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Azolla along a phosphorus 
gradient: biphasic growth response 
linked to diazotroph traits and 
phosphorus-induced iron chlorosis
Ralph J. M. Temmink  1, Sarah F. Harpenslager1,3, Alfons J. P. Smolders2,1, Gijs van Dijk2,1,  
Roy C. J. H. Peters1, Leon P. M. Lamers1,2 & Monique M. L. van Kempen1

Azolla spp., a water fern often used for phytoremediation, is a strong phosphorus (P) accumulator due 
to its high growth rate and N2 fixing symbionts (diazotrophs). It is known that plant growth is stimulated 
by P, but the nature of the interactive response of both symbionts along a P gradient, and related 
changes in growth-limiting factors, are unclear. We determined growth, and N and P sequestration 
rates of Azolla filiculoides in N-free water at different P concentrations. The growth response appeared 
to be biphasic and highest at levels ≥10 P µmol l−1. Diazotrophic N sequestration increased upon P 
addition, and rates were three times higher at high P than at low P. At 10 µmol P l−1, N sequestration 
rates reached its maximum and A. filiculoides growth became saturated. Due to luxury consumption, P 
sequestration rates increased until 50 µmol P l−1. At higher P concentrations (≥50 µmol l−1), however, 
chlorosis occurred that seems to be caused by iron- (Fe-), and not by N-deficiency. We demonstrate 
that traits of the complete symbiosis in relation to P and Fe availability determine plant performance, 
stressing the role of nutrient stoichiometry. The results are discussed regarding Azolla’s potential use in 
a bio-based economy.

The genus Azolla comprises a broad range of floating aquatic fern species growing in tropical, subtropical and 
temperate freshwater ecosystems1,2. Azolla spp. are able to reach high growth rates by asexual reproduction and 
are very strong phosphorus (P) and nitrogen (N) accumulators3, which makes them very suitable for phytore-
mediation, bio-gas production, animal food and crop fertilization1,4,5. Due to their symbiosis with atmospheric 
nitrogen (N2) fixing microorganisms (diazotrophs), the primary production of the plants is hardly ever N-limited 
under natural conditions. The diazotrophs live inside Azolla’s leaf cavities (Supplementary Fig. S1) and include 
the cyanobacteria Nostoc/Anabaena azollae6,7 that forms unbranched, multi-cellular chains that contain both 
photosynthetic, vegetative cells and N2 fixing heterocysts8. Using nitrogenase enzymes, the diazotrophs reduce 
atmospheric N2 to ammonium (NH4

+), which is then excreted into the Azolla leaf cavity and taken up by the 
fern9. In response to N-limitation, when there is no exogenous N available to Azolla, the heterocyst fraction 
increases in diazotroph chains10,11.

Given its high potential P uptake rates, luxury accumulation of P12,13 and high growth rates, Azolla may well 
be used for phytoremediation with respect to P4,12,14–17. The cultivation of Azolla spp. in P-enriched water could 
therefore offer a sustainable way of P recovery and recycling from eutrophic water12,18–22. Sustainable practices of 
P recycling are important, as global reserves of phosphate rock are becoming increasingly depleted23,24. Next to 
P recycling, Azolla cultivation may yield annually up to 35 t dry N-rich biomass, independent of N-fertilizer25. 
Although nutrient supply can easily be managed in hydro-cultures, nutrient management is more challenging 
when growing Azolla in flooded fields, due to biogeochemical interactions in the flooded soil and surface water26. 
The supply of macronutrients such as P and iron (Fe) and micronutrients by inflowing water, or by mobilization 
from the sediment to the overlying water should be sufficient to support Azolla’s growth26,27. Natural waters may 
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well show non-optimal nutrient stoichiometry resulting in nutrient deficiency, impeded Azolla growth or even 
chlorosis1,28 due to P or Fe limitation28,29.

High P concentrations in surface waters are well known to stimulate the growth of Azolla spp.30,31 and to 
increase N2 fixation rates of their symbionts31–33. For efficient and broad application of A. filiculoides in a biobased 
economy, however, a profound understanding of the interactive responses of this species and its diazotroph 
microbiome to different P loadings is required, which is currently lacking. To test the type of growth response to 
P and find an explanation for this, A. filiculoides was grown in a greenhouse experiment in N-free surface water at 
different P concentrations. We hypothesized that both N and P sequestration rates are positively related to exog-
enous P concentrations, but level off because endogenous N provided by the diazotrophs becomes limited. We 
further hypothesized that at high P levels, Fe deficiency may occur which may induce chlorosis and limit Azolla 
growth, as this element is not only essential for Azolla but also for the production of the nitrogenase enzyme1,28.

Results
Growth response to P availability. RGRs of A. filiculoides growing in the 0.5 and 2 µmol P l−1 treatments 
were significantly lower than those of the higher P treatments (Fig. 1). Azolla’s growth response to increasing P 
showed a biphasic response (Michaelis-Menten fit: R2 = 0.62, p < 0.001). During 21 days, A. filiculoides growing 
in 0.5 and 2 µmol P l−1 treatments increased their biomasses 2.2 times, whereas in 10, 50 and 100 µmol P l−1 treat-
ments, biomasses increased 3.4 times. During the experiment Azolla’s biomass was lower than the self-crowding 
threshold of 2 kg FW m−2 (data not shown).

Morphology of A. filiculoides also changed in response to different P treatments. Plants from the 0.5 and 
2 µmol P l−1 treatments were smaller and more fragile than those from the 10, 50 and 100 µmol P l−1 treatments. 
Furthermore, plants from the lowest two concentrations turned reddish, while plants from the 10 µmol P l−1 
treatment stayed green. Plants from the 50 and 100 µmol P l−1 treatments turned chlorotic (yellowish) after 21 
days of growth.

Plant nutrient composition. Plant P contents increased when P concentrations in the nutrient solution 
increased, but declined over time (Fig. 2a). P sequestration rates also increased, until the 50 µmol P l−1 treatment 
(Fig. 3a). Plant N content was stable over time, and highest at 50 µmol P l−1. Lowest N content was found for the 
0.5 and 2 µmol P l−1 treatments (Fig. 2b). P concentrations ≥ 10 µmol l−1 in the nutrient solution significantly 
increased N sequestration rates of Azolla and its symbionts (Fig. 3b). N sequestration rates were approximately 4.5 
and 2.5 times higher in the higher P treatments (≥10 µmol l−1) compared to the 0.5 and 2 µmol P l−1 treatments, 
respectively. Plant N: P ratios showed an extensive range, and decreased with increasing P availability (Fig. 2c). At 
day 21, the highest value (55 ± 1.7 mol mol−1) was reached in the 0.5 µmol P L−1 treatment, and the lowest in the 
50 and 100 µmol P l−1 treatments (12.4 ± 0.3 and 10.9 ± 0.3 mol mol−1, respectively). Plant K, P, N, Na and S con-
tents were significantly higher in the >10 µmol P l−1 treatments, whereas Zn and Ca contents were significantly 
lower and Fe and Si were similar (Supplementary Table S3). Further elemental composition of the plants is shown 
in Supplementary Table S3.

Deficiency testing. To test the cause of the observed chlorosis an additional, but similar, experiment was 
carried out, in which plants also turned chlorotic after 5 weeks of 100 µmol P l−1 treatment. They were subse-
quently treated with Fe or NH4

+-NO3
−. After two weeks, only the plants treated with Fe became green again and 

had a significantly higher chlorophyll a + b content (15.2 ± 2.3 mg g−1 DW) than the control (10.8 ± 2 mg g−1 
DW) or the N treatment (9.5 ± 2.7 mg g−1 DW, Fig. 4a). In addition, highest N contents were found in plants 
treated with Fe (3000 ± 11 µmol N g−1 DW) and lowest in the control (2125 ± 20 µmol N g−1 DW; Fig. 4b). Plants 
treated with N showed an intermediate N content of 2529 ± 18 µmol N g−1 DW (Fig. 4b and Supplementary 

Figure 1. Relative growth rates (RGRs, g g−1 DW d−1) ± SE of A. filiculoides after 21 days of growth at 0.5, 2, 10, 
50 and 100 µmol P l−1 (n = 5). Significant differences are indicated by different letters (Tukey HSD post hoc test). 
Additional results of the statistical analysis are presented in Supplementary Table S2.
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Table S4). Compared to both the control and the N treatment, the Fe content (55.8 ± 8 µmol Fe g−1 DW) in the Fe 
treatment was 1.6 and 1.5 times as high (Supplementary Table S4). Additional elemental composition of the plants 
is shown in Supplementary Table S4.

Discussion
Both Azolla filiculoides growth and the diazotrophic activity of its microbiome (resulting in N sequestration) 
showed a biphasic response to P availability, when grown without external N supply. For high P levels, after 
maximum fixation rates by diazotrophic symbionts had been reached, the plants turned chlorotic. Additional 
external N supply did not increase plant health, but additional Fe supply did increase chlorophyll a + b and plant 
N contents. This not only proves that Fe was limiting at high P availability, but also means that traits of the com-
plete symbiosis in relation to P and Fe availability determine Azolla’s performance, stressing the role of nutrient 
stoichiometry.

Figure 2. P content (µmol P g−1 DW; (a) N content (µmol N g−1 DW; (b) and N: P ratios (mol mol−1; (c) ±SE 
of A. filiculoides during 21 days of growth at 0.5, 2, 10, 50 and 100 µmol P l−1 (n = 5). Different letters indicate 
significant differences (Bonferroni post hoc test). Additional results of the statistical analyses are presented in 
Supplementary Table S2.
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We found that A. filiculoides is able to double its biomass in one week in an N-free nutrient solution growing in 
a P-rich environment, entirely relying on the symbiosis with diazotrophs for its N supply. The growth rates meas-
ured are in the range reported in literature32,34–37. However, higher RGRs may be obtained when growing Azolla 
under optimal conditions using synthetic media in aquaculture1,38. Self-crowding may also result in lower RGRs 
of the fern, however, during the experiment the biomass was lower than the self-crowding threshold of 2 kg FW 
m−2 and was therefore not responsible for the biphasic growth response39. Here we show that the RGR of A. filic-
uloides shows a biphasic response to P availability, and becomes saturated at 10 µmol P l−1. The lack of differences 
between RGRs of plants grown with 10, 50 and 100 µmol P l−1, together with the substantially higher P content in 
plants grown at high P, either suggests that the maximum growth of this strain of A. filiculoides and its diazotrops 
were reached, or that a factor other than P became limiting above 10 µmol P l−1.

In aquatic plants, N: P ratios >17 (mol mol−1) generally indicate P deficiency, whereas a N: P ratios < 10 (mol 
mol−1) indicate N deficiency40–42. Based on their N: P ratios, A. filiculoides grown at P levels ≤ 2 µmol l−1 were 
severely P-limited43,44, which was also indicated by their red color1. Addition of P shifted the limitation through N 
and P co-limitation (in plants receiving 10 µmol P l−1) towards N-limitation (in plants receiving 50 and 100 µmol 
P l−1), based on N:P ratios and color.

A. filiculoides from the 50 and 100 µmol P l−1 treatment had a similar N: P ratio around 10 mol mol−1, which 
may indicate that the plant’s N-requirement and N-supply by the diazotrophs were in equilibrium to sustain 
Azolla’s growth. Apparently, the diazotrophs were not able to fix additional N that could be utilized to increase 
biomass growth. Interestingly, plants supplied with additional Fe had significantly higher N content compared to 
plants that were only supplied with N and plants that did not receive additional Fe or N, indicating Fe limitation 
for both plant growth and N2 fixation by the diazotrophs1,25. Luxury consumption of N did not seem to occur, 
probably because N2 fixation rates reached their maximum due to Fe limitation. The ferns, however, continued to 
accumulate P up to average rates of 778 µmol m−2 d−1, indicating luxury consumption (Fig. 5). N and P seques-
tration rates were indeed positively related to exogenous P concentrations. For N the maximum was reached at 
10 µmol P l−1, whereas for P this was at 50 µmol P l−1. Our results clearly show that the diazotrophic community 
and A. filiculoides are able to respond dynamically to P availability in the aquatic environment, but become satu-
rated or limited at a certain level.

Figure 3. P (panel a) and N (panel b) sequestration rates (µmol m−2 d−1; n = 5) ± SE by A. filiculoides for the 
0.5, 2, 10, 50 and 100 µmol P l−1 treatments. Different letters indicate significant differences (ANOVA Tukey 
post hoc test). Additional results of the statistical analyses are presented in Supplementary Table S2.

Figure 4. Chlorophyll a + b (mg g−1 DW, (a) and plant N content (µmol N g−1 DW, (b) of A. filiculoides 
treated with 100 µmol P l−1 (Control), after Fe (Iron) or nitrogen addition (limitation experiment, n = 4) ± SE. 
Significant differences are indicated by different letters (ANOVA Tukey HSD pairwise comparison). Additional 
statistical results are presented in Supplementary Table S2.
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In natural environments, eutrophication usually includes increased loading of both N and P. Presence of exog-
enous N influences both N2 fixation and growth of A. filiculoides. Availability of N, has been shown to inhibit 
nitrogenase activity in Azolla11,15,45,46, while not lowering plant growth47. In temperate regions, under natural con-
ditions, surface water N concentrations rapidly decrease in spring as a result of high denitrification rates due to 
increased microbial activity, but surface water P availability remains high, especially if sediment P gets mobilized 
due to anoxia in the water layer27,48. Under these environmental conditions, Azolla can become highly competi-
tive, using N produced by the diazotrophs combined with enhanced P availability.

At high P levels, plants may turn chlorotic, which has been attributed to absolute N-limitation in literature1. 
Here, we show that chlorosis and lower chlorophyll contents are caused by Fe deficiency at high P levels. Fe 
limitation can be expected to have resulted in lower growth and N sequestration rates in the high P treatments. 
The fact that Azolla’s condition (chlorophyll a + b) did improve after supplying exogenous Fe is in agreement 
with the hypothesis that Fe was deficient for Azolla grown at high P levels. In addition, it has been shown that 
Azolla is capable of higher growth rates when grown at >100 µmol P l−1 provided Fe is sufficiently available2,32. 
Fe availability in the environment or total Fe content of the plant are not the critical processes leading to chloro-
sis; multiple mechanisms can be responsible for Fe induced chlorosis including Fe precipitation in the apoplast, 
which is physiologically unavailable49–51. The presence of P can also affect plant Fe availability44,52,53. Interaction 
of P and Fe leading to Fe chlorosis can be caused by an internal immobilization of Fe probably due to formation 
of Fe-PO4

54–57.
Our results indicate that nutrients in the water should be balanced when growing Azolla to optimize plant 

health and maximize yields. The use of A. filiculoides (and its diazotrophic community) as a tool to recover and 
recycle P in a bio-based economy12,25 is also dependent on Fe availability. When Azolla is grown on inundated 
agricultural lands (Azolla farming) for example, not only P re-mobilization from the sediment27,48, but also Fe 
mobilization should be considered.

Materials and Methods
Experimental set-up. Before the start of the experiment, A. filiculoides was acclimatized to experimental 
conditions in 15 l tanks containing an N-free nutrient solution to which 0.5, 2, 10, 50 or 100 µmol P l−1 was added 
(as NaH2PO4 * 2H2O). The general composition of the solution was similar to the quality of natural surface waters 
where Azolla is abundant (Supplementary Table S1). After sufficient Azolla biomass had been produced in the 
greenhouse for 30 days37, the plants were pretreated for 10 days in larger basins without harvesting to minimize P 
history effects13. Nutrient solutions were replaced 3 times a week. After this period13, 7.5 g (surface cover of 90%) 
of carefully dry-blotted A. filiculoides was transferred to a 1 l glass aquarium (10 cm × 10 cm × 12 cm; L × W × H; 
750 g FW m−2), which was continuously fed by the same nutrient solution (pH = 7.3) as during the acclimatiza-
tion period, at a rate of 1 l d−1 using peristaltic pumps (Masterflex L/S; Cole-Palmer, Chicago, IL, USA). Nutrient 
concentrations were checked biweekly. Each P treatment had 5 replicates. The water level was kept constant by 
an overflow outlet. Aquaria were randomly placed in a temperature controlled water bath at 18 °C situated in 
the greenhouse facilities, at a mean day temperature of 21.2 °C (SE ± 0.007) and night temperature of 18.6 °C 
(SE ± 0.007) during the experimental period of 21 days. Light was mostly natural, but an artificial light regime of 
16 h: 8 h (light: dark) was maintained by four 400 W high-pressure sodium lamps (Hortilux-Schréder, Monster, 
The Netherlands) to illuminate the experiment whenever light intensity fell below 250 W m−2 (300 µmol m−2 s−1 
PAR; Quantum sensor, Skye Instruments LTD, Wales, England). Sides of the aquaria were covered with black 
plastic foil to avoid light penetration from the sides.

Growth measurement. Total plant biomass in each aquarium was determined at 0, 7, 14 and 21 days and 
subsamples were taken to determine fresh weight (FW) to dry weight (DW) ratios. Samples were rinsed, carefully 
blotted dry and weighed. After FW determination, 7.5 g (750 g FW m−2) of A. filiculoides was returned into its 
original aquarium to prevent crowding effects. The rest of the biomass was dried for 48 h at 60 °C, ground and 

Figure 5. P (µmol P m−2 d−1; left y-axis) and carbon (C; mmol C m−2 d−1; right y-axis) sequestration rates in  
A. filiculoides under different P loadings (n = 15; ± SE).
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homogenized using a ball mill (type Mixer Mill 301, Retsch GmbH, Haan, Germany) for further analyses. From 
the biomass increase, relative growth rates were calculated (RGR; g g−1 DW d−1).

Plant nutrient analyses. 200 mg dried plant material was digested using 4 ml HNO3 (65%) and 1 ml H2O2 
(35%) in Teflon vessels using an Ethos D microwave (1200 MLS, Milestone, Sorisole, Italy), after which digestates 
were analyzed for P, Fe, aluminum (Al), manganese (Mn), sodium (Na), sulfur (S), silicon (Si), zinc (Zn) using 
an inductively coupled plasma emission spectrophotometer (ICP-OES; model IRIS Intrepid II XDL, Thermo 
Fisher Scientific, Franklin, USA). N contents of 3 mg homogenized dried plant material were determined by an 
elemental CNS analyzer (model NA 1500, Carlo Erba; Thermo Fisher Scientific, Franklin, USA). Plant N and 
P sequestration rates were calculated by combining plant biomass production and N and P contents for every 
harvest. As A. filiculoides was grown in an N-free medium, the increase in plant N could fully be attributed to N2 
fixation by the diazotrophs.

Iron versus nitrogen limitation experiment. To determine which element caused the chlorotic appear-
ance of A. filiculoides found at 100 µmol P l−1, the original experiment was repeated for this treatment. Azolla 
may turn yellow/chlorotic due to the depletion of chlorophyll1. Also, Fe is often a limiting element for Azolla 
because it is an essential component of nitrogenase1,28. Chlorosis induced by iron deficiency, however, does not 
always implicate low total Fe contents in plant tissue58–62, because Fe may be immobilized in the apoplast and 
not be physiologically available63,64. Iron deficiency can be identified optimally when spraying plants with Fe, 
which causes regreening and an increase of chlorophyll a + b content57,59,61,65. To test N limitation, increasing 
both NO3

− and NH4
+ in the medium is the optimal approach45. When A. filiculoides became chlorotic after 5 

weeks, plants were daily treated with iron (sprayed with Fe-EDTA [Pro Analysis quality]; 10 µmol l−1) or nitrogen 
(NH4-NO3 [Pro Analysis quality]; 100 µmol l−1) for 2 weeks. Both methods were used to ensure optimal uptake 
of either Fe or N. To ensure that there would not be a time effect on the chlorotic appearance of A. filiculoides, the 
original treatment was continued (control, 100 µmol P l−1). Treatments were replicated 4 times. Nutrient content 
and chlorophyll a + b content66 were determined in all treatments at the end of the experiment, after 2 weeks of 
Fe and N application.

Statistical analyses. Homogeneity of variance and normality of the residuals were tested, and Analyses of 
Variances (ANOVAs) were used to analyze potential differences in RGR, N and P sequestration rates and plant 
chlorophyll a + b in response to different P concentrations or to element addition (response chlorophyll a + b). 
Differences between treatments were determined using Tukey HSD post hoc tests. Data of P sequestration were 
square root transformed to authorize the use of parametric analyses. Linear mixed models (LMMs) were used 
to analyze differences in plant P and N content and N: P ratio over time at different P concentrations. Time was 
nested in aquaria and the covariance type was selected based on the smallest Hurvich and Tsai’s Criterion (AICC). 
P content or N: P ratio of the plants was set as a dependent variable while the P treatment was set as a fixed factor. 
Overall effects and P treatments were displayed in Estimated Marginal Means of Fitted Models and the main 
effects were compared using Bonferroni pairwise comparisons. Plant P content was log transformed and N: P 
ratios were square root transformed. All statistical analyses were carried out using SPSS 21.0 (SPSS Inc., Chicago, 
IL, U.S.A.).

Data availability. The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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