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ABSTRACT 

Background: The possibility of integrating viral vectors to become a persistent part of the host genome 

makes them a crucial element of clinical gene therapy. However, viral integration has associated risks, 

such as the unintentional activation of oncogenes that can result in cancer. Therefore, the analysis of 

integration sites of retroviral vectors is a crucial step in developing safer vectors for therapeutic use. 
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Results: Here we present VISMapper, a vector integration site analysis web server, to analyze next-

generation sequencing data for retroviral vector integration sites. VISMapper can be found at: 

http://vismapper.babelomics.org. 

Conclusions: Because it uses novel mapping algorithms VISMapper is remarkably faster than previous 

available programs. It also provides a useful graphical interface to analyze the integration sites found in 

the genomic context. 
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BACKGROUND 

The stable, long-term correction of diseases by integrating viral vectors carrying healthy copies defective 

genes in the patient’s genome has become mainstream procedure in clinical gene therapy [1, 2]. However, 

despite its successful application, viral integration based therapies are not exempt of risks, such as the 

accidental activation of oncogenes that can cause malignant transformation of the cells [3, 4]. Vector 

locations in the host genome constitute molecular markers that help monitoring the fate of affected cells. 

Analysis of vector insertion sites (ISs) is carried out by the amplification (currently using Next Generation 

Sequencing –NGS- technologies) of sequences from retroviral vectors with a long terminal repeat (LTR). 

Primers mapping LTRs produce sequence reads with LTR-chromosome junctions, which can be used to 

accurately determine the chromosomal region of insertion of the viral vector [4]. Such monitoring is 

required because it is known that distinct gene transfer vectors can have preferences to target gene coding 

regions, CpG islands, or transcriptional start sites [5-7]. 

Here we present a new web server, VISMapper, a web tool to manage sequencing data for the detection 

of viral vector insertion sites in gene therapy experiments. VISMapper is much faster than other alternative 

software available and provides a comprehensive graphic interface that allows interactive visualization of 

the viral ISs in the genomic context.  

IMPLEMENTATION 

VISMapper is written in Node.js (a JavaScript runtime) and uses GenomeMaps [8] for the visual 

representation of the results in the context of the genome. Thus the resulting viral insertion sites of an 

experiment can be visualized along with the genomic features they have around, including reads mapped, 



genes and other type of genomic elements. Supported assemblies for the human genome are GRCh37 and 

GRCh38.  

Cancer genes were taken from the COSMIC [9] database through the CellBase [10] webservices. 

FEATURES 

Data upload and workspace  

VISMapper reads standard FASTQ or FASTA files containing reads corresponding to the insertion sites 

of the virus. If FASTA files are provided, they are converted to FASTQ format. Since FASTA files lack 

the quality parameter, this is set to 20 by default for the FASTQ file generated. A value of 20 minimizes 

the false positive rate when the original sequences are of a reasonable quality. In any case, the use of 

FASTQ containing quality values is obviously preferable. Files can be ZIP compressed. During the 

upload, user can optionally provide an email to be notified of the end of the data processing (given the 

speed of data processing it is usually unnecessary).  

Read mapping 

Reads in the FASTQ file are mapped onto the reference human genome using BWA [11] or HPG-Align 

[12]. Typically mapping runtimes are in the range of seconds, which makes of VISMapper a truly 

interactive and accurate tool for exploring the result of retroviral insertion experiments. IS locations are 

detected by identified reads partially mapped. We use the CIGAR information for this. When the CIGAR 

of a mapping contains soft or hard clippings it indicates that the corresponding read have part of the 

genome sequence and part of the viral sequence. The reads are arranged by chromosome using SAMTools 

[13] and are inserted in a MySQL database for facilitating a faster access to them.  

Dashboard 

The Dashboard is a graphical working environment composed by three panels: the karyotype viewer, the 

genome viewer and the control panel (See Figure 1).  The karyotype viewer provides a general perspective 

of all the ISs along the chromosomes. Clicking with the left mouse button magnifies the chromosome, 

with ISs marked as red lines. Exact details on the IS location are provided by setting the cursor over them. 

A vertical panel on its left (See Figure 1) allows filtering IS by the number of reads supporting them. It 



 

also allows searching those reads which are closer to oncogenes of genes related to specific tumor types. 

When the mouse hovers the chromosome in the karyotype a detailed view of the selected chromosome 

with the IS is displayed. Setting the mouse over the ISs pops up information on its exact location and the 

number of reads supporting it.  

A more detailed view of the region in which the ISs occur (that can be selected by clicking in the karyotype 

viewer) can be obtained with the genome viewer, which implements GenomeMaps [8]. Several tracks are 

available at different detail level depending on the zoom level in the genome viewer: a) the surrounding 

genomic region, b) oncogenes located in the neighborhood (the cursor over them displays information on 

the genes) and c) reads mapped around the IS (again, information on the read, such as strand, mapping 

quality, etc. is provided by hovering the mouse on them) 

Finally, the control panel allows setting a threshold based on the number of reads that support ISs and 

allows finding specific cancer genes or genes of specific cancer types (see Figure 1, left part). Specifically, 

a box allows setting a threshold with the minimum number of reads to consider a IS (5 by default). The 

second box allows selecting a specific oncogene (can be searched by name or selected from a list). The 

list of oncogenes has been extracted from COSMIC. Another box allows displaying only the genes known 

to be associated with a given tumor. 

Report 

The control panel allows generating a comprehensive tabular report of the results found. The button report 

directs to another page with a table containing all the ISs found that can be arranged by all the criteria 

shown in the header of the columns (chromosome, position, quality, etc.)  Different filters (number of 

reads that support the IS and distance to a cancer gene) can be applied to expand or reduce the number of 

ISs to consider. This list can be downloaded in tab delimited format and a BAM file with the alignments 

found by the mapper can also be downloaded. 

For any IS considered with the filtering schema used, the report contains the following items: 

- Chromosome 

- Position 

- Number of reads mapped in this position 

- Average quality of all the reads mapped in the position 



- Closest oncogene 

- Distance to the oncogene (0 means that the IS maps within the oncogene) 

- Position of the oncogene with respect to the IS 

- Entrez entry of the oncogene 

- URL to the Entrez entry of the oncogene  

COMPARISON TO OTHER WEB SERVERS FOR VIRAL IS MAPPING 

There are a few web servers for viral vector insertion site analysis, such as, HISAP [14], SeqMap (requires 

user registration) or QuickMap [15], or the recently published VISA [16]. However, all of them use 

BLAST [17] or BLAT [18] for read mapping that involve comparatively much longer runtimes. Figure 2 

shows a comparative of runtimes where the increase in speed gained by the use of more sophisticated 

mapping algorithms in VISMapper is obvious. The data used in the comparison were taken from the VISA 

website and can also be downloaded at the VISMapper documentation site 

(https://github.com/jmjuanes/vismapper/tree/master/ismapper-test). 

In addition, a more detailed comparison was made with the VISA program by generating 4 datasets with 

known number of IS using the IS generator program from the VISA website 

(https://visa.pharmacy.wsu.edu/bioinformatics/random_site_generator.html). Table 1 shows the results of 

the comparison. Relative runtimes are similar to the ones shown in Figure 2. While both methods give a 

very small number of false positives, in general VISMapper was able to map a higher percentage of 

sequences and found more IS sites than VISA. 

In addition, QuickMap does not process more than 50,000 sequences and VISA limits are between 50,000 

and 100,000. HISAP could manage up to 100,000 in about 50 minutes, but cannot arrive to 250,000 

sequences. Moreover, none of the other programs provide a graphic interface to analyze the results. 

Furthermore, QuickMap and HISAP do not support GRCh38.  

CONCLUSIONS  

Because of its speed and sensitivity, VISMapper constitutes an attractive alternative to the options 

available for viral insertion site analysis. VISMapper offers a unique, interactive graphical working 



 

environment that allows a detailed and exhaustive exploration of the consequences and potential risks of 

the viral vectors inserted in the analyzed genome.   

LIST OF ABBREVIATIONS 

BAM: Binary Alignment Map 

BWA: Burrows–Wheeler Algorithm 

IS: Insertion Site 

LTR: long terminal repeat 

NGS: Next Generation Sequencing  
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FIGURE LEGENDS 

Figure. 1. Screenshot showing the different graphical representations in the dashboard: the karyotype 

viewer and the genome viewer. Also, a table with the list of IS found is displayed. 

Figure. 2.  Runtimes observed for different programs QuickMap (line with diamonds), VISA (line with 

squares) HISAP (line with triangles) and VISMapper (line with circles) with datasets of increasing sizes. 

In the case of QuickMap, VISA and HISAP, the lines are interrupted according to internal hard limits for 

the number to sequences that the programs can process.  

 

 



TABLE LEGENDS 

Table 1. Comparison of VISA and VISMapper using four datasets generated with the IS generator 

program from the VISA website 

(https://visa.pharmacy.wsu.edu/bioinformatics/random_site_generator.html) 

 

 


