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Abstract 

 

Faba bean (Vicia faba L.) is a grain legume primarily used for animal feed and human food 

grown in a range of environments, globally. Time of flowering in faba bean is critical for 

adaptation to specific environments and is controlled largely by factors such as ambient 

temperature and photoperiod. The aim of this study was to investigate the genetic control of 

flowering time and the responses of flowering time to ambient temperature and photoperiod in 

faba bean. A bi-parental recombinant inbred line (RIL) population (Icarus × Ascot) was 

evaluated over three years in field trials and three different controlled environments with 

varying temperatures and photoperiods. QTL analysis identified eight regions of co-localised 

QTLs associated with days to flower, thermal time to flower and node of first flower; on Chr-

I.A/III/V, Chr-I.B.3, Chr-III.1, Chr-III.2, Chr-V.1 and Chr-V.2. Two of the detected regions 

are common with previously detected QTLs, up to two more are possibly common and the 

remaining four appear to be novel. For the first time, the associations of these QTLs with 

ambient temperature and photoperiod response were described. Candidate genes for some of 

the QTLs were identified using the associations with ambient temperature and photoperiod 

response together with knowledge extended from other legumes that have a syntenic 

relationship with faba bean.  
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Days to flower; thermal time to flower; node of first flower; Vicia faba L.; genetic control of 

flowering; pulse; legume 

 

Introduction 

 

Faba bean (Vicia faba L.) is a cool-season grain legume used as a protein source in human food 

(primarily in developing countries of Northern Africa and Asia) and animal feed. Globally, 

faba bean is grown on over 2 million hectares, making it the fourth most important cool-season 

legume, behind chickpea (Cicer arietinum L.), pea (Pisum sativum L.) and lentil (Lens culinaris 

L.) (FAO  2016). In Australian cropping systems, faba bean crops provide a disease break for 

cereals, fix atmospheric nitrogen, which contributes to sustainable agriculture by reducing the 

use of fertilizer, and are a profitable grain crop in areas where varieties are well adapted to the 

environment. One of the most important aspects of plant adaptation is the time of flowering 

(Patrick and Stoddard 2010). Faba bean plants are particularly susceptible to stresses such as 

heat, frost and low moisture at the flowering stage (Smith 1982). Therefore, it is important that 

the time of flowering coincides with a period that minimises exposure to these stresses. The 

time of flowering is controlled by a plant’s genotype and its interactions with the environment, 

most importantly photoperiod and temperature (both ambient and vernalising). 

Flowering studies have used different methods of measurement to evaluate time to 

flowering, namely, days to flowering (DF), thermal time to flowering (TTF) and node of first 

flower (NF). Days to flowering is useful for comparing genotypes in one environment or across 

environments with different photoperiods, at a given temperature. Thermal time is calculated 

by the equation: 𝐾 = ∑ (𝑇𝑖 − 𝑇𝑏)
𝑛
𝑖=1 , where, K is the thermal time (in °C.d); Ti is the mean 

temperature of the ith day; and Tb is the base temperature, below which no plant development 

occurs. TTF is most useful for comparing genotypes in environments with fluctuating 

temperatures and across environments with different temperatures.  Number of nodes present 

is a quick visual indicator of the development stage of a plant and NF has regularly been used 

in flowering studies of Arabidopsis thaliana and pea to easily assess the development stage at 

which flowering occurs (Collins and Wilson 1974; Murfet 1985). Flowering at a higher node 

indicates onset of flowering at a later developmental stage. 

Flowering time in faba bean is responsive to photoperiod and temperature and this 

response varies with genotype (Evans 1959; Ellis et al. 1988a, c; Ellis et al. 1990; McDonald 

et al. 1994). In general, the time to flowering decreases with a longer photoperiod as faba bean 

is a long-day plant (requires long days to flower), but day-neutral genotypes (that eventually 
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flower regardless of photoperiod) and photoperiod unresponsive genotypes (that flower in the 

same amount of thermal time regardless of photoperiod) have also been identified (Evans 1959; 

Ellis et al. 1990; McDonald et al. 1994). Variation in response to ambient temperature has not 

been as comprehensively studied as response to photoperiod. Ellis et al. (1990) reported that 

all faba bean genotypes require about the same amount of thermal time to flower (~1000 °C.d). 

McDonald et al. (1994), however, observed variation in TTF in a wider range of genotypes, 

with one line flowering in as little as 611 °C.d. Vernalisation has been shown to decrease the 

time to flowering and variation in response to vernalisation has been observed in faba bean 

(Ellis et al. 1988a; McDonald et al. 1994), however, the occurrence of a true vernalisation 

response has been disputed (Ellis et al. 1988b) and it is not covered in the present study - further 

mention of temperature refers to ambient temperature. 

Understanding the genetic control of variation in flowering time of faba bean could be 

used to improve the efficiency of breeding programs. When introducing new traits (such as 

disease resistance) to a breeding program, new genetic material is often sourced from exotic 

regions and is crossed with locally adapted lines. Early stages of the breeding process focus on 

selection for traits of interest and are often undertaken in environments that do not represent 

field production conditions, while adaptation traits are often not observed until lines are tested 

in the field at a later stage. Marker-assisted selection (MAS) could aid earlier, more efficient, 

selection of lines that have retained adaptation traits and could also be used in targeted breeding 

for specific environments. In a broad sense, earlier flowering lines are suited to marginal 

cropping regions with short growing seasons, whereas later flowering lines are better suited to 

high rainfall environments with longer growing seasons. 

While the genetic control of flowering time has been described in depth for model 

species such as A. thaliana and pea (Amasino and Michaels 2010; Weller and Ortega 2015), 

the same level of knowledge is lacking for faba bean. Recently, high density linkage maps for 

faba bean have been developed and linked markers have been identified for a number of traits 

(Torres et al. 2010; Cruz-Izquierdo et al. 2012; Satovic et al. 2013; Kaur et al. 2014; Sallam et 

al. 2016), but only two studies have detected quantitative trait loci (QTLs) for flowering time 

in faba bean. Cruz-Izquierdo et al. (2012) detected five QTLs for days to flower in a Vf6 × 

Vf27 RIL population. Two QTLs were located on chromosome I.B (refined to being 

chromosome IV by Satovic et al. (2013)) and one on each of chromosomes I.A (refined to 

chromosome I (Satovic et al. 2013)), III and V. These QTLs were all detected in field studies 

in 2007, but only the QTLs on chromosomes V and I were detected again in 2008. Sallam et 

al. (2016) detected nine QTLs for days to flower in the Göttingen Winter Bean Population 
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(GWBP) grown in the field in one season (2012-13). One QTL was detected on LG02, one on 

LG03, two on LG04, four on LG05 and one that was unlinked to any groups. It was not reported 

in either study whether any of the QTLs were associated with response to photoperiod or 

temperature.  

A strong conservation of flowering genes has been observed between A. thaliana; and 

legumes such as pea, Medicago truncatula, chickpea, soybean (Glycine max L.) and Lotus 

japonicus (Hecht et al. 2005; Weller and Ortega 2015). Faba bean has a high level of 

macrosynteny with these legumes (Rispail et al. 2010; Cruz-Izquierdo et al. 2012; Kaur et al. 

2014; Khazaei et al. 2014), so this synteny could be used to extend knowledge to faba bean, 

help to compare genomic regions across different populations that use different markers and 

even help identify candidate genes underlying flowering QTLs detected in faba bean. 

The aim of this study was to investigate the genetic control of flowering time and the 

responses of flowering time to ambient temperature and photoperiod in faba bean. To achieve 

the aim, this study utilised the Icarus × Ascot recombinant inbred line (RIL) population (Kaur 

2014) to detect QTLs for flowering time in the field and controlled environment conditions of 

differing ambient temperature and photoperiod. 

 

Materials and Methods 

 

Plant materials 

Seed for the QTL mapping experiments was obtained from an existing RIL population 

generated by crossing faba bean cultivars Icarus and Ascot (Kaur et al. 2014). This population 

was chosen because of the difference in time to flowering of the two parents (where Icarus is 

late and Ascot early) and subsequent segregation of flowering traits among the population. F6 

derived F7 seed was used to phenotype the population in the controlled environment experiment 

and F6 derived F8 seed was used to phenotype the population in the field experiment, due to 

seed availability. 

Evaluation of the Icarus × Ascot RIL population in controlled environments 

The two parents and 87 RILs were grown in a Dunnair air conditioned plant growth room 

(Dunnair (Aust.) PTY LTD) with 400W high pressure sodium lamps. Plants were grown under 

three treatments involving different photoperiods and temperatures (Table 1) to evaluate 

flowering differences between long days (LD) and short days (SD) and high temperatures (HT) 
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and low temperatures (LT). Each treatment was a randomised complete block design with three 

replicates per RIL and two plants per replicate. There were six replicates of each parent with 

two plants per replicate. Seeds were sown in 0.55 L punnets filled with bark mix potting soil 

and placed in trays (12 punnets per tray) on benches in the growth room. Plants were watered 

regularly, monitored every two to three days and scored for date of emergence, date of first 

open flower and NF. Days to flowering for each plant were recorded as days from emergence 

to first open flower. Plants that did not flower by the end of the experiment were given the 

number of days from emergence to the last day of scoring, plus an additional 14 d as a value 

for analysis. Thermal time to flowering for each plant was calculated using the equation: 𝐾 =

∑ (𝑇𝑖 − 𝑇𝑏)
𝑛
𝑖=1 , where, K is the thermal time (in °C.d); Ti is the mean temperature of the ith day, 

and Tb is the base temperature, below which no plant development occurs. For the purposes of 

this experiment a base temperature of 0 °C was used, in accordance with a similar study by 

Pierre et al. (2008) to detect QTLs for flowering in M. truncatula. The rationale for using 0 °C 

was that the temperature in the controlled environment was maintained in a range where plant 

development could occur and because the data were to be used for QTL identification rather 

than predicting flowering times in other environments. The average DF, TTF and NF of each 

replicate were adjusted for spatial variation using the Asreml-R package (Gilmour et al. 2009) 

in the R statistical environment and the best linear unbiased estimators (BLUEs) were used for 

QTL analysis. 

 To evaluate photoperiod response (PR), the difference in time to flowering (DF and 

NF) between the long day, high temperature treatment and the short day, high temperature 

treatment for each of the lines was used, following the conventions previously described in 

QTL detection of photoperiod response studies of wheat (Triticum aestivum L.) by Sourdille 

et al. (2000) and barley (Hordeum vulgare L.) by Ren et al. (2012). The same principle was 

used to evaluate ambient temperature response (TR), where the difference in time to 

flowering (DF, TTF and NF) between the long day, high temperature treatment and the long 

day, low temperature treatment was used. Thermal time to flowering was only used in QTL 

detection for TR and not for the individual treatments or for PR because the direct 

relationship of TTF to the constant temperature of these treatments meant that it did not add 

any more information than DF.  

Table 1 Treatment conditions for the evaluation of the Icarus × Ascot RIL population in 

controlled environments. 

Treatment Photoperiod Temperature 
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1 (LD HT) 18 h 22 °C (±2 °C) 

2 (LD LT) 18 h 11 °C (±2 °C)  

3 (SD HT) 13 h 22 °C (±2 °C) 

LD HT Long day, high temperature; LD LT Long day, low temperature; SD HT Short day, 

high temperature 

 

Field evaluation of the Icarus × Ascot RIL population 

The two parents and 92 RILs were hand sown in a randomised complete block design in the 

field over three years (19th May 2011, 30th May 2012 and 20th May 2014) at Turretfield 

Research Centre, South Australia (-34.5390° S 138.8439° E). Each plot consisted of 18 plants 

sown over two rows with 25 cm between rows and 25 cm between plants along each row. There 

were either two (2011 and 2012) or three (2014) replicates per RIL and 10 (2011 and 2012) or 

15 (2014) replicates per parent (randomly allocated). Fertiliser was applied at sowing and 

fungicide was not applied as the plots were also being scored for disease resistance. As a result, 

ascochyta blight was present, which could have an effect on flowering time. From the first sign 

of flowering, plots were scored weekly for the number of plants with open flowers and the time 

(in days) from sowing to 50% flowering (DF) for each plot was calculated by regression 

analysis. Daily mean temperatures for Turretfield, obtained from the Australian Bureau of 

Meteorology (Bureau of Meteorology  2014), were used to determine the TTF with a Tb of 0 

°C. The DF and TTF of each replicate were adjusted for spatial variation using the Asreml-R 

package (Gilmour et al. 2009) in the R statistical environment and the BLUEs were used for 

QTL analysis. 

QTL analysis 

The genetic linkage map produced by Kaur et al. (2014) from the Icarus × Ascot mapping 

population was used in this study. This linkage map contained 522 markers, spanning 1216.8 

cM over 12 linkage groups (LGs) with an average distance of 2.3 cM between markers. 

Composite interval mapping (CIM) was used for QTL detection within Windows QTL 

Cartographer v2.5 (Wang et al. 2012), with the minimum log-of-odds (LOD) for confirming 

QTL presence determined using 1000 permutations. 

The QTL containing regions from this study were compared to the QTLs detected in the 

Göttingen Winter Bean Population (GWBP) (Sallam et al. 2016) using M. truncatula  as the 
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genetic linking bridge, via the process of anchoring the genetic linkage maps from Kaur et al. 

(2014) and Sallam et al. (2016) to M. truncatula using markers for orthologous genes.  

 

Results 

 

Flowering traits in the Icarus × Ascot RIL population 

Under field evaluation, the parents of the bi-parental RIL population (Icarus and Ascot) 

differed by an average of 13 d and 164°C.d in time to flowering (Table 2), with Icarus flowering 

later. In 2014, flowering of both parents occurred later as compared to 2011 and 2012. 

Table 2 Phenotyping of flowering traits of the parents and RILs of the Icarus × Ascot 

population grown in the field at Turretfield in 2011, 2012 and 2014.  

Trait Year  Icarus Ascot   RIL Population 

       Mean ± SE   Range 

DF (days) 2011 101 88 91 ± 1.0 85 – 98 

 2012 102 90 94 ± 1.3 88 – 101 

 2014 110 95 104 ± 0.6 100 – 110 

 Average 104 91 96 
 

TTF (°C.d) 2011 1124 967 1014 ± 12.5 931 – 1100 

 2012 1069 917 964 ± 14.7 901 – 1057 

 2014 1219 1048 1152 ± 7.2 1102 – 1222 

  Average 1137 978 1043 
 

DF days to flowering; TTF thermal time to flowering; SE standard error (calculated as the 

average SE of the RILs) 

 

Ascot flowered earlier than Icarus, when expressed in both DF and TTF, in all 

controlled environment treatments (Table 3).  For NF however, Ascot flowered at a lower node 

than Icarus in the long day, low temperature treatment; the same node in the long day, high 

temperature treatment; and a higher node in the short day, high temperature treatment. For each 

treatment and trait in the controlled environments, the RIL population mean was within the 

parental means, however, the range observed for the progeny extended beyond the parental 

means (transgressive segregation) in most cases. Icarus was more responsive than Ascot to 

both ambient temperature and photoperiod when measured in DF or TTF, however, Ascot was 

more responsive to temperature and photoperiod when measured in NF. Flowering occurred 
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on a lower node in the long day, low temperature treatment compared to the long day, high 

temperature treatment, as indicated by the negative values for NF in the TR measure. 

Table 3 Phenotyping of flowering traits of the parents and RILs of the Icarus × Ascot 

population grown in three controlled environments and measures of their ambient temperature 

response (TR) and photoperiod response (PR).  

Trait Treatment Icarus     Ascot        RIL Population 

        Mean ± SE Range 

DF (days) LD HT 30.6 26.4 28.2 ± 0.9   24.6 – 33.1 

 LD LT 83.3 58.7 66.7 ± 2.3   55.5 – 88.5 

 SD HT 118.7 69.6 81.7 ± 12.3   43.8 – 154.0 

TTF (°C.d) LD HT 673.0 581.0 620.4 ± 20.7 541.2 – 728.2 

 LD LT 916.0 646.0 733.7 ± 29.9 610.5 – 973.5 

 SD HT 2611.0 1531.0 1797.4 ± 270.2 963.6 – 3388.0 

NF  LD HT 12.0 11.8 12.0 ± 0.4   10.3 – 14.1 

 LD LT 9.8 6.3 7.9 ± 0.5     6.1 – 10.5 

  SD HT 22.8 28.7 26.7 ± 2.9   18.5 – 48.1 

DF (days) TRa 52.6 32.3 38.6 ± 2.9   28.7 – 58.2 

 PRb 88.1 43.1 53.5 ± 12.3   17.0 – 125.2 

TTF (°C.d) TR 242.0 64 114.2 ± 36.4  -14.4 – 307.6 

 PR 1938.2 948.2 1177.0 ± 271.0 374.0 – 2754.4 

NF TR -2.2 -5.4 -4.0 ± 0.6    -7.6 – -1.0 

  PR 10.8 17.0 14.7 ± 3.0     6.7 – 36.2 

RIL recombinant inbred line; DF days to flowering; TTF thermal time to flowering; NF node 

of first flower 

a TR is the difference between long day, high temperature (LD HT) measure and long day, low 

temperature (LD LT) measure. [TR = (LD LT) – (LD HT)] 

b PR is the difference between long day, high temperature (LD HT) measure and short day, 

high temperature (SD HT) measure. [PR = (SD HT) – (LD HT)] 

 

Regions of co-localised QTL for flowering time 

In total, 35 QTLs were detected for flowering time in the Icarus × Ascot RIL population (Tables 

4, 5 and 6). Due to the interconnected relationship of the traits measured, these QTLs were 
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clustered in eight regions across six of the linkage groups previously described by Kaur et al. 

(2014) (Figure 1); one region on each of Chr-I.A/III/V, Chr-I.B.3, Chr-III.1, Chr-III.2 and Chr-

V.2; and three regions on Chr-V.1 (referred to as the first, second and third region of Chr-V.1). 

The QTLs detected within each of these regions overlapped at the 2-LOD, if not the 1-LOD 

interval (Figure 1). 

QTL detection from field evaluation 

Four regions of co-localised QTLs were detected for DF in three years of field evaluation, with 

each individual QTL explaining 7.0% – 38.3% of the phenotypic variation (Table 4 and Figure 

1). Two of the QTL regions, one on Chr-I.B.3 (containing qDF-20011-1, qDF-2012-1 and 

qDF-2014-1) and one on the first region of Chr-V.1 (containing qDF-2011-2, qDF-2012-2 and 

qDF-2014-3) were observed in all years for DF. A QTL in the second region of Chr-V.1 (qDF-

2011-3) was only detected in 2011, and a QTL on Chr-III.2 (qDF-2014-2) was only detected 

in 2014. 

 QTLs were detected on the same four chromosomal regions for TTF in the field as those 

for DF (Table 4 and Figure 1). qTTF-2011-1, qTTF-2012-1 and qTTF-2014-1 were detected 

on Chr-I.B.3. qTTF-2011-2, qTTF-2012-2 and qTTF-2014-3 were detected on the first region 

of Chr-V.1. qTTF-2012-3 was only observed in 2012 and was detected on the second region of 

Chr-V.1. qTTF-2014-2 was only observed in 2014 and was detected on Chr-III.2.  



10 
 

Table 4 Faba bean flowering time QTLs detected over three seasons in the field at Turretfield, SA. 

Trait QTL 

Linkage 

Group  

1-LOD 

interval (cM) 

Marker with 

greatest association  

LOD 

threshold 

Maximum 

LOD 

Vp 

(%) Add 

DF qDF-2011-1 Chr-I.B.3 3.7 - 6.7 SNP_50002190 3.2 5.62 12.2 -1.17 

 qDF-2012-1 Chr-I.B.3 3.7 - 12.3 SNP_50002190 3.0 7.34 18.5 -1.08 

 qDF-2014-1 Chr-I.B.3 0.4 - 14.3 SNP_50002190 3.1 4.86 11.8 -0.77 

 qDF-2014-2 Chr-III.2 23.3 - 36.7 SNP_50000993 3.1 4.69 10.9 -0.74 

 qDF-2011-2 Chr-V.1 19.6 - 22.4 SNP_50001709 3.2 11.19 38.3 -2.25 

 qDF-2012-2 Chr-V.1 16.4 - 25.7 SNP_50001709 3.0 9.50 29.4 -1.48 

 qDF-2014-3 Chr-V.1 5.5 - 18.6 SNP_50000729 3.1 7.25 19.6 -1.00 

 qDF-2011-3 Chr-V.1 60.6 - 62.6 SNP_50001804 3.2 3.58 7.0 0.96 

TTF qTTF-2011-1 Chr-I.B.3 3.7 - 6.7 SNP_50002190 3.4 5.72 12.0 -15.04 

 qTTF-2012-1 Chr-I.B.3 0.4 - 14.3 SNP_50002190 3.0 5.71 14.9 -11.76 

 qTTF-2014-1 Chr-I.B.3 0.4 - 12.3 SNP_50002190 3.0 5.23 12.5 -9.03 

 qTTF-2014-2 Chr-III.2 24.3 - 37.7 SNP_50000993 3.0 4.37 11.1 -8.47 

 qTTF-2011-2 Chr-V.1 19.6 - 22.4 SNP_50001709 3.4 11.13 37.2 -28.70 

 qTTF-2012-2 Chr-V.1 16.4 - 19.6 SNP_50000729 3.0 9.31 29.2 -17.54 

  qTTF-2014-3 Chr-V.1 5.5 - 18.6 SNP_50000729 3.0 6.30 16.4 -10.29 

 qTTF-2012-3 Chr-V.1 58.4 - 62.6 SNP_50001804 3.0 3.26 7.5 8.83 

QTL Quantitative trait loci; LOD Log of odds; Vp Phenotypic variance; Add Additive effect (a negative value means the Ascot allele causes earlier 

flowering); DF Days to flower; TTF Thermal time to flower 
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QTL detection from controlled environment evaluation 

Five QTL regions were detected for DF in the controlled environment treatment (Table 5 and 

Figure 1). qDF-SDHT-1 was detected on Chr-I.B.3; qDF-LDHT on Chr-III.1; qDF-SDHT-2 on 

Chr-III.2; qDF-LDLT and qDF-SDHT-3 on the first region of Chr-V.1; and qDF-SDHT-4 on 

the third region of Chr-V.1. 

Five QTL regions were also detected in the controlled environment treatments for NF, 

although not all the same regions as for DF (Table 5 and Figure 1). qNF-LDHT-1 was detected 

on Chr-I.A/III/V; qNF-LDHT-2 on Chr-III.1; qNF-SDHT-1 on Chr-III.2; qNF-LDLT on the 

first region of Chr-V.1; and qNF-SDHT-2 on Chr-V.2.
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Table 5 Faba bean flowering time QTLs detected in three controlled environment treatments of varying temperature and photoperiod. 

Trait Treatment QTL 

Linkage 

group 

1-LOD 

interval (cM) 

Marker with 

greatest association  

LOD 

threshold 

Maximum 

LOD 

Vp 

(%) Add 

DF LD HT qDF-LDHT Chr-III.1 153.7-166.6 SNP_50000468 3.0 4.49 14.1 -0.59 

 
LD LT qDF-LDLT Chr-V.1 12.1-29.0 SNP_50001709 3.0 9.45 31.9 -3.37 

 
SD HT qDF-SDHT-1 Chr-I.B.3 17.1-23.4 SNP_50002190 3.1 4.97 16.5 -9.58 

  
qDF-SDHT-2 Chr-III.2 33.7-43.7 SNP_50000993 3.1 3.25 9.5 7.20 

  
qDF-SDHT-3 Chr-V.1 9.1-19.6 SNP_50001769 3.1 3.04ns 8.7 -6.74 

  
qDF-SDHT-4 Chr-V.1 100.6-109.8 SNP_50001325 3.1 3.04ns 8.6 6.84 

NF LD HT qNF-LDHT-1 Chr-I.A/III/V 0-1.0 SNP_50002450 3.1 3.64 11.1 -0.28 

  
qNF-LDHT-2 Chr-III.1 153.7-161.8 SNP_50000468 3.1 6.98 24.1 -0.40 

 
LD LT qNF-LDLT Chr-V.1 15.4-17.4 SNP_50000729 3.3 13.79 46.1 -0.84 

 
SD HT qNF-SDHT-1 Chr-III.2 35.7-43.7 SNP_50000993 2.9 3.29 11.6 1.90 

    qNF-SDHT-2 Chr-V.2 46.1-47.1 SNP_50000225 2.9 2.98 10.0 -1.79 

QTL Quantitative trait loci; LOD Log of odds; Vp Phenotypic variance; Add Additive effect (a negative value means the Ascot allele causes earlier flowering); 

DF Days to flower; NF Node of first flower; LD HT Long day, high temperature; LD LT Long day, low temperature; SD HT Short day, high temperature; ns 

Not significant 
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Temperature and photoperiod response QTLs 

Two QTL regions were detected for temperature response (Table 6 and Figure 1). qDF-TR, 

qTTF-TR and qNF-TR-2 were detected on the first region of Chr-V.1 for temperature response 

of DF, TTF and NF, respectively; and qNF-TR-1 was detected (for temperature response of 

NF) on Chr-I.A/III/V. Four QTL regions were detected for photoperiod response of days to 

flower (Table 6 and Figure 1). qDF-PR-1 was detected on Chr-I.B.3, qDF-PR-2 on Chr-III.2, 

qDF-PR-3 on the first region of Chr-V.1, and qDF-PR-4 on the third region of Chr-V.1. 
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Table 6 Faba bean flowering time QTLs detected for ambient temperature response (TR) and photoperiod response (PR) in controlled environment treatments. 

Trait Response QTL LG 

1-LOD 

interval (cM) 

Marker with 

greatest association  

LOD 

threshold 

Maximum 

LOD 

Vp 

(%) Add 

DF TR qDF-TR Chr-V.1 11.1-28.0 SNP_50001706 3.1 8.88 33.1 -3.50 

 
PR qDF-PR-1 Chr-I.B.3 0.4-6.7 SNP_50002190 3.1 5.04 16.5 -9.40 

  
qDF-PR-2 Chr-III.2 33.7-43.7 SNP_50000993 3.1 3.49 10.0 7.31 

  
qDF-PR-3 Chr-V.1 9.1-19.6 SNP_50001769 3.1 3.24 9.3 -6.89 

  
qDF-PR-4 Chr-V.1 101.6-108.9 SNP_50001325 3.1 3.39 9.5 7.05 

TTF TR qTTF-TR Chr-V.1 10.1-28.0 SNP_50001769 3.1 8.39 31.0 -38.90 

NF TR qNF-TR-1 Chr-I.A/III/V 0-11.7 SNP_50002450 3.0 3.50 7.5 0.41 

  
qNF-TR-2 Chr-V.1 9.1-17.4 SNP_50000729 3.0 11.15 33.2 -0.88 

  PR None detected               

QTL Quantitative trait loci; LOD Log of odds; Vp Phenotypic variance; Add Additive effect (a negative value means the Ascot allele causes earlier flowering); 

DF Days to flower; TTF Thermal time to flower; NF Node of first flower 
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Fig. 1 Genetic linkage map constructed from the Icarus × Ascot faba bean RIL population, 

showing the QTL positions for flowering time. Marker loci are on the right of the linkage 

groups (markers in bold are within the QTL interval) and map distances (in cM) are on the left. 

QTLs are indicated by thick bars for the 1-LOD interval, simple bars for the 2-LOD interval 

and are positioned relative to the chromosome diagram with their names to the right (linkage 

groups without QTLs not shown). 
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Fig. 1 (Cont.)  
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Two of the QTL containing regions identified in this study were found to be in common 

locations of the genome as flowering time QTLs detected by Sallam et al. (2016) (Figure 2). 

The flanking markers of the QTL identified on Chr-III.1 in this study were close to the location 

of a marker (Vf_Mt1 g056180) associated with days to flower on LG03 in the GWBP. 

Furthermore, the flanking markers of the first QTL region from this study on Chr-V.1 were 

found to be co-localised as represented by two of the markers (Vf_Mt g084010 and Vf_Mt 

g090890) of LG05 associated with days to flower QTL in the GWBP. 

 

Fig. 2 Synteny comparison between flowering time QTLs from this study with Göttingen 

Winter Bean Population (GWBP) using M. truncatula (v 3.5) as the genetic bridge. The QTL 

regions identified from this study are represented on the left side of the figure. QTLs that are 

located in the same chromosome location as found by the GWBP study are shown on the 

right side of the figure. The marker loci flanking the QTL regions and their distances (in cM) 
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from both the studies are represented according to their characterised linkage groups. For 

each faba bean linkage group, their respective position in the M. truncatula genome (centre of 

the image) is as indicated in bp with their respective gene. 

 

Discussion 

 

The main purpose of this study was to investigate the genetic control of flowering time and the 

responses of flowering time to ambient temperature and photoperiod in faba bean. Evaluation 

of flowering time in the Icarus × Ascot RIL population grown in different controlled 

environments and in the field resulted in the detection of eight regions of the faba bean genome 

on six linkage groups (one on each of Chr-I.A, Chr-I.B, Chr-III.1, Chr-III.2 and Chr-V.2; and 

three on Chr-V.1) containing QTLs that explain the phenotypic variation in flowering time, 

and for the first time in faba bean, associations of flowering QTLs with ambient temperature 

response and photoperiod response were determined.  

 The most important region of the faba bean genome controlling time to flower in the 

Icarus × Ascot RIL population is the first region on Chr-V.1. This region explains between 

19.6 and 38.3% of the phenotypic variation in DF at Turretfield, with the Icarus allele causing 

later flowering and was shown to be associated with both photoperiod and temperature 

response. Cruz-Izquierdo et al. (2012) observed a QTL on chromosome V that explained most 

of the phenotypic variation in flowering time of faba bean. The QTL region in this study was 

confirmed to be consistent with a QTL detected by Sallam et al. (2016) and is likely to be 

consistent with that of Cruz-Izquierdo et al. (2012), however, a lack of common markers 

prevents confirmation of this. Chr-V.1 is syntenic with M. truncatula chromosome 7 (Kaur et 

al. 2014), which also contains a region that explains most of the phenotypic variation in 

flowering time (Pierre et al. 2008). The genetic basis of this variation in M. truncatula has been 

suggested as being a cluster of three flowering locus T-like genes (MtFTa1, MtFTa2 and 

MtFTc) (Laurie et al. 2011; Pierre et al. 2008). FT genes are central to the induction of 

flowering of legumes and the expression of FT genes has been shown to be influenced by 

vernalisation and photoperiod in M. truncatula (Laurie et al. 2011), and photoperiod in pea and 

soybean (Hecht et al. 2011; Kong et al. 2010), while ambient temperature influences FT 

expression in A. thaliana (Capovilla et al. 2014). The importance and environmental 

responsiveness of these FT-like genes make them good candidates, however, other flowering 

genes that exist within the same QTL interval of M. truncatula cannot be ruled out, namely 
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MtCO, MtFD and MtPKS (Pierre et al. 2008). This region in faba bean would need to be 

investigated further, with fine mapping, in order to understand better the genetic basis of 

flowering time control at this location and to develop diagnostic markers that could be used for 

MAS. 

 The QTL region on Chr-I.B.3 was also important in controlling flowering time, 

explaining between 11.8 and 18.5% of the phenotypic variation in DF at Turretfield. The QTL 

was associated with photoperiod response and the Icarus allele caused later flowering. This 

QTL region may be common with one of the two QTLs observed on chromosome I.B by Cruz-

Izquierdo et al. (2012). However, a lack of common markers between the linkage maps means 

this commonality cannot be confirmed. Chr-I.B.3 is syntenic with M. truncatula chromosome 

8 and chickpea chromosome 8 (Kaur et al. 2014). Three flowering QTLs have been detected 

on M. truncatula chromosome 8 (Pierre et al. 2008) and two on chickpea chromosome 8 

(Rehman et al. 2011; Varshney et al. 2014). Sixteen flowering related genes have been 

identified on M. truncatula chromosome 8 by Kim et al. (2013), including the photoperiod 

pathway genes: Casein kinase alpha 1 (CKA1); Casein kinase II, alpha chain 2 (CKA2); and 

Chryptochrome-interacting basic-helix-loop-helix 1 (CIB1). These are the most plausible 

candidate genes, given the association the QTL has with photoperiod response, however, fine 

mapping would have to be carried out in order to narrow the possibilities. Like the first region 

on Chr-V.1, this QTL region is a good candidate for further study and MAS. 

 Two other QTL regions of interest are the ones located on linkage groups Chr-III.1 

(which wasn’t associated with response to temperature or photoperiod, with the Icarus allele 

causing later flowering) and Chr-III.2 (which was associated with photoperiod response, with 

the Ascot allele causing later flowering). The region on Chr-III.1 is in the same location as a 

QTL identified by Sallam et al. (2016), which corresponds to a position on M. truncatula 

chromosome 1. It is, however, unclear at this stage whether the region on Chr-III.1 is 

common with the QTL identified on chromosome III by Cruz-Izquierdo et al. (2012). As well 

as being syntenic with M. truncatula chromosome 1, Chr-III.1 is syntenic with chickpea 

chromosome 4 and pea chromosome 2 (Hecht et al. 2005; Kaur et al. 2014). M. truncatula 

chromosome 1 and chickpea chromosome 4 contain the flowering genes: GI (orthologous to 

the GIGANTEA gene in A. thaliana), Phytochrome A (PHYA), Cryptochrome 2 (CRY2) and 

Flowering Locus D (FLD) (Deokar et al. 2015; Hecht et al. 2005; Kim et al. 2013; Weller and 

Ortega 2015). Additionally, pea chromosome 2 contains Photoperiod (PPD) and Late 

Flowering (LF) (Liew et al. 2014; Weller et al. 1997; Weller and Ortega 2015). From a 
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phenotypic basis, the most plausible candidate genes for the QTL detected on Chr-III.1 are 

FLD and LF because they act independently of the environment. Chr-III.2 is largely syntenic 

with M. truncatula chromosome 6 and chickpea chromosome 8 (Kaur et al. 2014). There are 

no known flowering related QTLs or genes on M. truncatula chromosome 6 and, although 

there are two flowering QTLs on chickpea chromosome 8 (Rehman et al. 2011; Varshney et 

al. 2014), there are no known flowering genes on this linkage group either. These QTL 

regions (on Chr-III.1 and Chr-III.2) are mostly of interest from a functional genomics 

viewpoint, as they had little to no importance in the control of flowering time in the field in 

this experiment. 

This study contributes to the efforts of identifying the genes controlling flowering 

time in faba bean by confirming the importance of previously detected QTLs, by detecting 

novel QTLs and by linking QTLs to photoperiod and/or ambient temperature response. 

Candidate genes have been identified for the major flowering QTLs in faba bean, based on 

orthologous genes located in syntenic regions (or at least comparative linkage groups) of 

other legumes and their known associations with photoperiod and temperature. The 

associations of QTLs in this study with photoperiod and temperature response could be used 

to narrow the candidate genes in other legumes with syntenic flowering QTLs, now for 

confirmed syntenic QTLs, and in future for those not yet confirmed. Assuming the 

mechanism behind the responses are consistent across the legume species. 

To further this study, the role of vernalisation in flowering time needs to be evaluated 

and the genetic basis of any such variation explored. Fine mapping of the important regions 

for flowering time and validation of the QTLs in multiple environments and genetic 

backgrounds would need to be carried out to develop reliable markers for the different 

flowering time traits and to more accurately determine the phenotypic variance attributable to 

each QTL, along with the interactions with varied, industry significant, environments. From 

there, marker-assisted selection could be adopted for more efficient and effective selection of 

flowering traits in a breeding program, leading to the faster development of varieties adapted 

to environments with specific requirements for time of flowering. 
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