizing upwind flow to this system by perturbing the test

function with an application of the antisymmetric part of the operator L, denoted by La.

Thus for our SUPG problem, we are solving

∫
Λ

(w + τLaw) · (Lu− f) dx = 0. (4.37)

Note that since we are using piecewise polynomials on our mesh, we only have C0(Λ)

globally, where as we have higher smoothness on the interior of each mesh element. Thus

in order to avoid applying the differential operator to the edges of elements, where smooth-

ness is not guaranteed, we only actually apply the La to the interior of elements

∫
Λ

w · (Lu− f) dx +
∑
K∈T

∫
K

(τLaw) · (Lu− f) dx = 0. (4.38)

In order to keep consistency of units in this system, we must have the units of τ inversely

proportional to the units of La. We will discuss this more once we have the application to

the Navier-Stokes system.

4.4.4 SUPG scheme for time-dependent incompressible Navier-Stokes

In our case, the differential operator is

L(u, p) = ρu∗ · ∇u−∇ · (2µ∇su)) +∇p (4.39)

and so the antisymmetric part of the operator is simply the convection term

La = ρ
du
dt

+ ρu∗ · ∇ (4.40)

127

which has units (leaving density as itself and using V = L/T)

[La] =
ρV

L
=
ρ

T
. (4.41)

Remark. We will drop the time derivative part since in reality the SUPG scheme is only

designed for stationary problems. There is some evidence but no proof that this will work

in our time dependent case as well. It is commonly applied in this manner and we make

no justification herein for it’s success or failure in this case. We note that in this case our

addition is not consistent and we may only get a first order rate. A more appropriate choice

would be to use an entropy viscosity stabilization approach as referenced in Chapter 2. end

Remark.

We desire that our parameter τ should have units T
ρ

. We follow the scheme referenced

by Coupez in [54] and define element-wise for each K ∈ T k+1

τ k+1
∣∣
K

=

((
2ρk+1

∆t

)2

+

(
2ρk+1‖u∗‖L∞(K)

(hK/p)

)2

+

(
4µk+1

(hK/p)2

)2
)−1/2

(4.42)

where we recall that µk+1 is the dynamic viscosity at time tk+1. Note that this allows

a switch between three different type of dominated flows. If we have time dependent

dominated flows, the first part will be large and we will have an order hm−1∆t stabilization

term where m is the order of the approximation of
∫

Λ
w · (Lu− f) dx = 0. By our CFL

condition, this is consistent and we have an order hm scheme. For convection dominated

flows, the second term will be large and we will create an order hm stabilization term. For

diffusion dominated flows, the third term will dominate and the stabilization wasn’t really

needed in the first place. The stabilization term from the SUPG will be order hm+1. Thus

the standard hm rate will still show up. Finally, we note that the last term can be rewritten

128

using the Reynolds number, defined in equation (4.33), as

4µk+1

(hK/p)2
=

4ρk+1‖u∗‖L∞(K)

Rek+1(hK/p)
.

This shows a little better why we consider the last term to be diffusion dominated flow

since for small Reynolds numbers, this is large. Additionally in this form it is simple to

see that we indeed have the consistent dimensional scaling between all three terms.

Remark. Note that generalizing the squared and square root parts of the above definition

to use a parameter r ≥ 2 could lead to a sharper transition between the different type

of dominated flows. There are some papers for instance, [55], that discuss using higher

values of r in

τ k+1
∣∣
K

=

((
2ρk+1

∆t

)r
+

(
2ρk+1‖u∗‖L∞(K)

(hK/p)

)r
+

(
4µk+1

(hK/p)2

)r)−1/r

. (4.43)

We will stick to using r = 2 for now. end Remark.

In summary and using the discrete terms now, we add the following SUPG terms to

the left and right sides of the momentum equation:

∫
Λ

ρk+1

(
β0

∆tk+1
Uk+1 − β1

∆tk+1
Uk − β2

∆tk+1
Uk−1

)
·W∗dx

+

∫
Λ

ρk+1U∗ · ∇Uk+1 ·W∗dx−
∫

Λ

∇ ·
(
2µ∇sUk+1

)
·W∗dx

= −
∫

Λ

∇
(
P k +

∆tk

∆tk+1

β1

β0

Ψk +
∆tk−1

∆tk+1

β2

β0

Ψk−1

)
·W∗dx

+

∫
Λ

(
ρk+1fk+1 + gk+1

)
·W∗dx.

(4.44)

where V ∈ V0
(
T k+1

)
is a standard test function so W∗ = τ k+1U∗ · ∇W is the SUPG test

function.

129

Note that the divergence of the symmetric gradient can be broken into two terms

∇ ·
(
2∇sUk+1

)
= ∇ ·

(
∇Uk+1

)
+∇ ·

((
∇Uk+1

)T)
= ∆Uk+1 +∇ div Uk+1 (4.45)

so that for variable viscosity, we compute

−
∫

Λ

∇ ·
(
2µk+1∇sUk+1

)
·W∗dx = −

∫
Λ

(
2∇µk+1 · ∇sUk+1

)
·W∗dx

−
∫

Λ

µk+1∆Uk+1 ·W∗dx (4.46)

−
∫

Λ

µk+1∇
(
div Uk+1

)
·W∗dx.

There may be cases where treating viscosity µ as constant is valid in which case the first

term is not important. On a practical level, both the Laplacian and the grad-div terms of

equation (4.46) are available from the Hessian of our shape functions. Additionally since

we are typically using piecewise quadratics for our velocity space, these terms are in fact

cell-wise constant. Thus the discrete SUPG stabilization scheme is computable and can

reasonably be included without too much extra work.

4.5 Numerical results

The setup for the time dependent test of the Navier-Stokes algorithm above is as fol-

lows:

We let ρ = µ = 1 for simplicity and set the exact velocity,

u =

 sin(t+ x) sin(t+ y)

cos(t+ x) cos(t+ y)

130

and the exact pressure to be

p = sin(t+ x− y).

Then by the method of manufactured solutions, the right hand side is f = 0 and

g = ut + u · ∇u− 2∇ · (∇su) +∇p

=

cos(t+ x) [sin(t+ y) + sin(t+ x)] + sin(t+ x) [cos(t+ y) + 2 sin(t+ y)] + cos(t+ x− y)

− cos(t+ y) [sin(t+ x) + sin(t+ y)]− cos(t+ x) [sin(t+ y)− 2 cos(t+ y)]− cos(t+ x− y)

By applying exact Dirichlet boundary conditions to the velocity model and Neumann

boundary conditions to the pressure correction and then matching the average pressure

value to the average exact pressure value, we obtain the results displayed in Table 4.1,

Table 4.2, Table 4.3 and Table 4.4 using the Standard and Rotational models with BDF1

and BDF2 time derivatives.

131

Table 4.1: Convergence rates for the standard algorithm with BDF1 time derivative, com-
puted with 10 MPI processors

cycle ∆t n_timestep h_min n_dofs ‖v‖`2L2 rate ‖v‖`∞L2 rate
0 5.0000e-02 20 7.8125e-03 132098 3.0249e-04 - 5.1161e-04 -
1 2.5000e-02 40 7.8125e-03 132098 9.2815e-05 1.7045 1.5679e-04 1.7062
2 1.2500e-02 80 7.8125e-03 132098 2.4947e-05 1.8955 4.1680e-05 1.9114
3 6.2500e-03 160 7.8125e-03 132098 6.6799e-06 1.9010 1.0259e-05 2.0224
4 3.1250e-03 320 7.8125e-03 132098 2.4427e-06 1.4514 2.7063e-06 1.9225
5 1.5625e-03 640 7.8125e-03 132098 1.2204e-06 1.0011 1.4747e-06 0.8759
6 7.8125e-04 1280 7.8125e-03 132098 6.4451e-07 0.9211 7.8220e-07 0.9148

cycle ∆t n_timestep h_min n_dofs ‖v‖`2H1 rate ‖p‖`2L2 rate
0 5.0000e-02 20 7.8125e-03 132098 3.2042e-03 - 1.9865e-02 -
1 2.5000e-02 40 7.8125e-03 132098 1.0975e-03 1.5457 7.4017e-03 1.4243
2 1.2500e-02 80 7.8125e-03 132098 3.9443e-04 1.4764 3.0826e-03 1.2637
3 6.2500e-03 160 7.8125e-03 132098 1.4617e-04 1.4322 1.4506e-03 1.0875
4 3.1250e-03 320 7.8125e-03 132098 5.6648e-05 1.3675 7.2170e-04 1.0072
5 1.5625e-03 640 7.8125e-03 132098 2.3158e-05 1.2905 3.6330e-04 0.9902
6 7.8125e-04 1280 7.8125e-03 132098 9.6175e-06 1.2678 1.8222e-04 0.9955

Table 4.2: Convergence rates for the rotational algorithm with BDF1 time derivative, com-
puted with 10 MPI processors

cycle ∆t n_timestep h_min n_dofs ‖v‖`2L2 rate ‖v‖`∞L2 rate
0 5.0000e-02 20 7.8125e-03 132098 1.5336e-04 - 2.3948e-04 -
1 2.5000e-02 40 7.8125e-03 132098 4.4007e-05 1.8011 7.4673e-05 1.6813
2 1.2500e-02 80 7.8125e-03 132098 1.2109e-05 1.8617 2.1733e-05 1.7807
3 6.2500e-03 160 7.8125e-03 132098 4.2189e-06 1.5211 7.1327e-06 1.6074
4 3.1250e-03 320 7.8125e-03 132098 2.1501e-06 0.9724 2.6038e-06 1.4539
5 1.5625e-03 640 7.8125e-03 132098 1.1941e-06 0.8485 1.4650e-06 0.8297
6 7.8125e-04 1280 7.8125e-03 132098 6.4221e-07 0.8948 7.8124e-07 0.9071

cycle ∆t n_timestep h_min n_dofs ‖v‖`2H1 rate ‖p‖`2L2 rate
0 5.0000e-02 20 7.8125e-03 132098 1.6426e-03 - 8.9586e-03 -
1 2.5000e-02 40 7.8125e-03 132098 4.8021e-04 1.7743 4.5006e-03 0.9931
2 1.2500e-02 80 7.8125e-03 132098 1.4462e-04 1.7314 2.4439e-03 0.8809
3 6.2500e-03 160 7.8125e-03 132098 5.6600e-05 1.3534 1.3198e-03 0.8889
4 3.1250e-03 320 7.8125e-03 132098 2.7976e-05 1.0166 6.9343e-04 0.9285
5 1.5625e-03 640 7.8125e-03 132098 1.4569e-05 0.9413 3.5665e-04 0.9593
6 7.8125e-04 1280 7.8125e-03 132098 7.5333e-06 0.9515 1.8107e-04 0.9780

132

Table 4.3: Convergence rates for the standard algorithm with BDF2 time derivative, com-
puted with 2 MPI processors

cycle ∆t n_timestep h_min n_dofs ‖v‖`2L2 rate ‖v‖`∞L2 rate
0 5.0000e-02 20 7.8125e-03 132098 1.0633e-03 - 1.4991e-03 -
1 2.5000e-02 40 7.8125e-03 132098 2.9229e-04 1.8630 3.9159e-04 1.9367
2 1.2500e-02 80 7.8125e-03 132098 7.5670e-05 1.9496 9.9499e-05 1.9766
3 6.2500e-03 160 7.8125e-03 132098 1.9182e-05 1.9800 2.5056e-05 1.9895
4 3.1250e-03 320 7.8125e-03 132098 4.8237e-06 1.9916 6.2882e-06 1.9945
5 1.5625e-03 640 7.8125e-03 132098 1.2094e-06 1.9959 1.5757e-06 1.9966
6 7.8125e-04 1280 7.8125e-03 132098 3.0272e-07 1.9982 3.9428e-07 1.9987

cycle ∆t n_timestep h_min n_dofs ‖v‖`2H1 rate ‖p‖`2L2 rate
0 5.0000e-02 20 7.8125e-03 132098 6.8439e-03 - 1.7445e-02 -
1 2.5000e-02 40 7.8125e-03 132098 2.3000e-03 1.5732 5.9398e-03 1.5544
2 1.2500e-02 80 7.8125e-03 132098 7.5204e-04 1.6127 1.9429e-03 1.6122
3 6.2500e-03 160 7.8125e-03 132098 2.4854e-04 1.5973 6.3610e-04 1.6109
4 3.1250e-03 320 7.8125e-03 132098 8.4699e-05 1.5531 2.1361e-04 1.5743
5 1.5625e-03 640 7.8125e-03 132098 2.9184e-05 1.5372 7.2709e-05 1.5548
6 7.8125e-04 1280 7.8125e-03 132098 8.9768e-06 1.7009 2.2398e-05 1.6988

Table 4.4: Convergence rates for the rotational algorithm with BDF2 time derivative, com-
puted with 2 MPI processors

cycle ∆t n_timestep h_min n_dofs ‖v‖`2L2 rate ‖v‖`∞L2 rate
0 5.0000e-02 20 7.8125e-03 132098 7.4772e-04 - 1.0446e-03 -
1 2.5000e-02 40 7.8125e-03 132098 2.2789e-04 1.7142 3.1006e-04 1.7523
2 1.2500e-02 80 7.8125e-03 132098 6.3852e-05 1.8355 8.5487e-05 1.8588
3 6.2500e-03 160 7.8125e-03 132098 1.7082e-05 1.9022 2.2657e-05 1.9158
4 3.1250e-03 320 7.8125e-03 132098 4.4525e-06 1.9398 5.8728e-06 1.9478
5 1.5625e-03 640 7.8125e-03 132098 1.1432e-06 1.9615 1.5025e-06 1.9667
6 7.8125e-04 1280 7.8125e-03 132098 2.9087e-07 1.9746 3.8137e-07 1.9781

cycle ∆t n_timestep h_min n_dofs ‖v‖`2H1 rate ‖p‖`2L2 rate
0 5.0000e-02 20 7.8125e-03 132098 4.3754e-03 - 8.5353e-03 -
1 2.5000e-02 40 7.8125e-03 132098 1.4180e-03 1.6255 2.8743e-03 1.5702
2 1.2500e-02 80 7.8125e-03 132098 4.2590e-04 1.7353 8.9376e-04 1.6852
3 6.2500e-03 160 7.8125e-03 132098 1.2324e-04 1.7891 2.7020e-04 1.7258
4 3.1250e-03 320 7.8125e-03 132098 3.5051e-05 1.8139 8.1689e-05 1.7258
5 1.5625e-03 640 7.8125e-03 132098 9.9869e-06 1.8114 2.5180e-05 1.6979
6 7.8125e-04 1280 7.8125e-03 132098 3.1416e-06 1.6685 8.1553e-06 1.6265

133

5. ENERGY FLOW

We are interested in coupling various physics that live on the interface Γ to the two-

phase flow system of Chapter 4. In particular, we analyse the minimization of an energy

on the interface Γ,

e(Γ) =

∫
Γ

G(x, h)dx

for someG(x, h) a function of space and total curvature, where the forces from minimizing

this energy are balanced with the forces from the bulk Navier-Stokes system.

Remark. This approach encompasses a number of models based on the choice of G. We

will focus on three choices for G in this work but there are others that could be used.

The first is capillarity forces (or surface tension), with G(x, h) = σ, the surface tension

coefficient. This will be treated in more detail in Chapter 6. The second is the so called

Willmore energy G(x, h) = 1
2
keh

2 with ke ∈ R, the bending modulus. Thus we will have

Willmore flow with constant volume constraint enforced by the incompressible Navier-

Stokes flow which will be treated in Chapter 7. Finally in Chapter 8 we will describe the

Canham-Helfrich flow. We will define the volume constraint functional using the diver-

gence theorem to be

ev(Γ) = −1

d

∫
Γ

x · ndx− V0, (5.1)

and the surface area constraint functional

esa(Γ) =

∫
Γ

dx− A0, (5.2)

134

and the Willmore energy functional

ew(Γ) =
ke
2

∫
Γ

h2dx. (5.3)

Introducing the Lagrange multipliers λsa, λv ∈ R which enforce the constraints to be zero,

the Canham-Helfrich energy to be minimized is then

e(Γ) + λsaesa(Γ) + λvev(Γ). (5.4)

Now because of the coupling with incompressible Navier-Stokes flow, the volume con-

straint is already being enforced by the pressure, p(t, x) at the continuous level. However

we will see that our discrete model does not produce a perfect volume conservation so

keeping it in the system is necessary as seen in Figure 7.15. Again for the Canham-Helfrich

we will use G(x, h) = 1
2
keh

2 but we will add a method for enforcing the constraints.

Other types of flows not treated here include spatially varying surface tension co-

efficients which induces the Marangoni effect or for modelling wetting as in [56], or

Canham-Helfrich flow with a given spontaneous curvature, c0(x), modelled by G(x, h) =

1
2
ke(h− c0)2. end Remark.

We couple the energy variation with the two-phase flow through the stress tensor jump

on Γ. We will use the notation σ = 2µ∇su− pI to represent the Cauchy stress tensor on

Γ.

Recall that n is the outer normal to Γ so using the projector I − n ⊗ n to project onto

the tangential space, we have

σ · n = (σ · n)(n⊗ n) + (σ · n)(I − n⊗ n) (5.5)

= (nTσn)n + (σ · n)(I − n⊗ n). (5.6)

135

Now, making the assumption that stress jumps across Γ are only in the normal direction,

that is

J(σ · n)(I − n⊗ n)K = 0 (5.7)

on Γ, and that the velocity, u, is continuous across Γ, ie

JuK = 0, (5.8)

we have

∫
Γ

JσK · n · vdx =

∫
Γ

Jσ · nK · vdx

=

∫
Γ

J(σ · n)(n⊗ n) + (σ · n)(I − n⊗ n)K · vdx

=

∫
Γ

q(
nTσn

)
n
y
· vdx

=

∫
Γ

q(
nTσn

)y
(n · v) dx.

If we denote the variation of the energy e(Γ) in the direction of velocity, v, to be ∂e(Γ)(v)

then we will balance the forces from the normal component of the jump tensor with the

negative energy variation in the sense that

∫
Γ

JσK · n · vdx =

∫
Γ

q(
nTσn

)y
(n · v) dx = −∂e (Γ) ((n · v) n).

where we only vary the energy in the normal velocity direction, (n · v)n of v. From the

gradient flow perspective this contributes a force that will minimize the energy, e(Γ), the

most along the normal component of the test velocity field, (n · v)n. This couples the

physics of energy minimization to the bulk fluid flow without any forces tangential to Γ.

136

In applications this corresponds to inextensible surfaces.

Just like the traditional gradient flow algorithms, the flow under this coupling may

find surface corresponding to a global minimizer of the energy, but in general we will

find a local minimum. The velocity field balances the forces from total energy consisting

of kinetic energy, diffusive energy, the interfacial energy, e(Γ) and any other external or

potential sources of energy, like gravity. The minimum of total energy is achievd when

u = 0. Seifert gives an analysis in [74] of the relationship between the shapes of physi-

cal surfaces with minimal Canham-Helfrich energy and various parameters including the

reduced volume (defined in equation 8.5) related to the ratio between surface area and

volume of the surface.

One of the difficulties of the energy, e(Γ), is that it requires the ability to integrate along

Γ at each time step. This is possible if we parameterize Γ and track it’s movement, but

simplicity, quality of mesh and changes in topology make this a less desirable approach.

Instead, we track Γ implicitly as a certain level set of a function. We use the level set

method as described in Chapter 2 with level set function ϕ and Γ = {x | ϕ(x) = 0}.

Recalling from Chapter 3 that ε ∼ h
3/4
min, our mesh is a adaptively graded rectangular

(hexahedral) unfitted mesh with a fully refined band in an ω = cε neighborhood of Γ

where c > 1. We will use the smeared Dirac delta function, δε(ϕ)|∇ϕ| described in

Chapter 3 to introduce the approximate energy function

E(ϕ) =

∫
Λ

G(x, h)δε(ϕ)|∇ϕ|dx (5.9)

where h and G are now extended off of Γ to a band where the support of δε(ϕ) is located.

Remark. In fact we will not in general distinguish between the terms defined only on Γ

and those extended to the bulk domain Λ. However, when needed to aide in understanding

and when we use the function ϕ for the extension, we will use a subscript ϕ. end Remark.

137

For our level set function, ϕ, we use the convention that ϕ > 0 inside the boundary

Γ and ϕ < 0 outside. Likewise we have the convention of n being the outer unit normal

vector, so the extension of the normal is defined as

n = nϕ = − ∇ϕ|∇ϕ| . (5.10)

Similarly, we use the convention that the sphere has positive total curvature, ie. for a

sphere of radiusR embedded in Rd, the total curvature is h = d−1
R

and the Gauss curvature

is κ = 1
R2 . This corresponds to the convention that

h = hϕ = divϕ (nϕ) = div (nϕ) = div

(
− ∇ϕ|∇ϕ|

)
. (5.11)

We have shown in Chapter 3 that

lim
ε→0

QuadΛ (fδε(ϕ)|∇ϕ|) =

∫
Γ

f(x)dx

with convergence rate O(h
3/2
min) when ε ∼ h

3/4
min for f ∈ W 6,∞(Λ) and so for a smooth Γ

and mesh size, hmin small enough to resolve the curvature of Γ we have

lim
ε→0

E(ϕ) = e(Γ).

Thus we replace e(Γ) with the approximate energy E(ϕ) in our coupled model. This gives

a consistent extension of our energy to Λ and allows us to do all our computations using

the bulk finite element system.

Now, if we vary energy function, e (Γ), by a velocity field v, then how should we vary

our bulk energy functional? We turn to the level set equation to relate Γ and ϕ. For motion

138

of ϕ by a velocity field v, and defining the normal velocity, vn = v · nϕ, we have

ϕt = −v · ∇ϕ = v ·
(
− ∇ϕ|∇ϕ|

)
|∇ϕ| = v · nϕ|∇ϕ| = vn|∇ϕ|. (5.12)

So varying Γ by velocity v is the same as varying ϕ by vn|∇ϕ|.

We will compute g ∈ L2(Λ), a representative for the action of −∂E(ϕ), the negative

Gâteaux derivative of energy functional E(ϕ), with θ ∈ H1(Λ), ie

∫
Λ

g(x)θ|∇ϕ|dx = −∂E(ϕ) (θ|∇ϕ|) .

Thus the force balance equation becomes

∫
Γ

J2µ∇su− pIK · n · vdx = −∂E(ϕ) (v · nϕ|∇ϕ|) =

∫
Λ

g(x)v · nϕ|∇ϕ|dx. (5.13)

We will derive in Section 5.2 the first variation of energyE(ϕ) in the direction θ|∇ϕ|. This

will be the coupled system to the Navier-Stokes equation. We will go into more detail on

the discretization and linearization of these terms with the Navier-Stokes sytem for each

of the applications: surface tension in Chapter 6, Willmore flow in Chapter 7 and Canham-

Helfrich flow in Chapter 8. The main result of this Chapter is the following theorem which

will be restated and proved in Section 5.2.

Theorem 5.2.1. Given the approximate energy functional

E(ϕ) =

∫
Λ

G(x, hϕ)δε(ϕ)|∇ϕ|dx

where ϕ is the level set function for a smooth closed surface Γ, hϕ, the total curvature

defined by equation (5.11), and δε(ϕ)|∇ϕ|, the approximate Dirac delta function of The-

orem 3.3.1, then for any smooth function θ, the variation of the energy in the direction

139

θ|∇ϕ| is

∂E(ϕ)(θ|∇ϕ|) =

∫
Λ

div

[
Gnϕ −

Pϕ∇(∂2G|∇ϕ|)
|∇ϕ|

]
θδε(ϕ)|∇ϕ|dx

=

∫
Λ

[
∇G · nϕθ +Ghϕθ +

Pϕ∇(∂2G|∇ϕ|)
|∇ϕ| · ∇(θ|∇ϕ|)

|∇ϕ|

]
δε(ϕ)|∇ϕ|dx

where nϕ = − ∇ϕ|∇ϕ| is the extended outward unit normal and Pϕ = I−nϕ⊗nϕ = I−nϕnTϕ

is the projector onto the tangent space to level sets of ϕ, in particular tangent to the

surface, Γ = {x | ϕ = 0} and ∂2G is the partial derivative of G with respect to total

curvature, hϕ, the second argument.

Remark. The formulation derived does not allow for tangential deformations along Γ. In

terms of the coupled model with the velocity, this implies that u|Γ = (u|Γ · n) n. There are

other approaches to coupling which can handle more general velocity coupling, mainly the

method of virtual power as is common in some mechanical engineering literature and in

the phase field method communities. The two approaches (ours and the method of virtual

power) end up with a similar result but come from different assumptions and approaches.

We will discuss the similarities for this general energy functional with a method of virtual

power approach in Section 5.4. end Remark.

5.1 Preliminary computations and some useful terms

Before we can proved the Theorem 5.2.1, we must introduce the notation and prove

some useful equalities in the form of Lemma 5.1.2 and 5.1.3. We finish off with Lemma 5.1.4

which relates the resulting energy variation to the true energy variation. All together, these

will establish the relationship between the terms that arise in our bulk formulation and the

terms that arise from shape calculus on a manifold.

Recall that we defined the extended normal, n = − ∇ϕ|∇ϕ| and curvature h = div(n) in

equations (5.10) and (5.11).

140

We will first compute some terms related to the first variation of our energy functions,

then we compute some identities that will aid us in simplifications of the model and in

proving stability.

Lemma 5.1.1. Given u, v ∈ Rd and the tangential projector, Pϕ = I − nϕ ⊗ nϕ (=

I − nϕnTϕ), we have

(Pϕu) · (Pϕv) = (Pϕu) · v = u · (Pϕv) (5.14)

Proof. First note that

P T
ϕ =

(
I − nϕnTϕ

)T
= I − nϕnTϕ = Pϕ

and using nTϕnϕ = nϕ · nϕ = 1

P 2
ϕ = (I − nϕnTϕ)(I − nϕnTϕ) = I − 2nϕnTϕ + nϕnTϕnϕnTϕ = I − nϕnTϕ = Pϕ

so that

(Pϕu) · (Pϕv) = uTP T
ϕ Pϕv = uTPϕv

= (Pϕu) · v

= u · (Pϕv)

as desired.

We will denote the extended tangential projector using ϕ for th extension alternately

by P , Pϕ or P [ϕ] as needed for understanding.

When we are dealing only with functions defined on Γ, we will denote the differential

141

operators along the surface Γ (tangential to Γ) with a subscript Γ. The standard ones are the

tangential gradient,∇Γ, tangential divergence, divΓ, and the Laplace-Beltrami operator or

tangential Laplacian, ∆Γ = divΓ(∇Γ). For a scalar function v : Γ → R which admits a

C1 extension, ṽ, to a tubular neighborhood of Γ, the tangential gradient is

∇Γv := ∇ṽ|Γ − (n · ∇ṽ|Γ) n = P ∇ṽ|Γ . (5.15)

The tangential gradient can also be defined for a vector function with gradient transpose

applied to each component so that the i-th row is the transpose of the gradient of the i-th

component,

∇Γv = P ∇v|Γ . (5.16)

Likewise the tangential divergence for a vector field v : Γ → Rd which admits a C1

extension ṽ to a tubular neighborhood around Γ is

divΓ v = div(ṽ)|Γ − n · (∇ṽ|Γ · n) = Trace (∇Γv) (5.17)

Finally, the tangential laplacian can be written for v : Γ→ R allowing a C2 extension

and with a constant in normal direction extension, as

∆Γv = divΓ(∇Γv) = ∆ṽ|Γ − n ·
(
D2ṽ

∣∣
Γ

n
)
− (∇ṽ|Γ · n) div(ñ). (5.18)

These are standard elements in any book on surface calculus, for instance [57]. However,

once we change over to using an implicit level set function, ϕ, and extend to narrow bands

around Γ we in fact have many implicit surfaces at once and so we change our notation to

reflect this. We will instead use a subscript ϕ to denote the tangential differential operators

142

on the band as in∇ϕ, divϕ and ∆ϕ = divϕ(∇ϕ). To be specific, given the levelset function,

ϕ our implicit function, scalar function v : Λ→ R and extended normal nϕ, then

∇ϕv := ∇v − (nϕ · ∇v) nϕ = Pϕ∇v. (5.19)

Likewise the tangential divergence for a vector function v : Λ→ Rd is

divϕ v = div(v)− nTϕ(∇v)nϕ = Trace (∇ϕv) = Trace (Pϕ∇v)

=
1

|∇ϕ| div(v|∇ϕ|) (5.20)

In addition the tangential laplacian can be written as

∆ϕv = divϕ(∇ϕv) = div(Pϕ∇v)− nTϕ∇(Pϕ∇v)nϕ

=
1

|∇ϕ| div (Pϕ∇v|∇ϕ|) . (5.21)

We are now ready to do some calculations in preparation for the calculation of varia-

tions of our approximate energy functional.

Lemma 5.1.2. The following variational terms hold using the extended normal n = nϕ =

− ∇ϕ|∇ϕ| , the tangential projector Pϕ = I − nϕ ⊗ nϕ (= I − nϕnTϕ) with |∇ϕ| > 0 and

143

smooth scalar function, ψ:

d

dη
(|∇ϕ+ η∇ψ|)

∣∣∣∣
η=0

=
∇ϕ · ∇ψ
|∇ϕ| (5.22)

d

dη

(
|∇ϕ+ η∇ψ|−1)∣∣∣∣

η=0

= −∇ϕ · ∇ψ|∇ϕ|3 (5.23)

d

dη
(nϕ+ηψ)

∣∣∣∣
η=0

= −Pϕ∇ψ|∇ϕ| (5.24)

d

dη
(hϕ+ηψ)

∣∣∣∣
η=0

= div

(
−Pϕ∇ψ|∇ϕ|

)
(5.25)

d

dη
δε (ϕ+ ηψ)

∣∣∣∣
η=0

= δ′ε (ϕ)ψ (5.26)

Proof. Using |u| = √u · u, and the chain rule, we calculate

d

dη
(|∇ϕ+ η∇ψ|)

∣∣∣∣
η=0

=

(
d

dη

√
∇ϕ · ∇ϕ+ 2η∇ϕ · ∇ψ + η2∇ψ · ∇ψ

)∣∣∣∣
η=0

=
1

2

(2∇ϕ · ∇ψ + 2η∇ψ · ∇ψ)

|∇ϕ+ η∇ψ|

∣∣∣∣
η=0

=
∇ϕ · ∇ψ
|∇ϕ| .

We use this result with the chain rule to calculate

d

dη

(
|∇ϕ+ η∇ψ|−1)∣∣∣∣

η=0

= − |∇ϕ+ η∇ψ|−2 d

dη
(|∇ϕ+ η∇ψ|)

∣∣∣∣
η=0

= −∇ϕ · ∇ψ|∇ϕ|3 .

144

Again, we use this in combination with the product rule to obtain

d

dη
(nϕ+ηψ)

∣∣∣∣
η=0

=
d

dη

(
− ∇ϕ+ η∇ψ
|∇ϕ+ η∇ψ|

)∣∣∣∣
η=0

= − ∇ψ
|∇ϕ+ η∇ψ|

∣∣∣∣
η=0

− (∇ϕ+ η∇ψ)
d

dη

(
|∇ϕ+ η∇ψ|−1)∣∣∣∣

η=0

= − ∇ψ|∇ϕ| +∇ϕ∇ϕ · ∇ψ|∇ϕ|3

= − 1

|∇ϕ| (∇ψ − (nϕ · ∇ψ)nϕ)

= −Pϕ∇ψ|∇ϕ|

Next, we note that d
dη

can freely pass through the spatial div(·) operator, so that

d

dη
(hϕ+ηψ)

∣∣∣∣
η=0

=
d

dη
div (nϕ+ηψ)

∣∣∣∣
η=0

= div

(
d

dη
nϕ+ηψ

∣∣∣∣
η=0

)

= div

(
−Pϕ∇ψ|∇ϕ|

)
.

Finally we have

d

dη
δε (ϕ+ ηψ)

∣∣∣∣
η=0

= δ′ε (ϕ+ ηψ)|η=0 ψ

= δ′ε (ϕ)ψ

which ends our calculations.

Lemma 5.1.3. The following equalities hold for scalars u ∈ C2(Λ) and ϕ ∈ C4(Λ), where

ϕ is the level set function with |∇ϕ| > 0, nϕ = − ∇ϕ|∇ϕ| and Pϕ = I−nϕnTϕ (= I−nϕ⊗nϕ),

145

the tangential projector matrix:

∇ϕδε(ϕ) = Pϕ∇ (δε(ϕ)) = 0 (5.27)

∇ (|∇ϕ|) =
D2ϕ∇ϕ
|∇ϕ| (5.28)

∇
(
|∇ϕ|−1

)
= −D

2ϕ∇ϕ
|∇ϕ|3 (5.29)

In addition, we have the following relations concerning the gradient of the normal, Dnϕ,

where (Dnϕ)ij := ∂j(nϕ)i,

Dnϕ = −PϕD
2ϕ

|∇ϕ| (5.30)

Dnϕ = ∇ϕnϕ = Pϕ∇nϕ (5.31)

DnTϕnϕ = 0 (5.32)

∇ϕ (|∇ϕ|)
|∇ϕ| = Dnϕnϕ (5.33)

∇u · (Dnϕnϕ) = −nTϕ∇(Pϕ∇u)nϕ (5.34)

div(Dnϕnϕ) = ∇hϕ · nϕ +DnTϕ : Dnϕ. (5.35)

If in addition, ∇ϕ|∇ϕ| = ∇d, which is true in the case ϕ(x) = f(d(x)) where f(t) ∈ C2(R)

is the level set filter with f(0) = 0 and f ′(t) ≥ 0, then the following hold

DnTϕ = Dnϕ (5.36)

∇ϕ (|∇ϕ|) = Pϕ∇ (|∇ϕ|) = 0 (5.37)

∇hϕ · nϕ = −|∇ϕnϕ|2. (5.38)

Proof. To start with, we compute the surface gradient of the approximate Dirac measure

146

as

∇ϕδε(ϕ) = Pϕ∇ (δε(ϕ)) = Pϕδ
′
ε(ϕ)∇ϕ = δ′ε(ϕ)Pϕ∇ϕ = 0.

Next we compute

∇ (|∇ϕ|) = ∇
(√
∇ϕ · ∇ϕ

)
=
D2ϕ∇ϕ
|∇ϕ|

and

∇
(
|∇ϕ|−1

)
= −|∇ϕ|−2∇ (|∇ϕ|) = −D

2ϕ∇ϕ
|∇ϕ|3 .

Next we compute using Einstein notation and symmetry of D2ϕ (dropping the subscript

notation on n = nϕ for simplicity with the Einstein notation)

(Dnϕ)ij = ∂j(nϕ)i

= ∂j

(
− ∂iϕ

|∇ϕ|

)
= − ∂ijϕ|∇ϕ| − ∂iϕ∂j

(
|∇ϕ|−1

)
= − ∂ijϕ|∇ϕ| − ∂iϕ

∂jkϕ∂kϕ

|∇ϕ|3

= −
(
∂ijϕ

|∇ϕ| − nink
∂jkϕ

|∇ϕ|

)
= −

(
∂ijϕ

|∇ϕ| − nink
∂kjϕ

|∇ϕ|

)
= −(δik − nink)

∂kjϕ

|∇ϕ|

147

so that

Dnϕ = −PϕD
2ϕ

|∇ϕ| .

By Lemma 5.1.1, P 2
ϕ = Pϕ. Thus using equation (5.19) and recognizing the equivalent

notations,∇nϕ = Dnϕ, we have

∇ϕnϕ = Pϕ∇nϕ

= PϕDnϕ

= Pϕ

(
−PϕD

2ϕ

|∇ϕ|

)
= −PϕD

2ϕ

|∇ϕ|

= Dnϕ.

Differentiating |nϕ|2 = 1 we have 0 = ∂j(nini) = 2ni∂jni so that

DnTϕnϕ = 0.

In general, we don’t have thatDnϕ = DnTϕ orDnϕnϕ = 0 but in the case that ϕ = f(d(x))

and f ′ ≥ 0 then |∇ϕ| = f ′(d(x)) and nϕ = −∇d so that

(Dnϕ)ij = ∂j (ni)

= −∂jid

= −∂ijd

= ∂i (nj)

= (Dnϕ)ji.

148

Now, we also have

∇ϕ (|∇ϕ|)
|∇ϕ| =

Pϕ∇ (|∇ϕ|)
|∇ϕ| = Pϕ

(
D2ϕ · ∇ϕ
|∇ϕ|2

)
=

(
−PϕD

2ϕ

|∇ϕ|

)
·
(
− ∇ϕ|∇ϕ|

)
= Dnϕnϕ.

Thus, when nϕ = −∇d as in cases listed above, we have Dnϕ = DnTϕ so that

∇ϕ (|∇ϕ|) =
��

�
��*0

DnTϕnϕ|∇ϕ| = 0.

Next we have (again dropping the subscript on n = nϕ for simplicity with the Einstein

notation)

nTϕ∇ (Pϕ∇u) nϕ = ni∂j ((P∇u)i) nj

= ni∂j (∂iu− (nk∂ku)ni) nj

= ni (∂iju− ∂jnk∂kuni − nk∂jkuni − (nk∂ku)∂jni) nj

= ni∂ijunj −��
��*

1
(nini)∂jnk∂kunj −��

��*
1

(nini)nk∂jkunj −�����:
0

(∂jnini)(nk∂ku)nj

= −nj∂jnk∂ku

= −nTϕDnTϕ∇u,

so that recognizing these as scalars, we have

∇u · (Dnϕnϕ) = −nTϕ∇ (Pϕ∇u) nϕ.

149

Finally,

div(Dnϕnϕ) = ∂i (∂jninj)

= ∂ijninj + ∂jni∂inj

= ∂j(∂ini)nj +DnT : Dn

= ∂jhnj +DnT : Dn

= ∇hϕ · nϕ +DnTϕ : Dnϕ.

Thus if nϕ = −∇d as described above, then Dnϕ = DnTϕ and

div(Dnϕnϕ) = ∇hϕ · nϕ +Dnϕ : Dnϕ

= ∇hϕ · nϕ + |Dnϕ|2

= ∇hϕ · nϕ + |∇ϕnϕ|2,

and in particular div(Dnϕnϕ) = div(DnTϕnϕ) = 0 so that

∇hϕ · nϕ = −|∇ϕnϕ|2.

Now to finish out the useful lemmata, we show that the term we will get from our vari-

ation of energy, Theorem 5.2.1 can be simplified back to use some recognizable tangential

differential operators. In particular, this will help us relate our Willmore energy model to

one that would be derived using the ideas of the continuum surface force model. We will

discuss this more fully in Section 7.4.1.

150

Lemma 5.1.4. Given a functional G = G(x, hϕ) a function of space and curvature, then

− div

(
Pϕ∇(∂2G|∇ϕ|)

|∇ϕ|

)
+ div(Gnϕ) = −∆ϕ(∂2G) +Ghϕ − ∂2GDnTϕ : Dnϕ + ∂1G · nϕ

(5.39)

so that if nϕ = −∇d as in the case of our filtered level set, then DnTϕ = Dnϕ and we

obtain

− div

(
Pϕ∇(∂2G|∇ϕ|)

|∇ϕ|

)
+ div(Gnϕ) = −∆ϕ(∂2G) +Ghϕ − ∂2G|∇ϕnϕ|2 + ∂1G · nϕ.

(5.40)

where ∂2G is the derivative of G with respect to total curvature hϕ and ∂1G is the gradient

with respect to x of all terms that are not a function of curvature.

For example, the Willmore energy with spontaneous curvature, G(x, hϕ) = 1
2
(hϕ −

c0(x))2 has ∂2G = hϕ − c0 and ∂1G = −(hϕ − c0)∇c0.

Proof. We will use many of the results from Lemma 5.1.3. By equation (5.34) with u =

∂2G, we have −∇(∂2G)TDnϕnϕ = ∇(∂2G)TDnϕnϕ and by equation (5.35),

∂2G div(Dnϕnϕ) = ∂2G(∇hTϕnϕ +DnTϕ : Dnϕ).

151

Thus we have

− div

(
Pϕ∇(∂2G|∇ϕ|)

|∇ϕ|

)
= − div(Pϕ∇(∂2G))− div

(
∂2G

Pϕ∇(|∇ϕ|)
|∇ϕ|

)
= − div(∇ϕ(∂2G))− div(∂2GDnϕnϕ)

= − div(∇ϕ(∂2G))−∇(∂2G)TDnϕnϕ − ∂2G div(Dnϕnϕ)

= − div(∇ϕ(∂2G)) + nTϕ∇(Pϕ∇(∂2G))nϕ

− ∂2G(∇hTϕnϕ +DnTϕ : Dnϕ)

= −∆ϕ(∂2G)− ∂2G(∇hTϕnϕ +DnTϕ : Dnϕ).

Now, using∇G · nϕ = ∂1G · nϕ + ∂2G∇hTϕnϕ and hϕ = div nϕ then

div(Gnϕ) = ∇G · nϕ +G div(nϕ)

= ∂1G
Tnϕ + ∂2G∇hTϕnϕ +Ghϕ,

and so

− div

(
Pϕ∇(∂2G|∇ϕ|)

|∇ϕ|

)
+ div(Gnϕ) = −∆ϕ(∂2G)− ∂2G(∇hTϕnϕ +DnTϕ : Dnϕ)

+ ∂1G
Tnϕ + ∂2G∇hTϕnϕ +Ghϕ

= −∆ϕ(∂2G)− ∂2GDnTϕ : Dnϕ

+ ∂1G
Tnϕ +Ghϕ,

as desired. If in addition nϕ = −∇d as when we have our filtered level set, then DnTϕ =

Dnϕ and we reduce to

−∆ϕ(∂2G)− ∂2G|Dnϕ|2 + ∂1G
Tnϕ +Ghϕ.

152

5.2 Computing the variation of energy, ∂E(ϕ)(θ|∇ϕ|)

We now derive the first variation of our energy, E(ϕ), which will give us the gradient

flow terms in the coupling to the Navier-Stokes model. We will use many of the results of

Lemma 5.1.2 and other equalities from Section 5.1.

Theorem 5.2.1. Given the approximate energy functional

E(ϕ) =

∫
Λ

G(x, hϕ)δε(ϕ)|∇ϕ|dx

where ϕ is the level set function for a smooth closed surface Γ with Γ∩ ∂Λ = ∅ and ε > 0

suficiently small so that δε|∂Λ = 0. Given h = hϕ, the total curvature defined in equa-

tion (5.11) and δε(ϕ)|∇ϕ|, the approximate Dirac delta function defined in Theorem 3.3.1,

then for any smooth function, θ, the variation of the energy in the direction θ|∇ϕ| is

∂E(ϕ)(θ|∇ϕ|) =

∫
Λ

div

[
Gnϕ −

Pϕ∇(∂2G|∇ϕ|)
|∇ϕ|

]
θδε(ϕ)|∇ϕ|dx (5.41)

=

∫
Λ

[
∇G · nϕθ +Ghϕθ +

Pϕ∇(∂2G|∇ϕ|)
|∇ϕ| · ∇(θ|∇ϕ|)

|∇ϕ|

]
δε(ϕ)|∇ϕ|dx,

where nϕ is the outward unit normal and Pϕ = I − nϕ ⊗ nϕ = I − nϕnTϕ is the projector

onto the tangent space to the level sets of ϕ and in particular the tangent space to the

surface Γ = {x | ϕ = 0}. Finally, ∂2G is the partial derivative of G with respect to total

curvature, hϕ, the second argument.

In addition, when ϕ = f(d(x)) then by equation (5.37), Pϕ∇(|∇ϕ|) = 0 and the

153

energy variation reduces to

∂E(ϕ) (θ|∇ϕ|) =

∫
Λ

div [Gnϕ − Pϕ∇ (∂2G)] δε(ϕ)|∇ϕ|dx (5.42)

=

∫
Λ

[∇G · nϕθ +Ghϕθ + Pϕ∇(∂2G) · ∇θ] δε(ϕ)|∇ϕ|dx.

Proof. To begin, given θ smooth enough, we compute the Gâteaux derivative

∂E(ϕ) (θ|∇ϕ|) =
∂

∂η
E(ϕ+ ηθ|∇ϕ|)

∣∣∣∣
η=0

=

∫
Λ

∂

∂η
G
(
x, hϕ+ηθ|∇ϕ|

)∣∣∣∣
η=0

δε(ϕ)|∇ϕ|dx

+

∫
Λ

G(x, h)
∂

∂η
δε (ϕ+ ηθ|∇ϕ|)

∣∣∣∣
η=0

|∇ϕ|dx

+

∫
Λ

G(x, hϕ)δε(ϕ)
∂

∂η
|∇ϕ+ η∇ (θ|∇ϕ|)|

∣∣∣∣
η=0

dx

= I + II + III.

The remainder of the proof will be presented in a few Lemmata, Lemma 5.2.2 and

Lemma 5.2.3 which will respectively simplify the terms I and II + III to the desired

results. Finally we will put them together and discuss the simplifications in Lemma 5.2.4

when |∇ϕ| = 1.

Lemma 5.2.2. Under the assumption that δε(ϕ)|∂Λ = 0 as in Theorem 5.2.1, then the

term, I in the proof of Theorem 5.2.1 simplifies to

I =

∫
Λ

∂

∂η
G
(
x, hϕ+ηθ|∇ϕ|

)∣∣∣∣
η=0

δε(ϕ)|∇ϕ|dx

= −
∫

Λ

div

[
Pϕ∇(∂2G|∇ϕ|)

|∇ϕ|

]
θδε(ϕ)|∇ϕ|dx.

154

Proof. By the chain rule and Lemma 5.1.2 with ψ = θ|∇ϕ|, we obtain

∂

∂η
G
(
x, hϕ+ηθ|∇ϕ|

)∣∣∣∣
η=0

=
∂

∂h
G(x, hϕ)

d

dη
(hϕ+ηψ)

∣∣∣∣
η=0

= ∂2G div

(−Pϕ∇ (θ|∇ϕ|)
|∇ϕ|

)
.

Putting this into I and integrating by parts (using ν for the outer unit normal on ∂Λ), we

obtain

I = −
∫

Λ

∂2G div

(−P∇ (θ|∇ϕ|)
|∇ϕ|

)
δε(ϕ)|∇ϕ|dx

=

∫
Λ

∇ (∂2Gδε(ϕ)|∇ϕ|) · Pϕ∇ (θ|∇ϕ|)
|∇ϕ| dx

−
∫
∂Λ

∂2G��
��*0

δε(ϕ)|∇ϕ|Pϕ∇ (θ|∇ϕ|)
|∇ϕ| · νdx

=

∫
Λ

Pϕ∇ (∂2Gδε(ϕ)|∇ϕ|) · ∇ (θ|∇ϕ|)
|∇ϕ| dx

=

∫
Λ

Pϕ∇ (∂2G|∇ϕ|)
|∇ϕ| · ∇ (θ|∇ϕ|)

|∇ϕ| δε(ϕ)|∇ϕ|dx

since Pϕ∇ (δε(ϕ)) = 0 as per equation (5.27) of Lemma 5.1.3.

This stage is where we will normally end modifying term I in actual models, but

we will continue by integrating by parts once more to expose the θ term. Again using

P 2
ϕ = Pϕ, Pϕ∇δε(ϕ) = 0, and δε(ϕ) = 0 on ∂Λ we obtain

155

I = −
∫

Λ

div

(
Pϕ∇ (∂2G|∇ϕ|)

|∇ϕ| δε(ϕ)

)
θ|∇ϕ|dx

+

∫
∂Λ

Pϕ∇ (∂2G|∇ϕ|)
|∇ϕ| · ν��

��*0
δε(ϕ)θ|∇ϕ|dx

= −
∫

Λ

div

(
Pϕ∇ (∂2G|∇ϕ|)

|∇ϕ|

)
θδε(ϕ)|∇ϕ|dx

−
∫

Λ

Pϕ∇ (∂2G|∇ϕ|)
|∇ϕ| ·

���
���

�:0
Pϕ∇ (δε(ϕ))θ|∇ϕ|dx

= −
∫

Λ

div

(
Pϕ∇ (∂2G|∇ϕ|)

|∇ϕ|

)
θδε(ϕ)|∇ϕ|dx.

Lemma 5.2.3. Under the assumption that δε(ϕ)|∂Λ = 0 as in Theorem 5.2.1, then the sum

of terms, II + III in the proof of Theorem 5.2.1 simplifies to

II + III =

∫
Λ

G(x, h)
∂

∂η
δε (ϕ+ ηθ|∇ϕ|)

∣∣∣∣
η=0

|∇ϕ|dx

+

∫
Λ

G(x, hϕ)δε(ϕ)
∂

∂η
|∇ϕ+ η∇ (θ|∇ϕ|)|

∣∣∣∣
η=0

dx

=

∫
Λ

div [Gnϕ] θδε(ϕ)|∇ϕ|dx

=

∫
Λ

(∇G · nϕ +Ghϕ) θδε(ϕ)|∇ϕ|dx.

Proof. To simplify II and III , we use the chain rule and Lemma 5.1.2 again with ψ =

θ|∇ϕ| to get

∂

∂η
δε (ϕ+ ηθ|∇ϕ|)

∣∣∣∣
η=0

= δ′ε(ϕ)θ|∇ϕ|

= ∇δε(ϕ) · ∇ϕ|∇ϕ|θ

156

and

∂

∂η
|∇ϕ+ η∇ (θ|∇ϕ|)|

∣∣∣∣
η=0

=
∇ϕ · ∇ (θ|∇ϕ|)

|∇ϕ| .

Combining these results, recognizing nϕ = − ∇ϕ|∇ϕ| and integrating by parts we have

II + III =

∫
Λ

−G(x, hϕ)∇δε(ϕ) · nϕθ|∇ϕ|dx

−
∫

Λ

G(x, hϕ)δε(ϕ)nϕ · ∇ (θ|∇ϕ|) dx

= −
∫

Λ

G(x, hϕ)nϕ · ∇ (θδε(ϕ)|∇ϕ|) dx

=

∫
Λ

div (G(x, hϕ)nϕ) θδε(ϕ)|∇ϕ|dx

−
∫
∂Λ

G(x, hϕ)nϕ · νθ��
��*0

δε(ϕ)|∇ϕ|dx

=

∫
Λ

div (Gnϕ) θδε(ϕ)|∇ϕ|dx

where we have again used the assumption that δε(ϕ) = 0 on ∂Λ.

Lemma 5.2.4. Using the results of Lemma 5.2.2 and Lemma 5.2.3, the variation of energy

in the direction θ|∇ϕ| is

∂E(ϕ) (θ|∇ϕ|) =

∫
Λ

div

[
Gnϕ −

Pϕ∇ (∂2G|∇ϕ|)
|∇ϕ|

]
δε(ϕ)|∇ϕ|dx (5.43)

=

∫
Λ

[
∇G · nϕθ +Ghϕθ +

Pϕ∇(∂2G|∇ϕ|)
|∇ϕ| · ∇(θ|∇ϕ|)

|∇ϕ|

]
δε(ϕ)|∇ϕ|dx.

Again, when the levelset is ϕ = f(d(x)) then Pϕ∇(|∇ϕ|) = 0 and the energy variation

157

reduces to

∂E(ϕ) (θ|∇ϕ|) =

∫
Λ

div [Gnϕ − Pϕ∇ (∂2G)] δε(ϕ)|∇ϕ|dx (5.44)

=

∫
Λ

[∇G · nϕθ +Ghϕθ + Pϕ∇(∂2G) · ∇θ] δε(ϕ)|∇ϕ|dx,

thus completing the proof of Theorem 5.2.1.

Proof. We have

∂E(ϕ) (θ|∇ϕ|) = I + II + III

= −
∫

Λ

div

(
Pϕ∇ (∂2G|∇ϕ|)

|∇ϕ|

)
θδε(ϕ)|∇ϕ|dx

+

∫
Λ

div (Gnϕ) δε(ϕ)|∇ϕ|dx

=

∫
Λ

div

[
Gnϕ −

Pϕ∇ (∂2G|∇ϕ|)
|∇ϕ|

]
δε(ϕ)|∇ϕ|dx

as desired. If ϕ = f(d(x)), then in addition Pϕ∇(|∇ϕ|) = 0, that is that the level set

profile only varies in the normal direction. Under this additional assumption, then the

energy variation, specifically term I simplifies to

∂E(ϕ) (θ|∇ϕ|) =

∫
Λ

div [Gnϕ − Pϕ∇ (∂2G)] δε(ϕ)|∇ϕ|dx. (5.45)

A more useful weak form of this variation for computations comes from going back

to our intermediate solution for the term I of Lemma 5.2.2 before the final integration by

parts. We also apply the product rule to the other term and use that hϕ = div(nϕ). In that

158

case,

∂E(ϕ) (θ|∇ϕ|) =

∫
Λ

(∇G · nϕ +Ghϕ) θδε(ϕ)|∇ϕ|dx

+

∫
Λ

Pϕ∇ (∂2G|∇ϕ|)
|∇ϕ| · ∇ (θ|∇ϕ|)

|∇ϕ| δε(ϕ)|∇ϕ|dx

and when we make the assumption that ϕ(x) = f(d(x)), then Pϕ∇(|∇ϕ|) = 0 and this

simplifies to

∂E(ϕ) (θ|∇ϕ|) =

∫
Λ

[∇G · nϕθ +Ghϕθ + P∇(∂2G) · ∇θ] δε(ϕ)|∇ϕ|dx.

Remark. This simplification using ϕ(x) = f(d(x)) is the model will often be used in

implementation. We spend resources to push ϕ to the distance function, d on the band

of importance using the filter of equation (2.12). We have tested the full model and the

simplified model and find them to give equivalent evolutions and steady states when we

spend adequate resources to preserve the levelset shape. Thus we feel it reasonable to

make this assumption and use this simplified model. end Remark.

Remark. If Γ is close to or intersect the boundary ∂Λ then an extra term does not cancel

out which accounts for the contact physics. This is expected as there are always additional

terms for contact angle in surface tension or wetting problems (see [58]). We will not treat

these cases here as we are typically considering a closed vesicle in a large area and our

region with boundary is considered to be merely a snapshot of the larger region. If the

δε(ϕ) function gets close to the boundary but does not intersect it, it may lose accuracy

due to the area under the approximate delta function in the normal direction no longer

adding up to 1. Some work has been done by Tornberg in the Extensions section of [29]

to adjust δε to be consistent in this case which might be necessary in the case of flow

159

through an actual enclosed region, for instance when modelling the micropipette aspiration

of biological cells, or flow of a blood cell through a vein. end Remark.

5.3 Stability of the force balance algorithm

We will now show how this coupling leads to stability estimates in our models. We

begin with a simple lemma for handling the material derivative.

Lemma 5.3.1. Given a smooth solution of the (in)compressible Navier-Stokes system with

variable density ρ = ρ(t, x) governed by ρt + div(ρu) = 0, we have

∫
Λ

ρDtu · udx =

∫
Λ

ρut · udx +

∫
Λ

(ρu · ∇u) · udx

=

∫
Λ

d

dt

(
1

2
ρ(t)|u(t)|2

)
dx +

∫
∂Λ

ρ

2
(u · n) |u|2dx

where Dt is the material derivative. Thus if u = 0 or u · n = 0 on ∂Λ, then this term

reduces to the rate of change of kinetic energy,

∫
Λ

ρDtu · udx =
d

dt

∫
Λ

1

2
ρ(t)|u(t)|2dx.

Proof. We have a standard equality from expansion of∇(A ·B) with A = ρu and B = u,

ρu · ∇u = ∇
(
ρ|u|2

)
− u · ∇(ρu)− ρu× (∇× u)− u× (∇× (ρu)) .

160

Now, since u is orthogonal to these last two terms, we have

ρu · ∇u · u = ∇
(
ρ|u|2

)
· u− u · ∇(ρu) · u

= div
(
ρ|u|2u

)
− ρ|u|2 div(u)− u · ∇ρ|u|2 − ρu · ∇u · u

= div
(
ρ|u|2u

)
− div(ρu)|u|2 − ρu · ∇u · u

= div
(
ρ|u|2u

)
+ ρt|u|2 − ρu · ∇u · u,

using ρt + div(ρu) = 0, so that

∫
Λ

ρu · ∇u · udx =
1

2

∫
Λ

div
(
ρ|u|2u

)
dx +

1

2

∫
Λ

ρt|u|2dx

=
1

2

∫
∂Λ

ρ|u|2u · ndx +
1

2

∫
Λ

ρt|u|2dx,

where we have used the Divergence theorem to arrive at this last step. Thus all together

we have

∫
Λ

ρut · udx +

∫
Λ

(ρu · ∇u) · udx =
1

2

∫
Λ

ρ(t)
d

dt

(
|u(t)|2

)
dx +

1

2

∫
Λ

d

dt
(ρ(t))|u(t)|2dx

+

∫
∂Λ

1

2
ρ|u|2u · ndx

=
d

dt

∫
Λ

1

2
ρ(t)|u(t)|2dx +

∫
∂Λ

1

2
ρ|u|2u · ndx,

so that if u = 0 or u · n = 0 on ∂Λ then

∫
Λ

ρut · udx +

∫
Λ

(ρu · ∇u) · udx =
d

dt

∫
Λ

1

2
ρ(t)|u(t)|2dx.

161

5.3.1 Stability of coupled system

We show the stability of the continuous Navier-Stokes system with the energy flow

coupling

∫
Γ

J2µ∇su− pIK · n · vdx = −∂E(ϕ)(v · nϕ|∇ϕ|)

with f = 0. We have the Navier-Stokes system of equation (4.2) for (u, p) :

∫
Λ

ρut · vdx +

∫
Λ

ρu · ∇u · vdx +

∫
Λ

2µ∇su · ∇svdx

−
∫

Γ

J2µ∇su− pIK · n · vdx−
∫

Λ

p div vdx = 0

with the true solution v = u. Using Lemma 5.3.1 with our slip or no-slip conditions for

velocity, then we have the estimate

d

dt

∫
Λ

1

2
ρ|u|2dx +

∫
Λ

2µ|∇su|2dx + ∂E(ϕ)(u · nϕ|∇ϕ|) = 0.

Finally, we recall that ϕt = −u · ∇ϕ = u · nϕ|∇ϕ|, so that

∂E(ϕ)(−u · nϕ|∇ϕ|) = ∂E(ϕ)(ϕt) =
d

dt
E(ϕ).

Theorem 5.3.2. Testing the continuous Navier-Stokes system with approximate energy

flow against the true solution, u(t), and with no external sources, f = 0, yields the stability

estimate

d

dt

∫
Λ

1

2
ρ(t)|u(t)|2dx +

∫
Λ

2µ(t)|∇su(t)|2dx +
d

dt
E(ϕ(t)) = 0. (5.46)

162

5.4 Comparison to the method of virtual power in continuum mechanics

Now instead of coupling the variation to the jump in the stress tensor, another method

common in the physics and continuum mechanics disciplines is to simply consider the

forces from the surface to be just another force in the derivation of the Navier-Stokes

system to be balanced. Following the notation of [59], we will call it the forces from the

curvature of membrane, and denote it by Fc. Then the constitutive equations for (u, ϕ) are

ρ(∂tu + u · ∇u)− div(2η∇su) +∇p = Fc

div(u) = 0

ϕt + u · ∇ϕ = 0.

The vector force Fc is computed using the method of virtual power where given an energy

functional E(ϕ), we compute

∫
Λ

Fc · udx = − d

dt
E(ϕ) = −∂E(ϕ)(ϕt) = ∂E(ϕ)(u · ∇ϕ).

where we have used the levelset relation ϕt+u·∇ϕ = 0 in the last step. In [59], the method

of virtual power has been used for the energy in the form E(ϕ) =
∫

Λ
G(h)δε(ϕ)|∇ϕ|dx

where they consider the Willmore forces, G(h) = 1
2
h2. The variational form of the energy

that they obtain is in fact the same as ours although our derivations are approached in a

completely different manner. They obtain Fc as

Fc = div

[
−G(hϕ)

∇ϕ
|∇ϕ| +

P∇ (G′(hϕ)|∇ϕ|)
|∇ϕ|

]
δε(ϕ)∇ϕ

163

whereas we obtain in Section 7.2 that

∫
Λ

gθ|∇ϕ|dx = −
∫

Λ

div

[
Gnϕ −

Pϕ∇ (∂2G|∇ϕ|)
|∇ϕ|

]
δε(ϕ)|∇ϕ|dx

= −
∫

Λ

[
∇G · nϕθ +Ghϕθ +

Pϕ∇(∂2G|∇ϕ|)
|∇ϕ| · ∇(θ|∇ϕ|)

|∇ϕ|

]
δε(ϕ)|∇ϕ|dx.

Notice that

∫
Λ

gθ|∇ϕ|dx =

∫
Λ

Fc ·
(
− ∇ϕ|∇ϕ|

)
θdx =

∫
Λ

Fc · nϕθdx

or more generally since Fc is colinear to ∇ϕ and thus to nϕ, testing against a general

velocity field, v, yields

∫
Λ

Fc · vdx =

∫
Λ

Fc · nϕ(v · nϕ)dx =

∫
Λ

g(v · nϕ)|∇ϕ|dx =

∫
Λ

(gnϕ|∇ϕ|) · vdx.

Thus, the force terms can be directly related, Fc = g|∇ϕ|nϕ = −g∇ϕ. We can view Fc as

the vector normal force from the energy on the membrane, where as our g ∈ L2(Λ) is the

scalar normal force from the energy on the membrane. In our opinion both formulations

are comparable. We couple the energy minimizing force to the jump in the stress tensor

across the surface whereas they couple theirs as an external bulk force.

Another major difference is in the approach to discretizing the approach. They do not

directly discuss their method of discretizing and solving their system in [59] although in

some subsequent papers by another group including [60], [61] and [62], some more de-

tailed approaches to discretizing this model are included. In particular, the force function

Fc is computed explicitly from the distance function and other intermediate terms which

smooth terms to obtain a usable Fc. They focus on using higher order finite element ap-

proximations to the level set to get better approximations of the surface, curvature and the

164

Willmore force Fc. They also allow for the levelset to stretch and deviate from the distance

function and they add an additional energy to be minimized which penalizes stretching.

We will present two methods for discretizing the system in Chapter 7. Our first method

of Section 7.2 uses a semi-implicit formulation to couple the curvature, and thus the Will-

more forces, to the velocity and decouple them from the levelset. Our second method of

Section 7.3 uses a subiterating scheme which is also different than their approach. In ad-

dition we provide a method for enforcing the surface area and volume constraints directly

through the use of Lagrange multipliers (see Chapter 8), thereby extending the Willmore

energy flow to the full Canham-Helfrich energy flow.

165

6. ENERGY FLOW APPLICATION: SURFACE TENSION FLOW

We now consider the case of a simple surface tension model with

est(Γ) = σst

∫
Γ

dx (6.1)

with σst ∈ R+, the coefficient of surface tension. We will not go into the specifics of what

assumptions are made to arrive from basic physics to this energy formulation, but take

it as our model as is. Undoubtedly there are more complicated approaches and energies

that capture the various interesting effects that can happen under the umbrella of surface

tension or more generally under the effect of capillarity forces, but we will not delve into

these at this time. This simple model captures the most basic type of surface tension effect

and so suits our needs. We refer the reader to [56] for a more detailed discussion of energy

based flows related to surface tension, capillarity and wetting.

Using the notation of Chapter 5, we set

G(x, hϕ) = σst ∈ R+, (6.2)

a constant function. Using shape calculus, the variation of e(Γ) (with Γ a C2-surface)

under the velocity field v is

∂e(Γ)(v) = σst

∫
Γ

hn · vdx. (6.3)

Then we introduce the approximate energy functional

E(ϕ) = σst

∫
Λ

δε(ϕ)|∇ϕ|dx

166

which using Theorem 5.2.1, has variation for θ ∈ H1(Λ),

∂E(ϕ)(θ|∇ϕ|) =

∫
Λ

div (σstnϕ) θδε(ϕ)|∇ϕ|dx = σst

∫
Λ

hϕθδε(ϕ)|∇ϕ|dx. (6.4)

Later we will use θ = v · nϕ so that

∂E(ϕ)(v · nϕ|∇ϕ|) = σst

∫
Λ

hϕnϕ · vδε(ϕ)|∇ϕ|dx

and we immediately see the similarities between ∂e(Γ) and ∂E(ϕ).

We will first treat in Section 6.1.1 on the fully implicit algorithm that comes from using

this energy variation in the force balance equation. Recall that we have already shown in

Chapter 5.3 that all the energy variation approaches using a semi-discrete fully implicit

algorithm have an energy stability related to the them. We will then in Section 6.1.2,

present a semi-implicit algorithm that allows us to alternate between computing a velocity

that takes into account the surface tension forces and updating the levelset. We will then

compare this algorithm with some other approaches in Section 6.2 and finally we will

present some standard numerical results for surface tension in Section 6.3.

6.1 Implementation of surface tension

We describe some algorithms for computing the two-phase flow with surface tension

using the energy flow formulations of Chapter 5. We start with the fully implicit algorithm

and then introduce a semi-implicit splitting to couple the surface tension forces with the

velocity and decouple them from the level set. This allows us to maintain the algorithm on

each time step of first solving for the velocity field and then transporting the levelset with

that velocity field.

167

6.1.1 Fully implicit scheme

Given a time discretization t0 < t1 < · · · < tk < · · · < tN , we denote the times

step by superscript, ie fk ≈ f
(
tk
)
. Suppose we are at time tk and want to solve for

solutions at tk+1. Following the notation of Chapter 5, we introduce a scalar function,

hk+1
ϕ = div nk+1

ϕ , for the total curvature at time tk+1. Then given (ϕk, uk) we must solve

for (ϕk+1,uk+1, hk+1
ϕ) such that:

∂ϕ

∂t
(tk+1) + uk+1 · ∇ϕk+1 = 0, (6.5)

an implicit version of equation (2.1) and the fully implicit Navier-Stokes system (4.2) with

the energy force balance coupling

∫
Γ

q
2µ∇suk+1 − pk+1I

y
· nk+1 · vdx = σst

∫
Λ

hk+1
ϕ nk+1

ϕ · v|∇ϕk+1|dx

and

∫
Λ

hk+1
ϕ θdx =

∫
Λ

∇ϕk+1

|∇ϕk+1| · ∇θdx−
∫
∂Λ

∇ϕk+1

|∇ϕk+1| · νθdx,

a weak formulation of total curvature, hϕ = div nϕ.

6.1.2 Semi-implicit scheme

The previous system is nonlinear and the curvature is dependent on the levelset func-

tion directly and only circuitously related to the velocity field. We will implement a split-

ting scheme that separates the levelset update from the others:

(i) Given (ϕk,uk,uk−1) solve for (uk+1, hk+1)

(ii) Given (ϕk, ϕk−1,uk+1) solve for ϕk+1.

168

To achieve this, we follow and idea of Bansch and decouple hk+1
ϕ from ϕk+1 and couple it

directly to the velocity, which we do by introducing the scalar function,

uk+1
n = −uk+1 · ∇ϕk,

the normal velocity. Recall that the surface normal nkϕ = − ∇ϕk

|∇ϕk| so that this is the normal

velocity when |∇ϕk| = 1, otherwise it is not scaled not quite right. However we filter the

levelset ϕ so that it is a distance function with |∇ϕ| = 1 in the region that matters. In

weak form, we seek uk+1
n ∈ L2(Λ) such that for all θ ∈ L2(Λ)

∫
Λ

uk+1
n θdx = −

∫
Λ

uk+1 · ∇ϕkθdx.

Expanding the levelset equation

∂ϕ

∂t
+ u · ∇ϕ = 0,

we have

∂ϕ

∂t

(
tk
)

= −u
(
tk
)
· ∇ϕ

(
tk
)

= −u
(
tk+1

)
· ∇ϕ

(
tk
)

+ ∆t
∂u
∂t

(ξ) · ∇ϕ
(
tk
)

for some ξ ∈
(
tk, tk+1

)
. Then discretizing the time derivative of ϕ with a forward differ-

ence, we obtain

ϕk+1 − ϕk
∆t

= −uk+1 · ∇ϕk + ∆t
∂u
∂t

(ξ) · ∇ϕ
(
tk
)

+
∆t

2

∂2ϕ

∂t2
(
tk
)

169

so that using the normal velocity, uk+1
n , we have the first order update equation with ∆t2

error

ϕk+1 =
(
ϕk + ∆tuk+1

n

)
+ ∆t2

(
∂u
∂t

(ξ) · ∇ϕk +
1

2

∂2ϕ

∂t2
(
tk
))

. (6.6)

Now, we can replace ϕk+1 with ϕk + ∆tuk+1
n in some places to couple hk+1 to uk+1

instead of ϕk+1. We substitute all the |∇ϕk+1| terms with |∇ϕk| evaluated at the previous

time and do the same with the Dirac measure so that they are all defined on ϕk. We can thus

write nk+1
ϕ = − ∇ϕk+1

|∇ϕk+1| ≈ −
∇ϕk+∆t∇uk+1

n

|∇ϕk| . Thus our semi-implicit scheme for curvature is

∫
Λ

hk+1
ϕ θdx =

∫
Λ

div(nk+1
ϕ)θdx

= −
∫

Λ

nk+1
ϕ · ∇θdx +

∫
∂Λ

nk+1
ϕ · νθdx

=

∫
Λ

∇ϕk + ∆t∇uk+1
n

|∇ϕk| · ∇θdx−
∫
∂Λ

∇ϕk + ∆t∇uk+1
n

|∇ϕk| · νθdx

or separating the implicit and explicit terms we have

∫
Λ

hk+1
ϕ θdx−∆t

∫
Λ

∇uk+1
n

|∇ϕk| · ∇θdx =

∫
Λ

∇ϕk
|∇ϕk| · ∇θdx (6.7)

+∆t

∫
∂Λ

∇uk+1
n

|∇ϕk| · νθdx −
∫
∂Λ

∇ϕk
|∇ϕk| · νθdx.

6.1.2.1 Summary of semi-implicit scheme

To summarize, we have the Navier-Stokes system of equations with force balance cou-

pling

∫
Γ

J2µ∇suk+1 − pk+1IK · nk · vdx = σst

∫
Λ

hk+1
ϕ nkϕ · vδε(ϕk)|∇ϕk|dx

= −σst
∫

Λ

hk+1
ϕ

∇ϕk
|∇ϕk| · vδε(ϕ

k)|∇ϕk|dx

170

And the other coupled equations

∫
Λ

uk+1
n θdx +

∫
Λ

uk+1 · ∇ϕkθdx = 0

∫
Λ

hk+1
ϕ θdx−∆t

∫
Λ

∇uk+1
n

|∇ϕk| · ∇θdx =

∫
Λ

∇ϕk
|∇ϕk| · ∇θdx

+∆t

∫
∂Λ

∇uk+1
n

|∇ϕk| · νθdx −
∫
∂Λ

∇ϕk
|∇ϕk| · νθdx.

These are all solved simultaneously which provides a velocity with which to advect

the levelset. There are d + 2 components which gives a 3x3-block linear algebra system

of the form
Sns 0 σstMδ

MT
∇ϕ M 0

0 ∆tSh M

Uk+1

Uk+1
n

Hk+1

 =

Fns

0

Fh

 . (6.8)

One could use a parallel direct solver to solve this non-symmetric system. This is quick but

requires a large amount of memory to perform the LU decomposition. A better approach

is to use a preconditioned GMRES iterative solver. We have found that a block diagonal

preconditioner composed of an Algebraic Multigrid (AMG) solver for the first (Navier-

Stokes) diagonal block and then an SSOR preconditioner for each of the second and third

diagonal blocks seems to work well. Even though the block preconditioner is only applied

to the diagonal blocks, this seems to work well enough. It solves quite quickly and the

number of outer GMRES steps is relatively constant.

6.2 Connections to other models

At this stage, we return to how our model relates to other models in the literature for

surface tension. There are more approaches than could reasonable be compared here so

we focus on two other approaches. The first is the current energy model with the exact

171

energy functional. We show that in the limit as ε → 0, our approximate model converges

to the original model.

Theorem 6.2.1. Supposing that the interface Γ ⊂ Λ defined implicitly through the level

set function, ϕ, is smooth with Γ ∩ ∂Λ = ∅, then for smooth velocity field v

∂Est (ϕ) (v · nϕ|∇ϕ|) = σst

∫
Λ

hϕv · nϕδε(ϕ)|∇ϕ|dx ε−lim
= σst

∫
Γ

hn · vdx = ∂est (Γ) (v) .

Proof. Using the convergence of δε(ϕ)|∇ϕ| to δΓ as in Chapter 3, in particular supposing

that hn · v ∈ W 6,∞ near the surface Γ with two bounded derivatives in the normal direc-

tion, we get the convergence of the functionals. This is reasonable for flows with medium

to high surface tension values since physically, the surfaces stay quite smooth so the cur-

vature, h is also smooth as well as the normal velocity, n ·v. The final equality comes from

standard shape calculus tools applied to est(Γ) = σst
∫

Γ
dx.

Mirroring the stability estimate, Theorem 5.3.2, we have the following stability for

surface tension.

Theorem 6.2.2. Testing the continuous Navier-Stokes system (4.1) with force balance,

∫
Γ

J2µ∇su− pIK · n · vdx = −∂Esa(ϕ)(v · nϕ|∇ϕ|) := σst

∫
Λ

hϕnϕ · v|∇ϕ|dx

against the true velocity solution, v = u, and with no external sources, f = 0, yields the

stability estimate

d

dt

∫
Λ

1

2
ρ(t)|u(t)|2dx +

∫
Λ

2µ(t)|∇su(t)|2dx +
d

dt
Esa(ϕ(t)) = 0. (6.9)

172

6.2.1 A more efficient model for surface tension

While the above model is useful for proving theorems and understanding what is hap-

pening geometrically, it produces a large block system for the velocity update which is

not as desirable to handle as other formulations. In the case of simple surface tension,

there are many formulations out there which each have their benefits and issues. We will

now describe an equivalent model which is preferable when solving for surface tension

effects since it avoids the extra components needed above. This method was first intro-

duced by Bansch in [63] and has been used in many other papers since then. The key

is to use the well known identity from differential geometry that vector total curvature

h := hn = ∆ΓX is the Laplace-Beltrami applied to the identity function X(x) = x on the

surface, Γ. The resulting implicit formulations are completely equivalent to our method

but the semi-implicit methods utilize a different set of tools to couple surface tension with

velocity instead of the levelset. In experiments, the results are the same, but the amount of

work required to solve this model is much smaller than in our model described above. The

redeeming quality of our approach is that it provides a stability estimate, Theorem 6.2.2

for the implicit version of all of these other models and an intuition for the flow since

the surface tension is balancing the minimization of a scaled surface area energy with the

other inertial and external forces. This is already generally understood by practitioners

but it provides a formalism to the matter. Likewise our previous model computes the total

curvature directly whereas this model does not.

To begin with, we have shown that

∂Est (ϕ) (θ|∇ϕ|) = σst

∫
Λ

hϕθδε(ϕ)|∇ϕ|dx.

Then using that ∆ΓtX = hn for the identity X(x) = x on each Γt and using the co-area

173

formula, we rewrite the force balance equation

∫
Γ

J2µ∇su− pIK · n · vdx = −∂Est (ϕ) (nϕ · v|∇ϕ|)

= −σst
∫

Λ

hϕnϕ · vδε(ϕ)|∇ϕ|dx

= −σst
∫ ∞
−∞

δε(t)

∫
Γt

hn · vdsdt

= −σst
∫ ∞
−∞

δε(t)

∫
Γt

∆ΓtX · vdsdt

= σst

∫ ∞
−∞

δε(t)

∫
Γt

∇ΓtX : ∇Γtvdsdt

= σst

∫
Λ

∇ϕX : ∇ϕvδε(ϕ)|∇ϕ|dx.

Here we have used the vector integration by parts formula on a manifold, Γt,

−
∫

Γt

∆ΓtX · vds =

∫
Γt

∇ΓtX : ∇Γtvds−
∫
∂Γt

v · (∇ΓtX · (τ × ν)) ds

and that supp{δε(ϕ)}∩∂Λ = ∅. This guarantees that each Γt, for t ∈ [−ε, ε] in the support

of δε(ϕ), is indeed closed and ∂Γt = ∅. This coupled with the two-phase flow model above

constitutes the nonlinear implicit model where we use each variable evaluated at time tk+1.

6.2.1.1 Semi-implicit formulation

To formulate the semi-implicit model and decouple the surface tension from the im-

plicit levelset variable, we denote

Xk := {x ∈ Γk} = {x ∈ Rd | ϕk(x) = 0} (6.10)

We linearize the position dependence Xk+1 as

Xk+1 = Xk + ∆tk+1uk+1.

174

where we recall that uk+1 is the as yet unknown velocity of the fluid flow at time tk+1. We

use the previous value ϕk in the δε(ϕ)|∇ϕ| terms as well as in the∇ϕk tangential gradient.

Then substituting the linearization, we obtain

∫
Γ

J2µ∇suk+1 − pk+1IK · nk+1 · vdx = σst

∫
Λ

∇ϕkXk+1 : ∇ϕkvδε(ϕk)|∇ϕk|dx

= σst

∫
Λ

∇ϕkXk : ∇ϕkvδε(ϕk)|∇ϕk|dx

+ ∆tk+1σst

∫
Λ

∇ϕkuk+1 : ∇ϕkvδε(ϕk)|∇ϕk|dx.

Notice that everything here is defined with regards to the levelset ϕk at time tk. We finally

simplify by using that ∇ϕk = (I − nkϕ ⊗ nkϕ)∇ = P k
ϕ∇ and so ∇ϕkXk = P k

ϕ∇Xk =

P k
ϕI = P k

ϕ , thus the force balance for surface tension is

∫
Γ

J2µ∇suk+1 − pk+1IK · nk+1 · vdx = σst

∫
Λ

(
P k
ϕ : P k

ϕ∇v
)
δε(ϕ

k)|∇ϕk|dx

+ ∆tk+1σst

∫
Λ

(
P k
ϕ∇uk+1 : P k

ϕ∇v
)
δε(ϕ

k)|∇ϕk|dx.

Thus the surface tension force, hk+1
ϕ = h

(
uk+1,Γk

)
is dependent on the velocity uk+1(ϕk)

based on previous levelset function ϕk and evaluated around Γk = {x | ϕk(x) = 0}. It

is a first order approximation to surface tension, but results in a linear addition to the

existing two-phase flow algorithm. In addition, there are no extra components needed

since curvature does not need to be explicitly constructed. This only requires the dim

components of velocity and the single component of levelset and so is preferable to the

previous algorithm in terms of memory and work and thus time. However, if the total

(mean) curvature is necessary then the above algorithm is better since it calculates total

curvature in a semi-implicit form, which results in a more smooth calculation of curvature

than an explicit algorithm directly from hkϕ = div(nkϕ) is able do.

175

6.3 Numerical experiments and validations

We will give some of the classic surface tension benchmark tests as described by Hys-

ing in [64]. They are both 2D simulations of a bubble rising under gravity and different

amounts of surface tension. The physical setting is a domain Λ = [0, 1] × [0, 2] with a

circular bubble of radius r0 = 0.25 centered (0.5, 0.5). The simulation is run from t = 0.0

until t = 3.0. The exterior liquid and interior liquid have the physical density and viscos-

ity as in Table 6.1. The two cases have different surface tension parameters, σ and the

Case ρout ρin µout µin g σ Re Eo ρout/ρin µout/µin

1 1000 100 10 1 -0.98 24.5 35 10 10 10
2 1000 1 10 0.1 -0.98 1.65 35 125 1000 100

Table 6.1: Parameters for 2 test cases of surface tension.

two-phases move under gravity in direction (0, g) where g is the non dimensional gravity

constant. The characteristic length scale is L = 2r0 = 0.5. Then the gravitational velocity

is Ug =
√
|g|2r0. The Reynolds number is thus computed using the heavier fluid,

Re =
ρoutUgL

µout
, (6.11)

describing the ratio of inertial to viscous forces is also displayed as well as the Eötvös

number,

Eo =
ρoutU

2
gL

σ
, (6.12)

giving the ratio of gravitational forces to surface tension. We impose the no-slip boundary

condition u = 0 on the top and bottom of the region’s boundary. The free slip boundary,

u · n = 0, is imposed on the left and right boundaries. We compute the center of mass of

176

the bubble

Xc =

∫
Λ

xHε(ϕ)dx∫
Λ

1Hε(ϕ)dx

using the approximate characteristic function Hε(ϕ) as in equation (4.11). We also com-

pute the rise velocity,

uc =

∫
Λ

uyHε(ϕ)dx∫
Λ

1Hε(ϕ)dx

where uy is the y-component of velocity, and the circularity (in 2D),

circ =
2π

√∫
Λ H(ϕ)dx

π∫
Γ
dx

≈
2π

√∫
Λ Hε(ϕ)dx

π∫
Λ
δε(ϕ)|∇ϕ|dx

measuring the deviation from circular shape. This is measured calculating the ratio of the

perimeter of a circle of equivalent volume to the interior over the actual perimeter of the

interior. The circularity takes a value between 0 and 1 with the value of 1 meaning it is a

circle. Of course, since we are using an approximate characteristic and Dirac function to

compute the circularity, the value may exceed 1 somewhat.

Using semi-implicit version of coupling as in Section 6.1.2, we display some of these

statistics for a sequence of mesh-sizes and timesteps in Figure 6.1. We also track the

volume and surface area of the simulations over time for case 1 as displayed in Figure 6.2.

We see that the smaller mesh size maintains the volume much better as is desired with the

incompressible velocity. The time series of case 1 with h = 0.003125 and ∆t = 0.002 is

displayed in Figure 6.3.

In case 2, we display our final result which can be compared to many other benchmark

simulations in [64]. They are qualitatively similar. Because we continually reinitialize

the profile, it is more difficult for the domain to fracture and the dragged parts stay fairly

smooth.

Finally we perform a simulation of case 1 in 3D and simulate from t = 0.0 until

177

Figure 6.1: The circularity, rise velocity and center of mass in case 1.

Figure 6.2: The surface area and volume of interior region in case 1.

178

Figure 6.3: Case 1 timeseries.

t = 2.0 since in 3D, the bubble rises much faster than in 2D. The initial and final results

are displayed in Figure 6.5. Notice that we obtain the same steady state profile of the

bubble as in 2D.

179

Figure 6.4: Final state of simulation with semi-implicit version for small surface tension
coefficient, σst = 1.96. This solution compares well with the other benchmark solutions
published in [64].

180

Figure 6.5: The initial (t = 0.0) and final (t = 2.0) states of simulation of case 1 in 3D
with half the domain cut away to see the interior bubble.

181

7. ENERGY FLOW APPLICATION: WILLMORE FLOW

When considering the modelling of a red blood cell, or in general a biological vesicle

with a lipid bilayer membrane, a dominant force governing the shape of the vesicle relates

to minimizing the bending of the membrane. The bilayer membrane resists bending which

combined with a surface area and volume constraint leads the red blood cells to have their

characteristic pin cushion-like shape. Following [65], the bending energy can be modeled

as the Willmore or curvature energy with κ1 and κ2, the principle curvatures of the surface,

and k1 and k2 the bending or elastic moduli in each direction,

ebending(Γ) =

∫
Γ

1

2
k1κ

2
1 +

1

2
k2κ

2
2dx.

In an isotropic material these bending moduli are the same and will be denoted by ke, the

bending modulus. Now using h = κ1 + κ2, the total curvature and κ = κ1κ2, the Gauss

curvature, we can simplify the bending energy to

ebending(Γ) =
1

2
ke

∫
Γ

h2dx + ke

∫
Γ

κdx.

Helfrich in [2] proposed a more general energy,

ebending(Γ) =
1

2
ke

∫
Γ

(h− c0)2dx + k̄

∫
Γ

κdx,

where c0 is the spontaneous curvature or characteristic curvature of the surface, Γ. This

may be non-zero if the lipid compositions of the membrane are different on the inside and

outside. The moduli ke and k̄ are referred to as the "bending modulus" and the "saddle

splay modulus" respectively. In the subsequent, we will assume that c0 = 0.

182

When we consider a vesicle that maintains a constant topology, we can simplify this

energy somewhat. The Gauss-Bonnet theorem from differential geometry tells us that the

integral of Gauss curvature is directly related to the geometry of the surface, Γ, by

∫
Λ

κdx = 2πχ(Γ).

Where χ(Γ) is the Euler characteristic of the surface Γ which is constant for a fixed topol-

ogy. Thus minimizing the simpler Willmore energy,

ew(Γ) =
1

2
ke

∫
Γ

h2dx,

is the same as minimizing the bending energy, ebending(Γ) when there are no topology

changes.

7.1 Willmore energy

We will thus consider the coupling of the Willmore energy

ew(Γ) =
1

2
ke

∫
Γ

h2dx (7.1)

to the incompressible Navier-Stokes system which corresponds to using the integrand

Gw(x, h) =
1

2
keh

2.

We follow the pattern of Chapter 5 and use the approximate Willmore energy

Ew(ϕ) =
1

2
ke

∫
Λ

h2
ϕδε(ϕ)|∇ϕ|dx. (7.2)

183

Using Theorem 5.2.1, with the computations ∂2Gw = kehϕ, ∇Gw = kehϕ∇hϕ and

∂1Gw = 0, we have the following corollary.

Corollary 7.1.1. Using the approximate Willmore energyEw(ϕ) = 1
2
ke
∫

Λ
h2
ϕδε(ϕ)|∇ϕ|dx,

we have the energy variation for θ ∈ H1(Λ),

∂Ew(ϕ)(θ|∇ϕ|) = ke

∫
Λ

div

[
1

2
h2
ϕnϕ −

Pϕ∇(hϕ|∇ϕ|)
|∇ϕ|

]
θδε(ϕ)|∇ϕ|dx (7.3)

= ke

∫
Λ

[
hϕ∇hϕ · nϕθ +

1

2
h3
ϕθ +

Pϕ∇(hϕ|∇ϕ|)
|∇ϕ| · ∇(θ|∇ϕ|)

|∇ϕ|

]
δε(ϕ)|∇ϕ|dx.

(7.4)

Using Lemma 5.1.4, we have

∂Ew(ϕ)(θ|∇ϕ|) = ke

∫
Λ

[
−∆ϕhϕ +

1

2
h3
ϕ − hϕDnTϕ : Dnϕ

]
θδε(ϕ)|∇ϕ|dx.

Now assuming that ϕ(x) = f(d(x)) as in Chapter 2 and using θ = nϕ · v where v ∈

[H1(Γ)]d, this simplifies to

∂Ew(ϕ)(v · nϕ|∇ϕ|) = ke

∫
Λ

[
−∆ϕhϕ +

1

2
h3
ϕ − hϕ|∇ϕnϕ|2

]
nϕ · vδε(ϕ)|∇ϕ|dx.

This compares nicely to the variation of the Willmore energy functional,

∂ew(Γ)(v) = ke

∫
Γ

[
−∆Γh+

1

2
h3 − h|∇Γn|2

]
n · vdx.

Thus using the convergence of δε(ϕ)|∇ϕ| → δΓ we have the following Corollary.

Corollary 7.1.2. Assuming that Γ is closed and smooth and implicitly defined by ϕ(x) =

184

f(d(x)) for f ∈ C2(R) with f(0) = 0 and f ′(t) ≥ 0 then

lim
ε→0

∂Ew(ϕ)(v · nϕ|∇ϕ|) = ∂ew(Γ)(v).

When we couple this Willmore energy with the incompressible Navier-Stokes system,

we are minimizing bending energy under a constant volume constraint. This is different

than the standard Willmore energy flow which only minimizes the bending energy. With-

out the volume constraint, the bending energy will eventually make the manifold disappear

however with the volume constraint, the minimal bending energy will occur when curva-

ture is constant, that is when the manifold is a sphere in 3D or a circle in 2D. However

since this force is governed by the action of the negative Gâteaux derivative which can

be seen as a form of gradient descent, we can often get stuck in a local minimum. It is

not clear that Willmore flow with volume constraint but without surface area constraint

models anything of interest. The remainder of this chapter will consider how to discretize

the variation term and couple it with the Navier-Stokes and level set equations. We will

give two formulations in Section 7.2 and Section 7.3. Recall that the stability estimates

of Section 5.3 hold for the implicit Willmore energy flow scheme described. We will then

compare our approximations of the Willmore energy flow with some other existing models

in Section 7.4. We finish with some numerical simulations of the Willmore energy flow

with volume constraint in Section 7.5.

We finally emphasize again the stability of the continuous fully implicit Willmore flow

algorithm with Theorem 7.1.3 which mirrors the general Theorem 5.3.2 of Chapter 5.

Theorem 7.1.3. Testing the continuous Navier-Stokes system with approximate Willmore

energy flow against the true solution, u(t), and with no external sources, f = 0, yields the

185

energy stability estimate,

d

dt

∫
Λ

1

2
ρ(t)|u(t)|2dx +

∫
Λ

2µ(t)|∇su(t)|2dx +
d

dt
Ew(ϕ(t)) = 0. (7.5)

7.2 Semi-implicit form for Willmore flow

We will let gw ∈ L2(Λ) represent the negative variation of our energy in the sense that

ke

∫
Λ

gwψdx = −∂Ew (ϕ) (ψ) (7.6)

where we will use ψ = θ|∇ϕ| with θ ∈ H1(Λ). Thus,

∫
Λ

gwθ|∇ϕ|dx = −ke
∫

Λ

[
hϕ∇hϕ · nϕθ +

1

2
h3
ϕθ +

Pϕ∇(hϕ|∇ϕ|)
|∇ϕ| · ∇(θ|∇ϕ|)

|∇ϕ|

]
δε(ϕ)|∇ϕ|dx

or expanding into it’s various terms,

∫
Λ

gwθ|∇ϕ|dx = −ke
∫

Λ

hϕθ∇hϕ · nϕδε(ϕ)|∇ϕ|dx

− ke
∫

Λ

1

2
h3
ϕθδε(ϕ)|∇ϕ|dx

− ke
∫

Λ

Pϕ∇hϕ · ∇θδε(ϕ)|∇ϕ|dx

− ke
∫

Λ

hϕ
Pϕ∇(|∇ϕ|)
|∇ϕ| · ∇θδε(ϕ)|∇ϕ|dx

− ke
∫

Λ

θ∇hϕ ·
Pϕ∇(|∇ϕ|)
|∇ϕ| δε(ϕ)|∇ϕ|dx

− ke
∫

Λ

hϕθ

∣∣∣∣Pϕ∇(|∇ϕ|)
|∇ϕ|

∣∣∣∣2 δε(ϕ)|∇ϕ|dx.

The important terms for the physics of motion are the first three terms since the last three

terms contain action against Pϕ∇(|∇ϕ|)
|∇ϕ| , the tangential derivative of |∇ϕ| which we are

pushing to zero with the level set reinitialization and only account for the deviations of the

186

level set function from the distance function.

Remark. We are spending resources in the levelset method pushing ϕ toward the exact

profile with |∇ϕ| = 1 on the band of support of the Dirac delta function, δε(ϕ). Because of

this it is possible to drop the last three terms of the above system since then, P∇(|∇ϕ|) =

0. In practice we have noticed little to no difference between the model with and without

these terms so many of the simulations have been run without them. Unless otherwise

specified, we assume that the full model has been used for the simulation. end Remark.

This system coupled with the velocity assumes that (ϕ,u, h, gw) are all implicitly cou-

pled, but this becomes a nonlinear fourth order system which is not practical to solve. In

Section 7.2.1, we introduce some simplifications which will allow us to decouple ϕ from

the rest and make h implicitly defined through u instead of ϕ. Then in Section 7.2.2, we

will introduce an operator splitting on gw to obtain a linear system for (u, h, gw) decoupled

from ϕ. Finally, in Section 7.2.3, we will summarize the entire semi-implicit algorithm

for Willmore flow.

7.2.1 Coupling velocity and curvature and decoupling curvature from the level set

We use superscripts to denote the time step and consider that we have solutions at time

tk and are solving for solutions of (ϕk+1, uk+1, hk+1
ϕ , gk+1

w) at time tk+1. We will break this

update into two steps:

(i) Given (ϕk, uk, hkϕ), compute (uk+1, hk+1
ϕ , gk+1

w).

(ii) Given (ϕk, uk+1), compute ϕk+1.

We have defined hk+1
ϕ = div

(
nk+1
ϕ

)
= div

(
− ∇ϕk+1

|∇ϕk+1|

)
, which means curvature is coupled

with the level set function, but we want to decouple it from the level set function and couple

it instead with the velocity in order to keep our two step update as described above. As

in Section 6.1.2, we decouple hk+1
ϕ from ϕk+1 and couple it directly to the velocity by

187

introducing the scalar function,

uk+1
n = −uk+1 · ∇ϕk,

the normal velocity. Recall that the surface normal nkϕ = − ∇ϕk

|∇ϕk| so that this is the normal

velocity when |∇ϕk| = 1, in the region that matters. In weak form, we seek uk+1
n ∈ L2(Λ)

such that for all θ ∈ L2(Λ)

∫
Λ

uk+1
n θdx = −

∫
Λ

uk+1 · ∇ϕkθdx.

Expanding the levelset equation

∂ϕ

∂t
+ u · ∇ϕ = 0,

we have

∂ϕ

∂t

(
tk
)

= −u
(
tk
)
· ∇ϕ

(
tk
)

= −u
(
tk+1

)
· ∇ϕ

(
tk
)

+ ∆t
∂u
∂t

(ξ) · ∇ϕ
(
tk
)

for some ξ ∈
(
tk, tk+1

)
. Then discretizing the time derivative of ϕ with a forward differ-

ence, we obtain

ϕk+1 − ϕk
∆t

= −uk+1 · ∇ϕk + ∆t
∂u
∂t

(ξ) · ∇ϕ
(
tk
)

+
∆t

2

∂2ϕ

∂t2
(ξ2) , (7.7)

188

for some ξ2 ∈ [tk, tk+1]. Thus, using the normal velocity, uk+1
n , we have the first order

update equation with ∆t2 error

ϕk+1 =
(
ϕk + ∆tuk+1

n

)
+ ∆t2

(
∂u
∂t

(ξ) · ∇ϕk +
1

2

∂2ϕ

∂t2
(ξ2)

)
.

Now, we can replace ϕk+1 with ϕk + ∆tuk+1
n in some places to couple hk+1

ϕ to uk+1

instead of ϕk+1. We substitute all the |∇ϕk+1| terms with |∇ϕk| evaluated at the previous

time and do the same with the Dirac measure so that they are all defined on ϕk. We can thus

write nk+1
ϕ = − ∇ϕk+1

|∇ϕk+1| ≈ −
∇ϕk+∆t∇uk+1

n

|∇ϕk| . Then our semi-implicit scheme for curvature

(using ν for the outer unit normal on ∂Λ) is

∫
Λ

hk+1
ϕ θdx =

∫
Λ

div(nk+1
ϕ)θdx

= −
∫

Λ

nk+1
ϕ · ∇θdx +

∫
∂Λ

nk+1
ϕ · νθdx

=

∫
Λ

∇ϕk + ∆t∇uk+1
n

|∇ϕk| · ∇θdx−
∫
∂Λ

∇ϕk + ∆t∇uk+1
n

|∇ϕk| · νθdx,

or separating the implicit and explicit terms we have

∫
Λ

hk+1
ϕ θdx−∆t

∫
Λ

∇uk+1
n

|∇ϕk| · ∇θdx =

∫
Λ

∇ϕk
|∇ϕk| · ∇θdx (7.8)

+∆t

∫
∂Λ

∇uk+1
n

|∇ϕk| · νθdx −
∫
∂Λ

∇ϕk
|∇ϕk| · νθdx.

189

7.2.2 A semi-implicit in time splitting for Willmore flow

Again using superscripts to represent the time step, we would like to be able to calcu-

late, for all θ ∈ H1(Λ),

∫
Λ

gk+1
w θ|∇ϕk+1|dx = −ke

∫
Λ

hk+1
ϕ θ∇hk+1

ϕ · nk+1
ϕ δε(ϕ

k+1)|∇ϕk+1|dx

− ke
∫

Λ

1

2
(hk+1

ϕ)3θδε(ϕ
k+1)|∇ϕk+1|dx

− ke
∫

Λ

P [ϕk+1]∇hk+1
ϕ · ∇θδε(ϕk+1)|∇ϕk+1|dx

− ke
∫

Λ

hk+1
ϕ

P [ϕk+1]∇(|∇ϕk+1|)
|∇ϕk+1| · ∇θδε(ϕk+1)|∇ϕk+1|dx

− ke
∫

Λ

θ∇hk+1
ϕ · P [ϕk+1]∇(|∇ϕk+1|)

|∇ϕk+1| δε(ϕ
k+1)|∇ϕk+1|dx

− ke
∫

Λ

hk+1
ϕ θ

∣∣∣∣P [ϕk+1]∇(|∇ϕk+1|)
|∇ϕk+1|

∣∣∣∣2 δε(ϕk+1)|∇ϕk+1|dx.

but this is a highly non-linear system implicit in velocity and in the level set equation. We

will modify the terms as in curvature to obtain a linear first-order splitting in time. Notice

that by Lemma 5.1.3, nϕ · ∇hϕ tends to −|∇ϕnϕ|2 = 0 as nϕ → −∇d which we are

enforcing by our level set reinitialization scheme likewise Pϕ∇(|∇ϕ|) tends to 0 under

the same conditions so that the first and last three terms are being pushed to 0. Thus the

important terms are the second and third terms which we will keep implicit. The rest will

be treated fully explicitly. In order to split the second term and keep it linear, we choose to

keep one of the hk+1
ϕ implicit and the rest will be explicit. The Dirac delta terms will all be

set to explicit as well as the |∇ϕ| terms. To handle the third term, we introduce a splitting

190

so that we have a full gradient on the implicit term:

−P
[
ϕk
]
∇hk+1

ϕ · ∇θ = −∇hk+1
ϕ · ∇θ +

(
I − P

[
ϕk
])
∇hk+1

ϕ · ∇θ

≈ −∇hk+1
ϕ · ∇θ +

(
I − P

[
ϕk
])
∇hkϕ · ∇θ.

Thus our final system for gk+1
w with implicit terms on the left and explicit on the right is

∫
Λ

gk+1
w θ|∇ϕk|dx = −ke

∫
Λ

hkϕθ∇hkϕ · nkϕδε(ϕk)|∇ϕk|dx

+ke

∫
Λ

∇hk+1
ϕ · ∇θδε(ϕk)|∇ϕk|dx + ke

∫
Λ

(I − P [ϕk])∇hkϕ · ∇θδε(ϕk)|∇ϕk|dx

+ke

∫
Λ

1

2
hk+1
ϕ (hkϕ)2θδε(ϕ

k)|∇ϕk|dx − ke
∫

Λ

hkϕ
P [ϕk]∇(|∇ϕk|)
|∇ϕk| · ∇θδε(ϕk)|∇ϕk|dx

− ke
∫

Λ

θ∇hkϕ ·
P [ϕk]∇(|∇ϕk|)
|∇ϕk| δε(ϕ

k)|∇ϕk|dx

− ke
∫

Λ

hkϕθ

∣∣∣∣P [ϕk]∇(|∇ϕk|)
|∇ϕk|

∣∣∣∣2 δε(ϕk)|∇ϕk|dx.

7.2.3 Summary of semi-implicit Willmore system

Now that we have all the equations developed, we summarize the entire system. Given

(ϕk,uk, hkϕ) compute (uk+1, uk+1
n , hk+1

ϕ , gk+1
w) so that for all θ ∈ H1(Λ) and v ∈ (H1(Λ))

d,

we have uk+1 satisfying the Navier-Stokes system of Chapter 4 with the force balance term

−
∫

Γ

J2µ∇Suk+1 − pIK · nk · vdx = −
∫

Λ

gk+1
w nkϕ · v|∇ϕk|dx =

∫
Λ

gk+1
w ∇ϕk · vdx (7.9)

coupled with the following equations:

∫
Λ

uk+1
n θdx +

∫
Λ

uk+1 · ∇ϕkθdx = 0 (7.10)

191

∫
Λ

hk+1
ϕ θdx−∆t

∫
Λ

∇uk+1
n

|∇ϕk| · ∇θdx =

∫
Λ

∇ϕk
|∇ϕk| · ∇θdx (7.11)

+∆t

∫
∂Λ

∇uk+1
n

|∇ϕk| · νθdx −
∫
∂Λ

∇ϕk
|∇ϕk| · νθdx

and

∫
Λ

gk+1
w θ|∇ϕk|dx = −ke

∫
Λ

hkϕθ∇hkϕ · nkϕδε(ϕk)|∇ϕk|dx

+ke

∫
Λ

∇hk+1
ϕ · ∇θδε(ϕk)|∇ϕk|dx + ke

∫
Λ

(I − P [ϕk])∇hkϕ · ∇θδε(ϕk)|∇ϕk|dx

+ke

∫
Λ

1

2
hk+1
ϕ (hkϕ)2θδε(ϕ

k)|∇ϕk|dx − ke
∫

Λ

hkϕ
P [ϕk]∇(|∇ϕk|)
|∇ϕk| · ∇θδε(ϕk)|∇ϕk|dx

(7.12)

− ke
∫

Λ

θ∇hkϕ ·
P [ϕk]∇(|∇ϕk|)
|∇ϕk| δε(ϕ

k)|∇ϕk|dx

− ke
∫

Λ

hkϕθ

∣∣∣∣P [ϕk]∇(|∇ϕk|)
|∇ϕk|

∣∣∣∣2 δε(ϕk)|∇ϕk|dx.

These are all solved simultaneously which provides a velocity with which to advect

the levelset. There are d + 3 components which gives a 4x4-block linear algebra system.

Using the notation of Section 7.2.4 for the discrete solutions this can be written in matrix

form as

Sns 0 0 M∇ϕ

MT
∇ϕ M 0 0

0 −∆tSun M 0

0 0 keSh M|∇ϕ|

Uk+1

Uk+1
n

Hk+1

Gk+1
w

=

Fns

0

Fh

keFg

(7.13)

The matrix has a circular block structure dependence. The matrix MT
∇ϕ represents the

mapping from velocity to normal velocity and in particular contains an inner product of

velocity against ∇ϕk. The matrix M|∇ϕ| is a mass matrix with the |∇ϕk| weight. This

weight tends to 0 outside the band of interest and so we will often add a 1 to the diagonal

192

element of the row for the degrees of freedom where |∇ϕk| is too small so that discrete

coercivity is maintained. This makes the full system invertible and does not effect the

solution since the other terms on that row are integrated against δε(ϕk)|∇ϕk| which is 0

in all of these cases where we perturb the mass matrix. In the support of δε(ϕk) we are

pushing the level set function to have |∇ϕk| = 1. We proceed with this strategy under

the intuition that the mass matrix has exponential decay in dependence between degrees of

freedom based on their distance apart and the term |∇ϕk| is positive for a few more layers

of cells beyond where the support of δε(ϕk).

This matrix turns out to be rather difficult to solve numerically. The best method

that we have found for 2D simulations has been to use a parallel direct solver such as

SuperLU_DIST (see [66], [67] and [7]). This solves it in a few seconds but does require a

large amount of memory.

Remark. It is well understood in the direct solver community of computer scientists that

using a direct solver to invert a finite element approximation to the Laplacian operator on

a well behaved mesh has time (measured in flops) and space (measured in numbers to be

stored in memory) complexity as in Table 7.1. The complexity has been computed using

the method of nested dissection introduced in [68] and which has been shown to have

almost minimal complexity in [69]. In other words, even in the optimal case and using a

2D 3D
Space(fill-in) O(n log(n)) O(n4/3)

Time (flops) O(n3/2) O(n2)

Table 7.1: Time and Space complexity of inverting an n × n matrix representing finite
element approximation to Laplacian operator on a well behaved mesh with a direct solver
using method of nested dissection.

193

completely distributed parallel sparse solver, the time required to solve even the smallest

practical problems in 3D is on the order of hours per time step. For instance, if we reduce

to n = 40, 000 degrees of freedom per processor we require on the order of a minimum of

8 million flops in 2D but a minimum of 1.6 billion flops in 3D. This is either a very small

problem in 3D or requires way more processors than are available to us. end Remark.

There is currently no known preconditioner to make this feasible for an iterative solver.

The matrix is non symmetric so we must use an iterative solver like the General Minim-

imum Residual (GMRes) solver. We have attempted many approaches for the precon-

ditioner including a global Algebraic Multigrid (AMG) preconditioner an incomplete LU

(ILU(k)) and incomplete LU with thresholding (ILUT(k)), a block diagonal preconditioner

with various combinations of AMG and Symmetric Succesive Over Relaxation (SSOR),

and a Schur complement approach breaking the lumping the last 3 blocks into 1 block

since we have a good preconditioner for the Navier Stokes block. It is however fascinat-

ing that we can use a Gaussian elimination approach to reduce this block system to the

following non-block system where we first solve for velocity

(Sns + ∆tkeM∇ϕM
−1ShM

−1SunM
−1MT

∇ϕ)Uk+1

= Fns − keM∇ϕM−1Fg + keM∇ϕM
−1ShM

−1Fh

then update the other components

Uk+1
n = −M−1MT

∇ϕUk+1

Hk+1 = M−1Fh −∆tM−1SunM
−1MT

∇ϕUk+1

Gk+1
w = keM

−1Fg − keM−1ShM
−1Fh + ∆tkeM

−1ShM
−1MT

∇ϕUk+1.

This is not, however, a practical system to solve and it is not clear how to simplify it to

194

use as an approximate inverse. The Schur complement approach results in series of matrix

applications similar to this. We did find that using the ILU(k) algorithm as a preconditioner

with k large did eventually solve the system but it was too expensive in time and memory

usage to be practical.

At the current state, this algorithm is only practical for solving the Willmore (and

Canham-Helfrich) system in 2D.

7.2.4 Spatial discretization of semi-implicit Willmore flow

We will discretize the domain Λ into a mesh Th with minimal mesh size hmin as de-

fined in equation (2.17). Then we use the standard Taylor-Hood finite element space

for our velocity-pressure solutions (Uk+1, P k+1) ∈
(
Q2
(
T k+1

))d × Q1
(
T k+1

)
. We

let our levelset, normal velocity, curvature, Willmore and test functions Φk+1, (Un)k+1,

Hk+1, Gk+1
w ,Θ be in Q2

(
T k+1

)
as well. Otherwise, everything is as is described in Sec-

tion 7.2.3 where we have replaced (uk, pk, ukn, hk, gkw, ϕk) with their discrete counterparts

(Uk, P k, (Un)k , Hk, Gk
w,Φ

k) and likewise for solutions at timestep tk+1.

7.3 Sub-iterating Willmore flow scheme

Since we have been unsuccessful at finding a method for solving the semi-implicit

scheme in 3D in any reasonable time period, we will approach this problem from a new

direction. The trouble is that the Willmore force has the dominant term −∆Γhϕ where hϕ

is the total curvature. Recall that hϕ = div nϕ = − div
(
∇ϕ
|∇ϕ|

)
is a second derivative of the

levelset, so that in the continuous form, we require the 4th derivative of the levelset and

there are a number of terms that are nonlinear in hϕ. Thus using an explicit scheme is not

going to be practical. However, in each timestep, if we introduce a sub-iteration scheme

between the velocity and levelset using the current levelset to compute the energy flow

terms, for small enough timestep the levelset and velocity will work themselves forward

until they are both sitting at the new time value and it is as if we had an implicit scheme.

195

We terminate the sub-iteration step when the relative error in velocity is less than 1%. In

the beginning of simulations when velocities are extremely large this can be around 20 or

30 substeps but quickly this tends to 3 or 4 substeps once the model has run for a bit. It is

necessary to play with the time step size to find where this sub-iteration scheme is stable,

but typically we have found it to be stable around minimal meshsize hmin to the 3/2, that

is ∆t ≈ 1/3h1.5
min. This is not unreasonable since our δε has accuracy h3/2 and so this is

consistent with the previous semi-implicit model where we introduced a linear splitting in

time and also chose ∆t ∼ ch
3/2
min to match temporal and spatial errors. The benefit of this

system is that we no longer need the dim+3 components in the velocity system. We merely

need to compute the extra right hand side term corresponding to the gradient flow term

and have only the dim components of velocity. An AMG preconditioner with the GMRES

iterative method solves this system efficiently. We will discuss the computation of the right

hand side term in Section 7.3.1.1. The sub-iterating scheme is given in Algorithm 6

7.3.1 Sub-iterating scheme to approximate fully-implicit algorithm

The sub-iterating scheme computes the forces explicitly using the given levelset func-

tion. The key to why this can work is that by alternating between the velocity and the

levelset inside each timestep as in Algorithm 6, both the velocity and levelset move for-

ward until it is as if they are solving the implicitly coupled scheme at the next time value.

Since the Willmore energy term is a fourth order nonlinear term, it is somewhat finicky to

approximate explicitly. We discuss in Section 7.3.1.1 the method we use to calculate the

force, gw, from a given levelset, ϕ.

7.3.1.1 Explicit energy gradient flow right hand side

Given a levelset function, ϕ, we must compute the energy representative gw(x) defined

over Λ that can be used to calculate the Willmore energy force to be coupled with the stress

196

Algorithm 6: Sub-iterating scheme for Navier-Stokes/ Level Set system with Will-
more flow.

Data: (uk, pk, ϕk)
Result: (uk+1, pk+1, ϕk+1)

1 begin
2 uk+1,0 ← uk;
3 ϕk+1,0 ← ϕk;
4 for n = 1, . . . , MAXSUBSTEPS do
5 refine_mesh(ϕk, ϕk+1,n−1);
6 F n−1

energy ← compute_energy_rhs(ϕk+1,n−1);
7 uk+1,n ← compute_velocity

(
uk, ϕk+1,n−1, F n−1

energy

)
;

8 ϕk+1,n ← compute_levelset
(
ϕk,uk+1,n

)
;

9 if ‖Uk+1,n − Uk+1,n−1‖`2 < 0.01‖Uk+1,n−1‖`2 then
10 exit with convergence;
11 end
12 end
13 if exit with convergence then
14 uk+1 ← uk+1,n;
15 pk+1 ← compute_pressure(pk,uk+1);
16 ϕk+1 ← ϕk+1,n;
17 else
18 Error, no convergence. Increase MAXSUBSTEPS or decrease ∆t.;
19 end
20 end

jump along Γ from the Navier-Stokes system

∫
Γ

J2µ∇su− pIK · n · vdx =

∫
Λ

gwn · v|∇ϕ|dx (7.14)

197

where g ∈ L2(Λ) is defined using ϕ, nϕ = − ∇ϕ|∇ϕ| and hϕ = div(nϕ) as

∫
Λ

gwθ|∇ϕ|dx = −ke
∫

Λ

hϕθ∇hϕ · nϕδε(ϕ)|∇ϕ|dx

− ke
∫

Λ

1

2
(hϕ)3θδε(ϕ)|∇ϕ|dx

− ke
∫

Λ

Pϕ∇hϕ · ∇θδε(ϕ)|∇ϕ|dx

− ke
∫

Λ

hϕ
Pϕ∇(|∇ϕ|)
|∇ϕ| · ∇θδε(ϕ)|∇ϕ|dx

− ke
∫

Λ

θ∇hϕ ·
Pϕ∇(|∇ϕ|)
|∇ϕ| δε(ϕ)|∇ϕ|dx

− ke
∫

Λ

hϕθ

∣∣∣∣Pϕ∇(|∇ϕ|)
|∇ϕ|

∣∣∣∣2 δε(ϕ)|∇ϕ|dx.

We find that the curvature needs to be extremely smooth for gw to be meaningful.

Otherwise the velocity tends to blow up within a few sub-iterative steps. The standard

weak form for curvature, hϕ = div(nϕ), is to multiply by a test function θ ∈ H1(Λ) and

integrate by parts. Then we seek hϕ ∈ H1(Λ) such that for all θ ∈ H1(Λ)

∫
Λ

hϕθdx = −
∫

Λ

nϕ · ∇θdx +

∫
∂Λ

nϕ · νθdx

=

∫
Λ

∇ϕ
|∇ϕ| · ∇θdx−

∫
∂Λ

∇ϕ
|∇ϕ| · νθdx.

The gradient of curvature that results from this formulation when using Lagrange finite

elements of degree 2, that is hϕ, ϕ, θ ∈ Q2(T), is quite oscillatory and the resulting gw

is not good. To resolve this, we add a smoothing term to this equation that scales by the

mesh size, hmin. Since the curvature should be smooth in the tangential direction and to

avoid bleeding between the levelsets, we only apply smoothing in the tangential direction.

198

Thus we are solving for curvature that satisfies

hϕ − c∆ϕhϕ = div nϕ

with c = hmin, on the order of the meshsize. In weak form, we seek hϕ ∈ H1(Λ) such that

for all θ ∈ H1(Λ),

∫
Λ

hϕθdx + c

∫
Λ

Pϕ∇hϕ · Pϕ∇θ|∇ϕ|dx = =

∫
Λ

∇ϕ
|∇ϕ| · ∇θdx−

∫
∂Λ

∇ϕ
|∇ϕ| · νθdx.

Remark. This smoothing term adds a first order, O(hmin), consistency error to our curva-

ture computation. Thus we don’t get the full convergence rate of h3/2
min that is hoped for

when using the δε(ϕ) as in Theorem 3.3.1.

end Remark.

Remark. When we compute the curvature h = div n using the weak formulation and finite

elements, what order convergence should we expect? Suppose that ϕh ∈ Qn(Th) is a

finite element approximation of the levelset ϕ on a regular family of meshes {Th}h>0,

with meshsize h, with ‖ϕ− ϕh‖L2(Λ) + h‖∇ϕ−∇ϕh‖L2(Λ) ≤ chn+1‖ϕ‖Hk+1(Λ). Then a

heuristic to calculate the expected convergence rate of the finite element curvature Hh =

div(nh) ∈ Qk(Th) to the true curvature H = div(n) goes as follows. (Note that we have

used a capital letter for curvature to distinguish from the meshsize, h.)

‖H −Hh‖H−1(Λ) := sup
θ∈H1

0 (Λ)

|〈H −Hh, θ〉H−1(Λ)−H1(Λ)|
‖θ‖H1

0 (Λ)

= sup
θ∈H1(Λ)

|〈n− nh,∇θ〉L2(Λ)−L2(Λ)|
‖θ‖H1

0 (Λ)

≤ C‖n− nh‖L2(Λ)

Using that nh = − ∇ϕh

|∇ϕh|
, we can also expect ||∇ϕh| − 1| ≤ c1h

n and ‖n−nh‖L2(Λ) ≤ c2h
n

199

with c1, c2 constants independent of mesh size. Thus,

‖H −Hh‖H−1(Λ) ≤ chn

and so we can expect

‖H −Hh‖L2(Λ) ≤ chn−1.

So if we use ϕh ∈ Q2(Th) then we expect curvature to exhibit linear convergence in the

L2-norm. end Remark.

7.4 Comparison to other models

We have already discussed the similarities between our model and the method of

Maitre, [59], using the method of virtual power in Section 5.4. There are a couple other

models of Willmore flow worthy of noting as well.

7.4.1 A continuum surface forces approach

We have shown in Section 5.3 that the implicit scheme has energy stability. We will

now show that our model can be equated to another approach (see [70] by Laadhari, et

al) related to the use of continuum surface force technique of directly extending the force

balance equation to a narrow band against an approximate Dirac measure to calculate the

Willmore forces balance. They use a sub-iterating scheme between the levelset and veloc-

ity computation with the Willmore force right hand side and surface area constraints com-

puted explicitly from the levelset. This is similar in fashion to our sub-iterating scheme

of Section 7.3 but is not formulated using an energy flow but merely using the contin-

uum surface force approach to derive the model. As will be seen, if our levelset is such

that ∇ϕ|∇ϕ| = ∇d for d, a true distance function, then the two models are equivalent, thus

200

providing this other approach with a sense of stability per Theorem 7.1.3. Likewise, this

calculation shows that the variation of our approximate energy does in fact limit to the

variation of the exact energy functional.

Theorem 7.4.1. Let Γ be closed, Γ ∩ ∂Λ = ∅, θ ∈ H1(Λ) and ϕ = f(d(x)) so that

∇ϕ
|∇ϕ| = ∇d and∇hϕ · nϕ = −|Pϕ∇nϕ|2. Then using convergence of δε(ϕ)|∇ϕ| to δΓ,

∂Ew(ϕ)(θ|∇ϕ|) = ke

∫
Λ

(
−hϕ|Pϕ∇nϕ|2θ +

1

2
h3
ϕθ + Pϕ∇hϕ · ∇θ

)
δε(ϕ)|∇ϕ|dx

ε−lim
= ke

∫
Γ

−h|∇Γn|2θ +
1

2
h3θ +∇Γh · ∇Γθdx

= ∂ew(Γ) (θn) .

Proof. Using Theorem 5.2.1 with G = 1
2
keh

2
ϕ, we have

∂Ew(ϕ)(θ|∇ϕ|) = ke

∫
Λ

(
Pϕ∇(hϕ|∇ϕ|) · ∇(θ|∇ϕ|) +

1

2
h3
ϕθ + hϕ∇hϕ · nϕθ

)
δε(ϕ)|∇ϕ|dx

= ke

∫
Λ

(
− div(Pϕ∇hϕ) +

1

2
h3
ϕ + hϕ∇hϕ · nϕ

)
θδε(ϕ)|∇ϕ|dx

= ke

∫
Λ

(
−∆ϕhϕ +

1

2
h3
ϕ + hϕ∇hϕ · nϕ

)
θδε(ϕ)|∇ϕ|dx

As discussed in Lemma 5.1.3,∇hϕ ·nϕ does not in general reduce to something recogniz-

able and useful, but in the case that ∇ϕ|∇ϕ| = ∇d (for instance when the level set function is

a filtered distance function, ϕ(x) = f(d(x))) then we do have

∇hϕ · nϕ = −|Pϕ∇nϕ|2 = −|∇ϕnϕ|2.

201

Thus we obtain in this case

∂Ew (ϕ) (θ|∇ϕ|) = ke

∫
Λ

(
−∆ϕhϕ +

1

2
h3
ϕ + hϕ

(
−|∇ϕnϕ|2

))
θδε(ϕ)|∇ϕ|dx

= ke

∫
Λ

(
−∆ϕhϕ +

1

2
h3
ϕ − hϕ|∇ϕnϕ|2

)
θδε(ϕ)|∇ϕ|dx

ε→0
= ke

∫
Γ

(
−∆Γh+

1

2
h3 − h|∇Γn|2

)
θdx

= ∂ew (Γ) (θn) .

So when we have a level set function, ϕ(x) = f(d(x)), the variation of our energy function

Ew (ϕ) in the direction θ|∇ϕ| is a regularization of the variation of ew (Γ) in the direction

θn.

7.4.2 A level set formulation for the Willmore flow

In [71], Droske and Rumpf present a nice formulation of Willmore energy flow with

the level set function, minimizing the energy functional,

E[ϕ] =

∫
Λ

h2
ϕ|∇ϕ|dx.

This paper was some of the inspiration to look at energy flows using a smeared energy

functional. In addition, our weak form splitting for the higher order term,
∫

Λ
Pϕ∇hϕ ·

∇θδε(ϕ)dx, representing the Laplace-Beltrami of curvature was inspired by their ap-

proach, where θ ∈ H1(Λ) is a test function. Their model is purely an L2− gradient

flow algorithm under a special metric that is derived using the co-area formula. The model

equation for Willmore flow of the level set function they present is

∫
Λ

ϕtθ

|∇ϕ|dx =

∫
Λ

(
−1

2

(|∇ϕ|hϕ)2

|∇ϕ|3 ∇ϕ · ∇θ +
Pϕ∇(|∇ϕ|hϕ) · ∇θ

|∇ϕ|

)
dx. (7.15)

202

There are some similarities in the terms we obtain, but we couple the resulting forces to

the incompressible Navier-Stokes system to produce a velocity field where as they evolve

the levelset directly.

7.5 Numerical experiments and validations

We implement a few classic Willmore flow problems in 2D and reserve the 3D simula-

tions for the Canham-Helfrich model. Recall that when the forces from the Willmore flow

are coupled with the incompressible Navier-Stokes fluid we have a constant volume con-

straint implicitly being imposed. So we have here a Willmore flow with volume constraint.

It has been shown in [72] that the closed surface of genus 0 in 3 dimensions (ie, topolog-

ically similar to a sphere) with minimal bending energy is the sphere. Furthermore, the

minimal bending energy of any sphere is always 1
2

∫
Γ
h2dx = 8π, regardless of the radius.

Remark. In this dissertation, we have used the convention that h is the total curvature

defined as the sum of the principal curvatures, κ1 and κ2 at each point on the surface Γ.

Then our bending energy is defined as 1
2

∫
Γ
h2dx. Sometimes the mean curvature, defined

as the average of the principle curvatures, H = κ1+κ2

2
, is used instead, and the minimal

bending energy is reported as 1
2

∫
Γ
H2dx = 1

2

∫
Γ

(
κ1+κ2

2

)2
dx = 2π. end Remark.

In two dimensions, a circle of radius r has constant curvature, κ = 1
r

so that the

bending energy is
1

2

∫
Γ

h2dx =
1

2
(2πr)

(
1

r

)2

=
π

r
. (7.16)

We give three examples of evolutions from an ellipse shaped initial interface with different

aspect ratios between the two axes. The first is an ellipse where the x axis edge is 2 times

as long as the y axis edge, which we will refer to as a 2×1 ellipse. The second is an initial

4× 1 ellipse with one axis 4 times longer than the other. The third is an 8× 1 ellipse with

the x-axis 8 times longer than the y-axis. We evolve the Willmore flow system without

external source until steady state. We note that the magnitude of velocity is typically

203

largest in the beginning when the greatest changes in shape seem to be taking place. We

track the kinetic energy,
∫

Λ
ρ|u|2dx, the bending energy

∫
Λ

1
2
h2
ϕδε(ϕ)|∇ϕ|dx, the diffusive

energy,
∫

Λ
2µ|∇su|2dx, along with their sum, the total energy.

Due to the stability result of Theorem 7.1.3 we expect the total energy to be decreasing

overtime, however there are a few caveats. First the stability result holds for the con-

tinuous fully implicit algorithm. Given a spatial discretization of the Navier-Stokes with

Willmore flow system, it isn’t too had to see that the energy estimate holds for the implicit

semi-discrete model. Our semi-implicit model of Section 7.2 doesn’t necessarily have this

estimate and the subiterating scheme of Section 7.3 approximates the fully implicit algo-

rithm but we don’t yet have a stability estimate for the temporal discretization. Finally, the

stability estimate is best understood if we drop the diffusive energy term. Then the sum of

kinetic and Willmore energy are non-increasing, that is

∫
Λ

ρ(t)|u(t)|2dx + Ew(ϕ(t)) ≥
∫

Λ

ρ(s)|u(s)|2dx + Ew(ϕ(s)), for t ≥ s. (7.17)

We will see in the subsequent simulations and then similarly the simulations of Section 8.3

that the total energy does tend to decrease over time but there are times for instance in Fig-

ure 7.1 where after a period, the diffusive energy increases for a time but then settles

down again. This is still consistent with the stability estimate. An interesting symptom of

the pressure correction splitting of the incompressible Navier-Stokes system as described

in Chapter 4 is that the iniial conditions of the discretized system often do not perfectly

satisfy the governing equations and it takes a few steps for it to compensate and reach

equilibrium. Thus we often see some bobbles in the solutions at the beginning. We can

compensate by starting everything at 0, but then it might be prudent to ramp up the bend-

ing modulus from 0 as well. Regardless, this can lead to bobbles in the energies at the

beginning as well. Other than these two caveats, we observe that the equation 7.17 holds

204

for our discretizations as well. We will report for each simulation, the total energy and the

partial total energy consisting of the kinetic and interfacial energies only.

We also track the surface area (perimeter) of the interface and the volume of the interior

calculated using the approximate Dirac delta function, δε(ϕ) of Chapter 3 and the related

approximate Heaviside (characteristic) function of equation (4.11).

We have observed that the volume of interior region is not perfectly conserved in our

system so we provide the same simulations where we explicitly enforce the volume con-

straint. We will introduce in Chapter 8 the Newton-like approach of enforcing the sur-

face area and/or volume constraint explicitly on each time step. As will be seen, this

method does well at enforcing the volume constraints and we will show, for example in

Figure 7.15, that the steady state shapes are different when the volume constraint is not

enforced. In fact, since the system continually loses mass over time, we never reach a

steady state when the volume constraint is not being enforced. Thus it is imperative that

the volume be conserved by some manner to find accurate final shapes.

The following computations are computed using the semi-implicit Willmore scheme

described in Section 7.2. The linear algebra system is solved using the direct parallel solver

SuperLU_dist [7] version 5.1.2 accessed through the Amesos wrapper class of Trilinos [6]

version 12.10.1. The finite element system is constructed using the deal.II library [3]

version 8.5.0 with p4est [5] version 1.1 for handling the completely distributed mesh.

Everything is programmed in the C++ language. We use MPI for communicating between

the distributed processors. The number of processors is chosen to keep the maximum

number of degrees of freedom per processor between 40,000 and 120,000. By doing this,

we balance solvability of the linear algebra system and memory footprint per processor

with the overhead of passing data between the processors.

205

7.5.1 The 2× 1 ellipse in 2D

We let Λ = [−2, 2] × [−1.5, 1.5] and subdivide our initial mesh with 4 times in the x

direction and 3 times in the y direction so that each element is square. We apply 4 initial

refinements and then adaptively refine using the method of Section 2.3 with ca = 0.95

and level set parameters cd = 1.2h
3/4
min and cf = 2hmin until the maximal refinement level

is 6 and the minimal refinement level is 2. This corresponds to a minimal mesh size of

hmin = 0.0156125 and a maximal mesh size of hmax = 0.25. The starting levelset is

initialized using the approximate distance function

ϕinitial =
1

2
−
√(x

2

)2

+
(y

1

)2

. (7.18)

We apply 25 timesteps of the levelset reinitialization algorithm with linear viscosity coef-

ficient cL = 0.2 to obtain the starting levelset equation. We use a timestep of ∆t = 0.002

which is on the order of ∆t ∼ h
3/2
min. The Dirac and Heaviside widths are ε = h

3/4
min. We use

the level set reinitialization scheme as a post processing step after transport with R = 1

step of reinitialization after every T = 1 steps of transport. This is applied to keep |∇ϕ|

smooth and close to 1 on the fully refined band. The linear viscosity coefficient for this

post processing is cL = 0.1.

We use the semi-implicit Willmore scheme described in Section 7.2 for this computa-

tion with 2 MPI processors.

The bending energy (using equation (7.16)) of a circle with equivalent volume, that is

with radius r = 1
2

√
2 is π

r
=
√

2π ≈ 4.442882937.

We plot the energy, surface area and volume over time in Figure 7.1. The initial and

final shapes plotted using the characteristic function are given in Figure 7.3. The surface

has evolved to the shape of a circle. Since we can clearly see in Figure 7.1 that the capsule

is losing mass (volume) over time (mainly due to the reinitialization algorithm of the level

206

set equation of Chapter 2.2), we also include the Willmore flow with an explicit volume

constraint being enforced. We will introduce the method for doing this in Chapter 8. We

enforce the volume at any given time step to within 10−6 of the initial computed volume.

The statistics for the evolution of the 2×1 ellipse with explicit volume constraint are given

in Figure 7.2 and the shape at times t = 0 and t = 4 are given in Figure 7.4. Notice that

it has found steady state in the shape of a perfect circle, the shape with minimal bending

energy.

7.5.2 The 4× 1 ellipse in 2D

We let Λ = [−4, 4] × [−2, 2] and subdivide our initial mesh with 8 times in the x

direction and 4 times in the y direction so that each element is square. We apply 4 initial

refinements and then adaptively refine using the method of Section 2.3 with ca = 0.95

and level set filter parameters cd = 1.2h
3/4
min and cf = 2hmin until the maximal refinement

level is 6 and the minimal refinement level is 2. This corresponds to a minimal mesh size

of hmin = 0.0156125 and a maximal mesh size of hmax = 0.25. The starting levelset is

initialized using the function

ϕinitial =
1

2
−
√(x

4

)2

+
(y

1

)2

(7.19)

to approximate the distance function. We apply 25 timesteps of the levelset reinitialization

algorithm with linear viscosity coefficient cL = 0.2 to obtain the starting levelset equation.

We use a timestep of ∆t = 0.002 which is on the order of ∆t ∼ h
3/2
min. The Dirac and

Heaviside widths are ε = h
3/4
min. We use the level set reinitialization scheme as a post

processing step with R = 1 steps of reinitialization after every T = 1 steps of transport.

This is applied to keep |∇ϕ| smooth and close to 1 on the fully refined band. The linear

viscosity coefficient for this post processing reinitialization is cL = 0.1.

We use the semi-implicit Willmore scheme described in Section 7.2 for this computa-

207

Figure 7.1: The energy, surface area and volume statistics for the 2x1 ellipse with Willmore
force.

208

Figure 7.2: The energy, surface area and volume statistics for the 2x1 ellipse with Willmore
force and explicit volume constraint.

209

Figure 7.3: The initial and final shapes of 2 × 1 ellipse with Willmore flow at t = 0 and
t = 2.

Figure 7.4: The initial and final shapes of 2 × 1 ellipse with Willmore flow and explicit
volume constraint at t = 0 and t = 4.

210

tion with 4 MPI processors.

The bending energy (using equation (7.16)) of a circle with equivalent volume, that is

with radius r = 1
2

√
4 = 1 is π

r
= π ≈ 3.1415926.

The energies for this 4 × 1 ellipse and the volume and surface area are given in Fig-

ure 7.5. The initial and final states are given in Figure 7.6. The profile initially tends

toward a local minimum in the shape of a dog bone but as time goes on, enough volume is

lost to be able to exit this local minimum toward the circular shape.

We also display the energies, surface area and volume for the Willmore flow of the

4 × 1 ellipse with the volume constraint explicitly enforced to accuracy of 10−6 as per

Chapter 8 in Figure 7.7. The initial and final shapes are displayed in Figure 7.8 and some

plots of the velocity field through the evolution are given in Figure 7.9. It appears that the

evolution with volume constraint got stuck in a local minimum since the bending energy

of the circle with an equivalent volume is π which is smaller than the final bending energy

here of around 6. Notice that when the volume constraint is enforced, we do not get the

same steady state shape as without.

7.5.3 The 8× 1 ellipse in 2D

We let Λ = [−6, 6] × [−3, 3] and subdivide our initial mesh with 12 times in the x

direction and 6 times in the y direction so that each element is square. We apply 4 initial

refinements and then adaptively refine using the method of Section 2.3 with ca = 0.95

and level set parameters cd = 1.2h
3/4
min and cf = 2hmin until the maximal refinement level

is 6 and the minimal refinement level is 2. This corresponds to a minimal mesh size of

hmin = 0.0156125 and a maximal mesh size of hmax = 0.25. The starting levelset is

initialized using the function

ϕinitial =
1

2
−
√(x

8

)2

+
(y

1

)2

(7.20)

211

Figure 7.5: The energy, surface area and volume statistics for the 4x1 ellipse with Willmore
force.

212

Figure 7.6: The shapes of 4× 1 ellipse with Willmore flow are displayed at t = 0, t = 0.2,
t = 2.0, t = 4.0 and t = 6.0 (from left to right and top to bottom). It appears to be
converging toward the final profile of a circle with bending energy, π.

213

Figure 7.7: The energy, surface area and volume statistics for the 4x1 ellipse with Willmore
force and explicit volume constraint.

214

Figure 7.8: The initial and final shapes of 4 × 1 ellipse with Willmore flow with volume
constraint at t = 0 and t = 6.

215

Figure 7.9: The velocity field of 4 × 1 ellipse with Willmore flow and explicit volume
constraint at (from top to bottom) t = 0.002, t = 0.02, t = 0.4 and t = 2.0.

216

to approximate the distance function. We apply 25 timesteps of the levelset reinitialization

algorithm with linear viscosity coefficient cL = 0.2 to obtain the starting levelset equation.

We use a smaller timestep, ∆t = 0.001, than for the previous cases since the velocities are

correspondingly larger in the beginning. This is still on the order of ∆t ∼ h
3/2
min. The Dirac

and Heaviside widths are ε = h
3/4
min. We use the level set reinitialization scheme as a post

processing step after transport with R = 1 step of reinitialization after every T = 1 steps

of transport. This is applied to keep |∇ϕ| smooth and close to 1 on the fully refined band.

The linear viscosity coefficient for this post processing is cL = 0.1.

We use the semi-implicit Willmore scheme described in Section 7.2 for this computa-

tion with 4 MPI processors.

The bending energy (using equation (7.16)) of a circle with equivalent volume, that is

with radius r = 1
2

√
8 =
√

2 is π
r

= π√
2
≈ 2.22144146.

The energies for this 8 × 1 ellipse and the volume and surface area are given in Fig-

ure 7.10. The initial and final states are given in Figure 7.11. It appears that the evolution

got stuck in a local minimum since the energy of the circle with an equivalent volume is

π√
2

which is smaller than the final bending energy here.

We also display the energies, surface area and volume for the Willmore flow of the

8 × 1 ellipse with the volume constraint explicitly enforced to accuracy of 10−6 as per

Chapter 8 in Figure 7.7. The Heaviside function for the initial, some intermediate and the

final shape are displayed in Figure 7.13. The velocity fields showing how the Willmore

forces induce a rotating field are also displayed in Figure 7.14. We can see in Figure 7.15

by directly comparing the final states that enforcing the volume constraint has a big effect

on the steady state shape and is indeed vital to understand the minimal energy shapes.

217

Figure 7.10: The energy, surface area and volume statistics for the 8 × 1 ellipse with
Willmore force.

218

Figure 7.11: The initial and final shapes of 8×1 ellipse with Willmore flow at t = 0.0 and
t = 10.0.

219

Figure 7.12: The energy, surface area and volume statistics for the 8 × 1 ellipse with
Willmore force and explicit volume constraint.

220

Figure 7.13: The shapes of 8×1 ellipse with Willmore flow and explicit volume constraint
at (top to bottom) t = 0.0, t = 1.0, t = 3.0 and t = 6.0. By t = 6.0 we have reached a
steady state shape.

221

Figure 7.14: The velocity field of 8 × 1 ellipse with Willmore flow and explicit volume
constraint at (from top to bottom) t = 0.5, t = 1.0, t = 3.0 and t = 10.0.

222

Figure 7.15: A comparison of the final shape for 8×1 ellipse with and without the volume
constraint being explicitly enforced. Without enforcing the volume constraint, mass is
lost over time leading to a different steady state shape. The wider one is with the volume
constraint being enforced.

223

8. ENERGY FLOW APPLICATION: CANHAM-HELFRICH FLOW

The final application of our energy flow will be the Canham-Helfrich energy which

is the bending energy defined in Chapter 7 combined with a surface area and volume

constraint.

At the continuous level, the forces from the two-phase flow will balance with the Will-

more force on Γ and the surface area and volume constraints with Lagrange multipliers

λsa, λv ∈ R to enforce the constraints,

∫
Γ

(Jµ∇su− pK · n) · vdx = −ke∂ew(Γ)(v)− λsa∂esa(Γ)(v)− λv∂ev(Γ)(v)

where ew(Γ) is the Willmore energy functional defined in equation (7.1), ea(Γ) is the

surface area functional,

esa(Γ) =

∫
Γ

1dx−
∫

Γ0

1dx

and ev(Γ) is the volume functional, using Ω the interior region with ∂Ω = Γ and the

divergence theorem,

ev(Γ) =

∫
Ω

dx−
∫

Ω0

dx =
1

d

∫
Γ

x · ndx− 1

d

∫
Γ0

x · ndx.

Following the pattern of Chapter 5, we replace the exact surface area and volume

functionals with their approximate counterparts using the smeared Dirac delta function.

Thus, we introduce the approximate surface area constraint functional as

Esa(ϕ) =

∫
Λ

δε(ϕ)|∇ϕ|dx− A0, (8.1)

where A0 is the approximate surface area of the initial surface defined by ϕ0, and the

224

approximate volume constraint functional as

Ev(ϕ) =

∫
Λ

Hε(ϕ)dx− V0, (8.2)

where V0 is the volume of the initial surface and Hε(ϕ) is the approximate Heaviside

(characteristic) function of equation (4.11). Then using the scalar Lagrange multipliers

λsa, λv ∈ R which will be chosen to enforce the surface area and volume constraints

respectively and using the Willmore energy Ew(ϕ) of equation (7.2), we have the approx-

imate Canham-Helfrich energy,

Ech(ϕ, λsa, λv) : = Ew(ϕ) + λsaEsa(ϕ) + λvEv(ϕ) (8.3)

=
ke
2

∫
Λ

h2
ϕδε(ϕ)|∇ϕ|dx

+ λsa

(∫
Λ

δε(ϕ)|∇ϕ|dx− A0

)
+ λv

(∫
Λ

Hε(ϕ)dx− V0

)
. (8.4)

This Canham-Helfrich energy is used to model the flow of blood cells and is a dominant

component of the dynamics for any lipid bilayer vesicle or membrane in the short time

frame. That is on the time frame where osmosis through the cell is minimal or the folding,

deletion or addition of membrane surface is not occurring.

It was observed in [73] and [74] that the bending energy minimizing shape of a vesicle

including the shapes of stomatocytes, oblate and prolate ellipsoids, can be directly linked

to a parameter called the reduced volume, Vred, defined as

Vred :=
V

4πR3
0/3
≤ 1 (8.5)

where V is the volume of the cell and R0 is the radius of the sphere of equivalent surface

225

area,

A = 4πR2
0. (8.6)

Interestingly, the minimal bending energy absent a volume or surface area constraint in 3

dimensions becomes a sphere, when Vred = 1, but common shapes of vesicles observed

in nature like prolate ellipsoids, dumbbells, oblate ellipsoids, discocytes and stomatocytes

are the minimal bending energies for other fixed values of Vred < 1. See [74] for many

fascinating phase diagrams relating the shapes of the minimizing bending energy surfaces

to parameters like spontaneous curvature, reduced volume and various types of up-down

symmetries/asymmetries. This fact has motivated our choice of initial profile shapes in

the numerical results section, Section 8.3. We choose initial shapes to be an ellipsoid

with various relative ratios of length of major and minor axes that have reduced volume,

Vred < 1. These should evolve toward the discocytes or dumbbell shapes in 2D and 3D.

We will now describe an algorithm for enforcing the surface area and/or volume con-

straints at each time step. This allows us to model the Canham-Helfrich energy when

added to the algorithms of minimizing Willmore energy of Chapter 7. The algorithm con-

sists of a Newton-like iteration for λsa and λv to enforce Esa(ϕ) = 0 and/or Ev(ϕ) = 0.

The algorithm will be described in Section 8.2 and then some simulations of the Canham-

Helfrich flow in 2D and 3D will be provided in Section 8.3.

8.1 Volume constraints

Observe that when we couple the Willmore forces to the incompressible Navier-Stokes

system (4.1), the pressure variable is already acting as a Lagrange multiplier for the vol-

ume constraint. That is, our velocity is pushed by the pressure toward being divergence

free, thereby imposing a volume constraint on the solution over time. Thus, we do not

need to explicitly enforce again the volume constraint as we will the surface area con-

straint. However, we have observed that the level set reinitialization scheme introduces

226

mass loss so that explicitly enforcing the volume constraint may still be a useful option

for longer simulations. We have already observed in Figure 7.15 of Chapter 7 that the vol-

ume loss does affect the steady state shape and so we recommend that explicitly enforcing

the volume constraint is a necessary component of this algorithm. To this end, we will

discuss the implementation of the volume constraint in conjunction with the surface area

constraint.

8.2 Surface area and volume constraints

We will now describe the method of choosing λsa, λv ∈ R and incorporate the con-

straint forces into the Navier-Stokes system.

8.2.1 Variation of surface area functional

Notice that the surface area energy functionals is similar to the surface tension func-

tionals of Chapter 6. We can thus compute that the shape variation of esa (Γ) under velocity

field v is

∂esa(Γ)(v) =

∫
Γ

hn · vdx

and using Theorem 5.2.1 with G(x, h) = 1 and θ = n · v, we have

∂Esa(ϕ)(n · v|∇ϕ|) =

∫
Λ

hϕnϕ · vδε(ϕ)|∇ϕ|dx.

8.2.2 Variation of volume functional

Following the approaches of Chapter 6, we compute the variation of the volume func-

tional.

Theorem 8.2.1. Given θ ∈ H1(Λ), and assuming that δε(ϕ) = 0 on ∂Λ, then the variation

227

of the volume constraint in the direction ϕt = θ|∇ϕ| is

∂Ev(ϕ)(θ|∇ϕ|) =

∫
Λ

δε(ϕ)|∇ϕ|θdx. (8.7)

Proof. We compute the variation, using H ′ε(ϕ) = δε(ϕ) to be

∂Ev(ϕ)(θ|∇ϕ|) =
∂

∂η
Ev (ϕ+ ηθ|∇ϕ|)

∣∣∣∣
η=0

=

∫
Λ

∂

∂η
(Hε(ϕ+ ηθ|∇ϕ|)

∣∣∣∣
η=0

dx

=

∫
Λ

H ′ε(ϕ)θ|∇ϕ|dx

=

∫
Λ

δε(ϕ)|∇ϕ|θdx

Thus, using θ = v · n, we are varying in the direction ϕt = v · n|∇ϕ|

∂Ev(ϕ)(v · n|∇ϕ|) =

∫
Λ

δε(ϕ)|∇ϕ|v · ndx. (8.8)

Remark. Note that this is equivalent to the variation of the true volume functional in the

direction xt = v,

∂ev(Γ)(v) =

∫
Γ

v · ndx (8.9)

which can be computed using standard shape calculus techniques as in [57]. end Remark.

228

8.2.3 Linearization of system with constraints

Our force balance relationship for Navier-Stokes with Willmore flow and constrained

surface area and volume is

∫
Γ

J2µ∇su− pIK · n · vdx = −ke∂Ew(ϕ)(nϕ · v|∇ϕ|)

− λsa∂Esa(ϕ)(nϕ · v|∇ϕ|)− λv∂Ev(ϕ)(nϕ · v|∇ϕ|).

Note that λsa and λv are unknown variables and multiplied by terms containing curvature

and the level set, making this is a nonlinear term. When solving for the solutions at time

tk+1, we will linearize the surface area and volume constraints by keeping λsa = λk+1
sa and

λv = λk+1
v implicit, but the terms in the energy variations explicit,

λk+1
sa ∂Esa(ϕ

k)(nkϕ · v|∇ϕk|) = λk+1
sa

∫
Λ

δε(ϕ
k)|∇ϕk|hkϕv · nkϕdx. (8.10)

and

λk+1
v ∂Ev(ϕ

k)(nkϕ · v|∇ϕk|) = λk+1
v

∫
Λ

δε(ϕ
k)|∇ϕk|v · nkϕdx. (8.11)

Since λk+1
sa and λk+1

v are still unknown, we will now discuss the manner in which we

will compute them at each time step. The full algorithm is described in Section 8.2.6.

In Section 8.2.4, we will discuss the use of the semi-implicit Willmore algorithm of Sec-

tion 7.2 to compute the terms needed in Section 8.2.6. In Section 8.2.5, we will discuss the

use of the sub-iterating Willmore algorithm of Section 7.3 to compute the terms needed in

Section 8.2.6.

229

8.2.4 Semi-implicit Canham-Helfrich algorithm

We denote by

Ans+w((uk+1, pk+1, uk+1
n , hk+1

ϕ , gk+1
w), (v, q, θun , θh, θg);ϕk),

the bilinear form related to our linearized semi-implicit splitting of the two-phase flow

incompressible Navier-Stokes system with Willmore forces as discussed in Chapter 4 and

Section 7.2. We have denoted the explicit dependence on the previous level set, ϕk to

remind us that we are computing these terms on the explicit surface, Γk defined by ϕk. We

also denote by

F ((v, q, θun , θh, θg), λsa, λv;ϕk) := Fns+w((v, q, θun , θh, θg);ϕk)

+ λsaFsa((v, q, θun , θh, θg);ϕk) (8.12)

+ λvFv((v, q, θun , θh, θg);ϕk),

the right hand side of the Navier-Stokes with Willmore flow and constraints, where fol-

lowing Section 8.2.3, the terms

Fsa((v, q, θun , θh, θg);ϕk) = −∂Esa(ϕk)(v · nkϕ|∇ϕk|)

= −
∫

Λ

hkϕδε(ϕ
k)|∇ϕk|v · nkdx (8.13)

=

∫
Λ

hkϕδε(ϕ
k)v · ∇ϕkdx

230

and

Fv((v, q, θun , θh, θg);ϕk) = −∂Ev(ϕk)(v · nkϕ|∇ϕk|)

= −
∫

Λ

δε(ϕ
k)|∇ϕk|v · nkdx (8.14)

=

∫
Λ

δε(ϕ
k)v · ∇ϕkdx

are the right hand sides representing the constraint variations of equation (8.10) and equa-

tion (8.11). Notice that the previous curvature has been computed and is available as data

for surface area right hand side, Fsa. Given λsa and λv, we seek a solution

(uk+1, pk+1, uk+1
n , hk+1

ϕ , gk+1
w)

to the system

Ans+w((uk+1, pk+1,uk+1
n , hk+1

ϕ , gk+1
w), (v, q, θun , θh, θg);ϕk) (8.15)

= F ((v, q, θun , θh, θg), λsa, λv;ϕk).

Remark. The method of choosing λsa and λv will be described in Section 8.2.6. end

Remark.

Using the linearity ofAns+w and the explicitness of the constraint variations in the right

hand sides Fsa and Fv, we can decompose our total velocity uk+1 into three velocity terms:

the first consisting of the velocity from the Navier-Stokes with the Willmore system and

the second and third velocities from the surface area constraint and the volume constraint

respectively,

uk+1 = uk+1
ns+w + λsauk+1

sa + λvuk+1
v .

Since we have designed the system to be linear in velocity, we can compute each of the

231

three velocities separately and the add them using the superposition principle. The bilinear

form is exactly the same for each case and only needs to be assembled once but the right

hand sides will be different.

First we compute the solution set, (uk+1
ns+w, p

k+1
ns+w, (un)k+1

ns+w, h
k+1
ns+w, (gw)k+1

ns+w) such that

for all test functions (v, q, θun , θh, θg) defined in their appropriate spaces,

Ans+w((uk+1
ns+w,p

k+1
ns+w, (un)k+1

ns+w, h
k+1
ns+w, (gw)k+1

ns+w), (v, q, θun , θh, θg);ϕk) (8.16)

= Fns+w((v, q, θun , θh, θg);ϕk),

representing the coupling of the Navier-Stokes equation and Willmore forces as described

in Chapter 7.2.

Next we compute the surface area constraint solution set,

(uk+1
sa , pk+1

sa , (un)k+1
sa , hk+1

sa , (gw)k+1
sa)

such that for all test functions (v, q, θun , θh, θg) defined in their appropriate spaces,

Ans+w((uk+1
sa , pk+1

sa ,(un)k+1
sa , hk+1

sa , (gw)k+1
sa), (v, q, θun , θh, θg);ϕk) (8.17)

= Fsa((v, q, θun , θh, θg);ϕk, hk).

Finally, the velocity constraint solutions, (uk+1
v , pk+1

v , (un)k+1
v , hk+1

v , (gw)k+1
v) solves the

system

Ans+w((uk+1
v , pk+1

v ,(un)k+1
v , hk+1

v , (gw)k+1
v), (v, q, θun , θh, θg);ϕk) (8.18)

= Fv((v, q, θun , θh, θg);ϕk)

for all test functions (v, q, θun , θh, θg) defined in their appropriate spaces.

232

We solve for each of these three solution sets before we begin searching for the La-

grange multipliers λk+1
sa and λk+1

v .

Remark. Notice that all of these systems use the same matrix representation but different

right hand sides. Thus using a direct solver, we can compute all the solutions with the

same LU decomposition. In other words, we do not add any complexity by adding in

these additional systems to be solved. end Remark.

We will see in Section 8.2.6 that we will need the uk+1
sa and uk+1

v velocities to compute

the optimal λk+1
sa and λk+1

v for enforcing the surface area and volume constraint.

Remark. Notice that if we are only using one of the constraints, we only need to compute

the appropriate right hand side and velocity. We will give the algorithm for using both,

but it is simple to drop one of the constraints by not computing the data and setting the

Lagrange multiplier to 0 if it is not being used. end Remark.

8.2.5 Sub-iterating Canham-Helfrich algorithm

In the case of the sub-iterating scheme, we have a little more complication because of

the sub-iterating algorithm of Section 7.3. The system for each sub-iterating step, n > 0

solves

Ans+w((uk+1,n+1, pk+1,n+1), (v, q);ϕk+1,n) = F ((v, q), λsa, λv;ϕk+1,n, ϕk)

where we denote by Ans+w, the bilinear form implementing the sub-iterating two-phase

flow incompressible Navier-Stokes scheme with Willmore flow of Chapter 4 and Sec-

tion 7.3. We have denoted the right hand side of the Navier-Stokes with Willmore flow

233

and constraints following Section 8.2.3 as

F ((v, q), λsa, λv;ϕk+1,n, ϕk) = Fns+w((v, q);ϕk+1,n)

+ λsaFsa((v, q);ϕk) (8.19)

+ λvFv((v, q);ϕk),

where the terms

Fsa((v, q);ϕk) = −∂Esa(ϕk)(v · nkϕ|∇ϕk|)

= −
∫

Λ

hkϕδε(ϕ
k)|∇ϕk|v · nkdx (8.20)

=

∫
Λ

hkϕδε(ϕ
k)v · ∇ϕkdx

and

Fv((v, q);ϕk) = −∂Ev(ϕk)(v · nkϕ|∇ϕk|)

= −
∫

Λ

δε(ϕ
k)|∇ϕk|v · nkϕdx (8.21)

=

∫
Λ

δε(ϕ
k)v · ∇ϕkdx

are the right hand sides representing the constraint variations of equation (8.10) and equa-

tion (8.11). Notice that we use ϕk+1,n in the Navier-Stokes with Willmore flow bilinear

form and right hand side, but the explicit term ϕk for the constraints right hand side. In the

course of computing the Willmore forces, the curvature term, hkϕ, has also be computed

based on ϕk and so is available as data for the surface area constraint.

Using the linearity of Ans+w and the explicitness of our constraint variations, we can

decompose our total velocity into three velocity terms: the first consisting of the velocity

234

from the Navier-Stokes with Willmore flow and the second and third velocities from the

surface area constraint and the volume constraint respectively,

uk+1 = uk+1
ns+w + λsauk+1

sa + λvuk+1
v .

The sub-iterating scheme is applied only on the Navier-Stokes with Willmore flow

bilinear form and right hand side so we can first use the sub-iterating scheme to solve for

the final (uk+1,n+1
ns+w , pk+1,n+1

ns+w) and ϕk+1,n+1
ns+w as described in Section 7.3 solving

Ans+w((uk+1,n+1
ns+w , pk+1,n+1

ns+w), (v, q);ϕk+1,n
ns+w) = Fns+w((v, q);ϕk+1,n

ns+w). (8.22)

for all test functions (v, q) in their appropriate velocity and pressure spaces. Once we

have the final sub-iterating bilinear form and velocity solution uk+1
ns+w = uk+1,n+1

ns+w , we can

solve for the constraint velocities (uk+1
sa , pk+1

sa) (using the existing matrix representation of

Ans+w(·, ·;ϕk+1,n
ns+w)) as solution to

Ans+w((uk+1
sa , pk+1

sa), (v, q);ϕk+1,n
ns+w) = Fsa((v, q);ϕk). (8.23)

for all test functions (v, q). Finally we also compute (uk+1
v , pk+1

v) such that for all test

functions (v, q),

Ans+w((uk+1
v , pk+1

v), (v, q);ϕk+1,n
ns+w) = Fv((v, q);ϕk). (8.24)

We solve for these three terms before we begin searching for the Lagrange multipliers

λk+1
sa and λk+1

v .

Remark. Notice that all of these systems use the same matrix representation but differ-

ent right hand sides. The Willmore term is treated internally as an explicit force so the

235

system matrix is the matrix of Chapter 4 for which the Algebraic Multi-grid (AMG) pre-

conditioner solves this system well in conjunction with the General Minimum Residual

(GMRes) solver. Solving for the three velocities does not increase the complexity over

just solving for one. end Remark.

We will see in Section 8.2.6 that we will need the uk+1
sa and uk+1

v velocities to compute

the optimal λk+1
sa and λk+1

v for enforcing the surface area and volume constraint.

Remark. Notice that if we are only using one of the constraints, we only need to compute

the appropriate right hand side and velocity. We will give the algorithm for using both,

but it is simple to drop one of the constraints by not computing the data and setting the

Lagrange multiplier to 0 if it is not being used. end Remark.

8.2.6 The Newton-like algorithm for enforcing constraints

We assume from this point forward that the velocities uk+1
ns+w, uk+1

sa and uk+1
v have

already been computed using the appropriate Navier-Stokes with Willmore force algorithm

as in Sections 8.2.4 or 8.2.5.

We now introduce the algorithm for selecting the pair (λsa, λv) at each time step. We

will compute it as a zero of the function

f (λsa, λv) :=

 ∫
Λ
δε(ϕ)|∇ϕ|dx− A0∫
Λ
Hε(ϕ)dx− V0

 =

 Esa(ϕ)

Ev(ϕ)

 (8.25)

where the dependence on (λsa, λv) is through the level set function ϕ = ϕ(λsa, λv). Note

that our velocity field, u has a linear dependence on λsa and λv as seen in our decompo-

sition, u = uns+w + λsausa + λvuv, and the level set function advects according to the

velocity u, so that we have the relationship

ϕt + (uw + λsausa + λvuv) · ∇ϕ = 0. (8.26)

236

Linearizing at time tk with implicit velocity field uk+1 as per equation (7.7), we have

ϕk+1 ≈ ϕk −∆t
(
uk+1
w + λsauk+1

sa + λvuk+1
v

)
· ∇ϕk. (8.27)

Thus we can consider the level set function, ϕk+1 to have a linear relationship with respect

to λsa and λv. Furthermore, we compute

dϕk+1

dλsa
≈ −∆tuk+1

sa · ∇ϕk (8.28)

and
dϕk+1

dλv
≈ −∆tuk+1

v · ∇ϕk. (8.29)

Supposing that ϕk+1 is the solution at time tk+1 from previous solution ϕk evolving

under the velocity field

uk+1 = uk+1
ns+w + λsauk+1

sa + λvuk+1
v ,

then the Jacobian of the function f(λsa, λv) is

Df(λsa, λv) :=

 ∂Esa(ϕk+1)
∂λsa

∂Esa(ϕk+1)
∂λv

∂Ev(ϕk+1)
∂λsa

∂Ev(ϕk+1)
∂λv

 . (8.30)

If we define the Clement interpolants, (usa)
k+1
n := Icl

(
uk+1
sa · ∇ϕk

)
and (uv)

k+1
n :=

237

Icl
(
uk+1
v · ∇ϕk

)
, then we can compute an approximation to the Jacobian terms as

∂Esa(ϕ
k+1)

∂λsa
= −∆t

∫
Λ

δ′ε(ϕ
k+1)|∇ϕk+1|(usa)k+1

n + δε(ϕ
k+1)

∇ϕk+1

|∇ϕk+1| · ∇(usa)
k+1
n dx

(8.31)

∂Esa(ϕ
k+1)

∂λv
= −∆t

∫
Λ

δ′ε(ϕ
k+1)|∇ϕk+1|(uv)k+1

n + δε(ϕ
k+1)

∇ϕk+1

|∇ϕk+1| · ∇(uv)
k+1
n dx

(8.32)

∂Ev(ϕ
k+1)

∂λsa
= −∆t

∫
Λ

δε(ϕ
k+1)uk+1

sa · ∇ϕkdx (8.33)

∂Ev(ϕ
k+1)

∂λv
= −∆t

∫
Λ

δε(ϕ
k+1)uk+1

v · ∇ϕkdx. (8.34)

This is true since we can take the partial derivative ∂Esa(ϕk+1)
∂λ

for λ = λsa or λ = λv,

so that

∂Esa(ϕ
k+1)

∂λ
=

∫
Λ

∂

∂λ

(
δε(ϕ

k+1)|∇ϕk+1|
)
dx

=

∫
Λ

δ′ε(ϕ
k+1)

∂ϕk+1

∂λ
|∇ϕk+1|+ δε(ϕ

k+1)
∇ϕk+1

|∇ϕk+1|∇
(
∂ϕk+1

∂λ

)
dx

and

∂Ev(ϕ
k+1)

∂λ
=

∫
Λ

∂

∂λ

(
Hε(ϕ

k+1)
)
dx

=

∫
Λ

H ′ε(ϕ
k+1)

∂ϕk+1

∂λ
dx

=

∫
Λ

δε(ϕ
k+1)

∂ϕk+1

∂λ
dx.

Now using the approximations to the ∂ϕk+1

∂λ
terms in equations (8.28) and (8.29), and noting

that since we must take the gradient of these terms, we can apply the Clement interpolant

to the scalar terms ∂ϕk+1

∂λ
which maps them into H1(Λ), we obtain the result.

238

We will use a Newton-like iteration on f(λsa, λv) to find the zero of f at (λk+1
sa ;λk+1

v).

The very first step of evolution, we will initialize with λ0
sa = 0 and λ0

v = 0 and then to

move from timestep tk to time step tk+1 with k ≥ 0, we initialize the Newton method with

(λk+1,0
sa , λk+1,0

v) = (λksa, λ
k
v). Then for n = 0, . . . ,MAXITER we compute

 λk+1,n+1
sa

λk+1,n+1
v

 =

 λk+1,n
sa

λk+1,n
v

−Df(λk+1,n
sa , λk+1,n

v)−1f(λk+1,n
sa , λk+1,n

v) (8.35)

where following equation (8.25), f is defined as

f
(
λk+1,n
sa , λk+1,n

v

)
=

 ∫
Λ
δε(ϕ

k+1,n)|∇ϕk+1,n|dx− A0∫
Λ
Hε(ϕ

k+1,n)dx− V0

 (8.36)

and the Jacobian Df as in equation (8.30) using ϕk+1 = ϕk+1,n. Once we have achieved∣∣f (λk+1,n
sa , λk+1,n

v

)∣∣ < TOL, we finish the sub-iteration and move on to the next time step.

We will typically choose TOL = O(h
3/2
min) so that the constraint errors are consistent with

the use of δε(ϕ) to compute them. See Theorem 3.3.1 for more details on the convergence

rates of our approximate Dirac delta function.

A pseudo code summary for the linearized constraint algorithm using the semi-implicit

algorithm for computing the Willmore flow is given in Algorithm 7 which also uses Al-

gorithm 9 to describe the Newton-like algorithm for choosing the Lagrange multipliers.

Likewise a psuedo-code summary for the linearized constraint algorithm using the sub-

iterating Willmore scheme is given in Algorithm 8 which also uses Algorithm 9 to break

the sub-iteration scheme and Newton-like algorithm into distinct pieces.

Remark. When using the pressure correction algorithm for the Navier-Stokes system, the

pressure update can in fact be deferred until after the Lagrange multipliers have been

found and the final velocity, uk+1 = uk+1
ns+w + λk+1

sa uk+1
sa + λk+1

v uk+1
v , has been set. Doing

239

this saves us from solving the pressure update system (a Poisson equation) 3 separate

times and then adding them together like the velocity. Since the system is linear, there

is no problem doing either approach but the deferred pressure correction method is more

efficient. We use the deferred pressure update in the sub-iterating Algorithm 8 where we

have denoted the pressure update algorithm as compute_pressure(pk,uk+1). In the semi-

implicit scheme we have not used the deferred pressure update but it can be done just the

same. end Remark.

240

Algorithm 7: The Newton-like method for imposing constraints on the Navier-
Stokes system with the semi-implicit Willmore flow algorithm.

Data: (uk, pk, ukn, hk, gk, ϕk, λksa, A0, λ
k
v , V0,MAXITER, TOL)

Result: (uk+1, pk+1, uk+1
n , hk+1, gk+1, ϕk+1, λk+1

sa , λk+1
v)

1 begin
2 /* Using (uk, pk, ukn, h

k, gk, ϕk) compute Ans+w, Fns+w, Fsa and
Fv, the Navier-Stokes with semi-implicit Willmore
system matrix and right hand side, the surface
area right hand side and the volume right hand
side of equations (8.16), (8.17) and (8.18). */

3 /* Compute the intermediate components (uk+1
ns+w,

pk+1
ns+w,(un)k+1

ns+w, hk+1
ns+w, gk+1

ns+w), (uk+1
sa , pk+1

sa , (un)k+1
sa , hk+1

sa ,
gk+1
sa) and (uk+1

v , pk+1
v , (un)k+1

v , hk+1
v , gk+1

v) from these
three systems. */

4 /* Using Algorithm 9, update Lagrange multipliers.

*/
5

(
λk+1
sa , λk+1

v

)
←

update_lagrange_multipliers
(
uk+1
ns+w, λ

k
sa,uk+1

sa , λkv ,uk+1
v , ϕk, A0, V0

)
;

6 if exit with convergence of Newton’s method then
7 /* Transfer solutions to prepare for next step */

8 uk+1 ← uk+1
ns+w + λk+1

sa uk+1
sa + λk+1

v uk+1
v ;

9 uk+1
n ← (un)k+1

ns+w + λk+1
sa (un)k+1

sa + λk+1
v (un)k+1

v ;
10 pk+1 ← pk+1

ns+w + λk+1
sa pk+1

sa + λk+1
v pk+1

v

11 hk+1 ← hk+1
ns+w + λk+1

sa hk+1
sa + λk+1

v hk+1
v

12 gk+1 ← gk+1
ns+w + λk+1

sa gk+1
sa + λk+1

v gk+1
v

13 ϕk+1 ← transport(ϕk,uk+1);
14 end
15 end

241

Algorithm 8: The Newton-like method for imposing constraints on the sub-iterating
Navier-Stokes/Level Set system with Willmore flow.

Data: (uk, pk, ϕk, λksa, λkv)
Result: (uk+1, pk+1, ϕk+1, λk+1

sa , λk+1
v)

1 begin
2 uk+1,0

ns+w ← uk;
3 ϕk+1,0

ns+w ← ϕk;
4 for n = 0, . . . , MAXSUBSTEPS do
5 refine_mesh(ϕk, ϕk+1,n); /* ensure mesh is fully refined

in band around both solutions */

6 F n
energy ← compute_energy_rhs(ϕk+1,n

ns+w);

7 uk+1,n+1
ns+w ← compute_velocity

(
uk, ϕk+1,n

ns+w , F
n
energy

)
;

8 ϕk+1,n+1
ns+w ← compute_levelset

(
ϕk,uk+1,n+1

ns+w

)
;

9 /* Use coefficient vectors, Uns+w, to measure
convergence of sub-iterating scheme */

10 if ‖Uk+1,n+1
ns+w − Uk+1,n

ns+w‖`2 < 0.01‖Uk+1,n
ns+w‖`2 then

11 exit sub-iteration scheme with convergence;
12 end
13 end
14 if exit sub-iteration scheme with convergence then
15 uk+1

ns+w ← uk+1,n+1
ns+w ;

16 ϕk+1
ns+w ← ϕk+1,n+1

ns+w ;
17 /* Begin Newton iteration */
18

(
F k+1
sa , F k+1

v

)
← compute_constraint_rhs(ϕk);

19
(
uk+1
sa ,uk+1

v

)
← compute_constraint_velocity(uk+1

ns+w, ϕ
k+1
ns+w, F

k+1
sa , F k+1

v);
20 /* Using Algorithm 9, update Lagrange multipliers

*/
21

(
λk+1
sa , λk+1

v

)
←

update_lagrange_multipliers
(
uk+1
ns+w, λ

k
sa,uk+1

sa , λkv ,uk+1
v , ϕk, A0, V0

)
;

22 if exit with convergence of Newton’s method then
23 /* Update final solution */

24 uk+1 ← uk+1
ns+w + λk+1

sa uk+1
sa + λk+1

v uk+1
v ;

25 pk+1 ← compute_pressure(pk,uk+1);
26 ϕk+1 ← transport(ϕk,uk+1);
27 end
28 else
29 Error, no convergence. Either increase MAXSUBSTEPS or decrease ∆t.;
30 end
31 end

242

Algorithm 9: update_lagrange_multipliers(uns+w, λ0
sa,usa, λ0

v,uv, ϕ0, A0, V0)

Data: (uns+w, λ0
sa,usa, λ0

v,uv, ϕ0, A0, V0), MAXNEWTONSTEPS,TOL
Result: (λsa, λv)

1 begin
2 /* Precompute normal velocity terms for Df */
3 (usa)n ← Icl (usa · ∇ϕ0) ;
4 (uv)n ← Icl (uv · ∇ϕ0) ;
5 /* Begin Newton iteration */
6 for k = 0, . . . , MAXNEWTONSTEPS do
7 uk ← uns+w + λksausa + λkvuv;
8 ϕk ← transport(ϕ0,uk);
9 ϕk ← post-process(ϕk);

10 f
(
λksa, λ

k
v

)
←
(∫

Λ
δε
(
ϕk
) ∣∣∇ϕk∣∣ dx− A0∫

Λ
Hε

(
ϕk
)
dx− V0

)
;

11 if |f(λksa, λkv)| <TOL then
12 exit with convergence;
13 else
14 /* Compute Df as per equation (8.30). */

15

(
λk+1
sa

λk+1
v

)
=

(
λksa
λkv

)
−Df(λksa, λkv)−1f(λksa, λkv);

16 end
17 end
18 if |f(λksa, λkv)| ≥ TOL then
19 Error, non-convergence of Newton’s method
20 else
21 (λsa, λv)← (λksa, λ

k
v);

22 return (λsa, λv)

23 end
24 end

243

8.3 Numerical results and validations

To start with, we perform the same 2D simulations with additional surface area (and

volume constraints) using the initial surface of an ellipse with 2×1, 4×1 and 8×1 aspect

between the major and minor axes as described in the Numerical Results, Section 7.5,

of the Willmore Flow, Chapter 7. We then introduce some 3D computations using an

ellipsoid shape with similar description of axis length based on relative length in x,y and

z directions. The first is a 3 × 3 × 1 ellipsoid which evolves to the standard red blood

cell shape. This 3 × 3 × 1 ellipsoid has evolved to steady state shape. We also give the

beginnings of the simulations of a 5×5×1 ellipsoid, a 7×7×1 ellipsoid and an 8×1×1

ellipsoid. They are currently ongoing simulations and the full evolution will be included

in a future work.

The following computations in 2D are computed using the semi-implicit Canham-

Helfrich scheme described in Section 8.2.4 and the 3D simulations are performed using the

sub-iterating Canham-Helfrich scheme described in Section 8.2.5. The linear algebra sys-

tem for the semi-implicit scheme is solved using the direct parallel solver SuperLU_dist [7]

version 5.1.2 accessed through the Amesos wrapper class of Trilinos [6] version 12.10.1.

The sub-iterating scheme is solved using the GMRes solver and the Algebraic Multi-grid

(AMG) preconditioner in Trilinos [6] version 12.10.1. The finite element system is con-

structed using the deal.II library [3] version 8.5.0 with p4est [5] version 1.1 for handling

the completely distributed mesh. Everything is programmed in the C++ language. We

use MPI for communicating between the distributed processors. The number of proces-

sors is chosen to keep the maximum number of degrees of freedom per processor between

40,000 and 120,000. By doing this, we balance solvability of the linear algebra system and

memory footprint per processor with the overhead of passing data between the processors.

244

8.3.1 The 2× 1 ellipse in 2D

We let Λ = [−2, 2] × [−1.5, 1.5] and subdivide our initial mesh with 4 times in the x

direction and 3 times in the y direction so that each element is square. We apply 4 initial

refinements and then adaptively refine using the method of Section 2.3 with ca = 0.95

and level set parameters cd = 1.2h
3/4
min and cf = 2hmin until the maximal refinement level

is 6 and the minimal refinement level is 2. This corresponds to a minimal mesh size of

hmin = 0.0156125 and a maximal mesh size of hmax = 0.25. The starting levelset is

initialized using the approximate distance function

ϕinitial =
1

2
−
√(x

2

)2

+
(y

1

)2

. (8.37)

We apply 25 timesteps of the levelset reinitialization algorithm with linear viscosity coef-

ficient cL = 0.2 to obtain the starting levelset equation. We use a timestep of ∆t = 0.002

which is on the order of ∆t ∼ h
3/2
min. The Dirac and Heaviside widths are ε = h

3/4
min. We use

the level set reinitialization scheme as a post processing step after transport with R = 1

step of reinitialization after every T = 1 steps of transport. This is applied to keep |∇ϕ|

smooth and close to 1 on the fully refined band. The linear viscosity coefficient for this

post processing is cL = 0.1.

We use the semi-implicit Canham-Helfrich scheme described in Section 7.2 and Algo-

rithm 7 for this computation with 2 MPI processors.

We plot the energy, surface area and volume over time in Figure 8.1. The initial and

final shapes plotted using the characteristic function are given in Figure 8.2. The surface

has evolved to the shape of a circle. Since we can clearly see in Figure 8.1 that the capsule

is losing mass (volume) over time (mainly due to the reinitialization algorithm of the level

set equation of Chapter 2.2), we also include the Willmore flow with an explicit volume

constraint being enforced. We will introduce the method for doing this in Chapter 8. We

245

enforce the volume at any given time step to within 10−6 of the initial computed volume.

The statistics for the evolution of the 2×1 ellipse with explicit volume constraint are given

in Figure 8.3 and the shape at times t = 0 and t = 0.5 are given in Figure 8.4. Since the

simulation time is short enough, the final solutions with and without volume constraint are

visually the same, as seen in Figure 8.5.

8.3.2 The 4× 1 ellipse in 2D

We let Λ = [−4, 4] × [−2, 2] and subdivide our initial mesh with 8 times in the x

direction and 4 times in the y direction so that each element is square. We apply 4 initial

refinements and then adaptively refine using the method of Section 2.3 with ca = 0.95

and level set filter parameters cd = 1.2h
3/4
min and cf = 2hmin until the maximal refinement

level is 6 and the minimal refinement level is 2. This corresponds to a minimal mesh size

of hmin = 0.0156125 and a maximal mesh size of hmax = 0.25. The starting levelset is

initialized using the function

ϕinitial =
1

2
−
√(x

4

)2

+
(y

1

)2

(8.38)

to approximate the distance function. We apply 25 timesteps of the levelset reinitialization

algorithm with linear viscosity coefficient cL = 0.2 to obtain the starting levelset equation.

We use a timestep of ∆t = 0.002 which is on the order of ∆t ∼ h
3/2
min. The Dirac and

Heaviside widths are ε = h
3/4
min. We use the level set reinitialization scheme as a post

processing step with R = 1 steps of reinitialization after every T = 1 steps of transport.

This is applied to keep |∇ϕ| smooth and close to 1 on the fully refined band. The linear

viscosity coefficient for this post processing reinitialization is cL = 0.1.

We use the semi-implicit Canham-Helfrich scheme described in Section 7.2 and Algo-

rithm 7 for this computation with 4 MPI processors.

The energies for this 4 × 1 ellipse and the volume and surface area are given in Fig-

246

Figure 8.1: The energy, surface area and volume statistics for the 2x1 ellipse with Canham-
Helfrich force.

247

Figure 8.2: The initial and final shapes of 2×1 ellipse with Canham-Helfrich flow at t = 0
and t = 0.5.

ure 8.6. The initial and final states are given in Figure 8.7.

We also display the energies, surface area and volume for the Willmore flow of the

4 × 1 ellipse with the volume constraint explicitly enforced to accuracy of 10−6 as per

Chapter 8 in Figure 8.8. The initial and final shapes are displayed in Figure 8.9.A compar-

ison between the solutions with and without constraint at the final time t = 6.0 is given in

Figure 8.10.

8.3.3 The 8× 1 ellipse in 2D

We let Λ = [−6, 6] × [−3, 3] and subdivide our initial mesh with 12 times in the x

direction and 6 times in the y direction so that each element is square. We apply 4 initial

refinements and then adaptively refine using the method of Section 2.3 with ca = 0.95

and level set parameters cd = 1.2h
3/4
min and cf = 2hmin until the maximal refinement level

is 6 and the minimal refinement level is 2. This corresponds to a minimal mesh size of

hmin = 0.0156125 and a maximal mesh size of hmax = 0.25. The starting levelset is

initialized using the function

ϕinitial =
1

2
−
√(x

8

)2

+
(y

1

)2

(8.39)

248

Figure 8.3: The energy, surface area and volume statistics for the 2x1 ellipse with Canham-
Helfrich force and explicit volume constraint.

249

Figure 8.4: The initial and final shapes of 2 × 1 ellipse with Canham-Helfrich flow and
explicit volume constraint at t = 0 and t = 0.5.

Figure 8.5: The comparison between Canham-Helfrich flow with and without explicit
volume constraint does not make a difference when the time length is short enough.

250

Figure 8.6: The energy, surface area and volume statistics for the 4x1 ellipse with Canham-
Helfrich force.

251

Figure 8.7: The shapes of 4× 1 ellipse with Canham-Helfrich flow are displayed at t = 0
and t = 6.0.

to approximate the distance function. We apply 25 timesteps of the levelset reinitialization

algorithm with linear viscosity coefficient cL = 0.2 to obtain the starting levelset equation.

We use a smaller timestep, ∆t = 0.001, than for the previous cases since the velocities are

correspondingly larger in the beginning. This is still on the order of ∆t ∼ h
3/2
min. The Dirac

and Heaviside widths are ε = h
3/4
min. We use the level set reinitialization scheme as a post

processing step after transport with R = 1 step of reinitialization after every T = 1 steps

of transport. This is applied to keep |∇ϕ| smooth and close to 1 on the fully refined band.

The linear viscosity coefficient for this post processing is cL = 0.1.

We use the semi-implicit Canham-Helfrich scheme described in Section 7.2 and Algo-

rithm 7 for this computation with 4 MPI processors.

The energies for this 8 × 1 ellipse and the volume and surface area are given in Fig-

ure 8.11. The initial and final states are given in Figure 8.12.

We also display the energies, surface area and volume for the Willmore flow of the

8 × 1 ellipse with the volume constraint explicitly enforced to accuracy of 10−6 as per

Chapter 8 in Figure 8.8. The Heaviside function for the initial, some intermediate and the

252

Figure 8.8: The energy, surface area and volume statistics for the 4x1 ellipse with Canham-
Helfrich force and explicit volume constraint.

253

Figure 8.9: The initial and final shapes of 4 × 1 ellipse with Canham-Helfrich flow with
explicit volume constraint at t = 0 and t = 6.

Figure 8.10: A comparison at time t = 6.0 between the Canham-Helfrich solutions of
4× 1 ellipse with and without explicit volume constraint.

254

Figure 8.11: The energy, surface area and volume statistics for the 8 × 1 ellipse with
Canham-Helfrich force.

255

Figure 8.12: The initial and final shapes of 8 × 1 ellipse with Canham-Helfrich flow at
t = 0.0 and t = 12.0.

final shape are displayed in Figure 8.14. We can see in Figure 8.15 by directly comparing

the final states that enforcing the volume constraint has a somewhat smaller effect on the

steady state shape for the Canham-Helfrich flow than the Willmore flow (Figure 7.15) but

is still important in reaching a steady state shape.

8.3.4 The 3× 3× 1 ellipsoid in 3D

We let Λ = [−0.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5]. We apply 4 initial refinements

and then adaptively refine using the method of Section 2.3 with ca = 0.95 and level set

parameters cd = 0.6h
3/4
min and cf = 2hmin until the maximal refinement level is 7 and

the minimal refinement level is 3. This corresponds to a minimal mesh size of hmin =

0.0078125 and a maximal mesh size of hmax = 0.125. The starting levelset is initialized

using the function

ϕinitial =
1

10
−
√(x

3

)2

+
(y

3

)2

+
(z

1

)2

(8.40)

to approximate the distance function. We apply 25 timesteps of the levelset reinitialization

algorithm with linear viscosity coefficient cL = 0.2 to obtain the starting levelset equation.

We use the timestep, ∆t = 0.0001 which is somewhere between the order of ∆t ∼ h
3/2
min

and ∆t ∼ h2
min. The Dirac and Heaviside widths are ε = 1

2
h

3/4
min. We use the level

256

Figure 8.13: The energy, surface area and volume statistics for the 8 × 1 ellipse with
Canham-Helfrich force and explicit volume constraint.

257

Figure 8.14: The shapes of 8 × 1 ellipse with Canham-Helfrich flow and explicit volume
constraint at (top to bottom) t = 0.0, t = 1.0, t = 2.0 and t = 5.0 and t = 15.0. By
t = 15.0 we have reached a steady state shape.

258

Figure 8.15: A comparison of the final shape at t = 15.0 for the 8 × 1 ellipse with and
without the volume constraint being explicitly enforced with the Canham-Helfrich flow.
Without enforcing the volume constraint, mass is lost over time leading to a different
steady state shape. The wider necked shape has the explicit volume constraint being en-
forced.

set reinitialization scheme as a post processing step after transport with R = 1 step of

reinitialization after every T = 1 steps of transport. This is applied to keep |∇ϕ| smooth

and close to 1 on the fully refined band. The linear viscosity coefficient for this post

processing is cL = 0.1.

We use the sub-iterating Willmore flow of Section 7.3 with constraints enforced via

the Canham-Helfrich algorithm described in Algorithm 8 and use 32 MPI processors for

this computation.

The energies for this 3 × 3 × 1 ellipsoid and the volume and surface area with the

volume constraint explicitly enforced to accuracy of 10−6 as per Chapter 8 in Figure 8.18.

The Heaviside function for the initial and the final shape are displayed in Figure 8.16. A

view of the surface in relation to the full three dimensional mesh is provided in Figure 8.17.

8.3.5 The 5× 5× 1 ellipsoid in 3D

We let Λ = [−1.5, 1.5]×[−1.5, 1.5]×[−1.0, 1.0] which we refine into 3 intervals in the

x and y directions and 2 intervals in the z direction so that the initial mesh is composed of

18 cubes with equal length edges. We apply 4 initial refinements and then adaptively refine

using the method of Section 2.3 with ca = 0.90 and level set parameters cd = 0.6h
3/4
min and

cf = 2hmin until the maximal refinement level is 7 and the minimal refinement level is 3.

259

Figure 8.16: The initial and final shapes of 3× 3× 1 ellipsoid with Canham-Helfrich flow
and explicit volume constraint at t = 0.0 and t = 0.112.

This corresponds to a minimal mesh size of hmin = 0.0078125 and a maximal mesh size

of hmax = 0.125. The starting levelset is initialized using the function

ϕinitial =
3

20
−
√(x

5

)2

+
(y

5

)2

+
(z

1

)2

(8.41)

to approximate the distance function. We apply 25 timesteps of the levelset reinitialization

algorithm with linear viscosity coefficient cL = 0.2 to obtain the starting levelset equation.

We use the timestep, ∆t = 0.0001 which is somewhere between the order of ∆t ∼ h
3/2
min

and ∆t ∼ h2
min. The Dirac and Heaviside widths are ε = 1

2
h

3/4
min. We use the level

set reinitialization scheme as a post processing step after transport with R = 1 step of

reinitialization after every T = 1 steps of transport. This is applied to keep |∇ϕ| smooth

and close to 1 on the fully refined band. The linear viscosity coefficient for this post

processing is cL = 0.1.

We use the sub-iterating Willmore flow of Section 7.3 with constraints enforced via

the Canham-Helfrich algorithm described in Algorithm 8 and use 128 MPI processors for

260

Figure 8.17: A view of the surface, Γ, evolution of 3 × 3 × 1 ellipsoid at t = 0.112 with
respect to the cut away bulk mesh.

261

Figure 8.18: The energy, surface area and volume statistics for the 3× 3× 1 ellipsoid with
Canham-Helfrich force and explicit volume constraint.

262

this computation.

The energies for this 5× 5× 1 ellipsoid with the volume constraint explicitly enforced

to accuracy of 10−6 as per Chapter 8 in Figure 8.19. The profile for the initial and an

intermediate timestep t = 0.0159 are displayed in Figure 8.20. A view of the surface at this

time t = 0.0159 in relation to the full three dimensional mesh is provided in Figure 8.21.

8.3.6 The 7× 7× 1 ellipsoid in 3D

We let Λ = [−1.5, 1.5]×[−1.5, 1.5]×[−1.0, 1.0] which we refine into 3 intervals in the

x and y directions and 2 intervals in the z direction so that the initial mesh is composed of

18 cubes with equal length edges. We apply 4 initial refinements and then adaptively refine

using the method of Section 2.3 with ca = 0.90 and level set parameters cd = 0.6h
3/4
min and

cf = 2hmin until the maximal refinement level is 7 and the minimal refinement level is 3.

This corresponds to a minimal mesh size of hmin = 0.0078125 and a maximal mesh size

of hmax = 0.125. The starting levelset is initialized using the function

ϕinitial =
3

20
−
√(x

7

)2

+
(y

7

)2

+
(z

1

)2

(8.42)

to approximate the distance function. We apply 25 timesteps of the levelset reinitialization

algorithm with linear viscosity coefficient cL = 0.2 to obtain the starting levelset equation.

We use the timestep, ∆t = 0.0001 which is somewhere between the order of ∆t ∼ h
3/2
min

and ∆t ∼ h2
min. The Dirac and Heaviside widths are ε = 1

2
h

3/4
min. We use the level

set reinitialization scheme as a post processing step after transport with R = 1 step of

reinitialization after every T = 1 steps of transport. This is applied to keep |∇ϕ| smooth

and close to 1 on the fully refined band. The linear viscosity coefficient for this post

processing is cL = 0.1.

We use the sub-iterating Willmore flow of Section 7.3 with constraints enforced via

the Canham-Helfrich algorithm described in Algorithm 8 and use 128 MPI processors for

263

Figure 8.19: The energy statistics for the 5× 5× 1 ellipsoid with Canham-Helfrich force
and explicit volume constraint. We see that the diffusive energy dominates this portion of
the simulation whereas the bending energy is much smaller, but still decreasing.

264

Figure 8.20: The initial and intermediate shapes of 5 × 5 × 1 ellipsoid with Canham-
Helfrich flow at t = 0.0 and t = 0.0159.

Figure 8.21: A view of the surface, Γ, evolution of 5 × 5 × 1 ellipsoid at t = 0.1 with
respect to the cut away bulk mesh.

265

this computation.

The energies for this 7× 7× 1 ellipsoid with the volume constraint explicitly enforced

to accuracy of 10−6 as per Chapter 8 in Figure 8.22. The profile for the initial and an

intermediate timestep t = 0.0133 are displayed in Figure 8.23. A view of the surface at this

time t = 0.0133 in relation to the full three dimensional mesh is provided in Figure 8.24

and the velocity field at the same time along a slice of the surface is given in Figure 8.25.

8.3.7 The 8× 1× 1 ellipsoid in 3D

We let Λ = [−1.5, 1.5] × [−0.5, 0.5] × [−0.5, 0.5] which we refine into 3 intervals in

the x direction so that the initial mesh is composed of 3 cubes with equal length edges.

We apply 4 initial refinements and then adaptively refine using the method of Section 2.3

with ca = 0.95 and level set parameters cd = 0.8h
3/4
min and cf = 2hmin until the maximal

refinement level is 7 and the minimal refinement level is 3. This corresponds to a minimal

mesh size of hmin = 0.0078125 and a maximal mesh size of hmax = 0.125. The starting

levelset is initialized using the function

ϕinitial =
1

8
−
√(x

8

)2

+
(y

1

)2

+
(z

1

)2

(8.43)

to approximate the distance function. We apply 25 timesteps of the levelset reinitialization

algorithm with linear viscosity coefficient cL = 0.2 to obtain the starting levelset equation.

We use the timestep, ∆t = 0.0005 which is somewhere between the order of ∆t ∼ h
3/2
min

and ∆t ∼ h2
min. The Dirac and Heaviside widths are ε = 0.6h

3/4
min. We use the level

set reinitialization scheme as a post processing step after transport with R = 1 step of

reinitialization after every T = 1 steps of transport. This is applied to keep |∇ϕ| smooth

and close to 1 on the fully refined band. The linear viscosity coefficient for this post

processing is cL = 0.1.

We use the sub-iterating Willmore flow of Section 7.3 with constraints enforced via

266

Figure 8.22: The energy statistics for the 7× 7× 1 ellipsoid with Canham-Helfrich force
and explicit volume constraint. We see that the diffusive energy dominates this portion of
the simulation whereas the bending energy is much smaller, but still decreasing.

267

Figure 8.23: The initial and intermediate shapes of 7 × 7 × 1 ellipsoid with Canham-
Helfrich flow and explicit volume constraint at t = 0.0 and t = 0.0133.

268

Figure 8.24: A view of the surface, Γ, evolution of 7× 7× 1 ellipsoid at t = 0.0133 with
respect to the cut away bulk mesh.

Figure 8.25: A view of the velocity field for a slice of surface, Γ, an evolution of 7× 7× 1
ellipsoid at t = 0.0133.

269

the Canham-Helfrich algorithm described in Algorithm 8 and use 64 MPI processors for

this computation.

The energies for this 8× 1× 1 ellipsoid with the volume constraint explicitly enforced

to accuracy of 10−6 as per Chapter 8 in Figure 8.26. The profile for the initial and an

intermediate timestep t = 0.0122 are displayed in Figure 8.27. A view of the surface at this

time t = 0.0122 in relation to the full three dimensional mesh is provided in Figure 8.28

and the velocity field at the same time along a slice of the surface is given in Figure 8.29.

270

Figure 8.26: The energy statistics for the 8× 1× 1 ellipsoid with Canham-Helfrich force
and explicit volume constraint. We see that the diffusive energy dominates this portion of
the simulation whereas the bending energy is much smaller, but still decreasing.

271

Figure 8.27: The initial and intermediate shapes of 8 × 1 × 1 ellipsoid with Canham-
Helfrich flow and explicit volume constraint at t = 0.0 and t = 0.0122.

Figure 8.28: A view of the surface, Γ, evolution of 8× 1× 1 ellipsoid at t = 0.0122 with
respect to the cut away bulk mesh.

272

Figure 8.29: A view of the velocity field for a slice of surface, Γ, an evolution of 8× 1× 1
ellipsoid at t = 0.0122.

273

9. CONCLUSIONS

We have developed a model for an incompressible Navier-Stokes two-phase flow cou-

pled with physics on the interface between the two-phases. In particular, we have de-

scribed a method of coupling the forces minimizing an energy defined on the interface

to the Navier-Stokes system. The goal has been to provide a model for the dynamics of

a blood cell which balances the Canham-Helfrich energy on the vesicle membrane with

the dynamics of the fluid itself. We have described a method for generating a velocity

field that balances these forces and a method for transporting the interface by that velocity

field. In addition we have provided a method for ensuring that the surface area of the in-

terface and the volume of the interior are preserved over time. We have provided various

2 dimensional and 3 dimensional simulations with the Canham-Helfrich energy as well as

provided simulations of the two-phase flow with surface tension and with the Willmore

energy coupled into the flow. We have discovered that conserving the volume is necessary

for obtaining consistent steady state shapes of the vesicle.

We have introduced two approaches to discretizing the force balance of the Navier-

Stokes system with the minimization of the Willmore energy. The first is a semi-implicit

method (Section 7.2) and so far works well in 2 dimensions but is not yet suitable for

simulations in 3 dimensions due to the block linear algebra system being difficult to solve

numerically. The second (Section 7.3) performs a subiteration loop for each time step

which approximates the fully implicit system. It is well solvable in 3 dimensions at the

expense of more work per step due to the subiteration. In addition, since the forces are

treated explicitly, the computation of the curvature along the interface is highly dependent

on the surface being numerically smooth and so it has been necessary to perturb the cur-

vature system by adding a first order tangential smoothing term. We hypothesize that a

274

hybrid model combining the semi-implicit algorithm described in Section 7.2 for comput-

ing the curvature with the subiteration scheme could resolve this issue and provide a fully

consistent model solvable in both 2 and 3 dimensions. There is also room for improve-

ment to the reinialization procedure (Section 8.5) of the levelset function for preserving

|∇ϕ| = 1 in the ε-band around Γ.

The simulations of our application chapters, Chapter 6-8 have provided a few insights

and observations which we will iterate here. First, the enforcement of the volume con-

straint is absolutely necessary to obtain consistent steady state shapes as seen best in Fig-

ure 7.15. This is important for longer term simulations but is important for any simulation

especially in 3 dimensions where the volume can be lost quickly.

We are interested to see that the Willmore flow with volume constraint can in fact get

stuck in local minima as seen in the 4 × 1 and 8 × 1 simulations of Section 7.5. It will

require some more research to understand how this could be overcome or if these local

minima occur naturally.

We hope that our Canham-Helfrich simulations of the 5 × 5 × 1 or 7 × 7 × 1 or

8 × 1 × 1 ellipsoids will lead to the membrane self-intersecting. We are interested to

see what happens since the levelset can in theory handle the topological changes. It is

difficult to predict what would happen since we have used the Gauss-Bonnett theorem to

drop the topological invariant,
∫

Γ
κdx, from the Canham-Helfrich energy as described in

the introduction of Chapter 7.

Finally, in [74], the discussion of how the reduced volume parameter (equation 8.5)

relates to the steady state shapes of minimal bending energy motives the search for initial

surfaces that could lead to other steady state shapes observed in nature. Along these lines,

it will also be necessary to verify that the the existing models match the predicted shapes

based on their reduced volume.

Finally there are many directions of research that could be taken from this model to

275

add various components of the biological cells for instance, chemical signals to model

chemotaxis or the actin-myosin structure of the cytoplasm for modelling cell blebbing. In

addition, the simulation of more complex environments possibly with multiple structures

and external flow of the fluid would be an interesting application of this basic model of a

cell.

276

REFERENCES

[1] P. B. Canham, “The minimum energy of bending as a possible explanation of the

biconcave shape of the human red blood cell,” Journal of theoretical biology, vol. 26,

no. 1, pp. 61IN777–76IN881, 1970.

[2] W. Helfrich, “Elastic properties of lipid bilayers: theory and possible experiments,”

Zeitschrift für Naturforschung C, vol. 28, no. 11-12, pp. 693–703, 1973.

[3] W. Bangerth, R. Hartmann, and G. Kanschat, “deal.II – a general purpose object

oriented finite element library,” ACM Trans. Math. Softw., vol. 33, no. 4, pp. 24/1–

24/27, 2007.

[4] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sa-

hay, P. Kambadur, B. Barrett, A. Lumsdaine, et al., “Open mpi: Goals, concept, and

design of a next generation mpi implementation,” in European Parallel Virtual Ma-

chine/Message Passing Interface UsersâĂŹ Group Meeting, pp. 97–104, Springer,

2004.

[5] C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est: Scalable algorithms for par-

allel adaptive mesh refinement on forests of octrees,” SIAM Journal on Scientific

Computing, vol. 33, no. 3, pp. 1103–1133, 2011.

[6] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,

R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.

Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, “An

overview of the trilinos project,” ACM Trans. Math. Softw., vol. 31, no. 3, pp. 397–

423, 2005.

277

[7] X. Li, J. Demmel, J. Gilbert, iL. Grigori, M. Shao, and I. Yamazaki, “SuperLU Users’

Guide,” Tech. Rep. LBNL-44289, Lawrence Berkeley National Laboratory, Septem-

ber 1999. http://crd.lbl.gov/~xiaoye/SuperLU/. Last update: August

2011.

[8] Brazos Computational Resource, Academy for Advanced Telecommunications and

Learning Technologies, Texas A&M University.

[9] C. W. Hirt and B. D. Nichols, “Volume of fluid (vof) method for the dynamics of free

boundaries,” Journal of computational physics, vol. 39, no. 1, pp. 201–225, 1981.

[10] J. E. Welch, F. H. Harlow, J. P. Shannon, and B. J. Daly, “The mac method-a com-

puting technique for solving viscous, incompressible, transient fluid-flow problems

involving free surfaces,” tech. rep., Los Alamos Scientific Lab., Univ. of California,

N. Mex., 1965.

[11] C. S. Peskin, “The immersed boundary method,” Acta numerica, vol. 11, pp. 479–

517, 2002.

[12] S. Leung and H. Zhao, “A grid based particle method for moving interface problems,”

Journal of Computational Physics, vol. 228, no. 8, pp. 2993–3024, 2009.

[13] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: al-

gorithms based on hamilton-jacobi formulations,” Journal of computational physics,

vol. 79, no. 1, pp. 12–49, 1988.

[14] G. J. Fix, “Phase field methods for free boundary problems,” 1982.

[15] J. Langer, “Models of pattern formation in first-order phase transitions,” Directions in

Concensed Matter Physics: Memorial Volume in Honor of Shang-Keng Ma. Edited

by GRINSTEIN S ET AL. Published by World Scientific Publishing Co. Pte. Ltd.,

1986. ISBN# 9789814415309, pp. 165-186, pp. 165–186, 1986.

278

http://crd.lbl.gov/~xiaoye/SuperLU/

[16] J. W. Barrett, H. Garcke, and R. Nürnberg, “A stable parametric finite element

discretization of two-phase navier–stokes flow,” Journal of Scientific Computing,

vol. 63, no. 1, pp. 78–117, 2015.

[17] J. W. Barrett, H. Garcke, and R. Nürnberg, “Phase field models versus parametric

front tracking methods: Are they accurate and computationally efficient?,” Commu-

nications in Computational Physics, vol. 15, no. 02, pp. 506–555, 2014.

[18] J. Donea, S. Giuliani, and J.-P. Halleux, “An arbitrary lagrangian-eulerian finite ele-

ment method for transient dynamic fluid-structure interactions,” Computer methods

in applied mechanics and engineering, vol. 33, no. 1-3, pp. 689–723, 1982.

[19] T. Coupez, “Convection of local level set function for moving surfaces and interfaces

in forming flow,” in Materials Processing and Design, Modeling, Simulation and

Applications, NUMIFORM’07: 9th International Conference on Numerical Methods

in Industrial Forming Processes, vol. 908, pp. pages–61, 2007.

[20] L. Ville, L. Silva, and T. Coupez, “Convected level set method for the numerical

simulation of fluid buckling,” International Journal for numerical methods in fluids,

vol. 66, no. 3, pp. 324–344, 2011.

[21] S. Lee and A. J. Salgado, “Stability analysis of pressure correction schemes for the

navier–stokes equations with traction boundary conditions,” Computer Methods in

Applied Mechanics and Engineering, vol. 309, pp. 307–324, 2016.

[22] A. Bonito, J.-L. Guermond, and B. Popov, “Stability analysis of explicit entropy vis-

cosity methods for non-linear scalar conservation equations,” Mathematics of Com-

putation, vol. 83, no. 287, pp. 1039–1062, 2014.

[23] S. Gottlieb, D. I. Ketcheson, and C.-W. Shu, “High order strong stability preserving

time discretizations,” Journal of Scientific Computing, vol. 38, no. 3, pp. 251–289,

279

2009.

[24] I. Higueras, “Representations of runge–kutta methods and strong stability preserving

methods,” SIAM journal on numerical analysis, vol. 43, no. 3, pp. 924–948, 2005.

[25] J.-L. Guermond and M. Nazarov, “A maximum-principle preserving c0 finite element

method for scalar conservation equations,” Computer Methods in Applied Mechanics

and Engineering, vol. 272, pp. 198–213, 2014.

[26] J.-L. Guermond, M. Nazarov, B. Popov, and Y. Yang, “A second-order maximum

principle preserving lagrange finite element technique for nonlinear scalar conserva-

tion equations,” SIAM Journal on Numerical Analysis, vol. 52, no. 4, pp. 2163–2182,

2014.

[27] M. H. Carpenter, D. Gottlieb, S. Abarbanel, and W.-S. Don, “The theoretical accu-

racy of runge–kutta time discretizations for the initial boundary value problem: a

study of the boundary error,” SIAM Journal on Scientific Computing, vol. 16, no. 6,

pp. 1241–1252, 1995.

[28] D. Pathria, “The correct formulation of intermediate boundary conditions for runge–

kutta time integration of initial boundary value problems,” SIAM Journal on Scientific

Computing, vol. 18, no. 5, pp. 1255–1266, 1997.

[29] A.-K. Tornberg, “Multi-dimensional quadrature of singular and discontinuous func-

tions,” BIT Numerical Mathematics, vol. 42, no. 3, pp. 644–669, 2002.

[30] C. Lehrenfeld, “High order unfitted finite element methods on level set domains using

isoparametric mappings,” Computer Methods in Applied Mechanics and Engineer-

ing, vol. 300, pp. 716–733, 2016.

[31] P. Smereka, “The numerical approximation of a delta function with application to

level set methods,” Journal of Computational Physics, vol. 211, no. 1, pp. 77–90,

280

2006.

[32] J. D. Towers, “Two methods for discretizing a delta function supported on a level

set,” Journal of Computational Physics, vol. 220, no. 2, pp. 915–931, 2007.

[33] J. T. Beale, “A proof that a discrete delta function is second-order accurate,” Journal

of Computational Physics, vol. 227, no. 4, pp. 2195–2197, 2008.

[34] J. D. Towers, “A convergence rate theorem for finite difference approximations to

delta functions,” Journal of Computational Physics, vol. 227, no. 13, pp. 6591–6597,

2008.

[35] B. Müller, F. Kummer, and M. Oberlack, “Highly accurate surface and volume inte-

gration on implicit domains by means of moment-fitting,” International Journal for

Numerical Methods in Engineering, vol. 96, no. 8, pp. 512–528, 2013.

[36] R. Saye, “High-order quadrature methods for implicitly defined surfaces and volumes

in hyperrectangles,” SIAM Journal on Scientific Computing, vol. 37, no. 2, pp. A993–

A1019, 2015.

[37] X. Wen, “High order numerical methods to a type of delta function integrals,” Journal

of Computational Physics, vol. 226, no. 2, pp. 1952–1967, 2007.

[38] X. Wen, “High order numerical quadratures to one dimensional delta function inte-

grals,” SIAM Journal on Scientific Computing, vol. 30, no. 4, pp. 1825–1846, 2008.

[39] X. Wen, “High order numerical methods to two dimensional delta function integrals

in level set methods,” Journal of Computational Physics, vol. 228, no. 11, pp. 4273–

4290, 2009.

[40] X. Wen, “High order numerical methods to three dimensional delta function inte-

grals in level set methods,” SIAM Journal on Scientific Computing, vol. 32, no. 3,

pp. 1288–1309, 2010.

281

[41] B. Engquist, A.-K. Tornberg, and R. Tsai, “Discretization of dirac delta functions in

level set methods,” Journal of Computational Physics, vol. 207, no. 1, pp. 28–51,

2005.

[42] S. Zahedi and A.-K. Tornberg, “Delta function approximations in level set methods

by distance function extension,” Journal of Computational Physics, vol. 229, no. 6,

pp. 2199–2219, 2010.

[43] A. J. Chorin, “Numerical solution of the navier-stokes equations,” Mathematics of

computation, vol. 22, no. 104, pp. 745–762, 1968.

[44] L. Timmermans, P. Minev, and F. Van De Vosse, “An approximate projection scheme

for incompressible flow using spectral elements,” International Journal for Numeri-

cal Methods in Fluids, vol. 22, no. 7, pp. 673–688, 1996. cited By (since 1996)105.

[45] J.-L. Guermond and A. Salgado, “A splitting method for incompressible flows with

variable density based on a pressure poisson equation,” Journal of Computational

Physics, vol. 228, no. 8, pp. 2834–2846, 2009.

[46] J. Guermond, P. Minev, and J. Shen, “An overview of projection methods for incom-

pressible flows,” Computer methods in applied mechanics and engineering, vol. 195,

no. 44, pp. 6011–6045, 2006.

[47] A. Bonito, J.-L. Guermond, and S. Lee, “Modified pressure-correction projection

methods: Open boundary and variable time stepping,” in Numerical Mathematics

and Advanced Applications-ENUMATH 2013, pp. 623–631, Springer, 2015.

[48] R. Rannacher, On Chorin’s projection method for the incompressible Navier-Stokes

equations. Springer, 1992.

[49] J.-L. Guermond and L. Quartapelle, “On the approximation of the unsteady navier–

stokes equations by finite element projection methods,” Numerische mathematik,

282

vol. 80, no. 2, pp. 207–238, 1998.

[50] P. Bochev and R. B. Lehoucq, “On the finite element solution of the pure neumann

problem,” SIAM review, vol. 47, no. 1, pp. 50–66, 2005.

[51] J.-L. Guermond and A. J. Salgado, “Error analysis of a fractional time-stepping tech-

nique for incompressible flows with variable density,” SIAM Journal on Numerical

Analysis, vol. 49, no. 3, pp. 917–944, 2011.

[52] A. N. Brooks and T. J. Hughes, “Streamline upwind/petrov-galerkin formulations for

convection dominated flows with particular emphasis on the incompressible navier-

stokes equations,” Computer methods in applied mechanics and engineering, vol. 32,

no. 1, pp. 199–259, 1982.

[53] T.-P. Fries and H. G. Matthies, “A review of petrov–galerkin stabilization approaches

and an extension to meshfree methods,” 2004.

[54] T. Coupez and E. Hachem, “Solution of high-reynolds incompressible flow with sta-

bilized finite element and adaptive anisotropic meshing,” Computer Methods in Ap-

plied Mechanics and Engineering, vol. 267, no. 0, pp. 65 – 85, 2013.

[55] T. E. Tezduyar and Y. Osawa, “Finite element stabilization parameters computed

from element matrices and vectors,” Computer Methods in Applied Mechanics and

Engineering, vol. 190, no. 3âĂŞ4, pp. 411 – 430, 2000.

[56] G. C. Buscaglia and R. F. Ausas, “Variational formulations for surface tension, cap-

illarity and wetting,” Computer Methods in Applied Mechanics and Engineering,

vol. 200, no. 45, pp. 3011–3025, 2011.

[57] M. C. Delfour and J.-P. Zolésio, Shapes and geometries: metrics, analysis, differen-

tial calculus, and optimization, vol. 22. Siam, 2011.

283

[58] J.-F. Gerbeau and T. Lelievre, “Generalized navier boundary condition and geometric

conservation law for surface tension,” Computer Methods in Applied Mechanics and

Engineering, vol. 198, no. 5, pp. 644–656, 2009.

[59] E. Maitre, C. Misbah, P. Peyla, and A. Raoult, “Comparison between advected-field

and level-set methods in the study of vesicle dynamics,” Physica D: Nonlinear Phe-

nomena, vol. 241, no. 13, pp. 1146–1157, 2012.

[60] V. Doyeux, V. Chabannes, C. Prud’Homme, and M. Ismail, “Simulation of vesicle

using level set method solved by high order finite element,” in ESAIM: Proceedings,

vol. 38, pp. 335–347, EDP Sciences, 2012.

[61] V. Doyeux, Y. Guyot, V. Chabannes, C. Prud’Homme, and M. Ismail, “Simulation

of two-fluid flows using a finite element/level set method. application to bubbles and

vesicle dynamics,” Journal of Computational and Applied Mathematics, vol. 246,

pp. 251–259, 2013.

[62] V. Doyeux, Modeling and simulation of multi-fluid systems. Applications to blood

flows. PhD thesis, Université Grenoble Alpes, 2014.

[63] E. Bänsch, “Finite element discretization of the navier–stokes equations with a free

capillary surface,” Numerische Mathematik, vol. 88, no. 2, pp. 203–235, 2001.

[64] S.-R. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, and L. To-

biska, “Quantitative benchmark computations of two-dimensional bubble dynamics,”

International Journal for Numerical Methods in Fluids, vol. 60, no. 11, pp. 1259–

1288, 2009.

[65] M. Deserno, “Fluid lipid membranes a primer,” 2007.

[66] X. S. Li and J. W. Demmel, “SuperLU_DIST: A scalable distributed-memory sparse

direct solver for unsymmetric linear systems,” ACM Trans. Mathematical Software,

284

vol. 29, pp. 110–140, June 2003.

[67] L. Grigori, J. W. Demmel, and X. S. Li, “Parallel symbolic factorization for sparse

LU with static pivoting,” SIAM J. Scientific Computing, vol. 29, no. 3, pp. 1289–

1314, 2007.

[68] A. George, “Nested dissection of a regular finite element mesh,” SIAM Journal on

Numerical Analysis, vol. 10, no. 2, pp. 345–363, 1973.

[69] J. R. Gilbert, “Some nested dissection order is nearly optimal,” Information Process-

ing Letters, vol. 26, no. 6, pp. 325–328, 1988.

[70] A. Laadhari, P. Saramito, and C. Misbah, “Computing the dynamics of biomem-

branes by combining conservative level set and adaptive finite element methods,”

Journal of Computational Physics, vol. 263, pp. 328–352, 2014.

[71] M. Droske and M. Rumpf, “A level set formulation for willmore flow,” Interfaces

and free boundaries, vol. 6, no. 3, pp. 361–378, 2004.

[72] L. Hsu, R. Kusner, and J. Sullivan, “Minimizing the squared mean curvature integral

for surfaces in space forms,” Experimental Mathematics, vol. 1, no. 3, pp. 191–207,

1992.

[73] U. Seifert, K. Berndl, and R. Lipowsky, “Shape transformations of vesicles: Phase

diagram for spontaneous-curvature and bilayer-coupling models,” Physical Review

A, vol. 44, no. 2, p. 1182, 1991.

[74] U. Seifert and R. Lipowsky, “Morphology of vesicles,” 1995.

[75] A. Kurganov and J. Rauch, “The order of accuracy of quadrature formulae for peri-

odic functions,” in Advances in phase space analysis of partial differential equations,

pp. 155–159, Springer, 2009.

285

[76] J.-L. Guermond, “Un résultat de convergence d’ordre deux pour l’approximation

des équations de navier-stokes par projection incrémentale,” Comptes Rendus de

l’Académie des Sciences-Series I-Mathematics, vol. 325, no. 12, pp. 1329–1332,

1997.

[77] J. Guermond and J. Shen, “On the error estimates for the rotational pressure-

correction projection methods,” Mathematics of Computation, vol. 73, no. 248,

pp. 1719–1737, 2004.

286

APPENDIX A

CONVERGENCE RATES OF DIRAC MEASURE WITH SIMPLER QUADRATURE

RULES

It turns out that when we use a quadrature scheme on our Dirac integration tool of

Chapter 3 that is exact for polynomials of degree less than 5, we observed that often we

obtain the same convergence rates as are predicted with the higher quadrature scheme.

This is merely a curiosity as we have a full proof above of the result with a quadrature

scheme exact for polynomials of degree 5. To understand why we obtain these results

in this less restrictive case, we focus on a one dimensional analysis. Recall that this is

completely with regard to our using the dirac kernel

φ(t) =

693
512

(1− t2)5, |t| < 1

0, otherwise
.

We consider Γ to be a single point in 1D, say Γ = {a}, for some a ∈ R, Then we choose

d(x) = x− a

to be our signed distance function. In this case, we have

δε(d(x)) =

693
512

1
ε

(
1−

(
x−a
ε

)2
)5

, |x− a| < ε

0, otherwise

287

and we want to estimate

E = f(a)−Q(f(x)δε(d(x)))

=

(
f(a)−

∫ a+ε

a−ε
f(x)δw(x− a)dx

)
+
∑
m∈Z

(∫ (m+1)h

mh

f(x)δw(x− a)dx−Q[mh,(m+1)h](f(x)δε(x− a))

)

= Eanalytic + Equad

for Q[mh,(m+1)h](·) a quadrature on cell [mh, (m + 1)h] which is exact for polynomials of

degree less than 5.

A.0.0.1 Convergence for trapezoidal quadrature for periodic functions in W r,1
per

Let

E
[a,b]
N (f) :=

∫ b

a

f(x)dx−∆x
N−1∑
n=0

f(xn) =

∫ b

a

f(x)dx− TN(f)

with ∆x = b−a
N

and xn = n∆x, be the error of an N point trapezoidal rule on a (b − a)-

periodic function f ∈ W r,1
per ([a, b]). The following theorem from [75] gives an estimate for

a 2π-periodic function.

Theorem A.0.1. If f ∈ W r,1
per ([0, 2π]) and 1 < r ∈ N then the error of the trapezoidal rule

satisfies ∣∣∣E[0,2π]
N (f)

∣∣∣ ≤ C‖f (r)‖L1([0,2π])

N r
, where C = 2

∞∑
k=1

1

kr
.

Now, for the sake of simplicity, we assume that h evenly divides ε ie. that there are

2 ε
h

=: N ∈ N cells in [−ε, ε] and that Γ = {0}. In this case, we can periodically extend the

domain [−ε, ε] and δε(x) to get the periodic extension, δ[−ε,ε]
ε (x). It is simple to compute

that ∫ ε

−ε
Dαδε(t)dt = 0, for α = 1 . . . 5

288

which is equivalent to

Dβδε(−ε) = Dβδε(ε), for β = 0 . . . 4.

Thus, our periodic extension has 5 integrable derivatives, ie

δ[−ε,ε]
ε ∈ W 5,1

per ([−ε, ε]).

We can transform the periodic extensions from [−ε, ε] to [0, 2π] and then apply Theo-

rem (A.0.1) to obtain

E
[−ε,ε]
N

(
δ[−ε,ε]
ε

)
=

1

π
E

[0,2π]
N

(
φ[0,2π]

)
≤
C
∥∥∥ dr

dyr
φ[0,2π](y)

∥∥∥
L1([0,2π])

N5
≤ c

(
h5

ε5

)

where φ[0,2π] is the 2π-periodic extension of the translated and stretched (y = πt + π)

Dirac kernel,

φ(y) :=
693

512

(
1−

(y
π
− 1
)2
)5

, for y ∈ [0, 2π].

This is a polynomial so the L1([0, 2π]) norm of the 5-th derivative is a constant. Thus our

estimate for the trapezoidal rule is at leastO
(
(h/ε)5 = h5/4

)
. This is close to the observed

error rates of O
(
(h/ε)6 = h3/2

)
, seen for instance in Figure 3.5 where we used a Gauss

Quadrature rule exact for cubics. We hypothesize that it is because our function is also

even, that we get the 6th power instead of the 5th.

289

APPENDIX B

CONVERGENCE THEORY FOR NAVIER-STOKES PROJECTION ALGORITHMS

We give a review of the main general theorems in the literature on expected conver-

gence rates for the various forms of the projection schemes before stating the expected

convergence results for the above algorithm. While the convergence rates for the above

algorithm have not been fully proved, it appears to behave qualitatively like the algorithms

for which the results have been proven and so the conjectures at the end summarize what

we expect. The theorems are stated without proof although reference is given to where

they come from which often includes the proof or sketches of proof.

B.1 Constant density, incompressible Navier-Stokes

The following are some theorems related to the convergence rates for approximations

of the constant density incompressible Navier-Stokes equation through the use of a pres-

sure correction splitting in various forms: standard and rotational.

B.1.1 Algorithm in standard form

The numerical solution (uk, ũk, pk) of the constant density incompressible Navier-

Stokes algorithm in standard form using BDF2 time derivative has the following error

estimates hold, Theorems (3.1)-(3.5) of [76].

Theorem B.1.1. If u(t, x) ∈ W 1,∞ (0, T ; H1
0 (Λ)d ∩H`+1(Λ)d

)
∩H2

(
0, T ; H1(Λ)d

)
and

p ∈ W 1,∞ (0, T ; H`(Λ)
)
∩H2 (0, T ; L2(Λ)), then

‖(u− uh)τ‖`∞(L2(Λ)d) + ‖(u− ũh)τ‖`∞(L2(Λ)d) . τ + h`+1 (B.1)

Theorem B.1.2. If u(t, x) ∈ W 2,∞ (0, T ; H1
0 (Λ)d ∩H`+1(Λ)d

)
∩H3

(
0, T ; H1(Λ)d

)
and

290

p ∈ W 2,∞ (0, T ; H`(Λ)
)
∩ H3 (0, T ; L2(Λ)), then there exist cs > 0 and hs > 0 such

that for h ∈ (0, hs] and τ ≤ cs/ (1 + | log(h−1)|)1/2 in 2 dimensions or τ ≤ csh
1/2 in 3

dimensions we have

‖(u− ũh)τ‖`∞(H1(Λ)d) + ‖(p− ph)τ‖`∞(L2(Λ)) . τ + h` (B.2)

Theorem B.1.3. Under the regularity hypothesis of Theorem B.1.1 and its restrictions on

τ and h, the error bounds also hold

‖(u− uh)τ‖`2(L2(Λ)d) + ‖(u− ũh)τ‖`2(L2(Λ)d) . τ 2 + h`+1 (B.3)

If we want improved error bounds for `∞
(
L2(Λ)d

)
norm, we must add more regularity

as follows:

Theorem B.1.4. If u(t, x) ∈ W 3,∞ (0, T ; H1
0 (Λ)d ∩H`+1(Λ)d

)
∩ H4

(
0, T ; H1(Λ)d

)
and p ∈ W 2,∞ (0, T ; H`(Λ)

)
∩ H4 (0, T ; L2(Λ)), with the restrictions on τ and h of

Theorem B.1.1, then

‖(u− uh)τ‖`∞(L2(Λ)d) + ‖(u− ũh)τ‖`∞(L2(Λ)d) . τ 7/4 + τ 3/4h` + h`+1 (B.4)

The estimates on the pressure norm of Theorem B.1.2 can be improved by introducing

a discrete norm as follows. Let (vh, qh) ∈ Xh × Mh and define Bh ∈ L(Xh,Mh) be

the discrete divergence operator (Bhvh, qh) = (vh, B
T
h qh) = −(∇ · vh, qh). Then define

the discrete norm for vh ∈ Xh as ‖vh‖Ah
= supwh∈Xh

(∇vh,∇wh)/‖wh‖L2(Λ) and for

q ∈ L2(Λ), let ‖q‖Bh,Ah
= supvh∈Xh

(q,∇ · vh)/‖vh‖Ah
.

Theorem B.1.5. Under the regularity hypothesis of Theorem B.1.4 and its restrictions on

291

τ and h, the error bounds also hold

‖(p− ph)τ‖`2(‖·‖Bh,Ah) . τ 3/2 + h` (B.5)

B.1.2 Algorithm in rotational form

Theorem B.1.6. Given that the true solution is smooth enough, the numerical solution,

(uk, ũk, pk), of the constant density incompressible Navier-Stokes algorithm using the sec-

ond order approximation in time, pressure correction scheme in rotational form gives the

following convergence estimates:

‖(u− uh)τ‖`2([L2(Λ)]d) + ‖(u− ũh)τ‖`2([L2(Λ)]d) . τ 2

‖(u− uh)τ‖`2([H1(Λ)]d) + ‖(u− ũh)τ‖`2([H1(Λ)]d) . τ 3/2

‖(p− ph)τ‖`2([L2(Λ)]d) . τ 3/2

Proof. See Theorem 4.1 of [77] for details

B.2 Variable density incompressible Navier-Stokes

B.2.1 Algorithm in standard form

Theorem B.2.1. If ρ ∈ W 1,∞ (0, T ; W 1,∞(Λ)), u ∈ W 1,∞ (0, T ; H1
0 (Λ)d ∩H`+1(Λd)

)
and p ∈ W 1,∞ (H`(Λ)

)
and there exist χ, η > 0 such that for all k, χ ≤ minx ρ

k(x) and

supx ρ
k(x) ≤ η. Assume (to decouple the density from velocity) that we can construct a

292

sequence (ρk)k from a sequence (uk)k of velocities in such a way that

‖(ρ−ρk)τ‖2
`∞(H1) +

∥∥∥∥(ρt − ρk − ρk−1

τ

)
τ

∥∥∥∥2

`∞(L2)

(B.6)

≤ c(λ)(τ + h`+1)2 + λ
∥∥Πhu(tk)− uk

∥∥2

H1 + c(λ)
∥∥∥√ρk

(
Πhu(tk)− uk

)∥∥∥2

L2

(B.7)

where λ > 0 can be chose as small as is needed. And finally, we assume that the initial

approximation of data

‖ρ(t0)− ρ0‖L∞ + ‖u(t0)− u0‖L2 + h‖u(t0)− u0‖+ h‖p(t0)− p0‖ . h`+1 (B.8)

holds. Then the incremental BDF1 variable density algorithm in standard form has the

following error estimates

‖(u− uh)τ‖`∞(L2(Λ)d) . τ + h`+1 (B.9)

‖(u− uh)τ‖`2(H1(Λ)d) . τ + h` (B.10)

‖(p− ph)τ‖`2(L2(Λ)) . τ + h` (not stated or proven but should be true) (B.11)

Proof. See proof of Theorem 4.2 of [51].

Conjecture B.2.2. Under the assumptions of Theorem B.2.1, the BDF2 standard form

algorithm with variable density has the following error estimates:

∥∥(
√
ρu−√ρhuh)τ

∥∥
`∞(L2(Λ)d)

. τ 2 + h`+1 (B.12)

‖(u− uh)τ‖`2(H1(Λ)d) . τ + h` (B.13)

‖(p− ph)τ‖`2(L2(Λ)) . τ + h` (not stated or proven but should be true)

(B.14)

293

B.2.2 Algorithm in rotational form

Conjecture B.2.3. Under the assumptions of Theorem B.2.1, the BDF2 rotational form

algorithm with variable density has the following error estimates:

∥∥(
√
ρu−√ρhuh)τ

∥∥
`∞(L2(Λ)d)

. τ 2 + h`+1 (B.15)

‖(u− uh)τ‖`2(H1(Λ)d) . τ 3/2 + h` (B.16)

‖(p− ph)τ‖`2(L2(Λ)) . τ 3/2 + h` (not stated or proven but should be true)

(B.17)

This last conjecture is more of an observation of what we expect we should observe

under smooth conditions.

Conjecture B.2.4. If Λ is smooth, for instance a circular domain, and the exact solution

is smooth, then we should see the `∞(E) norms behaving as well as the `2(E) norms in

every instance. In many cases, we cannot state a good result for the `∞ in time norms

because the theory is tricky or unclear, but we should still observe them to be as good as

the `2 in time norms. Additionally, the general theory says that L2(Λ) norm of pressure

and the H1(Λ) norm of velocity should have τ 1/2 power worse rates than the L2(Λ) norm

of velocity but in smooth domains, they are often observed to all have the higher rates. It

is only when corners appear in the domain or the exact solution has less regularity that

the loss appears.

294

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1 Introduction
	2 Level Set Method
	2.1 Level set filters
	2.1.1 Sinusoidal level set filter
	2.1.2 Hyperbolic tangent level set filter
	2.1.3 Distance function with thresholding for level set filter

	2.2 Level set reinitialization
	2.2.1 A continuous approach to reinitialization

	2.3 Spatial and temporal discretization notation
	2.3.1 Temporal discretizations
	2.3.2 Adaptive time stepping
	2.3.2.1 The CFL number and the Coupez reinitialization parameter,

	2.4 Level set stabilization
	2.4.1 General explicit entropy viscosity method
	2.4.2 Entropy viscosity stabilization for the level set method

	2.5 Semi-discrete and fully-discrete formulations with stabilization
	2.5.1 Semi-discrete formulation
	2.5.2 Time integration schemes
	2.5.2.1 Strong stability preserving property
	2.5.2.2 Butcher tableau representation of explicit Runge-Kutta schemes
	2.5.2.3 Alpha-Beta representation of explicit SSP Runge-Kutta schemes

	2.5.3 Fully-discrete formulation of stabilized level set equation
	2.5.3.1 Artificial viscosity using Butcher tableau algorithm
	2.5.3.2 Artificial viscosity using - algorithm

	2.6 Choosing parameters for level set method
	2.6.1 Some implementation details
	2.6.2 Optimal level set filter parameters
	2.6.3 Optimal CFL and spatial adaptivity parameters
	2.6.4 Optimal reinitialization parameters
	2.6.5 Optimal artificial viscosity parameters
	2.6.6 Summary of optimal parameters for level set method

	2.7 Numerical results and validation for stabilized level set method
	2.7.1 Runge-Kutta transport tests
	2.7.2 Zalesak disk rotation
	2.7.3 Periodic single vortex
	2.7.4 Analysis of volume preserving properties

	3 Approximations to Dirac Delta Function
	3.1 A review of methods for integrating along an implicitly defined curve
	3.1.1 A family of Dirac delta functions

	3.2 Notations
	3.3 Approximating integrals on a surface
	3.3.1 Analytic error, Eanalytic
	3.3.1.1 Differential geometry
	3.3.1.2 Estimate on analytic error

	3.3.2 FEM error Efem
	3.3.3 Quadrature error, Equad
	3.3.3.1 Quadrature analysis for TTh,edge, cells intersecting boundary of Bh,
	3.3.3.2 Quadrature analysis for TTh,int, cells completely interior to Bh,
	3.3.3.3 Full quadrature error

	3.3.4 Full error bound
	3.3.4.1 Example Dirac kernels

	3.4 Numerical results
	3.4.1 Test cases
	3.4.2 Convergence rates

	4 Two Phase Flow with Incompressible Navier-Stokes
	4.1 Incompressible Navier-Stokes
	4.1.1 Weak form of continuous Navier-Stokes system
	4.1.2 A discretization in space
	4.1.3 A discretization in time
	4.1.3.1 Backward difference formulae for time derivatives

	4.1.4 Tracking the interface,

	4.2 The rotational incremental pressure-correction model
	4.2.1 The pressure correction algorithm
	4.2.2 A penalty method instead of a projection method
	4.2.3 Summary of fully-discrete pressure correction algorithm

	4.3 Boundary conditions on velocity and pressure increment
	4.3.1 Standard boundary conditions
	4.3.1.1 Mean value of pressure

	4.3.2 Open boundary conditions everywhere

	4.4 Additional stabilization techniques
	4.4.1 Consistent transport term for unconditional stability
	4.4.2 Grad-div stabilization for high Reynolds number
	4.4.3 Stabilization with streamlined upwind / Petrov Galerkin (SUPG) scheme
	4.4.4 SUPG scheme for time-dependent incompressible Navier-Stokes

	4.5 Numerical results

	5 Energy Flow
	5.1 Preliminary computations and some useful terms
	5.2 Computing the variation of energy, E()(||)
	5.3 Stability of the force balance algorithm
	5.3.1 Stability of coupled system

	5.4 Comparison to the method of virtual power in continuum mechanics

	6 Energy Flow Application: Surface Tension Flow
	6.1 Implementation of surface tension
	6.1.1 Fully implicit scheme
	6.1.2 Semi-implicit scheme
	6.1.2.1 Summary of semi-implicit scheme

	6.2 Connections to other models
	6.2.1 A more efficient model for surface tension
	6.2.1.1 Semi-implicit formulation

	6.3 Numerical experiments and validations

	7 Energy Flow Application: Willmore Flow
	7.1 Willmore energy
	7.2 Semi-implicit form for Willmore flow
	7.2.1 Coupling velocity and curvature and decoupling curvature from the level set
	7.2.2 A semi-implicit in time splitting for Willmore flow
	7.2.3 Summary of semi-implicit Willmore system
	7.2.4 Spatial discretization of semi-implicit Willmore flow

	7.3 Sub-iterating Willmore flow scheme
	7.3.1 Sub-iterating scheme to approximate fully-implicit algorithm
	7.3.1.1 Explicit energy gradient flow right hand side

	7.4 Comparison to other models
	7.4.1 A continuum surface forces approach
	7.4.2 A level set formulation for the Willmore flow

	7.5 Numerical experiments and validations
	7.5.1 The 21 ellipse in 2D
	7.5.2 The 41 ellipse in 2D
	7.5.3 The 81 ellipse in 2D

	8 Energy Flow Application: Canham-Helfrich Flow
	8.1 Volume constraints
	8.2 Surface area and volume constraints
	8.2.1 Variation of surface area functional
	8.2.2 Variation of volume functional
	8.2.3 Linearization of system with constraints
	8.2.4 Semi-implicit Canham-Helfrich algorithm
	8.2.5 Sub-iterating Canham-Helfrich algorithm
	8.2.6 The Newton-like algorithm for enforcing constraints

	8.3 Numerical results and validations
	8.3.1 The 21 ellipse in 2D
	8.3.2 The 41 ellipse in 2D
	8.3.3 The 81 ellipse in 2D
	8.3.4 The 331 ellipsoid in 3D
	8.3.5 The 551 ellipsoid in 3D
	8.3.6 The 771 ellipsoid in 3D
	8.3.7 The 811 ellipsoid in 3D

	9 Conclusions
	REFERENCES
	APPENDIX A Convergence Rates of Dirac Measure with Simpler Quadrature Rules
	A.0.0.1 Convergence for trapezoidal quadrature for periodic functions in Wr,1per

	APPENDIX B Convergence Theory for Navier-Stokes Prrojection Algorithms
	B.1 Constant density, incompressible Navier-Stokes
	B.1.1 Algorithm in standard form
	B.1.2 Algorithm in rotational form

	B.2 Variable density incompressible Navier-Stokes
	B.2.1 Algorithm in standard form
	B.2.2 Algorithm in rotational form

