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Abstract

In the United States, the blacklegged tick, Ixodes scapularis, is a vector of seven human pathogens, 

including those causing Lyme disease, anaplasmosis, babesiosis, Borrelia miyamotoi disease, 

Powassan virus disease, and ehrlichiosis associated with Ehrlichia muris eauclarensis. In addition 

to an accelerated rate of discovery of I. scapularis-borne pathogens over the past two decades, the 

geographic range of the tick, and incidence and range of I. scapularis-borne disease cases, have 

increased. Despite knowledge of when and where humans are most at risk of exposure to infected 

ticks, control of I. scapularis-borne diseases remains a challenge. Human vaccines are not 

available, and we lack solid evidence for other prevention and control methods to reduce human 

disease. The way forward is discussed.

Ixodes scapularis-Borne Disease Agents Are an Increasing Public Health 

Concern

Among the approximately 50 000 locally acquired vector-borne disease cases reported 

annually from the contiguous United States, roughly 95% are caused by tick-borne 

pathogens and >70% are Lyme disease [1]. Lyme disease is caused by the spirochetes 

Borrelia burgdorferi sensu stricto (herein referred to as B. burgdorferi) [2], or much less 

commonly by Borrelia mayonii [3]; both are transmitted by the blacklegged tick, Ixodes 
scapularis (including the junior synonym, Ixodes dammini) in the eastern United States 

where the vast majority of cases occur [4,5]. Over the past two decades, we have seen 

expansions in both the geographic range of I. scapularis [6] (Figure 1A,B) and the incidence 

and geographic range of Lyme disease and other I. scapularis-borne diseases [7,8] (Figure 

1C,D). In addition, new I. scapularis-borne human pathogens continue to be discovered. As 

of 2017, seven microorganisms transmitted by I. scapularis – including five bacteria 

(Anaplasma phagocytophilum, Bo. burgdorferi, Bo. mayonii, Bo. miyamotoi, and E. muris 
eauclarensis), one protozoan parasite (Babesia microti), and one virus (Powassan virus) – are 

known to cause illness in humans [7,9]. The recognition of this diverse guild of I. scapularis-

borne pathogens over the last five decades marks a significant shift in the perceived medical 
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importance of the tick; prior to 1970, I. scapularis was not considered an important vector of 

human pathogens (Figure 2).

Humans are incidental hosts (see Glossary) of I. scapularis and its associated pathogens; 

although humans may be bitten [10,11], they are not essential for either the survival of tick 

populations or pathogen perpetuation (Figure 3). I. scapularis is a woodland-associated, 

three-host tick with a life cycle of 2–4 years [12,13]. Immature ticks (larvae and nymphs) 

have a broad host range, including rodents, insectivores, birds, lagomorphs, and ungulates 

[14,15]; whereas adults are restricted to medium- and large-sized mammals, primarily white-

tailed deer (Odocoileus virginianus) [16]. With the exception of Powassan virus and Bo. 
miyamotoi relapsing fever spirochetes, which can be passed transovarially as well as 

acquired through blood-feeding [17,18], the other five human pathogens transmitted by I. 
scapularis are not known to be maintained transovarially, and acquisition by ticks therefore 

occurs during blood feeding [4,17,19–23].

Many different personal protective measures to prevent tick bites, and control strategies to 

reduce tick abundance or disrupt pathogen transmission cycles, have been evaluated and 

demonstrated to be effective at preventing tick bites or reducing the abundance of host-
seeking ticks or infection rates in ticks or reservoir hosts [24–26]. These approaches include: 

tick repellents and permethrin-treated clothing to prevent human–tick contact; synthetic 

chemicals, natural products, and biological agents to suppress host-seeking ticks; deer 

reduction to suppress tick populations; topical application of pesticides to reduce tick 

burdens on rodents and deer; and antibiotic treatment or vaccination of rodent reservoirs 

against Lyme borreliosis spirochetes [27]. However, very few approaches have been 

evaluated with tick-borne diseases as an outcome measure, and we lack evidence for any 

currently available personal protective measure or environmentally-based tick/pathogen-

control method to consistently reduce I. scapularis-borne infections [28,29]. Herein, we 

describe the rise of I. scapularis and its associated diseases, and discuss control opportunities 

and challenges.

Ixodes scapularis Is Reclaiming Its Historical Range

Tick surveillance is not standardized or routine, thus hampering our ability to monitor 

changes in the distribution and abundance of I. scapularis [6,30]. Retrospective review of I. 
scapularis records reveals remarkable range expansion over the past century, particularly in 

the northern portion of the eastern United States. The earliest record of the tick in the 

northeast dates back to the 1920s near Cape Cod, Massachusetts [31]. By 1945, I. scapularis 
was recorded sporadically from states along the northern Atlantic coast, but its core 

distribution was primarily in the Gulf Coast states and the southeast [10]. In the early 1960s, 

focal populations were reported along the New England coast and in Rhode Island, and later 

in that decade records emerged from Long Island, New York, and northwestern Wisconsin. 

During the 1970s, the reported distribution of the tick expanded, and its abundance increased 

along the Atlantic coast from New England to the mid-Atlantic states; expansion inland 

continued through the 1980s and 1990s [30,31].
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Moreover, compilations of I. scapularis county collection records revealed that over the past 

two decades the tick’s range has expanded substantially in the upper Midwest, northeast and 

mid-Atlantic states, but remained stable in the southeast (Figure 1A,B). As of 2016, I. 
scapularis had been documented in nearly half (1420 of 3110 counties) of the counties in the 

contiguous United States; in total, 842 counties across 35 eastern and central states are 

believed to have established populations [6]. Overall, during the past two decades, the 

number of counties in which I. scapularis is considered to be established has more than 

doubled. Recent habitat suitability models for I. scapularis identified many eastern counties 

as environmentally suitable for the tick to become established but from which it has not yet 

been reported, implying that the tick is still under-reported [32,33].

These geographical trends appear to represent a species reclaiming its historical range. 

Phylogeographic studies suggest that the tick’s historical range likely extended across much 

of the eastern United States. It is likely that the species originated in the southern United 

States a half a million years ago, with later expansion into the mid-Atlantic and northeastern 

United States roughly 50 000 years ago, followed by colonization of the upper Midwest in 

the last 20 000 years following the retreat of the Laurentide Ice Sheet [34].

Environmental changes over the past 200 years drastically altered the distribution of I. 
scapularis, particularly in the northeast. Rapid deforestation to accommodate agriculture and 

to provide fuel, coupled with near elimination of white-tailed deer through hunting and 

habitat loss during the 1800s and early 1900s, likely restricted the range of this woodland 

tick that strongly depends on deer for blood meals in the adult stage. Refugia sites were 

restricted to focal areas in the northeast and upper Midwest where forests remained intact 

[31,35]. By the second half of the 20th century, large portions of the northeast were 

converted from agricultural to suburban land, leading to reforestation with a spatial mosaic 

of woods of various ages and patch sizes intermingled with ornamental plants and 

maintained lawns [36]. During roughly the same time period, the increase in suitable habitat 

for deer resulted in dramatically increasing abundance of white-tailed deer [35].

Although compilation of presence records provides a reasonably accurate representation of 

the tick’s geographic range, lack of systematic vector surveillance limits accuracy in the 

estimation of geographic variation in the density of host-seeking I. scapularis nymphs, a 

variable that is more closely associated with Lyme disease incidence than measures of tick 

presence [37–40]. Roughly a decade ago, a systematic collection effort was undertaken to 

assess variation in the density of host-seeking nymphal I. scapularis ticks throughout the 

eastern United States [41]. The study revealed that, although I. scapularis was widely 

distributed, the density of host-seeking nymphs was generally higher in the north compared 

with the south, mirroring the reported distribution of Lyme disease cases in the eastern 

United States (Figure 1C,D). The findings were consistent with previous reports that, 

although the tick is present in southern states, host-seeking I. scapularis nymphs are rarely 

collected by drag sampling [42–44] and seldom bite people [11,45]. Later studies revealed 

distinct differences in host-seeking behavior between northern and southern clades of I. 
scapularis. Specifically, southern ticks are less likely than their northern counterparts to 

ascend vegetation when seeking hosts [46,47], thus reducing the likelihood of tick–human 

encounters when compared with their northern counterparts. Since the last systematic effort 
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to document geographic variation in the density of host-seeking I. scapularis throughout its 

range in the United States [41], the tick’s range has expanded [6], and northern clade ticks 

appear to be spreading south [34]. Not surprisingly, the geographic range of counties 

classified as having high Lyme disease incidence has expanded following similar patterns 

[48]. A renewed effort to assess spatial variation in the density of host-seeking I. scapularis 
appears justified.

The Number of Recognized Human Disease Agents Transmitted by I. 

scapularis Is Growing

From 1970 through 2017, seven I. scapularis-borne human pathogens were described 

(Figure 2). In 1970, Ba. microti, an intraerythrocytic parasite, was first described in an 

otherwise healthy woman [49], (Figure 2). Shortly thereafter, Ba. microti was identified in 

white-footed mice (Peromysus leucopus) and in I. scapularis; experimental studies later 

confirmed that I. scapularis nymphs are capable of transmitting Ba. microti [50,51].

Lyme disease was first recognized in the United States as a new form of inflammatory 

arthritis in 1975 [52]. In 1982, a spirochete, later named Bo. burgdorferi [53], was identified 

as the etiological agent and shown to be transmissible by I. scapularis [2,5]. Although 

numerous small mammals and birds have been implicated as reservoirs of Bo. burgdorferi, 
the white-footed mouse is among the most important reservoirs in the eastern United States 

[15,36,54,55].

Human granulocytic anaplasmosis, originally described as human granulocytic ehrlichiosis 

(Ehrlichia phagocytophila), was first identified in six patients from northern Minnesota and 

Wisconsin presenting with acute febrile illnesses between 1990 and 1993. The timing of 

onset of cases was consistent with host-seeking activity of I. scapularis and Dermacentor 
variabilis and the former was implicated as a vector based on evidence that the closely 

related Ixodes ricinus transmits E. phagocytophila in Europe [56]. In 1996, I. scapularis was 

experimentally confirmed as a vector of E. phagocytophila, and P. leucopus was shown to be 

a competent reservoir [57]. In 2001, this intraleukocytic bacterium was renamed A. 
phagocytophilum [58].

Powassan virus, a flavivirus, was first recognized as a human pathogen in 1958 when it was 

isolated from a child who died of encephalitis [59]. Ixodes marxi, Ixodescookei, and Ixodes 
spinipalpis were implicated as enzootic vectors of Powassan virus in the 1960s [60–62], 

more than 30 years before experimental vector competence was demonstrated for I. 
scapularis [17]. Owing to its greater propensity to bite humans, I. scapularis is considered 

the primary bridging vector of Powassan virus (also referred to as ‘Deer Tick virus’ or 

‘lineage II Powassan virus’) to humans [17,19,63].

In 2011, a novel obligate intracellular Gram-negative bacterium, found in I. scapularis from 

Minnesota and Wisconsin and later described as E. muris eauclarensis [64], was recognized 

to cause ehrlichiosis in humans [65]. I. scapularis was demonstrated experimentally to be a 

vector of E. muris eauclarensis [20,66], supporting earlier reports of natural infection in I. 
scapularis from Minnesota and Wisconsin [65,67,68]. E. muris eauclarensis has been 
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detected in naturally infected white-footed mice collected in these two states [69], and 

reservoir competence was demonstrated in the laboratory [66].

Bo. miyamotoi, a relapsing fever spirochete, was first described in Ixodes persulcatus in 

Japan [70]. In 2001, the ability of I. scapularis to transmit Bo. miyamotoi while feeding, and 

to pass spirochetes transovarially, was demonstrated under laboratory conditions [71]. A 

decade later, Bo. miyamotoi was recognized as a human pathogen in a report of 46 cases 

from Russia [72]. Shortly thereafter, the first recognized case of Bo. miyamotoi disease in 

North America was described in an 80-year-old woman from New Jersey [73]. The first 

large case series from the northeastern United States revealed that the peak onset of illness 

occurs from July through August – 1 month later than for Lyme disease, anaplasmosis, and 

babesiosis – and thus corresponds with the peak host-seeking activity of larval rather than 

nymphal I. scapularis ticks [74,75]. Although white-footed mice support short-lived 

infections of Bo. miyamotoi transmissible to feeding ticks and likely play a role in 

amplification of infections [71,76], transovarial transmission may be the primary route of 

enzootic maintenance [76–79].

Until 2016, when Bo. mayonii was described and recognized as a causative agent of Lyme 

disease in Minnesota and Wisconsin [3,80], Bo. burgdorferi had been considered the sole 

agent of Lyme disease in the United States. Bo. mayonii has been detected in field-collected 

I. scapularis from Minnesota and Wisconsin [3], and vector competence has been 

demonstrated under laboratory conditions [4]. Bo. mayonii also was isolated from white-

footed mice and an American red squirrel (Tamiasciurus hudsonicus) in Minnesota, but 

reservoir competence has not yet been demonstrated experimentally [81].

Coinfections Are Common in I. scapularis and May Increase Severity of 

Illness in Humans

Coinfections are commonly reported in I. scapularis, most often dual infections of Bo. 
burgdorferi with either A. phagocytophilum or Ba. microti [82–91]. Because of small sample 

sizes and lack of systematic efforts to assess trends over the geographic range of I. 
scapularis, the true prevalence of coinfections remains unknown. Based on limited data, 

prevalence of dual infections varies over time and by geographic region and has been 

reported in 1–28% of ticks tested, but commonly less than 5–10% of ticks are coinfected 

[89–91].

Bo. burgdorferi and Ba. microti share a common reservoir, the white-footed mouse, 

explaining the increased likelihood of finding coinfections more often than expected by 

chance [85,86,91]. Recent evidence suggests that Bo. burgdorferi promotes transmission of 

Ba. microti, and the former typically becomes established in new foci before the latter 

[85,86,91,92]. By contrast, coinfection with Bo. burgdorferi and A. phagocytophilum are 

typically observed at rates expected based on prevalence of each infection individually, 

suggesting independent enzootic transmission maintenance cycles [83,84,87,93]. Although, 

the efficiency of I. scapularis to transmit Bo. burgdorferi or A. phagocytophilum is not 

affected by coinfection [84], coinfection in mice has been shown to increase pathogen 

acquisition by feeding larvae, compared with rates observed when feeding on singly infected 
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mice [94]. The relative abundance of various hosts in a community likely influences the 

probability of coinfections occurring. Although reported less commonly as a coinfection 

with Bo. burgdorferi compared with A. phagocytophilum or Ba. microti, coinfection with 

Bo. miyamotoi appears to occur at rates expected by chance, or lower, again suggesting 

independent mechanisms of persistence [76,82].

Coinfections with I. scapularis-borne pathogens in humans can arise from the bite of a single 

coinfected tick, or from concurrent bites by multiple singly-infected ticks. Although 

differences in methods of detecting infections differ across studies of persons diagnosed 

with tickborne diseases, and across studies from the northeastern and upper Midwestern 

United States, coinfection rates ranged from 0 to 67% for Lyme disease and babesiosis, 0 to 

26% for Lyme disease and anaplasmosis, and 0 to 7% for anaplasmosis and babesiosis [90]. 

As reviewed previously, concurrent infections with Bo. burgdorferi and Ba. microti or A. 
phagocytophilum appear to increase severity of illness [90,91].

Incidence and Ranges of Diseases Caused by I. scapularis-Borne 

Pathogens Are Increasing

I. scapularis-borne pathogens are associated with four nationally notifiable diseases. Lyme 

disease was added to the list of notifiable conditions in 1991; anaplasmosis, Powassan virus 

disease, and babesiosis were included in 2000, 2002, and 2011, respectively. Case counts 

have generally increased for each of these conditions since they became notifiable (Figure 

4). From 2002 to 2016, a total of 102 Powassan virus disease cases have been reported, with 

annual case counts ranging from 0 to 22 casesi. By contrast, since 2008, annual reported 

cases of Lyme disease have exceeded 30 000, marking a near tripling of reported cases since 

it was first notifiable in 1991 [8,95]. Notably, the number of cases reported is estimated to be 

approximately tenfold lower than the number of Lyme disease cases that are diagnosed 

annually [96,97]. Reported cases of anaplasmosis increased from 351 in 2000 to 4151 in 

2016, and reported cases of babesiosis have increased from 1128 in 2011 to 1910 in i.

Compared with Lyme disease, the incidence of reported anaplasmosis, Powassan virus 

disease, and babesiosis is several orders of magnitude lower, and their geographic 

distribution appears to be similar but more restricted; like the distribution of Lyme disease 

cases, the geographic range of anaplasmosis and babesiosis has similarly spread over time 

(Figure 4) [7,19,95,98,99]. Over 96% of Lyme disease cases are reported from just 14 states 

in the northeast, mid-Atlantic and the upper Midwest [95]. Since the mid-1990s, the number 

of counties with a high incidence of Lyme disease has increased by approximately 300% 

[48]. As it is not a notifiable condition, trends in incidence and geographic range of Bo. 
miyamotoi disease cases are not well characterized, but the geographic range is likely 

similar to that of Lyme disease [100]. By contrast, ehrlichiosis, caused by E. muris 
eauclarensis, thus far has been reported only from the upper Midwest [65].

iResources
wwwn.cdc.gov/nndss/default.aspx
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Controlling I. scapularis and Reducing Tick-Borne Diseases Is Challenging

The Evidence Base for Existing Interventions to Reduce Human Tick-Borne Disease Is 
Weak

Perhaps the most vexing aspect of control of I. scapularis-borne diseases, as exemplified by 

Lyme disease, is that we already know (i) the geographic areas in which the majority of 

cases will occur each year, and (ii) the months of the year during which most of the 

infections will be acquired [95]. In the Lyme disease focus in the northeast, we also know 

that humans most often encounter I. scapularis ticks in peridomestic settings, including on 

their own residential properties [26,37]. Despite this detailed knowledge of when and where 

humans are most at risk for exposure to infected ticks, we remain unable to control I. 
scapularis-borne diseases.

Previous reviews have addressed (i) personal protective measures to reduce human contact 

with I. scapularis ticks and environmentally based control methods to suppress host-seeking 

ticks and reduce infection with Lyme disease spirochetes in tick vectors and rodent 

reservoirs [25–27,101]; (ii) the evidence base for such measures, and methods to reduce 

Lyme disease [28,29,102,103]; and (iii) the prospect for a human Lyme disease vaccine to 

re-emerge in the wake of the rise and fall of Lymerix, an effective licensed vaccine that was 

removed from the US market in 2003 [104,105]. Despite the emergence of a wide array of 

approaches to avoid contact with ticks through personal protective measures, suppress host-

seeking I. scapularis, or disrupt enzootic B. burgdorferi transmission, we unfortunately still 

lack robust evidence for any method other than a human Lyme disease vaccine to reduce 

disease cases. When thinking about strengths and weaknesses of methods to prevent I. 
scapularis-borne infections, we find it useful to illustrate the chain of events leading to a 

case of I. scapularis-borne infection (using Lyme disease as an example) and, working 

backwards from the human infection, define and discuss the points where we can potentially 

intervene (Figure 5).

Disease Resulting from Bites by Infected Ticks Can Be Prevented by Early Tick Detection 
and Removal, Antibiotic Prophylaxis, and, in the Future, Hopefully Also by Vaccines

The most proximate intervention to prevent a human infection caused by an I. scapularis-

borne pathogen is to ensure that the bite of an infected tick does not result in illness (Figure 

5). Although this intuitively is the most impactful intervention point, all currently available 

intervention methods suffer from the shortcoming of being reliant on detection of attached 

ticks. The fact that I. scapularis nymphs are notoriously difficult for people to detect while 

biting [106] limits the usefulness of both removal of an attached infected nymph before it 

can transmit a pathogen [107] and antibiotic prophylaxis following a recognized tick bite 

[108]. This could potentially be overcome with a new type of consumer product to kill 

attached ticks without first having to detect their presence, such as an acaricidal skin lotion 

or shower soap. However, even this solution has practical limitations because it will require 

daily use and would be effective only if the soap or lotion is applied directly onto an 

unrecognized biting tick. Moreover, the tick would be attached for some period of time 

before being impacted, thus increasing the risk for pathogen transmission.
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Potential future magic bullet solutions, capable of both ensuring that the bite of an infected 

tick does not result in illness and having the potential to rapidly and dramatically reduce I. 
scapularis-borne human infections at the population level, include (i) human vaccines or 

prophylactic antibody treatments against Lyme disease spirochetes or other I. scapularis-

borne pathogens [104,105,109,110], and (ii) transmission-blocking anti-tick vaccines for 

human use with potential for simultaneous protection against multiple I. scapularis-borne 

pathogens [111–115]. These approaches would not require daily action and vigilance, and 

they would be effective regardless of whether or not bites by infected ticks are noticed. If 

proven to be safe, effective, and acceptable for widespread use, there is no question that the 

re-emergence of a human vaccine against Bo. burgdorferi, or the emergence of a 

prophylactic antibody treatment, would be the most effective ways to rapidly reduce Lyme 

disease cases. However, neither approach would address the remaining I. scapularis-borne 

pathogens, several of which are on the rise (Figure 4). A transmission-blocking anti-tick 

vaccine could potentially address that shortcoming, but only if it proves to act quickly and 

effectively enough on an infected tick to prevent or substantially reduce the likelihood of 

pathogen transmission occurring before the tick is incapacitated. These urgently needed 

approaches merit greater resources to expeditiously move them forward in a pipeline from 

prevention concept to proven solution and become, should they be successful, cornerstones 

in public health programs to reduce I. scapularis-borne infections.

Use of Repellents and Permethrin-Treated Clothing Can Reduce the Risk of Tick Contact 
Resulting in Bites

The next point of intervention to prevent a human infection is to ensure that ticks making 

contact with human skin or clothing do not get an opportunity to bite (Figure 5). This can be 

achieved by the use of tick repellents on skin and clothing, or the use of permethrin-treated 

clothing [27,116], combined with regular checks for crawling ticks, changing clothes when 

coming inside (and drying removed clothing articles at high heat), and taking a shower 

(ensuring removal of clothes worn outside, increasing the likelihood of detecting crawling 

ticks, and perhaps also dislodging crawling ticks while showering) [25,29,95]. The main 

problem is that all of these actions require a level of daily vigilance and effort that is hard to 

keep up for the period of 2–3 months during which I. scapularis nymphs are most active. 

Another problem is that we lack knowledge of how specific use patterns for repellents and 

permethrin-treated clothing, including frequency of use and extent of the body protected, 

may impact their protective effect against tick bites.

Risk of Contact with Host-Seeking Ticks Can Be Minimized by Behavioral Change, 
Environmental Modification, and Killing of Host-Seeking Ticks

Even further distant from the human infection, we can intervene by minimizing contact with 

host-seeking ticks (Figure 5) through (i) avoidance of habitats with a high risk for tick 

contact (easier said than done if it includes your backyard), (ii) reduction in longevity or 

survival of desiccation-sensitive host-seeking I. scapularis ticks in the peridomestic 

environment (e.g., xeriscaping, hardscaping, and vegetation management, including keeping 

grass short, clearing brush and removing leaf litter), or (iii) direct killing of host-seeking 

ticks with acaricides or biological control agents [24,25,27,29,117]. Here we introduce 

increased complexity by relying on solutions that are highly sensitive to human movement 
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patterns. For example, controlled experimental spring applications of pyrethroids typically 

reduce host-seeking I. scapularis nymphs by >85% [27]. Nevertheless, a recent effort to 

reduce tick bites and human I. scapularis-borne infections by spraying pyrethroids along the 

lawn–wood interface on residential properties, rather than treating all the wooded and brushy 

high-risk habitat on the properties, achieved 50–70% suppression of host-seeking I. 
scapularis nymphs within the areas sprayed but failed to reduce either tick bites or human 

infection [118]. Suppression of host-seeking I. scapularis nymphs across all wooded or 

brushy habitats on a property, thereby getting closer to a desired goal of complete absence of 

ticks in this high-risk environment, intuitively should be more impactful but it is also more 

expensive and may come at higher environmental costs. It remains to be evaluated to what 

extent such an intervention can reduce tick-borne disease.

Production of Infected Ticks Can Be Suppressed by Targeting Important Tick Hosts and 
Pathogen Reservoirs

Finally, we can intervene by suppressing production of infected I. scapularis nymphs by 

disrupting enzootic pathogen transmission among tick immatures and vertebrate hosts acting 

as pathogen reservoirs (particularly rodents) and targeting key hosts for the adult stage 

(particularly white-tailed deer) to reduce overall tick populations (Figure 5). There is little 

doubt that the white-tailed deer is the engine that drove the remarkable surge in populations 

of I. scapularis seen across the northeast and upper Midwest over the last 50 years [31,35]. 

Intuitively, adult I. scapularis ticks feeding on white-tailed deer is the weakest point in the 

chain leading to tick population build-up and, ultimately, intensified enzootic transmission 

among tick immatures and pathogen reservoirs, and production of pathogen-infected I. 
scapularis nymphs. It therefore has been reasonably argued that addressing deer, either by 

population reduction to very low levels or topical/oral application of acaricides to a large 

proportion of the deer, should be viewed as a cornerstone of area-wide environmentally 

based integrated management programs for I. scapularis [25,26,101,103]. Although 

numerous methods targeting rodent reservoirs and white-tailed deer have emerged in the last 

30 years [27], questions remain about the extent of available animals within a given area that 

need to be removed or treated to achieve reduction of human tick bites and human disease 

[26,28,102,103]. These methods also can be sensitive to local vertebrate community 

structure (if alternative pathogen reservoirs are readily available for tick immatures or 

alternative hosts for adult ticks are abundant) or, when relying on food baits in the 

implementation, to natural variation in food sources for rodents or deer over time.

Integrated Intervention Approaches Need to Be Evaluated with Human Disease Outcome 
Measures

Barring the emergence of a magic bullet solution (human vaccine, prophylactic antibody 

treatment, or transmission-blocking anti-tick vaccine), no single personal protective measure 

or environmentally based tick/pathogen control method is likely to substantially reduce I. 
scapularis-borne infections when used in isolation [28]. A few integrated intervention 

approaches that combine two or three environmentally based control methods have been 

shown to effectively reduce abundance of host-seeking I. scapularis nymphs [26,27,119–

121], but none of these integrated approaches have yet been evaluated with the gold standard 

of human infection with an I. scapularis-borne pathogen as an outcome measure [28]. As 
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suggested by the chain of events outlined in Figure 5, we also need to think outside the box 

and consider integrated intervention approaches that – rather than just combining two or 

more environmentally-based control methods – also include changes in human behavior and 

the use of existing personal protective measures.

We Need to Better Understand the Issues Relating to Cost, Acceptability, and Feasibility of 
Different Intervention Approaches

Another major challenge arises because control of I. scapularis and prevention of infection 

with its associated pathogens remains the responsibility of individual homeowners. Families 

therefore must make decisions regarding personal protective measures and environmentally 

based tick control on their properties, taking into consideration how much money they are 

willing to spend, under which circumstances (when and where) they wish to be protected, 

the level of daily effort required to achieve protection, and whether a given measure or 

method is acceptable to use. As illustrated in Figure 6, an ideal tick-borne disease prevention 

method should, from the perspective of a family, incur low cost, require minimal effort, and 

be globally effective (i.e., protective everywhere, all the time, and regardless of type of 

activity). It also must be acceptable for use. The scope of this challenge is illustrated by the 

most recently published survey of willingness to pay for tick control [122], which found that 

most residents in a Lyme disease endemic setting in Connecticut were unwilling to spend 

more than $100 per year and that acceptability was limited for some methods, including the 

use of acaricides to kill host-seeking ticks.

The magic bullet approaches discussed above (human vaccine, prophylactic antibody 

treatment, or transmission-blocking anti-tick vaccine) come closest to solving the 

‘impossible tribar’ of low cost, minimal effort, and global effectiveness, should they emerge 

and prove to be safe, effective, and widely acceptable for use (Figure 6). All currently 

available personal protective measures or environmentally based control methods fall short 

for at least one of the three desired characteristics, and some likely also will have limited 

acceptability. This, in turn, raises the intriguing question of which characteristic a majority 

of families is willing to give up: low cost, minimal effort, or global effectiveness? We 

therefore need to consider not only whether solutions to reduce I. scapularis-borne infections 

can be applied by individual families/on individual properties or may require 

implementation at a neighborhood/community scale, but also which solutions can achieve 

specific combinations of at least two desired characteristics: low cost–minimal effort, low 

cost–global effectiveness, or minimal effort–global effectiveness. Finally, we note that the 

process of moving promising solutions to reduce I. scapularis-borne infections forward in a 

pipeline from prevention concept to proven solution and successful public health program 

currently is impeded by an order of magnitude shortcoming in the financial resources 

available to achieve this effectively and expeditiously.

Concluding Remarks

In recent decades, I. scapularis has become more widespread, and an increasing number of 

microorganisms transmitted by this tick have proven to be pathogenic in humans. In parallel, 

both the incidence and geographic range of reported cases of I. scapularis-borne diseases 
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have increased, and coinfections are increasingly being recognized to contribute to severity 

of illness. Moreover, habitat suitability models suggest that the tick’s potential range exceeds 

the current reported distribution, suggesting either under-reporting of the tick’s current range 

or the potential for range expansion (see Outstanding Questions). Because the presence of 

the vector tick is a prerequisite for human tick-borne infections, we recognize a need to 

monitor changes in the distribution of I. scapularis. Recognizing that the density of host-

seeking infected nymphs provides a better estimate of human risk for bites by infected ticks 

than measures of tick presence, we emphasize the need to assess spatial variation in the 

density of infected host-seeking nymphs in order to educate the public of changing risk 

patterns. Such studies should (i) use standardized sampling methodology, (ii) be conducted 

during the expected peak in nymphal host-seeking, (iii) use sensitive and specific pathogen-

detection assays that are capable of detecting coinfections, (iv) report the density of 

pathogen-infected host-seeking nymphs (the life stage most often associated with human 

infections) per sampling site, and (v) use appropriate statistical methods to extrapolate 

predictions about the measured outcomes to areas that were not sampled. Moreover, there is 

a critical need for intervention approaches with proven capacity to reverse the growing 

public health problem imposed by I. scapularis (see Outstanding Questions). We need 

intensified and sustained efforts to develop safe and effective human vaccines, prophylactic 

antibody treatments, and transmission-blocking anti-tick vaccines, as well as a stronger 

evidence base for the capability of other already available personal protective measures and 

environmental control methods to reduce tick-borne disease, especially for integrated 

intervention approaches. Although proof-of-concept studies will logically focus on 

acarological or zoonotic outcomes (e.g., tick or host abundance, infection rates in ticks or 

hosts), ultimately evaluations of prevention strategies with human disease outcomes are 

needed.

Outstanding Questions

How widespread is I. scapularis?

How does the density of infected host-seeking nymphs change across the species’ 

range?

Are E. muris eauclarensis and Bo. mayonii restricted to the upper Midwest and, if 

so, why?

As previously distinct northern I. scapularis foci in the upper Midwest and 

northeast are merging, how will this affect the distribution of I. scapularis-borne 

pathogens?

Why is the prevalence of Bo. miyamotoi in ticks so low compared with Bo. 
burgdorferi, given that the former is transmitted transtadially and transovarially 

and the latter is transmitted only transtadially?

Among the potential control strategies, which has the greatest potential to reduce 

the incidence of I. scapularis-borne disease cases? Given that none of the current 

options can combine low cost, minimal effort, and global effectiveness, which 
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characteristic is a majority of families willing to give up: low cost, minimal effort, 

or global effectiveness?
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Glossary

Bridging tick vectors
ticks that acquire pathogens from zoonotic hosts involved in enzootic transmission cycles 

and later transmit pathogens to incidental hosts, which, in the case of tick-borne pathogens, 

include humans.

Coinfection
simultaneous infection with two or more pathogens within the same vector or host.

Drag sampling
a method of collecting host-seeking ticks in which a blanket is dragged across vegetation, 

typically over fixed distances or amounts of time, usually in an effort to quantify the 

abundance or density of host-seeking ticks. It is generally considered a better measure of the 

risk for human encounters with ticks than measures of tick abundance on hosts.

Enzootic tick vectors
ticks that transmit the pathogen of interest among zoonotic hosts.

Host-seeking
behavior displayed by a tick in an attempt to find a bloodmeal host (e.g., ascending 

vegetation and waiting for a host to pass by).

Incidental hosts
hosts that are not essential to the tick’s life cycle or perpetuation of tick-associated 

pathogens.

Magic bullet
something providing an effective solution to a difficult or previously unsolvable problem.

Relapsing fever spirochetes
phylogenetically related to Lyme disease spirochetes, but relapsing fever spirochetes are 

typically transmitted by soft (argasid) ticks (with the notable exception of a few hard-tick-

borne species, including Borrelia miyamotoi), and transovarial transmission is common. In 

contrast, Lyme disease spirochetes are transmitted by hard (ixodid) ticks and are not 

maintained transovarially.

Reservoirs
organisms in which a pathogen can survive and reproduce, for some period of time, and that 

contribute to enzootic maintenance.
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Transovarial transmission
passage of infection from an infected adult female tick to her eggs.

Vector ticks
ticks capable of acquiring infection during blood-feeding or transovarially, remaining 

infected through transition to subsequent life stages, and infecting a susceptible host while 

feeding.
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Highlights

The blacklegged tick, Ixodes scapularis, is becoming more widespread in the 

eastern United States.

The number of I. scapularis-borne microorganisms recognized to be pathogenic in 

humans is increasing.

The incidence of I. scapularis-borne disease cases continues to increase.

The geographic distribution of human cases of I. scapularis-borne diseases is 

expanding.

There is a critical need for control approaches with proven capacity to reverse the 

growing public health problem imposed by I. scapularis.
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Figure 1. 
Reported Distribution of Ixodes scapularis in 1996 (A) and 2016 (B); and Reported Cases of 

Lyme Disease in 2001 (C) and 2015 (D).

Counties classified as established, based on <6 individual ticks of a single life stage or >1 

life stage reported per county in a year are shown in red. Counties classified as reported 

based on <6 individual ticks reported in a year are shown in blue. Data from A and B are 

derived from Dennis et al. [30] and Eisen et al. [6], respectively. In panels C and D, one dot 

was placed randomly within the county of residence for each reported case. In the far-

western United States, Ixodes pacificus serves as a vector of Borrelia burgdorferi.
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Figure 2. 
Timeline Showing Discovery of the Seven Human Pathogens Transmitted by Ixodes 
scapularis.
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Figure 3. 
Life Cycle of Ixodes scapularis.
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Figure 4. 
Reported Cases of Babesiosis, Anaplasmosis, and Lyme Diseases in the United States, 

1996–2016. Source: https://wwwn.cdc.gov/nndss/data-and-statistics.html (last referenced 

November 13, 2017).
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Figure 5. 
Chain of Events Leading to a Lyme Disease Infection, with Possible Intervention Points for 

Different Control Approaches.
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Figure 6. 
Desired Characteristics of an Ideal Tick-Borne Disease Prevention Method.
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