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Abstract 14 

The in utero environment is inherently rhythmic, with the fetus subjected to circadian changes in 15 

temperature, substrates and various maternal hormones. Meanwhile, the fetus is developing an 16 

endogenous circadian timing system, preparing for life in an external environment where light, food 17 

availability and other environmental factors change predictably and repeatedly every 24 hours. In 18 

humans, there are many situations that can disrupt circadian rhythms, including shift work, international 19 

travel, insomnias and circadian rhythm disorders (e.g., advanced/delayed sleep phase disorder), with a 20 

growing consensus that this chronodisruption can have deleterious consequences for an individual’s 21 

health and wellbeing. However, the impact of chronodisruption during pregnancy on the health of both 22 

the mother and fetus is not well understood. In this review we outline circadian timing system ontogeny 23 

in mammals, and examine emerging research from animal models demonstrating long term negative 24 

implications for progeny health following maternal chronodisruption during pregnancy.   25 

 26 

 27 

 28 
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Circadian rhythms 32 

Circadian rhythms evolved as an adaptation to the predictable changes in day and night, and ensure 33 

aspects of behaviour and physiology are timed to occur at the most appropriate part of the day-night 34 

cycle. The three critical features of the circadian timing system are 1) a central pacemaker capable of 35 

generating endogenous circadian rhythms, 2) the capacity to integrate environmental signals to ensure 36 

circadian rhythms are appropriately synchronised to the environment, and 3) efferent pathways from 37 

the pacemaker to the periphery to orchestrate whole body circadian rhythmicity.  38 

In mammals, the central pacemaker is the bilateral suprachiasmatic nucleus (SCN) of the hypothalamus, 39 

a group of approximately 10,000 cells lying on either side of the third ventricle, immediately dorsal to 40 

the optic chiasm (58). The basis of circadian rhythm generation is a molecular transcription-translation 41 

feedback loop involving a series of core-clock genes. Molecular rhythm generation has been extensively 42 

reviewed elsewhere (55). In brief, CLOCK and BMAL1 proteins form a heterodimer to drive 43 

transcription of Per1/2/3 and Cry1/2 genes. Translation, accumulation and post-translational 44 

modifications allow these genes to feedback to repress their own transcription. Simultaneously, 45 

CLOCK/BMAL1 heterodimers drive transcription of Rev-erbα/β and Rorα/β/γ genes, which in turn 46 

suppress or induce, respectively, the expression of Bmal1 through ROR response elements. Together 47 

these two interlocked loops result in the 24 hour rhythms of clock gene expression. Regulatory 48 

mechanisms act to support and fine-tune the molecular feedback loops through protein modifications 49 

including phosphorylation, ubiquitination, acetylation and sumoylation (30). Rhythmic information is 50 

transmitted to the rest of the cell through clock-controlled genes, many of which are themselves 51 

transcription factors, thereby amplifying the rhythmic signal throughout the transcriptome. As a result, 52 

up to 10% of the transcriptome (2), and 20% of the proteome (67) oscillates predictably across 24 hours.    53 

The second critical feature of the circadian system is that rhythms can be entrained to the external 54 

environment. Light information, which is perceived by the retina and transmitted through a direct neural 55 

pathway to the central SCN clock, is the predominant zeitgeber (time giver). Other signals including 56 

activity, food intake, timing of sleep, and stress/arousal are also transmitted to the SCN and alter the 57 



timing of rhythmicity (12, 57, 59). This capacity for entrainment is critical for ensuring organisms 58 

remain aligned to a changing external environment.  59 

Finally, the SCN signals to the rest of the brain and periphery through neural and hormonal pathways. 60 

Neuroanatomical tracing studies have shown that neurons of the SCN primarily project to a few 61 

hypothalamic nuclei, including the paraventricular nucleus (PVN), the medial preoptic area (MPOA) 62 

and the dorsomedial nucleus (DMH) (33). This allows propagation of the signal from the SCN through 63 

its contacts with the neuro-endocrine neurons of the hypothalamus. For example, rhythmic melatonin 64 

secretion from the pineal gland is controlled by a multi-synaptic SCN-PVN-superior cervical ganglion-65 

pineal pathway (83). The hypothalamic-pituitary-adrenal axis is also controlled by the SCN indirectly 66 

through gamma-aminobutyric acid (GABA)-ergic interneurons in the subPVN and the DMH, which in 67 

turn inhibit corticotropin-releasing hormone (CRH)-containing neurons in the PVN (34).  Together 68 

these multi-synaptic pathways originating in the SCN control the rhythmic release of melatonin and 69 

cortisol/corticosterone, which in turn signal time of day information to target tissues via melatonin and 70 

glucocorticoid receptors expressed throughout the periphery. The connections from SCN neurons to 71 

preautonomic neurons within the hypothalamus can also regulate both sympathetic and parasympathetic 72 

outflow to peripheral organs, including the pancreas, adrenal and liver, generating rhythms in circulating 73 

concentrations of glucose, insulin and free fatty acids (9, 42). 74 

The importance of secreted factors, which complement actions of neural pathways in controlling 75 

circadian rhythms, was elegantly demonstrated by Silver and co-authors. In their studies, SCN tissue 76 

transplanted into SCN-ablated hamsters was able to restore rhythms of running activity, despite the 77 

prevention of neural outgrowth by a semipermeable membrane surrounding the transplanted tissue (82). 78 

Factors secreted from the SCN, including vasopressin, TNF-α, prokineticin-2, and cardiotrophin-like 79 

cytokine, each alter locomotor activity (13, 40, 41). Together these output mechanisms result in a highly 80 

regulated, multi-level circadian timing system that orchestrates physiological functions so that they 81 

occur at optimal times relative to the environment.   82 

 83 



Ontogeny of the fetal circadian timing system 84 

The development of the circadian timing system is a gradual process, beginning in utero with SCN 85 

neurogenesis, followed by synaptogenesis between SCN neurons, innervation from the retino-86 

hypothalamic tract (RHT), development of efferent connections, and finally the emergence of a mature 87 

circadian system displaying overt physiological rhythms.  There are significant inter-species differences 88 

in the timing of this process, with several key components occurring postnatally in species such as rats 89 

and mice that are born relatively immature, in contrast to prenatal emergence of similar developmental 90 

milestones in sheep and primates, including humans (Figure 1).  91 

SCN formation and RHT innervation 92 

In rats, SCN neurogenesis occurs from embryonic day 14 to 17 (E4-17, 64-77% of term gestation) (58). 93 

Synaptogenesis occurs gradually from E21 (95% of term) to postnatal day 2 (P2), then proceeds rapidly 94 

from P2 to P6. However, it is not until P10 that synaptic density matches adult levels (58). RHT 95 

development occurs from E21 through to P15 (58), with light responsiveness, as measured by c-fos 96 

induction, appearing at P1 (44).  97 

In sheep, the SCN is detectable at E52 (35% gestation), although it is small in terms of cell volume and 98 

number at this stage. By E58 (39% of term) the SCN has reached its full number of neurons (90), and 99 

the projections from the RHT first appear at this stage, with gradual innervation continuing. By E121 100 

(82% of term) the pattern of retinal innervation to the SCN is consistent with the adult (90). This would 101 

suggest that the lamb SCN is responsive to light at birth, although this has not been evaluated in 102 

published literature.  103 

In humans it is difficult to determine the precise stage of SCN development due to limited availability 104 

of suitable material. However, clear vasopressin staining, a marker for the localisation of the SCN, can 105 

be detected in the human fetus from 31 weeks of gestation, ~78% of term (88). In squirrel monkeys, 106 

SCN neurogenesis occurs between E27 and E48 (16-29% of term). The SCN is innervated by the RHT 107 

and is responsive to light exposure at birth in baboon infants (74).  108 



Development of circadian rhythmicity 109 

The development of SCN rhythmicity has been well characterised in rodents. Rhythms in glucose 110 

utilisation, vasopressin mRNA expression and neuronal firing rate are detectable in the fetal rat SCN in 111 

the days leading up to birth (71, 73, 80). Core-clock gene mRNA is detectable in whole mouse embryos 112 

from E10 (20), and in the SCN from E19 (85), yet rhythmicity of expression may not appear until after 113 

birth (85). Similarly, molecular clocks in peripheral tissues develop slowly through the late prenatal and 114 

early postnatal period. Microarray studies on fetal liver collected from mice at E18-19 reveal little 115 

evidence of rhythmic core-clock gene expression (48), consistent with previous reports in a variety of 116 

peripheral tissues (20, 85). In our own studies in rats, we found that while Bmal1 and Per1 expression 117 

was constitutive, Per2 was rhythmically expressed (2-fold amplitude) in fetal liver at E19-20 (93). 118 

Importantly, Per2 expression in fetal liver responded to disrupted external photoperiod, suggesting it is 119 

regulated by maternal factors rather than CLOCK and BMAL1 at this stage of development. Unlike 120 

other peripheral tissues which are arrhythmic at this stage, the fetal adrenals express robust antiphase 121 

rhythms of Per2 and Bmal1 at E18, with an accompanying rhythmic secretion of corticosterone (53, 122 

91). However, behavioural, endocrine and molecular rhythms developing gradually after birth, with 123 

adult-like rhythmicity apparent around the time of weaning (84). 124 

In sheep, markers of neuronal activity within the SCN become rhythmic from E90, or 62% of term (7), 125 

and rhythmic vasopressin can be detected in fetal cerebrospinal fluid at E108 (75% of term, 86).  In the 126 

last third of pregnancy, biophysical variables including heart rate and breathing can be detected and 127 

change predictably over 24 hours (17). Rhythmic changes in melatonin, cortisol and prolactin are 128 

present in fetal plasma at E120 (51, 106), although the rhythm in melatonin is due to maternal secretion 129 

(50).  130 

In non-human primates, rhythms of glucose utilisation as well as Bmal1 and Per2 mRNA expression 131 

become detectable in the SCN at 90% of term (70, 92). In human fetuses, heart rate and fetal movement 132 

rhythms are absent at week 13 of gestation but readily detectable by week 20 (101). As illustrated by 133 

this data and summarised in Figure 1, the circadian system of sheep and primates reaches a later stage 134 



of development in utero than that of rodents. However, newborn lambs and primates mostly do not show 135 

circadian rhythmicity of endocrine outputs. The first evidence for rhythmic cortisol secretion in human 136 

infants appears at 3 weeks of age (96), and melatonin rhythms emerge 9 weeks after birth (38). The 137 

prenatal establishment of endogenous circadian rhythms in these species is evident, however, by 138 

rhythms of temperature, which are detectable in both sheep and primates immediately following birth 139 

(8, 56, 77, 78).  140 

Entrainment of fetal rhythmicity 141 

The developing fetal circadian system can respond to changes in the external environment, even in 142 

species whose rhythms develop relatively late in gestation. For example, fetal glucose utilisation 143 

rhythms in rats respond to phase shifts of the external photoperiod (69). The maternal signals that drive 144 

this response are likely multi-factorial. A prime candidate for maternal entrainment of fetal rhythmicity 145 

is melatonin, which crosses the placenta (76) and can bind to melatonin receptors expressed on most 146 

fetal tissue (105). Timed melatonin application can phase shift both core-clock and steroidogenic acute 147 

regulatory protein (StAR) gene expression in cultured rat fetal adrenals (91). Furthermore, nocturnal 148 

melatonin administration to rat dams can entrain rhythmicity of the fetal adrenal clock following 149 

exposure to constant light (53). Transmission of an entrainment signal from mother to fetus, whether it 150 

be endocrine or metabolic, is required to pass through the placenta. Interestingly, there is preliminary 151 

evidence for a placental clock, with both the junctional and labyrinth zones showing time dependent 152 

expression of the core clock genes in the rat placenta (103). Furthermore, the glucocorticoid receptor 153 

and components of the placental glucocorticoid barrier ( 11b-hsd1 and Abcb1b ) are also rhythmic (102), 154 

as is the expression of the melatonin receptor, MT1 (45). The role of the placenta in the entrainment of 155 

fetal rhythmicity warrants further investigation. 156 

 157 

What is the role of the fetal molecular clock?  158 

The mammalian fetal circadian system develops gradually during late gestation and the early postnatal 159 

period. However, it is unknown whether the absence of a fetal clock influences growth or survival in 160 



utero. BMAL1 is a critical component of the circadian machinery, and consequently Bmal1 null mice 161 

display complete behavioural and molecular arrhythmicity (10). Cumulative data from matings of 162 

heterozygous Bmal1 knockout mice revealed significant divergence from the expected Mendelian 163 

distribution of offspring genotypes at weaning, such that both heterozygous and knockout genotypes 164 

are underrepresented compared to the wild type genotype (5). This suggests reduced perinatal survival 165 

of those mice carrying the Bmal1 null mutation. Reduced weight and poorer health of the surviving 166 

Bmal1 null mice was also apparent even at this early age (5), suggesting that the absence of a functional 167 

clock during early development has important consequences for health and mortality. Because weaning 168 

outcomes were assessed in this study, however, it was not clear at which stage of development the 169 

progeny losses and failure to thrive occurred. To address this question, we mated Bmal1 heterozygous 170 

knockout mice and measured fetal genotype, fetal and placental weights in late gestation. In contrast to 171 

outcomes at weaning, the appropriate Mendelian ratio of genotypes was present in late gestation and 172 

there was no effect of Bmal1 genotype on fetal or placental weights at day 17.5 of gestation (Figure 2).  173 

We can conclude that in the absence of a functioning molecular clock, Bmal1 null fetuses can develop 174 

normally, implying  that a fetal clock is not necessary for in utero growth and survival, at least in mice, 175 

where SCN rhythmicity is not evident until near term (81). Any subsequent deaths that occur prior to 176 

weaning may be due to absence of the circadian timing system during critical periods of postnatal 177 

development.   178 

Other studies have suggested that the absence of a fetal clock may influence fetal growth and 179 

morphology. Landgraf and colleagues demonstrated that Clock∆19 mutant pups are physically different 180 

to wild types at postnatal day 0, with significantly increased fat depots, bone ossification and altered 181 

body morphology and organ size (43). Further interrogation however revealed that these changes could 182 

largely be attributed to maternal effects; when litter mates from Clock∆19 heterozygous dams were 183 

compared, the effects of genotype were reduced, with Clock∆19 mutant pups differing only from their 184 

wild type litter mates in torso size (43). It must also be kept in mind that the genes responsible for 185 

rhythm generation may be pleiotropic, and that any differences observed in fetal growth and 186 



development may not be due to the absence of a functional clock, but rather other unknown functions 187 

of these genes. 188 

Maternal chronodisruption and programming of progeny health 189 

Evidence from epidemiological studies in humans has revealed associations between circadian 190 

disruption and problems with fertility and pregnancy, particularly miscarriage (23). Many peri-191 

conceptional challenges or insults affect not only pregnancy, but also the long-term health of progeny, 192 

where the exposure alters gamete, embryonic or fetal patterns of development, likely in part an adaptive 193 

response improving fitness after birth (27). This concept that early physiological challenges can alter 194 

the developmental trajectory and hence later health of progeny is referred to as developmental 195 

programming. Mechanisms for persistent effects that have been identified in preclinical models include 196 

altered cell division as well as epigenetic processes within cells that alter subsequent gene expression 197 

(27). Effects of such challenges often depend on timing as well as severity. For example, the effects of 198 

severe famine on offspring health during the Dutch Hunger Winter of World War 2 differed depending 199 

on the stage of pregnancy when the women were malnourished (75). Rates of chronic heart disease were 200 

highest in adult offspring of women exposed in early pregnancy, whereas impaired glucose homeostasis 201 

was most evident in adults whose mothers were malnourished in late pregnancy (75). Whether maternal 202 

circadian rhythm disruption and its impact on the developing progeny impairs later health has not yet 203 

been evaluated in human studies, with the only available evidence coming from animal models. 204 

 205 

Animal models of maternal circadian rhythm disruption 206 

A variety of animal models have been utilised to investigate the relationship between maternal 207 

chronodisruption and long term progeny health, and each have different impacts on the adult circadian 208 

system (Table 1). For example, mice with genetic mutations or gene deletions have been used to assess 209 

the impact of maternal rhythm disruption on the developing progeny (32). Another approach is surgical 210 

SCN ablation, which physically destroys the central clock and immediately induces a loss of behavioural 211 



and other rhythms (18, 72). Maternal chronodisruption can also be induced by altering the light cycle 212 

that dams are subjected to during pregnancy and/or lactation (54, 95). As light is the principal 213 

environmental cue for the circadian system, exposing an animal to chronic phase shifts of the 214 

photoperiod forces the animal to constantly attempt to adjust its circadian timing system, whereas 215 

exposure to constant light means that the central and peripheral molecular circadian machinery free-216 

runs without daily entrainment by light. Maternal pinealectomy removes melatonin secretion capacity 217 

and hence the fetus no longer receives that maternal signal (24). Finally, changing the timing of maternal 218 

food access greatly disrupts maternal behaviour and the timing of substrate availability to the fetus (3).  219 

 220 

Maternal chronodisruption and progeny circadian rhythms 221 

As discussed above, the circadian system develops progressively throughout the prenatal and early 222 

postnatal period, and the fetus is responsive to changes in maternal rhythmicity. In adulthood, genetic 223 

factors predominantly determine endogenous circadian rhythms. This was demonstrated by 224 

Viswanathan and Davis who showed that the free running period of heterozygous tau mutant hamsters 225 

was 21.7 hours, despite being born to and raised by wildtype dams with a period of 24 hours (98). 226 

However, recent advances in our understanding of the highly complex nature of circadian rhythm 227 

generation including post-translational control and epigenetic regulation of the molecular clock suggest 228 

that environmental conditions during development may have a long term impact upon the circadian 229 

timing system of progeny. Indeed, a level of developmental plasticity is observed when the perinatal 230 

environment is disrupted, with mice housed in either short or long day lengths from birth until weaning 231 

continuing to display altered Per1 gene expression in individual SCN neurons as adults (15). Whether 232 

prenatal disruption of the environment has long term impacts on circadian rhythm generation and/or 233 

entrainment is still unclear, and may differ between species depending on the timing of circadian system 234 

development. 235 



The first studies to interrogate the role of maternal rhythmicity on the progeny utilised SCN ablation of 236 

rat and hamster dams during early pregnancy (18, 72). Despite exposure to an arrhythmic in utero 237 

environment, offspring born to SCN-ablated dams were found at weaning to display, on average, free 238 

running periods of activity and drinking similar to that of controls. Intriguingly, however, there was 239 

reduced within-litter synchrony in the timing of pup behaviour. Jud and Albrecht used a genetic 240 

approach to interrogate the postnatal development of behavioural rhythmicity in offspring exposed to 241 

an arrhythmic environment in utero (32). Female double mutant Per1Brdm1/ Per2Brdm1 and 242 

Per2Brdm1/Cry1–/– mice, which display behavioural arrythmicity due to absence of a functional maternal 243 

circadian clock, were mated with wild type males to generate heterozygous offspring. At 6 weeks of 244 

age, the period of wheel running activity of heterozygote offspring under constant conditions was 245 

unaffected by maternal genotype. However, similar to the SCN ablation studies, behavioural synchrony 246 

was reduced between litter-mates. Given that the animals from both studies were maintained in constant 247 

environmental conditions (constant darkness) from birth, and were reared by dams without a functional 248 

clock (due to either SCN ablation or genetic mutation), it is difficult to separate pre- and post-natal 249 

maternal influences in these studies. Nevertheless, the overall conclusion appears to be that exposure to 250 

a disrupted maternal environment in utero does not profoundly affect postnatal development of circadian 251 

rhythms, at least in rodents.  252 

In our laboratory, we assessed temperature rhythms of male offspring from rat dams exposed to chronic 253 

phase shifts (CPS) of the photoperiod throughout gestation and for one week after birth (95). In adult 254 

progeny at 5 months of age, there was no effect of maternal CPS on the basal, minimum, maximum 255 

core body temperature or the phase (timing) of the temperature rhythm, under conditions of either 256 

12L:12D housing or when free-running during constant darkness (95). Furthermore, the phase shift in 257 

temperature rhythms induced by a single nocturnal light pulse was similar in offspring of both control 258 

and CPS-exposed mothers (95). Again, this temperature data might suggest that maternal circadian 259 

rhythm disruption has minimal impact upon either the endogenous circadian rhythm, or the response of 260 

this rhythm to a light zeitgeber, in adult progeny. However, in another study of circadian outcomes in 261 



CPS-exposed offspring, although temperature and activity profiles were unchanged, melatonin and 262 

corticosterone rhythms were profoundly disrupted (54). Nocturnal melatonin secretion was suppressed 263 

to levels normally seen in the day time, with unchanged low melatonin during the day, and peak 264 

corticosterone secretion occurred at the beginning of the light phase rather than early in the dark phase  265 

(54). Rhythms in heart rate were also disrupted, with continuous recording revealing a reduced mesor 266 

(rhythm-adjusted mean), greater amplitude of the rhythm, and an advance in the timing of acrophase 267 

(time of peak levels) of almost an hour (54). Tail cuff assessments of blood pressure revealed higher 268 

systolic blood pressure during the night and increased amplitude of the rhythm in CPS-exposed adult 269 

offspring (54). In contrast, core-clock and clock-controlled gene expression in hypothalamic blocks 270 

containing the SCN was only minimally affected by maternal CPS exposure (54). Rat offspring from 271 

dams exposed to constant light throughout pregnancy also displayed altered melatonin and 272 

corticosterone secretion, with nocturnal levels of both hormones significantly reduced compared to 273 

control progeny (97).  However, in the latter study only two time points were assessed (1100h and 274 

2300h), making the degree of disruption difficult to assess. Intriguingly, in progeny of rat dams exposed 275 

to constant light throughout pregnancy, the changes to offspring melatonin and corticosterone secretion 276 

were rescued by nocturnal melatonin supplementation to the dams (97), implicating maternal melatonin 277 

as a key signal that programs progeny circadian rhythms. 278 

 279 

Maternal chronodisruption and progeny neurobehavioral and cognitive outcomes 280 

There is growing evidence that maternal chronodisruption can impair cognitive and neurobehavioral 281 

outcomes in the progeny. Exposure of rat dams to constant light during gestation increased adult 282 

progeny escape latency in the Morris Water Maze test over consecutive days of testing, suggesting 283 

deficits in spatial memory and learning (97). These offspring also exhibited lower gene expression of 284 

glucocorticoid receptor (Nr3c1) and NMDA receptor subunits (Grin1b, Grin3a, Grin3b) in the 285 

hippocampus (97), each important components of the molecular machinery of learning. Male offspring 286 

also display increased anxiety-like behaviors including reduced time in the central area in Open Field 287 



behavioral tests, and reduced distance travelled and reduced time in the open arms during Elevated Plus 288 

Maze testing (100). Interestingly, many of these outcomes were rescued by administration of melatonin 289 

in the dams’ drinking water, suggesting melatonin may play a crucial role in mediating the negative 290 

effect of maternal circadian disruption on progeny outcomes. Studies in mice have demonstrated that 291 

even dim light at night can affect the behavioural phenotype of adult offspring. Exposure of mice dams 292 

to as little as 4 lux light at night pre- and/or postnally increased anxiety-like behaviors in the Elevated 293 

Plus and Passive Avoidance Tests in both male and female offspring at 9 weeks of age (6). Chronic 294 

phase delays, where the photoperiod was delayed by 8 hours every second day throughout pregnancy, 295 

also increased depressive-like behaviors and anhedonia in mice offspring (107). Interestingly, the 296 

behavioral phenotype of the F2 generation was also affected, but with both male and female offspring 297 

displaying anti-depressive-like behaviours in the Forced Swim Test (107). In contrast, in our own 298 

experiments, adult male offspring of CPS exposed rats were indistinguishable from controls in measures 299 

of behavioral despair and anxiety measured using the Forced Swim Test and Open Field Test, 300 

respectively (95).  301 

Maternal chronodisruption and progeny metabolic health  302 

Maternal chronodisruption alters metabolic health of progeny in several animal models (24, 54, 95, 97), 303 

although not universally (94). We first examined the impact of maternal rhythm disruption on the long 304 

term metabolic health of progeny in our model of maternal CPS throughout pregnancy and the first 305 

week of lactation (Figure 1, 95). Progeny of dams exposed to CPS from conception until one week after 306 

birth developed gender- and age-dependent metabolic dysfunction. Specifically, young adult 3 month-307 

old male offspring had increased adiposity and hyperleptinaemia (95). Although they did not show 308 

impairment at 3 months of age, female offspring were hyperinsulinaemic and hyperleptinaemic and also 309 

had impaired glucose tolerance as mature adults at 12 months of age, due to reduced insulin sensitivity 310 

and despite increased glucose-stimulated insulin secretion (95). This impairment of progeny glucose 311 

tolerance after maternal CPS exposure was confirmed by Mendez and co-authors (54), who found poor 312 

glucose tolerance in young adult 3 month-old male offspring.  Interestingly, in this study they exposed 313 



the dams to CPS from conception only until day 18 of pregnancy, when the dams were returned to a 314 

12L:12D photoperiod. This suggests the changes to glucose metabolism observed in adult offspring 315 

arise from in utero exposure to CPS rather than any environmental signals during the early postnatal 316 

period.  317 

Maternal pinealectomy, which removes fetal exposure to maternal melatonin signals of environmental 318 

rhythms, also induces glucose intolerance in adult offspring (24). Four month old male and female 319 

progeny of pinealectomised dams display glucose intolerance, impaired glucose stimulated insulin 320 

secretion from isolated islets and hepatic insulin resistance, but no change in whole body insulin 321 

sensitivity compared to control progeny (24). Although expression and activation of insulin signalling 322 

pathways in muscle are not altered, these progeny have decreased insulin-induced Akt phosphorylation 323 

and elevated PEPCK levels in the liver (24), which would be expected to increase gluconeogenesis and 324 

impair its suppression by insulin. Changes in glucose metabolism of adult progeny from 325 

pinealectomised dams or dams exposed to constant light can also be rescued by administration of 326 

melatonin to the dams during pregnancy (24, 97).  327 

The maternal metabolic response to circadian rhythm disruption may influence progeny outcomes.  It 328 

has been well described in both animal models and human studies that chronodisruption perturbs 329 

metabolic homeostasis of the individual (reviewed in 62). The impacts of chronodisruption during 330 

pregnancy on maternal metabolism is less clear, although we have demonstrated changes to the phase 331 

and level of key metabolites and hormones during late gestation in CPS dams (93). Specifically, leptin 332 

and insulin were down-regulated, whereas metabolite profiles became out of phase (glucose, 333 

triglycerides) or arrhythmic (free fatty acids, cholesterol) during late gestation (93). Similarly, the 334 

typical high amplitude expression profiles of core-clock and metabolic genes in maternal liver was 335 

reduced (93). Exposure to CPS during pregnancy altered the timing of food consumption in the dams, 336 

leading to intermittent grazing, compared to the control pattern of consolidated bouts of feeding during 337 

the dark period (93). Poor metabolic control during pregnancy is a known risk factor for increased 338 

obesity, metabolic and cardiovascular disease of adult offspring (46). Maternal chronodisruption will 339 



also affect sleep quality and timing, and human studies have demonstrated that poor quality and quantity 340 

of sleep is a known risk factor for gestational diabetes and hyperglycaemia (11, 21, 29). The interwoven 341 

relationship between circadian rhythms, sleep and metabolism likely contributes to the effect of 342 

chronodisruption on offspring metabolic health.  343 

It was therefore of interest to discover that restricting food availability of pregnant rats to the inactive 344 

day period can impair metabolic outcomes in progeny (3). Exposure of rat dams to a day-restricted 345 

feeding protocol through gestation and lactation programmed poor glucose tolerance and reduced 346 

glucose stimulated insulin secretion of pancreatic islets in the male offspring (3). In that study, an 347 

analysis of cumulative food consumption revealed an 18% and 10% reduction across gestation and 348 

lactation respectively compared to ad libitum fed controls (3). When progeny outcomes of day-fed rats 349 

were compared to those of pair-fed animals, rather than ad libitum controls, differences in glucose 350 

metabolism were still evident (3), indicating that changes in the timing, rather than amount, of food 351 

consumption was sufficient to permanently alter the glucose metabolism of the offspring. 352 

Thus, maternal circadian rhythm disruption during gestation impairs metabolic homeostasis in adult rat 353 

offspring in four different experimental models; chronic phase shifting, constant light, pinealectomy 354 

and day-restricted feeding. Melatonin replacement studies suggest melatonin has a role, and normalizing 355 

the maternal pattern of circulating melatonin at least partially restores progeny metabolic outcomes in 356 

several models.  Interestingly, melatonin-proficient melatonin receptor knockout mice also display an 357 

adverse metabolic phenotype, suggesting lifelong absence of melatonin action negatively impacts 358 

glucose homeostasis (16). In rats under CPS conditions, only subtle changes in maternal melatonin 359 

profiles were observed when dams were assessed between 12 and 36 hours after return to a normal 360 

photoperiod (54, 93), suggesting mechanisms additional to melatonin can induce programming of 361 

progeny metabolism. However, given the dams were exposed to repeated reversals of the photoperiod 362 

throughout pregnancy, the profile of melatonin secretion in the CPS dams is likely to deviate from the 363 

controls at other periods not assessed in our study. 364 



As discussed above, prenatal exposures to adverse events can have a lifelong effect upon later body 365 

composition and metabolic homeostasis. Birth weight can be used as a proxy for intrauterine growth, 366 

with both human and animal studies demonstrating a relationship between small size at birth and 367 

perturbed glucose metabolism in adulthood (25, 64). A logical question therefore is whether intrauterine 368 

growth restriction (IUGR) mediates the impact of maternal chronodisruption on offspring metabolic 369 

homeostasis? An analysis of the models of chronodisruption reported in this review reveal that maternal 370 

constant light exposure and day-restricted feeding during pregnancy can impair fetal growth (3, 53), 371 

and IUGR may therefore contribute to the observed changes to metabolic homeostasis of adult offspring 372 

in these models. However, in other studies demonstrating a perturbed metabolic phenotype of adult 373 

offspring after maternal constant light, birthweight was unchanged (97). Maternal pinealectomy did not 374 

alter progeny weight, although pups were not weighed immediately following birth (24). Similarly, we 375 

and others find  no evidence of IUGR following maternal CPS exposure when assessed at late gestation 376 

(93) or at birth (54, 95). This suggests that in these models of maternal chronodisruption, the changes 377 

to progeny metabolic homeostasis are not due to IUGR. Intriguingly, Mendez and colleagues found in 378 

their studies that CPS-exposed offspring were in fact born significantly heavier (+14%), likely due to 379 

an increase in gestation length of ~12 hours (54). We also found a trend for increased gestation length 380 

in rats exposed to CPS throughout pregnancy (95), although this was not significant, possibly due to the 381 

once-daily monitoring in our studies compared to the constant monitoring by Mendez and colleagues. 382 

In rodents, the timing of birth is controlled by photoperiod (49), and regulated by uterine clocks (66), 383 

and this may explain the changes to gestation length observed following CPS exposure. In turn, the 384 

longer gestations may contribute to the lower melatonin secretion observed in the adult offspring (54). 385 

We have previously reported that overnight urinary excretion of the melatonin metabolite 6-386 

sulphatoxymelatonin in 20 year-old men and women is negatively correlated with their gestation length 387 

at birth, indicating that as gestation length increases to postmaturity, nocturnal melatonin secretion of 388 

the individuals as adults is reduced (35). This suggests that in both rodent and human pregnancies there 389 

are intriguing, yet not well understood, relationships between gestational and postnatal timing systems. 390 



Nevertheless, maternal circadian rhythm disruption does not always program metabolic homeostasis in 391 

progeny. Recently, we used Clock∆19 mutant dams to evaluate the absence of peripheral organ 392 

rhythmicity in the mother on long term glucose homeostasis of heterozygous offspring (94). By mating 393 

a strain of melatonin proficient Clock∆19 mutant dams with wild type males (and vice versa), we created 394 

heterozygous offspring (that express circadian rhythms in their own tissues) exposed to a non-rhythmic 395 

in utero environment. There were only minimal changes to metabolic homeostasis of the adult offspring 396 

of Clock∆19 dams compared to heterozygotes gestated by wild-type dams, although there were non-397 

significant trends for hyperleptinaemia and hyperinsulinaemia. One explanation for the lack of effect 398 

may be that the 12L:12D photoperiod both groups of mothers were housed in was sufficient to sustain 399 

relatively normal profiles of activity and melatonin secretion in the Clock∆19 mutant dams (39). Under 400 

these conditions, although the mutation produces dampening of peripheral core-clock gene expression 401 

(37), some aspects of central circadian rhythmicity, including melatonin secretion, are entrained by 402 

environmental cues and may reduce impact upon the fetuses. 403 

 404 

Conclusion 405 

A growing body of evidence from animal models suggests a relationship between maternal 406 

chronodisruption and long term offspring health. In particular, circadian disruption during pregnancy 407 

programs changes in offspring circadian, endocrine and metabolic function into adulthood. What is the 408 

relevance of these studies to human pregnancies? There are many situations that can cause circadian 409 

disruption in humans, but perhaps the most prevalent is shift work. A high proportion of the workforce 410 

is engaged in shift work (between 15 and 20%), and many women shift workers are of reproductive age 411 

(4). Although the number of pregnant women who work shifts is currently unknown, there is no 412 

evidence to suggest that women immediately cease shift work upon becoming pregnant. Systematic 413 

reviews of epidemiological studies suggest at most weak relationships between shift work during 414 

pregnancy and gestation length or birthweight, although there is accumulating evidence for increased 415 

rates of miscarriage suggesting disrupted pregnancy recognition and/or fetal development (23, 52, 61). 416 



However, we are not aware of any human studies that have assessed the long term health of offspring 417 

born to mothers who worked shifts during pregnancy. Until such time, assessing impacts of maternal 418 

chronodisruption on progeny must rely on animal studies. 419 

Studies in mice and rats have provided insights into the impact of maternal circadian rhythm disruption 420 

on progeny health, summarised in Table 2. However, while there is growing evidence that maternal 421 

chronodisruption programs progeny health, there are still significant gaps in knowledge; very few 422 

studies have considered outcomes in both males and female offspring, assessed offspring throughout 423 

the life course, or evaluated a range of progeny outcomes. There are also some reservations around the 424 

use of rodents to model chronodisruption and shift work during pregnancy in humans. Rodents are 425 

nocturnal, give birth to litters, have a short gestation period, and as described above, have offspring with 426 

poorly developed rhythmicity at birth. Furthermore, because of their short gestation and relative 427 

immaturity at birth, studies in rodents to determine stages of pregnancy most susceptible to shift work 428 

will not be easily transferrable to humans. Therefore studies in animal models for which the gestation 429 

length and degree of prenatal development are more similar to human pregnancy are required. Sheep 430 

seem the logical choice, particularly given their use in a wide range of developmental programming 431 

studies (19).  432 

Perspectives and Significance 433 

Defining the impact of maternal chronodisruption on both progeny and pregnancy outcomes requires 434 

prospective and retrospective studies in human populations, alongside studies in animal models using a 435 

wide range of experimental approaches. Together, these will allow critical periods and underlying 436 

mechanisms to be defined, and testing of interventions to improve outcomes. 437 
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Figure legends 732 

Figure 1  733 

Current understanding of the key developmental milestones of the circadian timing system. Ontogeny 734 

of the rat circadian system is well characterised. While SCN neurogenesis occurs prenatally in rats, 735 

offspring are born relatively immature, with the majority of the circadian timing system developing 736 

postnatally. Although less well characterised, SCN neurogenesis, synaptogenesis, RHT input and 737 

cellular rhythmicity occur prenatally and at earlier stages of gestation in sheep and non-human primates 738 

compared to rat. SCN neurogenesis (red vertical lines), RHT (yellow horizontal lines), and first evidence 739 

for fetal SCN rhythmicity (black waveform). 740 

 741 

Figure 2  742 

Prenatal development in the absence of a molecular clock does not affect fetal growth or survival.  Eight 743 

week old Bmal1 +/- mice were mated (n=9 litters) and dams killed at post coital day 17.5 by cervical 744 

dislocation. Pups and placentas were rapidly dissected and weighed, with a fragment of pup tail 745 

processed for genotype and sex using multiplex PCR. There was no effect of fetal genotype on number 746 

of fetuses (A) fetal weight (B) or placental weight (C). Bmal1 +/+ (closed columns), Bmal1 +/- (shaded 747 

columns), Bmal1 -/- (open columns). Placentae from male fetuses were significantly heavier than those 748 

of female fetuses, P = 0.026.  749 

Figure 3 750 

Model of Chronic Phase Shifts (CPS) used to induce maternal chronodisruption in a rat model, and the 751 

impact on adult offspring. Pregnant dams were exposed to either a control photoperiod (A) or CPS (B) 752 

throughout pregnancy and for one week after birth. At 12 months of age, offspring of CPS-exposed 753 

dams (open bars and symbols) have increased plasma insulin (C) and plasma leptin (D) concentrations 754 

compared to offspring of control dams (filled bars and symbols). Female offspring of CPS-exposed 755 



dams also have increased adiposity (E) and poorer glucose tolerance (F) than female offspring of control 756 

dams. Data redrawn from (95). 757 

  



Table 1. Commonly used techniques to induce circadian disruption in rodents and their impacts upon central and peripheral rhythmicity. 

Method Technique Impact on circadian rhythms (non-pregnant animals) 

Genetic 
manipulation 

Mutation or knock out of 
clock genes 

Clock∆19 mutant mice-  
Can entrain to light/dark cycle. Demonstrate free running period of 27 hours then onset of arrhythmicity when in 
constant darkness (99). 
Delayed onset and shorter duration of nocturnal melatonin secretion (39) 
Arrhythmic peripheral clock gene expression (36) 

Bmal1 null mice- 
Partial entrainment to light/dark cycle. Complete behavioural arrhythmicity in constant darkness (10) 
Outcomes reported in mice strains deficient in melatonin, so effects of Bmal1 knockout on melatonin secretion are 
unknown 
Arrhythmic peripheral clock gene expression (10) 

   
SCN ablation Surgical removal of SCN Complete behavioural arrhythmicity (87) 

Constitutive melatonin secretion at 30% of control nocturnal peak concentrations (63). 
Constitutive peripheral clock gene expression (89) 

   Constant light Animals housed in constant 
light  

Free running behavioural rhythms or behavioural arrhythmicity (31, 60)  
Suppressed melatonin secretion (104) 
SCN neurons become desynchronised (60) 
Reduced amplitude and altered phase of peripheral clock gene expression (26) 

   Chronic phase 
shifts 

Repeated changes to the 
timing of light exposure 

Behavioural rhythms repeatedly shift to match the changing photoperiod (54, 93)  
Melatonin secretion shifts to match changing photoperiod (93) 
Corticosterone secretion arrhythmic (93) 
Reduced amplitude of peripheral clock gene expression (93) 

   Pinealectomy Surgical removal of pineal 
gland 

Normal rhythms of activity under light/dark or constant conditions (14, 68)  
Melatonin deficient (47) 
Minimal impact on SCN clock gene expression (1) 
Minimal impact on peripheral clock gene expression (22, 65)  

   Timed food 
access 

Limit food availability to 
day time. 

Disrupts normal patterns of activity such that animals are active during the day during periods of food availability. 
Phase shift in corticosterone secretion (79) 
No impact on SCN clock gene expression (28) 
Peripheral clock gene expression in metabolic tissues entrain to period of food availability or become de-regulated  (28) 

 



Table 2. Progeny outcomes following maternal circadian disruption. 

Method 
Species and 
exposure 

Timing of exposure Comparison group Progeny outcomes after maternal chronodisruption 

Genetic 
manipulation 

Mouse – double 
mutant dams 
(mPer2Brdm1/ 
Cry1-/- or 
mPer1Brdm1/ 
Per2Brdm1) 
lacking 
endogenous 
circadian 
rhythms mated 
to wild-type 
males to 
generate 
fetuses with 
functional 
circadian 
systems (32).  
 

Throughout 
pregnancy and 
lactation, to 
weaning at 21 d of 
age. Dams and 
progeny housed in 
constant darkness 
throughout. 

Progeny of 
heterozygous dams 
with functional 
Per1, Cry1 and 
Per2. 

Circadian rhythms: 

 All progeny displayed circadian rhythms in wheel-running activity, but 6 week-old 
progeny from mothers lacking functional circadian clocks had greater within-litter 
variability in timing of activity. 

 Mouse –
ClockΔ19+MEL 
females with 
disrupted 
circadian 
systems mated 
with wild-type 
males to 
generate 
heterozygote 
fetuses (93). 
 

Throughout 
pregnancy and 
lactation, to 
weaning at 21 d of 
age. Dams and 
progeny housed in 
12L:12D 
throughout. 

Heterozygote 
progeny of crosses 
between wild-type 
females and 
ClockΔ19+MEL 
males. 

Metabolic: 

 Adiposity (relative weight of summed epigonadal and retroperitoneal fat) normal 
in males and females at 3 and 12 months old. 

 Glucose tolerance by IPGTT: improved in young adult female progeny at 3 months 
of age (AUC glucose ↓25%), normal in young adult males and older adult (12 
months old) male and female progeny. 

 Whole-body insulin sensitivity by IPITT: Unchanged glucose response to insulin in 
3 and 12 month-old males and females. 



SCN ablation Sprague-
Dawley rat - 
surgical 
ablation of 
maternal SCN  
(72). 

SCN lesioned at day 
7 of pregnancy 
(term 22 d). All 
groups lack light-
entrainment of 
circadian rhythms 
from 2 d before 
birth onwards. In 
Experiment 4 only, 
pups cross-fostered 
between SCN-
intact and SCN-
lesioned groups by 
24 h after birth.  
 

Progeny gestated 
and reared by SCN-
intact dams. 

Circadian rhythms: 

 Loss of pineal gland N-acetyltransferase rhythms in 10 day-old mixed sex 
progeny. In cross-fostering study (Experiment 4), normal pineal NAT activity 
patterns exhibited by pups gestated by SCN-intact dams and reared by SCN-
lesioned dams, variable patterns exhibited by pups gestated by SCN-lesioned 
dams and reared by SCN-intact dams, implying gestation as most critical period. 

 Rhythms of drinking behaviour under free-running conditions from weaning at 21 
d until 42 d of age in male progeny had similar average cycle lengths but greater 
within-litter variability in timing of drinking in progeny gestated and reared by 
SCN-lesioned dams.  

 Syrian hamster 
- surgical 
ablation of 
maternal SCN  
(18). 

SCN lesioned at day 
7 or 14 of 
pregnancy (term 16 
d). All groups held 
in continuous dim 
light from the day 
after mating 
onwards. 
 

Compared 
between progeny 
of dams ablated at 
different days of 
pregnancy and on 
basis of % of SCN 
remaining in dams. 

Circadian rhythms: 

 Loss of within-litter synchrony in timing of wheel-running behaviour in mixed sex 
progeny recoded for 3-4 weeks after weaning in progeny of dams with SCN 
ablated at 7 d gestation, provided ~75% or greater of SCN was lost. Within-litter 
synchrony of behaviour maintained if SCN ablated at d 14 of gestation.  

 

Manipulation 
of light 
exposure 

Animals housed 
in constant light  
(99). 

Wistar rats, 
continuous light 
exposure from days 
12-21 of 
pregnancy. All 
dams and progeny 
housed in 12L:12D 
from d 21 of 
pregnancy 
onwards, weaning 
at 28 d of age. 
 

Progeny of control 
rats housed in 
12L:12D 
throughout study. 

Circadian rhythms: 

 Decreased melatonin content of whole brains from neonatal (mixed sex) and 
adult male progeny. 

Neurobehavioral and cognitive: 

 Behavioral changes in adult male (<90 d old) progeny suggesting increased 
anxiety including decreased time in central area and increased defecations in 
open field test, less distance travelled and less time in open arms of elevated plus 
maze. 

 Evidence of impaired short-term memory in novel object recognition test (lower 
ratio of time spent with novel compared to familiar object) in adult male (<90 d 
old) progeny. 

 



 Animals housed 
in constant light 
(96). 

Sprague-Dawley 
rats, continuous 
light exposure from 
day 10 of 
pregnancy until 
delivery. All dams 
and progeny 
housed in 12L:12D 
from delivery 
onwards, weaning 
at 21 d of age. 

 
 

Progeny of control 
rats housed in 
12L:12D 
throughout study. 

Circadian rhythms: 

 Loss of day (1100 h)/night (2300 h) differences in plasma melatonin in adult males 
(90 days old). 

 Loss of day (1100 h)/night (2300 h) differences in hippocampal Bmal1 gene 
expression, and altered day/night patterns of expression in several clock-
controlled genes in adult males (90 days old). 

 Decreased day (1100 h)/night (2300 h) differences in plasma corticosterone in 
adult males (90 days old). 

Neurobehavioral and cognitive: 

 Memory by Morris Water Maze test: Impaired memory (longer time to find 
platform on days 2-4 of series of 5 days) in adult males (90 days old). 

Metabolic: 

 Glucose tolerance by IPGTT: ↑~60% fasting glucose and impaired glucose 
tolerance in adult males (90 days old). 
 

 Per1:GFP 
mouse - 
Mothers and 
progeny housed 
under short day 
(8L:16D), 
equinox 
(12L:12D) or 
long day 
(16L:8D) 
photoperiod 
(15). 
 

Mating until 
weaning (21 d), 
then progeny 
either on same or 
different 
photoperiod for 28 
days after weaning. 

Between progeny 
of short day- and 
long day-housed 
dams. 

Circadian rhythms: 

 Electrical and molecular rhythms in SCN of male progeny show longer period in 
progeny of short day compared to long day-housed dams. 

 Greater period of wheel-running cycle (behavioural period) under free-running 
conditions in progeny of short day compared to long day-housed dams (progeny 
sex not specified). 

 Greater circadian responses to variation in post-weaning photoperiod in animals 
exposed to short day photoperiod before weaning than in mice exposed to long 
day photoperiod before weaning (progeny sex not specified). 

 

 Animals 
exposed to dim 
light at night (4 
lux) (6).  
 
 
 

Swiss-Webster 
mice exposed from 
mating until birth, 
mating until 
weaning (21 d), or 
birth until weaning. 

Progeny from dams 
exposed to 0 lux at 
night, from mating 
until weaning. 

Neurobehavioral: 

 Increased anxiety like behaviors: Reduced time spent in open-arms and 
increased latency to enter arms in Elevated Plus Maze; increased latency to 
cross light chamber in Passive Avoidance Test; no change in Open Field Test. 

 No change in Forced Swim Test, Novel Object Recognition or Sucrose 
Anhedonia. 



Chronic 
phase shifts 

Repeated 
changes to the 
timing of light 
exposure (94). 

Albino wistar rats, 
housed under CPS 
(lighting schedule 
reversal every 3-4 
days) from morning 
after mating until 1 
week after birth. 
Dams and progeny 
then held in 
12L:12D for rest of 
study. Progeny 
weaned at 21 d of 
age. 

Progeny of females 
held under 12L:12D 
throughout 
pregnancy and 
lactation. 

Circadian rhythms: 

 Unchanged rhythms and levels of plasma glucose and insulin in both sexes at 3 
months of age and of glucose in both sexes at 12 months of age. 

 Unchanged pattern but elevated circulating concentrations of insulin in female 
(↑83%) and male (↑110%) progeny and elevated plasma leptin in female 
(↑41%) and male (↑26%) progeny at 12 months of age. 

 Rhythms and light-induced changes in body temperature were normal in adult 
female and male progeny (35 weeks old). 

Neurobehavioral and cognitive: 

 Behavioural despair by forced swim test: Unchanged in 14 week-old male 
progeny. 

 Anxiety by open field test: Unchanged in 32 week-old male progeny. 
Metabolic: 

 Growth: Increased weight of female progeny from 40 weeks of age (15% heavier 
at 52 weeks old). Body weights of males normal. 

 Body composition: Increase in relative weight of epigonadal fat pad (↑29%) in 3 
month-old males (not different in females or in either sex at 12 months old), and 
in relative weight of retroperitoneal fat pad (↑40%) in 12 month-old females (not 
different in males or in either sex at 3 months old). 

 Glucose tolerance by IPGTT: Unchanged at 3 months in both sexes. Impaired in 
females (AUC glucose ↑~20%) but unchanged in males at 12 months of age. 

 Insulin secretion by IPGTT: Unchanged at 3 months in both sexes. Impaired in 
males (AUC insulin ↓35%) but unchanged in females at 12 months of age. 

 Insulin sensitivity by IPITT: Unchanged at 3 months in both sexes. Impaired in 
females (AAC glucose ↓21%) but unchanged in males at 12 months of age. 
 

 Repeated 
changes to the 
timing of light 
exposure (54). 

Sprague-Dawley 
rats, housed under 
CPS (lighting 
schedule reversal 
every 3-4 days) 
from morning after 
mating until d 18 of 
pregnancy. Dams 
and progeny then 
held in 12L:12D for 

Progeny of females 
held under 12L:12D 
throughout 
pregnancy. 

Circadian rhythms: 

 Rhythms of SCN clock gene expression, locomotor activity and body temperature 
were normal in adult male progeny (80-90 days old). 

 Daily rhythm of plasma melatonin was absent (loss of variation and ~30% lower 
24 h-average concentration) in adult male progeny (90 days old). 

 Daily rhythms of plasma aldosterone and corticosterone were absent, with 
increased average corticosterone concentrations in adult male progeny (90 days 
old). 

 Loss of daily fluctuation in corticosterone response to ACTH (controls have 
afternoon > morning response) in adult male progeny (90 days old). 



rest of study. 
Progeny weaned at 
21 d of age.  

 Decreased HR throughout daily cycle, with increased variation in HR during light 
and dark periods in adult male progeny (90 days old). 

 Increased BP at night and greater amplitude of BP rhythm, with increased 
variation in BP during light and dark periods in adult male progeny (90 days old). 

Metabolic: 

 Glucose tolerance by IPGTT: Impaired in males at 90 days of age. 
 

 Repeated phase 
delays in the 
photoperiod 
(106). 
 

Mice exposed to 
Chronic Circadian 
Disruption (CCD): 8 
hour phase delays 
in the photoperiod 
every 2 days, from 
mating to day 18 
gestation. 
 

Progeny of dams 
exposed to 
12L:12D 
throughout 
gestation.  
 

Circadian rhythms: 

 Reduced amplitude of core-clock gene expression in SCN of F1 male and female 
offspring. 

Neurobehavioral: 

 Depressive-like behaviors: increased time spent immobile in the Forced Swim 
Test in female F1 progeny at postnatal day 28 and 56. Anti-depressive-like 
behaviour in male F1 progeny with decreased time spent immobile at postnatal 
day 28 and 56. Decreased time spent immobile in male and female F2 progeny. 

 Anhedonia- reduced sucrose preference in female F1 progeny at postnatal day 
28, 56 and 84 and in male F1 progeny at postnatal day 28 and 84 only. Reduced 
sucrose preference in F2 female but not F2 male progeny. 

Pinealectomy Wistar rat - 
surgical 
removal of 
pineal gland 
before mating 
(24). 

Absence of 
maternal 
melatonin 
throughout 
pregnancy and 
lactation (weaned 
at 21 d old). 
 

Progeny of sham-
operated dams. 
 

Metabolic: 

 Normal fasting glucose in adolescent and young adult male and female progeny 
(4, 8, 16 and 18 weeks old). 

 Adiposity normal in males and females at 16 weeks old. 

 Glucose tolerance by IPGTT: normal in adolescent (8 week old) males, but 
impaired in 18 week-old males (AUC glucose ↑78%) and females (AUC glucose 
↑77%). 

 Whole-body insulin sensitivity by IPITT: Unchanged glucose response to insulin in 
18 week-old males and females. 

 Gluconeogenesis: Higher AUC glucose (measures GNG from pyruvate) during 
IPPTT in 18 week-old males (↑75%) and females (↑144%). Greater hepatic 
expression of PEPCK (rate limiting enzyme for GNG) in 18-week-old males 
(↑199%) and females (↑30%). 

 Insulin secretion: Similar basal but impaired insulin-stimulated insulin secretion 
in islets from 18 week-old males (females not assessed). 

 Insulin signalling pathways: Impaired insulin-stimulated activation of proximal 
signalling pathway in 18 week-old males and females (insulin-stimulated Akt 
phosphorylation ↓33% in males, ↓42% in females). Normal expression and 



insulin-stimulated activation of proteins in skeletal (soleus) muscle of 18 week-
old males (females not assessed).  
 

Timed food 
access 

Wistar rat - 
limit food 
availability to 
light period 
(day time) (3). 

Throughout whole 
of pregnancy and 
lactation (until 
weaning at 21 d 
old), or pregnancy 
only, or lactation 
only (by cross-
fostering by 48 h 
after delivery). 

Progeny of ad 
libitum-fed dams 
(continuous food 
access). 

Metabolic: 

 Glucose tolerance by IPGTT: Exposure through gestation and lactation impaired 
glucose tolerance in 12 week-old male offspring (AUC glucose ↑40%). Gestation 
alone or lactation alone exposures did not alter glucose tolerance in males. No 
exposures altered glucose tolerance in females. 

 Whole-body insulin sensitivity by IPITT: Normal glucose response to insulin in 14 
week-old males and females in all exposure groups. 

 Insulin secretion: Insulin secretion in islets from 16 week-old males was normal 
at basal glucose (5.6 mM) and under moderate glucose stimulation (8.3 and 11.1 
mM) but insulin response to high glucose (16.7 mM) was reduced by 69% in male 
offspring exposed through gestation and lactation (progeny from gestation only 
or lactation only exposures not assessed, females not assessed).c 
 

 

 


