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1 Summary 

Phosphorus (P) is an essential plant nutrient. Its sufficient availability in soil is a prerequisite 

for successful plant production. However, global P reserves are being increasingly exploited 

and surplus P applied by P fertilization is steadily accumulating in the form of plant-

unavailable P compounds in arable soils. Future plant production will therefore require a 

more effective and sustainable P fertilization regime. One promising approach is the use of 

phosphorus-mobilizing bacteria (PMB), which are able to mobilize P in soil through 

mineralization or solubilization so effectively that plant P supply is improved. Increases in 

plant growth and P uptake by the addition of PMB have been reported, but the heterogeneity 

of PMB’s effectiveness when tested under a wide range of environmental conditions has 

revealed a lack of understanding of PMB’s functional mechanisms in soils and plants. In 

addition, potential additional plant growth-promoting attributes of PMB, such as secretion of 

phytohormones or interactions with indigenous soil microbes, make it difficult to distinguish P 

mobilization-dependent and -independent mechanisms. However, an understanding of 

PMB’s functional mechanisms is necessary to evaluate both the potential and limitations of 

their use as well as to develop practical application recommendations. This thesis aimed to 

provide a better understanding of PMB’s functional mechanisms in soil; the foci here were 

mechanisms and interactions of P mineralization with indigenous soil microorganisms. We 

aimed to identify P mineralization-dependent and -independent as well as direct and indirect 

mechanisms of PMB on soil and plants. To this end, three rhizobox experiments were 

performed in the greenhouse using tomato and maize as the test plants and Pseudomonas 

sp. RU47 (RU47) as the PMB. To identify effective P mineralization beyond the level of 

endogenous microbial activity, a treatment using unselectively cultivated soil bacteria for 

inoculation was included. Furthermore, the addition of devitalized RU47 cells provided the 

opportunity to identify indirect mechanisms. In all three rhizobox experiments the activities of 

acid and alkaline phosphomonoesterases in rhizosphere and bulk soil were determined, as 

the latter could be clearly identified as being of microbial origin. Effects on microbial 

community structure in soil were estimated by denaturing gradient gel electrophoresis 

(DGGE) and/or phospholipid fatty acid analysis. For deeper investigations of potential effects 

on microbial population composition and possible dependencies on soil conditions, a fourth 

experiment was performed using maize, three different Pseudomonas strains possessing 

PMB abilities, and three different soils varying in parameters which included organic C, pH, 

and P content. Microbiome shifts in soil were quantitatively determined via quantitative PCR 

using domain- (bacteria, archaea, fungi) and six bacterial phylum-specific primers.  
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Our experiments showed that tomato plants grown under low P availability soil conditions 

improved in both growth and P uptake when viable RU47 cells were added. This effect was 

accompanied by increased alkaline phosphatase activity (PA) in the rhizosphere. We also 

observed plant growth-promotion effects and a trend of increased PA by the addition of dead 

RU47 cells. Based on DGGE results, which indicated the promotion of indigenous 

rhizobacteria, we assume a priming effect induced by the addition of C sources in the form of 

bacterial residues (dead RU47), which resulted in increased indigenous microbial activity in 

the rhizosphere. In each rhizobox experiment viable RU47 cells were able to colonize the 

rhizosphere at high abundances, persisting up to 50 days after sowing. We found indications 

of phytohormonal influences with the addition of both viable and dead RU47 cells, but this 

was more pronounced in dead than in viable RU47 treatments. Increasing P availability in 

soil by mineral P fertilization seemed to improve RU47’s ability to colonize and persist, which 

was shown by an increased RU47 abundance in both rhizosphere and bulk soils. However, 

despite an observable slight tendency, strengthened plant growth-promotion that positively 

correlated with improved RU47 abundance in the rhizosphere could not be detected. In 

general, colonization by viable RU47 cells did not significantly affect microbial community 

structure, either in the rhizosphere or in bulk soil. Using three different PMB strains, including 

RU47, in three contrasting soils, inoculation effects on the microbial community occurred 

heterogeneously, differing between the strains, soils, and time. Changes at the domain level 

were due primarily to nutrient availability in the soil, which differed between the soils and over 

time. Individual shifts in microbial community structure occurred more frequently in the 

rhizosphere than in bulk soil, but colonizing PMB neither increased bacterial abundance in 

rhizosphere bacteria, nor displaced copiotrophic rhizobacteria (indicative of C competition). 

In conclusion, this thesis demonstrated that various PMB mechanisms involved in plant 

growth and P uptake enhancement run in parallel. P mineralization-dependent and -

independent as well as direct and indirect mechanisms are overlapping; the dominant 

mechanism seems to depend on existing environmental conditions. PMB are able to 

mineralize P effectively from soil, and this offers a promising approach for their use in 

exploiting organic soil P for plant nutrition. Despite highly abundant colonization, however, 

effects of viable PMB on indigenous soil microbial community structure are low and 

temporary, implying low ecological risks to their use with respect to microbial diversity in 

arable soils. 
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2 Zusammenfassung 

Phosphor (P) ist ein essentieller Pflanzennährstoff, dessen ausreichende Verfügbarkeit im 

Boden mitentscheidend für eine ertragreiche Pflanzenproduktion ist. Die zunehmende 

Verknappung der globalen P-Ressourcen sowie die steigende P-Anreicherung, in Form von 

für die Pflanze nicht nutzbaren P-Verbindungen, in agrarwirtschaftlich genutzten Böden 

zeigen die Dringlichkeit nach einer effizienteren und nachhaltigeren P-Düngung in der 

zukünftigen Pflanzenproduktion. Einen vielversprechenden Ansatz bieten hierbei Phosphor-

mobilisierende Bakterien (PMB). PMB sind in der Lage mittels Mineralisation und 

Demineralisation P im Boden effektiv zu mobilisieren und für die pflanzliche Aufnahme 

verfügbar zu machen. Positive Pflanzeneffekte durch den Einsatz von PMB konnten bereits 

mehrfach nachgewiesen werden. Dennoch, das noch unzureichende Wissen über die 

Wirkmechanismen von PMB auf Boden und Pflanze führt zu unterschiedlichen Ergebnissen 

bei abweichenden Versuchs- und Anbaubedingungen. Potentielle, das Pflanzenwachstum 

beeinflussende Eigenschaften (z.B. Phytohormonsekretion oder mikrobielle Interaktionen) 

erschweren zusätzlich eine Differenzierung von P-mobilisationsabhängigen und -

unabhängigen Mechanismen. Das Verständnis über die Funktionsmechanismen von PMB ist 

jedoch grundlegend, um die Möglichkeiten und Grenzen ihres praktischen Einsatzes 

abschätzen und standortangepasste Anwendungsempfehlungen entwickeln zu können. Ziel 

dieser Arbeit war es, zu einem besseren Verständnis der Funktionsmechanismen von PMB 

im Boden beizutragen. Die Schwerpunkte lagen hierbei sowohl auf den Mechanismen der P-

Mineralisation als auch auf bodenmikrobielle Interaktionen. Angestrebt wurde die 

Identifizierung von P-mineralisationsabhängigen und -unabhängigen sowie direkten und 

indirekten PMB-Mechanismen. Es wurden drei Wurzelkastenversuche unter Verwendung 

von Tomate und Mais als Testpflanzen und Pseudomonas sp. RU47 (RU47) als PMB-

Stamm durchgeführt. Zur Identifizierung einer über die endogene mikrobielle Bodenaktivität 

hinausgehenden P-Mineralisation wurde jeweils eine Behandlungsgruppe mitgeführt, in der 

undifferenzierte Bodenbakterien für die Inokulation verwendet wurden. Die Unterscheidung 

von direkten und indirekten Mechanismen erfolgte durch die Applikation von abgetöteten 

RU47-Zellen in einer weiteren Behandlungsgruppe. Es wurde jeweils die saure und 

alkalische Phosphomonoesteraseaktivität (PA) in Rhizosphäre und Umgebungsboden 

gemessen, wobei die alkalische PA einem mikrobiellen Ursprung zugewiesen werden kann. 

Die Untersuchung der Auswirkungen auf die mikrobielle Bodengemeinschaft wurde mittels 

der denaturierenden Gradienten-Gelelektrophorese (DGGE) und/oder der 

Phospholipidfettsäuren-Analyse durchgeführt. Für genauere Untersuchungen hinsichtlich 

möglicher Effekte auf die mikrobielle Bodengemeinschaft sowie deren Beeinflussung durch 
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unterschiedliche Bodeneigenschaften wurde ein viertes Experiment unter Verwendung von 

Mais als Versuchspflanze durchgeführt. Dieser Versuch enthielt drei Pseudomonas Stämme 

mit PMB-Eigenschaften sowie drei in ihren Bodeneigenschaften (z.B. organischer 

Kohlenstoff (C)-Gehalt, P-Gehalt, pH-Wert) unterschiedliche Böden. Effekte auf die 

mikrobielle Bodengemeinschaft wurden quantitativ mittels qPCR unter Verwendung von 

Domain- (Bakterien, Archaeen, Pilze) und sechs Bakterienphylum-spezifischer Primerpaaren 

bestimmt.      

Mit lebenden RU47-Zellen behandelte Tomatenpflanzen zeigten unter P-limitierten 

Bodenbedingungen eine Verbesserung im Pflanzenwachstum und der P-Aufnahme. 

Gleichzeitig wurde eine Erhöhung der alkalischen PA in der Rhizosphäre nachgewiesen. Ein 

pflanzenwachstumsverbessernder Effekt sowie eine erhöhte PA konnte auch bei der 

Verwendung abgetöteter RU47-Zellen beobachtet werden. An Hand der DGGE-Ergebnisse 

konnte hier auf eine Förderung endogener Rhizobakterien, vermutlich durch von Zugabe von 

leicht verfügbarem C in Form von bakteriellen Zellrückständen, geschlossen werden, welche 

die mikrobielle Aktivität in der Rhizosphäre erhöhte („Priming-Effekt“). Lebende RU47-Zellen 

zeigten in allen Wurzelkastenversuchen eine hohe Rhizosphären-Kompetenz; hoch 

abundant nachweisbar bis zu 50 Tage nach Aussaat. Es wurden Hinweise auf 

phytohormonelle Effekte in beiden RU47-Behandlungsgruppen gefunden, diese waren 

jedoch stärker ausgeprägt in der Gruppe, in der tote RU47-Zellen verwendet wurden. Bei 

erhöhter P-Verfügbarkeit im Boden (P-Düngung) konnte sowohl in der Rhizosphäre als auch 

im Umgebungsboden eine erhöhte RU47-Abundanz beobachtet werden. Trotz beobachteter 

Tendenzen, ein positiv mit der RU47 Rhizosphären-Abundanz korrelierender, 

pflanzenwachstumsverbessernder Effekt wurde nicht nachgewiesen. Die Besiedlung 

lebender RU47-Zellen führte weder in der Rhizosphäre noch im Umgebungsboden zu einer 

Veränderung der mikrobiellen Bodengemeinschaft. Die Verwendung drei verschiedener 

PMB-Stämme, darunter auch RU47, in drei verschiedenen Böden zeigte einzelne 

Inokulationseffekte auf die mikrobielle Gemeinschaft, welche jedoch stark zwischen den 

Stämmen, Böden und der Zeit variierten. Änderungen auf Domainniveau folgten vorwiegend 

der Nährstoffverfügbarkeit im Boden und variierten somit zwischen den Böden und 

Probezeitpunkten. Einzelne Inokulationseffekte auf die mikrobielle Bodengemeinschaft 

wurden häufiger in der Rhizosphäre als im Umgebungsboden beobachtet. Trotz hoher 

Rhizosphären-Kompetenz wurde weder ein Anstieg der Rhizobakterien-Abundanz noch eine 

Verdrängung copiotropher Rhizobakterien (C-Konkurrenz) dokumentiert.  

Zusammenfassend demonstriert diese Arbeit, dass verschiedene, das Pflanzenwachstum 

und die P-Versorgung beeinflussende PMB-Mechanismen parallel ablaufen. P-
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mineralisationsabhängige und -unabhängige sowie direkte und indirekte Mechanismen 

verlaufen überlappend; die Ausprägung als dominanter Mechanismus scheint hierbei 

abhängig von den vorliegenden Umweltbedingungen zu sein. PMB sind in der Lage P 

effektiv im Boden zu mineralisieren und bieten damit einen vielversprechenden Ansatz 

organische P-Quellen im Boden für die Pflanzenernährung nutzbar zu machen. Trotz hoher 

Rhizosphären-Kompetenz beeinflussen PMB die mikrobielle Bodengemeinschaft nur gering 

und temporär, was geringe ökologische Risiken hinsichtlich der mikrobiellen Diversität im 

Boden bei ihrer praktischen Nutzung birgt.  
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3 General introduction 

3.1 The looming phosphorus crisis 

Phosphorus (P) is worldwide the second most commonly used plant nutrient in agriculture 

after nitrogen (N). P plays a key role in nearly all plant metabolic processes, including 

photosynthesis, respiration, and energy transfer (Khan et al. 2010, Sharma et al. 2013). 

Thus, an adequate supply of P in soil is required for high plant productivity. Due to the rapidly 

growing world population and increasing demand for food and forage crops, the consumption 

of P fertilizers has more than quadrupled during the last century (FAOSTAT 2014). This trend 

continues to rise, as the global population is expected to reach 9.7 billion people by the year 

2050 (Newbold 2017). However, P is a non-renewable element that is sourced primarily from 

the phosphatic mineral apatite, found in sedimentary and igneous ores (Fixen and Johnston 

2012, Pufahl and Groat 2017). Nearly all commercial phosphate fertilizers are based on 

phosphate rock, deposits of which are located mainly in the USA, China, Russia, and North 

Africa, and are increasingly exploited (Van Kauwenbergh 2010). Although phosphate rock is 

also used for various products in manufacturing industries (e.g. flame retardants, plasticisers, 

and batteries) its use as fertilizer accounts for more than 80 % of the total (Cordell and White 

2011, Withers et al. 2015 a). Current global phosphate rock reserves are estimated by the 

U.S. Geological Survey (2017) at ca. 68,000,000 kt. Based on current consumption, these 

reserves will run out in 200-300 years at the latest (Pufahl and Groat 2017). However, this 

time period shortens considerably under the scenario of a continuing rise in P consumption, 

already posing a challenge to future agriculture. This situation is exacerbated by the 

unbalanced P cycle in soil. Although in most agricultural soils a large quantity of P has 

accumulated as a consequence of intensive P fertilization, only 0.1 % of the total P is present 

in a soluble form available for root uptake (Zhou et al. 1992, Richardson 2001). 

Orthophosphates originating from chemical P fertilizers are rapidly adsorbed to soil mineral 

surfaces, precipitated by free trivalent aluminium (Al) and iron (Fe) in soil solution (Havlin et 

al. 1999, Sharma et al. 2013), or immobilized in soil organic matter (Richardson 2001, 

Richardson and Simpson 2011). In addition, a decreasing response in crop yield with 

increasing soil P status has been observed (SCOPE 1995, SCOPE 2014), making the 

application of chemical P fertilizers, especially in well-fertilized European soils, increasingly 

inefficient and uneconomical (Schoumans et al. 2015). Continued accessibility of P at the 

lowest possible cost is a major concern for countries having no P reserves of their own, such 

as Europe (Cooper et al. 2011, Withers et al. 2015 b). Ironically, a growing environmental 

problem is the leakage of P into water bodies through its discharge into groundwater where it 

affects aquatic biodiversity and human health by increasing eutrophication (Smith and 
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Schindler 2009, Withers et al. 2015 a). This description of the current global P situation 

clearly demonstrates the urgent need for a more effective and sustainable P fertilization 

regime, especially in European agriculture. 

Most P applied to agricultural soils as inorganic P fertilizer and manure is stored as surplus P 

(Owen et al. 2015). For the period from 1965 to 2007, cumulative P inputs to European soils 

were estimated as total ca. 1115 kg ha-1, while the plant-available portion was determined to 

be only 360 kg ha-1 (Sattari et al. 2012, Owen et al. 2015). Sattari et al. (2012) estimated that 

if the surplus P fixed in soil and which is not plant-available was accounted for in nutrient 

planning, the requirement for inorganic P fertilizers could be reduced by 50 %. A promising 

approach to exploit this stored soil P is the use of bio-fertilizers and bio-inoculants. Bio-

fertilizers are defined as products that may contain plant nutrients or specific organic 

components that stimulate microbial activity and thereby the recovery of plant-unavailable 

nutrients fixed in soil (Erro et al. 2007, Owens et al. 2015). Bio-inoculants are specific strains 

or consortia of microorganisms that are able to improve a plant’s growth and health; those 

which specifically increase P mobilization in soil are termed phosphorus-mobilizing 

microorganisms (PMM; Ahmad et al. 2013, Owen et al. 2015). Given the current situation of 

increasing demand and scarcity of P reserves, the global market of products promising to 

improve P fertilization’s efficiency is growing. This is especially true of the market for bio-

inoculants, which is estimated to grow at a rate of 10 % per year (Berg 2009). However, 

results in the literature on the effects of bio-inoculants in general, and PMM in particular, on 

plant growth and nutrient supply, have been inconsistent. Variability in PMM effects have 

been reported not only with respect to which strains/consortia were used, but also to growing 

and soil conditions, as well as crops and even crop varieties which were tested (e.g. 

Chanway and Nelson 1988, De Freitas et al. 1997, Bais et al. 2006, Delfin et al. 2015). 

Contradictory results as well as heterogeneity of experimental conditions and procedures are 

due to the fact that the underlying functional mechanisms of PMM are still poorly understood. 

Therefore, understanding PMM’s mechanisms can provide insights into both limits and 

opportunities for their use. This is a key prerequisite for determining PMM’s usability in 

agriculture - and for taking the first step toward addressing the looming P crisis. 

3.2 Soil microorganisms 

Soil microorganisms play a crucial role in P cycling by mediating the availability of P to plants 

(Richardson 2001). Plant P uptake from soil solution, in the form of inorganic P, occurs 

actively; orthophosphates (mainly H2PO4
- and HPO4

2-) are taken up by high-affinity 

transporters which are located at the root epidermis and are expressed in response to P 
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deficiency (Bucher 2007, Richardson and Simpson 2011). However, phosphate exists in soil 

predominately in fractions that are unavailable for plant uptake. They are adsorbed to mineral 

surfaces, precipitated with calcium (Ca), Al, and Fe, associated/adsorbed to soil organic 

matter, or incorporated into organic biomass (Richardson and Simpson 2011). Soil 

microorganisms in general, and PMM in particular, are able to mobilize orthophosphate from 

these P forms primarily for their own use but in doing so provide P for plant uptake. Thus, the 

targeted application of soil microorganisms offers a promising approach for the recover of 

plant-available orthophosphate from stored P in soil, enabling its exploitation for plant 

nutrition. Indeed, this concept is not new. As early as 1948, Gerretsen improved the P supply 

to canola plants by adding pure cultures of soil bacteria which solubilized precipitated forms 

of Ca phosphate. During the 1950s a bio-fertilizer named Phosphobacterin (Menkina 1956, 

Cooper 1959, Menkina 1963), which contains spores of Bacillus megaterium was commonly 

used by farmers in the USSR and several eastern countries. Its use resulted in increased 

organic P mineralization in soil and improved crop yields of up to 70 % (Yung 1954, Smith et 

al. 1961, Mishustin and Naumova 1962). Though still an emerging technology, the use of 

arbuscular mycorrhizal fungi (AMF) also has a history of more than 30 years showing 

auspicious results in improving plant P supply (Gianinazzi and Vosátka 2004, Faye et al. 

2013). However, AMF effects are based on a plant-fungi symbiotic interaction. Depending on 

the AMF family, a successful infection/colonization of the plant roots may take up to two 

months (Hart and Reader 2002). The use of more rapidly growing/colonizing, and thus 

potentially more effective, phosphorus-mobilizing bacteria offers more promise under modern 

agricultural conditions, which are characterized by changing crops and short crop seasons 

and where P deficiency is problematic in the early stages of plant growth. 

3.3 Phosphorus-mobilizing bacteria (PMB) 

PMB can be defined as soil- or rhizobacteria that effectively mobilize the limited soluble P in 

soil through mineralization of organic P and/or solubilization of inorganic P (Jones and 

Oburger 2011, Owens et al. 2015), yielding benefits for plant growth and P nutrition. PMB are 

specific bacterial strains/consortia isolated from natural rhizosphere communities and 

belonging mainly to the genera Pseudomonas, Bacillus, Rhizobium, and Enterobacter 

(Rodríguez and Fraga 1999, Fankem 2006). Plant growth-promoting effects by the addition 

of PMB have been reported several times (for review see Rodríguez and Fraga 1999, 

Gyaneshwar et al. 2002, Khan et al. 2007, 2009 a, Harvey et al. 2009, Owens et al. 2015). 

However, effects on plants described in those studies have varied due to differences in 

experimental conditions and procedures. These differences have made it difficult to derive 

recommendations on PMB’s practical use in plant production. Aggravating this situation, it is 
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possible that the absence of plant growth-promoting effects of PMB have been less 

frequently reported. This information, if available, could help indicate which conditions are 

required for successful colonization and plant effects. However, more important than testing 

various PMB under a wide range of plant and soil conditions, is to better understand PMB’s 

underlying functional mechanisms, making it possible to draw conclusions more rapidly about 

PMB strains’ effectiveness in a given location. There remains a lack of knowledge about 

PMB’s mechanisms of P mobilization in soil and their role in plant growth-promotion. In 

general, two direct and two indirect mechanisms are under discussion. Solubilization of 

inorganic P and mineralization of organic P in soil by the added PMB belong to the direct 

mechanisms. Potential interactions with indigenous soil microbes (which alone improve P 

availability in soil by solubilization and mineralization), and bacterial release of 

phytohormones which improve plants’ P acquisition in soil by increased root growth and 

activity, are considered indirect PMB mechanisms and are explained in more detail in the 

following chapters.   

3.3.1 Mineralization of organic P 

Organic P may constitute 4 - 90 % of the total P in soil (Khan et al. 2009 a). Utilization of 

organic P by plants and microorganisms requires hydrolytic cleavage by exo-phosphatase 

enzymes that may be either plant or microbial in origin (Tarafdar and Claassen 1988). Soil 

microbes produce various phosphatases having the capacity to mineralize P from phytate, 

myo-inositol hexakisphosphate, and other isomers that are the dominant forms of organic P 

in many soils (Lim et al. 2007, Turner 2007, Richardson and Simpson 2011). Up to 60 % of 

the total organic P in soil may be hydrolysed by phosphatases, mainly by phytase 

(Bünemann 2008). The main portion of exo-phosphatases in soil is derived from 

microorganisms (Tabatabai 1994, Tarafdar et al. 2001, Dodor and Tabatabai 2003). While 

the ability of PMB to mobilize P by solubilization of inorganic P is comparatively well studied, 

less is known about their capacity to mineralize organic P in soil. However, Kim et al. (1997), 

in a field experiment with tomato plants, reported increased activity of acid phosphatase in 

soil after the addition of Enterobacter agglomerans. Kaur and Reddy (2014) observed a plant 

growth-promoting effect on wheat and maize in the field accompanied by increased activities 

of phosphomonoesterase, phytase and dehydrogenase after inoculations with Pantoea 

cypripedii and Pseudomonas plecoglossicida into soil.  

Increased mineralization of organic P in the rhizosphere may also be a result of a microbial 

priming effect. Rhizosphere-colonizing PMB utilize root exudates as an easily available C 

source. Due to the coupled incorporation of C, N and P into microbial biomass (Cleveland 

and Liptzin 2007), an increase in C incorporation increases mobilization of N and P from soil 
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organic matter (Cheng 2009, Richardson and Simpson 2011). However, interactions 

between PMB and plants are still poorly understood; for example, it is still not known whether 

increased P mineralization in the rhizosphere by the addition of PMB is independent of 

endogenous microbial turnover of organic matter, since effects of PMB on plant growth and P 

mobilization have to date been compared only with non-inoculated controls. 

3.3.2 Solubilization of inorganic P 

The ability of PMB to solubilize P sorbed to inorganic P compounds is most often 

characterized as the “organic acid theory” (Owens et al. 2015). This is the release of organic 

acids/organic acid anions which includes two follow-up mechanisms: first, lowering of pH, 

which directly dissolves P by proton extrusion; and second, ligand exchange resulting in 

solubilization of adsorbed P (Ryan et al. 2001, Oburger et al. 2011). The designation of 

bacterial strains/consortia as phosphorus-solubilizing bacteria is based mainly on laboratory 

experiments which have demonstrated their ability to acidify a culture medium containing 

added Ca, Fe or Al phosphate, and to release organic anions, such as citrate, gluconate, 

oxalate, and succinate (for review see Khan et al. 2007). Improved plant growth and P 

nutrition by the addition of phosphorus-solubilizing bacteria has been reported in several 

studies (for review see Rodr  guez and Fraga 1999, Sharma et al. 2013). For instance, Vyas 

and Gulati (2009) identified five strains belonging to Pseudomonas trivialis, P. sp., and P. 

poae as highly effective in the release of organic acids (especially gluconic and succinic acid) 

during solubilization of tricalcium and rock phosphate. In a pot experiment using sandy-loam 

soil amended with a single super-phosphate, these strains increased plant growth and 

nutrient uptake in maize. However, laboratory assays demonstrating individual mechanisms 

involved in bacterial P solubilization cannot simply be transferred to natural conditions in soil. 

Direct in situ evidence of soil/plant linkages with plant growth and nutrient promotion to a 

specific PMB’s P solubilization capacity are rare. Also, comparison with non-inoculated 

controls makes it difficult to differentiate endogenous from PMB-derived P mobilization 

processes in soil. P can be solubilized by each redox activity of microorganisms; for instance, 

bacterial siderophores (Fe3+ reduction) also release P bound to Fe (Thiele-Brun 2006). 

Bacterial NH4
+ assimilation, in which excreted H+ decreases the pH (Illmer and Schinner 

1992), can also provide an important contribution to plant-available P in soil. It is likely that a 

number of different P mobilization (including mineralization) processes run in parallel; the 

association of plant growth with particular mechanisms is difficult to identify and may differ 

between the strains/consortia and soil conditions. 
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3.4 Plant growth-promoting attributes of PMB 

Besides enhancing P availability for plants in soil by P mobilization, PMB are able to produce 

metabolites such as phytohormones and antifungal agents that improve plant growth and 

health. For instance, the bacterial strain Pseudomonas sp. NBRI 4014 was identified not only 

as a potent phosphorus-solubilizer, but also as a synthesizer of high levels of the 

phytohormone indole acetic acid (IAA; Gupta et al. 2002). As is the case with all auxins, IAA 

affects plant cell elongation and division. Ramírez and Kloepper (2010) were able to 

demonstrate increased plant growth and P uptake in Chinese cabbage by inoculation with 

the phytase- and IAA-producing strain Bacillus amyloliquefaciens FZB45. A hormone-derived 

plant growth-promoting effect may also indirectly improve plant P supply; auxins in particular 

can alter root branching and root hair development and thus improve plant P acquisition in 

soil (Holguin et al. 1999, Richardson 2001). Furthermore, phytohormones are involved in 

plant responses to stress (Yang et al. 2009). Under stress conditions, the phytohormone 

ethylene endogenously regulates plant homeostasis and results in decreased root and shoot 

growth (Glick et al. 2007). The bacterial release of 1-aminocyclopropane-1-carboxylate 

(ACC) deaminase degrades the ethylene precursor ACC, which in turn reduces plant stress 

and uninhibited growth (Glick et al. 2007, Saleem et al. 2007, Yang et al. 2009, Glick 2014). 

Thus, phytohormonally-derived capacities of PMB may enhance plant tolerance to stresses 

such as drought or salinity and reduce their negative effects on plant growth. For instance, 

Barnawal et al. (2013) demonstrated in a pot experiment with fenugreek under drought 

conditions that inoculation with the PMB strain Bacillus subtilis LDR2, which produces high 

levels of ACC deaminase, significantly reduced ACC levels in plants, alleviating ethylene-

induced damage and increasing nutrient uptake and plant growth.  

Besides pathogen suppression by colonization, many PMB strains exercise bio-control 

activities (for review see Vassilev et al. 2006). For instance, Jha et al. (2009) identified three 

Pseudomonas strains (P. aeruginosa BFPB9, P. plecoglossicida FP12, and P. mosselii 

FP13) which were capable of solubilizing tricalcium phosphate with organic acids and 

producing, as well, hydrogen cyanide (HCN), highly effective against fungal plant pathogens. 

In addition, these strains were shown to synthesize IAA (Jha et al. 2009), which also plays a 

role in pathogen defence in plants (Brown and Hamilton 1992, Hamill 1993, Hahn and 

Strittmatter 1994, Droog 1997). Thus, plant growth-promoting effects of PMB involve 

mechanisms that can occur independently of P mobilization; however, clearly distinguishing 

these mechanisms is difficult to do in plant experiments. It is therefore still unclear whether 

and to what degree plant growth-promotion by PMB contributes to the plant growth and P 

supply improvements that have been observed in previous studies. 

http://link.springer.com/article/10.1007/s00253-006-0380-z#CR7
http://link.springer.com/article/10.1007/s00253-006-0380-z#CR30
http://link.springer.com/article/10.1007/s00253-006-0380-z#CR17
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Similar to the bio-control activities of PMB that reduce potential negative effects on plant 

growth, there are also capacities that influence heavy metal pollution in soil. To circumvent 

metal stress, soil microorganisms, including PMB, have evolved mechanisms that enable 

them to tolerate the uptake of metal ions (Khan et al. 2009 b). These mechanisms include 

the accumulation and sequestration of metal ions inside the bacterial cell as well as their 

transformation into less toxic forms (Wani et al. 2008, Khan et al. 2009 b). These 

mechanisms reduce metal toxicity in contaminated soils and thus improve plant growth and 

health. In a laboratory experiment, Wani et al. (2007 a) identified Bacillus species PSB 1, 

PSB 7, and PSB 10 as capable of tolerating chromium (Cr) concentrations up to 550 μg mL-1 

and of reducing Cr concentrations of up to 87 % in medium. These strains also tested 

positive for phosphorus-solubilization as well as production of IAA, siderophores, HCN, and 

ammonia in both the absence and presence of Cr (Wani et al. 2007 a). In addition, Rajkumar 

and Freitas (2008), in a pot experiment with castor oil plants grown in nickel, copper and zinc 

contaminated soils, observed increases in shoot and root biomass by inoculation with the 

IAA-producing PMB strain Pseudomonas jessenii M15. 

3.5 Interactions of PMB with indigenous soil microbes 

Besides pathogen suppression by colonization and defence due to bio-control activities, PMB 

can also stimulate the relationship between the plant and beneficial rhizospheric bacteria and 

fungi such as mycorrhizal fungi. Several studies have reported increased plant growth and P 

nutrition effects when PMB were co-inoculated with mycorrhizal fungi (e.g. Kim et al. 1997, 

Suri et al. 2011, Najjar et al. 2012, Vafadar et al. 2014). Saxena and Jha (2014) were able to 

demonstrate synergistic interactions between the PMB strain Burkholderia cepacia BAM-6 

and the AMF Glomus etunicatum in a pot experiment with wheat under limited soil P 

availability. Co-inoculations of these two organisms resulted in higher plant yields and 

nutrient uptake (P and N) than when either PMB or AMF was used alone for inoculation 

(Saxena and Jha 2014). Furthermore, PMB are also able to promote indigenous mycorrhizal 

fungi in soil. For instance, Pseudomonas sp. DSMZ 13134 (Proradix®), which possesses 

both phosphorus-solubilizing and bio-control capabilities (Miller et al. 2010, Buddrus-

Schiemann et al. 2010, Fröhlich et al. 2012) was shown to significantly increase mycorrhizal 

root colonization of Paraserianthes seedlings (Yusran et al. 2009).  

Beneficial effects on plants have also been reported when PMB were co-inoculated with N2-

fixers such as Azospirillum (Belimov et al. 1995) or Phyllobacterium (Rojas et al. 2001). Wani 

et al. (2007 b) demonstrated, in a field experiment with chickpeas, highest seed yield and 

grain protein (P uptake) when plants were inoculated with a combination of two N2-fixing 
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bacteria; Mesorhizobium ciceri RC4, and Azotobacter chroococcum A10, as well as the 

phosphorus-solubilizing strain Bacillus spp. PSB9. In addition, Yu et al. (2012) reported 

highest plant biomass, P, and N uptake as well as maximum concentrations of plant-

available P and N in the soil of walnut seedlings when Pseudomonas chlororaphis (PMB) 

was co-inoculated with Arthrobacter pascens (N2-fixer). However, co-inoculation with Bacillus 

megaterium (PMB) and A. pascens did not increase these parameters, indicating specific 

interactions between PMB and N2-fixers (Yu et al. 2012). Similar results were reported by 

Şahin et al. (2004), who observed that beneficial effects of PMB-N2-fixer combinations on 

plant growth varied significantly depending on environmental, plant, and soil conditions as 

well as the bacterial strains used. 

More generally, PMB can change the composition of microbial biomass in soil. Increased 

abundance of soil bacteria after PMB addition was reported by Shishido and Chanway 

(1998), and an increase in fungal populations was observed by Vivas et al. (2003). Sundara 

et al. (2002) reported an increased population of indigenous PMB in soil of field-grown 

sugarcane when the phosphorus-solubilizing bacterium Bacillus megaterium var. 

phosphaticum (Bardiya and Gaur 1972) was applied; this effect was increased when PMB 

inoculation was combined with rock phosphate fertilization. In addition, Canbolat et al. (2006) 

demonstrated in a pot experiment with barley that inoculation of the N2-fixing and 

phosphorus-solubilizing Bacillus strains M-13 and RC01 not only increased plant growth and 

P supply but also the total abundance of bacteria, fungi and indigenous PMB in soil. Thus, 

PMB may promote indigenous PMB in soil. However, underlying mechanisms, such as the 

release of specific attractants as well as interactions, are still unknown. 

In summary, considering the current combination of scarcity and simultaneous increase in 

demand for mineral P fertilizers while surplus P continues to accumulate in soil, the use of 

PMB offers a promising approach for improving the future efficiency of P fertilization in plant 

production. However, the effectiveness of PMB appears subject to various conditions 

including soil properties, indigenous microbial community structure, environmental 

conditions, and plant species. Since the underlying functional mechanisms of PMB, which 

are diverse and can be differently expressed in individual strains, remain poorly understood, 

their effectiveness in practical farming is extremely difficult to implement. Therefore, the aim 

of this study was to verify the role of plant growth-promotion by PMB to mobilize P in soil as 

well as to distinguish PMB-specific mechanisms from endogenous microbial processes in 

soil. To ensure broad applicability of our results, maize (Zea mays L.), one of the most 

important globally cultivated crops, and tomato (Solanum lycopersicum L.), important in 

European vegetable cultivation, were used as the test plants. We selected PMB strains 
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belonging to the genera Pseudomonas, which have been proven to improve plant growth of 

these cultivars. Ours is the first study which, to our knowledge, used both viable and 

devitalized PMB cells for inoculation. This made it possible to distinguish between effects of 

viable PMB cells (active growth/cell metabolism) from those due to indirect plant growth-

promoting effects of dead cells (such as increased C availability). Our experiments also 

included a treatment using unselectively cultivated soil bacteria for inoculation, which 

enabled us to differentiate between endogenous and PMB-specific microbial processes in 

soil. Since organic P is the dominant fraction of P found in soils (Ron Vaz et al. 1993, Shand 

et al. 1994), this study focused on PMB’s abilities to mineralize organic P compounds under 

limited P availability soil conditions. In addition, P mineralization was also demonstrated 

under soil conditions that had been improved in P availability. The capacity of PMB to 

colonize and persist in the rhizosphere in sufficiently high numbers is likely a prerequisite for 

provision of beneficial effects to plants (Bellis and Ercolani 2001, Barret et al. 2011). Several 

studies have observed an increased plant growth-promoting effect when PMB were co-

applied with mineral P fertilizers such as rock phosphate (Bardiya and Gaur 1972, Yu et al. 

2011, Kaur and Reddy 2014, 2015). This was assumed to be associated with an increase in 

potentially soluble inorganic P in soil. However, we suggest that improving the initial 

conditions for PMB to colonize the rhizosphere successfully may also strengthen its plant 

beneficial effects, and this can be positively correlated with increased PMB abundance. In 

general, the colonization and persistence of introduced rhizobacteria may affect the microbial 

community structure in soil, especially in the rhizosphere. We assumed that indigenous 

rhizobacteria are displaced when competing with PMB for C sources. Furthermore, due to 

bio-control or mycorrhiza-helper capacities, fungal growth in soil is significantly affected by 

the introduced PMB. 

Taken together, the objectives of this study were to test the following overarching 

hypotheses. (1) PMB’s ability to improve plant growth and P uptake includes P mobilization-

dependent and -independent as well as direct and indirect mechanisms, which run in parallel. 

Under limited plant-available P soil conditions, PMB’s capacity to effectively mineralize P 

from soil constitute the main mechanism. (2) Increased P mineralization is PMB-specific, 

greater than the level of endogenous P mineralization in soil. (3) Improving nutrient 

availability in soil increases PMB abundance in soil, leading to improved plant growth-

promoting effects. (4) The addition of PMB results in microbiome shifts. The displacement of 

copiotrophic rhizobacteria as well as PMB-specific antifungal or mycorrhiza-helper capacities 

occur independent of present soil conditions, but manifest differently in the different soils. 
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4 Outline of the thesis 

Increases in plant growth and P uptake by the addition of PMB have been reported in several 

studies (Chabot et al. 1996, Kim et al. 1997, Sundara et al. 2002, Hussain et al. 2013, 

Surapat et al. 2013). Using the bacterial strain Pseudomonas sp. RU47 (RU47), which had 

previously been shown to enhance plant growth of tomato (Eltlbany et al. in preparation), the 

aim of our first experiment was to verify the role of P mineralization in plant growth-promotion 

by RU47. To distinguish P mineralization-dependent and -independent as well as direct and 

indirect mechanisms of RU47 effects, treatments using unselectively cultivated soil bacteria 

and devitalized RU47 cells for inoculation were included as treatments. We performed a 

greenhouse experiment over a period of 39 days with tomato plants grown under low P 

availability soil conditions. To determine P mineralization in soil, phosphatase activity (PA) in 

the rhizosphere was estimated during plant growth by the method of soil in situ zymography. 

Additionally, enzyme analyses were performed with bulk soil samples after final harvest. To 

estimate effects on microbial community structure, denaturing gradient gel electrophoresis 

technique was performed on rhizosphere samples, while microbiome shifts in bulk soil were 

tested by phospholipid fatty acid (PLFA) analysis. We assumed that the addition of viable 

RU47 cells would result in a plant growth-promoting effect based primarily on increased P 

mineralization, improving tomatoes’ P uptake. The addition of dead RU47 cells or an 

unselective bacterial mix would also increase microbial activity in soil, but plant growth-

promotion would be less pronounced compared with the viable PMB treatment. We also 

assumed that changes in microbial community structure would be most pronounced in 

treatments to which living bacteria were added. Results of the first experiment revealed a 

promotion effect on plant growth and P uptake when viable RU47 cells were added; RU47 

abundance in soil was positively correlated with increased alkaline PA in the rhizosphere. 

Plant growth-promotion which was observed in the dead RU47 treatment indicated 

phytohormonal effects. Groups of indigenous rhizosphere bacteria were significantly 

promoted by bacterial residues in the dead RU47 treatment, while microbial community 

structure was less affected when viable RU47 or unselective soil bacteria were added. 

Optimal P nutrition in the seedling stage is crucial to high yields in maize production (Barry 

and Miller 1989). Thus, our second experiment, conducted over the short-term (14 days) with 

maize in the greenhouse under limited P availability soil conditions, addressed the question 

of whether the addition of viable RU47 cells is sufficient to improve maize’s P uptake in the 

early growth stages. Once again, RU47-specific active P mineralization processes were 

identified by phosphatase analyses and compared with enzyme activities of indirect (dead 

RU47) as well as endogenous (bacterial mix) processes. Potential changes in microbial 
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community composition were identified by PLFA analysis. We hypothesized that the addition 

of viable RU47 increases maize seedling growth and P uptake as a result of an RU47-

originated increase in soil PA. In contrast, we expected that dead PMB cells or non-specific 

added soil bacteria would not improve maize P nutrition. We demonstrated that RU47 is able 

to colonize the rhizosphere of maize successfully within 14 days. Plant growth-promoting 

effects were not observed, but trends of increased PA as well as indications of 

phytohormonal effects in both dead and viable RU47 treatments were detected.  

While increased plant growth-promoting effects by co-application of PMB and rock or 

tricalcium phosphate (Bardiya and Gaur 1972, Yu et al. 2011, Kaur and Reddy 2014, 2015) 

are generally assumed to be associated with an increase in potentially soluble inorganic P in 

soil, we also proposed that the use of easily available P fertilizers improves PMB’s initial 

colonization conditions, resulting in increased abundance and thus a stronger plant growth-

promotion effect. To verify this assumption, we performed a greenhouse experiment with 

tomato plants, which were grown under both limited and improved P availability soil 

conditions. The experiment was conducted over a period of 50 days and included as well a 

bacterial mix and a dead RU47 inoculation treatment. We hypothesized that initially high 

phosphate fertilization increases the plant growth-promoting effect of viable RU47 cells 

compared with those under low P soil conditions, while no P fertilization effect would occur 

with the use of dead RU47 cells. Measurements of PA in both rhizosphere and bulk soil 

would clarify whether a stronger plant effect of viable RU47 is based on increased PA (since 

P applied by fertilization is rapidly incorporated into bacterial biomass and becomes limiting), 

or P mineralization, independent of RU47 abundance-associated plant growth-promoting 

attributes such as the excretion of phytohormones. Although not significant, RU47 

abundance was enhanced by improved P availability in soil. Plant growth-promotion was not 

strengthened by increased P fertilization. Under low P availability soil conditions, the addition 

of viable RU47 improved plant growth and P uptake, accompanied by enhanced alkaline PA 

in the rhizosphere. Trends of increased P mineralization were also found in the dead RU47 

treatment, as well as indications of phytohormonal effects.   

Since various conditions, such as soil properties, influence PMB’s effect on plants, we 

assumed that effects on microbial community structure may differ between different soils, 

providing insight into potential microbial interactions associated with plant growth-promotion. 

To prove this hypothesis, in our fourth experiment we performed a greenhouse experiment 

with maize over a period of 56 days using three different Pseudomonas strains possessing 

PMB abilities and three soils differing in parameters such organic C, pH, and P content. By 

the use of domain- (bacteria, archaea, and fungi) as well as bacterial phyla-specific primers 
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in quantitative PCR, microbial community composition was determined in extracted 

rhizosphere and bulk soil DNA. We hypothesised that the active colonization of PMB affects 

rhizosphere community composition due to displacement of indigenous copiotrophic 

rhizobacteria. In particular, individual inoculation effects on soil microbial structure, such as 

known antifungal or mycorrhiza-helper capacities, will manifest differently in the varying soils. 

Our fourth set of experiments showed that individual inoculation effects varied 

heterogeneously between the PMB strains added, the contrasting soils used, and time. 

Changes in microbial biomass and composition were due primarily to nutrient availability in 

the soil substrates, which differed between the soils and over time. 
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5 Effects of phosphorus-mobilizing bacteria on tomato growth and 

soil microbial activity 

Parts of this chapter are published in Nassal D, Spohn M, Eltlbany N, Jacquiod S, Smalla K, 

Marhan S, Kandeler E (2017) Effects of phosphorus-mobilizing bacteria on tomato growth 

and soil microbial activity. Plant and Soil 1-21. The published version of this article is 

included in the appendix (12). 

5.1 Introduction 

While it is well known that rhizosphere processes are important for plant P acquisition (Jones 

and Darrah 1994, Hinsinger 2001), the processes underlying growth promotion by beneficial 

microorganisms are not yet well understood. Since organic P is often the dominant form of P 

found in soils (Ron Vaz et al. 1993, Shand et al. 1994) and may constitute up to 90 % of the 

total P in soil (Khan et al. 2009 a), P mineralisation is a pre-requisite to convert organic P into 

a plant available form. P mineralisation is catalysed by extracellular phosphatases produced 

by microorganisms and plants. While microorganisms produce both acid and alkaline 

phosphatases, plants produce only acid phosphatases (Dick et al. 1983, Juma and 

Tabatabai 1988, Nannipieri et al. 2011). Microbial and plant P acquisition occur in different 

zones of the rhizosphere. Plant uptake of P occurs mostly at the root tip and in the proximal 

elongation zone, whereas microbial P uptake is highest in the root hair zone (Marschner 

et al. 2011). Using zymography in a rhizobox experiment, Spohn and Kuzyakov (2013 a) 

demonstrated the spatial separation of acid and alkaline phosphatase activity (PA) in the 

rhizosphere of lupines. While acid PA was associated with the root, alkaline PA was more 

widely distributed in the bulk soil (Spohn and Kuzyakov 2013 a, Spohn et al. 2013, Spohn et 

al. 2015, Hofmann et al. 2016). Microbial phosphatases comprise the major share of 

phosphatases in soil (Tabatabai 1994, Tarafdar et al. 2001), contributing significantly to the P 

supply of plants (Frossard et al. 2000, Oehl et al. 2004). However, with respect to P foraging, 

the plant-microbial relationship can be competitive as well as mutualistic (Harte and Kinzig 

1993, Richardson et al. 2009, Richardson and Simpson 2011). Hence, without phosphate 

fertilizers, P supply is generally not sufficient for effective crop production in most agricultural 

soils.  

Phosphorus-mobilizing bacteria (PMB) are beneficial bacteria that effectively mobilize P 

through solubilization of sorbed P pools and mineralization of organic P compounds which 

are otherwise not readily available. Application of PMB to soils can therefore be a promising 

approach for improving P fertilization efficiency in agriculture. Plant growth-promoting effects 
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resulting from targeted application of high-concentrations of PMB strains such as Bacillus, 

Pseudomonas, and Rhizobium in soils limited in P availability for plants have been 

documented in several studies (Chabot et al. 1996, Sundara et al. 2002, Kaur and Reddy 

2014). Whether future use of PMB can improve P nutrition of arable crops and vegetables 

remains to be tested. Three different microbially driven functional mechanisms are currently 

being explored. First, added PMB may catalyze the hydrolysis of organic P compounds by 

the release of phosphatases (Tarafdar and Claassen 1988, Tabatabai 1994). Second, PMB 

may solubilize bound inorganic P into easily available phosphates by secreting organic acids 

which would reduce rhizosphere pH. Organic acids as well as bicarbonates, carboxylates, 

and other anions biotically released may function as exchange ligands (Kpomblekou-a and 

Tabatabai 1994, Deubel et al. 2000, Jones and Oburger 2011). Third, added PMB may 

interact with other beneficial indigenous microbes, optimizing P mobilization in soil (Belimov 

et al. 1995, Zaidi et al. 2003). Although the role of PMB during P solubilization has been 

investigated (Kim et al. 1997, Khan et al. 2007, Fankem et al. 2008), the importance of 

enzymatic cleavage of organic P resources by PMB, especially under limited P availability 

soil conditions, has been less well studied. Kaur and Reddy (2014) demonstrated that 

enhanced wheat and maize growth after inoculation of an agricultural field with Pantoea 

cypripedii and Pseudomonas plecoglossicida was accompanied by an increase in 

phosphomonoesterase, phytase and dehydrogenase activities in soil. In addition, Eltlbany et 

al. (in preparation), conducted a pot experiment with tomato plants under limited soil P 

conditions and found considerably enhanced plant growth following inoculation with Bacillus 

amyloliquefaciens FZB42 spores (RhizoVital®) as well as Pseudomonas sp. DSMZ 13134 

(Proradix®) or Pseudomonas sp. RU47. PA tended to increase in the rhizosphere; alkaline 

phosphomonoesterase with the addition of each of the two commercial products, and acid 

phosphomonoesterase with the addition of Pseudomonas sp. DSMZ 13134 and P. sp. RU47. 

It is possible that the plant growth-promoting function of these three different bacterial strains 

is based mainly on their enhanced phosphatase production in the rhizosphere of plants. 

Since the formulation of the commercial products (i.e. the carrier matrix; culture media, 

skimmed milk powder, or gum arabic) may also affect microbial P mineralization, we selected 

P. sp. RU47 (RU47) as the model organism, omitting any formulation. To distinguish 

dependent and independent P-mobilizing mechanisms, we used both viable and devitalized 

PMB strains in the first study. To exclude apparent plant growth-promoting effects of the 

PMB due to increased microbial activity by addition of living soil bacteria, an inoculation 

treatment using a mix of soil bacterial isolates (bacterial mix) was also evaluated. The 

following hypotheses were tested. (1) Added viable RU47 successfully colonizes the soil and 

leads to a plant growth-promoting effect. (2) The plant growth-promoting effect of viable 
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RU47 under low P availability soil conditions is based on enhanced PA leading to enhanced 

P availability in soil and increased uptake by plants. (3) Added viable RU47 dominates 

colonization of the rhizosphere, leading to spatially distinct zones of enriched alkaline/acid 

PA and to a shift in microbial community composition. 

5.2 Materials and methods 

5.2.1 Rhizobox experiment 

The experiment was performed under low P availability soil conditions using RU47 as the 

PMB, and tomato (Solanum lycopersicum L. var. Mobil) as the test plant. To exclude 

apparent plant growth-promoting effects of the PMB due to increased microbial activity from 

having added living soil bacteria and/or cell compounds which could affect the P efficiency of 

plants and indigenous soil microbes, two additional inoculation treatments were conducted, 

composed of either an inoculation of native soil bacteria (bacterial mix) or dead RU47 cells 

(dead RU47). Details of microorganism cultivation and inoculation are described in 5.5.2. An 

optimally P-fertilized (200 mg kg-1), non-inoculation treatment was added as control. Hence, 

the experiment consisted of four treatments, with four replicates per treatment. Tomato 

plants were grown in rhizoboxes with inner dimensions of 28.0 cm x 4.5 cm x 16.5 cm, and 

filled with a soil substrate composed of Luvisol topsoil and quartz sand (0.2 - 1.4 mm) in a 

ratio of 1:1 (w/w). The Luvisol was considered as a heavy loam soil and had the following 

characteristics: pH 7.1 (CaCl2), 26.2 % sand, 52.2 % silt, 21.6 % clay, 2.3 % total C, 2.0 % 

organic C, 1.8 mg NH4
+ kg-1, 53.0 mg NO3

- kg-1 and 24.1 mg P (Olsen) kg-1. The soil, selected 

on the basis of its low concentration of plant-available P (calcium acetate lactate [CAL] 

extraction of 20 mg kg-1), was taken from an unfertilized grassland located on the campus of 

the University of Hohenheim (Stuttgart, Germany). Each rhizobox was filled with 1918.0 g dry 

matter (DM) of sieved (< 5 mm) soil substrate. Before sowing, the soil substrate was 

optimally fertilized with respect to N (100 mg kg-1; Ca(NO3)2), K (150 mg kg-1; K2SO4) and Mg 

(50 mg kg-1; MgSO4) and adjusted to a water holding capacity of 50 %. Although the study 

aimed to determine the effects of PMB under low P soil conditions, a slight P fertilization of 

50 mg kg-1(Ca(H2PO4)2) was applied to all treatments, excluding the optimally P-fertilized 

treatment, in order to achieve successful germination. Three tomato seeds were sown at a 

depth of 1-2 cm directly into each rhizobox and thinned to one plant per rhizobox after 

germination. In order to promote root growth along the hinged wall, rhizoboxes were placed 

at a 50 ° inclination. To avoid light-derived influences on root growth and behaviour, all boxes 

were wrapped in aluminium foil. The experiment was conducted for 39 days under 

greenhouse conditions. Rhizoboxes were distributed randomly and placed on wooden planks 
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to exclude contamination by leaking irrigation water. Plants were watered to maintain a water 

holding capacity of 50 % until 25 days after sowing, with water content checked 

gravimetrically on a daily basis. Watering was performed using deionized water (H2Odeion), 

applied in 5 mL steps to avoid leakage along rhizobox edges. 

5.2.2 Bacterial cultivation and inoculation 

RU47 (Adesina et al. 2007) was cultured in King’s B liquid medium (King et al. 1954) with 50 

mg L-1 added rifampicin (resistance by spontaneous mutation) at 28.5 °C in an incubator 

shaker (SM 30 Control; Edmund Bühler, Hechingen, Germany) for 24 h; cultivation vessels 

were wrapped in aluminium foil to protect the antibiotic from light. Although different from the 

normally recommended growing conditions of Pseudomonas strains (e. g. Xue et al. 2013), 

best results in maintaining the exponential growing phase (to ensure inoculation by viable 

cells) and greater time flexibility in inoculation preparation were achieved under the growing 

conditions selected here. Bacterial mixes were grown in glucose-enriched (2 g L-1) LB-

Lennox liquid medium (Bertani 1951, Lennox 1955) at 28.5 °C for 24 h (incubator shaker) 

using a sample of the untreated soil as the inoculum. Glucose enrichment was chosen in 

order to avoid C limitation of bacterial growth. After incubation, all cultures were centrifuged 

(4700 g min-1) for 10 min. Pellets were washed twice and re-suspended in sterile 0.3 % NaCl 

solution. In the treatments using the bacterial mix, remaining soil components were removed 

by trapping on folded filter paper (grade 4) before cell washing. Cell suspensions were 

photometrically measured (BioPhotometer, Eppendorf, Germany) and adjusted to an OD600 = 

1.0 corresponding to a cell density of approximately 109 cell mL-1, as described in Xue et al. 

(2013). However, overestimates of cell density resulting from soil-derived turbid material 

remaining in cell suspensions containing bacterial isolates cannot be fully excluded. The 

killing of RU47 cells, which were used in one of the treatments, was performed as follows: 

bacterial suspension (OD600 = 1.0) was placed in a sterile Erlenmeyer flask and boiled for 1 

min on a heating plate. To minimize volume loss, the flask was covered and cooled to room 

temperature to exclude volume error before being used for inoculation. Pretests confirmed 

that this procedure was sufficient to kill RU47 cells, as plating exhibited no growth of RU47.  

Plants were inoculated three times, each with a cell density of 109 cells mL-1 (OD600 = 1.0). 

The first inoculation was conducted by seed coating. Under gentle and continuous vortexing, 

5 µL of cell suspension was successively added to five tomato seeds. The volume required 

for entire seed coating had been tested with ink (Pelikan, Pottendorf, Austria) before starting 

the experiment. Seed coating was controlled by using three of the inoculated seeds followed 

by washing with 1 mL sterile 0.3 % NaCl solution and plating 100 µL of the suspension on 

King’s B-Agar medium (50 mg rifampicin L-1) in three dilution stages. Plates were incubated 
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at 28.5 °C until growing colonies were unequivocally countable on the agar (after 

approximately 36 h). The second inoculation was applied directly after seed germination, and 

the last inoculation was applied one week later. Both inoculations were performed with 6 mL 

kg-1 soil substrate DM, directly applied to the soil surface to simulate farm practice. To avoid 

a watering effect, the P-fertilized control was inoculated with 0.3 % NaCl solution with 

corresponding volumes per inoculation. Viability and unviability of the RU47 cells used as 

well as sterility of the 0.3 % NaCl solution were checked by plating and subsequent 

incubation at 28.5 °C for 48 h after every inoculation.  

5.2.3 Plant properties  

Plant analyses during the growth period 

Stem diameter, leaf number and area, shoot height and P deficiency symptoms were 

recorded at a temporal interval of minimum two and maximum four days, starting 20 days 

after sowing. While stem diameter and leaf area (length × width) were measured using a 

precision pocket vernier caliper (150 mm, Format, Wuppertal, Germany), shoot height, 

defined as the vertical length from stem base to youngest leaf’s tip, was measured by a ruler. 

P deficiency symptoms were defined as the expression of violet discoloration on the 

undersides of leaves and determined as a percentage of total leaf area. 

Plant analyses after harvest 

Shoots of every replicate was separately and carefully cut from soil surface using a sterilized 

(70 % ethanol) scalpel. Shoots were briefly rinsed with H2Odeion to remove adhering dust 

followed by drying at 60 °C in separate aluminium trays for 3 days to estimate the dry weight.  

The determination the plant-bound phosphorus in tomato shoots was performed by a 

sequential microwave digestion based on Kalra et al. (1989) followed by a photometric 

measurement of molybdenum blue. Grinded samples with a range of 0.1 - 0.3 g dry matter 

were filled into Teflon containers adding 1 mL H2Odeion, 2.5 mL HNO3 and 2 mL H2O2, 

respectively. After soaking for 1 h, samples were incinerated at 70 °C (3 min) and 210 °C (62 

min) at 1400 W, respectively, using an ETHOS.lab microwave (MLS, Leutkirch, Germany). 

The diluted suspensions (1:1 H2Odeion) were filtered (blue ribbon filter), diluted again (1:3 

H2Odeion) and subsequently photometrically measured using Murphy and Riley colour reagent 

(Murphy and Riley 1962) at 710 nm using a microplate absorption reader (ELx808; BioTek 

Instruments Inc., Winooski, VT, USA). The calibration was performed using the following final 

concentrations of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 mg P L-1 prepared by a K2HPO4 solution. 
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5.2.4 Soil sampling  

Rhizosphere and bulk soil samples were immediately put on ice for short-term storage. While 

DNA was directly extracted from the rhizosphere soils (see 5.2.5), bulk soil samples were 

sieved (< 2 mm), after which aliquots of each replicate were frozen at -20 °C until analyses.  

5.2.5 Tracing RU47 and analyses of microbial community composition 

DNA extraction 

DNA extraction of the rhizosphere was performed at the Institute of Epidemiology and 

Pathogendiagnostic (Julius Kühn-Institut, Braunschweig, Germany). Rhizosphere DNA was 

extracted according to Schreiter et al. (2014 c) with some modifications. Briefly, after 

removing loosely adhering soil by vigorously shaking the roots, the complete root systems of 

one replicate per treatment were combined, then cut into pieces of approximately 1 cm 

length and carefully mixed. Five g of cut roots were transferred to a Stomacher bag, 

homogenized in a Stomacher 400 Circulator (SewardLtd, Worthing, UK) for 1 min at high 

speed after adding 15 mL sterile 0.3 % NaCl; supernatant was then collected in a Falcon 

tube. This step was repeated twice, the combined supernatants (45 mL) of three Stomacher 

homogenizations were centrifuged at 10,000 g for 15 min, after which pellets were frozen 

and stored at -20 °C. Total community DNA (TC-DNA) was extracted from 0.5 g of 

rhizosphere pellets using the Fast DNA SPIN Kit for Soil® (MP Biomedicals, Heidelberg, 

Germany) after a harsh lysis step as described by the manufacturer. The TC-DNA was 

purified with GENE CLEAN SPIN Kit® (MP Biomedicals, Heidelberg, Germany) according to 

the manufacturer’s instructions and diluted 1:10 with 10 mM Tris HCl, pH 8.0, before use.  

TC-DNA extraction of bulk soil was performed using 250 - 350 mg fresh soil using the 

FastDNA® SPIN Kit for Soil (MP Biomedicals, Solon, OH, USA) following the manufacturer’s 

instructions. DNA concentration was measured, and purity of the extract was determined 

spectrophotometrically (NanoDrop 2000, Thermo Scientific, Waltham, MA, USA).  

Tracing RU47 

Tracing the inoculated RU47 cells was done using a TaqMan® assay with a 5’-labelled 6-

FAM double-quenched (BMN-Q530) probe (biomers.net, Ulm, Germany) in a 7500 Fast 

Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA). Used probe and 

primer sequences (Eltlbany et al. in preparation) were developed and provided by the 

Institute of Epidemiology and Pathogendiagnostic (Julius Kühn-Institut, Braunschweig, 

Germany). Reaction recipe and thermal-cycling conditions were adapted to a commercial 

master mix (TaqMan® Fast Advanced Master Mix, Thermo Fisher Scientific, Waltham, MA, 
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USA) following manufacturer's instructions with some modifications. The reaction 

composition was as follows; final concentrations are given in parentheses: 10 µL TaqMan® 

Fast Advanced Master Mix (1 ×), 2 µL DNA (10 ng), 5 µL nuclease-free water, 1 µL each 

primer (1.8 µM) and 1 µL (0.5 µM) probe. The thermal profile of the TaqMan® assay was as 

follows: 95 °C for 10 min (initial denaturation), 95 °C for 30 sec followed by 54 °C for 30 sec 

for 40 cycles. Based on the standard curve, the absolute quantity of RU47 copies was 

calculated (copies ng-1 DNA). 

Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene and ITS 

fragments amplified from TC-DNA  

16S rRNA gene fragments were PCR-amplified from TC-DNA of rhizosphere samples using 

the bacterial primers F984-GC and R1378, as described by Heuer et al. (1997). Amplification 

of ITS fragments was done according to Weinert et al. (2009). PCR products were analysed 

by DGGE. The gradient of the DGGE gel was performed as described in Weinert et al. 

(2009), and electrophoresis conditions as well as the silver staining procedure were done 

according to Heuer et al. (2001). 

Analysis of the DGGE fingerprints  

Bacterial and fungal DGGE fingerprints were evaluated with GELCOMPAR II version 6.5 

(Applied Maths, Sint-Martens-Latem, Belgium). Normalization and background subtraction 

were based on each DGGE gel image (Schreiter et al. 2014 b). The Pearson correlation 

index (r) for each pair of lanes within a gel was calculated as a measure of similarity between 

the fingerprints, and the clustering of patterns was calculated using the unweighted pair 

group method using average linkages (UPGMA). Pearson indices were also used to test for 

significant differences between the fingerprints of the bacterial or fungal communities by the 

PERMTEST software (10,000 simulations) according to Kropf et al. (2004). 

Phospholipid fatty acid (PLFA) analysis  

For determination of microbial community structure PLFA profiles were used. Four g of fresh 

soil were taken for lipid extraction and fractionation according to the alkaline methylation 

method by Frostegård et al. (1991). The resulting PLFA methyl ethers were dissolved with 

isooctane and measured by gas chromatograph using an Auto System XL (PerkinElmer, 

Waltham, MA, USA), where a HP-5 capillary column, a flame ionization detector and helium 

as the carrier gas was used. Fatty acid methyl esters (FAME) were identified using their 

retention time based on fatty- and bacterial-acid methylester-mix (Sigma–Aldrich, St. Louis, 

MO, USA). Quantification was calculated using an internal FAME standard, which had been 
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added before methanolysis. PLFA’s division into bacteria and fungi are based on Frostegård 

and Bååth (1996), Zelles (1999) and Kandeler et al. (2008). Within bacteria PLFAs were 

grouped into gram+, represented by i15:0, a15:0, i16:0, and gram-, specified by cy17:0 and 

cy19:0. The amount of total bacterial PLFAs was calculated by the sum of gram+ and gram- 

and 16:1ω7. Fungal PLFA was represented only by 18:2ω6,9. 

5.2.6 Enzyme assays  

Soil in situ zymography  

Soil in situ zymography uses membranes coated with methylumbelliferyl (MUF)-substrates 

which become fluorescent during enzyme cleavage, yielding information about the 

distribution of exoenzymes in soil. Distributions of alkaline and acid phosphomonoesterase 

(EC 3.1.3) were analysed by soil in situ zymography using an approach similar to that 

described in Spohn and Kuzyakov (2014). All replicates were analysed by zymography at 

intervals of seven days, starting 18 days after sowing. MUF-phosphate (4-MUF, Sigma–

Aldrich, St. Louis, MO, USA) was used as substrate; a 12 mM solution was prepared and 

used to coat polyamide membranes, with diameter 14.2 cm, and pore size 0.45 μm 

(Sartorius, Göttingen, Germany). Substrate solution was prepared using modified universal 

buffer (MUB) adjusted to pH 11 for alkaline PA, and pH 6.5 for acid PA. Coated membranes 

were laid flat onto opened rhizoboxes which were separated from soil particles by an 

underlying layer of fresh 1 % agarose gel (1 mm thick). Soil zymography was performed for 

each enzyme separately on the same rhizobox; first, acid PA was evaluated due to its affinity 

with the soil’s pH of 7.4; second, alkaline PA was assayed. This order was maintained 

throughout the experiment. The possible loss of alkaline phosphatases by diffusion into the 

agarose gel or membrane during measurement of the acid PA cannot be excluded. In 

contrast to Spohn and Kuzyakov (2014), an incubation time of 35 min, adjusted to achieve 

the best practical contrast obtained by imaging, was used. Incubations were performed at a 

constant temperature of 20 °C; membranes were covered by aluminium foil to minimize liquid 

loss during incubation time. After incubation, membranes were placed on an epi-UV-desk 

(Desaga, Sarstedt, Nümbrecht, Germany) in the dark, and viewed at 360 nm wavelength. 

After being photographed with a digital camera (D60, Nikon, Tokyo, Japan) image 

processing and analysis of the zymograms were done using the open source software 

ImageJ. Digital images were transformed to 8-bit and multiplied by a factor of 1.25 to 

enhance the contrast. Images were transformed into false colors to create a color 

representation of enzyme activity, as given in Fig. 5.S1. Calculation of enzyme activity was 

based on a linear function using a calibration curve fitted to different concentrations of 4-

methylumbelliferone (0, 35, 70, 130, 200, 240 μM). Image processing of calibration 
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zymograms was adapted to the modifications made with the soil zymograms. Calculation of 

enzyme activity was based on mean gray values obtained for each concentration in the 

calibration curve. As there was no distinct separation observed in enzyme activity between 

root and surrounding soil, the mean activity of the total incubated area was calculated. 

Analyses of enzyme activities in bulk soil after final harvest 

In addition to weekly conduced soil in situ zymography during vegetation period, samples of 

the harvested bulk soil were used for analyses of potential alkaline as well as acid 

phosphatase (EC 3.1.3) activity using 4-MUF (Sigma-Aldrich, St. Louis, MO, USA) according 

to Marx et al. (2001). The assay performed was very close to the method described in Poll et 

al. (2006) with the alteration of using MUB instead of 2-(N-morpholino)ethanesulfonic acid 

(MES) buffer to ensure the comparability with the results obtained by the zymographies. 

Contrary to Niemi and Vepsalainen (2005), pretests of this study could demonstrated that the 

stability of 4-MUF phosphate in alkaline pH ranges (pH 8 - 12) is constantly maintained over 

time (2 h) when MUB instead of MES buffer is used. Acid phosphatase was measured at pH 

6.5, alkaline phosphatase at pH 11. Soil suspension was prepared by adding 1 g fresh soil 

into 50 mL of sterile H2Odeion and dispersed by ultrasonication for 2 min with 50 J s−1 

sonication energy. The suspensions were continuously stirred using a magnetic stir plate 

while 50 μL aliquots were dispensed into 96-well microplate (PP F black 96 well; Greiner Bio-

one, Kremsmünster, Austria), followed by the addition of 50 μL of MUB buffer (pH 6.5 or pH 

11) and 100 μL of 1 mM substrate solution. Standards were mixed with 50 μL of soil 

suspension and an appropriate volume of buffer to give final concentrations of 0, 100, 200, 

500, 800 and 1200 pmol well-1. Microplates were incubated at 30 °C. Fluorescence was 

measured after 0, 30, 60, 120 and 180 min at 360/460 nm wavelength using a microplate 

fluorescence reader (FLx800, BioTek Instruments Inc., Winooski, VT, USA). 

The activity of three enzymes involved in the C and N cycle were also measured based on 

the use of MUF substrates (4-MUF; Sigma–Aldrich, St. Louis, MO, USA): β-D-glucosidase 

(EC 3.2.1.21), β-xylosidase (EC 3.2.1.37) and β-N-acetylglucosaminidase (EC 3.2.1.52) 

according to Marx et al. (2001). Enzyme activity was measured in autoclaved MES buffer (pH 

6.1).  

5.2.7 Microbially bound C and P 

The microbial biomass C (Cmic) in soil was estimated with the chloroform fumigation 

extraction method based on Vance et al. (1987) according to Mackie et al. (2014). Briefly, 

each sample was split into two subsamples, each comprising 10 g of fresh soil, one 

fumigated by the use of ethanol-free chloroform under vacuum in a desiccator for 24 h, the 
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other non-fumigated. The released C was extracted with 40 ml 0.025 M K2SO4 on a 

horizontal shaker (250 U min−1) followed by centrifugation (4400 × g), each for 30 minutes. C 

concentration was analysed in a 1:4 dilution of the supernatant using a TOC-TNb Analyzer 

Multi-N/C 2100S (Analytik Jena, Jena, Germany). Inorganic C was removed by adding 1 M 

HCl to the extracted samples before measurement (Pausch and Kuzyakov 2012). Cmic 

concentration was calculated by the difference between the C concentrations of the 

fumigated and non-fumigated subsamples using the kEC factor of 0.45 (Joergensen 1996) to 

account for incomplete cell lysis by chloroform. The estimation of microbial biomass P (Pmic) 

was done by liquid fumigation extraction with anion-exchange resin membranes (Kouno et al. 

2002) using hexanol instead of liquid chloroform (Bünemann et al. 2004). A fresh weight of 

soil corresponding to 2 g dry matter was used for fumigated and non-fumigated subsamples 

of each sample. Pretests for this study had indicated that the observed variability in P 

adsorption behaviour of soil depended on total P concentration in the soil solution to be 

analysed. Thus, the use of identical soil weights in all subsamples is required in order to 

obtain an accurate correction factor for P retained by soil after fumigation. Fumigation and 

extraction were performed according to Bünemann et al. (2004). Extracted P was mixed with 

Murphy and Riley color reagent (Murphy and Riley 1962) and H2Odeion in a ratio of 1:1:4 (v/v), 

respectively. P concentration was photometrically measured at 710 nm using a microplate 

absorption reader (ELx808; BioTek Instruments Inc., Winooski, VT, USA). Calibration was 

performed using K2HPO4 in the following final concentrations of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 

10 mg P L-1. To determine the amount of P retained by soil particles and complexation after 

fumigation incubation, a defined P concentration (K2HPO4), which was equal to the measured 

P concentrations in fumigated subsamples (µg P g-1), was added to additional non-fumigated 

but otherwise identically treated subsamples. The ratio of recovered P to added P was used 

to calculate the Pmic concentration as follows: 

    [      ]               [      ]                  [      ]             [      ]         [      ]  

Given values of water-extractable in soil P (PH2O) correspond to the P concentration (µg P g-

1) determined in the non-fumigated subsamples. However, as the anion-exchange resin 

membranes used compete for P adsorption by soil particles, it cannot be assumed that given 

PH2O values completely represent the plant-available P fraction.  
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5.2.8 Mineral N 

To determine the concentrations of ammonium (NH4
+) and nitrate (NO3

−) in soil, undiluted 

(0.5 M K2SO4) soil extracts from non-fumigated samples used for the Cmic determination were 

colorimetrically measured on an Autoanalyzer III (Bran + Luebbe, Norderstedt, Germany). 

5.2.9 Statistical analyses 

Homogeneity of variance was tested by the Levene-test. Significance of differences was 

tested by ANOVA followed by the Tukey HSD-test, where p < 0.05 was considered as the 

threshold value for significance. In case of variance heterogeneity, the Games-Howell-test 

was used for pairwise comparison, where p < 0.05 was also considered as significantly 

different. Statistical analyses were performed using SPSS Statistics 22 (IBM 2013). 

5.3 Results  

5.3.1 Tracing RU47 

The highest copy numbers of the RU47-specific sequence detected by qPCR were found in 

TC-DNA from soil inoculated with RU47 (Table 5.1). The RU47 copy number in this 

treatment was significantly higher than the average number of copies found in all other 

treatments; by a factor of four in bulk soil, and 18 in rhizosphere soil (Table 5.1). The RU47-

specific DNA sequence could be detected in all treatments; however, the distribution of 

sequence frequency between the treatments differed between rhizosphere and bulk soils. 

Bulk soil inoculated with dead RU47 cells resulted in the second highest RU47 abundance, 

while the lowest value was recorded in the control (Table 5.1). In the rhizosphere, quantities 

of the RU47-specific sequence copies detected were ranked in the following order high to 

low: RU47 > control > bacterial mix > dead RU47 (Table 5.1). On average, a 1300-fold higher 

quantity of RU47 was detected in rhizosphere than in bulk soil DNA.  
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Table 5.1 Abundance of P. sp. RU47-specific DNA sequence in rhizosphere and bulk soil DNA of tomato plants 39 days after sowing under the following treatments: one non-
inoculation (control) and three inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) cells. Values are presented as 
mean ± standard error (SE) of four replicates. Significant differences (Tukey-HSD/Games-Howell, p < 0.05) between the treatments are marked by lowercase letters. Cp stands 
for copies. 

        Control   Bacterial mix   Dead RU47      RU47 

RU47 abundance Unit Mean   SE Mean   SE Mean   SE Mean   SE 

                  

Rhizosphere [cp ng-1 DNA] 2747.5 b ± 2108.6 1984.9 b ± 659.1 279.6 b ± 49.0 30199.4 a ± 2925.9 

Bulk soil [cp ng-1 DNA] 0.8 b ± 0.3 2.1 b ± 0.7 3.1 b ± 0.7 21.1 a ± 1.9 
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5.3.2 Plant growth and soil nutrients 

In comparison to the bacterial mix treatment, inoculations with RU47 or dead RU47 cells 

resulted in significantly enhanced plant growth, as shown by higher stem diameter, leaf 

number (Table 5.2), and shoot biomass (Fig. 5.1). Furthermore, we observed trends of 

increased shoot height and leaf area (Table 5.2). Symptoms of P deficiency (violet 

discoloration on the leaves) were less obvious in plants receiving both RU47 treatments than 

in the bacterial mix treatment but were not significantly different from the bacterial mix (Table 

5.2). A trend of increased P uptake was observed in plants inoculated with RU47 and dead 

RU47 cells (Fig. 5.1). Plants of the optimally P-fertilized control and bacterial mix treatments 

had concentrations of about 4 g P kg-1, which represented an adequate P supply for tomato 

plants before flowering. Plants inoculated with dead RU47 cells had an optimal concentration 

of 6 g P kg-1, whereas plants inoculated with RU47 exhibited a remarkably low P tissue 

concentration of 2 g P kg-1, but this was an improvement in absolute uptake compared to the 

bacterial mix (data not shown). In measurements of water-extractable P in soil, bulk soil 

samples of both RU47 treatments had a 2.3-fold higher P concentration than samples 

inoculated with the bacterial mix, and about one fourth of the P concentration measured in 

the optimally P-fertilized non-inoculation control (Table 5.2). No significant treatment effects 

on NH4
+ and NO3

- concentrations in bulk soil were observed (Table 5.2). However, NO3
- 

concentrations were negatively correlated with shoot biomass (Pearson’s r = -0.7; p < 0.05). 
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Table 5.2 Summarized plant and soil properties of tomato plants 36 and 39 days after sowing (DAS) under the following treatments: one non-inoculation (control) and three 
inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) cells. Values are presented as mean ± standard error (SE) of 
four replicates. Significant differences (Tukey-HSD/Games-Howell, p < 0.05) between the treatments are marked by lowercase letters. Please note the different time points of 
plant observation and soil sampling. Percentage of violet discolouration on the undersides of the leaves is based on total leaf area, coded as follows: 0 % = 0, > 0 - 25 % = 1, > 
25 - 50 % = 2, > 50 - 75 % = 3, > 75 - 100 % = 4 

      Control     Bacterial mix     Dead RU47       RU47 

 
Unit Mean   SE Mean   SE Mean   SE Mean   SE 

Plant properties (36 DAS)                  

Shoot height [cm] 33.8 a ± 0.6 17.2 b ± 2.8 27.1 a ± 0.7 26.4 ab ± 1.8 

Stem diameter [cm] 0.5 a ± 0.0 0.3 b ± 0.0 0.5 a ± 0.0 0.5 a ± 0.0 

Leaf number - 5.5 a ± 0.3 3.3 b ± 0.3 5.0 a ± 0.0 4.8 a ± 0.3 

Leaf area [cm²] 775.6 a ± 11.3 205.4 b ± 84.2 570.6 ab ± 34.8 567.8 ab ± 101.7 

Violet discolouration - 0.0 b ± 0.0 2.5 a ± 0.5 0.8 ab ± 0.5 1.0 a ± 0.0 

Bulk soil properties (39 DAS) 

pH (CaCl2) - 7.2 b ± 0.0 7.5 a ± 0.0 7.5 a ± 0.0 7.5 a ± 0.0 

P H2O [mg kg-1] 100.5 a ± 5.5 9.6 b ± 5.1 22.4 b ± 2.0 22.6 b ± 1.0 
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Molar microbial C:P ratio - 305.1  ± 92.1 55.1  ± 16.1 80.4  ± 8.5 73.7  ± 7.2 

NH4
+ [mg kg-1] 1.9  ± 0.6 2.1  ± 0.4 1.5  ± 0.2 1.1  ± 0.1 

NO3
- [mg kg-1] 141.7  ± 4.0 159.5  ± 3.5 142.5  ± 5.4 150.6  ± 4.5 

Gram+ PLFAs [nmol FAME g-1] 8.0  ± 0.3 8.0  ± 0.2 8.9  ± 0.8 8.6  ± 0.3 

Gram- PLFAs [nmol FAME g-1] 1.2  ± 0.0 1.2  ± 0.0 1.3  ± 0.1 1.3  ± 0.1 

Bacterial PLFAs  [nmol FAME g -1] 14.2  ± 0.5 14.2  ± 0.3 15.7  ± 1.4 15.2  ± 0.6 

Fungal PLFA [nmol FAME g-1] 0.4  ± 0.0 0.4  ± 0.0 0.4  ± 0.1 0.4  ± 0.0 

Acid 
phosphomonoesterase 

[nmol g-1 h-1] 73.8  ± 20.1 73.7  ± 28.7 105.5  ± 10.3 114.6  ± 13.9 

Alkaline 
phosphomonoesterase 

[nmol g-1 h-1] 475.9  ± 33.5 503.8  ± 38.2 518.5  ± 31.1 584.1  ± 19.0 

ß-glucosidase  [nmol g-1 h-1] 188.7  ± 10.5 181.9  ± 4.0 187.5  ± 12.6 196.0  ± 9.4 

N-acetyl-ß-
glucosaminidase 

[nmol g-1 h-1] 63.3  ± 9.3 45.1  ± 3.9 41.4  ± 3.1 43.4  ± 1.6 

ß-xylosidase [nmol g-1 h-1] 13.2  ± 3.2 34.1  ± 17.6 17.9  ± 1.3 17.5  ± 1.4 
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Figure 5.1 Shoot biomass (dry weight) and plant-bound P of tomato plants 39 days after sowing under the 
following treatments: one non-inoculation (control) and three inoculation treatments; unselectively cultivated soil 
bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) cells. Error bars indicate standard error (n = 4); 
significant differences (Tukey-HSD, p < 0.05) between the treatments are designated by lowercase letters. 

5.3.3 Enzyme activities involved in P, C, and N cycle  

The addition of living RU47 significantly increased alkaline PA in the rhizosphere of tomato 

on days 25-26 and 31-32 after sowing (Fig. 5.2 a). Alkaline PA in the rhizosphere of plants 

inoculated with living RU47 significantly increased over time, showing highest activity at 25-

26 days after sowing, whereas the temporal pattern was stable in the dead RU47 treatment 

(Fig. 5.2 a). The activity of acid phosphatase was marginally less than that detected for 

alkaline PA (Fig. 5.2 a, Fig. 5.2 b). Acid PA increased slightly over time; significant increases 

of 21 % (bacterial mix) and 15 % (RU47) could be observed in the treatments to which living 

bacteria were added (Fig. 5.2 b). As expected, acid PA in the rhizosphere was positively 

correlated with plant properties (e.g. shoot height, Pearson’s r = 0.6; p < 0.00). Potential 

alkaline and acid PA in homogeneous bulk soil samples after final harvest indicated highest 

activities in both RU47 treatments (Table 5.2). Alkaline PA in rhizosphere soil was positively 

correlated with the abundance of RU47 DNA sequence in rhizosphere and bulk soils 

(Pearson’s r = 0.6; p < 0.05). RU47 inoculation did not influence enzyme activities in bulk soil 
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involved in C and N cycling (Table 5.2). Nevertheless, the bacterial mix treatment stimulated 

activities of the mainly fungus-derived β-xylosidase by more than 100 % (Table 5.2). 

 
Figure 5.2 a Alkaline phosphomonoesterase activity during different growth stages of tomato plants: one non-
inoculation (control), and three inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead, 
or viable RU47 (RU47) cells. Error bars indicate standard error (n = 4). Letters indicate significant differences 
(Tukey-HSD, p < 0.05) between the treatments, tested individually for each growth stage. 

 
Figure 5.2 b Acid phosphomonoesterase activity during different growth stages of tomato plants: one non-
inoculation (control), and three inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead, 
or viable RU47 (RU47) cells. Error bars indicate standard error (n = 4). Letters indicate significant differences 
(Tukey-HSD, p < 0.05) between the treatments tested individually for each growth stage. 
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5.3.4 Microbial biomass 

RU47 inoculation did not influence microbial C content of the bulk soil (Fig. 5.3). Microbial 

biomass P was almost equal in all inoculation treatments and significantly higher than values 

detected in the control (Fig. 5.3). Thus, the calculated atomic C:P ratio of 305 in microbial 

biomass in the P-fertilized control was much higher (4.4 times) than the average C:P ratios of 

all other treatments (Table 5.2).  

 
Figure 5.3 Microbially bound carbon (Cmic) and phosphorus (Pmic) in bulk soil of 39 day old tomato plants: one 
non-inoculation (control), and three inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), 
dead, or viable RU47 (RU47) cells. Error bars indicate standard error (n = 4); significant differences (Tukey-HSD, 
p < 0.05) between the treatments are designated by lowercase letters. 

5.3.5 DGGE 

In DGGE profiles, the treatment with RU47 revealed a strong band with an electrophoretic 

mobility like that of RU47, and a low bacterial diversity; this was in contrast to the treatment 

using dead RU47 cells (Fig. 5.4 a). UPGMA analysis showed that the rhizosphere samples of 

tomato plants grown in soil inoculated with RU47 clustered together; fingerprints of the plants 

grown in soil inoculated with dead RU47 formed a distinct cluster as well, but this cluster also 

contained the fingerprint of one control sample (Fig. 5.4 b). Highest bacterial diversity as well 

as an RU47-specific band was observed in the control and in the bacterial mix treatment 
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(Fig. 5.4 a). The permutation test revealed significant differences between the control and 

RU47 treatments with d-value 30.3 (Table 5.3). Moreover, high d-values indicating large 

differences were observed between the fingerprints of the dead RU47 and viable RU47 

(43.2), and between the bacterial mix and dead RU47 (28.4) (Table 5.3). Fungal DGGE 

fingerprints exhibited diverse patterns with high variation both within and between 

treatments; only the fungal fingerprints of the control soils formed a distinct cluster (Fig. 5.5 

a, Fig. 5.5 b). Significant but small differences were observed only between the fungal 

fingerprints of the control treatments and the bacterial mix, dead RU47, and RU47 with 

values of 8.9, 12.1 and 7.3, respectively (Fig. 5.5 a, Table 5.3). 

 
Figure 5.4 a DGGE fingerprints of bacterial 16S rRNA gene fragments from community DNA obtained from 
rhizosphere of tomato plants 39 days after sowing under the following treatments: one non-inoculation (control), 
and three inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead RU47, or viable RU47 
(RU47) cells. BM stands for bacterial marker. 

RU47 RU47 
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Figure 5.4 b Bacterial DGGE fingerprints (Fig. 5.4 a) corresponding to UPGMA dendrogram based on Pearson 
similarity matrix (Heuer et al. 2001). Bacterial fingerprints were from community DNA obtained from rhizosphere 
of tomato plants 39 days after sowing under the following treatments: one non-inoculation (control), and three 
inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) 
cells. 

 
Figure 5.5 a DGGE fingerprints of fungal ITS fragments from community DNA obtained from rhizosphere of 
tomato plants 39 days after sowing under the following treatments: one non-inoculation (control), and three 
inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) 
cells. FM stands for ITS marker. 
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Figure 5.5 b Fungal DGGE fingerprints (Fig. 5.5 a) corresponding to UPGMA dendrogram based on Pearson 
similarity matrix (Heuer et al. 2001). Fungal fingerprints were from community DNA obtained from rhizosphere of 
tomato plants 39 days after sowing under the following treatments: one non-inoculation (control), and three 
inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) 
cells. 

Table 5.3 Percent dissimilarity (d-value) between rhizosphere DGGE fingerprints from community DNA obtained 
from rhizosphere of tomato plants 39 days after sowing under the following treatments: one non-inoculation 
(control), and three inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead RU47, or 
viable RU47 (RU47) cells. 

 
Pairwise comparison 

Differences in the rhizosphere between the treatments 
 
16S rRNA gene 

 
ITS 
 

Control vs bacterial mix 3.2 8.9* 
Control vs dead RU47 8.5 12.1* 
Control vs RU47 30.3* 7.3* 
Bacterial mix vs dead RU47 28.4* -2.1 
Bacterial mix vs RU47 19.0* 2.1 
Dead RU47 vs RU47 43.2* 7.0 
 

* Significant difference (p ≤ 0.05) according to Kropf et al. (2004) 
 

5.3.6 PLFA 

The addition of RU47 did not result in significant shifts in microbial community composition 

based on PLFA patterns (Table 5.2). However, while bulk soils of the control and bacterial 

mix treatments exhibited identical PLFA patterns, abundances of bacterial PLFAs were 

higher in bulk soil inoculated with dead RU47 or RU47 cells by 11 and 7 %, respectively 

(Table 5.2). Abundances of PLFAs representing gram+ bacteria were higher by around 9 % in 

treatments using dead RU47 and living RU47 compared to the control and bacterial mix 

treatments (Table 5.2).  
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5.4 Discussion 

Plant growth 

In tomato plants inoculated with RU47, not only stem diameter and leaf number but also 3-

fold higher shoot biomass was observed in comparison to plants grown in soils containing 

the bacterial mix (Table 5.2, Fig. 5.1). Therefore, the present study confirms the results of 

Kim et al. (1997), who documented a 2-fold higher plant biomass in 35 day-old tomato plants 

inoculated with Enterobacter agglomerans cells compared to the non- inoculated control. 

However, in our study, a growth-promoting effect was also observed in tomato plants 

inoculated with dead RU47 cells (Fig. 5.1, Table 5.2). The difference between the treatments 

RU47 and dead RU47 makes it possible to estimate whether potential plant growth-

promotion was a result of direct or indirect mechanisms. Direct mechanisms can include, for 

example, the production of phosphatases by RU47 resulting in an improved supply of P by 

plants. Indirect mechanisms include the release of cell-derived phytohormones or other 

compounds which may stimulate indigenous microbes and their activity in soil. These indirect 

mechanisms are discussed in more detail below. 

Tracing RU47 

The strain RU47 was originally isolated from a soil which had previously been reported as 

suppressive to phytopathogenic fungi (Adesina et al. 2007). The qPCR primer system used 

for detection and quantification of RU47 was developed based on the draft genome 

sequence of RU47 (Ding et al. unpublished). Based on a comparative analysis of 

Pseudomonas genomes published at the time, this sequence was assumed to be RU47-

specific. However, RU47 sequences were also detected in soil inoculated with the bacterial 

mix, with dead RU47 cells, and in the control soil. It is likely that taxonomically closely related 

Pseudomonas belonged to the indigenous bacterial community of the soil used in the 

experiment. In our study, the inoculated RU47 could successfully be detected by qPCR, as 

RU47 was significantly more abundant in the treatments with viable RU47 cells both in the 

rhizosphere and in bulk soil than in all other treatments, including the control soil. The 

significantly higher copy numbers of the RU47-specific sequence in rhizosphere as 

compared to bulk soils of all treatments may have indicated higher competency of RU47-like 

populations in the rhizosphere, but observed differences may also have been due to 

differences in processing rhizosphere and bulk soil samples. High abundances of RU47 in 

the rhizosphere soils of this study are in accordance with Adesina et al. (2009) and Schreiter 

et al. (2014 b, c). Both studies investigated the ability of RU47 to colonize the rhizosphere of 

lettuce either in growth chambers or under field conditions. However, in these studies, 
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cultivation-dependent methods were used. The RU47 is a spontaneous rifampicin-resistant 

mutant; this makes sensitive and specific detection of RU47 in rhizosphere and bulk soil 

possible using selective plating. Unfortunately, selective plating was not used in the present 

experiment. Commercial as well as non-commercial PMB strains, including RU47, were 

isolated from indigenous microbial communities associated with soils and plants. In contrast 

to genetically modified strains, specific and sensitive monitoring of naturally occurring strains 

is more difficult. The literature, though sparse, suggests that survival of inoculants such as 

PMB is difficult to track and that the inoculants exhibit great temporal and spatial 

dependency. A temporal decrease in abundance has frequently been reported (Kim et al. 

1997, Dey et al. 2004, Hameeda et al. 2008, Meyer et al. 2017). For instance, Meyer et al. 

(2017) documented a loss of more than 99 % of the inoculated Pseudomonas protegens 

CHA0 cells within 40 days. Kim et al. (1997) determined that Enterobacter agglomerans 

found in the rhizosphere of non-inoculated tomato plants (35 days after sowing) 

corresponded to almost 50 % of the abundance in the inoculation treatment. These findings 

are somewhat consistent with our results, in that the relative abundance of RU47 in the 

treatments not inoculated with RU47 corresponded to 8 % (rhizosphere) and 7 % (bulk soil) 

of the abundance detected in the treatment to which RU47 was added (Table 5.1).  

Improved P supply  

Data on effects of PMB addition on plant growth and P uptake are rare and somewhat 

inconsistent. However, Egamberdiyeva (2007) and Kumar et al. (2013) demonstrated 

improved P uptake in maize and mustard respectively due to addition of single PMB strains. 

These findings are consistent with the results of our study, which showed a trend of 

increased P uptake in tomato plants inoculated with dead RU47 and viable RU47 (Fig. 5.1). 

In evaluating plant P uptake, P tissue concentration is the meaningful value because 

differences resulting from variations in plant growth are excluded. Variations in plant growth 

may therefore explain the adequate P tissue concentration of 0.4 % (calculated from data of 

P uptake and shoot biomass given in Fig. 5.1) that was observed not only in the optimally P-

fertilized control but also in the plants inoculated with a bacterial mix. In the bacterial mix 

treatment, the lowest amounts of available P in the soils (from small starter P fertilization at 

the beginning of the experiment) were taken up by the plants in comparison to the other 

treatments, and this P was not enough to maintain growth (Fig. 5.1). The previously 

incorporated P was concentrated in the small biomass, resulting in apparent adequate initial 

P tissue concentration of 0.4 %, but this was a concentration effect of low tissue biomass. As 

plants grew, the initially adsorbed P was no longer available, and these plants then exhibited 

P deprivation, as indicated by violet discoloration of leaves (Table 5.2). Plants inoculated with 
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RU47 had a P tissue concentration of 0.2 %, which is in close agreement with the data 

reported by Kim et al. (1997) but may also indicate competition for available P between 

added bacteria and plant. This assumption is supported by the optimal P tissue concentration 

of 0.6 % found in plants which were inoculated with dead RU47 cells. In these plants 

competition was reduced, while highest Pmic values were determined in soil of the viable 

RU47 treatment, a condition in which competition between plants and bacteria is expected to 

be highest (Fig. 5.3). An improved P supply by the addition of RU47 or dead RU47 was also 

observed by a 2-fold higher PH2O concentration compared to the bacterial mix treatment 

(Table 5.2). However, a fertilizing effect due to addition of dead RU47 cells can be excluded 

since N and P concentrations in cell suspension (OD600 = 1) were determined as 41.5 and 

0.9 µg mL-1, respectively, corresponding to a total N and P addition of less than 0.6 mg kg-1 

(data not shown). These values are negligible in comparison to the initial slight P fertilization 

(50 mg kg-1) and the optimal fertilized control (200 mg kg-1). 

Improved P mobilization in soil 

An improved P supply by PMB, including some Pseudomonas strains, has been reported in 

several studies (for overviews see Rodr  guez and Fraga 1999, Khan et al. 2007, 2009 a, 

Harvey et al. 2009). For instance, Malboobi et al. (2009) documented effective mobilization of 

inorganic and organic phosphate compounds by Pseudomonas putida P13 in culture media. 

Similar findings were reported by Pastor et al. (2012). They observed growth stimulation of 

tomato seedlings by the addition of P. putida PCI2 and were able to identify this strain as 

positive for PA and highly effective for solubilizing Al- and Ca-bound phosphates. In our 

study, inoculations with RU47 resulted in increased alkaline phosphomonoesterase activity in 

the rhizosphere of tomato plants (Fig. 5.2 a). Moreover, enzyme activity increased from 18-

19 to 25-26 days after sowing, likely due to increasing bacterial colonization and P depletion. 

In contrast, alkaline PA in the rhizosphere inoculated with dead RU47 remained stable (Fig. 

5.2 a). These findings suggest increased P mineralization by microbial phosphatases 

produced by viable RU47. Supporting this, alkaline PA was positively correlated with the 

abundance of RU47 (Pearson’s r = 0.6; p < 0.05) in the rhizosphere, whereas acid PA was 

not influenced by RU47 inoculation (Fig. 5.2 b). Zymography revealed generally similar 

activity levels for alkaline and acid PA, which is in accordance with Spohn et al. (2015). They 

determined the PA in the rhizosphere of barley grown under low and adequate P soil 

conditions and observed a similarity of approximately 90 % between alkaline and acid PA. In 

contrast to the experiment of Spohn et al. (2015), we observed no distinct separation 

between roots and surrounding soil (Fig. 5.S1) and also generally lower PA (Fig. 5.2 a, Fig. 

5.2 b). This may be attributable to the comparatively fine roots of tomato plants as compared 
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to barley. Lower enzyme activity levels in comparison to the values of Spohn et al. (2015) 

may have been due to the addition of quartz sand in the present experiment.  

PA-data determined by soil in situ zymography indicated the spatial and temporal 

distributions of enzyme activity in the rhizosphere (soil area) during different growth stages of 

the tomato plants. Enzyme analyses performed after final harvest enabled us to gain 

additional information about the potential PA in bulk soil (soil body) at a single time point. 

Measured highest alkaline and acid PA values in soil inoculated with RU47 after final harvest 

agreed with our soil zymography results (Table 5.2, Fig. 5.2 a, Fig. 5.2 b). In comparison to 

the bacterial mix treatment, alkaline PA increased by 16 % (Table 5.2). These results are in 

agreement with those obtained by Kaur and Reddy (2014), who documented increases in 

alkaline PA of 31 % due to the addition of Pseudomonas plecoglossicida in soil of wheat 

plants. These findings reinforce the evidence for improved P mineralization by the addition of 

RU47. Nevertheless, bulk soil inoculated with dead RU47 cells also revealed increased PA 

(Table 5.2), despite the efficiency of our RU47 cell death method and the denaturation of 

phosphatases. The increased PA observed in the dead RU47 treatment may have been due 

to enhanced growth and activity of previously dormant microbial populations through the 

addition of bacterial residues (dead RU47 cells) to soil and thus a supply of fresh organic 

matter (FOM), also known as the priming effect (Bingeman et al. 1953, Fontaine et al. 2003). 

Interactions with indigenous soil microbes and hormone-derived effects  

Bacterial DGGE profiles (Fig. 5.4 a) confirmed the competence of living RU47 in the 

rhizosphere, and its occurrence in the natural rhizosphere microbial community was 

additionally supported by the quantitative PCR data (Table 5.1). However, no RU47-specific 

band was observed in the bacterial DGGE fingerprint of rhizosphere DNA inoculated with 

dead RU47 (Fig. 5.4 a). This was confirmed by results measured by the more sensitive 

TaqMan® assay, indicating the lowest RU47 abundance in the dead RU47 treatment (Table 

5.1). This observation clearly indicates destruction of DNA due both to boiling and, more 

likely, to microbial degradation in soil. The latter was confirmed by the fact that in the 

bacterial DGGE fingerprint of the dead RU47 treatment, numerous dominant bands were 

observed which were absent or much less distinctly expressed in all other treatments (Fig. 

5.4 a). We suggest, therefore, that inoculation with dead RU47 cells, and thus the addition of 

FOM to soil, resulted in a priming effect that enhanced bacterial populations specializing in 

the decomposition of FOM (Griffiths et al. 1998, Fontaine et al. 2003). This, in turn, could 

have resulted in the growth of bacterial populations responding to the nutrient spike 

accompanied by increased microbial PA, resulting in the observed improved P supply for the 

tomato plants in this treatment (Table 5.2). 
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Although we found no significant effects on PLFA patterns, bulk soil inoculated with RU47 

cells showed a minor increase in bacterial abundance, especially of gram+ bacteria (Table 

5.2). This may indicate a microbiome shift as a result of RU47 inoculation, a finding also 

reported by Schreiter et al. (2014 a). Although plants treated with RU47 showed comparably 

low bacterial diversity in DGGE fingerprints (Fig. 5.4 a), the PLFA analysis was done with 

bulk soil; its microbial community structure could have differed materially from that of the 

rhizosphere (Maloney et al. 1997, Smalla et al. 2001). It is possible that an increased 

population of indigenous PMB in bulk soil may have been due to the addition of RU47. An 

increase in abundance of indigenous PMB after the application of specific PMB strains has 

also been reported by Sundara et al. (2002) and Canbolat et al. (2006). With respect to the 

increased microbial PA and improved P supply determined in bulk soils of both RU47 

treatments (Table 5.2), there may be a complementary PMB-attracting effect in plant growth-

promotion of RU47. To solve this open question, functional gene analyses of 

phosphomonoesterases could clarify identities of the main producers of different 

phosphomonoesterases, but these analyses were not possible in the present study. 

Plant growth-promotion can be strongly influenced by modulation of the phytohormone level 

of the plant. Several studies have shown that many soil bacteria, including Pseudomonas, 

are able to synthesize phytohormones or the enzyme ACC deaminase, affecting the plant’s 

hormonal balance and thus its growth and response to stress, ensuring the bacteria’s supply 

of C resources from root exudation (for review see Tsavkelova et al. 2006, Glick 2012, 2014). 

Hence, the plant growth-promotion observed in both RU47 treatments was likely due to a 

hormonally mediated effect. Rajkumar and Freitas (2008) reported a strong effect of ACC 

deaminase production by P. jessenii M6; this was also detected for RU47 (Smalla 2016, 

personal communication). But, due to enzyme inactivation in the dead RU47 treatment, an 

ACC deaminase effect was negligible here. However, it is known that phytohormones such 

as auxins and cytokinins can remain stable after heating to 121 °C (Murashige and Skoog 

1962, Kumar and Singh 2009). Therefore, it is entirely possible that co-extracted thermally 

stable phytohormones produced by RU47 before they were killed were added through 

inoculation of dead RU47 cells. Furthermore, the addition of dead RU47 cells and thus a 

supply of FOM in the form of bacterial residues may have promoted indigenous soil 

microorganisms synthesizing phytohormones. Taken together, the improved P supply in 

plants inoculated with dead RU47 or viable RU47 may have been due to phytohormones, 

stimulating root growth and activity, and improving P acquisition in soil.  
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5.5 Conclusion 

This study demonstrated that addition of RU47 improves the P supply and subsequent 

growth of tomato plants under P-limited growing conditions. Furthermore, it indicated 

enhanced production of alkaline phosphatase by RU47. This is the first study to compare the 

effects of adding vital and devitalized RU47 cells to plants and soil. Both treatments resulted 

in improved P supply and plant growth promotion. The plant growth-promoting effect was 

likely caused by increased PA in the rhizosphere of tomato amended with viable RU47. In 

the dead RU47 treatment, the bacterial populations which proliferated in response to the 

added resource may have contributed to improved P supply and growth promotion via other 

mechanisms. Thus, the use of RU47 offers a promising approach for more efficient P 

fertilization in agriculture. In contrast to our hypothesis that the colonization of RU47 leads to 

spatially distinct zones of increased PA in the rhizosphere, no clear differences in 

rhizosphere and bulk soil were found. This was likely due to the fine roots of tomato plants 

and homogeneously distributed enzyme activity of the topsoil used in the treatments. We 

found no significant effects of RU47 on soil microbial community structure as determined by 

PLFAs, but we detected significant shifts using DGGE. Our study shows that RU47 increases 

microbial PA in soils with low P availability and leads to growth promotion of tomato plants. 
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Supplemental Material 

 
Figure 5.S1 Soil zymograms of alkaline (pH 11) and of acid phosphomonoesterase (pH 6.5) in the rhizosphere of 
tomato plants 31-32 days after sowing (together with the calibration line) under the following treatments: one non-
inoculation (control), and three inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead 
RU47, or viable RU47 (RU47) cells. Each treatment is represented by one replicate. 

 

  



Short-term effects of phosphorus-mobilizing bacteria on maize growth and soil microbial 

activity 

46 

 

6 Short-term effects of phosphorus-mobilizing bacteria on maize 

growth and soil microbial activity  

6.1 Introduction 

Maize (Zea mays L.) is one of the most cultivated arable crops in the world; the top three 

maize-producing countries, the United States, China, and Brazil, alone produce around 563-

717 million metric tons per year (Ranum et al. 2014). Due to its increasing use for bioethanol 

world wide corn production has significantly increased in the last ten years (Ranum et al. 

2014). However, maize places high demands on fertilization, especially in its early growth 

stage. Using 32P, a study by Nadeem et al. (2011) demonstrated that 96 % of the endosperm 

phytate representing the main P source in a maize seed was hydrolysed within the first 

seven days after sowing; P uptake by the roots starts only five days after sowing. An 

adequate P supply in the early growth stages of maize plants is a crucial factor for a high 

productivity; the kernel number especially is most sensitive to P nutrition during the period of 

sowing to 6-leaf-stage (Barry and Miller 1989). While in conventional farming the under-root 

fertilisation with di-ammonium phosphate has proven to effectively suppress P deficiency in 

maize seedlings, this method is not possible in organic farming due to legal restrictions. 

Furthermore, the increasing scarcity of rock phosphate resources has made the development 

of an organic and more efficient P fertilization in agriculture even more urgent. In this respect, 

the use of PMB, meaning beneficial bacteria, to effectively mobilize insoluble P compounds 

in soil, offers a promising approach. Positive effects by the targeted application of PMB 

strains, usually strains from the genera Bacillus, Pseudomonas, Azospirillum and Rhizobium, 

on plant growth in P limited soils have been reported several times (Chabot et al. 1996, 

Sundara et al. 2002, Kaur and Reddy 2014). However, the underlying functional mechanisms 

are not clearly understood.  

In principal, three different microbially driven mechanisms of P mobilization can be defined: 

First, the enzymatic hydrolysis of organic P compounds (Tarafdar and Claassen 1988, Juma 

and Tabatabai 1988, Nannipieri et al. 2011); second, the ability to solubilize bound P by the 

release of chelating substance, organic acids and protons (Kpomblekou-a and Tabatabai 

1994, Jones and Oburger 2011); and third, interactions with beneficial indigenous microbes 

optimizing P mobilization in soil (Belimov et al. 1995, Zaidi et al. 2003). Thus, identifying the 

main mechanisms of PMB is prerequisite for their successful and efficient use in agriculture 

in the future. In a previous study, using RU47 as the PMB and tomato as the test plant, we 

conducted a novel experiment inoculating vital as well as dead PMB cells to distinguish 
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between P mobilizing dependent and independent mechanisms (5). Results of this 39-day 

experiment under low P soil conditions revealed a plant growth-promoting effect and 

improved P supply not only by the addition of RU47 but also of dead RU47 (5.3). The effect 

of RU47 was clearly associated with an increased microbial PA, but we also found 

indications of a simultaneous hormone-derived effect increasing plant P acquisition by the 

roots; this was likely the main mechanism when dead RU47 was added (5.3). However, so 

far, the ability of microbial inoculants to colonize the rhizosphere at sufficient abundance has 

been described as the crucial factor for their beneficial effects on plants (De Bellis and 

Ercolani 2001, Barret et al. 2011). Based on the tomato experiment, and with regard to the 

existing challenge in corn production, we wanted to verify whether RU47 is able to improve 

maize P supply in the short and sensitive period of earliest growth stage by a colonization-

dependent or -independent mechanism. Therefore, we performed a short-term rhizobox 

experiment with maize repeating all conditions performed in the tomato experiment (5.2.1) 

and hypothesised: (1) Inoculated RU47 as well as dead RU47 improves plant growth. (2) The 

plant growth-promoting effect by the addition of RU47 is based on an improved P supply. (3) 

RU47 dominantly colonizes the rhizosphere leading to spatially distinct zones of enriched 

microbial PA. 

6.2 Materials and methods 

6.2.1 Rhizobox experiment 

The experiment was performed under low P availability soil conditions using Pseudomonas 

sp. RU47 as the PMB and maize (Zea mays L. var. Colisee) as the test plant. To exclude 

apparent plant growth-promoting effects of the PMB as a result of increasing microbial 

activity by adding living soil bacteria and/or cell compounds affecting the P efficiency of plant 

and indigenous soil microbes, two additional inoculation treatments were conducted, each 

comprising an inoculation of unselectively cultivated indigenous soil bacteria (bacterial mix) 

or dead RU47 cells. Details of bacteria cultivation and inoculation are briefly described in 

6.2.2. Furthermore, two non-inoculation treatments were added serving as the controls. First, 

an optimally P-fertilized (200 mg kg-1; Ca(H2PO4)2) control and second, a no-plant variant 

(00-control) allowing an insight into microbial activity in soil when root and inoculation 

associated influences are absent. Hence, the experiment consisted of five treatments, 

whereby each treatment comprised four replicates. Maize plants grown in rhizoboxes with an 

inner size of 28.0 cm x 4.5 cm x 16.5 cm, filled with a soil substrate composed of Luvisol 

topsoil and quartz sand (0.2 - 1.4 mm) in a ratio of 1:1 (w/w). The Luvisol was considered as 

a heavy loam soil and was selected on the basis of its low concentration of plant available 
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phosphorus (CAL extraction of 20 mg kg-1). The soil was taken from unfertilized grassland 

located on the campus of the University of Hohenheim; its soil characteristics are given in 

detail in 5.2.1. Each rhizobox was filled with 1918.0 g DM of sieved (< 5 mm) soil substrate; 

before sowing soil substrate was optimally fertilized regarding N, K and Mg. Application of 

fertilization was exactly done as performed in the tomato experiment (5) and is given in detail 

in 5.2.1. Excluding the optimally P-fertilized treatment, an application of 50 mg P kg-1 

(Ca(H2PO4)2) was add to each rhizobox enabling a successful germination. Three maize 

seeds were sown with a depth of 4 cm directly in each rhizobox and thinned out after 

germination (one plant per rhizobox). In order to make roots grow along the hinged wall, 

rhizoboxes were placed with a 50 ° inclination. In order to avoid light-derived influences on 

root’s growth and behaviour, all boxes were wrapped in aluminium foil. The experiment was 

conducted for 14 days under greenhouse conditions. Rhizoboxes were placed randomly on 

wooden planks to exclude contaminations by leaking irrigation water. Plants were constantly 

watered maintaining a water holding capacity of 50 %; the water content was checked 

gravimetrically on a daily basis. Watering was performed using deionized water (H2Odeion), 

successively applied in 5 mL steps to avoid direct leakage along rhizobox edges. 

6.2.2 Bacterial cultivation and inoculation 

RU47 was cultured in King’s B liquid medium (King et al. 1954) added with rifampicin (50 mg 

L-1), bacterial mix in a glucose-enriched (2 g L-1) LB-Lennox liquid medium (Bertani 1951, 

Lennox 1955) at 28.5 °C for 24 h, respectively. Bacteria cells were washed twice using sterile 

0.3 % NaCl solution and subsequently adjust to a cell density of 109 cell mL-1 (OD600 = 1.0, 

Xue et al. 2013) by the use of a photometer (BioPhotometer, Eppendorf, Germany). The 

devitalisation of RU47, which were used in one of the treatments, was performed by boiling 

for 1 min on a heating plate. Pretests have proven that this procedure was sufficient to kill 

RU47 completely (plate tests). Further details of cell cultivation and preparation are given in 

5.2.2. 

Plants were twofold inoculated with a cell density of 109 cell mL-1 (OD600 = 1.0). A first 

inoculation was conducted by seed coating. For this purpose, 25 µL of a cell suspension 

were slowly added to five maize seeds and gently vortexed. Seed coating was controlled by 

using three of the inoculated seeds followed by washing with 1 mL sterile 0.3 % NaCl 

solution and plating 100 µl of the suspension on King’s B-Agar medium (50 mg rifampicin L-1) 

in three dilution stages, respectively. Plates were incubated at 28.5 °C until growing colonies 

were unequivocally countable on the agar (approximately after 36 h). A second inoculation 

was performed directly after seed germination using 6 mL cell suspension per kg DM soil 
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substrate, directly applied on the soil surface to simulate farmer’s practice. To avoid watering 

effects, control treatments were inoculated with 0.3 % NaCl solution with corresponding 

volumes per inoculation, respectively. Viability and unviability of used RU47 as well as 

sterility of 0.3 % NaCl solution were controlled by plating and subsequent incubation at 28.5 

°C for 48 h after every inoculation.  

6.2.3 Plant sampling and analyses 

In order to determine the root area, visible roots grown along the hinged wall were 

photographed using a digital camera (D60, Nikon, Tokyo, Japan) 14 days after sowing. 

Photographs of each rhizobox were taken in identical distance and angle including a 

benchmark. Image processing and analysis were done using the open source software 

GIMP. The digital images were transferred to 8-bit; roots were selected by colour (threshold 

16.0) followed by calculating the root area based on the number of pixels. At the end of the 

experiment, shoots of every replicate were cut using a sterilized (70 % ethanol) scalpel. 

Shoots were briefly rinsed with H2Odeion water to remove adhering dust followed by drying at 

60 °C in separate aluminium trays for 3 days to estimate the dry weight. 

Determination the P concentration in maize shoots was performed by a sequential 

microwave digestion according to Kalra et al. (1989) followed by a photometric measurement 

according to the detailed description given in 5.2.3. Briefly, H2Odeion, HNO3 and H2O2 were 

added to the ground samples with a range of 0.01 - 0.04 g dry matter, filled into Teflon 

containers and were subsequently sequentially incinerated by the use of a ETHOS.lab 

microwave (MLS, Leutkirch, Germany). The filtered and diluted samples were 

photometrically measured using Murphy and Riley colour reagent (Murphy and Riley 1962). 

Measurement was performed at 710 nm using a microplate absorption reader (ELx808; 

BioTek Instruments Inc., Winooski, VT, USA). The calculation of P concentration is based on 

a linear function using the following final concentrations of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 

mg P L-1 prepared with K2HPO4. 

6.2.4 Soil sampling  

Rhizosphere and bulk soil samples were directly put on ice for short-term storage. While the 

rhizosphere soil was directly used for DNA extraction (see 6.2.5), bulk soil samples were 

sieved (< 2 mm), where each replicate was aliquoted and freeze at -20 °C until analysing.  

6.2.5 Tracing RU47 

DNA extraction 
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DNA extraction of the rhizosphere was performed at the Institute of Epidemiology and 

Pathogendiagnostic (Julius Kühn-Institut, Braunschweig, Germany). The complete root 

system as well as adhering rhizosphere soil of each maize plant as was used for DNA 

extraction based on a method of Schreiter et al. (2014 c); a detailed description of extraction 

preparation is given in 5.2.5. The rhizosphere DNA was extracted using the FastDNA® SPIN 

Kit for Soil (MP Biomedicals, Solon, OH, USA) followed by a purification (GENE CLEAN 

SPIN Kit®, MP Biomedicals, Solon, OH, USA) and dilution with 10 mM Tris HCl (pH 8.0) at a 

ratio of 1:10 before use. The DNA extraction of bulk soil was performed based on a weight of 

250 - 350 g fresh soil using the FastDNA® SPIN Kit for Soil (MP Biomedicals, Solon, OH, 

USA) following manufacturer’s instructions. A spectrophotometer (NanoDrop 2000; Thermo 

Scientific, Waltham, MA, USA) was used to measure the DNA concentration and control the 

extract’s purity.  

Tracing RU47 

Inoculated RU47 cells were traced by a TaqMan® assay using a 5’-labelled 6-FAM double-

quenched (BMN-Q530) probe (biomers.net, Ulm, Germany) in a 7500 Fast Real-Time PCR 

System (Thermo Fisher Scientific, Waltham, MA, USA). Used sequences of primers and 

probe (Eltlbany et al. in preparation) were developed and provided by the Institute of 

Epidemiology and Pathogendiagnostic (Julius Kühn-Institut, Braunschweig, Germany). 

Details of reaction composition and thermal profile are given in 5.2.5. Based on the standard 

curve the absolute quantity of RU47 sequences (copies ng-1 DNA) was calculated. 

6.2.6 Enzyme assays  

Soil in situ zymography  

Soil in situ zymography enables information about the distribution of exoenzymes in soil 

using membranes coated with MUF substrates which become florescent while enzyme 

cleavage. The distribution of alkaline as well as acid phosphomonoesterase (EC 3.1.3) was 

analysed by soil in situ zymography based on the method developed by Spohn and 

Kuzyakov (2014). A more detailed description of the assay performed is given in 5.2.6. 

Briefly, MUF-phosphate (4-MUF; Sigma–Aldrich, St. Louis, MO, USA) was used as 

substrate; preparing a 12 mM solution for coating the polyamide membranes with a diameter 

of 14.2 cm and a pore size of 0.45 μm (Sartorius, Göttingen, Germany). Substrate solution 

was prepared using MUB buffer adjusted to pH 11 (alkaline PA) and pH 6.5 (acid PA). Soil 

zymography was performed 14 days after sowing by using each replicate of all planted 

rhizoboxes. Each enzyme was measured separately on the same rhizobox beginning with 
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the acid PA, and followed by the alkaline PA. The coated membranes were incubated for 35 

min at a constant temperature of 20 °C. After incubation the removed membranes were 

lightened at 360 nm wavelength in the dark (epi-UV-desk, Desaga, Sarstedt, Nümbrecht, 

Germany) and subsequently photographed with a digital camera (D60, Nikon, Tokyo, Japan). 

Image processing and analysis of the zymograms were done using the open source software 

ImageJ. The digital images were transformed to 8-bit, enhancing the contrast multiplied by 

the factor of 1.2 and transformed in false colours. To determine a spatially distinct average 

PA of root zone and surrounding soil enzyme image of each rhizobox was subdivided using 

the colour selection tool (threshold 16.0) of the open source software GIMP. As there was no 

distinct separation in alkaline PA between root zone and surrounding soil observed, the 

mean activity of the total incubated area was calculated, respectively. The calculation of 

enzyme activity is based on a linear function using a calibration line comprising different 

concentrations of 4-methylumbelliferone (0, 35, 70, 130, 200, 240 μM). Image processing of 

calibration zymograms was adapted to the modifications made with the soil zymograms. 

Calculation of enzyme activity bases on mean gray values given for each concentration in 

the calibration line.  

Analyses of enzyme activities in bulk after final harvest 

In addition to the soil in situ zymography, samples of the harvested bulk soil were used for 

analyses of potential alkaline as well as acid phosphatase (EC 3.1.3) activity using MUF-P 

(4-MUF; Sigma–Aldrich, St. Louis, MO, USA) according to Marx et al. (2001). The assay 

performed corresponds precisely to the description given in 5.2.6. Briefly, 1 g fresh soil was 

dissolved in 50 ml of sterile water and dispersed by ultrasonication (50 J s−1 sonication 

energy for 2 min). An aliquot of 50 µL was pipetted into a 96-well microplate (PP F black 96 

well; Greiner Bio-one, Kremsmünster, Austria) and mixed with MUB buffer (pH 6.5 and 11) 

and 1 mM substrate solution at a ratio of 1:1:2. Microplates were incubated at 30 °C. 

Fluorescence was measured after 0, 30, 60, 120 and 180 min at 360/460 nm wavelength 

using a microplate fluorescence reader (FLx800, BioTek Instruments Inc., Winooski, VT, 

USA). PA was calculated based on a linear function using a calibration line comprising 

different concentrations of 4-methylumbelliferone (0, 100, 200, 500, 800 and 1200 pmol  

well-1).  

The activity of three enzymes involved in the C and N cycle were also measured based on 

the use of fluorescent 4-methylumbelliferone substrates (4-MUF; Sigma–Aldrich, St. Louis, 

MO, USA): β-D-glucosidase (EC 3.2.1.21), β-xylosidase (EC 3.2.1.37) and β-N-
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acetylglucosaminidase (EC 3.2.1.52) according to Marx et al. (2001). Enzyme activity was 

measured in autoclaved MES buffer (pH 6.1).  

6.2.7 Microbial biomass 

Determination of microbial biomass C (Cmic) in bulk soil was performed by chloroform 

fumigation extraction method (Vance et al. 1987) according to Mackie et al. (2014) using kEC 

factor of 0.45 (Joergensen 1996). A detailed description of this method is given in 5.2.7. 

6.2.8 Phospholipid fatty acid (PLFA) analysis 

Microbial community structure was determined using PLFA profiles based on the alkaline 

methylation method of Frostegård et al. (1991). Lipid extraction and determination of fatty 

acid methyl esters (FAMEs) were performed according to Mackie et al. (2015). A detailed 

description of PLFA analysis is given in 5.2.5. The divisions of PLFAs into bacteria and fungi 

were based on Frostegård and Bååth (1996), Zelles (1999) and Kandeler et al. (2008). 

Within bacteria, PLFAs were grouped into Gram-positive (gram+), represented by i15:0, 

a15:0, i16:0, and Gram-negative (gram-), specified by cy17:0 and cy19:0. Total bacterial 

PLFAs were calculated by the sum of gram+ and gram- plus 16:1ω7. Fungal PLFA was 

represented by 18:2ω6,9.  

6.2.9 Statistical analyses 

Homogeneity of variance was tested by the Levene-test. Significance of differences was 

tested by ANOVA followed by the Tukey HSD-test, where p < 0.05 was considered as the 

threshold value for significance. In case of variance heterogeneity, the Games-Howell-test 

was used for pairwise comparison, where also p < 0.05 was considered as significantly 

different. Statistical analyses were performed using SPSS Statistics 22 (IBM 2013). 

6.3 Results 

6.3.1 Tracing RU47 

The abundance of RU47 was 17 times higher in the rhizosphere than in bulk soil (Table 6.1). 

We detected a significantly higher quantity of RU47-specific DNA sequence in rhizosphere 

and bulk soil of maize plants inoculated with RU47 in comparison to all other treatments 

(Table 6.1). The second highest abundance was determined in the treatment, in which dead 

RU47 cells were added (Table 6.1). The RU47-specific DNA sequence was detected in the 

rhizosphere of all treatments; in bulk soil the detection of RU47 was negative in the 00-
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control and less than 1 copy ng-1 DNA in control as well as bacterial mix treatment (Table 

6.1). 

6.3.2 Plant response 

Maize plants of the optimally P-fertilized, non-inoculation control showed a significantly 

increased shoot biomass compared to the shoot biomasses of all other treatments (Table 

6.2). Plants inoculated with dead or viable RU47 cells revealed identical shoot biomasses 

corresponding to 2 and 7 % of the shoot biomass determined in the P-fertilized control and 

bacterial mix treatment, respectively (Table 6.2). The highest root area was observed in 

optimally P-fertilized control followed by the treatment where the bacterial mix was added 

(Table 6.2). In comparison to these treatments, plants inoculated with dead or viable RU47 

cells showed root areas decreasing by about 40 to 50 %, respectively (Table 6.2). Maize 

plants, which were grown under optimally P-fertilized soil conditions (control), revealed a 53-

fold higher P uptake compared to all other treatments (Table 6.2). Highest P concentrations 

in tissue were determined in plants which were inoculated with viable RU47 cells (Table 6.2). 

The lowest P tissue concentration was found in the treatment using dead RU47 cells which 

was corresponded to a decrease by 62 % compared to the relative P uptake determined in 

shoots of the RU47 treatment (Table 6.2).  

6.3.3 Enzyme activities 

The spatial distribution of PA in the rhizosphere was estimated by soil in situ zymography. In 

total, we observed no significant differences in alkaline or acid PA between the treatments 

(Fig. 6.1). Maize plants at the age of ten days after sowing showed two times higher acid PA 

in the root zone than in surrounding bulk soil (Fig. 6.1). In the root zone of control plants a 

slight decrease by around 16 % compared to the average root acid PA of all other treatments 

was found (Fig. 6.1). Alkaline PA did not differ significantly between root zone and 

surrounding soil (Fig. 6.2). Therefore, the mean activity of the total incubated area was 

calculated, respectively. Determining of potential alkaline and acid PA in homogenous bulk 

soil samples after final harvest, we found highest alkaline PA in both RU47treatments (Fig. 

6.3). In total, the acid PA was four to five times lower than the alkaline PA; highest value was 

determined in the 00-control (Fig. 6.3). Varying inoculations did not influence the activity of ß-

glucosidase and N-acetyl-ß-glucosaminidase in bulk soil (Table 6.2). However, the addition 

of both dead and viable RU47 cells enhanced the activity of ß-xylosidase (Table 6.2). 
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Table 6.1 Abundance of P. sp. RU47-specific DNA sequence in rhizosphere and bulk soil DNA of maize plants 14 days after sowing under the following treatments: two non-
inoculation (00-control and control), and three inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) cells. Values are 
presented as mean ± standard error (SE) of four replicates. Significant differences (Games-Howell, p < 0.05) between the treatments are marked by lowercase letters. Cp 
stands for copies. 

 
  00-Control     Control  Bacterial mix   Dead RU47      RU47 

RU47 abundance Mean   SE Mean 
  

SE Mean 
  

SE Mean 
  

SE Mean 
  

SE 

 

    
                

Rhizosphere  [cp ng-1 DNA] -   - 118.6 b ± 70.26 22.8 b ± 10.5 192.5 b ± 72.5 3612.0 a ± 515.7 

Bulk soil [cp ng-1 DNA] 0.0 b ± 0.0 0.1 b ± 0.2 0.2 b ± 0.1 18.7 b ± 4.5 212.1 a ± 17.1 
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Table 6.2 Summarized plant and bulk soil properties of maize plants 14 days after sowing under the following treatments: two non-inoculation (00-control and control) and three 
inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) cells. Values are presented as mean ± standard error (SE) of 
four replicates. Significant differences (Tukey-HSD, p < 0.05) between the treatments are marked by lowercase letters. 

 
  00-Control    Control Bacterial mix  Dead RU47     RU47 

 
Mean   SE Mean   SE Mean   SE Mean   SE Mean   SE 

Plant properties -   -                 

Shoot dry biomass  
[g] 
 

-   - 1.1 a ± 0.0 0.3 b ± 0.0 0.02 b ± 0.0 0.02 b ± 0.0 

Root area  
[mm] 
 

-   - 434.7  ± 75.1 332.2  ± 44.7 256.1  ± 74.9 273.0  ± 81.8 

Absolute P uptake  
[mg shoot-1] 
 

-   - 12.9  ± 1.5 0.3  ± 0.1 0.2  ± 0.1 0.3  ± 0.1 

Relative P uptake 
[mg g-1] 
 

-   - 12.4  ± 1.5 14.0  ± 0.1 9.2  ± 0.1 14.9  ± 0.1 

Bulk soil properties                     

pH (CaCl2) 7.4  ± 0.0 7.1  ± 0.0 7.4  ± 0.0 7.4  ± 0.0 7.4  ± 0.0 

Gram+ PLFAs 
[nmol FAME g-1] 

3.0 a ± 0.6 2.6 b ± 0.6 2.7 b ± 0.6 2.6 b ± 0.6 2.6 b ± 0.6 
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Gram- PLFAs 
[nmol FAME g-1] 
 

1.0 a ± 0.3 1.0 ab ± 0.3 0.9 b ± 0.2 0.9 ab ± 0.3    0.9 ab ± 0.3 

Bacterial PLFAs 
[nmol FAME g-1] 
 

4.3 a ± 0.5 3.9 b ± 0.5 3.9 ab ± 0.5 3.9 b ± 0.4 3.8 b ± 0.4 

Fungal PLFA 
[nmol FAME g-1] 
 

0.4  ± 0.0 0.4  ± 0.0 0.4  ± 0.0 0.4  ± 0.0 0.4  ± 0.0 

ß-glucosidase  
[nmol g-1 h-1] 
 

204.6  ± 6.7 198.6  ± 10.8 180.7  ± 3.4 188.4  ± 2.9 195.6  ± 9.3 

N-acetyl-ß-
glucosaminidase 
[nmol g-1 h-1] 
 

53.4  ± 2.8 52.5  ± 2.7 46.1  ± 1.1 51.1  ± 1.8 54.1  ± 4.5 

ß-xylosidase 
[nmol g-1 h-1] 
 

21.1 ab ± 0.9 17.7 b ± 0.9 19.4 ab ± 1.0 21.6 a ± 0.6 22.6 a ± 0.5 
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Figure 6.1 Phosphomonoesterase activity (PA) in different soil areas of maize plants ten days after sowing under 
the following treatments: one non-inoculation (control), and three inoculation treatments; unselectively cultivated 
soil bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) cells. Error bars indicate standard error (n = 4). 
Differences between the treatments were not significant (Tukey-HSD/Games Howell, p < 0.05). 

 

Figure 6.2 Soil zymograms of alkaline (pH 11) and of acid phosphomonoesterase (pH 6.5) in the rhizosphere of 
maize plants ten days after sowing (together with the calibration line) under the following treatments: one non-
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inoculation (control), and three inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead 
RU47, or viable RU47 (RU47) cells. Each treatment is represented by one replicate. 

 

Figure 6.3 Phosphomonoesterase activity (PA) in bulk soil of maize plants 14 days after sowing under the 
following treatments: two non-inoculation (00-control and control), and three inoculation treatments; unselectively 
cultivated soil bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) cells. Error bars indicate standard error 
(n = 4). Differences between the treatments were not significant (Tukey-HSD/Games Howell, p < 0.05). 

6.3.4 Microbial biomass and community structure in soil 

We found the highest microbial biomass C in soil inoculated with a bacterial mix (Fig. 6.4). In 

comparison to this, microbial biomass in bulk soil of the RU47 treatment was by about 36 % 

lower and represented the lowest Cmic value of all treatments (Fig. 6.4). However, differences 

in microbial biomass between the treatments were not significant (Fig. 6.4). The PLFA 

analysis revealed a significantly increased bacterial abundance by around 10 % in bulk soil 

of the 00-control compared with the average bacterial abundance determined in all other 

treatments with the exception of the bacterial mix treatment (Table 6.2). This shift 

accompanied increases in abundances of gram+ and gram- bacteria by 12 and 9 %, 

respectively (Table 6.2). Fungal abundance as analysed by PLFA did not differ significantly 

between the treatments (Table 6.2). 
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Figure 6.4 Microbially bound carbon (Cmic) in bulk soil of maize plants 14 days after sowing under the following 
treatments: two non-inoculation (00-control and control), and three inoculation treatments; unselectively cultivated 
soil bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) cells. Error bars indicate standard error (n = 4). 
Differences between the treatments were not significant (Tukey-HSD, p < 0.05). 

6.4 Discussion 

Tracing RU47    

Several studies have reported little persistence of added PMB in soil (Kim et al. 1997, 

Hameeda et al. 2008, Meyer et al. 2017). However, in our study, RU47 was detectable, with 

highest abundances in the RU47 treatment (Table 6.1). Furthermore, we observed a 

significantly higher abundance in rhizosphere than in bulk soil (Table 6.1). This finding is not 

only in accordance with the tracing results of our tomato experiment (Table 5.1) but also with 

studies of Adesina et al. (2009) and Schreiter et al. (2014 c), who demonstrated a high 

rhizosphere competence of RU47 in lettuce soil. Since PMB strains, including RU47, are 

isolated from native microbial rhizosphere communities, a natural occurrence in non-

inoculation treatments cannot be excluded. Kim et al. (1997) reported an abundance of 

Enterobacter agglomerans in the rhizosphere of non-inoculated tomato plants that 

corresponded to almost 50 % of the abundance in the inoculation treatment. These findings 

are in accordance with our observation detecting RU47 in the rhizosphere of all treatments 

corresponding to as much as 3 % of the abundance, which was determined in the treatment 
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using RU47 (Table 6.1). In this context, it has to be considered that the DNA of heat-

devitalised dead RU47 is still detectable. Also a potential co-cultivation of RU47 in the 

unselective LB medium, which was used for the bacterial mix treatment, cannot be excluded. 

Plant growth 

Although improved plant biomass by the addition of PMB has been documented several 

times (Chabot et al. 1996, Kim et al. 1997, Sundara et al. 2002), shoot biomass data of the 

present study could not confirm these findings (Table 6.2). On the contrary, maize plants 

inoculated with RU47 revealed the lowest shoot biomass of all treatments (Table 6.2). As 

anticipated, shoot biomass of the optimally P-fertilized control plants were significantly 

increased (Table 6.2). This observation conforms to Mollier and Pellerin (1999), who 

demonstrated that the shoot growth of maize is highly limited by P supply even at an early 

growth stage. We found a reduced root area in plants of both RU47 treatments (Table 6.2). 

However, when the root:shoot ratio (mm²:mg) was calculated, a 13 times higher root:shoot 

ratio was observed in plants, which were inoculated with dead RU47 or RU47. This finding 

may indicate an RU47-derived root growth stimulation. Hajabbasi and Schumacher (1994) as 

well as Mollier and Pellerin (1999) reported a short-term root growth stimulation effect in 

maize as a result of an early reduction of shoot growth after P deprivation that provided more 

carbohydrates for root growth. Considering the low root:shoot ratio of 1.2 determined in 

plants inoculated with a bacterial mix but also grown under P-limited soil conditions, the high 

root:shoot ratio of 13.2 documented in both RU47 treatments was more likely due to PMB 

released phytohormones such as auxins and gibberellins, which stimulated the root growth. 

This explanation is consistent with several studies demonstrating the ability of many soil 

bacteria to synthesize phytohormones or ACC deaminase; both affect a plant’s hormonal 

balance and thus its growth, development, and response to stress (for review see 

Tsavkelova et al. 2006, Glick 2012, 2014). However, due to the enzyme inactivation in the 

treatment where dead RU47 cells were added, an ACC deaminase effect can be excluded 

here. 

P uptake and enzyme activity 

Results of plant growth and P uptake responses to addition of PMB are rare and somewhat 

inconsistent. However, Egamberdiyeva (2007) demonstrated improved P uptake in maize 

due to the addition of Pseudomonas alcaligenes PsA15. These findings agree in part the 

results of our study, which showed highest P tissue concentration in plants inoculated with 

viable RU47 cells (Table 6.2). However, shoot biomass of plants in the bacterial mix 
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treatment exhibited similar P concentrations (Table 6.2). This observation indicates that plant 

P supply is driven by microbial active processes. In a previous rhizobox experiment, the 

addition of RU47 resulted in an increased alkaline PA (Fig. 5.2 a); these findings could not be 

confirmed by the results of the soil in situ zymography in this study (Fig. 6.1). However, 

zymography was performed three days after the second inoculation indicating a still relatively 

low RU47 abundance and thus microbial activity. It is equally likely that the optimally supplied 

bacteria cells (King’s B medium) were not P-limited, suggesting that increased microbial PA 

was not present while performing zymography. Zymograms revealed a strongly root-

associated acid PA (Fig. 6.1), which is fully in agreement with previous studies (Kandeler et 

al. 2002, Spohn and Kuzyakov 2013 a, Spohn et al. 2015). Furthermore, we observed 

hotspots of acid PA especially at the root tips (Fig. 6.2), which is consistent with observations 

of Spohn et al. (2015), who evaluated this finding as a confirmation of a more general finding 

that the release of organic compounds by the plant is highest at the root zone (Watt et al. 

2006, Hinsinger et al. 2009). Our observation that acid PA decreased due to P fertilization 

(Fig. 6.1) also is in line with data from the literature (Olander and Vitousek 2000, Sinsabaugh 

et al. 2008, Spohn et al. 2015). Compared to studies in which PA was determined by soil 

zymography (Spohn and Kuzyakov 2013 a, Spohn and Kuzyakov 2014, Spohn et al. 2015) 

we found no distinct separation in alkaline PA between root and surrounding soil (Fig. 6.2). 

This is likely due to the homogeneously distributed enzyme activity of the topsoil used for soil 

substrate. Moreover, low RU47 root colonization and no microbial P limitation when the 

zymography was performed may also explain the finding of no distinct separation in alkaline 

PA in the rhizosphere. Enzyme analysis performed four days after zymography revealed 

highest alkaline PA in bulk soil in both RU47 treatments (Fig. 6.3). These findings indicate 

that the addition of RU47 may enhance P mineralization in soil improving plant P supply. 

Despite the observed trend of increased alkaline PA in bulk soil, plant P uptake in the dead 

RU47 treatment was reduced (Fig. 6.3, Table 6.2). This finding cannot be explained 

conclusively; it should be borne in mind that in short-term experiments changes recorded in 

soil microbial activity do not inevitably lead to measurable effects on plant properties. The 

addition of dead RU47 or RU47 cells resulted in increased ß-xylosidase activity (Table 6.2). 

This enzyme, decomposing xylan and oligosaccharide, though produced mainly by fungi is 

more effectively utilized by bacteria (Romaní et al. 2006). P mineralization can be driven by 

microbial need for C (Spohn and Kuzyakov 2013 b), which is a possible explanation for 

observed increases in PA patterns in previous studies (Turner and Wright 2014, Zhang et al. 

2014, Spohn et al. 2015). However, due to the unaffected ß-glucosidase activity an 

increased C requirement may be excluded (Table 6.2). Rather, this observation invites the 
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speculation as to whether soil microorganisms in general, and PMB in particular (viable 

RU47), also use ß-xylosidase to acquire P from organic compounds such as glycoproteins 

and proteoglycans, both of which contain xylose as well as P, the P subsequently hydrolysed 

by phosphatases. This is in accordance with the unaffected fungal PLFA abundance as well 

as the simultaneous increase in microbial PA determined in both RU47 treatments (Table 

6.2, Fig. 6.3); improved P mineralization also by the addition of dead RU47 is likely 

attributable to indigenous PMB, which is discussed in more detail in the following chapter.    

Microbial biomass and community structure in soil 

In contrast to previously recorded microbial biomass C data in arable soils (Anderson and 

Domsch 1989, Sparling 1992) as well as Cmic values determined in the 39-day tomato 

experiment (Fig. 5.3), microbial biomass C observed in this study was relatively low (Fig. 

6.4). This can be attributed mainly to the addition of quartz sand, which decreased both 

microbial biomass and organic C concentration. Bulk soil inoculated with a bacterial mix had 

the highest Cmic value (Fig. 6.4); however, increases in bacterial or fungal abundances could 

not be determined by PLFA (Table 6.2). Highest bacterial abundance was determined in the 

00-control, which can be attributed to the absence of competition for nutrients between soil 

bacteria and plants (Table 6.2). Despite the demonstrated persistence of RU47, which is 

categorized as gram-, no shifts in PLFA pattern were observed (Table 6.2). These findings 

are consistent with the PLFA data of our previously performed tomato experiment (Table 

5.2). However, previous studies reported an increased population of indigenous PMB after 

the targeted application of specific PMB strains (Sundara et al. 2002, Canbolat et al. 2006). 

With regard to the improved enzyme activity observed in both RU47 treatments, a PMB-

promoting effect by RU47-derived attractants or phytohormones modulating root exudation 

cannot be excluded on the basis of PLFA analysis. Regardless of bacterial-bacterial 

interactions, PMB are assumed to interact synergistically with mycorrhizal fungi (Kim et al. 

1997, Zaidi et al. 2003). Furthermore, strains of P. fluorescens and P. putida have been 

previously identified as mycorrhiza-helper bacteria (Gamalero et al. 2008, Labbé et al. 2014) 

supporting the assumption that PMB simultaneously use multiple mechanisms to improve P 

acquisition in soil. Since linoleic acid (18:2ω6,9) is only incorporated in cell membranes of 

Ascomycetes, Basidiomycetes and Zycomycetes (Joergensen and Wichern 2008) data on 

fungal abundance from our PLFA analysis provided no information about (vesicular-) 

arbuscular mycorrhization (VAM). In order to get an idea of potential changes in VAM by the 

addition of RU47, we used DNA extracted from rhizosphere and bulk soil after final harvest in 

a nested PCR amplifying Glomeromycota-specific DNA sequence based on the procedure 
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described by Lee et al. (2008). Subsequent evaluation of the electrophoretically separated 

VAM-amplicons revealed no treatment differences in rhizosphere DNA, but a less 

pronounced mycorrhization in bulk soil that was added with viable RU47 cells (data not 

shown). This observation could be attributed to a fungal suppression effect such as that 

documented by Adesina et al. (2009) using RU47 as a bio-control agent against Rhizoctonia 

solani in lettuce roots. However, soil microbes are subject to constantly changing 

environmental conditions, hence any changes in microbial population must be regarded as 

temporary (Bashan 1999). Furthermore, with respect to the short experimental duration, 

allowing insufficient time for mycorrhization (Beyene 1996), a VAM-promoting effect by RU47 

cannot be excluded based on the present data. Indeed, the role of mycorrhizal fungi in 

PMB’s ability to improve P availability to plants is an upcoming topic; thus investigations on 

the mycosphere should be considered in further studies. 

6.5 Conclusion 

Our study demonstrates that RU47 is able to colonize the rhizosphere and bulk soil of maize 

seedlings within 14 days. The addition of RU47 did not result in plant-growth promoting 

effects. Although not significant, we observed a trend of an improved P supply in plants. 

Plants inoculated with dead or viable RU47 cells showed increased root:shoot ratios, 

indicating a hormonal impact on plants by phytohormones released from RU47 cells or by 

indigenous soil bacteria. Contrary to our hypothesis, RU47 colonization did not lead to 

spatially distinct zones of increased PA in the rhizosphere. This can likely be attributed to the 

short temporal distance between the time points of inoculation and soil in situ zymography 

and should be taken into consideration in further studies. However, we found a tendency 

toward increased alkaline PA in bulk soil inoculated with dead or viable RU47 cells. We 

found no significant effects of RU47 on soil microbial biomass and community structure at 

the PLFA level, implying that within 14 days the addition of RU47 did not quantitatively affect 

the microbial colonization in bulk soil. Shifts in microbial community structure may appear on 

a lower taxonomic level than class. Taking together, RU47 may have the potential to improve 

P supply at the sensitive early growth stage of maize; whether the early inoculation by dead 

or viable RU47 cells are sufficient to promote plant growth in later growth stages should be 

tested in longer-term experiments.  
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7 Effects of phosphorus-mobilizing bacteria on growth of tomato 

and soil microbial activity under varying P availability in soil 

7.1 Introduction 

Microorganisms play an essential role in mediating nutrient availability to plants due to their 

ability to solubilize and mineralize nutrients bound in the soil complex. Especially in view of 

the increasing scarcity of phosphorus (P) resources, the microbial contribution to the soil P 

cycle has become a focus of interest in developing new approaches for more efficient and 

resource-saving P fertilization in future crop production. Phosphorus is, after nitrogen (N), the 

second most frequently limiting macronutrient for plant growth (Richardson 1994, Marschner 

1995). However, plant P uptake is almost exclusively limited by the availability of 

orthophosphates (predominantly HPO4
–2 and H2PO4

–1) in soil solution (Richardson 2001), 

representing the main challenge to practical P fertilization. Unlike other nutrients, P applied 

as phosphate fertilizer is rapidly adsorbed, precipitated or converted into inorganic or organic 

P compounds, thereby rendered unavailable or barely accessible for plant uptake (Holford 

1997, Richardson 2001). Furthermore, phosphate concentrations in soil solution (~1 to 10 

μM) are in equilibrium with the solid phase and are maintained by physical-chemical 

reactions (Barber 1980, Richardson 2001), with the consequence that additional applications 

of P shift P equilibrium status toward the P immobilization phase rather than providing more 

plant available P. Thus, in most soils, only 0.1 % of the total P is plant available (Illmer and 

Schinner 1995, Holford 1997), which clearly demonstrates an urgent need for new 

approaches to exploit the immobilized P in soil for crop production.  

Fortunately, soil microorganisms in general, and PMB in particular, are able to efficiently 

mobilize phosphate anions from organic and inorganic P compounds bringing plant available 

orthophosphates into the soil solution (Richardson 1994, Richardson and Simpson 2011). 

Plant growth-promoting effects by the targeted application of highly concentrated PMB 

strains (mainly from genera Pseudomonas, Bacillus and Azospirillum) under P limited soil 

conditions have been reported in several studies (Kim et al. 1997, Chabot et al. 1996, 

Sundara et al. 2002). However, soil bacteria effectively compete with plants for available 

orthophosphates in soil solution (Richardson and Simpson 2011). Thus, it can be assumed 

that PMB are also – especially at their early colonizing stage during which P-consuming 

active biochemical processes such as cell expansion and the release of exo-enzymes or 

organic acids mobilizing P – in strong competition with plants for orthophosphates. 

Investigating the effects of phosphorus-solubilizing bacteria, Yu et al. (2011) and Kaur and 
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Reddy (2014) observed a reinforced plant-growth promoting effect by soil inoculated with 

PMB strains when that soil was P-fertilized using rock phosphate or tricalciumphosphate. 

The amount of P that can potentially be mobilized depends on the amount of immobilized P 

in soil, but also may create a reduced competitive situation for P at the early colonization 

stage, which in turn may enhance PMB’s viability and P-mobilizing potential. Here, two 

possible relationships are under discussion. First, initial P fertilization increases PMB 

abundance, which is subsequently positively correlated with PMB-derived active P-mobilizing 

processes when P becomes increasingly limited. Second, the initially high incorporation of P 

into bacterial biomass, which effectively protects available P from soil reactions (Olander and 

Vitousek 2004), decreases with increasing P limitation from the dying PMB cells as plant-

available orthophosphates (Macklon et al. 1997).  

In a previous study, using RU47 as the PMB and tomato as the test plant grown under low P 

availability soil conditions, we implemented a novel approach, inoculating soil with viable as 

well as dead RU47 cells to gain a clearer picture of direct and indirect P mineralization (5). 

This experiment revealed a plant growth-promoting effect and improved P supply not only by 

the addition of RU47 but also of dead RU47, while the beneficial effect of RU47 cells was 

clearly associated with increased microbial PA in soil (Fig. 5.1, Table 5.2, Fig. 5.2 a). The 

plant growth-promoting effect observed in the addition of dead RU47 cells indicates either a 

phytohormone-derived effect or interactions with indigenous microorganisms. Based on 

these results, and given the observed strengthening effect by P fertilization reported in other 

studies (Yu et al. 2011, Kaur and Reddy 2014, 2015), we wanted to verify whether RU47’s 

previously documented beneficial effects could be increased by enhanced P fertilization. 

Therefore, we performed a rhizobox experiment over a period of 50 days to test the influence 

of modified P fertilization on the effects of RU47 on growth and P uptake of tomato plants. 

We hypothesized that (1) increased P availability in soil improves the survival and 

colonization success of RU47, resulting in its increased abundance. Because an increase in 

RU47 abundance could also lead to greater bacterial demand for C resources, and bacterial 

PA is regulated not only by P but also by C availability in soil (Zang et al. 2014, Spohn et al. 

2015), we further hypothesized that: (2) The addition of viable RU47 cells in a highly P-

fertilized soil would result in increased release of RU47-derived phosphatase. We therefore 

additionally hypothesized that: (3) The increase in RU47 abundance under high P soil 

conditions is accompanied by an increased release of phytohormones, resulting in a 

strengthened plant growth-promoting effect, while a plant growth-stimulating effect of dead 

RU47 treatment would not be affected by P fertilization since it would not result in an 

increase in release of phytohormones. 
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7.2 Materials and methods 

7.2.1 Rhizobox experiment 

The experiment was performed using RU47 as the PMB and tomato (Solanum lycopersicum 

L. var. Mobil) as the test plant. To distinguish among RU47-derived and endogenous P 

mineralization as well as direct and indirect mechanisms, two additional inoculation 

treatments were included, comprising either an inoculation of unselectively cultivated 

indigenous soil bacteria (bacterial mix) or dead RU47 cells (dead RU47). Details of bacteria 

cultivation and inoculation are described in 2.2. A non-inoculation treatment served as the 

control. The experiment was performed applying two different P fertilizer doses; 50 mg P kg-1 

(low P), and 200 mg P kg-1 (high P), before sowing. Hence, the experiment contained eight 

treatments in total, with each treatment comprising five replicates. Tomato plants were grown 

in rhizoboxes with inner dimensions of 28.0 cm x 4.5 cm x 16.5 cm which were filled with a 

soil substrate composed of Luvisol topsoil and quartz sand (0.2 - 1.4 mm) in a ratio of 1:1 

(w/w). Rhizoboxes were inclined by 50°, forcing the roots to grow along the inclined wall, 

which additionally enhanced P limitation, since P acquisition at the rooting depth was 

reduced. The Luvisol, classified as a heavy loam soil, had the following characteristics: pH 

7.1 (CaCl2), 26.2 % sand, 52.2 % silt, 21.6 % clay, 2.3 % total C, 2.0 % organic C, 1.8 mg 

NH4
+ kg-1, 53.0 mg NO3

- kg-1 and 24.1 mg P (Olsen) kg-1. The soil, selected on the basis of its 

low concentration of plant available phosphorus (CAL extraction of 20 mg kg-1), was taken 

from an unfertilized grassland located on the campus of the University of Hohenheim 

(Stuttgart, Germany). Each rhizobox was filled with exactly 1918.0 g DM of sieved (< 5 mm) 

soil substrate. Before sowing, the soil substrate was optimally fertilized with respect to N (100 

mg kg-1), K (150 mg kg-1) and Mg (50 mg kg-1) and adjusted to a water holding capacity of 50 

%. Three tomato seeds were sown to a depth of 4 cm directly into each rhizobox and thinned 

after germination to one plant per rhizobox. To avoid light-derived influences on root growth 

and thus plant behaviour, all boxes were wrapped with aluminium foil. The experiment was 

conducted for 50 days under greenhouse conditions, with an average temperature of 20 °C 

and humidity of 53 %. Rhizoboxes were randomly distributed and placed on wooden planks 

to exclude contamination by leaking irrigation water. Plants were constantly watered to 

maintain a water holding capacity of 50 %; the water content was checked gravimetrically on 

a daily basis. Watering was performed using deionized water (H2Odeion), successively applied 

in 5 mL steps to avoid direct leakage along rhizobox edges. 
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7.2.2 Bacterial cultivation and inoculation 

RU47 was cultured in King’s B liquid medium (King et al. 1954) added with rifampicin (50 mg 

L-1); bacterial mix was prepared in a glucose-enriched (2 g L-1) LB-Lennox liquid medium 

(Bertani 1951, Lennox 1955) and both were held at 28.5 °C for 24 h. Bacterial cells were 

washed twice using sterile 0.3 % NaCl solution and subsequently adjusted to a cell density of 

109 cell mL-1 (OD600 = 1.0, Xue et al. 2013) by the use of a photometer (BioPhotometer, 

Eppendorf, Germany). The devitalisation of RU47 cells, which were used in one of the 

treatments, was performed by boiling for 1 min on a heating plate. Pretests have proven that 

this procedure was sufficient to kill RU47 cells completely (plate tests). Further details of cell 

cultivation and preparation are given in 5.2.2. 

Plants were inoculated three times, each with a cell density of 109 cell mL-1 (OD600 = 1.0). 

The first inoculation was conducted by seed coating. Under gentle and continuous vortexing, 

5 µL of cell suspension was successively added to five tomato seeds. The volume required 

for entire seed coating had previously been tested with ink (Pelikan, Pottendorf, Austria) 

before starting the experiment. Seed coating was controlled by using three of the inoculated 

seeds followed by washing with 1 mL sterile 0.3 % NaCl solution and plating 100 µl of the 

suspension on King’s B-Agar medium (50 mg rifampicin L-1) in three dilution stages. Plates 

were incubated at 28.5 °C until growing colonies were unequivocally countable on the agar 

(after approximately 36 h). The second inoculation was performed directly after seed 

germination using 6 mL cell suspension kg-1 soil substrate DM, directly applied onto the soil 

surface to simulate farm practice. To avoid watering effects, control treatments were 

inoculated with 0.3 % NaCl solution with corresponding volumes per inoculation. Viability and 

unviability of used RU47 cells as well as sterility of 0.3 % NaCl solution were controlled by 

plating and subsequent incubation at 28.5 °C for 48 h after every inoculation.  

7.2.3 Plant sampling and properties 

Before harvesting, the shoot height, defined as the vertical length from stem base to 

youngest leaf tip, was measured with a ruler. Subsequently, each plant was separately and 

carefully cut into blossom, leaf, shoot and root biomass using a sterilized (70 % ethanol) 

scalpel. The surface material was briefly rinsed with H2Odeion water to remove adhering dust, 

and then dried at 40 °C in separate aluminium trays for 14 days to estimate dry weight. Roots 

were carefully washed (H2Odeion), then dried at 60 °C for 5 days. Stem diameter (fresh) was 

measured using a precision pocket vernier caliper (150 mm, Format, Wuppertal, Germany). 

For determination of leaf area the separated leaves of each replicate were photographed 
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using a digital camera (D60, Nikon, Tokyo, Japan). All pictures were taken from identical 

distances and angles, and included a benchmark. Image processing and analysis were done 

using the open source software GIMP. Digital images were transferred to 8-bit. Leaves were 

selected by colour (threshold 16.0) followed by calculation of leaf area based on the number 

of pixels.  

P incorporated into shoot biomass was extracted by incineration and subsequent acidulation 

as described by Gericke and Kurmies (1952 a, 1952 b). Briefly, a weight of 250 mg dry 

matter was incinerated at 500 °C for 4 h followed by threefold digestion with HNO3 (21.7 %). 

After the addition of HCl (12.3 %), extracts were diluted to a ratio of 1:10 with H2Odeion, filtered 

and subsequently photometrically measured using Murphy and Riley colour reagent (Murphy 

and Riley 1962). Measurement was performed at 710 nm using a microplate absorption 

reader (ELx808; BioTek Instruments Inc., Winooski, VT, USA). The calculation of P 

concentration was based on a linear function using the following final concentrations: 0, 1, 2, 

3, 4, 5, 6, 7, 8, 9, and 10 mg P L-1 prepared with K2HPO4. 

7.2.4 Soil sampling and properties 

After sampling, rhizosphere and bulk soil samples were immediately put on ice, stored short-

term (20 h) at 8 °C, and sieved (< 2 mm) the following day. Each sample was aliquoted and 

frozen at -20 °C until analysis. Plant available P (P-CAL) in soil was determined in bulk soil 

samples. This analysis was conducted by the Analytical Chemistry Unit (Core Facility 

Hohenheim) of the University of Hohenheim (Stuttgart, Germany).  

Total C, organic C (Corg), N, and NO3
- in bulk soil were measured by the Analytical Chemistry 

Unit (Core Facility Hohenheim) of the University of Hohenheim (Stuttgart, Germany). To 

provide a rough assessment of soil substrate properties, the respective averages values 

(across the treatments) were calculated and shown on Table 7.S1. 

7.2.5 Tracing of RU47 

DNA extraction 

DNA was extracted from rhizosphere and bulk soil based on a weight of 250 - 350 g fresh 

soil using the FastDNA® SPIN Kit for Soil (MP Biomedicals, Solon, OH, USA) following 

manufacturer’s instructions. A spectrophotometer (NanoDrop 2000; Thermo Scientific, 

Waltham, MA, USA) was used to measure DNA concentration and to determine purity of the 

resulting extract.  
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Tracing of RU47 

Inoculated RU47 cells were traced with a TaqMan® assay using a 5’-labelled 6-FAM double-

quenched (BMN-Q530) probe (biomers.net, Ulm, Germany) in a 7500 Fast Real-Time PCR 

System (Thermo Fisher Scientific, Waltham, MA, USA). Sequences used (Eltlbany et al. in 

preparation) were developed and provided by the Institute of Epidemiology and 

Pathogendiagnostic (Julius Kühn-Institut, Braunschweig, Germany). Reaction recipe and 

thermal-cycling conditions were adapted to the TaqMan® Fast Advanced Master Mix (Thermo 

Fisher Scientific, Waltham, MA, USA) following manufacturer's instructions with some 

modification. As already in given 5.2.5, the reaction composition was as follows; final 

concentrations are given in brackets: 10 µL TaqMan® Fast Advanced Master Mix (1 ×), 2 µL 

DNA (10 ng), 5 µL nuclease-free water, 1 µL each primer (1.8 µM) and 1 µL (0.5 µM) probe. 

The thermal profile of the TaqMan® assay was: 95 °C for 10 min (initial denaturation), 95 °C 

for 30 sec followed by 54 °C for 30 sec for 40 cycles. Based on the standard curve, the 

absolute quantity of RU47 copies was calculated. Quantity of RU47 is given in copies ng-1 

DNA. 

7.2.6 Phosphatase activity (PA)  

Determination of the potential activities of acid and alkaline phosphatase (EC 3.1.3) in 

rhizosphere and bulk soil samples was conducted using 4-methylumbelliferone substrates (4-

MUF; Sigma-Aldrich, St. Louis, MO, USA) according to Marx et al. (2001). The assay 

performed corresponds precisely to the description given in 5.2.6. Briefly, 1 g fresh soil was 

dissolved in 50 mL of sterile water and dispersed by ultrasonication (50 J s−1 sonication 

energy for 2 min). An aliquot of 50 µL was pipetted into a 96-well microplate (PP F black 96 

well; Greiner Bio-one, Kremsmünster, Austria) and mixed with MUB buffer (pH 6.5 and 11) 

and 1 mM substrate solution at a ratio of 1:1:2. Microplates were incubated at 30 °C. 

Fluorescence was measured after 0, 30, 60, 120 and 180 min at 360/460 nm wavelength 

using a microplate fluorescence reader (FLx800, BioTek Instruments Inc., Winooski, VT, 

USA). PA was calculated based on a linear function using a calibration line comprising 

different concentrations of 4-methylumbelliferone (0, 100, 200, 500, 800 and 1200 pmol  

well-1). 

7.2.7 Statistical analyses 

Homogeneity of variance was tested by the Levene-test. A two-factor ANOVA was used to 

estimate the effects of the factors 'inoculation' and 'P fertilization' separately as well as to 

determine interactions between them. Results of this test are summarized in Table 7.S2. 
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Significance of differences between the inoculation treatments was tested separately for 

each P fertilization group using the Tukey-test. The Games-Howell-test was used in case of 

variance heterogeneity. The effect on P fertilization within an inoculation treatment was 

tested by ANOVA or Welch-Test, whereby the latter was used in case of variance 

heterogeneity. The threshold value for significance was generally considered as p < 0.05. 

Statistical analyses were performed using SPSS Statistics 22 (IBM 2013). 

7.3 Results 

7.3.1 Tracing RU47 

No RU47-specific DNA sequences were detectable in soils of either the control or the 

bacterial mix at either P treatment level (Table 7.1). Highest RU47 abundances were 

observed in the treatments in which RU47 was used for inoculation (Table 7.1). Sequence 

quantity determined in soil with dead RU47 treatments was detectable, but about 69 % lower 

than in RU47 treatments. In general, the quantity of RU47-specific DNA sequence was 

higher in rhizosphere than in bulk soil (Table 7.1). Rhizosphere and bulk soil of plants, which 

were inoculated with RU47 and grown under high P soil conditions, revealed three and 12 

times higher RU47 abundance than abundances determined in the low P trial (Table 7.1). 

7.3.2 Plant properties 

We observed no plant growth-promoting effect in shoot or root biomass of RU47, in either the 

low or high P trial (Fig. 7.1, Fig. 7.2). However, each inoculation treatment including the 

bacterial mix showed a trend of increased shoot biomass in both P trials (Fig. 7.1). Under low 

P soil conditions, highest shoot and root biomass were found in the treatment using a 

bacterial mix for inoculation (Fig. 7.1, Fig. 7.2). Compared with the control, an increase in 

shoot biomass by about 16 and 59 % and a decrease in root biomass by about 17 % was 

observed in plants inoculated with dead or viable RU47 cells, respectively (Fig. 7.1, Fig. 7.2). 

Under high plant available P soil conditions, the two highest shoot and root biomass values 

were determined in the treatments using dead or viable RU47. Although not significant, both 

RU47 treatments exhibited increases in shoot and root biomass by about 28 and 71 %, in 

comparison with the control (Fig. 7.1, Fig. 7.2). P fertilization significantly affected plant 

growth in the dead RU47 treatment, with increased shoot and root biomass under improved 

P fertilization (Fig. 7.1, Fig. 7.2). The addition of viable RU47 cells increased tomato shoot 

height, leaf area and blossom biomass under low plant available P soil conditions (Table 

7.2). In the high P trial, no plant growth-promoting effects were observed (Table 7.2). 

Although not significant, plants treated with dead or viable RU47 cells had higher values in 
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shoot height, leaf number, and leaf area than all other treatments (Table 7.2). Determination 

of P concentrations in shoot biomass indicated an improved P supply in plants grown under 

P-limited soil conditions and inoculated with dead RU47 or viable RU47 cells, but was 

statistically significant only for dead RU47 (Fig. 7.3 a). This effect was not observed in the 

high P trial (Fig. 7.3 a). Improved P fertilization increased the P concentration in shoot 

biomass except in the treatment to which dead RU47 cells were applied (Fig. 7.3 a). In both 

P trials, the mass of absolute P bound in the shoot biomass tended to increase with each 

bacterial inoculation. The addition of viable RU47 cells led to an increase in absolute P 

uptake by about 65 % only under low P soil conditions compared with the control (Fig. 7.3 b). 

Absolute P uptake was increased by improved P fertilization in both the bacterial mix and 

dead RU47 treatments (Fig. 7.3 b). 
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Table 7.1 Abundance of P. sp. RU47-specific DNA sequence in rhizosphere and bulk soil DNA of tomato plants 50 days after sowing under the following treatments: one non-
inoculation (control), and three inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) cells. The experiment was 
performed under low (low P) and high (high P) P fertilization soil conditions. Values are presented as mean ± standard error (SE) of five replicates. Significant differences 
(Games-Howell, p < 0.05) between the inoculation treatments of each P fertilization group are marked by lowercase letters. Differences between the P fertilization groups within 
an inoculation treatment were not significant (ANOVA/Welch-Test, p < 0.05). Cp stands for copies. 

        Control   Bacterial mix    Dead RU47        RU47 

RU47 abundance Unit Mean 
  

SE Mean 
  

SE Mean 
  

SE Mean 
  

SE 

Rhizosphere                  

Low P [cp ng-1 DNA] 0 b ± 0 0 b ± 0 77.6 a ± 12.4 128.7 ab ± 51.2 

High P [cp ng-1 DNA] 0 b ± 0 0 b ± 0 49.7 a ± 9.1 394.5 ab ± 200.3 

Bulk soil 
                 

Low P [cp ng-1 DNA] 0 b ± 0 0 b ± 0 9.6 a ± 1.9 20.9 ab ± 8.7 

High P [cp ng-1 DNA] 0 b ± 0 0 b ± 0 15.4 a ± 3.2 245.9 ab ± 113.9 
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Figure 7.1 Shoot biomass (dry weight) of tomato plants 50 days after sowing under the following treatments: one 
non-inoculation (control), and three inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), 
dead RU47, or viable RU47 (RU47) cells. The experiment was performed under low (low P) and high (high P) P 
fertilization soil conditions. Error bars indicate standard error (n = 5). Differences between the inoculation 
treatments of each P fertilization group were not significant (Tukey-HSD, p < 0.05). Significant differences 
(ANOVA, p < 0.05) between the P fertilization groups within an inoculation treatment are marked with asterisks. 

 



Effects of phosphorus-mobilizing bacteria on growth of tomato and soil microbial activity 

under varying P availability in soil 

74 

 

Figure 7.2 Root biomass (dry weight) of tomato plants 50 days after sowing under the following treatments: one 
non-inoculation (control), and three inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), 
dead RU47, or viable RU47 (RU47) cells. The experiment was performed under low (low P) and high (high P) P 
fertilization soil conditions. Error bars indicate standard error (n = 5). Differences between the inoculation 
treatments of each P fertilization group were not significant (Tukey-HSD, p < 0.05). Significant differences 
(ANOVA, p < 0.05) between the P fertilization groups within an inoculation treatment are marked with asterisks. 
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Table 7.2 Summarized plant and bulk soil properties of of tomato plants 50 days after sowing under the following treatments: one non-inoculation (control), and three 
inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) cells. The experiment was performed under low (low P) and 
high (high P) P fertilization soil conditions. Values are presented as mean ± standard error (SE) of five replicates. Significant differences (Tukey-HSD/Games-Howell, p < 0.05) 
between the inoculation treatments of each P fertilization group are marked by lowercase letters. Significant differences (ANOVA/Welch-Test, p < 0.05) between the P 
fertilization groups of an inoculation treatment are marked with asterisks. 

     Control   Bacterial mix    Dead RU47      RU47 

 Unit Mean   SE Mean   SE Mean   SE Mean   SE 

Plant properties                  
                  

Shoot height                  

Low P [cm] 49.9 c ± 1.7 55.5 a* ± 1.1 48.6 bc ± 1.0 52.7 ab ± 1.8 

High P [cm] 51.2 a ± 2.0 50.5 a ± 1.0 52.7 a* ± 1.1 52.5 a ± 1.3 

Stem diameter                  

Low P [cm] 0.4 a ± 0.0 0.5 a ± 0.0 0.5 a ± 0.0 0.5 a ± 0.0 

High P [cm] 0.5 a ± 0.0 0.5 a ± 0.0 0.5 a ± 0.0 0.5 a ± 0.0 

Leaf number                  

Low P - 7.6 a ± 0.7 8.4 a ± 0.5 8.0 a ± 0.3 9.0 a ± 0.3 

High P - 9.0 a ± 0.7 8.4 a ± 0.4 10.4 a* ± 0.7 9.4 a ± 0.7 
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Leaf area 

Low P [dm²] 7.5 b ± 0.9 10.9 a ± 0.5 9.0 ab ± 0.6 10.6 a ± 0.9 

High P [dm²] 10.3 a ± 1.2 10.8 a ± 0.6 12.5 a* ± 1.2 12.2 a ± 0.6 

Blossom biomass                  

Low P [mg] 15.7 b ± 4.5 30.6 b ± 8.7 44.8 ab ± 16.8 85.8 a* ± 8.5 

High P [mg] 33.6 a ± 10.7 61.0 a* ± 8.1 61.8 a ± 14.4 34.1 a ± 10.1 

                  

Bulk soil properties                  
                  

pH (CaCl2)                  

Low P - 7.4 a* ± 0.0 7.4 a* ± 0.0 7.4 a* ± 0.0 7.4 a* ± 0.0 

High P - 7.2 a ± 0.0 7.2 a ± 0.0 7.2 a ± 0.0 7.2 a ± 0.0 

P-CAL                  

Low P [mg 
kg-1] 33.0 a ± 1.7 27.9 a ± 2.5 37.8 a ± 1.5 34.5 a ± 2.2 

High P [mg 
kg-1] 109.9 a* ± 10.2 98.5 a* ± 5.1 94.2 a* ± 8.0 95.9 a ± 8.4 

P-CAL in total P                  

Low P [%] 17.0 a ± 1.0 12.9 a ± 1.3 15.6 a ± 0.6 15.2 a ± 0.8 

High P [%] 33.0 a* ± 3.2 31.3 a* ± 1.9 28.7 a* ± 1.8 29.8 a ± 3.0 
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Figure 7.3 a P tissue concentration in shoots of tomato plants 50 days after sowing under the following 
treatments: one non-inoculation (control), and three inoculation treatments; unselectively cultivated soil bacteria 
(bacterial mix), dead RU47, or viable RU47 (RU47) cells. The experiment was performed under low (low P) and 
high (high P) P fertilization soil conditions. Error bars indicate standard error (n = 5). Significant differences 
(Tukey-HSD, p < 0.05) between the inoculation treatments of each P fertilization group are marked by lower case 
(low P) and uppercase letters (high P). Significant differences (Welch-Test, p < 0.05) between the P fertilization 
groups within an inoculation treatment are marked with asterisks. 
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Figure 7.3 b Absolute P uptake in shoots of tomato plants 50 days after sowing under the following treatments: 
one non-inoculation (control), and three inoculation treatments; unselectively cultivated soil bacteria (bacterial 
mix), dead RU47, or viable RU47 (RU47) cells. The experiment was performed under low (low P) and high (high 
P) P fertilization soil conditions. Error bars indicate standard error (n = 5). Significant differences (Games-Howell, 
p < 0.05) between the inoculation treatments of each P fertilization group are marked by lower case (low P) and 
uppercase letters (high P). Significant differences (Welch-Test, p < 0.05) between the P fertilization groups within 
an inoculation treatment are marked with asterisks. 
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7.3.3 Phosphatase activity (PA) 

Acid and alkaline PA in the rhizosphere were higher than in the bulk soil of all treatments 

(Fig. 7.4 a, Fig. 7.4 b). Significant differences in PA between the different inoculation 

treatments were observed only in the rhizosphere (Fig. 7.4 a, Fig. 7.4 b). Under low plant-

available P soil conditions, the bacterial mix increased acid PA, while alkaline PA was 

enhanced by the addition of dead RU47 or RU47 (Fig. 7.4 a, Fig. 7.4 b). In the high P trial, 

highest acid PA was found in the bacterial mix treatment, whereas the addition of dead RU47 

cells significantly increased the alkaline PA (Fig. 7.4 a, Fig. 7.4 b). Varying P fertilization did 

not affect PA in the rhizosphere (Fig. 7.4 a, Fig. 7.4 b). However, in the bulk soil of the 

bacterial mix treatment we found a significantly enhanced acid PA in the low P trial (Fig. 7.4 

a). Activities of alkaline phosphatase determined in rhizosphere and bulk soils of the RU47 

treatment (low P) were positively correlated with RU47 abundance in the rhizosphere 

(Pearson’s r = 0.5; p < 0.05). Under high P soil conditions, only bulk soil’s alkaline PA was 

positively correlated with rhizosphere RU47 abundance (Pearson’s r = 0.5; p < 0.05). 

7.3.4 Soil properties  

Increased P fertilization lowered the pH in bulk soil (Table 7.2) but we did not observe any 

inoculation effects on pH or P availability in soil, either under low or under high P soil 

conditions (Table 7.2). However, under low P soil conditions, treatments using dead or viable 

RU47 cells showed trends of increased P-CAL values. This trend was not confirmed, 

however, when we calculated the concentration of P-CAL as a percentage of total soil P 

(Table 7.2). In the high P trial, bulk soils of plants treated with dead or viable RU47 cells had 

the lowest concentrations of plant-available P (Table 7.2). In the high P group, P-CAL values 

were negatively correlated with alkaline PA in bulk soil (Pearson’s r = -0.5; p < 0.05). Except 

in the treatment to which viable RU47 cells were applied, improved P fertilization increased 

the P availability for plants in soil (Table 7.2). 
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Figure 7.4 a Acid phosphomonoesterase activity (PA) in rhizosphere and bulk soil of tomato plants 50 days after sowing under the following treatments: one non-inoculation 
(control), and three inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) cells. The experiment was performed under 
low (low P) and high (high P) P fertilization soil conditions. Error bars indicate standard error (n = 5). Significant differences (Tukey-HSD, p < 0.05) between the inoculation 
treatments of each P fertilization group are marked by lower case (low P) and uppercase letters (high P). Significant differences (ANOVA, p < 0.05) between the P fertilization 
groups within an inoculation treatment are marked with asterisks. 
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Figure 7.4 b Alkaline phosphomonoesterase activity (PA) in rhizosphere and bulk soil of tomato plants 50 days after sowing under the following treatments: one non-inoculation 
(control), and three inoculation treatments; unselectively cultivated soil bacteria (bacterial mix), dead RU47, or viable RU47 (RU47) cells. The experiment was performed under 
low (low P) and high (high P) P fertilization soil conditions. Error bars indicate standard error (n = 5). Significant differences (Tukey-HSD, p < 0.05) between the inoculation 
treatments of each P fertilization group are marked by lower case (low P) and uppercase letters (high P). Significant differences (ANOVA, p < 0.05) between the P fertilization 
groups within an inoculation treatment are marked with asterisks.  
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7.4 Discussion 

Tracing RU47 

Since tracing methods, mainly performed by molecular biological techniques, are still 

relatively new, little information is available about PMB’s survivability in soil. However, in 

most studies, a temporal decrease in the recovery rate of the added PMB strain in soil has 

been reported (Kim et al. 1997, Dey et al. 2004, Hameeda et al. 2008, Meyer et al. 2017). 

For instance, Meyer et al. (2017) observed a loss of more than 99 % of the inoculated 

Pseudomonas protegens CHA0 abundance within 40 days. In our study, the quantity of 

RU47-specific DNA sequence was detectable even 50 days after sowing and highest 

abundances were detected in treatments to which viable RU47 cells were added (Table 7.1). 

Furthermore, we found up to six times higher RU47 abundance in rhizosphere than in bulk 

soil (Table 7.1), which is not only in agreement with tracing results of our previous 

experiment (Table 5.1, Table 6.1) but also with studies by Adesina et al. (2009) and Schreiter 

et al. (2014 c), who demonstrated a high rhizosphere competence of RU47 in lettuce. PMB 

strains are isolates from indigenous microbial soil communities of plants. Thus, their natural 

occurrence in soil and therefore also in non-inoculation treatments is entirely likely and was 

also observed by Kim et al. (1997), Adesina et al. (2009) and also in our previous 39-day 

tomato experiment using RU47 (Table 5.1). Surprisingly, despite using the same soil and 

identical inoculation procedure, an RU47-specific DNA sequence was not detectable in non-

inoculation treatments of this study (Table 7.1). This observation is most likely due to the 

temporary increase in microbial nutrient and C source limitation in pots and, or as a result, 

intensified dominance of native soil microbes (50 vs. 39 days experiment duration) leading to 

competitive displacement of the indigenous RU47 population in soil. RU47 abundance 

determined in treatments using viable RU47 cells in this study corresponded to not more 

than 1 % of the quantity found in the previous 39-day tomato experiment. Thus, a 

displacement of RU47 is highly probable. Although not significant, the finding of higher RU47 

abundance in the high P trial (Table 7.1) confirms our hypothesis that improved P availability 

in soil improves the survival and colonization success of RU47. In both P trials, an RU47-

specific DNA sequence could be detected in rhizosphere and bulk soils of plants inoculated 

with dead RU47 cells (Table 7.1). Extracellular DNA as well as nucleases can be adsorbed 

by surface-reactive soil particles, resulting in a significant reduction/inhibition of DNA 

degradation in soil (Khanna and Stotzky 1992, Demanèche et al. 2001, Pietramellara et al. 

2009). Lorenz and Wackernagel (1987) reported that the amount of DNA absorbed in quartz 

sand increased when salt concentration and pH value (5 to 9) increased. Due to the high 
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percentage of quartz sand (50 %), the mineral fertilization which resulted in increased pH 

(7.2-7.4), and the salt concentration in our soil substrate, adsorption of free DNA molecules 

was very likely and this may explain their detectable persistence in the dead RU47 treatment. 

Furthermore, DNA contained in dead RU47 cells which were applied to the soil was present 

with other cellular components (wall debris, lipids, proteins etc.) prolonging DNA degradation 

in soil. 

Improved plant growth 

Growth-promoting effects of PMB on plants grown under P limited soil conditions have been 

reported previously (Chabot et al. 1996, Kim et al. 1997, Sundara et al. 2002). In agreement 

with these results, we found significant increases in shoot height, leaf area and blossom 

biomass in tomato plants grown under low P availability soil conditions and inoculated with 

viable RU47 cells (Table 2). Although not significant, a tendency toward improved plant 

growth by the addition of RU47 was also observed in the high P trial (Fig. 7.1, Fig. 7.2, Table 

7.2). This finding corresponds to the higher RU47 abundance determined in this treatment 

(Table 7.1). Taking into account that only trends were observed, these results support our 

hypothesis that improved nutrient status in soil increases RU47’s ability to persist and 

expand, leading to an increased ability to promote plant growth. Since P-mobilizing 

mechanisms that improve plant P supply can be excluded under high P soil conditions, a 

tendency toward enhanced plant growth is likely caused by phytohormones released by the 

colonizing RU47. Soil bacteria, including bacteria belonging to the genus Pseudomonas, are 

able to synthesize phytohormones and ACC deaminase, affecting plant growth, 

development, and response to stress, and ensuring the bacteria’s supply of C resources from 

root exudation (for review see Tsavkelova et al. 2006, Hayat et al. 2010, Glick 2012, 2014). 

For instance, Rajkumar and Freitas (2008), who observed a growth-promoting effect on 

castor oil plants after the addition of P. jessenii M6, were able to identify this strain as highly 

effective in ACC deaminase production. High ACC deaminase activity was also detected for 

RU47 (Smalla 2016, personal communication). Supporting the assumption of an RU47-

derived hormonal influence, we observed a decreased root:shoot ratio of 0.4 in plants grown 

under limited P availability soil conditions and inoculated with viable or dead RU47 cells 

compared with the ratio of 0.6 found in all other treatments (calculated from data of root and 

shoot biomass given in Fig. 7.1 and 7.2). This finding is in accordance with Arkhipova et al. 

(2007), who reported that by stimulating the shoot growth of lettuce after the addition of 

cytokinin-producing bacteria, a lowered root:shoot ratio resulted. Auxin and cytokinin are 

known to be heat stable (Murashige and Skoog 1962, Kumar and Singh 2009), thus 
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phytohormones produced by RU47 before killing might be co-extracted and added through 

inoculation of dead RU47 cells. Cytokinin plays an important role in the regulation of plant 

cell division and expansion (Ivanova and Rost 1998, Francis and Sorrell 2001) and is 

antagonistic to abscisic acid (ABA), which inhibits plant growth and flower formation (Levy 

and Dean 1998, for review see Ha et al. 2012). Based on these facts and particularly with 

regard to the increased blossom biomass documented in both RU47 treatments of the low P 

trial (Table 7.2), a cytokinin effect by RU47 is very likely.  

In both P trials, we also observed a trend of improved plant growth by the addition of dead 

RU47 cells, especially under high P soil conditions (Fig. 7.1, Fig. 7.2, Table 7.2). Plant 

growth-promotion after the addition of dead RU47 cells was also observed in our previous 

tomato experiment (Fig. 7.1). In general, these findings indicate that plant growth was 

stimulated by phytohormones produced by RU47 and/or indigenous soil microbes which may 

have been promoted by the addition of C resources in the form of bacterial residues to the 

soil. These additional C resources may account for our finding that under high P soil 

conditions, trends of plant growth-promotion were more pronounced in the dead RU47 

treatment than in the treatment using viable RU47 cells (Fig. 7.1, Fig. 7.2, Table 7.2). Here, a 

potential competition effect for substrates and habitats in the rhizosphere between 

indigenous microbes and the colonizing RU47 bacteria may have played an additional role in 

reducing plant promotion in the viable RU47 treatment. Supporting the likelihood of an 

interaction with indigenous microorganisms in the dead RU47 treatment, quantities of RU47-

specific DNA sequence determined at both P levels in the dead RU47 treatment were almost 

equal (Table 7.1). Our observation of increased plant growth by the inoculation of an 

unselective bacterial mix (Table 7.1) is in contrast to plant growth data recorded in our 

previous study (Fig. 7.1, Fig. 5.1). Apart from the different growing conditions between these 

experiments, bacteria were also freshly cultivated using an aliquot of soil before each 

inoculation. Differences in microbial community composition between each inoculation are 

likely, and furthermore, a co-cultivation of indigenous PMB in the bacterial mix cannot fully be 

excluded.   

Increased P availability 

At both P levels, we observed increased P uptake in the treatments using dead RU47 or 

viable RU47 cells (Fig. 7.3 b). Under low plant-available P soil conditions, the addition of 

RU47 resulted in enhanced absolute P uptake, but P concentration in shoot biomass was 

only significantly increased by the use of dead RU47 (Fig. 7.3 a). This can be explained by a 

concentration effect. Since plants inoculated with dead RU47 cells had lower shoot biomass 
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than those treated with viable RU47 cells (Fig. 7.1), the incorporated P was less diluted in 

shoot biomass leading to an increased P concentration in plants of the dead RU47 treatment 

(Fig. 7.3 a). Determination of the P tissue concentration (shoot biomass) showed that the 

plants grown under P limited soil conditions and inoculated with dead RU47 or RU47 had 

values of 0.52 and 0.46 %, respectively, which corresponds to an adequate P supply for 

tomato plants at the beginning of flowering, according to Gauch (1972) and Ermochin (1972). 

However, in the shoot biomass of plants inoculated with a bacterial mix, a P tissue 

concentration of 0.39 % was determined; this concentration is associated with a low P supply 

(Gauch 1972, Ermochin 1972). These findings indicate that the addition of dead RU47 or 

viable RU47 cells improved plant P supply; the more improved P supply by the addition of 

dead RU47 confirms data determined in our previous tomato experiment (Fig. 5.1), and may 

have been due to absence of competition for available P in soil between RU47 and plant. 

Plants grown in the high P trial had P tissue concentration values of around 0.53 %, 

indicating an improved P supply by higher P fertilization; however, major differences between 

the inoculation treatments were not observed.  

Under low P soil conditions, we found increased alkaline PA in the rhizosphere of plants 

inoculated with dead RU47 or viable RU47 cells; in the high P trial this effect was only 

significant in the dead RU47 treatment (Fig. 7.4 b). Increased alkaline PA was also observed 

in our previous tomato experiment conducted under low P availability soil conditions, also 

using dead RU47 and viable RU47 for inoculation (Fig. 5.2 a, Table 5.2). In contrast to acid 

phosphatase, which is synthesized by plant roots as well as by soil microorganisms, alkaline 

phosphatase is produced exclusively by microorganisms (Dick et al. 1983, Juma and 

Tabatabai 1988, Nannipieri et al. 2011). Thus, our findings clearly demonstrate improved 

microbial PA by the addition of viable RU47 cells. However, despite successful devitalisation 

of cells and denaturation of phosphatases, the effect of dead RU47 on alkaline PA may have 

been a result of RU47-derived promotion of indigenous microbes leading to enhanced 

microbial activity in soil. Increased abundance of indigenous PMB by the addition of specific 

PMB strains was previously reported by Sundara et al. (2002) and Canbolat et al. (2006). 

Considering the increased microbial PA as well as the improved P supply and plant growth 

determined in both RU47 treatments (Fig. 7.4 b, Fig. 7.3 b, Fig. 7.1), a PMB-attracting effect, 

observed in both P fertilization trials, could play a complementary role in plant growth-

promotion by RU47. Nevertheless, in contrast to our hypothesis, alkaline PA determined in 

soil inoculated with RU47 did not increase with improved P fertilization (Fig. 7.4 b). Although 

we observed enhanced RU47 abundance (Table 7.1), PA data did not confirm a higher 

release of phosphatase. Consistent with alkaline PA data, we observed a tendency of 
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increased P-CAL concentrations in the bulk soil of plants grown under P limited soil 

conditions and inoculated with dead RU47 or viable RU47 (Table 7.2). However, the opposite 

was observed in the high P trial, likely due to the increased P removal by these plants, which 

had highest shoot biomass compared with all other inoculation treatments in this trial (Table 

7.2, Fig. 7.1). The various inocula had no effect on pH values measured in bulk soil (Table 

7.2), either in low or in high P trials. Thus, a P solubilizing mechanism decreasing the pH in 

soil by the microbial secretion of organic acids (Kpomblekou-a and Tabatabai 1994, Jones 

and Oburger 2011) cannot be assumed - at least not in bulk soil. As expected, pH value in 

the highly P-fertilized bulk soil decreased significantly due to the dissociation of phosphoric 

acid (Table 7.1).  

7.5 Conclusion 

Our study demonstrated that under P limited growing conditions the addition of RU47 

increased microbial PA in the rhizosphere and was accompanied by improved P nutrition and 

growth of tomato plants. Functional gene analyses of phosphomonoesterases could clarify 

whether this effect is based on increased phosphatase excretion by RU47 or indigenous 

microbes (interaction) and should be considered in further studies.  

Although not significant, improved P nutrition and plant growth were also observed with the 

addition of dead RU47, suggesting a simultaneously acting hormonal effect caused by 

phytohormones released from lysed RU47 cells or indigenous soil microbes promoted by 

dead RU47 (attractants or nutrient spike). With respect to the results of a previous tomato 

experiment under low P soil conditions that also found plant growth-enhancing tendencies 

with the addition of dead RU47, further research should focus more on hormonal effects of 

PMB on plant growth and P supply.  

Increased P fertilization improved the abundance of RU47 in both rhizosphere and bulk soil. 

However, RU47’s promoting effects on soil and plant were not increased by the higher 

abundance. Since an initially high incorporation of P into the RU47 bacterial biomass 

effectively protects available P from soil reactions, a plant growth-promoting effect in long-

term when P becomes limited remains a possible benefit. Thus, simultaneous determinations 

of microbially bound P and P-CAL in soil could clarify the role of P immobilization by PMB in 

growth-promoting of plants.  
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Supplemental material 

Table 7.S1 Soil substrate (Luvisol topsoil mixed with quartz sand in a ratio of 1:1 [w/w]) characteristics analysed 
at the end of the experiment (50 days). Values are presented in mean ± standard error (SE) of 40 replicates. 

     
Element Unit Mean  SE 

 

C [%] 0.8 ± 0.0 

Corg [%] 0.6 ± 0.0 

N [%] 0.1 ± 0.0 

NO3
- [mg kg-1] 29.0 ± 9.2 

     

Table 7.S2 Results (p-values) of two-factor analysis of variance testing significant effects of inoculation (ino), P 
fertilization (P-fert), and interaction of inoculation and P fertilization (ino * P-fert). 

Variable Ino P-fert Ino * P-fert 

Rhizosphere RU47 abundance  0.01 0.38 0.06 
Bulk soil RU47 abundance 0.01 0.05 0.02 
Shoot biomass 0.11 0.02 0.06 
Root biomass 0.51 0.73 0.11 
Shoot height 0.03 0.42 0.01 
Stem diameter 0.30 0.03 0.66 
Leaf number 0.22 0.01 0.16 
Leaf area 0.03 0.00 0.18 
Blossom biomass 0.04 0.68 0.00 
P conc in shoot biomass 0.01 0.00 0.00 
P uptake in shoot biomass 0.07 0.00 0.28 
Rhizosphere acid PA 0.00 0.63 0.31 
Bulk soil acid PA 0.00 0.29 0.02 
Rhizosphere alkaline PA 0.00 0.63 0.28 
Bulk soil alkaline PA 0.01 0.59 0.39 
pH in bulk soil 0.61 0.00 0.96 
P-CAL conc in bulk soil 0.72 0.00 0.74 
P-CAL conc in total bulk soil P [%] 0.64 0.00 0.68 
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8 Effects of plant growth-promoting rhizobacteria on the 

indigenous soil microbial community structure of maize in three 

contrasting Swiss soils  

8.1 Introduction 

Plant growth promoting-rhizobacteria (PGPR) are able to improve plant nutrient acquisition 

and act as bio-control agents. Thus, their targeted application offers a promising approach 

for the future to effectively decrease the application of chemical fertilizers and pesticides in 

agriculture (Vessey 2003, Lucy et al. 2004, Bashan and de-Bashan 2010). This approach is 

becoming increasingly significant, as the world population, and thus the need for food, 

continues to grow while mineral phosphorus (P) resources, required to produce phosphate 

fertilizers, are becoming increasingly limited (Cordell et al. 2009). Based on a classification 

by Martinez-Viveros et al. (2010) PGPR are divided into endophytic living bacteria 

(Rhizobiaceae), which invade the root system to form nodules (Wang and Martinez-Romero 

2000) and PGPR that live in the rhizosphere, on the rhizoplane or in the spaces between 

cells of the root cortex (Bhattacharyya and Jha 2012), such as strains from the genera 

Pseudomonas, Azospirillum and Bacillus (Gray and Smith 2005). Positive effects on plant 

growth and health from the application of PGPR have reported several times (for review see 

Dutta and Podile 2010, Beneduzi et al. 2012, Bhattacharyya and Jha 2012, Santoyo et al. 

2012). The underlying functional mechanisms of PGPR on plants, especially with respect to 

an improved nutrient supply, are many and not yet fully clarified. However, PGPR, including 

PMB, can directly affect plant nutrient acquisition by mobilizing soil-bound nutrients (esp. 

orthophosphate), indirectly by the release of phytohormones that increase root growth and 

activity (Shaharoona et al. 2006, El Zemrany et al. 2007), or by promotion of indigenous soil 

microbes such as mycorrhizal fungi that themselves are beneficial to plant nutrient status 

(Frey-Klett et al. 2007). 

Maize (Zea mays L.) is globally one of the most cultivated crops (Ranum et al. 2014) placing 

high demands on soil nutrients, especially P, in its early growth stages (Barry and Miller 

1989, Postma and Lynch 2011). Although maize has shown a positive response to PGPR 

applications (Gholami et al. 2009, Shaharoona et al. 2006, Walker et al. 2011), inconsistent 

effects, depending on the strains added, plant varieties, and soil properties, have prevented 

a large-scale use of PGPR in current corn production (Fuchs et al. 2000, Shaharoona et al. 

2006, Egamberdiyeva 2007, Mosimann et al. 2017). In a study examining its effect on wheat, 
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however, Mäder et al. (2011) reported an enhanced effect of PGPR in a soil characterized by 

relatively low microbial biomass and activity. The ability of an inoculant to colonize the 

rhizosphere at a sufficiently high abundance is a prerequisite for its beneficial effects on 

plants (Bellis and Ercolani 2001, Barret et al. 2011); the lower the competition with 

indigenous microbes for nutrients and habitats the higher the probability of PGPR to 

dominate colonization. Depending on their rhizosphere competence, PGPR are able to 

change the microbial community structure in soil significantly, either by suppressing or 

producing toxins (esp. biocontrol-capable PGPR), or by the promotion of beneficial plant-

microbe symbioses (Bhattacharyya and Jha 2012). For instance, Toro et al. (1997) 

demonstrated that establishment of the indigenous arbuscular mycorrhizal fungus Glomus 

intraradices was promoted by the addition of both Enterobacter sp. and Bacillus subtilis in 

soil. Furthermore, Shishido and Chanway (1998) and Vivas et al. (2003) observed an 

increased population of soil bacteria and fungi after the addition of phosphorus-mobilizing 

PGPR strains. However, the impact of PGPR on soil microbial community structure has had 

inconsistent reports in the literature, indicating that the use of different PGPR strains and 

varying soil properties lead to different results (Lottmann et al. 2000, Herschkovitz et al. 

2005, Johansen and Olsson 2005, Mosimann et al. 2017). 

The aim of this study was to verify whether PGPR, including PMB, affect microbial 

community structure in the rhizosphere and bulk soil of maize plants, and furthermore, 

whether shifts in the microbial community do vary between different PGPR strains and soil 

properties. Due to its high proportion of phosphorus-mobilizers, three strains of the genus 

Pseudomonas (P. fluorescens Pf153, P. sp. RU47, and P. sp. DSMZ 13134) were chosen for 

a pot experiment with maize. The experiment was performed using three different Swiss soils 

varying in nutrient availability, pH value, and soil organic matter content. Besides the 

determination of bacterial, archaeal and fungal abundances in soil, the population of six 

bacterial phyla (Alphaproteobacteria, Betaproteobacteria, Acidobacteria, Bacteroidetes, 

Gemmatimonadetes and Firmicutes) which dominate in European soils (Janssen 2006, 

Buddrus-Schiemann et al. 2010) was measured via quantitative PCR. The following 

hypotheses were tested. (1) Due to root colonization, the addition of PGPR leads to 

increased bacterial abundance in the rhizosphere, while the bacterial population in bulk soil 

is less affected. (2) Effects of PGPR on microbial community structure in the rhizosphere are 

less pronounced in soils characterized by a high indigenous microbial biomass. (3) Based on 

the increasing competition for C during PGPR colonization, the abundance of copiotrophic 

bacterial phyla decreases, while oligotrophic bacterial populations remain unaffected. 
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8.2 Materials and Methods 

The experiment conducted was performed by the Department of Soil Sciences of the 

Research Institute of Organic Agriculture (FiBL) in Frick (Switzerland). The experimental 

setup and procedure (without P. sp. RU47) is described in Mosimann et al. (2017). Microbial 

cultivation and inoculation, determination of plant properties, and determination of PGPR’s 

persistence in the rhizosphere/rhizoplane were performed by FiBL, while soil sampling and 

analyses were conducted by the Institute of Soil Science and Land Evaluation of the 

University of Hohenheim in Stuttgart (Germany). 

8.2.1 Pot experiment 

Maize plants (Zea mays L. var. Colisee) were inoculated with Pseudomonas fluorescens 

Pf153 (Fuchs 1993), P. sp. RU47 (Adesina et al. 2007) and P. sp. DSMZ 13134 (Buddrus-

Schiemann et al. 2010) and grown in separate soil substrates using the soils Buus, DOK-M 

and Le Caron (Table 8.1). Details of bacterial cultivation and inoculation are described in 

8.2.2. A non-inoculated treatment served as the control. Each treatment was composed of 

eight replicates, of which half were harvested after four, and the second half after eight 

weeks. Maize plants were grown in plastic pots (3 L, Rosentopf Soparco, Hortima AG, 

Switzerland) filled with the equivalent of 2.5 kg soil substrate as dry matter (DM) composed 

of the topsoil of the respective soil (Table 8.1) and quartz sand (0.6 - 1.2 mm) in a ratio of 1:2 

(w/w). To stabilize soil conditions, prepared soil substrates were incubated at 15 °C (± 2 °C) 

four weeks before potting. Subsequently, each pot was fertilized as follows; N (33.3 mg kg-1; 

Ca(NO3)2), K (55.3 mg kg-1; Kalimagnesia containing 30 % K2O) and P (16.7 mg kg-1; rock 

phosphate). Three maize seeds were directly sown to a depth of 2 cm and thinned out after 

germination to one plant per pot. Pots were randomly distributed and placed on saucers to 

exclude contamination from leaking irrigation water. Maize plants were grown in a climate 

chamber with 14 h light (Hg/Na lamps; 30,000 lux) at 22 °C and 10 h dark at 19 °C; daily 

watering used tap water to maintain a water holding capacity of 40 % (Mosimann 2013, 

personal communication). 

The soils Buus, DOK-M and Le Caron were chosen due to their contrasting parameters, such 

as pH, texture, organic C and P content (Table 8.1). Buus soil was taken from a field that has 

been organically managed (IFOAM 2014, Demeter International e.V. 2016) for the past 30 

years. The DOK-M soil belongs to the 36-year-old “DOK” system comparison trial (Mäder et 

al. 2000, 2002) conventionally managed with only the addition of mineral fertilizers. Le Caron 

soil originates from a 5-year-long grass/clover ley that was converted to a conventionally 
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managed, no-tillage field in 2011. Classification and characteristics of the three soils are 

listed in Table 8.1. 

8.2.2 Bacterial cultivation and inoculation 

Pseudomonas strains used for inoculation were obtained from one commercial product, 

Proradix® (Sourcon Padena, Tübingen, Germany) that contains P. sp. DSMZ 13134 

(Buddrus-Schiemann et al. 2010), and the two non-commercial strains P. fluorescens Pf153 

(Fuchs et al. 2000) and P. sp. RU47 (Adesina et al. 2007). 

Plants were inoculated immediately after sowing. Five mL of bacterial suspension was added 

to each planting hole; in the case of the non-inoculation control, 5 mL tap water was used. To 

prepare the inocula, strains were separately grown in King’s B liquid medium (King et al. 

1954) at 25 °C for 24 h with shaking (150 rpm). Afterwards, 50 µL of bacterial culture was 

transferred to 50 mL M1 media (Fuchs et al. 2000) and re-grown while shaking (150 rpm) at 

room temperature overnight. Subsequently, bacterial culture’s optical density (OD) was 

measured at 600 nm (UV/Vis) while an OD of 0.1 was estimated as 1 × 108 CFU mL-1. Based 

on producer’s specifications, the following cell densities per mL bacterial suspension were 

used for inoculation: 3.9 × 108 CFU mL-1 (Pf153), 8.5 × 108 CFU mL-1 (RU47), and 7.3 × 108 

CFU mL-1 (Proradix). 

8.2.3 Plant properties 

Before harvesting, shoot height, number of leaves and SPAD values were recorded for each 

replicate. SPAD value, an indirect measure of chlorophyll content and thus plant health with 

respect to nutrient supply (especially N), was measured for each leaf using a SPAD meter 

(SPAD-502, Konika, Minolta, Osaka, Japan). The mean value per plant was used for 

statistical analysis. Maize plants were harvested four and eight weeks after sowing (WAS). 

Shoots of every replicate were carefully cut from the soil surface. To preventing 

contamination, plants were harvested within their treatment group starting with the non-

inoculation control. Dry weight of shoot biomass was determined by drying in separate paper 

bags at 65 °C for 24 h.  
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Table 8.1 Characteristics of soils before being used in the present pot experiment. Soil analyses were performed by the Analytical Chemistry Unit of the Core Facility 
Hohenheim (University of Hohenheim, Stuttgart, Germany). Determination of total C and N as well as organic C was done by the use of an elemental analyser (EA). Total P 
was determined by inductively coupled plasma optical emission spectrometry (ICP-OES); amount of P2O5 that enables the estimation of plant-available P in soil was extracted 
by calcium acetate lactate (CAL). 

          

Soil Geographic 
origin 

Texture pH Ctotal Corg Ntotal Nmin Ptotal P2O5 

  Clay Sand Silt (CaCl2) (EA) (EA) (EA) NH4
+ NO3

- (ICP-
OES) 

(CAL) 

  (%) (%) (%)  (%) (%) (%) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) 

Buus Buus 
(Switzerland) 

29.9 3.9 66.2 6.6 2.8 2.6 0.3 0.9 27.0 999.2 15.0 

 
DOK-M 

 
Therwil 
(Switzerland) 

 
16.7 

 
2.7 

 
80.6 

 
5.7 

 
1.3 

 
1.3 

 
0.2 

 
1.0 

 
36.0 

 
730.5 

 
53.0 

 
Le 
Caron 

 
Epiquerez 
(Switzerland) 

 
29.9 

 
3.5 

 
66.6 

 
4.8 

 
2.5 

 
2.4 

 
0.3 

 
1.4 

 
73.0 

 
1035.3 

 
37.0 

             

Based on Mosimann et al. (2017)



Effects of plant growth-promoting rhizobacteria on the indigenous soil microbial community 

structure of maize in three contrasting Swiss soils 

93 

 

8.2.4 Soil sampling and analyses 

Rhizosphere and bulk soil were sampled separately for each replicate. Soil samples were 

immediately put on ice and cooled at 8 °C for short-term storage. After sieving (< 2 mm) 

aliquots with a fresh weight of 5 g were used to determine the water content (105 °C for 24 

h). Samples were stored at -20 °C until analysis.  

Soil microbial C, N and P 

To determine microbial biomass C (Cmic) and microbially bound N (Nmic), the chloroform 

fumigation extraction method (Vance et al. 1987) according to Mackie et al. (2015) was used. 

Cmic and Nmic were calculated using keC 0.45 and 0.54 as extraction factors (Joergensen 

1996), respectively. The determination of microbial biomass P (Pmic) was performed by liquid 

fumigation extraction with anion-exchange resin membranes (Kouno et al. 2002) using 

hexanol instead of liquid chloroform (Bünemann et al. 2004). A more detailed description of 

the chloroform fumigation extraction method based on Vance et al. (1987) as well as Pmic 

estimation is given in 5.2.7. Microbial C, N and P were determined in bulk soil only. 

8.2.5 Quantitative determination of microbial community structure  

DNA extraction 

DNA extraction of rhizosphere and bulk soil were done using 250 - 350 mg fresh soil with the 

FastDNA® SPIN Kit for Soil (MP Biomedicals, Solon, OH, USA) following producer’s 

instructions. A spectrophotometer (NanoDrop 2000; Thermo Scientific, Waltham, MA, USA) 

was used to measure the DNA concentration and extract purity.  

Quantitative PCR (qPCR) 

Microbial community structure in soil was determined by quantifying the DNA abundance of 

bacteria, archaea and fungi as well as six bacteria phyla via qPCR (7500 Fast Real-Time 

PCR System, Thermo Fisher Scientific, Waltham, MA, USA) in extracted rhizosphere and 

bulk soil DNA. SYBR® Green intercalating double-stranded DNA was used to quantify the 

amplicons; the domain- and phylum-specific primers as well as thermal cycling conditions are 

listed in Table 8.2. To achieve a final volume of 15 µL, the following components were used;: 

7.5 μL SYBR® Green PCR Master Mix (2 ×; Thermo Fisher Scientific, Waltham, MA, USA), 

4.125 μL ultra-pure water, 1.5 μL DNA (5 ng μL−1), 0.75 μL each of forward and reverse 

primers (10 µM), and 0.375 μL T4gp32. To measure the abundance of bacterial and archaeal 

16S rDNA, 1 µL of template DNA was used; the difference in final volume was balanced with 
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ultra-pure water. Standard curves were performed with serial dilutions of a known amount of 

plasmid DNA containing the sequence of the respective gene. Based on the standard curve, 

the absolute quantity of copies was calculated (copies g-1 soil). 

8.2.6 Statistical analyses 

Homogeneity of variance was tested by the Levene-test. Significance of differences was 

tested by ANOVA followed by the Tukey HSD-test, where p < 0.05 was defined as the 

threshold value for significance. In case of variance heterogeneity, determination of 

significance of differences used the Welch-Test, and the Games-Howell-test was used for 

pairwise comparisons. Here, p < 0.05 was also considered as significantly different. These 

statistical analyses were performed using SPSS Statistics 22 (IBM 2013). Variance 

components analysis (VCA) was used to identify which factors (inoculation, soil, time) 

explained most of the variance in each of the variables. This analysis was carried out with R 

statistics version 3.2.1 (R Core Team 2015) using “lme” and “VarCorr” functions of the “nlme” 

package (Pinheiro et al. 2013). 
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Table 8.2 qPCR primers and thermal profiles. NC stands for number of cycles. 

 Primer Thermal profile NC Reference 

Bacteria (16S rDNA) 341F 

534R 

95°C – 10 min 

95 °C – 15 s, 60 °C – 30 

s, 72 °C – 30 s, 75 °C – 

30 s 

1 

35 

Muyzer et al. 1993, 

López-Gutiérrez et al. 

2004 

Archaea (16S rDNA) Ar109F 

Ar912R 

95 °C – 10 min 

95 °C – 15 s, 52 °C – 1 

min, 72 °C – 1 min, 75 

°C – 30 s 

1 

40 

Lueders and Friedrich 

2000, Rasche et al. 

2011 

Fungi (ITS) 314F 

534R 

95 °C – 10 min 

95 °C – 15 s, 52 °C – 30 

s, 72 °C – 30 s, 76 °C – 

30 s 

1 

35 

White et al. 1990, 

Ditterich et al. 2013 

Alphaproteobacteria 

 

Eub338 

Alpha685 

95 °C – 10 min 

95 °C – 15 s, 60 °C – 30 

s, 72 °C – 30 s, 79 °C – 

30 s 

1 

35 

Fierer et al. 2005 

Betaproteobacteria 

 

Eub338 

Bet680 

95 °C – 10 min 

95 °C – 15 s, 55 °C – 30 

s, 72 °C – 30 s, 76 °C – 

30 s 

1 

35 

Fierer et al. 2005 

Bacteroidetes 

 

798cfbF 

cfb967R 

95 °C – 10 min 

95 °C – 15 s, 61.5 °C – 

30 s, 72 °C – 30 s, 75 

°C – 30 s 

1 

35 

De Gregoris et al. 

2011, this study 
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Firmicutes 

 

Lgc353 

Eub518 

95°C – 10 min 

95 °C – 15 s, 60 °C – 30 

s, 72 °C – 30 s, 79 °C – 

30 s 

1 

35 

Fierer et al. 2005 

Acidobacteria Acid31 

Eub518 

95 °C – 10 min 

95 °C – 15 s, 55 °C – 30 

s, 72 °C – 30 s, 81 °C – 

30 s 

1 

35 

Fierer et al. 2005 

Gemmatimonadetes 

 

Gem440 

Eub518 

95 °C – 10 min 

95 °C – 15 s, 58 °C – 30 

s, 72 °C – 30 s, 78 °C – 

30 s 

1 

35 

Philippot et al. 2009 
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8.3 Results 

8.3.1 Plant response 

The addition of different Pseudomonas strains did not generally lead to improved plant 

growth, either four or eight weeks after sowing (Fig. 8.1, Table 8.3). However, in plants 

grown in soil Le Caron and harvested eight weeks after sowing the addition of Proradix and 

RU47 resulted in increased shoot biomass values, and each inoculation increased the shoot 

height (Fig. 8.1, Table 8.3). Four weeks after sowing, variation in plant growth was strongly 

affected by the factor soil; shoot biomass and height observed were significantly different 

between each soil treatment (across the inoculation treatments; p < 0.05) showing highest 

plant growth in the soil DOK-M. This effect was not observed in plants harvested eight weeks 

after sowing (Fig. 8.1, Table 8.3). 

 
Figure 8.1 Shoot dry biomass from maize plants of one non-inoculation (control), and three inoculation 
treatments: Pseudomonas fluorescens Pf153 (Pf153), P. sp. RU47 (RU47) and P. sp. DSMZ 13134 (Proradix). 
Plants grown in three different soils (Buus, DOK-M, Le Caron) and were harvested four and eight weeks after 
sowing (WAS). Error bars indicate standard error (n = 4). Significant differences (Tukey-HSD/Games-Howell, p < 
0.05) between the inoculation treatments within one soil are marked by lowercase letters. 
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8.3.2 Responses of microbial C, N and P in bulk soil 

Various inocula rarely affect the amount of microbially bound C, N and P in bulk soil of maize 

plants, at four or eight weeks after sowing (Table 8.3). However, in soil Le Caron, sampled 

eight weeks after sowing, the addition of Pf153 led to increased microbial biomass (Table 

8.3). At both four and eight weeks after sowing, highest Cmic, Nmic and Pmic values were found 

in soil Buus, while lowest values were for the most part detected in soil DOK-M (Table 8.3). 

Furthermore, we observed decreased Cmic and Nmic values from the first to the second 

harvest by 29 and 41 %, respectively, across the three soils (Table 8.3). In contrast, 

microbial biomass P remained unaffected by time (Table 8.3).  

To identify which factors, i.e. inoculation, soil, and time (4 and 8 WAS) explained most of the 

variance in microbially bound C, N and P, a variance components analysis (VCA) was 

conducted. Based on this analysis, no effect of inoculation (0 %) on Cmic and Nmic values was 

found; 5 % of the variance in Pmic was explainable by inoculation (data not shown). Moreover, 

the quantities of microbially bound C, N and P determined in the bulk soil of maize plants 

were primarily affected by the factor soil, with explained variances of 72, 65 and 42 %, 

respectively (Table 8.S1). With respect to time, no explainable variance in Pmic was 

determined, while time explained 19 and 23 % of the variance in microbially bound C and N, 

respectively (Table 8.S1). 
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Table 8.3 Plant and soil properties of maize plants using one non-inoculation (control), and three inoculation treatments: P. fluorescens Pf153 (Pf153), P. sp. RU47 (RU47), and 
P. sp. DSMZ 13134 (Proradix). Plants grown in three different soils (Buus, DOK-M, Le Caron) and were harvested four and eight weeks after sowing (WAS). Values are 
presented as mean ± standard error (SE) of four replicates. Significant differences (Tukey-HSD/Games-Howell, p < 0.05) between the inoculation treatments within one soil are 
marked by lowercase letters. 

  Shoot height [cm]     SPAD Number of leaves   C mic [mg kg-1]   N mic [mg kg-1]   P mic [mg kg-1] 

  Mean   SE Mean   SE Mean   SE Mean   SE Mean   SE Mean   SE 

4 WAS                          

Buus 

Control 63.4  ± 1.8 27.0  ± 0.8 5.5  ab ± 0.3 206.9  ± 4.1 34.5  ± 2.9 9.8  ± 1.1 
Pf153 55.5  ± 3.3 27.9  ± 0.7 4.8  ab ± 0.3 222.5  ± 5.4 34.5  ± 0.6 9.0  ± 0.6 
RU47 58.8  ± 1.8 27.9  ± 0.6 5.0  b ± 0.0 218.7  ± 6.2 36.2  ± 2.0 9.8  ± 0.4 
Proradix 62.4  ± 1.2 28.6  ± 0.6 6.0  a ± 0.0 220.1  ± 7.6 34.5  ± 2.2 7.5  ± 0.5 

DOK-M 

Control 67.5  ± 0.8 29.2  ab ± 1.1 6.0  ± 0.0 77.6  ± 14.0 13.9  ± 1.4 3.9  ± 0.6 
Pf153 68.6  ± 1.2 28.8  b ± 0.8 6.0  ± 0.0 97.8  ± 3.4 14.2  ± 0.7 10.3  ± 2.3 
RU47 70.6  ± 1.4 29.4  b ± 0.6 6.0  ± 0.0 98.2  ± 5.4 12.7  ± 0.3 3.4  ± 0.5 
Proradix 72.0  ± 1.8 34.0  a ± 0.6 6.0  ± 0.0 96.7  ± 1.5 13.6  ± 0.5 5.4  ± 0.8 

Le Caron 

Control 66.6  ± 1.7 27.9  a ± 0.4 6.0  ± 0.0 140.3  ± 15.2 15.4  ± 4.0 4.7  ab ± 0.5 
Pf153 63.6  ± 1.8 25.4  b ± 0.4 5.8  ± 0.3 96.2  ± 6.4 11.1  ± 2.1 3.8  ab ± 0.4 
RU47 64.6  ± 0.8 26.0  ab ± 0.5 5.8  ± 0.3 121.7  ± 17.0 7.8  ± 1.5 3.0 b ± 0.4 
Proradix 66.1  ± 2.3 28.1  ab ± 1.0 6.0  ± 0.0 131.5  ± 12.0 15.7  ± 2.1 5.6 a ± 0.3 

8 WAS                          

Buus 

Control 95.8  ab ± 1.8 20.7  ab ± 2.2 9.8  ± 0.3 163.1  ± 9.3 20.8  ± 1.1 8.9  ± 1.4 
Pf153 93.8  b ± 2.3 22.2  b ± 2.3 9.5  ± 0.3 160.2  ± 3.4 19.9  ± 0.4 9.1  ± 1.6 
RU47 98.0  ab ± 1.7 19.0  ab ± 2.3 10.0  ± 0.4 156.2  ± 8.9 19.9  ± 1.5 7.4  ± 0.8 
Proradix 103.4  a ± 1.9 13.0  a ± 0.3 10.8  ± 0.3 157.4  ± 8.9 20.8  ± 1.2 6.9  ± 0.3 

DOK-M 

Control 97.6  ± 3.2 11.0  ± 0.3 10.8  ab ± 0.3 65.8  ± 7.0 6.4  ± 0.5 3.2  ab ± 0.4 
Pf153 96.3  ± 2.1 10.6  ± 0.5 10.0  b ± 0.0 69.7  ± 6.3 7.8  ± 0.7 6.1  a ± 0.6 
RU47 99.0  ± 1.1 10.9  ± 0.6 10.5  ab ± 0.3 62.2  ± 8.0 6.2  ± 0.9 5.2  ab ± 0.8 
Proradix 95.4  ± 1.6 10.5  ± 0.3 11.5  a ± 0.3 74.2  ± 13.3 9.8  ± 3.3 2.6  b ± 0.9 
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Le Caron 

Control 84.3  c ± 1.7 23.3  a ± 0.4 10.0  ab ± 0.4 61.6  b ± 9.1 5.9  ± 2.1 3.6  ± 0.4 
Pf153 92.4  b ± 2.2 23.8  a ± 0.6 9.5  ab ± 0.5 99.3  a ± 10.0 10.3  ± 1.3 6.0  ± 0.8 
RU47 98.9  ab ± 2.4 21.7  ab ± 0.7 10.0  b ± 0.0 68.0  ab ± 5.1 6.5  ± 0.4 7.3  ± 1.4 
Proradix 101.9  a ± 0.6 20.0  b ± 0.5 11.0  a ± 0.0 91.7  ab ± 9.5 10.0  ± 1.4 5.1  ± 1.2 
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8.3.3 Effects on microbial community structure 

The addition of three different Pseudomonas strains did not generally affect the abundances 

of bacteria, archaea, or fungi in soil. Individual effects of inoculation with the different strains 

were observed, however, in both rhizosphere and bulk soil, in different soils, and in harvest 

dates (Fig. 8.2 a, Fig. 8.2 b). In the rhizosphere of plants grown in Buus or Le Caron and 

harvested eight weeks after sowing, significant increases in archaeal and fungal abundances 

were found under the addition of Pf153 (Fig. 8.2 a). In the rhizosphere of plants grown in 

DOK-M and harvested eight weeks after sowing, inoculation with RU47 led to increases in 

bacterial and archeal abundances (Fig. 8.2 a). Proradix increased archeal abundance in the 

rhizosphere of Buus sampled four weeks after sowing (Fig. 8.2 a). In bulk soil sampled eight 

weeks after sowing, the addition of RU47 increased bacterial and archeal abundances in 

Buus, while archeal abundance was also enhanced by Proradix in DOK-M sampled four 

weeks after sowing (Fig. 8.2 b). In both rhizosphere and bulk soils as well as at both harvest 

dates, highest abundances of bacteria and archaea were found in soil Buus, while lowest 

values were determined in Le Caron (Fig. 8.2 a, Fig. 8.2 b). Fungal abundances shifted over 

time; in plants harvested four weeks after sowing, highest fungal abundances in both 

rhizosphere and bulk soil were found in soil DOK-M. In plants harvested eight weeks after 

sowing, highest fungal abundances were detected in soil Buus (Fig. 8.2 a, Fig. 8.2 b). In 

general, microbial abundance decreased over time; from the first to second harvest, 

abundances of bacteria, archaea and fungi in the rhizosphere decreased by approximately 

54 % (Fig. 8.2 a). In bulk soil, declines in bacterial and fungal abundances of approximately 

64 % were observed, while archaeal abundance was reduced by only 7 % (Fig. 8.2 b). 

VCA indicated no effect of inoculation (0 %) on bacterial or fungal growth, in either 

rhizosphere or bulk soil (Fig. 8.3). However, inoculation explained 3 and 1 % of the variance 

in archaeal abundance in rhizosphere and bulk soil, respectively (Fig. 8.3). While archaeal 

growth was primarily affected by soil, which explained up to 90 % of the variance, the 

abundances of bacteria and fungi were primarily influenced by time (Fig. 8.3). The respective 

dominant influencing factors on bacterial, fungal and archaeal abundances were stronger in 

bulk soil than in the rhizosphere (Fig. 8.3). 

Inoculation by the different Pseudomonas strains weakly influenced the abundances of the 

six bacterial phyla analysed in this study; in general, individual effects of the strains on 

bacterial communities were more pronounced in rhizosphere than in bulk soil, and in the 

second harvest compared with the first (Table 8.4 a, Table 8.4 b). Each Pseudomonas strain 
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added led to an increased abundance of Gemmatimonadetes in the rhizosphere of maize 

plants grown in Le Caron and harvested eight weeks after sowing (Table 8.4 a). In treatment 

Pf153 increased abundances of Betaproteobacteria and Acidobacteria were observed as 

well (Table 8.4 a). The addition of RU47 resulted in decreased Alphaproteobacteria 

abundance in the rhizosphere of Buus sampled four weeks after sowing, while abundances 

of Betaproteobacteria and Acidobacteria increased significantly in both soil DOK-M and Le 

Caron sampled eight weeks after sowing (Table 8.4 a). In Le Caron the addition of RU47 led 

to increased growth of Firmicutes as well (Table 8.4 a). In bulk soil, only one inoculation 

affected the bacterial community; the addition of Pf153 to soil DOK-M resulted in a significant 

decrease in Bacteroidetes abundance four weeks after sowing. (Table 8.4 b). In general, 

highest bacterial abundance was found in soil Buus; here the phyla Bacteroidetes and 

Acidobacteria dominated (Table 8.4 a, Table 8.4 b). Abundances of Alphaproteobacteria, 

Betaproteobacteria and Bacteroidetes were primarily affected by time; in general, their 

abundances decreased by approximately 80 % from the first to second harvest (Table 8.4 a, 

Table 8.4 b). 

VCA revealed that abundances of Betaproteobacteria, Bacteroidetes and Firmicutes were 

not influenced (0 %) by inoculation, either in rhizosphere or in bulk soil (Fig. 8.4). However, 

inoculation explained up to 3 % of the variance in abundances of Alphaproteobacteria, 

Acidobacteria and Gemmatimonadetes in soil (Fig. 8.4). Growth of Firmicutes, Acidobacteria 

and Gemmatimonadetes was primarily affected by the factor soil, which explained their 

abundances of about 54 and 65% in rhizosphere and bulk soil respectively (Fig. 8.4). By 

contrast, the factor time (4 and 8 WAS) explained up to 90 % of the variance in Alpha- and 

Betaproteobacterial abundances (Fig. 8.4). The abundance of Bacteroidetes was influenced 

by time and soil; VCA explained the observed variance in Bacteroidetes growth of about 32 

% by the factor time, and 28 % by the factor soil in both rhizosphere and bulk soil (Fig. 8.4). 

 

  



Effects of plant growth-promoting rhizobacteria on the indigenous soil microbial community structure of maize in three contrasting Swiss soils 

103 

 

 
Figure 8.2 a Abundance of domain-specific DNA sequences in the rhizosphere of maize plants using one non-inoculation (control), and three inoculation treatments: 
Pseudomonas fluorescens Pf153 (Pf153), P. sp. RU47 (RU47), and P. sp. DSMZ 13134 (Proradix). Plants grown in three different soils (Buus, DOK-M, Le Caron) and were 
harvested four and eight weeks after sowing (WAS). Values are presented as mean (n = 4); error bars indicate standard error. Significant differences (Tukey-HSD/Games-
Howell, p < 0.05) between the inoculation treatments within one soil and harvest date are marked by lowercase letters for bacteria, uppercase letters for archaea and Greek 
letters for fungi. 



Effects of plant growth-promoting rhizobacteria on the indigenous soil microbial community structure of maize in three contrasting Swiss soils 

104 

 

 
Figure 8.2 b Abundance of domain-specific DNA sequences in bulk soil of of maize plants using one non-inoculation (control), and three inoculation treatments: Pseudomonas 
fluorescens Pf153 (Pf153), P. sp. RU47 (RU47), and P. sp. DSMZ 13134 (Proradix). Plants grown in three different soils (Buus, DOK-M, Le Caron) and were harvested four 
and eight weeks after sowing (WAS). Values are presented as mean (n = 4); error bars indicate standard error. Significant differences (Tukey-HSD/Games-Howell, p < 0.05) 
between the inoculation treatments within one soil and harvest date are marked by lowercase letters for bacteria and uppercase letters for archaea. Differences in fungal 
abundance were not significant. 
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Figure 8.3 Variance components analysis showing the percent explained variance for inoculation (non-inoculation 
[control], P. fluorescens Pf153 [Pf153], P. sp. RU47 [RU47], P. sp. DSMZ 13134 [Proradix]), soil (Buus, DOK-M, 
Le Caron) and time (four and eight weeks after sowing) for abundances of bacteria, archaea and fungi in 
rhizosphere and bulk soil. 
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Table 8.4 a Abundance of phylum specific DNA sequences in the rhizosphere of maize using one non-inoculation (control), and three inoculation treatments: P. fluorescens 
Pf153 (Pf153), P. sp. RU47 (RU47) and P. sp. DSMZ 13134 (Proradix). Plants grown in three different soils (Buus, DOK-M, Le Caron) and were harvested four and eight weeks 
after sowing (WAS). Values are presented as mean ± standard error (SE) of four replicates. Significant differences (Tukey-HSD/Games-Howell, p < 0.05) between the 
inoculation treatments are marked by lowercase letters. Cp stands for copies. 

  Alphaproteobacteria  Betaproteobacteria Bacteroidetes    Firmicutes  Acidobacteria Gemmatimonadetes 

  Mean   SE Mean   SE Mean   SE Mean   SE Mean   SE Mean   SE 

4 WAS   [cp g-1]     [cp g-1]     [cp g-1]     [cp g-1]     [cp g-1]     [cp g-1]    

Buus 

Control 3.E+09 
a ± 4.E+08 3.E+10  ± 4.E+09 5.E+10  ± 1.E+10 2.E+09 

 ab ± 3.E+08 2.E+10 
 ab ± 3.E+09 9.E+08 

 ab ± 1.E+08 
Pf153 3.E+09 

a ± 6.E+08 2.E+10  ± 3.E+09 5.E+10  ± 2.E+10 1.E+09 
a ± 1.E+08 2.E+10 

a ± 1.E+09 8.E+08 
b ± 8.E+07 

RU47 6.E+08 
b ± 4.E+08 2.E+10  ± 3.E+09 4.E+10  ± 1.E+10 1.E+09 

 ab ± 1.E+08 2.E+10 
 ab ± 3.E+09 1.E+09 

 ab ± 1.E+08 
Psp13134 2.E+09 

 ab ± 3.E+08 3.E+10  ± 4.E+09 5.E+10  ± 1.E+10 2.E+09 
b ± 1.E+08 3.E+10 

b ± 3.E+09 1.E+09 
a ± 1.E+08 

DOK-M 

Control 1.E+09  ± 2.E+08 2.E+10  ± 1.E+09 2.E+10  ± 6.E+09 1.E+09  ± 1.E+08 1.E+10  ± 5.E+08 5.E+08  ± 4.E+07 
Pf153 2.E+09  ± 3.E+08 2.E+10  ± 2.E+09 2.E+10  ± 5.E+09 1.E+09  ± 2.E+08 1.E+10  ± 1.E+09 6.E+08  ± 1.E+08 
RU47 2.E+09  ± 3.E+08 3.E+10  ± 8.E+09 2.E+10  ± 6.E+09 1.E+09  ± 3.E+08 1.E+10  ± 2.E+09 8.E+08  ± 2.E+08 
Proradix 2.E+09  ± 3.E+08 2.E+10  ± 2.E+09 2.E+10  ± 5.E+09 1.E+09  ± 7.E+07 1.E+10  ± 7.E+08 6.E+08  ± 5.E+07 

Le Caron 

Control 3.E+09  ± 6.E+08 2.E+10 
 ab ± 3.E+09 7.E+09  ± 3.E+09 2.E+09  ± 3.E+08 1.E+10  ± 8.E+08 9.E+08  ± 8.E+07 

Pf153 4.E+09  ± 6.E+08 2.E+10 
b ± 2.E+09 1.E+10  ± 4.E+09 2.E+09  ± 1.E+08 1.E+10  ± 9.E+08 1.E+09  ± 6.E+07 

RU47 3.E+09  ± 6.E+08 1.E+10 
 ab ± 2.E+09 8.E+09  ± 3.E+09 1.E+09  ± 2.E+08 8.E+09  ± 1.E+09 8.E+08  ± 1.E+08 

Proradix 3.E+09  ± 9.E+07 1.E+10 
 a ± 2.E+09 8.E+09  ± 1.E+09 2.E+09  ± 2.E+08 7.E+09  ± 1.E+09 7.E+08  ± 1.E+08 

8 WAS                          

Buus 

Control 6.E+08  ± 1.E+08 7.E+09  ± 8.E+08 1.E+10  ± 3.E+09 1.E+09  ± 9.E+07 2.E+10  ± 2.E+09 1.E+09  ± 9.E+07 
Pf153 8.E+08  ± 1.E+08 8.E+09  ± 7.E+08 1.E+10  ± 3.E+09 2.E+09  ± 1.E+08 2.E+10  ± 2.E+09 1.E+09  ± 2.E+08 
RU47 6.E+08  ± 1.E+08 7.E+09  ± 4.E+08 1.E+10  ± 3.E+09 2.E+09  ± 2.E+08 2.E+10  ± 1.E+09 1.E+09  ± 5.E+07 
Proradix 7.E+08  ± 1.E+08 7.E+09  ± 8.E+08 1.E+10  ± 4.E+09 2.E+09  ± 2.E+08 2.E+10  ± 2.E+09 1.E+09  ± 2.E+08 

DOK-M 

Control 2.E+08  ± 3.E+07 5.E+09 
b ± 2.E+08 3.E+09  ± 1.E+09 7.E+08 

 ab ± 5.E+07 7.E+09 
b ± 5.E+08 6.E+08 

b ± 3.E+07 
Pf153 1.E+08  ± 6.E+07 6.E+09 

 ab ± 5.E+08 2.E+09  ± 5.E+08 8.E+08 
 a ± 6.E+07 8.E+09 

b ± 6.E+08 5.E+08 
b ± 9.E+07 

RU47 2.E+08  ± 2.E+07 6.E+09 
 a ± 4.E+08 5.E+09  ± 1.E+09 1.E+09 

 a ± 6.E+07 1.E+10 
 a ± 7.E+08 8.E+08 

 a ± 7.E+07 
Proradix 2.E+08  ± 2.E+07 5.E+09 

 ab ± 3.E+08 2.E+09  ± 5.E+08 6.E+08 
 b ± 3.E+07 8.E+09 

 b ± 5.E+08 6.E+08 
 ab ± 4.E+07 
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Le Caron 

Control 2.E+08  ± 3.E+07 3.E+09 
 b ± 9.E+07 1.E+09  ± 3.E+08 1.E+09 

 b ± 9.E+07 4.E+09 
 b ± 3.E+08 6.E+08 

 b ± 4.E+07 
Pf153 4.E+08  ± 7.E+07 4.E+09 

 a ± 3.E+08 3.E+09  ± 6.E+08 1.E+09 
 ab ± 1.E+08 7.E+09 

 a ± 4.E+08 1.E+09 
 a ± 6.E+07 

RU47 4.E+08  ± 1.E+08 4.E+09 
 ac ± 2.E+08 4.E+09  ± 1.E+09 2.E+09 

 a ± 1.E+08 7.E+09 
 a ± 4.E+08 9.E+08 

 a ± 2.E+07 
Proradix 4.E+08  ± 7.E+07 3.E+09 

 bc ± 1.E+08 3.E+09  ± 9.E+08 1.E+09 
 ab ± 5.E+07 5.E+09 

 ab ± 2.E+08 8.E+08 
 a ± 2.E+07 

 

 

 

 

Table 8.4 b Abundance of phylum specific DNA sequences in bulk soil of maize using one non-inoculation (control), and three inoculation treatments: P. fluorescens Pf153 
(Pf153), P. sp. RU47 (RU47) and P. sp. DSMZ 13134 (Proradix). Plants grown in three different soils (Buus, DOK-M, Le Caron) and were harvested four and eight weeks after 
sowing (WAS). Values are presented as mean ± standard error (SE) of four replicates. Significant differences (Tukey-HSD/Games-Howell, p < 0.05) between the inoculation 
treatments are marked by lowercase letters. Cp stands for copies. 

  Alphaproteobacteria  Betaproteobacteria  Bacteroidetes   Firmicutes  Acidobacteria Gemmatimonadetes 

  Mean   SE Mean   SE Mean   SE Mean   SE Mean   SE Mean   SE 

4 WAS   [cp g-1]     [cp g-1]     [cp g-1]     [cp g-1]     [cp g-1]     [cp g-1]    

Buus 

Control 2.E+09  ± 3.E+08 2.E+10  ± 1.E+09 3.E+10  ± 1.E+10 8.E+08  ± 7.E+07 2.E+10  ± 1.E+09 5.E+08  ± 4.E+07 
Pf153 2.E+09  ± 5.E+08 3.E+10  ± 4.E+09 3.E+10  ± 1.E+10 9.E+08  ± 6.E+07 2.E+10  ± 2.E+09 6.E+08  ± 5.E+07 
RU47 2.E+09  ± 6.E+08 2.E+10  ± 3.E+09 3.E+10  ± 1.E+10 8.E+08  ± 1.E+08 2.E+10  ± 3.E+09 6.E+08  ± 4.E+07 
Proradix 2.E+09  ± 5.E+08 2.E+10  ± 2.E+09 2.E+10  ± 1.E+10 8.E+08  ± 2.E+07 2.E+10  ± 2.E+09 5.E+08  ± 3.E+07 

DOK-M 

Control 9.E+08  ± 1.E+08 2.E+10  ± 1.E+09 8.E+09 
 a ± 3.E+09 5.E+08  ± 6.E+07 6.E+09  ± 6.E+08 3.E+08  ± 2.E+07 

Pf153 7.E+08  ± 1.E+08 1.E+10  ± 8.E+08 0.E+00 
 b ± 0.E+00 5.E+08  ± 3.E+07 5.E+09  ± 5.E+08 3.E+08  ± 2.E+07 

RU47 8.E+08  ± 7.E+07 2.E+10  ± 1.E+09 7.E+09 
 ab ± 2.E+09 5.E+08  ± 4.E+07 7.E+09  ± 6.E+08 3.E+08  ± 1.E+07 

Proradix 8.E+08  ± 1.E+08 1.E+10  ± 6.E+08 7.E+09 
 ab ± 1.E+09 5.E+08  ± 4.E+07 6.E+09  ± 8.E+08 3.E+08  ± 1.E+07 

Le Caron 

Control 2.E+09  ± 5.E+08 1.E+10  ± 2.E+09 3.E+09  ± 2.E+09 9.E+08  ± 2.E+08 9.E+09  ± 1.E+09 5.E+08  ± 1.E+08 
Pf153 1.E+09  ± 3.E+08 1.E+10  ± 3.E+09 3.E+09  ± 8.E+08 7.E+08  ± 2.E+08 7.E+09  ± 2.E+09 5.E+08  ± 1.E+08 
RU47 2.E+09  ± 2.E+08 1.E+10  ± 1.E+09 3.E+09  ± 1.E+09 7.E+08  ± 7.E+07 7.E+09  ± 3.E+08 4.E+08  ± 6.E+06 
Proradix 2.E+09  ± 6.E+08 1.E+10  ± 2.E+09 5.E+09  ± 2.E+09 8.E+08  ± 1.E+08 9.E+09  ± 2.E+09 5.E+08  ± 8.E+07 
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8 WAS                          

Buus 

Control 1.E+09  ± 2.E+08 2.E+06  ± 2.E+05 2.E+09  ± 4.E+08 1.E+09  ± 9.E+07 1.E+10  ± 1.E+09 7.E+08  ± 9.E+07 
Pf153 1.E+09  ± 3.E+08 2.E+06  ± 1.E+05 3.E+09  ± 1.E+09 1.E+09  ± 1.E+08 2.E+10  ± 1.E+09 7.E+08  ± 5.E+07 
RU47 1.E+09  ± 2.E+08 1.E+06  ± 4.E+05 3.E+09  ± 9.E+08 1.E+09  ± 7.E+07 2.E+10  ± 2.E+09 9.E+08  ± 7.E+07 
Proradix 1.E+09  ± 3.E+08 2.E+06  ± 2.E+05 3.E+09  ± 1.E+09 1.E+09  ± 2.E+08 1.E+10  ± 2.E+09 7.E+08  ± 1.E+08 

DOK-M 

Control 2.E+08  ± 5.E+07 9.E+05  ± 3.E+05 6.E+08  ± 3.E+08 4.E+08  ± 1.E+08 3.E+09  ± 1.E+09 2.E+08  ± 8.E+07 
Pf153 4.E+08  ± 4.E+07 1.E+06  ± 1.E+05 1.E+09  ± 3.E+08 6.E+08  ± 1.E+07 5.E+09  ± 4.E+08 2.E+08  ± 8.E+07 
RU47 4.E+08  ± 8.E+07 1.E+06  ± 1.E+05 1.E+09  ± 4.E+08 6.E+08  ± 8.E+07 6.E+09  ± 9.E+08 4.E+08  ± 5.E+07 
Proradix 2.E+08  ± 4.E+07 9.E+05  ± 3.E+04 5.E+08  ± 2.E+08 4.E+08  ± 1.E+08 4.E+09  ± 3.E+08 2.E+08  ± 2.E+07 

Le Caron 

Control 3.E+08  ± 8.E+07 9.E+05  ± 2.E+05 4.E+08  ± 1.E+08 9.E+08  ± 2.E+08 4.E+09  ± 1.E+09 3.E+08  ± 3.E+07 
Pf153 4.E+08  ± 2.E+08 7.E+05  ± 3.E+05 3.E+08  ± 2.E+08 6.E+08  ± 3.E+08 3.E+09  ± 1.E+09 3.E+08  ± 1.E+08 
RU47 3.E+08  ± 6.E+07 8.E+05  ± 6.E+04 6.E+08  ± 3.E+08 8.E+08  ± 8.E+07 5.E+09  ± 3.E+08 5.E+08  ± 3.E+07 
Proradix 4.E+08  ± 8.E+07 7.E+05  ± 8.E+04 6.E+08  ± 3.E+08 7.E+08  ± 7.E+07 3.E+09  ± 4.E+08 4.E+08  ± 5.E+07 
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Figure 8.4 Variance components analysis showing the percent explained variance for for inoculation (non-
inoculation [control], P. fluorescens Pf153 [Pf153], P. sp. RU47 [RU47], P. sp. DSMZ 13134 [Proradix]), soil 
(Buus, DOK-M, Le Caron) and time (four and eight weeks after sowing) for abundances of Alphaproteobacteria, 
Betaproteobacteria, Bacteroidetes, Firmicutes, Acidobacteria and Gemmatimonadetes in rhizosphere and bulk 
soil. 

8.4 Discussion 

Effects on plant growth 

Inoculation by the three Pseudomonas strains did not improve growth of maize overall. 

However, a plant growth-promoting effect of each inoculation was observed in soil Le Caron 

(8 WAS), shown by significantly increased shoot heights (Table 8.3); furthermore, the 

addition of Proradix and RU47 also increased shoot biomass (Fig. 8.1). PGPR’s ability to 

improve plant growth is due primarily to their competence in colonizing the rhizosphere at 

sufficiently high abundance for an extended period (Barret et al. 2011, Bellis and Ercolani 

2001). Mosimann et al. (2017), who have traced two of the three Pseudomonas strains 

added 4 weeks after sowing, determined Pf153 and Proradix abundances of 1 × 104 and 1.6 

× 104 CFU g-1 root fresh matter, respectively. Despite low variability in abundances between 

the soils, Mosimann et al. (2017) found improved persistence of both in the soil Buus, and 
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which was significant for Pf153. A plant growth-promoting effect of Proradix observed in 

plants grown in Le Caron could not, therefore, be associated with an increased abundance of 

this strain. As previously noted by Mosimann et al. (2017), although Proradix is known as an 

effective solubilizer of tricalcium phosphate (Miller et al. 2010, Buddrus-Schiemann et al. 

2010, Fröhlich et al. 2012), it is highly unlikely that this characteristic contributed significantly 

to enhanced plant growth, since in acidic soils like Le Caron (Table 8.1) phosphate is bound 

mainly to Al and Fe compounds (Jones 1998, Gyaneshwar et al. 2002). Proradix is 

commonly used as a bio-control agent, but pathogen-independent plant growth-promoting 

effects have been observed in other studies (Yusran et al. 2009, Fröhlich et al. 2012, 

Eltlbany et al. in preparation). However, the underlying mechanisms of plant growth 

promotion by Proradix have not yet been fully elucidated and cannot be explained by the 

present study. Despite its demonstrated survival success in all soils, we found reduced plant 

growth in Pf153 treatments for the most part (Fig. 8.1, Table 8.3). Mosimann et al. (2017) 

assumed that this was most likely due to Pf153’s ability to produce cyanide (Fuchs 1993, 

Compant et al. 2010), which provides it with a competitive advantage against native 

microorganisms but which may negatively affect plant growth. 

Effects in microbial biomass and community structure 

The addition of various inocula did not affect the quantities of microbially bound C, N and P in 

bulk soil; these values were primarily affected by soil (Table 8.3, Fig. 8.S1). As anticipated, 

highest amounts of Cmic, Nmic as well as Pmic were found in the organically managed soil 

Buus, which is characterized by a high percentage of organic C (Corg), suggesting high 

microbial abundance and activity, while lowest values were determined in the comparably 

Corg-poor soil DOK-M (Table 8.1). Our observation that the quantities of Cmic and Nmic, and 

therefore microbial biomass, decreased from the first to second harvest was most likely due 

to a decrease in nutrients in the soil substrates (Table 8.3). However, Pmic values remained 

unaffected by time (Table 8.3, Fig. 8.S1) resulting in shifts in atomic C:P and N:P ratios. The 

calculation of atomic C:P and N:P ratios were based on the microbial biomass data, given in 

Table 8.3, enabling us to gain a first insight into potential shifts in microbial community 

structure. We observed a decrease in C:P and N:P values, from 59 to 44 and 7 to 5, 

respectively, from the first to the second harvest. Values of the first harvest corresponded 

almost exactly to the average nutrient ratio in microbial biomass in terrestrial ecosystems 

(Cleveland and Liptzin 2007). Microbial biomass atomic C:P and N:P ratios of the second 

harvest indicated a dominance of bacterial cells (Reiners 1986); however, we observed 

deceased bacterial abundances (Fig. 8.2 b). Nevertheless, microbial biomass stoichiometry 
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can vary significantly between different groups of microorganisms (Reiners 1986, Paul and 

Clark 1996, Cleveland and Liptzin 2007). Thus, our finding may indicate a time-dependent 

shift in microbial community structure and could be associated with our observation of a 

relatively stable bulk soil archaeal population with simultaneous decreases in bacterial and 

fungal abundances by approximately 64 % from the first to second harvest (Fig. 8.2 b).  

In line with our findings on the microbial biomass and microbial nutrient status in bulk soil, 

here, only minor effects of inoculation on soil bacterial, archaeal, and fungal abundances 

were observed (Fig. 8.3). Although inoculation effects differed between the strains added, 

soils, and harvest dates, effects were more pronounced in the rhizosphere than in bulk soil 

(Fig. 8.2 a, Fig. 8.2 b), which corresponds to our hypothesis that PGPR primarily affect 

rhizosphere microbial composition due to microbial colonization of roots. Persistence of the 

PGPR strain added was examined and proven for Pf153 and Proradix (Mosimann et al. 

2017). The strain DSMZ 13134 (Proradix) is known as a mycorrhiza-helper bacterium 

(Yusran et al. 2009), while the cyanide-producing strain Pf153 (Fuchs 1993, Fuchs et al. 

2000) as well as RU47 have been reported to be effective fungicidal biocontrol agents 

(Adesina et al. 2009, Schreiter et al. 2014 c). However, despite its demonstrated persistence, 

Proradix did not affect the abundance of fungi in soil. RU47 also did not affect fungal 

abundance but surprisingly, Pf153 improved fungal growth in two cases (Fig. 8.2 a, Fig. 8.2 

b). These findings are in accordance with Mosimann et al. (2017), who estimated 

colonization by native arbuscular mycorrhizal fungi and observed no effect of inoculation as 

well. Tracing Pf153 and Proradix, Mosimann et al. (2017) found their improved persistence in 

the soil Buus, and this was statistically significant for the strain Pf153. The soil Buus was 

taken from an organically managed field site comprising a crop rotation of 50 % grass-clover; 

accordingly, this soil is rich in nutrients (primary organically-bound) and characterized by high 

microbial biomass (Table 8.1, Table 8.3) suggesting intensified competitive conditions for 

colonizing PGPR. However, in agreement with the assumption of Mosimann et al. (2017), the 

nutritional richness of this soil may have improved the persistence of Pf153 and Proradix in 

Buus. Notwithstanding the above, contrary to our hypothesis, which expected a less 

pronounced PGPR effect on soil microbial communities in soils characterized by high 

indigenous microbial populations, we did not even find an intensified inoculation effect in the 

soil where higher Pf153 and Proradix abundances were determined.  

The addition of the three PGPR strains rarely influenced bacterial community structure in the 

soil (Table 8.4 a, Table 8.4 b, Fig. 8.4). However, individual inoculation effects occurred 

differently depending on the strain added, the soil, and which harvest date was examined 
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(Table 8.4 a, Table 8.4 b). In line with results of the determination of microbial composition at 

the domain level, we observed individual inoculation effects on bacterial communities more 

frequently in rhizosphere than in bulk soil (Table 8.4 a, Table 8.4 b). This observation was 

expected since each strain used in this study is described as highly rhizosphere competent 

(Von Felten et al. 2010, Buddrus-Schiemann et al. 2010, Adesina et al. 2009). Also, other 

studies have found marginal to no effects of PGPR on bacterial community composition in 

the rhizosphere of plants, with plant age appearing to be the major factor controlling 

microbial community structure (Scherwinski et al. 2008, Piromyou et al. 2011, Chowdhury et 

al. 2013, Kröber et al. 2014). Similar findings have also been reported by Schreiter et al. 

(2014 b), who investigated the effects of RU47 on bacterial community composition in the 

rhizosphere of lettuce in a long-term field experiment (3 years) composed of three different 

soil types (diluvial sand, alluvial loam and loess loam) at the same field site. Despite slight 

but statistically significant effects of RU47 on bacterial community structure, these effects 

were much less pronounced than the influence of the different soil types. This is also in 

accordance with our results, which showed that abundances of Firmicutes, Acidobacteria 

and Gemmatimonadetes were primarily affected by the factor soil (Fig. 8.4). Bacteria 

belonging to the Acidobacteria and Gemmatimonadetes phyla are considered oligotrophic 

organisms, not dependent on easily available substrates (Fierer et al. 2007, Nemergut et al. 

2010, Ditterich et al. 2016). This fully confirms our observation that highest abundances of 

Acidobacteria and Gemmatimonadetes were found in soil Buus, which is characterized by 

high Corg and lowest N and P availability in comparison to all other soils (Table 8.1, Table 8.3, 

Table 8.4). Water content did not differ much between the various soil substrates in this our 

study (data not shown). DeBruyn et al. (2011) reported a negative correlation between soil 

moisture and Gemmatimonadetes abundance, indicating a competitive advantage under dry 

soil conditions. However, bacterial abundances of all phyla determined were positively 

correlated to water content, with the highest correlation coefficient among 

Gemmatimonadetes (Pearson’s r = 0.4; p < 0.00), in contradiction to their findings. We 

observed a copiotrophic life-strategy in Alpha- and Betaproteobacterial abundances, with 

reduced abundances in bulk soil compared with the rhizosphere, as well as a decreased 

abundances by time as nutrient availability became limited in the soil substrates (Table 8.4 a, 

Table 8.4 b, Fig. 8.4). A copiotrophic nutritional strategy was also reported for Alpha- and 

Betaproteobacteria as well as for Bacteroidetes by Fierer et al. (2007). However, in our 

study, the abundance of Bacteroidetes was affected similarly by time and by soil (Fig. 8.4). 

Nevertheless, not all members of a phylum follow the same life-strategies; copiotrophic or 

oligotrophic categories may not necessarily apply to certain taxa (Fierer et al. 2007). Based 
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on the assumption that bacterial groups employing a copiotrophic life-strategy in this study 

mainly belonged to the Alpha- and Betaproteobacteria phyla, minor to no effects of added 

PGPR strains to their abundances were observed (Fig. 8.4). This finding refutes our 

hypothesis that due to increasing C limitation during PGPR colonization abundances of 

copiotrophic bacteria will be decreased. However, it must be considered that bacterial 

community composition is represented by six phyla in this study. Effects of PGPR on other, 

yet-to-be-determined taxa (e.g. Delta- and Gammaproteobacteria) or copiotrophic bacterial 

groups belonging to different phyla cannot be excluded and should be considered in further 

studies.  

8.5 Conclusion 

Our study demonstrated that inoculations with various PMB-capable PGPR strains did not 

affect microbial populations or community structure in either rhizosphere or bulk soil under 

maize. Individual inoculation effects occurred more frequently in rhizosphere than in bulk soil, 

but varied between the strains added, the contrasting soils, and the two harvest dates. 

Instead, differences in microbial biomass and composition at the domain level were due 

primarily to nutrient availability in the soil substrate, which differed between the soils and 

harvest dates. PGPR did not increase bacterial abundance in rhizosphere bacteria; 

furthermore, there was no evidence that due to increasing C limitation during PGPR 

colonization inoculations of PGPR led to decreased abundances of copiotrophic bacteria in 

the rhizosphere. However, bacterial community composition was represented by six phyla in 

this study. Shifts in bacterial community structure among other bacterial phyla as well as at 

levels of resolution lower than that of taxa cannot be excluded and should by taken into 

consideration in further studies. 
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Supplemental material 

 
Figure 8.S1 Variance components analysis showing the percent explained variance for inoculation (non-
inoculation [control], P. fluorescens Pf153 [Pf153], P. sp. RU47 [RU47], P. sp. DSMZ 13134 [Proradix]), soil 
(Buus, DOK-M, Le Caron) and time (four and eight weeks after sowing) for concentrations of microbially bound C 
(Cmic), N (Nmic), and P (Pmic) in bulk soil. 
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9 General Discussion 

9.1 PMB persistence 

In most studies investigating effects of PMB on growth and nutrient uptake of plants, the 

persistence of PMB introduced into soil has not been examined. However, of those studies 

which have been able to track the added PMB, most have reported a temporal decrease in 

soil (Kim et al. 1997, Dey et al. 2004, Hameeda et al. 2008, Meyer et al. 2017). For instance, 

Hameeda et al. (2008), who used Serratia marcescens EB 67 for inoculation in a greenhouse 

experiment with maize, observed a population decrease of 36 % within 84 days in 

rhizosphere soil. Meyer et al. (2017), using Pseudomonas protegens CHA0 in a pot 

experiment with ryegrass, reported a recovered abundance in soil of less than 1 % within 40 

days. These reports indicate that neither successful rhizosphere colonization nor persistence 

for an extended time period can be expected when PMB are applied to plant or soil. Rather, 

PMB’s survivability in soil is likely to depend on host plant, environmental, and soil 

conditions, as well as the indigenous microbial community competing with PMB for habitat, C 

sources and nutrients. In all our rhizobox experiments we not only recovered the PMB RU47 

in soil up to 50 days after sowing, but also recorded highest abundances, higher in the 

rhizosphere than in bulk soil, in treatments where viable RU47 cells were added (Table 5.1, 

Table 6.1, Table 7.1). Our experiments clearly demonstrated the high rhizosphere 

competence of RU47; it was able to colonize and persist in soil of tomato and maize plants 

under greenhouse conditions. These findings provide useful information regarding RU47’s 

applicability in plant production, especially as the three leading European tomato producers 

are Italy, Spain, and Greece (FAOSTAT 2014) where tomato cultivation takes place mainly 

under greenhouse conditions. Adesina et al. (2009) and Schreiter et al. (2014 b, c) had 

previously demonstrated high rhizosphere competence of RU47 in lettuce, and also identified 

its effective antifungal capacity against Rhizoctonia solani. The ability of a bio-control 

inoculant such as PMB to colonize the rhizosphere at sufficiently high abundance is crucial 

for pathogen suppression and defence (Bellis and Ercolani 2001, Barret et al. 2011). Thus, 

the proven rhizosphere competence of RU47 on tomato offers a promising approach for bio-

control against soil-borne fungal plant pathogens in general, and Rhizoctonia solani in 

particular, a fungus which also infects tomato roots. Taken together, our results are of great 

practical relevance, but limited by the current use of soilless substrates (e.g. rock wool or 

coconut fibre), which is increasing in commercial vegetable production, including tomato, 

under glass (Jankauskienė et al. 2015). 
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Under high plant-available P as compared to low plant-available P soil conditions, we 

observed an increase in RU47 abundance in both rhizosphere and bulk soil (Table 7.1). This 

was in agreement with our hypothesis that improved initial soil conditions (nutrient 

availability) improve PMB’s ability to successfully colonize the soil and thus increase their 

beneficial effects on plants. Similar observations were previously reported by Kaur and 

Reddy (2015), who co-applied Pantoea cypripedii or Pseudomonas plecoglossicida together 

with rock phosphate. They observed, apart from the increased PMB abundance and 

microbial activity in soil, plant growth-promoting effects on wheat and maize. Increased plant 

growth-promoting effects by co-application of PMB and P fertilizers (mainly rock phosphate) 

were also reported by Yu et al. (2011) and Kaur and Reddy (2014), and are assumed to be 

associated with an increase in inorganic P compounds, which improved PMB’s P-solubilizing 

activity and competitiveness with indigenous soil microbes. By introducing viable RU47 cells 

into highly Ca(H2PO4)2 fertilized soil, we were able to demonstrate that increased nutrient 

availability in soil is sufficient to increase PMB abundance in soil – even without improved 

competitiveness regarding microbial P solubilization mechanisms in soil. Based on these 

results, and including data from previous studies using rock/tricalcium phosphate, we can 

recommend co-applications of PMB with mineral P fertilizers both for biocontrol and to 

improve nutrient availability more generally. 

In two of three rhizobox experiments, we detected RU47-specific DNA sequences in non-

target treatments, meaning positive detections in treatments to which no RU47 cells were 

added (Table 5.1, Table 6.1). Since the majority of PMB, including RU47, have been isolated 

from natural rhizosphere bacterial communities associated with different plant species 

(Rodríguez and Fraga 1999, Fankem 2006), the presence of RU47 in soil which was also 

used to cultivate the unselective bacterial mix may indicate that it is part of the natural 

bacterial rhizosphere communities of tomato and maize. The RU47-specific DNA sequence 

also remained detectable in the dead RU47 treatments of each rhizobox experiment (Table 

5.1, Table 6.1, Table 7.1). During decomposition of lysed cells in soil, factors such as high 

salt concentration (fertilization), high pH values (> 5), and percentage of quartz sand 

increase the probability that enzymes (proteases, nucleases) as well as free DNA are 

adsorbed to surface-reactive soil particles. This in turn increases the persistence of both 

lysed cells and their DNA in soil (Lorenz and Wackernagel 1987, Khanna and Stotzky 1992, 

Demanèche et al. 2001, Pietramellara et al. 2009). Accordingly, we recommend that, in 

addition to high-sensitivity molecular biological tracing techniques, re-cultivations of the PMB 

added from soil using selective media should be performed. Use of both tracing methods 

would clarify not only whether positive detections of PMB-specific DNA sequences in non-

target treatments originated from viable PMB cells, but also whether potential positive plant 
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growth-promoting effects are associated with viable PMB cell processes or with indirect 

mechanisms, such as interactions with cell-decomposing microbes or phytohormones co-

applied with the dead PMB cells. 

9.2 Effects on plant growth and P nutrition 

We were able to demonstrate that applications of viable RU47 cells increase the growth and 

P uptake of tomato plants grown under reduced plant-available P soil conditions (Fig. 5.1, 

Table 5.2, Fig. 7.1, Table 7.2, Fig. 7.3 a, Fig. 7.3 b). These findings are in accordance with 

previous studies in which growth-promoting effects of PMB on different plant species were 

reported (Chabot et al. 1996, Kim et al. 1997, Sundara et al. 2002, Hussain et al. 2013, 

Surapat et al. 2013). For instance, Hussain et al. (2013), testing five PMB strains belong to 

the genera Burkholderia, Bacillus, Pseudomonas, and Flavobacterium in a pot experiment 

with maize, observed increases in plant biomass and kernel yield of up to 42 and 33 %, 

respectively. In addition, Surapat et al. (2013) reported increases in growth and P uptake of 

chili plants inoculated with Burkholderia tropica KS04. Since RU47 had been used as an 

antifungal bio-control agent in previous studies (Adesina et al. 2007, 2009, Schreiter et al. 

2014 b, c), the proven ability to promote growth and P uptake in tomato plants offers an 

additional application in practical farming. However, although RU47 was identified as highly 

effective against the fungal plant pathogen Rhizoctonia solani on lettuce roots, increases in 

plant growth were not observed (Adesina et al. 2009). Eltlbany et al. (in preparation) using 

the same soil and tomato variety as was used in our rhizobox experiments, also observed a 

plant growth-promoting effect with the addition of RU47. This suggests that RU47’s beneficial 

effects on plant growth may depend on the host-plant and/or soil conditions, and should be 

considered in further studies. However, the use of RU47 offers a promising practical 

application. Nevertheless, its practical use is not without risk. RU47 is resistant to rifampicin, 

tetracycline, ampicillin, and chloramphenicol (Eltlbany et al. in preparation). Therefore, its 

practical application also may negatively influence microbial diversity in soil, and its antibiotic 

resistance genes might be transferred (via horizontal gene transfer) to other bacteria, 

including human pathogens (Forsberg et al. 2012). 

In accordance with our hypothesis that improved nutrient availability in soil increases PMB’s 

survivability and thus its beneficial effects on plants, we observed increases in plant growth 

in tomato plants which were inoculated with viable RU47 cells and grown under high plant-

available P soil conditions (Fig. 7.1, Fig. 7.2, Table 7.2). Similar findings were also reported 

by Yu et al. (2011), who inoculated 1-year-old walnut seedlings with Pseudomonas 

chlororaphis W24, Bacillus cereus W9, and Pseudomonas fluorescens W12 and observed an 
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increase in plant growth when PMB was co-applied with tricalcium phosphate. Our 

observation that RU47 abundance increased when soil was not reduced in P availability 

(Table 7.1) indicates active RU47-mechanisms promoting plant growth. Since P-mobilizing 

mechanisms improving plant P supply can be excluded under high plant-available P soil 

conditions, the tendency toward enhanced plant growth can likely be attributed to 

phytohormones secreted by RU47. This is discussed in more detail in the following chapter. 

A derivative recommendation to increase P fertilization when PMB are added to soil does not 

seem appropriate given the goal of reducing of mineral P fertilizers in agriculture. However, 

improved PMB colonization includes rapid incorporation of P into the bacterial biomass, 

effectively protecting available P from soil reactions and serving as a temporary P sink for 

plants (Olander and Vitousek 2004). Furthermore, the greater the PMB population, the 

greater the amount of P that can be mobilized when P becomes limited in soil. Thus, 

subsequent improved P mobilization by PMB resulting in growth and nutrition-promoting 

effects on plants over the long-term are possible. Our maize experiment found no growth-

promotion effects by the addition of RU47 on maize seedlings 14 days after sowing (Table 6. 

2). An optimal P supply in the early stages of plant development is crucial for ensuring high 

yields in maize production (Mollier and Pellerin 1999). Yields in kernel number and weight 

are especially sensitive to P in the early growth stages, which extend from sowing to the 6-

leaf-stage (Berry and Miller 1989). In general, however, to evaluate PMB’s beneficial effects 

on plants in a practical context, data on yield properties would be required and should be 

considered in future studies, since beneficial effects of RU47 on later growth and P nutrition 

of maize cannot be excluded. Although we demonstrated an increase in biomass and P 

nutrition on tomato plants by the addition of RU47, increases in fruit yield could not be 

conclusively determined. 

As the first study to use dead PMB strains, we also observed improved plant growth and P 

nutrition on tomato plants by the addition of dead RU47 cells, especially under reduced 

available P soil conditions (Fig. 5.1, Table 5.2, Table 7.2, Fig. 7.3 a, Fig. 7.3 b). These 

findings indicate that plant growth was stimulated by phytohormones produced by RU47 

and/or indigenous soil microbes which may have been promoted by the addition of C sources 

in the form of bacterial residues to the soil. The latter may explain why, under high P soil 

conditions, plant growth-promotion trends were more pronounced in the dead RU47 

treatment than in the treatment using viable RU47 cells. Potential competition for substrates 

and habitats in the rhizosphere between indigenous microbes and the colonizing viable 

RU47 bacteria may be an additional factor reducing plant promotion in the viable RU47 

treatment. The possibility of using dead RU47 cells in practical farming offers a major 

production advantage since the formulation of viable RU47 is still not possible (Voigt 2014, 
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personal communication). PMB, which do not form spores as, e.g. Bacillus does, are difficult 

to produce commercially since their viability must be ensured. Future studies should test 

whether other PMB strains also demonstrate plant growth-promoting capabilities in their 

devitalized forms. We found indications of the underlying mechanisms, including plant 

impacts by RU47-derived phytohormones and interactions with indigenous microbes, 

increasing microbial activity in soil and/or secretion phytohormones themselves. These 

mechanisms are described in more detail in the following sections. 

9.3 Effects on P mineralization in soil 

We demonstrated that the addition of viable RU47 cells increased alkaline PA in the 

rhizosphere of tomato plants, especially under reduced P soil conditions (Fig. 5.2 a, Fig. 7.4 

b). The ability to mineralize organic P compounds effectively had previously been shown in 

laboratory experiments using Pseudomonas putida P13 and P. putida PCI2 by Malboobi et 

al. (2009) and Pastor et al. (2012), respectively. Data on effects of PMB on PA in soil are 

rare; however, Kaur and Reddy (2015), for instance, reported significant increases in both 

acid and alkaline PA in the rhizosphere of wheat and maize plants by inoculation of P. 

plecoglossicida PSB-5. While acid phosphomonoesterase is produced by plant roots and 

microbes, alkaline phosphomonoesterase is synthesized exclusively by microorganisms 

(Dick et al. 1983, Juma and Tabatabai 1988, Nannipieri et al. 2011). Thus, considering the 

demonstrated rhizosphere competence of RU47 (Table 5.1, Table 6.1, Table 7.1), our 

findings clearly show that increased P mineralization in the rhizosphere is due to microbial 

processes and is, very probably, RU47-derived, providing important insights into functional 

mechanisms of PMB. However, we also found increased alkaline PA in treatments using 

dead RU47 cells (Fig. 6.3, Fig. 7.4 b). Since the devitalisation of cells was ensured by plating 

tests, RU47-derived PA can be excluded in the dead RU47 treatments. The observed effect 

may have been due to enhanced growth and activity of previously dormant microbial 

populations through the addition of bacterial residues (dead RU47 cells) to soil and thus a 

supply of FOM, known as the priming effect (Bingeman et al. 1953, Fontaine et al. 2003). A 

priming effect driven by another mechanism can also occur in the rhizosphere when viable 

PMB are added. Rhizosphere-colonizing PMB utilize root exudates as an easily available C 

source. Since microbial incorporation of C, N, and P are coupled (Cleveland and Liptzin 

2007), an increase in C incorporation increases mobilization of N and P from soil organic 

matter (Cheng 2009, Richardson and Simpson 2011). Until recently, it was unclear whether 

increased P mineralization in soil by the addition of PMB was independent of endogenous 

microbial turnover of organic matter, since effects of PMB on plant growth and P mobilization 

have, to date, been compared only with non-inoculated controls. By including a treatment in 
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which a mix of unselectively cultivated soil bacteria were used for inoculation, we are able to 

state that microbial PA determined in both viable and dead RU47 treatments are above the 

level of endogenous microbial P mineralization (Fig. 7.4 b). The proportion of organic P in 

soil ranges between 4 and 90 % (Khan et al. 2009 a). The use of RU47 can therefore be 

recommended, especially in soils possessing an appropriate proportion of organic P. Soil 

microorganisms mineralize P in soil more frequently by phytase than by 

phosphomonoesterase (Bünemann 2008, Aseri et al. 2009). An increase in phytase activity 

in soil after the addition of PMB (Pantoea cypripedii, Pseudomonas plecoglossicida) was 

previously reported by Kaur and Reddy (2014, 2015). Since more P is bound in the form of 

phytic acid and its salts (6 mol P mol-1 phytate) than in other organic P compounds in soil, 

and since phytase is more effective than other phosphatases (Richardson 1994, Bünemann 

2008), enhanced secretion of phytase by PMB provides considerable potential for 

exploitation of organic P in plant production. Thus, future studies should focus more on 

phytase activity of PMB, especially of RU47, which has already shown to be effective in 

increasing phosphomonoesterase activity in soil. However, since, at least in case of the dead 

RU47 treatments, it is very likely that indigenous microbes are responsible for the increased 

P mineralization in soil, molecular-based techniques making use of homologies at the 

sequence level of bacterial phosphatase-encoding genes (including phytase; Lim et al. 2007) 

could identify the main phosphatase producers in a microbial community. Therefore, the 

extension of functional gene analyses in future studies would contribute to both the 

elucidation of PMB’s mechanisms and quantification of their contribution to increased P 

availability in soils. 

9.4 Phytohormonal effects 

As the first study to use dead PMB to distinguish active mechanisms of PMB from indirect 

effects, we were able to demonstrate a plant growth-promoting effect by the addition of dead 

RU47 cells. Indications of a hormonally-derived effect were found not only in treatments to 

which dead RU47 cells had been added, but also in treatments using viable RU47 cells. The 

change in root:shoot ratios observed in both RU47 treatments, and in both maize and tomato 

experiments, should be emphasized here. Arkhipova et al. (2007) were able to demonstrate 

a stimulation of shoot growth in lettuce by the addition of cytokinin-producing bacteria. 

Cytokinins as well as auxins are the major phytohormones regulating plant growth and 

development (Ivanova and Rost 1998, Berleth and Sachs 2001, Francis and Sorrell 2001). 

Cytokinin plays a crucial role in cell division and expansion, and in organogenesis. 

Furthermore, cytokinin inhibits the effects of ABA, which in turn inhibits plant growth and 

flower formation (Levy and Dean 1998; for review see Ha et al. 2012). The assumption of a 
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phytohormonal effect, especially by cytokinin, is supported by results of our 50-day tomato 

experiment under limited P availability soil conditions, which revealed an increase in blossom 

biomass in both RU47 treatments, and which were significant for the viable RU47 treatment 

(Table 7.2). It is well documented that soil bacteria, including PMB, are able to synthesize 

phytohormones which enable them to ensure or increase their C sources from root exudation 

by influencing a plant’s growth or its response to stress (for review see Tsavkelova et al. 

2006, Hayat et al. 2010, Glick 2012, 2014). Evidences of synthesizing phytohormones or 

phytohormone-related compounds of PMB are mostly known for IAA (auxin) and ACC 

deaminase (e.g. Gupta et al. 2002, Rajkumar and Freitas 2008, Ramírez and Kloepper 

2010). PMB’s ability to synthesise plant-effective levels of cytokinin have been less well 

studied. However, García de Salamone et al. (2001) were able to identify Pseudomonas 

fluorescens G2018 as highly productive in synthesizing the three cytokinins isopentenyl 

adenosine, trans-zeatin ribose, and dihydrozeatin riboside. Apart from recommending the 

study of RU47’s ability and degree of phytohormone production (especially auxin and 

cytokinin), we cannot currently say whether a potential hormonal effect is due to RU47 or to 

indigenous microbes. In general, three options are under discussion. First, phytohormones 

produced by RU47 affected plant growth. While in viable RU47 treatments the colonizing 

RU47 cells actively synthesised phytohormones promoting plant development, the plant 

growth effect observed in the dead RU47 treatments was due to phytohormones produced 

by RU47 before killing (culture medium), which were co-extracted and applied together with 

the dead cells to soil. RU47 cells were devitalized by boiling (5.2.2). Since auxin and 

cytokinin are known to be heat-stable (Murashige and Skoog 1962, Kumar and Singh 2009), 

a co-application of phytohormones produced by RU47 is theoretically possible. The second 

option is that indigenous soil microbes promoted by RU47 attractants or an enhanced C 

source in the form of the dead cells synthesized effective levels of phytohormones in the 

dead RU47 treatments, while phytohormones in the viable RU47 treatment were RU47-

derived. The third option, also in the viable RU47 treatments, is the possibility that a 

phytohormonal effect was caused predominantly by indigenous soil microorganisms 

interacting with RU47. Although this could not be clarified in this study, our results provide an 

important contribution to the untangling of diverse functional mechanisms of PMB in soil. The 

ability of RU47 to affect a plant’s hormonal balance may extend its potential for application in 

practical farming. It has been shown that RU47 is able to produce high levels of ACC 

deaminase (Smalla 2016, personal communication). Degrading the ethylene precursor ACC, 

this enzyme decreases plant stress level resulting reduced growth (Glick et al. 2007, Saleem 

et al. 2007, Yang et al. 2009, Glick 2014). Apart from its established PMB and bio-control 
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potential, RU47 may also offer a promising approach for application in areas characterized 

by stress conditions, such as drought or salinity.  

Apart from phytohormones and phytohormone-related compounds, volatile organic 

compounds (VOCs) also play key roles in plant growth promotion. Many bacterial species, 

including those belonging to the genera Pseudomonas, produce VOCs affecting plant growth 

(Kai and Piechulla 2009, 2010, Bailly and Weißkopf 2012) and reducing plant response to 

stress (for overview see Yang et al. 2009). For instance, Gutiérrez-Luna et al. (2010) 

demonstrated that plant growth and root architecture of Arabidopsis thaliana were modulated 

by differential VOC emissions of three rhizobacterial strains belong to the genera Bacillus. In 

addition, Park et al. (2015) identified in Pseudomonas fluorescens SS101, which was 

isolated from the rhizosphere of wheat, 11 different VOCs; three of these, 13-Tetradecadien-

1-ol, 2-Methyl-n-1-tridecene, and 2-Butanone, significantly increased growth of tobacco 

plants. Thus, VOCs emitted by RU47 or by interacting indigenous soil bacteria may also 

have played a role in the plant growth-promotion observed in this study. VOCs may even 

make a crucial contribution to PMB’s plant growth-promotion attributes and should be further 

investigated, especially considering that they could be tailored to the needs of particular 

areas, such as those characterized by abiotic stress conditions. 

9.5 Interactions with indigenous microorganisms 

A successful rhizosphere colonization and persistence of PMB in soil inevitably implies 

situations of competition with indigenous microorganisms for C sources and nutrients. Thus, 

it can be expected that the PMB introduced to a soil may, due to biological displacement, 

affect microbial community structure in the soil, especially in the rhizosphere. Furthermore, 

the bio-control potential of PMB, including RU47, mostly affects fungal plant pathogens 

(Adesina et al. 2007, 2009, Schreiter et al. 2014 b, c), and may therefore decrease the fungal 

population in soil. Interestingly, we found few or no trends in shifts in microbial community 

structure by the addition of viable RU47 cells. In our 39-day tomato experiment, a slight 

increase in bacterial abundance, especially of gram+ bacteria, was observed in the bulk soil 

of both dead and viable RU47 treatments (Table 5.2). However, this finding may indicate that 

shifts in microbial community structure due to introduction of RU47 occur on a lower 

taxonomic level than PLFA patterns can discern and as already reported by Schreiter et al. 

(2014 a). Supporting our assumption that the addition of dead RU47 promoted indigenous 

soil bacteria, bacterial DGGE fingerprinting revealed numerous dominant bands in this 

treatment (Fig. 5.4 a). The extent to which these bacteria are responsible for the observed 

plant growth-promotion cannot be clarified at present. The absence or lower abundance of 
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these dominant bands in the treatment using viable RU47 cells indicate clearly that 

indigenous bacteria in the rhizosphere of tomato plants were not promoted by RU47-specific 

attractants, which would be the case if dominant bands had been detected in the viable 

RU47 treatment. It was more likely due to a spike of C source and nutrients in the form of 

dead bacterial cells. Linking all information obtained from our rhizobox experiments, it can be 

assumed that the plant growth-promotion effect of dead RU47 cells is due to grazing by 

indigenous soil bacteria, which increases P mineralization in soil (priming effect), secretes 

phytohormones and/or VOCs, and results in enhanced plant growth and P uptake. However, 

this implies that effective use of dead PMB is highly dependent on the bacterial community 

structure present in the soil. If the use of dead PMB is to be considered for practical farming, 

the main mechanisms of this plant growth-promoting effect must be clarified in advance. In 

this case, it would be crucial to know which roles RU47-specific attributes play (e.g. 

phytohormones) in plant growth-promotion or whether the addition of bacterial residues alone 

is sufficient to trigger a priming effect in soil. 

Our results demonstrated that the addition of viable RU47 cells promoted growth and P 

uptake of tomato plants, accompanied by increased PA (Fig. 5.1, Fig. 5.2 a, Table 5.2, Fig. 

7.3 b, Fig. 7.4 b, Table 7.2). Although no interactions with indigenous microorganisms were 

found, potential interactions on a lower phylogenetic level than was explored in this study 

cannot be excluded. Molecular-based techniques using conserved regions in bacterial 

functional genes which are associated with P mobilization in soil (including P solubilization), 

combined with next-generation sequencing, could identify not only the main mechanisms of 

PMB, but also the primary and secondary players in P mobilization, revealing potential 

interactions with indigenous soil microorganisms. As previously mentioned, interactions with 

indigenous microorganisms imply a high degree of dependency on existing soil microbial 

community structure. Using three different PMB strains belonging to the genera 

Pseudomonas, including RU47, in three contrasting soils, we demonstrated that individual 

inoculation effects differed between the strains, soils, and time (Fig. 8.2 a, Fig. 8.2 b, Fig. 8.3, 

Table 8.4 a, Table 8.4 b, Fig. 8.4). However, individually occurring shifts in the microbial 

communities were more pronounced in rhizosphere than in bulk soil (Fig. 8.2 a, Fig. 8.2 b, 

Table 8.4 a, Table 8.4 b), which is in accord with the known high rhizosphere competence of 

each strain used (Von Felten et al. 2010, Buddrus-Schiemann et al. 2010, Adesina et al. 

2009). However, community structure in the soil was primarily influenced by soil conditions 

and influenced by PMB over the long term. It should be emphasized that despite its proven 

antifungal bio-control capability (Fuchs 1993, Fuchs et al. 2000, Adesina et al. 2009) no 

effect on fungal abundance was found in the RU47 treatments, whereas Pf153 even 

promoted fungal growth in two cases (Fig. 8.2 a). Similar results were found in the case of 



General Discussion 

124 

 

Proradix, which contains the strain P. sp. DSMZ 13134, and which has been identified as an 

effective mycorrhiza-helper bacterium in a plant experiment with Paraserianthes (Yusran et 

al. 2009), but it did not affect fungal abundance in the present study (Fig. 8.2 a, Fig. 8.2 b). 

These findings support the assumption that effects of PMB on soil microbial community 

structure differ strongly between the single strains, host-plant, soil, and environmental 

conditions. For instance, Zhang et al. (2016) demonstrated that not only AMF can stimulate 

indigenous PMB, but also that the form of interaction between them can depend on P 

availability conditions. They showed that under adequate P availability, the AMF 

Rhizophagus irregularis release C into the environment, promoting PMB (Rahnella aquatilis 

HX2) growth and activity. This was followed by increased P mobilization benefiting AMF P 

supply. Under limited P availability conditions, AMF and PMB competed for P, accompanied 

by absence of a stimulation effect (Zhang et al. 2016). 

Apart from potential interactions with indigenous microorganisms, co-inoculations of PMB 

with AMF or N2-fixing bacteria are often reported to be more effective on plant growth and P 

uptake than applied as single inoculations (e.g. Kim et al. 1997, Rojas et al. 2001, Wani et al. 

2007 b, Saxena and Jha 2014). Our study clearly demonstrated that RU47 possess PMB-

properties. Furthermore, their antifungal capacity does not negatively affect indigenous soil 

fungi, including AMF (Mosimann et al. 2017). Thus, testing RU47 in co-inoculation with AMF 

or N2-fixing bacteria would provide not only important insights into interaction mechanisms of 

PMB, but also make possible the evaluation of RU47’s potentials and limits in practical 

usage.  
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10 General Conclusions 

As the first study to use devitalized PMB cells for inoculation, we observed plant growth and 

P uptake-promotion effects on tomatoes grown under limited available P soil conditions by 

the addition not only of viable, but also of dead RU47 cells. Estimating enzyme activity in 

rhizosphere and bulk soil, we were able to link enhanced plant growth and P supply to 

increases in microbial PA in the rhizosphere. By the use of unselectively cultivated soil 

bacteria for inoculation, we demonstrated that the increased PA observed in both RU47 

treatments occurred independently of endogenous microbial P mineralization in soil. Thus, 

our findings go beyond previous work by providing approaches that not only identified the 

PMB-specific effects on soil microbial activity, but also differentiated between direct and 

indirect PMB effects on soil and plant. We found evidence of a hormonal influence on plants 

by the addition of viable and dead RU47 cells. We assume that improvement in plant growth 

and P supply by the addition of viable RU47 cells was primarily due to their increased 

secretion of phosphatases, while bacterial phytohormones also had an influence but played 

only a secondary role here. Observed shifts in a rhizosphere’s bacterial community structure 

when dead RU47 cells were added made it possible to conclude that indigenous soil bacteria 

were stimulated by the addition of a C source and nutrients in the form of bacterial residues, 

and that this resulted in increased P mineralization in soil. However, we assume that plant 

growth-promotion was caused primarily by hormonally-derived effects here. We can only 

speculate about the origin of these phytohormones. It is conceivable that either heat-stable 

phytohormones, which were produced by RU47 before cell devitalisation (boiling) were co-

extracted and thus co-applied to the soil, or that phytohormones were secreted by the 

stimulated bacterial population in the rhizosphere. Nevertheless, this study was able to 

identify in vivo PMB capacities of RU47, which was formerly known as a bio-control 

inoculant. Viable RU47 cells were shown to be highly rhizosphere-competent on maize and 

tomato roots, persisting up to 50 days after sowing. Thus, our findings offer a promising 

approach for the use of RU47 in practical plant production, especially in tomato cultivation, 

which, in this study, yielded the greatest plant effects. Organically bound P constitutes a 

large part of fixed P in soil. Against the backdrop of the impending P crisis, RU47’s ability to 

mineralize P effectively from soil provides encouraging approaches for its use in exploiting 

immobilized soil P for plant nutrition. Accordingly, this could lead to reduced demand for 

mineral P fertilizers, making P fertilization in agriculture more efficient and preserving a 

limited resource.  

While previous studies have reported a strengthened plant growth-promoting effect when 

PMB were co-applied with mineral P fertilizers (rock or tricalcium phosphate), we can 
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suggest that amendments of easily available phosphate may also increase RU47’s 

abundance in both rhizosphere and bulk soil. We could not quantify an increase in plant 

growth-promoting effect, however, but merely a trend which was likely phytohormonally-

derived, within the 50 days of experimental duration. However, initially high incorporation of P 

into the RU47 bacterial biomass ensures that P will be available through soil reactions and 

thus it can act as a temporary P sink for plants. A P mobilization-derived plant growth-

promoting effect in the long-term, as plant-available P in soil becomes limited, is conceivable 

and may provide an additional, although secondary use for rhizosphere competent PMB 

through their capacity to decrease the continuing accumulation of fixed P in arable soils. 

Simultaneous determinations of bacterially bound P and plant-available P in future long-term 

experiments could clarify the role of P immobilization by PMB in growth-promotion of plants. 

Investigating the effects of PGPR, including PMB, on microbial community structure as well 

as its dependence on soil conditions, we showed that individual inoculation effects varied 

among the PMB strains added, the contrasting soils used, and time. Changes in microbial 

biomass and composition on the domain level (bacteria, archaea, and fungi) were due 

primarily to nutrient availability in the soil substrate, which differed between the soils and over 

time. Although individual inoculation effects on microbial community structure occurred more 

frequently in the rhizosphere than in bulk soil, colonizing PGPR neither increased bacterial 

abundance in rhizosphere, nor provided evidence of displacement of C-competing 

copiotrophic rhizobacteria. Thus, our findings demonstrate that the ecological impacts of 

specifically introduced rhizobacteria are much lower than assumed – at least at the domain 

and phylum levels. Based on these results, we conclude that plant-beneficial interactions 

with indigenous soil microbes, such as suppression and defence of plant pathogens, as well 

as the promotion of AMF, may be strongly dependent on existing soil conditions or on the soil 

microbial community.  

Taken together, we conclude that various PMB mechanisms increasing plant growth and P 

uptake run in parallel. P mobilization-dependent and -independent as well as direct and 

indirect mechanisms are overlapping. Which mechanism is dominant at any given time 

seems to depend on the existing soil and environmental conditions. PMB-specific plant 

growth-promotion effects can be induced without guaranteeing PMB’s survivability and highly 

abundant persistence in soil. Stimulating the growth and activity of indigenous soil bacteria 

by additional C sources (bacterial residues) may result in at least as much of an increase in 

P mineralization as that induced by the addition of viable, highly rhizosphere competent PMB 

cells. PMB’s ability to effectively mineralize P from soil plays an important role in their 

beneficial effects on plants. However, plant growth is also affected by bacterial 
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phytohormones and this should be more strongly focused on in future studies investigating 

the effects of PMB on plants. Effects of PGPR, including PMB, on microbial community 

structure in soil are small and temporary; permanent microbiome shifts may actually occur at 

a lower phylogenetic level than that of phylum. 
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Abstract

Aims The aim of our study was to clarify whether inocu-
lating a soil with Pseudomonas sp. RU47 (RU47) bacteria
would stimulate the enzymatic cleavage of organic P com-
pounds in the rhizosphere and bulk soil, promoting plant
growth. Adding either viable or heat treated RU47 cells
made it possible to separate direct from indirect effects of
the inoculum on P cycling in soil and plants.
Methods We performed a rhizobox experiment in the
greenhouse with tomato plants (Solanum lycopersicum)
under low P soil conditions. Three inoculation treat-
ments were conducted, using unselectively grown soil
bacteria (bacterial mix), heat treated (HT-RU47) and
viable RU47 (RU47) cells, and one not inoculated,

optimally P-fertilized treatment. We verified plant
growth, nutrient availability, enzyme activities and mi-
crobial community structure in soil.
Results A plant growth promotion effect with improved
P uptake was observed in both RU47 treatments.
Inoculations of RU47 cells increased microbial phos-
phatase activity (PA) in the rhizosphere.
Conclusions Plant growth promotion by RU47 cells is
primarily associated with increased microbial PA in soil,
while promotion of indigenous Pseudomonads as well
as phytohormonal effects appear to be the dominant
mechanisms when adding HT-RU47 cells. Thus, using
RU47 offers a promising approach for more efficient P
fertilization in agriculture.

Plant Soil

https://doi.org/10.1007/s11104-017-3528-y

Responsible Editor: Phil Haygarth.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s11104-017-3528-y) contains
supplementary material, which is available to authorized users.

D. Nassal (*) : S. Marhan : E. Kandeler
Institute of Soil Science and Land Evaluation, Soil Biology,
University of Hohenheim, Stuttgart, Germanye-mail:
dinah.nassal@gmail.com

M. Spohn
Department of Soil Ecology, Bayreuth Center of Ecology and
Environmental Research (BayCEER), University of Bayreuth,
Bayreuth, Germany

N. Eltlbany :K. Smalla
Institute for Epidemiology and Pathogen Diagnostics, Julius
Kühn-Institute, Federal Research Centre for Cultivated Plants,
Braunschweig, Germany

N. Eltlbany
Abitep GmbH, Berlin, Germany

N. Eltlbany
Faculty of Agriculture, Suez Canal University,
Ismailia, Egypt

S. Jacquiod
Agroécologies UMR1347, INRA Dijon Center,
Dijon, France

http://orcid.org/0000-0003-0762-2948
http://crossmark.crossref.org/dialog/?doi=10.1007/s11104-017-3528-y&domain=pdf
https://doi.org/10.1007/s11104-017-3528-y


Keywords Phosphorus-mobilizing bacteria .

Phosphorus-solubilizing bacteria . Plant growth-
promoting bacteria . Solanum lycopersicum .

Pseudomonas

Introduction

While it is well known that rhizosphere processes are
important for plant P acquisition (Jones and Darrah
1994; Hinsinger 2001), the processes underlying growth
promotion by beneficial microorganisms are not yet
well understood. Since organic P is often the dominant
form of P found in soils (Ron Vaz et al. 1993; Shand
et al. 1994) and may constitute up to 90% of the total P
in soil (Khan et al. 2009), P mineralisation is a pre-
requisite to convert organic P into a plant available form.
P mineralisation is catalysed by extracellular phospha-
tases produced by microorganisms and plants. While
microorganisms produce both acid and alkaline phos-
phatases, plants produce only acid phosphatases (Dick
et al. 1983; Juma and Tabatabai 1988; Nannipieri et al.
2011). Microbial and plant P acquisition occur in differ-
ent zones of the rhizosphere. Plant uptake of P occurs
mostly at the root tip and in the proximal elongation
zone, whereas microbial P uptake is highest in the root
hair zone (Marschner et al. 2011). Using zymography in
a rhizobox experiment, Spohn and Kuzyakov (2013)
demonstrated the spatial separation of acid and alkaline
phosphatase activity (PA) in the rhizosphere of lupines.
While acid PAwas associated with the root, alkaline PA
was more widely distributed in the bulk soil (Spohn and
Kuzyakov 2013; Spohn et al. 2013; Spohn et al. 2015;
Hofmann et al. 2016). Microbial phosphatases comprise
the major share of phosphatases in soil (Tabatabai 1994;
Tarafdar et al. 2001), contributing significantly to the P
supply of plants (Frossard et al. 2000; Oehl et al. 2004).
However, with respect to P foraging, the plant-microbial
relationship can be competitive as well as mutualistic
(Richardson et al. 2009). Hence, without phosphate
fertilizers, P supply is generally not sufficient for effec-
tive crop production in most agricultural soils.

Phosphorus-mobilizing bacteria (PMB) are beneficial
bacteria that effectively mobilize P through solubilization
of sorbed P pools and mineralization of organic P com-
pounds which are otherwise not readily available to the
plant. Application of PMB to soils can therefore be a
promising approach for improving P fertilization efficiency
in agriculture. Plant growth-promoting effects resulting

from targeted application of high-concentrations of PMB
strains such as representatives from Bacillus,
Pseudomonas, and Rhizobium in soils limited in P avail-
ability for plants have been documented in several studies
(Chabot et al. 1996; Sundara et al. 2002; Kaur and Reddy
2014).Whether future use of PMB can improve P nutrition
of arable crops and vegetables remains to be tested. Three
different microbial-driven functional mechanisms are cur-
rently being explored. First, added PMB may catalyze the
hydrolysis of organic P compounds by the release of
phosphatases (Tarafdar and Claassen 1988). Second,
PMB may solubilize bound inorganic P into easily avail-
able phosphates by secreting organic acids which would
reduce rhizosphere pH. Organic acids as well as bicarbon-
ates, carboxylates, and other anions biotically releasedmay
function as exchange ligands (Kpomblekou-a and
Tabatabai 1994; Deubel et al. 2000; Jones 2011). Third,
added PMB may interact synergistically with other bene-
ficial indigenous microbes, like mycorrhizal fungi or N2-
fixing bacteria optimizing P mobilization in soil (Belimov
et al. 1995; Zaidi et al. 2003; Zhang et al. 2016). Although
the role of PMB during P solubilization has been investi-
gated (Kim et al. 1997; Khan et al. 2007; Fankem et al.
2008), the importance of enzymatic cleavage of organic P
resources by PMB, especially under P-limited conditions,
has been less well studied. Kaur and Reddy (2014) dem-
onstrated that enhanced wheat and maize growth after
inoculation of an agricultural field with Pantoea cypripedii
and Pseudomonas plecoglossicida was accompanied by
an increase in phosphomonoesterase, phytase and dehy-
drogenase activities in soil. In addition, Eltlbany et al.
(under review), conducted a pot experiment with tomato
plants grown in soil with reduced P fertilization and found
considerably enhanced plant growth following inoculation
with Bacillus amyloliquefaciens FZB42 spores
(RhizoVital®) as well as Pseudomonas sp. DSMZ 13134
(Proradix®) or Pseudomonas sp. RU47. PA tended to
increase in the rhizosphere; alkaline phosphomonoesterase
with the addition of each of the two commercial products,
and acid phosphomonoesterase with the addition of
Pseudomonas sp. DSMZ 13134 and Pseudomonas sp.
RU47. It is possible that the plant growth-promoting func-
tion of these three different bacterial strains is basedmainly
on their enhanced phosphatase production in the rhizo-
sphere of plants. Since the formulation of the commercial
products (i.e. the carrier matrix; culture media, skimmed
milk powder, or gum arabic) may also affect microbial P
mineralization, we selected Pseudomonas sp. RU47
(RU47) as the model organism, omitting any formulation.
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Whereas the addition of viable cells of RU47 should
clarify direct mechanisms (e.g. enzyme production by the
PMB), the addition of heat treated PMB strains should
allow testing indirect mechanisms (e.g. via endogenous
microorganisms).To exclude apparent plant growth-
promoting effects of the PMB due to increased microbial
activity by addition of living soil bacteria, an inoculation
treatment using a mix of soil bacterial isolates was also
evaluated. The following hypotheses were tested. (1)
Added viable RU47 cells successfully colonize the soil
and lead to a plant growth-promoting effect. (2) The plant
growth-promoting effect of viable RU47 under P-deficient
soil conditions is based on enhanced PA leading to en-
hanced P availability in soil and increased uptake by plants.
(3) Added viable RU47 dominates colonization of the
rhizosphere, leading to spatially distinct zones of enriched
alkaline/acid PA and to a shift in microbial community
composition which were analyzed by illumina sequencing
of 16S rRNA gene fragments amplified from total com-
munity DNA.

Materials and methods

Rhizobox experiment

The experiment was performed under low P availability
soil conditions using Pseudomonas sp. RU47 (RU47) as
the PMB, and tomato (Solanum lycopersicum L. var.
Mobil) as the test plant. We established four treatments
to account for the response of plants to heat treated (HT)
or viable PMB as well as to account for the possible
plant growth stimulation by P fertilization. To exclude
apparent plant growth-promoting effects of the PMB
due to increased microbial activity from having added
living soil bacteria, which could affect the P efficiency
of plants, a treatment was performed using unselectively
cultivated soil bacteria for inoculation (bacterial mix).
To verify the effects of HT and viable PMB on plant
growth and nutrition, heat treated RU47 cells (HT-
RU47), and viable RU47 (RU47) were used for inocu-
lation in two different treatments. In order to evaluate
effects of P fertilization on plant growth, we conducted
an optimally P-fertilized non-inoculation treatment (P-
fertilized). Details of microorganism cultivation and
inoculation are described in 2.2. Although the study
aimed to determine the effects of PMB under low plant
available P soil conditions, in order to achieve success-
ful germination, a slight P fertilization of 50 mg kg−1

was applied to all treatments, excluding the optimally P-
fertilized (200 mg kg−1) non-inoculation treatment.
Hence, the experiment consisted of four treatments, with
four replicates per treatment. Tomato plants were grown
in rhizoboxes with inner dimensions of 28.0 cm ×
4.5 cm × 16.5 cm, and filled with a soil substrate com-
posed of Luvisol topsoil and quartz sand (0.2–1.4 mm)
in a ratio of 1:1 (w/w). The Luvisol was considered as a
heavy loam soil and had the following characteristics:
pH 7.1 (CaCl2), 26.2% sand, 52.2% silt, 21.6% clay,
2.3% total C, 2.0% organic C, 1.8 mg NH4

+ kg−1,
53.0 mg NO3

− kg−1 and 24.1 mg P (Olsen) kg−1. The
soil, selected on the basis of its low concentration of
plant available P (calcium lactate extraction of 20 mg
kg−1), was taken from an unfertilized grassland located
on the campus of the University of Hohenheim
(Stuttgart, Germany). Each rhizobox was filled with
1918.0 g dry matter (DM) of sieved (< 5 mm) soil
substrate. Before sowing, the soil substrate was optimal-
ly fertilized with respect to N (100 mg kg−1), K (150 mg
kg−1) and Mg (50 mg kg−1) and adjusted to a water
holding capacity of 50%. Three tomato seeds were sown
at a depth of 1–2 cm directly into each rhizobox and
thinned to one plant per rhizobox after germination. In
order to promote root growth along the hinged wall,
rhizoboxes were placed at a 50 ° inclination. To avoid
light-derived influences on root growth and behaviour,
all boxes were wrapped in aluminium foil. The experi-
ment was conducted for 39 days under greenhouse
conditions. Rhizoboxes were distributed randomly and
placed on wooden planks to exclude contamination by
leaking irrigation water. Plants were watered tomaintain
a water holding capacity of 50% until 25 days after
sowing, with water content checked gravimetrically on
a daily basis. Due to small loss of soil while conducting
the soil in situ zymography (2.6), from 25 days after
sowing each rhizobox was watered with the same vol-
ume of 20mL. This volume corresponded to the average
volumes of water used for watering at 23 days after
sowing; volumes were increased up to 35 mL when
radiation and temperature have risen in the greenhouse.
Watering was performed using deionized water
(H2Odeion), applied in 5 mL steps to avoid leakage along
rhizobox edges.

Microbial cultivation and inoculation

RU47 (Adesina et al. 2007) was cultured in King’s B
liquid medium (King et al. 1954) with 50 mg L−1 added
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rifampicin (resistance by spontaneous mutation) at
28.5 °C in an incubator shaker (SM 30 Control;
Edmund Bühler, Hechingen, Germany) for 24 h; culti-
vation vessels were wrapped in aluminium foil to pro-
tect the antibiotic from light. We modified the growth
conditions of Pseudomonas described by Xue et al.
(2013) to maintain the exponential growing phase (to
ensure inoculation by viable cells) and to have greater
time flexibility during inoculation preparation. Briefly,
we followed the following protocol: Bacterial mixes
were grown in glucose-enriched (2 g L−1) LB-Lennox
liquid medium (Bertani 1951; Lennox 1955) at 28.5 °C
for 24 h (incubator shaker) using a sample of the un-
treated soil as the inoculum. Glucose enrichment was
chosen in order to avoid C limitation of bacterial
growth. After incubation, all cultures were centrifuged
(4700 gmin−1) for 10 min. Pellets were washed twice in
sterile 0.3% NaCl solution and resuspended in sterile
0.3%NaCl solution. In the treatments using the bacterial
mix, remaining soil components were removed by trap-
ping on folded filter paper (grade 4) before cell washing.
Cell suspensions were photometrically measured
(BioPhotometer, Eppendorf, Germany) and adjusted to
an OD600 = 1.0 corresponding to a cell density of ap-
proximately 109 cells mL−1, as described in Xue et al.
(2013). However, overestimates of cell density resulting
from soil-derived turbid material remaining in cell sus-
pensions containing bacterial isolates cannot be fully
excluded. The killing of RU47 cells, which were used
in one of the treatments, was performed as follows:
bacterial suspension (OD600 = 1.0) was placed in a ster-
ile Erlenmeyer flask and boiled for 1 min on a heating
plate. To minimize volume loss, the flask was covered
and cooled to room temperature to exclude volume error
before being used for inoculation. Pre-tests confirmed
that this procedure was sufficient to kill RU47 cells, as
plating exhibited no growth of RU47.

Plants were inoculated three times, each with a cell
density of 109 cells mL−1 (OD600 = 1.0). The first inoc-
ulation was conducted by seed coating. Under gentle
and continuous vortexing, 5 μL of cell suspension was
successively added to five tomato seeds. The volume
required for entire seed coating had been tested with ink
(Pelikan, Pottendorf, Austria) before starting the exper-
iment. To prevent drying of the inoculant, coated seeds
initially remained in the closed Falcon tubes, which
were used performing the seed coating, and were imme-
diately sown (i.e. within less than 5 min). Success of
seed coating (i.e. viability and cell concentration of

RU47) was controlled by using three of the inoculated
seeds followed by washing with 1 mL sterile 0.3%NaCl
solution and plating 100 μL of the suspension on King’s
B-Agar medium (50mg rifampicin L−1) in three dilution
stages. Plates were incubated at 28.5 °C until growing
colonies were unequivocally countable on the agar (after
approximately 36 h). The second inoculation was ap-
plied directly after seed germination, and the last inoc-
ulation was applied one week later. Both inoculations
were performed with 6 mL kg−1 soil substrate DM,
directly applied to the soil surface to simulate farm
practice. To avoid a watering effect, the P-fertilized
non-inoculation treatment was inoculated with 0.3%
NaCl solution with corresponding volumes per inocula-
tion. Viability and unviability of the RU47 cells used as
well as sterility of the 0.3%NaCl solution were checked
by plating and subsequent incubation at 28.5 °C for 48 h
after every inoculation.

Plant properties

Plant analyses during the growth period

Stem diameter, leaf number and area, shoot height and P
deficiency symptoms were recorded at temporal inter-
vals of minimum 2 and maximum 4 days, starting
20 days after sowing. While stem diameter and leaf area
(length x width) were measured using a precision pocket
vernier caliper (150mm, Format,Wuppertal, Germany),
shoot height, defined as the vertical length from stem
base to youngest leaf’s tip, was measured by a ruler. P
deficiency symptoms were defined as the expression of
violet discoloration on the undersides of leaves and
determined as a percentage of total leaf area.

Plant analyses after harvest

Shoots of every replicate were separately and carefully
cut from the soil surface using a sterilized (70% ethanol)
scalpel. Shoots were briefly rinsed with H2Odeion to
remove adhering dust, then dried at 60 °C in separate
aluminium trays for 3 days to estimate dry weight.

Determination of plant biomass P in tomato shoots
was performed by sequential microwave digestion
based on Kalra et al. (1989) followed by photometric
measurement of molybdenum blue. Ground samples
were transferred into Teflon containers to which 1 mL
H2Odeion, 2.5 mL HNO3 and 2 mL H2O2 were added.
After soaking for 1 h, samples were incinerated at 70 °C
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(3 min) and 210 °C (62 min) at 1400 W, using an
ETHOSlab microwave (MLS, Leutkirch, Germany).
The diluted (1:1 H2Odeion) and filtered (blue ribbon
filter) suspensions were photometrically measured after
a dilution of 1:3 H2Odeion using Murphy and Riley color
reagent (Murphy and Riley 1962) at 710 nm in a micro-
plate absorption reader (ELx808; BioTek Instruments
Inc., Winooski, VT, USA).

Soil sampling

Rhizosphere and bulk soil samples were immediately
put on ice for short-term storage. While DNA was
directly extracted from the rhizosphere soils (see 2.5),
bulk soil samples were sieved (< 2 mm), after which
aliquots of each replicate were frozen at −20 °C until
analyses.

Tracing RU47 and analyses of microbial community
composition

DNA extraction

DNA was extracted according to Schreiter et al. (2014b)
with some modifications. Briefly, after removing loosely
adhering soil by vigorously shaking the roots, the complete
root systems of one replicate per treatment were combined,
then cut into pieces of approximately 1 cm length and
carefully mixed. Five g of cut roots with tightly adhering
soil were transferred to a Stomacher bag, homogenized in a
Stomacher 400 Circulator (Seward Ltd., Worthing, UK)
for 1 min at high speed after adding 15 mL sterile 0.3%
NaCl; supernatant was then collected in a Falcon tube.
This step (same 5 g of root material) was repeated twice,
the combined supernatants (45 mL) of three Stomacher
homogenizations were centrifuged at 10,000 g for 15 min,
after which pellets were frozen and stored at −20 °C. The
use of Stomacher method to detach microbial cells adher-
ing to root and rhizosphere does not fully exclude a co-
extraction of plant cells; however, pre-tests of this method
revealed only minor contaminations with plant DNA.
Total community DNA (TC-DNA) was extracted from
0.5 g of rhizosphere pellets using the Fast DNA SPIN
Kit for Soil® (MP Biomedicals, Heidelberg, Germany)
after a harsh lysis step as described by the manufacturer.
The TC-DNA was purified with GENE CLEAN SPIN
Kit® (MP Biomedicals, Heidelberg, Germany) according
to the manufacturer’s instructions and diluted 1:10 with
10 mM Tris HCl, pH 8.0, before use.

Amplicon sequencing of 16S rRNA gene amplicon

from TC-DNA

Detailed procedure describing amplification of 16S
rRNA genes, sequencing, quality trimming and annota-
tion was described previously (Nunes et al. 2016), re-
specting best practices guide lines (Schöler et al. 2017).
Briefly, the ~460-bp fragment covering hypervariable
regions V3–V4 of the small ribosomal subunit gene was
amplified, tagged and sequenced using 2 × 250 bp
paired-end high-throughput sequencing using illumina
miseq Reagent Kits version 2 and Illumina® MiSeq®
platform (Illumina, San Diego, CA, USA). Four biolog-
ical replicates were sequenced for each of the four
conditions tested, namely P-fertilized, bacterial mix,
HT-RU47, RU47 (Table 1). Since no alpha-diversity
estimation is performed in this study, the raw count data
was used with appropriated biostatistic procedures ac-
counting for uneven sequencing depth (Fig. S1) to avoid
loss of information problems arising from rarefaction
(McMurdie and Holmes 2014). A redundancy analysis
(RDA) was performed on the profiles after relative
abundance and log10 transformation to account for un-
even sequencing depth and disparities between abun-
dant and rare species using previously described meth-
odology (Nunes et al. 2016). Major phylogenetic chang-
es were detected at the phylum and class levels by
means of ANOVAwith a false discovery rate correction
test (FDR, p < 0.05). Operational taxonomic units
(OTUs) responding significantly across experimental
design were extracted using previously described meth-
odology (Jacquiod et al. 2017) using an analysis of
deviance (AOD) after generalized linear modelling
(GLM) of the raw counts using negative binomial dis-
tribution (nb) with 1000 resampling iterations with re-
sidual variance, using the package mvabund (nbGLM,
likelihood ratio test, p < 0.05, Wang et al. 2012). This
method was recently suggested as one of the most
accurate way to extract significantly responding OTUs
by minimizing the risk of error (Thorsen et al. 2016). A
generalized heatmap of dominant (relative abundance
>0.1%) and significantly responding OTUs was gener-
ated using previously described methodology (Jacquiod
et al. 2016). A supporting table with the relative abun-
dance of dominant Pseudomonas OTUs found in this
study is provided in (Table S1). Sequencing fastq files
were deposited in the Sequence read Archive (SRA)
under the accession number SRP125744 (BioProject:
PRJNA420007).
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Phospholipid fatty acid (PLFA) analysis

Microbial community structure was determined using
PLFA profiles based on the alkalinemethylation method
of Frostegård et al. (1991). Lipid extraction and deter-
mination of fatty acid methyl esters (FAMEs) were
performed according to Mackie et al. (2015). The divi-
sions of PLFAs into bacteria and fungi were based on
Frostegård and Bååth (1996), Zelles (1999) and
Kandeler et al. (2008). Within bacteria, PLFAs were
grouped into Gram-positive (gram+), represented by
i15:0, a15:0, i16:0, and Gram-negative (gram−), speci-
fied by cy17:0 and cy19:0. Total bacterial PLFAs were
calculated by the sum of gram+ and gram− plus 16:1ω7.
Fungal PLFAwas represented by 18:2ω6,9.

Enzyme assays

Soil in situ zymography

Soil in situ zymography uses membranes coated with
methylumbelliferyl (MUF)-substrates which become fluo-
rescent during enzyme cleavage, yielding information
about the distribution of exoenzymes in soil.
Distributions of alkaline and acid phosphomonoesterase
(EC 3.1.3) in the rhizosphere were analysed by soil in situ
zymography using an approach similar to that described in

Spohn and Kuzyakov (2014). All replicates were analysed
by zymography at intervals of seven days, starting 18 days
after sowing.MUF phosphate (4-MUF, Sigma-Aldrich, St.
Louis, USA) was used as substrate; a 12 mM solution was
prepared and used to coat polyamide membranes, with
diameter 14.2 cm, and pore size 0.45 μm (Sartorius,
Göttingen, Germany). Substrate solution was prepared
using modified universal buffer (MUB) adjusted to
pH 11 for alkaline PA, and pH 6.5 for acid PA. Coated
membranes were laid flat onto opened rhizoboxes which
were separated from soil particles by an underlying layer of
fresh 1% agarose gel (1 mm thick). Soil zymography was
performed for each enzyme separately on the same
rhizobox; first, acid PA was evaluated due to its affinity
with the soil’s pH of 7.4; second, alkaline PAwas assayed.
This order wasmaintained throughout the experiment. The
possible loss of alkaline phosphatases by diffusion into the
agarose gel or membrane during measurement of the acid
PA cannot be excluded. In contrast to Spohn and
Kuzyakov (2014), an incubation time of 35 min, adjusted
to achieve the best practical contrast obtained by imaging,
was used. Incubations were performed at a constant tem-
perature of 20 °C;membranes were covered by aluminium
foil to minimize liquid loss during incubation time. After
incubation, membranes were placed on an epi-UV-desk
(Desaga, Sarstedt, Nümbrecht, Germany) in the dark, and
viewed at 360 nm wavelength. After being photographed

Table 1 List and description of 16S rRNA gene amplicon sequencing samples generated in this study

Name Code Description Replicate Sequences

P-fertilized_a PC1 P-fertilized, non-inoculation R1 27,143

P-fertilized_b PC2 P-fertilized, non-inoculation R2 23,947

P-fertilized_c PC3 P-fertilized, non-inoculation R3 36,680

P-fertilized_d PC4 P-fertilized, non-inoculation R4 30,721

Bacterial mix_a BM1 Bacterial mix R1 10,090

Bacterial mix_b BM2 Bacterial mix R2 16,727

Bacterial mix_c BM3 Bacterial mix R3 20,614

Bacterial mix_d BM4 Bacterial mix R4 21,026

HT-RU47_a HT1 Heat treated Pseudomonas sp. RU47 R1 20,787

HT-RU47_b HT2 Heat treated Pseudomonas sp. RU47 R2 28,839

HT-RU47_c HT3 Heat treated Pseudomonas sp. RU47 R3 26,321

HT-RU47_d HT4 Heat treated Pseudomonas sp. RU47 R4 26,280

RU47_a RU1 Pseudomonas sp. RU47 R1 10,493

RU47_b RU2 Pseudomonas sp. RU47 R2 22,608

RU47_c RU3 Pseudomonas sp. RU47 R3 23,818

RU47_d RU4 Pseudomonas sp. RU47 R4 33,953
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with a digital camera (D60, Nikon, Tokyo, Japan) image
processing and analysis of the zymograms were done
using the open source software ImageJ. Digital images
were transformed to 8-bit and multiplied by a factor of
1.25 to enhance the contrast. Images were transformed into
false colors to create a color representation of enzyme
activity, as given in Fig. S2. Calculation of enzyme activity
was based on a linear function using a calibration curve
fitted to different concentrations of 4-methylumbelliferone
(0, 35, 70, 130, 200, 240 μM). Image processing of
calibration zymograms was adapted to the modifications
made with the soil zymograms. Calculation of enzyme
activity was based on mean gray values obtained for each
concentration in the calibration curve. As there was no
distinct separation observed in enzyme activity between
root and surrounding soil, the mean activity of the total
incubated area was calculated.

Analyses of enzyme activities in bulk after final harvest

In addition to regularly conducted soil in situ
zymography during the growth period, samples
from the harvested bulk soil were analysed for
potential alkaline and acid phosphatase (EC 3.1.3)
activity using MUF substrates (4-MUF; Sigma-
Aldrich, St. Louis, USA) according to Marx et al. (2001).
The assay followed the method described in Poll et al.
(2006) with an alteration; MUB instead of 2-(N-
morpholino)ethanesulfonic acid (MES) was used to ensure
comparability with the results obtained by the zymograms.
Alkaline phosphatase was measured at pH 11, acid phos-
phatase at pH 6.5. Contrary to the findings of Niemi and
Vepsäläinen (2005), pre-tests of this study demonstrated
that the stability of 4-MUF phosphate in alkaline pH
ranges (pH 8–12) is constant over time (2 h) when MUB
instead of MES buffer is used. The activities of three
enzymes involved in the C and N cycle were also mea-
sured using fluorescent MUF substrates (4-MUF; Sigma–
Aldrich, St. Louis, USA): β-d-glucosidase (EC 3.2.1.21),
β-xylosidase (EC 3.2.1.37) and β-N-acetylglucos-
aminidase (EC 3.2.1.52) according to Marx et al. (2001).
Enzyme activity was measured in autoclaved MES buffer
(pH 6.1).

Microbial-bound C and P

To determine microbial biomass C (Cmic) the chloro-
form fumigation extraction method (Vance et al. 1987)
according to Mackie et al. (2015) was used. Cmic was

calculated using keC 0.45 as extraction factor
(Joergensen 1996). The estimation of microbial biomass
P (Pmic) was done by liquid fumigation extraction with
anion-exchange resin membranes (Kouno et al. 2002)
using hexanol instead of liquid chloroform (Bünemann
et al. 2004). A fresh weight of soil corresponding to 2 g
dry matter was used for fumigated and non-fumigated
subsamples of each sample. Pre-tests of this study indi-
cated that the observed variability in P adsorption be-
haviour of soil depended on total P concentration in the
soil solution to be analysed. Thus, the use of identical
soil weights in all subsamples is a prerequisite to obtain
an accurate correction factor for P retained by soil after
fumigation. Fumigation and extraction were performed
according to Bünemann et al. (2004). Extracted P was
mixed with Murphy and Riley color reagent (Murphy
and Riley 1962) and H2Odeion in a ratio of 1:1:4 (v/v),
respectively. P concentration was photometrically mea-
sured at 710 nm using a microplate absorption reader
(ELx808; BioTek Instruments Inc., Winooski, VT,
USA). To determine the amount of P retained by soil
particles and complexation after fumigation incubation,
a defined P concentration (K2HPO4), which was equal
to the measured P concentrations in fumigated subsam-
ples (μg P g−1) was added to additional non-fumigated
but otherwise identically treated subsamples. The ratio
of recovered P to added P was used to calculate the Pmic

concentration as follows:

Pmic μg g−1
� �

¼
Pfumigated μg g−1½ �−Pnon‐fumigated μg g−1½ �
� �

Precovered μg g−1½ �=Padded μg g−1½ �ð Þ

Given values of water-extractable soil P (PH2O) cor-
responds to the P concentration (μg P g−1) determined in
the non-fumigated subsamples. However, as the used
anion-exchange resin membranes compete for P adsorp-
tion by soil particles, it cannot be assumed that given
PH2O values completely represent the plant available P
fraction.

Mineral N

To determine the concentrations of ammonium
(NH4

+) and nitrate (NO3
−) in soil, undiluted

(0.5 M K2SO4) soil extracts from non-fumigated
samples used for Cmic determination were colori-
metrically measured on an Autoanalyzer III (Bran
+ Luebbe, Norderstedt, Germany).
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Statistical analyses

Differences between the treatments were statistically
analysed as follows: Homogeneity of variance was test-
ed by the Levene-test. Significance of differences was
tested by ANOVA followed by the Tukey HSD-test,
where p < 0.05 was considered as the threshold value
for significance. In cases of variance heterogeneity, the
Games-Howell-test was used for pairwise comparison,
where p < 0.05 was also considered as significant.
Statistical analyses were performed using SPSS
Statistics 22 (IBM 2013).

Results

Plant growth and soil nutrients

In comparison to the bacterial mix treatment, inocula-
tions with RU47 or HT-RU47 cells resulted in signifi-
cantly enhanced plant growth, as shown by higher stem
diameter, leaf number (Table 2), and shoot biomass
(Fig. 1). Furthermore, we observed trends of increased
shoot height and leaf area (Table 2). Symptoms of P
deficiency (violet discoloration on the leaves) were less
obvious in plants receiving both RU47 treatments than
in the bacterial mix treatment but were not significantly
different from the bacterial mix (Table 2). In comparison
with the bacterial mix treatment, both RU47 treatments
revealed higher P uptakes (Fig. 1). Plants of the treat-
ments P-fertilized, and bacterial mix had concentrations
of about 4 g P kg−1, which represented an adequate P
supply for tomato plants before flowering. Plants inoc-
ulatedwith HT-RU47 cells had an optimal concentration
of 6 g P kg−1, whereas plants inoculated with RU47
exhibited a remarkably low P tissue concentration of 2 g
P kg−1 but this was an improvement in absolute uptake
compared to the bacterial mix (Fig. 1, Table S2). In
measurements of water-extractable P (PH2O) in soil, bulk
soil samples of both RU47 treatments had a 2.3-fold
higher P concentration than samples inoculated with the
bacterial mix, and about one fourth of the P concentra-
tion measured in the optimally P-fertilized non-inocula-
tion treatment (Table 2). No significant treatment effects
on NH4

+ and NO3
− concentrations in bulk soil were

observed (Table 2). However, NO3
− concentrations

were negatively correlated with shoot biomass
(Pearson’s r = −0.71; p < 0.05).

Enzyme activities involved in P, C, and N cycling

Soil in situ zymography has revealed that the addition of
viable RU47 significantly increased alkaline PA in the
rhizosphere of tomato on days 25–26 and 31–32 after
sowing (Fig. 2a). Alkaline PA in the rhizosphere of
plants inoculated with viable RU47 increased signifi-
cantly over time, with highest activity on days 25–26
after sowing, whereas the temporal pattern was stable in
the HT-RU47 treatment (Fig. 2a). Based on results
found by zymography, the activity of acid phosphatase
was marginally less than that detected for alkaline PA
(Fig. 2a, b). Acid PA increased slightly over time; sig-
nificant increases of 21% (bacterial mix) and 15%
(RU47) could be observed in the treatments to which
living bacteria were added (Fig. 2b). As expected, acid
PA in the rhizosphere was positively correlated with
plant properties (e.g. shoot height, Pearson’s r = 0.60;
p < 0.001). Potential alkaline and acid PA in homoge-
neous bulk soil samples after final harvest indicated
highest activities in both RU47 treatments (Table 2).
RU47 inoculation did not influence enzyme activities
involved in C and N cycling in bulk soil (Table 2).
Nevertheless, the bacterial mix treatment stimulated
activities of the mainly fungus-derived β-xylosidase
by more than 100% compared with the average β-
xylosidase activity observed in all other treatments
(Table 2).

Microbial biomass

Both RU47 treatments did not influence microbial C
content of the bulk soil (Fig. 3). Microbial biomass P
was almost equal in all inoculation treatments and sig-
nificantly higher than values detected in the P-fertilized
treatment (Fig. 3). Thus the calculated atomic C:P ratio
of 305 in microbial biomass of the P-fertilized treatment
was much higher (4.4 times) as compared to the average
C:P ratios of all other treatments (Table 2).

PLFA

The addition of RU47 did not result in significant shifts
in microbial groups representation based on PLFA pat-
terns (Table 2). However, while bulk soils of the P-
fertilized and bacterial mix treatments exhibited identi-
cal PLFA patterns, abundances of bacterial PLFAs were
higher in bulk soil inoculated with HT-RU47 or RU47
cells by 11 and 7%, respectively (Table 2). Abundances
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of PLFAs representing gram+ bacteria were higher by
about 9% in treatments using both HT-RU47 and viable
RU47 compared to the control and bacterial mix treat-
ments (Table 2).

Amplicon sequencing

RDA demonstrated clear effect of RU47 inoculation along
the first axis explaining about 24% of the variance, posi-
tively correlating with microbial biomass (total PLFA) and
PA, which, in turn were positively correlated with plant’s P
uptake, despite weak linkage to shoot biomass (Fig. 4).
However, a negative correlation between RU47 and N
pool in bulk soil was determined (Fig. 4). Second compo-
nent clearly segregated clusters of the P-fertilized, non-
inoculation treatment from those of the bacterial mix

treatment (about 19% of the variance; Fig. 4). While
OTU cluster of the P-fertilized treatment was positively
correlated with plant’s P uptake and shoot biomass, this
treatment was mainly characterized by molar C:P ratio in
microbial biomass as well as activities of soil enzymes
involved in the C cycle (β-D-glucosidase,β-D-xylosidase;
Fig. 4). Bacterial mix cluster showed highly positive cor-
relation with the leaf discoloration, N pool, and pH, while
plant’s P uptake, shoot biomass, and molar C:P ratio
determined in bulk soil’s microbial biomass were correlat-
ed negatively (Fig. 4).

Amplicon sequences provided insights into the phy-
logenetic composition of the prokaryotic community in
tomato rhizosphere DNA of the four different treatments
from plants sampled 39 days after sowing. In terms of
alpha-diversity, a clear and significant differences

Table 2 Summarized plant and soil properties of tomato plants
under one optimally P-fertilized, non-inoculation (P-fertilized) and
three inoculation treatments using unselectively cultivated soil

bacteria (bacterial mix), heat treated RU47 (HT-RU47), or viable
RU47 (RU47) cells, recorded 36 and 39 days after sowing (DAS)

P-fertilized Bacterial mix HT-RU47 RU47

Unit Mean SE Mean SE Mean SE Mean SE

Plant properties (36 DAS)

Shoot height [cm] 33.8 a ± 0.6 17.2 b ± 2.8 27.1 a ± 0.7 26.4 ab ± 1.8

Stem diameter [cm] 0.5 a ± 0.0 0.3 b ± 0.0 0.5 a ± 0.0 0.5 a ± 0.0

Leaf number – 5.5 a ± 0.3 3.3 b ± 0.3 5.0 a ± 0.0 4.8 a ± 0.3

Leaf area [cm2] 775.6 a ± 11.3 205.4 b ± 84.2 570.6 ab ± 34.8 567.8 ab ± 101.7

Violet discolouration – 0.0 b ± 0.0 2.5 a ± 0.5 0.8 ab ± 0.5 1.0 a ± 0.0

Soil properties (39 DAS)

pH (CaCl2) – 7.2 b ± 0.0 7.5 a ± 0.0 7.5 a ± 0.0 7.5 a ± 0.0

P H2O [mg kg−1] 100.5 a ± 5.5 9.6 b ± 5.1 22.4 b ± 2.0 22.6 b ± 1.0

Molar microbial C:P ratio – 305.1 ± 92.1 55.1 ± 16.1 80.4 ± 8.5 73.7 ± 7.2

NH4
+ [mg kg−1] 1.9 ± 0.6 2.1 ± 0.4 1.5 ± 0.2 1.1 ± 0.1

NO3
− [mg kg−1] 141.7 ± 4.0 159.5 ± 3.5 142.5 ± 5.4 150.6 ± 4.5

Gram+ PLFAs [nmol FAME g−1] 8.0 ± 0.3 8.0 ± 0.2 8.9 ± 0.8 8.6 ± 0.3

Gram− PLFAs [nmol FAME g−1] 1.2 ± 0.0 1.2 ± 0.0 1.3 ± 0.1 1.3 ± 0.1

Bacterial PLFAs [nmol FAME g −1] 14.2 ± 0.5 14.2 ± 0.3 15.7 ± 1.4 15.2 ± 0.6

Fungal PLFA [nmol FAME g−1] 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.1 0.4 ± 0.0

Acid phosphomonoesterase [nmol g−1 h−1] 73.8 ± 20.1 73.7 ± 28.7 105.5 ± 10.3 114.6 ± 13.9

Alkaline phosphomonoesterase [nmol g−1 h−1] 475.9 ± 33.5 503.8 ± 38.2 518.5 ± 31.1 584.1 ± 19.0

ß-glucosidase [nmol g−1 h−1] 188.7 ± 10.5 181.9 ± 4.0 187.5 ± 12.6 196.0 ± 9.4

N-acetyl-ß-glucosaminidase [nmol g−1 h−1] 63.3 ± 9.3 45.1 ± 3.9 41.4 ± 3.1 43.4 ± 1.6

ß-xylosidase [nmol g−1 h−1] 13.2 ± 3.2 34.1 ± 17.6 17.9 ± 1.3 17.5 ± 1.4

Values are presented asmean ± standard error (SE) of four replicates. Significant differences (Tukey-HSD/Games-Howell, p < 0.05) between
the treatments are marked by lowercase letters. Please note the different time points of plant observation and soil sampling. Percentage of
violet discolouration on the undersides of the leaves is based on total leaf area, coded as follows: 0%= 0, > 0–25% = 1, > 25–50% = 2, > 50–
75% = 3, > 75–100%= 4
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(p < 0.05) were observed between samples treated with
dead/alive RU47 which had lower evenness (Shannon
index: HT-RU47 = 3.66 ± 0.34 and RU47 = 3.89 ± 0.10)
and richness (HT-RU47 = 649 ± 72 and RU47 = 683 ±
46) as opposed to P-fertilized/bacterial mix samples
(Shannon index: P-fertilized = 4.98 ± 0.19 and bacterial
mix = 5.18 ± 0.09; Richness: P-fertilized = 884 ± 21 and
Bacterial mix = 860 ± 17). The HT-RU47 and the RU47
treatments had significantly higher relative abundance
of Proteobacteria. In particular Gammaproteobacteria
were strikingly increased in relative abundance com-
pared to the P-fertilized and bacterial mix treatments
(Table 3). In both HT-RU47 and RU47 treatments
Pseudomonas was significantly increased in relative
abundance. Interestingly, in the HT-RU47 treatment
the sequences were distinct from those related to
RU47. Sequence comparison with the recently available
RU47 genome sequence showed that two OTU were
likely RU47 derived due to 16S operon heterogeneities
(Fig. S3). Although at the phylum level for Firmicutes
there were no significant differences observed, the rela-
tive abundance of Bacilli was significantly lower in the
HT-RU47 and RU47 treatments. Bacteroidetes

(Cytophagia, Sphingobacteria) were significantly
higher in the P-fertilized treatment. The less abundant
phyla Gemmatimonadets, Nitrospirae, Chloroflexi,
Planctomycetes and Verrucomicrobia had a significant-
ly lower relative abundance in the HT-RU47 and the
RU47 treatments compared to the P-fertilized and bac-
terial mix treatments (Table 3). Heatmap demonstrated
that each treatment displayed distinct dominant OTUs

significantly responding between treatments in term of
abundance (Fig. 5). The heat map shows that RU47
related OTUs were dominant members of the tomato
rhizosphere only in the RU47 treatment. Interestingly in
the HT-RU47 treatments these OTU were not detected
but instead OTU with sequence similarity to different
Pseudomonas species were dominant. OTUs affiliated
to Clostridium, Lysobacter and Tumebacillus showed a
higher abundance in the bacterial mix treatments.
Numerous dominant OTUs (18) were observed in the
P-fertilized treatment that were affiliated to diverse
range of genera belonging to different phyla (Fig. 5).
Samples of the bacterial mix treatment had 4 OTUs with
higher abundance, partly overlapping with those of the
P-fertilized treatment, mostly belonging to Firmicutes

and Gammaproteobacteria (Fig. 5). Furthermore, in
RU47 treatment OTUs belonging to Rubrobacter sp.
and Terrimonas sp. were found (Fig. 5).

Discussion

Plant growth

In tomato plants inoculated with RU47, not only stem
diameter and leaf number, but also 3-fold higher shoot
biomass was observed in comparison to plants which
were inoculated with the bacterial mix (Table 2, Fig. 1).
Therefore, the present study demonstrates the actual
plant growth promoting activity of this particular inoc-
ulant, with similar results compared to previous studies.

Fig. 1 Tomato shoot biomass
(dry weight) and plant-bound P of
one optimally P-fertilized, non-
inoculation (P-fertilized) and
three inoculation treatments using
unselectively cultivated soil
bacteria (bacterial mix), heat
treated RU47 (HT-RU47), or
viable RU47 (RU47) cells. Data
were recorded 39 days after
sowing. Error bars indicate
standard error (n = 4); significant
differences (Tukey-HSD,
p < 0.05) between the treatments
are designated by lowercase
letters
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For instance, Kim et al. (1997) observed a 2-fold higher
plant biomass in 35 day-old tomato plants inoculated
with Enterobacter agglomerans cells compared to the
not inoculated control. However, in our study, a growth-
promoting effect was also observed in tomato plants
inoculated with HT-RU47 cells (Fig. 1, Table 2). The
difference between the treatments RU47 and HT-RU47

makes it possible to estimate whether potential plant
growth promotion is a result of direct or indirect mech-
anisms. Direct mechanisms can include, for example,
the production of phosphatases by RU47 resulting in an
improved supply of P by plants. Indirect mechanisms
include the release of cell-derived phytohormones or
other compounds which may stimulate and/or facilitate

Fig. 2 a Alkaline phosphomonoesterase activity during different
growth stages of tomato plants. The experiment comprised one
optimally P-fertilized, non-inoculation (P-fertilized) and three in-
oculation treatments using unselectively cultivated soil bacteria
(bacterial mix), heat treated RU47 (HT-RU47), or viable RU47
(RU47) cells. Error bars indicate standard error (n = 4). Letters
indicate significant differences (Tukey-HSD, p < 0.05) between
the treatments, tested individually for each growth stage. b Acid

phosphomonoesterase activity during different growth stages of
tomato plants. The experiment comprised one optimally P-fertil-
ized, non-inoculation (P-fertilized) and three inoculation treat-
ments using unselectively cultivated soil bacteria (bacterial mix),
heat treated RU47 (HT-RU47), or viable RU47 (RU47) cells. Error
bars indicate standard error (n = 4). Letters indicate significant
differences (Tukey-HSD, p < 0.05) between the treatments tested
individually for each growth stage
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establishment of indigenous microbes and their activity
in soil. These indirect mechanisms are discussed inmore
detail below.

Tracing RU47

The strain RU47 was originally isolated from a soil
which had previously been reported as suppressive to
phytopathogenic fungi (Adesina et al. 2007). Amplicon

sequencing of 16S rRNA gene from TC-DNA, which
was extracted from the rhizosphere, revealed clear tax-
onomic segregation between P-fertilized, bacterial mix,
and both treatments where RU47 cells were added (Figs.
4 and 5, Table 3). Furthermore, as strain RU47 displays
heterogeneity in its own 16S sequence due to multiple
genomic copies (n = 6), several OTUs were identified
matching the RU47 variants (Fig. S3). Based on
amplicon sequencing data cross-contaminations

Fig. 3 Microbial-bound carbon
(Cmic) and phosphorus (Pmic) in
bulk soil of tomato plants
harvested 39 days after sowing.
The experiment comprised one
optimally P-fertilized, non-
inoculation (P-fertilized) and
three inoculation treatments using
unselectively cultivated soil
bacteria (bacterial mix), heat
treated RU47 (HT-RU47), or
viable RU47 (RU47) cells. Error
bars indicate standard error (n =
4); significant differences (Tukey-
HSD, p < 0.05) between the
treatments are designated by
lowercase letters

Fig. 4 Redundancy analysis
(RDA) applied on whole
prokaryotic communities
obtained from 16S amplicon
sequencing in the rhizosphere of
one optimally P-fertilized, non-
inoculation (P-fertilized) and
three inoculation treatments using
unselectively cultivated soil
bacteria (bacterial mix), heat
treated RU47 (HT-RU47), or
viable RU47 (RU47) cells of
tomato plants 39 days after
sowing
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between the treatments can be excluded (Figs. 4 and 5,
Fig. S3). RU47 was significantly more abundant in
rhizosphere of treatments with RU47 cells than in all
other treatments, especially in comparison with HT-

RU47 (Fig. 5). This finding confirms the high rhizo-
sphere competence of RU47 as already reported by
Adesina et al. (2009) and Schreiter et al. (2014b). Both
studies investigated the ability of RU47 to colonize the

Table 3 Phylogenetic composition of the prokaryotic community
in tomato rhizosphere DNA of one optimally P-fertilized, non-
inoculation (P-fertilized) and three inoculation treatments

(bacterial mix of soil bacterial isolates; heat treated RU47 [HT-
RU47], or viable RU47 [RU47] cells) from plants harvested
39 days after sowing

P-fertilized Bacterial mix HT-RU47 RU47

Phylum/class Mean SE Mean SE Mean SE Mean SE

Proteobacteria 40.7b ± 4.4 36.8b ± 4.1 62.4a ± 5.6 58.7a ± 4.6

Alphaproteobacteria 8.8a ± 0.6 9.6a ± 1.0 4.0b ± 0.9 5.3b ± 0.4

Betaproteobacteria 1.5a ± 0.1 1.1ab ± 0.2 1.2ab ± 0.2 0.9b ± 0.1

Deltaproteobacteria 0.5a ± 0.1 0.4a ± 0.1 0.2b ± 0.1 0.2b ± >0.01

Gammaproteobacteria 29.9b ± 4.9 25.6b ± 4.8 56.9a ± 6.6 52.4a ± 4.1

Unclassified >0.01 ± >0.01 nd >0.01 ± >0.01 nd

Firmicutes 26.7 ± 3.3 25.2 ± 4.3 19.2 ± 3.0 17.8 ± 6.4

Bacilli 5.2a ± 0.7 3.9a ± 0.7 1.7b ± 0.3 1.7b ± 0.2

Clostridia 21.5 ± 3.4 20.3 ± 3.6 18.0 ± 3.0 16.1 ± 6.4

Unclassified >0.01 ± >0.01 0.9 ± 0.9 nd nd

Actinobacteria 14.6b ± 1.2 22.9a ± 2.0 9.9c ± 2.7 14.9b ± 0.9

Bacteroidetes 8.6a ± 0.9 4.0b ± 0.3 4.3b ± 1.3 4.3b ± 0.6

Bacteroidia 1.2a ± 0.2 1.4a ± 0.3 0.6b ± 0.1 0.6b ± 0.1

Cytophagia 0.4a ± >0.01 0.2b ± 0.1 0.2b ± 0.1 0.2b ± >0.01

Flavobacteriia 0.6 ± 0.1 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.1

Sphingobacteriia 6.4a ± 0.9 1.8c ± 0.4 3.0bc ± 0.9 3.0b ± 0.4

Gemmatimonadetes 3.3a ± 0.5 3.8a ± 0.6 1.2b ± 0.4 1.4b ± 0.3

Nitrospirae 1.5a ± 0.2 1.9a ± 0.3 0.6b ± 0.2 0.8b ± 0.1

Chloroflexi 1.4a ± 0.2 1.8a ± 0.3 0.5b ± 0.2 0.7b ± 0.1

Anaerolineae 0.3a ± 0.1 0.4a ± 0.1 0.1b ± >0.01 0.2b ± >0.01

Caldilineae 0.4a ± 0.1 0.5a ± 0.1 0.2b ± >0.01 0.2b ± >0.01

Chloroflexia 0.2a ± >0.01 0.3a ± 0.1 0.1b ± >0.01 0.1b ± >0.01

Dehalococcoidia 0.1 ± >0.01 0.1 ± >0.01 >0.01 ± >0.01 0.0 ± >0.01

Ktedonobacteria >0.01 ± >0.01 nd nd nd

Thermomicrobia 0.4b ± >0.01 0.5a ± >0.01 0.2c ± >0.01 0.2c ± >0.01

Planctomycetes 0.8a ± 0.1 0.7a ± 0.1 0.3b ± 0.1 0.3b ± 0.1

Phycisphaerae >0.01 ± >0.01 >0.01 ± >0.01 >0.01 ± >0.01 >0.01 ± >0.01

Planctomycetia 0.8a ± 0.1 0.7a ± 0.1 0.3b ± 0.1 0.3b ± 0.1

Verrucomicrobia 0.6a ± 0.1 0.7a ± 0.1 0.2b ± 0.1 0.2b ± >0.01

Opitutae >0.01 ± >0.01 nd nd nd

Verrucomicrobiae 0.6a ± 0.1 0.7a ± 0.1 0.2b ± 0.1 0.3b ± >0.01

Ignavibacteriae 0.1a ± >0.01 0.2a ± >0.01 0.1b ± >0.01 0.1b ± >0.01

Unclassified Bacteria 1.8a ± 0.3 2.1a ± 0.4 0.8b ± 0.2 0.9b ± 0.1

Values are presented as mean relative abundance ± standard error (SE) of phylogenetic groups at the phylum and class levels. Statistical
significances between the treatments inferred by ANOVA with false discovery rate post-hoc multiple correction test (FDR, p < 0.05) are
marked by lowercase letters. Nd stands for ‘not detected’
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rhizosphere of lettuce either in growth chambers or under
field conditions. However, in these studies, cultivation-
dependent methods (i.e. selective plating/re-cultivating
the inoculum) were used. The RU47 is a spontaneous
rifampicin-resistant mutant; this makes sensitive and spe-
cific detection of RU47 in rhizosphere and bulk soil pos-
sible using selective plating. Unfortunately, selective plat-
ing was not used in the present experiment. Commercial as
well as non-commercial PMB strains, including RU47,
were originally isolated from indigenous microbial com-
munities associated with soils and plants. In contrast to
genetically modified strains, specific and sensitive moni-
toring of naturally occurring strains is more difficult. The
literature, though sparse, suggests that survival of inocu-
lants such as PMB is difficult to track and that the

inoculants exhibit great temporal and spatial dependency.
A temporal decrease in abundance has frequently been
reported (Kim et al. 1997; Dey et al. 2004; Hameeda
et al. 2008; Meyer et al. 2017). For instance, Meyer et al.
(2017) documented a loss of more than 99% of the inoc-
ulatedPseudomonasprotegensCHA0cellswithin40days.
Kim et al. (1997) determined that Enterobacter

agglomerans found in the rhizosphere of non-inoculated
tomato plants (35 days after sowing) corresponded to
almost 50% of the abundance in the inoculation treatment.

Improved P supply

Data on effects of PMB addition on plant growth and P
uptake are rare and somewhat inconsistent. However,

Fig. 5 Generalized heatmap of
dominant responders in the
rhizosphere of one optimally P-
fertilized, non-inoculation (P-
fertilized) and three inoculation
treatments using unselectively
cultivated soil bacteria (bacterial
mix), heat treated RU47 (HT-
RU47), or viable RU47 (RU47)
cells of tomato plants 39 days
after sowing. Only OTUs with
relative abundance >0.1% and
significantly responding are
displayed (nbGLM, likelihood
ratio test, p < 0.05)
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Egamberdiyeva (2007) and Kumar et al. (2013) demon-
strated improved P uptake in maize and mustard respec-
tively due to addition of single PMB strains. Although
not significant, these findings are consistent with the
results of our study, which showed higher P accumula-
tion in tomato plants inoculated with HT-RU47 and
viable RU47 (Fig. 1). In evaluating plant P uptake, P
tissue concentration is the meaningful value because
differences resulting from variations in plant growth
are excluded. Variations in plant growth may therefore
explain the adequate P tissue concentration of 0.4%
(Table S2) that was observed not only in the optimally
P-fertilized treatment but also in the plants inoculated
with a bacterial mix. In the bacterial mix treatment, the
lowest amounts of available P in the soils (from small
starter P fertilization at the beginning of the experiment)
were taken up by the plants in comparison to the other
treatments, and this P was not enough to maintain
growth (Fig. 1). The previously incorporated P was
concentrated in the small biomass, resulting in apparent
adequate initial P tissue concentration of 0.4%, but this
was a concentration effect relative to low tissue biomass.
As plants grew, the initially adsorbed P was no longer
available, and these plants then exhibited P deprivation,
as indicated by violet discoloration of leaves (Table 2,
Table S2). Plants inoculated with RU47 had a P tissue
concentration of 0.2% (Table S2), which is in
close agreement with the data reported by Kim
et al. (1997) but may also indicate competition
for available P between added bacteria and plant.
This assumption is supported by the optimal P
tissue concentration of 0.6% found in plants which
were inoculated with HT-RU47 cells. In these
plants competition was reduced, while highest
Pmic values were determined in soil of the viable
RU47 treatment, a condition in which competition
between plants and bacteria is expected to be
highest. An improved P supply by the addition
of RU47 or HT-RU47 was also observed by a 2-fold
higher PH2O concentration compared to the bacterial
mix treatment (Table 2). However, a fertilizing effect
due to addition of HT-RU47 cells can be excluded since
N and P concentrations in cell suspension (OD600 = 1)
were determined as 41.5 and 0.9 μg mL−1, respectively,
corresponding to a total N and P addition of less
than 0.6 mg kg−1 (data not shown). These values
are negligible in comparison to the initial slight P
fertilization (50 mg kg−1) and the optimal fertilized
control (200 mg kg−1).

Improved P mobilization in soil

An improved P supply by PMB, including some
Pseudomonas strains, has been reported in several stud-
ies (for overviews, see Rodríguez and Fraga 1999; Khan
et al. 2007; Harvey et al. 2009). For instance, Malboobi
et al. (2009) documented effective mobilization of inor-
ganic and organic phosphate compounds by
Pseudomonas putida P13 in culture media. Similar
findings were reported by Pastor et al. (2012). They
observed growth stimulation of tomato seedlings by
the addition of P. putida PCI2 and were able to identify
this strain as positive for PA and highly effective for
solubilizing Al- and Ca-bound phosphates. In our study,
inoculations with RU47 resulted in increased alkaline
phosphomonoesterase activity in the rhizosphere of to-
mato plants (Fig. 2a). Moreover, enzyme activity mea-
sured by zymography increased from 18 to 19 to 25–
26 days after sowing, likely due to increasing bacterial
colonization and P depletion. In contrast, alkaline PA in
the rhizosphere inoculated with HT-RU47 remained
stable (Fig. 2a). These findings suggest increased P
mineralization by microbial phosphatases produced by
viable RU47. In general, zymography revealed similar
activity levels for alkaline and acid PA, which is in
accordance with Spohn et al. (2015). They determined
the PA in the rhizosphere of barley grown under low and
adequate P soil conditions and observed a similarity of
approximately 90% between alkaline and acid PA. In
contrast to the experiment of Spohn et al. (2015), we
observed no distinct separation between roots and sur-
rounding soil (Fig. S2) and also generally lower PA (Fig.
2a, b). This may be attributable to the comparatively fine
roots of tomato plants as compared to barley. Lower
enzyme activity levels in comparison to the values of
Spohn et al. (2015) may have been due to the addition of
quartz sand in the present experiment.

PA data determined by soil in situ zymography indi-
cated the spatial and temporal distribution of enzyme
activity in the rhizosphere (soil area) during different
growth stages of the tomato plants. Enzyme analyses
performed after final harvest enabled us to gain addi-
tional information about the potential PA in bulk soil
(soil body) at a single time point. Measured highest
alkaline and acid PA values in soil inoculated with
RU47 after final harvest agreed with our soil
zymography results (Table 2, Fig. 2a, b). In comparison
to the bacterial mix treatment, alkaline PA increased by
16% (Table 2). These results are in agreement with those
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obtained by Kaur and Reddy (2014), who documented
increases in alkaline PA of 31% due to the addition of
Pseudomonas plecoglossicida in soil of wheat plants.
These findings reinforce the evidence for improved P
mineralization by the addition of RU47. Nevertheless,
bulk soil inoculated with HT-RU47 cells also revealed
increased PA (Table 2), despite the effectively killing of
RU47 by HT and the denaturation of phosphatases. By
taking into account that increased PA in HT-RU47 treat-
ment was observed only once and perhaps temporary,
this observation allows us to speculate that the addition
of bacterial residues (HT-RU47 cells) and thus a supply
of fresh organic matter (FOM) may enhanced growth
and activity of previously of bacterial populations, es-
pecially Pseudomonads (Fig. 5), also known as the
priming effect (Bingeman et al. 1953; Fontaine et al.
2003).

Interactions with indigenous soil microbes
and hormone-derived effects

An initially conducted denaturing gradient gel elec-
trophoresis (DGGE) analysis of 16S rRNA gene
amplified from TC-DNA revealed no RU47-related
band in the HT-RU47 treatment, but dominant bands
which were absent or less intense in all other treat-
ments (Fig. S4). Furthermore, high d-values (permu-
tation test) indicating large differences were ob-
served between the fingerprints of the HT-RU47
and viable RU47 (43.2), and between the bacterial
mix and HT-RU47 (28.4; Table S3). This first indi-
cation of changed bacterial community composition,
especially when HT-RU47 cells were added, was
supported by the amplicon sequencing showing less
present RU47-specific OTUs in HT-RU47 treatment,
as well as the presence of 8 OTUs affiliated to other
different Pseudomonas (Fig. 5). We assume, there-
fore, that inoculation of HT-RU47 cells, and thus the
addition of FOM in the form of bacterial residues to
soil, resulted in a priming effect that enhanced bac-
ter ia l populat ions, especial ly belonging to
Gammaproteobacteria (Fig. 5). This, in turn, result-
ed in the growth of bacterial populations responding
to the C spike accompanied by increased microbial
PA in bulk soil, resulting in the observed improved
P supply for the tomato plants in this treatment
(Table 2). This assumption is confirmed by data of
RDA that revealed a highly positive correlation be-
tween HT-RU47 and the variables plant’s P uptake

and PA (Fig. 4). However, despite finding no strong
evidence of enhancement in microbial C degradation
via RDA, phylogenetic variations within the genus
Pseudomonas dominating bacterial diversity in HT-
RU47 might have disguised a positive correlation
between HT-RU47 and enzymes involved in the C
cycle (Fig. 4, Fig. S3). On the other hand, RDA
revealed positive correlations between the P-
fertilized treatment and the microbial biomass C:P
ratio as well as activity of carbohydrate degrading
enzymes (Fig. 4). Phylogenetic diversity of this treat-
ment was mainly characterised by, inter alia,
Bacteroidetes, Alpha- and Betaproteobacteria, which
are identified to follow the copiotrophic nutritional strat-
egy (Fierer et al. 2007; Fig. 5). Activities of carbohy-
drate degrading enzymes might explain the negative
correlation between this treatment and soil’s pH, as
higher C degradation activity may increase soil acidity
via organic acid release (e.g. acetate; Fig. 4). The ab-
sence of positive correlation between P-fertilized and
the PA is well explainable by soil’s initially high P
fertilization (Fig. 4). Although we found no significant
effects on PLFA patterns, bulk soil inoculated with
RU47 cells showed a minor increase in bacterial abun-
dance, especially of gram+ bacteria (Table 2) likely
indicating microbiome shift as a result of RU47 inocu-
lation, a finding also reported by Schreiter et al. (2014a).
Amplicon sequencing revealed strikingly different tax-
onomic affiliation of the dominant genera and showed
that in the HT-RU47 treatments OTUs affiliated to
Pseudomonas were dominant which were not detected
in the other treatments and were clearly distinct from
RU47 (Fig. 5). This Pseudomonas population might
have contributed to the increased microbial PA and
improved P supply determined in bulk soils of both
RU47 treatments. An increase in abundance of
indigenous PMB after the application of specific PMB
strains has also been reported by Sundara et al. (2002)
and Canbolat et al. (2006). Supporting this assumption,
heatmap showed OTUs that seemed to have been facil-
itated by RU47 regardless of its viability, including
Parapedobacter sp., Luteimonas mephitis, and
Pseudomonas fluorescens, the latter, at least, include
several well studied plant growth-promoting bacteria
strains (e.g. McGrath et al. 1995; Park et al. 2015). To
solve this open question, functional gene analyses of
phosphomonoesterases could clarify identities of the
main producers of different phosphomonoesterases and
should be considered in future studies. Plant growth
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promotion can be strongly influenced by modulation of
the phytohormone level of the plant. Several studies
have shown that many soil bacteria, including
Pseudomonas, are able to synthesize phytohormones
or the enzyme 1-aminocyclopropane-1-carboxylate
(ACC) deaminase, affecting the plant’s hormonal bal-
ance and thus its growth and response to stress, ensuring
the bacteria’s supply of C resources from root exudation
(for review see Tsavkelova et al. 2006; Glick 2012).
Hence, the plant growth promotion observed in both
RU47 treatments was likely due to a hormone-
mediated effect. Rajkumar and Freitas (2008) report-
ed a strong effect of ACC deaminase production by
P. jessenii M6; this was also detected for RU47
(Eltlbany et al., under review). But, due to enzyme
inactivation in the HT-RU47 treatment, an ACC
deaminase effect was negligible here. However, it
is known that phytohormones such as auxins and
cytokinins remain stable after heating to 121 °C
(Murashige and Skoog 1962; Kumar 2009).
Although, it is entirely possible that co-extracted
thermally stable phytohormones produced by
RU47 before they were killed were added through
inoculation of HT-RU47 cells it is more likely that
the addition of HT-RU47 cells promoted indige-
nous, phytohormones synthesizing soil microorgan-
isms, including especially bacterial genus belonging to
Pseudomonas as indicated by the amplicon sequencing
analysis (Fig. 5; for review see Tsavkelova et al. 2006;
Glick 2012). Taken together, the improved P supply in
plants inoculated with HT-RU47 or viable RU47 may
have been due to phytohormones, stimulating root
growth and activity, and improving P acquisition in soil.

Conclusion

This study demonstrated that addition of RU47
improves the P supply and subsequent growth of
tomato plants under P-limited growing conditions.
Furthermore, it indicated enhanced production of
alkaline phosphatase in the RU47 treatments. This
is the first study to compare the effects of adding
viable and dead RU47 cells to plants and soil. In both
treatments higher P uptake and plant growth promotion
were observed. The plant growth-promoting effect was
likely caused by increased PA in the rhizosphere of
tomato amended with viable RU47. In the HT-RU47
treatment, the bacterial populations which proliferated

in response to the added resource may have contributed
to improved P supply and growth promotion via other
mechanisms. Thus, the use of RU47 offers a promising
approach for more efficient P fertilization in agriculture.
In contrast to our hypothesis that the colonization of
RU47 leads to spatially distinct zones of increased PA in
the rhizosphere, no clear differences in rhizosphere and
bulk soil were found. This was likely due to the fine
roots of tomato plants and homogeneously distributed
enzyme activity of the topsoil used in the treatments. We
found no significant effects of RU47 on soil microbial
community structure as determined by PLFAs, but we
detected significant shifts in bacterial composition of the
rhizosphere using 16S amplicon sequencing. Our study
shows that RU47 increases microbial PA in soil with
low P availability and leads to growth promotion of
tomato plants.
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