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Abstract

The dramatic increase in the prevalence and clinical impact of infections caused by bacteria 

producing carbapenemases is a global health concern. These carbapenemase-producing organisms 

(CPO) are especially problematic when encountered in members of the family Enterobacteriaceae. 

Due to their ability to readily spread and colonize patients in health care environments, preventing 
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the transmission of these organisms is a major public health initiative and coordinated 

international efforts are needed to contain the risk of infection. Central to the treatment and control 

of CPO are phenotypic- (growth-/biochemical-dependent) and nucleic acid-based carbapenemase 

detection tests that identify carbapenemase activity directly or their associated molecular 

determinants. Importantly, bacterial isolates harboring carbapenemases are often resistant to 

multiple antibiotic classes resulting in limited therapy options. Emerging agents, novel antibiotic 

combinations and treatment regimens offer promise for management of these infections. This 

review highlights our current understanding of CPO with emphasis on their epidemiology, 

detection, treatment, and control.
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Introduction

One of the most concerning forms of antimicrobial resistance (AMR) is resistance to the 

carbapenems, especially when observed in members of the family Enterobacteriaceae. A 

primary mechanism of carbapenem resistance in Gram-negative bacteria is acquired 

carbapenemases, enzymes that hydrolyze these antibiotics. In this review, the epidemiology, 

laboratory detection, approaches to combat widespread dissemination, and treatment 

strategies for carbapenemase-producing organisms (CPO), especially carbapenemase-

producing carbapenem-resistant Enterobacteriaceae (CP-CRE), will be discussed.

The Biology and Epidemiology of CPO

Phenotypic resistance to carbapenems in Gram-negative bacteria commonly results from 

acquisition of carbapenemases, or production of cephalosporinases combined with mutations 

that decrease permeability of the bacterial cell wall to entry of carbapenems. CPO may 

exhibit significant variation in carbapenem minimum inhibitory concentration (MIC) values 

depending on their permeability status, the rate of carbapenem hydrolysis by the associated 

enzyme, and the level of gene expression [1]. Carbapenemases belong to Ambler classes A, 

B, or D, with class A and D enzymes possessing a serine-based hydrolytic mechanism, and 

class B enzymes requiring one or two zinc ions for their catalytic activity [1]. There is a rare 

instance of class C beta-lactamase that can hydrolyze imipenem (CMY-10) [2]. Globally 

distributed in many genera of bacteria, certain carbapenemases are typically associated with 

specific regions or countries (Figure 1). However, in an era of widespread international 

travel and exposure to medical care, the association between a specific resistance mechanism 

and a given region or country may change, creating an urgent need for routine local and 

national surveillance.

The class A Klebsiella pneumoniae carbapenemase (KPC) has been extensively reported in 

K. pneumoniae and other Enterobacteriaceae, but has also been identified in other Gram-

negative pathogens including Pseudomonas aeruginosa [3]. KPC-producing K. pneumoniae 
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are widespread in the United States, but are also endemic in some European countries such 

as Greece and Italy (Figure 1) [4].

Class B beta-lactamases, or metallo-beta-lactamases (MBL), are commonly identified in 

Enterobacteriaceae and in P. aeruginosa [5]. Among the MBLs, New Delhi Metallo-beta-

lactamase (NDM)-, Verona Integron-encoded Metallo-beta-lactamase (VIM)-, and 

Imipenemase Metallo-beta-lactamase (IMP) enzymes, are the most frequently identified 

worldwide (Figure 1) [5]. IMP-producers are mainly detected in China, Japan, and Australia, 

mostly in Acinetobacter baumannii. VIM-producers are most often found in Italy and 

Greece (Enterobacteriaceae), and in Russia (P. aeruginosa) [6,7].

Acquired class D carbapenem-hydrolyzing beta-lactamases are commonly reported in A. 
baumannii (mainly OXA-23-, OXA-40-, and OXA-58-like enzymes), but not in P. 
aeruginosa. OXA-48 and derivatives (e.g., OXA-181 and OXA-232), have been detected in 

Enterobacteriaceae, hydrolyze narrow-spectrum beta-lactams and weakly hydrolyze 

carbapenems, but spare broad-spectrum cephalosporins [8]. OXA-48-producing 

Enterobacteriaceae have been endemic in Turkey since 2004, and are now also frequently 

discovered in several European countries (e.g., France and Belgium), and across North 

Africa (Figure 1) [9]. Ten variants of OXA-48 beta-lactamases are acknowledged and are 

increasingly reported worldwide [9], notably among nosocomial K. pneumoniae and 

community Escherichia coli isolates [10].

Carbapenemase genes are often located on mobile genetic elements further enhancing their 

spread. For example, the widespread dissemination of the blaOXA-48 gene was shown to be 

related to a successful and epidemic plasmid that conjugates at high rates within 

Enterobacteriaceae [11].

Other less common carbapenemases belonging to a variety of molecular classes (e.g., class 

A FRI-1 and IMI-like beta-lactamases, class B SPM-1 and GIM-1, and class D OXA-198) 

are reported sporadically and are found in specific species, likely because the corresponding 

genes are located on narrow host-range plasmids or chromosomes, which makes wide 

diffusion unlikely [10,12].

Laboratory Detection of CPO

Detection of carbapenemase-mediated carbapenem resistance is essential for patient 

management, infection control, and public health surveillance. The diversity of these 

enzymes and the range of associated susceptibility phenotypes makes detection challenging. 

Selection of a carbapenemase detection test (CDT) is contingent on several factors: 

epidemiology, diagnostic performance, labor intensity, complexity, and cost. The relative 

importance of turnaround time depends on whether the assay will be employed for 

therapeutic decision making and/or infection control or surveillance studies.

CDTs are broadly differentiated into two groups: phenotypic- (growth-/biochemical-

dependent) and nucleic acid-based. Phenotypic assays monitor carbapenemase activity 

through a variety of methods: growth of a susceptible reporter strain following drug 

inactivation by a carbapenemase-producing test strain, observation of a pH change after 
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beta-lactam ring hydrolysis, detection of carbapenem hydrolysis products, or via inhibition 

with small molecules. In contrast, nucleic acid assays detect genetic determinants associated 

with carbapenemases.

The modified Hodge test (MHT) is probably the most extensively described CDT used in 

Enterobacteriaceae. This assay demonstrates acceptable sensitivity for most 

carbapenemases, especially KPC enzymes, but low sensitivity for NDM-producing strains 

[13,14]. Additionally, it has poor specificity; isolates encoding cephalosporinases in 

conjunction with porin mutations often produce false-positive results [13,15]. While the 

MHT is inexpensive and uncomplicated to perform, it is often difficult to interpret and 

requires an additional 24-hour growth step after AST results are obtained.

Conceptually akin to the MHT, the carbapenem inactivation method (CIM) assesses growth 

of a susceptible reporter strain around a carbapenem disk previously incubated with a 

suspension of a suspected carbapenemase-producing test strain. If the test strain produces a 

carbapenemase, drug in the disk will be inactivated thus allowing growth of the reporter 

strain up to the edge of the disk, whereas a zone of growth inhibition indicates the antibiotic 

in the disk remains active, thus the test strain lacks carbapenemase activity. CIM sensitivity 

is reported to be between 98 and 100% [16,17], but again this technique requires an 

additional 24-hour culture step. A modified version of the CIM (mCIM) was evaluated in a 

multi-center study, demonstrating 97% sensitivity and 99% specificity for detection of 

carbapenemase production in Enterobacteriaceae [18]. Based on those data, the mCIM was 

added to the CLSI M100 document as a reliable method for detection of carbapenemase 

production in Enterobacteriaceae [19].

The Carba NP test (RAPIDEC® CARBA NP, bioMérieux, Durham, NC), its derivatives, and 

matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF 

MS), monitor the hydrolysis of carbapenems using bacterial extracts [20,21] and produce 

same-day results. In the Carba NP test, carbapenemase-dependent hydrolysis of imipenem 

causes a decrease in pH, registered by a pH indicator as a color change. The test exhibits 

excellent sensitivity [20], although the recognition of OXA-48-producing isolates may be 

challenging [17,22]. To aid in early identification, the Carba NP test has been successfully 

extended to detect the presence of CPO in positive blood cultures even before isolation of 

organism on solid media, providing value for antibiotic stewardship [23].

MALDI-TOF MS can identify carbapenem degradation products following incubation of a 

bacterial protein extract with a carbapenem substrate. Overall, the sensitivity of MALDI-

TOF MS for this purpose is high, and sensitivity for OXA-48-producing isolates is enhanced 

by inclusion of bicarbonate in the reaction buffer [22]. Notwithstanding the promise of mass 

spectrometry-based assays, because they are complex to perform and interpret, widespread 

implementation in clinical microbiology laboratories may be unfeasible.

Conventional AST methods such as broth microdilution, disk diffusion, and gradient 

diffusion can be modified to detect different classes of carbapenemases by performing them 

in the absence and presence of small molecule inhibitors including phenylboronic acid, 

which inhibits serine active site enzymes, and ethylenediaminetetraacetic acid, an inhibitor 
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of MBL activity. These assays have reportedly high sensitivities and specificities 

[24,25,26,27,28], are inexpensive, and generally easy to implement and interpret but require 

overnight incubation.

Nucleic acid-based CDT include commercially available and laboratory-developed PCR and 

microarray platforms to detect carbapenemase genes in bacterial isolates or directly from 

clinical specimens. They exhibit clinically relevant sensitivities and specificities and have 

same-day turnaround times [29,30,31,32,33], but are typically associated with high costs. In 

the setting of changing epidemiology or emergence of novel enzymes, the specificity of 

targeted PCR- or microarray-based platforms could be a shortcoming.

Whole-genome sequencing (WGS) platforms potentially represent the ultimate molecular 

CDT by interrogating the entire genomic content, chromosomal and extrachromosomal, of a 

bacterium to identify carbapenem resistance determinants [34,35,36]. Furthermore, WGS 

data provide an opportunity to query for extra information, including strain relatedness, 

plasmid types encoding the carbapenemase, other factors influencing carbapenem resistance 

(e.g., porin mutations), presence of additional resistance factors, and data can be analyzed in 

near real-time or archived for future inquiry. Notwithstanding the power and promise of 

WGS, these assays are still the purview of advanced clinical microbiology and public health 

laboratories, and require considerable expertise to perform and interpret. As algorithms 

improve, costs decrease, and commercialized options are brought to market, the clinical 

workforce is likely to become increasingly proficient at performing and interpreting these 

data allowing WGS to gain wider acceptance.

WGS for Investigation of the Epidemiology and Diversity of CPO

Recent studies indicate that WGS, combined with hospital epidemiology, may facilitate the 

tracking of transmissions within healthcare facilities with the level of precision necessary to 

guide the modification of infection control procedures and limit the spread of healthcare-

associated infections [36,37,38,39]. One example is the National Institutes of Health Clinical 

Center outbreak in which a single patient colonized on admission with KPC-producing K. 
pneumoniae was eventually linked to CPO colonization in 18 additional patients. The 

epidemiologic data could not discriminate between undetected transmission from the index 

patient or introduction of a second strain. The extensive genetic similarity among KPC-

producing K. pneumoniae in the United States prevented a definitive match to the index 

patient using standard outbreak investigation tools such as pulsed-field gel electrophoresis or 

repetitive element PCR. WGS revealed direct linkage of the index patient, with transmission 

originating from three different anatomic sites [34], indicating silent colonization, even in 

immunocompromised patients. In another healthcare-related outbreak, WGS was 

instrumental in identifying limited healthcare-associated transmission of CRE against a 

background of sporadic introduction of multiple other strains [36]. In other studies, WGS 

was key in determining the phylogeny of carbapenem resistant Enterobacter species and how 

gene regulation by insertion sequence elements impacted carbapenem and multidrug 

resistance in A. baumannii [40,41]. WGS has also been used to create a reference set 

capturing the diversity of plasmids and mobile elements that carry the KPC gene [36,42].
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Novel Treatment Strategies for CPO

Treatment of CPO, especially CP-CRE, remains problematic. Patients with CP-CRE 

infection suffer unacceptably high mortality, emphasizing the need for novel diagnostics and 

therapies. Studies performed to date demonstrate a bias to report trials of successful 

combination chemotherapy, informed largely by results from in vitro studies. In most trials 

targeting CP-CRE, combination therapies have included the use of i) colistin (polymyxin E) 

and a carbapenem, ii) colistin and tigecycline, or colistin and fosfomycin, or iii) double 

carbapenem therapy. Interestingly, it was also shown in vitro that dual carbapenem 

combinations might work against carbapenemase-producing strains, with significant 

synergies observed when using imipenem and another carbapenem [43].

In an early study performed at a tertiary care center, Qureshi and colleagues reported that 

28-day mortality was 13.3% in the combination therapy group (colistin and another agent) 

compared with 57.8% in the monotherapy group (P= 0.01), and that combination regimens 

were independently associated with better survival (P=0.02) [44]. Additionally, a multi-

center retrospective cohort study conducted in three large Italian teaching hospitals 

examined death within 30 days of the first positive blood culture among 125 patients with 

blood stream infections caused by KPC-producing K. pneumoniae [45]. That investigation 

found 54.3% mortality in the monotherapy arm versus 34.1% mortality in the combination 

therapy group (P = 0.02); triple combination therapy (tigecycline, colistin, and meropenem) 

was associated with lowest mortality (P = 0.01). This study also revealed that patients 

infected by CP-CRE with imipenem MIC values of ≥4 μg/mL had worse outcomes than 

patients whose isolates had an MIC value of ≤2 μg/mL. The “dividing line” appears to be an 

MIC value between 2 and 4 μg/mL and predicted differences in mortality were notable 

(16.1% versus 76.9%; P <0.01); each imipenem MIC doubling dilution increased the 

probability of death two-fold.

In a subsequent review of 20 clinical studies involving 414 patients, Tzouvelekis and 

colleagues reported that a single active agent resulted in mortality rates not significantly 

different from those observed in patients administered no active therapy [46]. Consistent 

with the notions reported above, combination therapy with two or more agents active in vitro 
was superior to monotherapy, providing a clear survival benefit (mortality rate, 27.4% versus 

38.7%; P <0.001). The lowest mortality rate (18.8%) was observed in patients treated with 

carbapenem-containing combinations.

In contrast, Falagas and partners in 2014 reported the largest meta-analysis performed to 

date [47], examining 20 studies involving 692 patients. Surprisingly, the authors reported 

50% mortality in patients treated with tigecycline and gentamicin, 64% mortality for 

tigecycline and colistin, and 67% mortality for carbapenems and colistin. This 

comprehensive analysis called into question the conclusions drawn from the earlier 

retrospective, nonrandomized studies, and emphasized that unexplained molecular 

heterogeneity, and non-uniform microbiology testing might be confounding results. These 

differences suggest that studies concluding the superiority of combination therapy over 

monotherapy may not be sufficiently rigorous for us to accept their conclusions.
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What about new drugs in development? Avibactam is a synthetic non-beta-lactam, bicyclic 

diazabicyclooctane beta-lactamase inhibitor (DBO), that inhibits the activities of Ambler 

class A and C beta-lactamases and some Ambler class D enzymes. Avibactam closely 

resembles portions of the cephem bicyclic ring system, and has been shown to bond 

covalently to beta-lactamases. Against carbapenemase-producing K. pneumoniae, the 

addition of avibactam significantly improves the activity of ceftazidime in vitro (∼four-fold 

MIC reduction). In surveillance studies, the combination of ceftazidime with avibactam 

restores in vitro susceptibility against all ESBLs and most KPCs tested. Studies comparing 

outcomes of infections with KPC-producing Gram-negative bacteria treated with 

ceftazidime-avibactam as monotherapy or in combination with colistin are ongoing. An 

important study comparing the outcomes of patients infected with CRE treated with colistin 

vs. ceftazidime/avibactam was recently performed [48]. Patients initially treated with either 

ceftazidime-avibactam or colistin for CRE infections were selected from the Consortium on 

Resistance Against Carbapenems in Klebsiella and other Enterobacteriaceae (CRACKLE), a 

prospective, multicenter, observational study. Thirty-eight patients were treated first with 

ceftazidime-avibactam and 99 with colistin either as monotherapy or combination therapy. 

Patients treated with ceftazidime-avibactam vs colistin (monotherapy or combination) had a 

higher probability of a better outcome as compared to patients treated with colistin. This 

study strengthens the notion that treatment with a highly active agent as monotherapy in the 

appropriate clinical setting may be better than therapy with a less desirable agent singly or in 

combination.

Relebactam, also a DBO, combined with imipenem/cilistatin, will soon be evaluated in 

clinical studies [49]. In vitro studies indicate that imipenem/cilistatin-relebactam is 

comparable to ceftazidime-avibactam. The role of the combination of imipenem versus 

ceftazidime with different DBOs remains to be defined.

The United States Food and Drug Administration (FDA) recently approved ceftazidime-

avibactam based on data obtained in Phase II/III trials of complicated urinary tract infections 

and intra-abdominal infections (ceftazidime-avibactam combined with metronidazole). 

Despite encouraging results, the FDA cautioned that ceftazidime-avibactam should be 

reserved for situations when there are limited or no alternative drugs for treating an 

infection. The concern was that resistance to ceftazidime-avibactam would emerge in KPC-

producing strains. Regrettably resistance is already being reported due to mutations 

occurring in the KPC enzyme and porin changes [50,51]

In summary, combination chemotherapies seem to be effective against KPC-producing 

bacteria (Table 1) [49], but we still need to design the right trial to answer the fundamental 

question as to why. We also need to carefully examine new drugs in the pipeline, and use 

clinical trials to define their best use. Other drugs in development are summarized in Table 

2. The reader will note that there are some drugs specifically targeted for MBL producers 

(aztreonam/avibactam and cefidericol); these developments are awaited in earnest. Novel 

combinations (ceftazidime/avibactam paired with aztreonam) are also being explored [52]. 

In addition, optimizing pharmacokinetic and pharmacodynamic parameters are essential for 

ensuring efficacy in difficulty to treat infections. Activities such as testing in hollow fiber 
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models, prolonged or continuous infusion are being aggressively evaluated to optimize drug 

dosing [53,54,55].

Monitoring and Control of Carbapenemase-Producing Organisms

Approaches to addressing the rapid intercontinental spread of CPO and other multi-resistant 

organisms include surveillance and judicious use of infection prevention and control (IPC) 

practices. There is evidence that IPC efforts at the local and country-wide level are effective 

in reducing transmission of CPO [56], and the role of IPC in the overall control of CPO 

cannot be overemphasized. Regarding surveillance at a global level, the Global 

Antimicrobial Resistance Surveillance System (GLASS) program was launched in 2015 as 

part of the WHO Global Action Plan on AMR to support a standardized approach to 

collection, analysis, and sharing of AMR data to inform local and national decision-making, 

and provide the evidence base for action and advocacy. Another approach that has been 

suggested is the application of the International Health Regulations (IHR), which represents 

a legal framework for international efforts to reduce the risk from public health threats that 

may spread between countries [57]. IHR requires countries to report certain disease 

outbreaks, including smallpox, wild-type poliomyelitis, severe acute respiratory syndrome, 

new types of influenza, or any public health event of international concern (PHEIC) which 

may include “new or emerging antibiotic resistance” [57]. The rationale for declaring AMR, 

specifically CPO, as a PHEIC has been reported previously [58], and includes multi-drug 

resistance, propensity for rapid spread, absence of geographic/political boundaries, presence 

in E. coli (the most common cause of urinary tract infection globally), presence in microbes 

of high public health importance, namely Salmonella, Shigella, and Vibrio species, and 

carriage of resistance traits on very mobile broad-host range plasmids [59]. The emergence 

of plasmid-mediated colistin resistance in Enterobacteriaceae has created a potential 

scenario of pan-resistant CRE [60].

Although application of IHR to CPO may have potential benefits including increasing 

surveillance and response capacities to address the spread of AMR on a global basis [58], a 

counter reaction argues that it is difficult to appreciate how the global spread of AMR 

constitutes an “extraordinary event” and that it is neither pragmatic nor within the 

framework of the IHR to consider it a PHEIC [61]. The only PHEICs declared to date 

include H1N1 2009 global influenza pandemic, Ebola virus disease in 2014, and the recent 

clusters of microcephaly and neurological abnormalities associated with Zika virus. In 

addition to global efforts underway, country-specific guidelines, including The Combating 
Antibiotic Resistant Bacteria report and the President's Council of Advisors on Science and 

Technology strategic plans, provide practical recommendations to the United States 

government to facilitate addressing the problem of antimicrobial resistance. Canada and the 

European Union have made similar commitments.
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Summary

Infections caused by carbapenemase-producing bacteria have experienced unprecedented 

intercontinental spread and proliferation and continue to be a therapeutic challenge. The 

genetic features that facilitate widespread dissemination are becoming increasingly 

understood. Control requires efficient laboratory detection and treatment, and a 

coordinated international response.
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Figure 1. 
Worldwide distribution of carbapenemases. A) KPC producers in Enterobacteriaceae and P. 
aeruginosa. B) NDM producers in Enterobacteriaceae and P. aeruginosa. C) OXA-48 

producers in Enterobacteriaceae.
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Table 1

Clinical regimens used in observational studies for treating carbapenem-resistant Klebsiella pneumoniae 
where carbapenemase is identified [45].

Beta-lactamases present Regimen Improved survival versus 
monotherapy

KPC- and MBL- producing K. pneumoniae Carbapenem and tigecycline, plus aminoglycoside or colistin;
Carbapenem and tigecycline;
Carbapenem and aminoglycoside;
Carbapenem and colistin

Yes

KPC-producing K. pneumoniae Colistin and aminoglycoside;
Colistin and tigecycline;
Colistin and quinolone;
Colistin and carbapenem;
Carbapenem and carbapenem

Yes
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Table 2
Novel agents in development for treating carbapenem-resistant and CPO

Antibiotic Drug class Intended Indication/Activity/Comments

Cefiderocol Siderophore-β-lactam (cephalosporin)
Complicated urinary tract infections (cUTIs), carbapenem-
resistant Gram-negative bacterial infections
Active against metallo-beta-lactamase producing strains

ceftaroline fosamil/avibactam Cephalosporin and DBO BLI. Currently undefined.

Eravacycline Tetracycline cIAI and cUTI
Multi-drug resistant organisms (MDRO)

Imipenem/cilistatin/relebactam Carbapenem and DBO beta-lactamase 
inhibitor (BLI).

cUTIs, intra-abdominal infections (cIAI), hospital acquired 
pneumonia (HAP)
Active against ESBLs and KPCs

Meropenem-vaborbactam Carbapenem and cyclic boronic acid beta-
lactamase inhibitor

cUTI, catheter-related bloodstream infections, HAP/
ventilator-associated bacterial pneumonia (VAP), cIAI due to 
CRE

Plazomycin Aminoglycoside cUTI, catheter-related bloodstream infections, HAP/
ventilator-associated pneumonia, cIAI due to CPO and CRE
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