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We consider the possibility that the primordial fluctuations (scalar and tensor) might have been
standing waves at their moment of creation, whether or not they had a quantum origin. We lay
down the general conditions for spatial translational invariance, and isolate the pieces of the most
general such theory that comply with, or break translational symmetry. We find that, in order
to characterize statistically translationally invariant standing waves, it is essential to consider the
correlator 〈c0(k)c0(k

′)〉 in addition to the better known 〈c0(k)c
†
0
(k′)〉 (where c0(k) are the complex

amplitudes of travelling waves). We then examine how the standard process of “squeezing” (re-
sponsible for converting travelling waves into standing waves while the fluctuations are outside the
horizon) reacts to being fed primordial standing waves. For translationally invariant systems only
one type of standing wave, with the correct temporal phase (the “sine wave”), survives squeezing.
Primordial standing waves might therefore be invisible at late times – or not – depending on their
phase. Theories with modified dispersion relations behave differently in this respect, since only
standing waves with the opposite temporal phase survive at late times.

I. INTRODUCTION

It is well known that at late times primordial density
fluctuations must form standing waves, as opposed to
traveling waves [1, 2]. Regardless of how they were ini-
tially produced and found themselves outside the hori-
zon, they must reenter the horizon as standing waves with
a specific temporal phase in order to comply with obser-
vational constraints [3]. This may happen for a variety
of reasons, with “squeezing” usually taking the blame.
The matter was reexamined in [4], both from the phe-
nomenological point of view and in the context of several
scenarios, inflationary and otherwise.

But what if the primordial mechanism responsible for
the fluctuations were to generate standing, instead of
travelling waves? This possibility was first considered
in [5] in relation to the coupling between right and left
gravitons due to the non-trivial inner product in Hilbert
space present in some quantum gravity theories. Putting
aside the issue of chirality, it is evident that if the cou-
pled waves move in opposite directions, then their cor-
relations would produce standing waves (a matter recog-
nized in [5]). However, the correlators considered in [5]
break translational invariance, something which is by no
means necessary for a general process producing standing
waves, as we shall see. In addition, in [5] the primordial
standing waves were not followed up until horizon reen-
try, to investigate how “squeezing” reacts to the input of
waves which are already standing waves.

In this short paper we rectify these two matters. Given
that primordial fluctuations are usually studied in terms
of the correlation matrix of travelling waves, in Section II
we start by examining how standing waves may be de-
scribed in terms of constrained travelling waves moving
in opposite directions. Then, in Section III we study

how statistical translational invariance can be imple-
mented for a stochastic ensemble of travelling and stand-
ing waves. It turns out that for a given headless direc-
tion, we need to give uniform distributions to two phases
in the case of travelling waves, whereas only one phase
needs to be suitably randomized in the case of standing
waves. In Section IV we consider the most general cor-
relation matrix for travelling waves moving in opposite
directions, and examine the pieces which do and do not
break translational invariance, and those that are related
to standing wave production. By assuming that ampli-
tudes and phases are uncorrelated we are able to evaluate
this matrix in general.

Finally, in Section V we study how primordial standing
waves interact with the usual processes (“squeezing” or
otherwise) responsible for converting primordial travel-
ing waves into late-time standing waves. We find that the
temporal phase of the primordial standing wave is crucial
for the transmission rate. Waves with the same tempo-
ral phase as those that would be produced by squeezing
in the standard scenario are enhanced (the “sine wave”),
whereas waves with complementary phase (the “cosine
wave”) are suppressed. The opposite result is obtained if
instead of squeezing (e.g. in the inflationary or bimetric
VSL scenario [6]) one considers the evolution of fluctua-
tions in theories with modified dispersion relations [7].

II. THE GYMNASTICS OF TRAVELLING AND

STANDING WAVES

In [4] we reviewed in detail the differences between
standing and travelling waves, and their inter-relation.
A standing wave has a (real) expression where space and

http://arxiv.org/abs/1711.05539v1


2

time oscillations can be factored:

yst. = A(k) cos(ωη + φkt) cos(k · x+ φkx). (1)

As such its spatial nodes are fixed, so that the wave is
“standing” (k denotes a headless vector, since the “sign”
of k is therefore irrelevant). Instead, for a travelling wave
this factorization cannot be achieved in the real domain
(although it can be done using complex functions and
then taking the real part), with the wave usually written
as:

ytr. = B(k) cos(−ωη + k · x+ φk). (2)

For a travelling wave the spatial nodes move in time, and
the “sign” of k is relevant, since it denotes the direction
of motion.
Assuming k is fixed (and thus ω, via the dispersion

relation), a travelling wave has 2 real degrees of free-
dom (d.o.f): the real amplitude B(k) and the phase φk

(often packaged as the complex amplitude Beiφk when
using complex notation; see below). Instead, fixing k, a
standing wave has 3 d.o.f.: the real amplitude A(k) and
2 phases, one spatial, φkx, and one temporal, φkt. Thus,
for fixed k the space of all travelling waves is 4 dimen-
sional (2 d.o.f for each of k and −k), whereas the space
of all standing waves is 3 dimensional.
One can always build a standing wave from two trav-

eling waves with the same real amplitude and k, mov-
ing in opposite directions. This matches the counting
of d.o.f, since 4 − 1 = 3, where the −1 discounts the
constraint enforcing equal real amplitudes. Specifically,
setting B(k) = B(−k) and denoting by φ±k the phases
of the two travelling waves, one finds [4] that:

y = B(k) cos(−ωη + k · x+ φk)

+ B(−k) cos(ωη + k · x− φ−k), (3)

equals a standing wave of form (1), with A(k) = 2B(k)
and

φkt = −φk + φ−k

2
(4)

φkx =
φk − φ−k

2
. (5)

(reference [4] used the alternative notation φ± = ±φ±k;
we shall presently justify our notation). These expres-
sions relating the phases of standing and travelling waves
will be essential in discussing statistical translational in-
variance for standing waves.
In general the space of all possible oscillatory solu-

tions with fixed k is 4 dimensional. In fact, it can be
spanned by the most general superposition of travelling
waves moving along ±k (counting d.o.f., 4 = 2+2). This
is usually written splitting the momentum space in one
half and writing modes moving in opposite directions as
part of the complex amplitude of each Fourier mode for
half the space. More concretely, using complex notation

we have:

y(x) =

∫

dk

(2π)3
eik·xy(k) =

∫

IR+

3

dk

(2π)3
eik·xy(k) + c.c.

(6)
with

y(k) =
e−iωη

√
2ω

c0(k) +
eiωη

√
2ω

c†0(−k), (7)

where c0(±k) denotes the complex amplitude of the mode
moving along ±k. With some algebra we then get the
dictionary between real (Eq. 2) and complex notation:

c0(k) =

√

ω

2
B(k)eiφk . (8)

Thus, we have packaged into a complex amplitude the
real amplitude and the phase. We have also included
the two traveling modes in the single amplitude of the
Fourier mode y(k), with the convention that the sign of
±k is relevant and points to the direction of propagation
of the wave. With this notation we will be able to bridge
better the standard theory of cosmological perturbations
and the generation of standing waves.

III. TRANSLATIONAL INVARIANCE FOR

INDEPENDENT STANDING AND TRAVELLING

WAVES

We now examine how statistical translational invari-
ance can be enforced, or broken, for an ensemble of waves,
separating the case of standing and travelling waves. We
consider first a single mode, i.e we fix k for a standing
wave, and k for a travelling wave. How can we randomize
the 3 d.o.f. of a standing wave, or the 2 d.o.f. of such a
travelling wave, in a way that complies with translational
invariance?
As can be read off from (2), a translation of the coor-

dinate system:

x → x+∆x (9)

shifts the phase of a travelling wave by1:

φk → φk + k ·∆x. (10)

Thus, the only way in which a distribution of travelling
waves can be translationally invariant is for it not to de-
pend on the phase of the wave. Statistically translational
invariant random travelling waves must, therefore, have
a uniform distribution for the marginal distribution of
their phases.

1 The convention adopted for φ±k (which differs from the φ± used
in [4]), ensures that this formula is valid for both ±k.
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Standing waves, in contrast, have two types of phases
(spatial and temporal) and, as can be read off from (1),
under spatial translation (9) these transform as:

φkx → φkx + k ·∆x (11)

φkt → φkt . (12)

Therefore, only the spatial phase needs to be uniformly
distributed in a translationally invariant ensemble. If
they were to be required to be invariant under time trans-
lations, one would need to give a uniform distribution to
φt too, but this is often not assumed in cosmology.
These considerations apply to each of the modes sep-

arately, whether they are independent or not (if they
are not independent, the statements made refer to the
marginal distributions of each mode with respect to all
others). They also apply directly to the modes’ joint dis-
tributions, if they are statistically independent. This is
usually a common assumption for travelling waves.
However, as we saw in Section II, a standing wave may

be seen as two travelling waves with the same ampli-
tude moving in opposite directions. Primordial produc-
tion of fluctuations is usually discussed in terms of trav-
elling waves. Therefore, if we wish to discuss primordial
production of standing waves in terms of travelling waves
we have to be able to introduce at least correlations be-
tween k and −k. This is what we shall do in the next
Section, where we gain a better understanding of how
translational invariance for travelling and standing waves
interact.

IV. TRANSLATIONAL INVARIANCE FOR

CORRELATED WAVES MOVING IN OPPOSITE

DIRECTIONS

Let us take half of Fourier space, IR+
3 , pick a generic

k, and consider the most general correlation matrix for
travelling waves moving along k and −k. It is standard
in the study of production of primordial fluctuations to
consider this matrix in terms of complex amplitudes (8),
imposing the diagonal form:

〈c0(k)c†0(k′)〉 = δ(k − k
′)P (k). (13)

Correlations between different k (and in particular be-
tween k and −k) are usually ruled out on the grounds of
translational invariance. The last statement is actually
incorrect, indeed were it correct it would preclude the
production of translationally invariant standing waves
(built from correlations between k and −k). In order to
capture translationally invariant correlations, however,
we must add to (13) another independent correlator:
〈c0(k)c0(k′)〉.
We shall therefore consider the more general matrix:

〈c0(k)c†0(k′)〉 = δ(k− k
′)P (k) + δ(k+ k

′)W (k) (14)

〈c0(k)c0(k′)〉 = δ(k− k
′)Z(k) + δ(k+ k

′)Q(k). (15)

Standing waves production is signalled by correlations
between k and −k modes, and so by non-vanishing Q or
W . However these two components are very different in
nature. Under translation (9) we have (see (8)):

c0(k) → c0(k)e
ik·∆x, (16)

so that we find transformation laws:

P (k) → P (k) (17)

W (k) → W (k)e2ik·∆x (18)

Z(k) → Z(k)e2ik·∆x (19)

Q(k) → Q(k). (20)

Therefore W is associated with the production of stand-
ing waves with preferential positions for the nodes, break-
ing translational invariance. Such waves were already
considered in [5], and this process gives φkx a non-
uniform distribution, as explained in Section III. How-
ever, translational symmetry breaking is not necessary
when producing standing waves. As (20) shows, Q 6= 0
(andW = 0) is associated with the production of transla-
tionally invariant standing waves. Such waves have ran-
dom uniformly distributed φkx, but not φkt. In order to
capture this process it is essential to consider the cor-
relator (15), which is independent from (14). This has
been omitted in previous literature. In contrast, we ab-

stain from writing the correlator 〈c†0(k)c†0(k′)〉 because
this is simply the complex conjugate of 〈c0(k)c0(k′)〉.
(Parenthetically we note that Z measures the breaking of
translational invariance for purely uncorrelated travelling
waves.)
We remark that in writing the correlation matrix (14)

and (15) we can assume isotropy where appropriate, and
so we can drop the direction of k from the argument
of P (k) and Q(k). For the components which break
translational invariance it may be questionable to assume
isotropy (it would require that we be at the centre of
the universe). However this is possible, with the proviso
that, for example, W would then have to be real (since
W (−k) = W ⋆(k)), limiting the possible preferred nodal
positions. A similar remark applies to Z. In general all
the components of the correlator, with the exception of
P (k), are complex, with the phases containing important
information.
In order to understand how the various components

of the correlators relate to the phases of the waves let
us write the correlators in terms of real amplitudes and
phases, as in (8), assuming that the two are independent
random variables. We find:

P (k) =
ω

2
〈B2(k)〉 (21)

W (k) =
ω

2
〈B(k)B(−k)〉〈ei(φk−φ

−k)〉 (22)

Z(k) =
ω

2
〈B2(k)〉〈e2iφk〉 (23)

Q(k) =
ω

2
〈B(k)B(−k)〉〈ei(φk+φ

−k)〉 . (24)
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For independent traveling waves W = Q = 0, and
in order to impose translational invariance we should
uniformly randomize the two phases, φk and φ−k, so
that Z = 0. For pure standing waves production
〈B(k)B(−k)〉 = 〈B2(k)〉 and what we do about the
phases is now completely different. If there are perfect
correlations, we only have to uniformly randomize the
difference φk − φ−k. This renders W = 0. The sum
of the phases, instead, does not need to be uniformly
distributed to comply with translational invariance, and
indeed it can be fixed (as is the case with waves after
squeezing). Under a translation we have in fact

φk + φ−k → φk + φ−k. (25)

Giving this quantity a non-uniform distribution is equiv-
alent to doing the same to the temporal phase φkt of
standing waves. Thus, for independent travelling waves,
we have to give uniform distributions to two phases sep-
arately, whereas for standing waves only one phase needs
to be randomized.

V. TRANSFER OF STANDING WAVES

THROUGH STANDARD “SQUEEZING”

In the usual inflationary scenario (and in bimetric VSL
theories [6, 8]) squeezing is the mechanism responsible for
turning independent travelling waves into standing waves
with a sine temporal phase [4]. Let us now consider what
happens if standing waves, rather than independent trav-
elling waves, are fed into the usual mechanism of squeez-
ing. Then, after the modes leave the horizon the solution
takes the approximate form [4]:

y ≈ −i√
2k3/2η

(c0(k) − c†0(−k)). (26)

Assuming translational invariance (i.e. setting Z = W =
0) we can therefore use (14) and (15) to compute:

〈y(k)y⋆(k′)〉 = δ(k− k
′)

k3η2
[P (k)−ℜQ(k)] (27)

stressing the physical importance of the complex phase of
Q. If the process producing the primordial fluctuations
led to perfect standing waves we would have:

Q(k) = P (k)〈e−2iφkt〉 (28)

(see the computation at the end of the last Section). This
is a general formula, but in many scenarios the distribu-
tion of φkt is a delta function, with a peak at a value φt

independent of k. In that case,

〈y(k)y⋆(k′)〉 = δ(k − k
′)

k3η2
P (k)(1− cos(2φt)). (29)

We see that standing waves with φt = 0 disappear after
squeezing, becoming invisible at late times. This should

be obvious from (26), since for such waves φk = −φ−k,
and so c0(k) = c†(−k). These waves are cosine waves
in time, and so complementary to those produced by
squeezing in the standard scenario.
Waves with the φt = π/2, instead are amplified by a

factor of 2. These are the standing waves with the same
time phase as those produced at the end of squeezing, i.e.
sine waves in time. For the intermediate angle φt = π/4
the end product is the same as if independent travelling
waves had been inputed.
This is by no means a general conclusion in phe-

nomenologically viable theories. As a counter-example of
the findings just discussed, let us consider theories with
modified dispersion relations (MDR), of the kind that is
known to produce scale-invariant perturbations [7, 9–12].
In this case, the solution for primordial perturbations af-
ter horizon exit is [4, 13]:

y ≈ 1√
2ω

(c0(k) + c†0(−k)) . (30)

Following steps similar to those described above, we find
the correlator:

〈y(k)y⋆(k′)〉 =
δ(k− k

′)

ω
[P (k) + ℜQ(k)]

=
δ(k− k

′)

ω
P (k)(1 + cos(2φt)) , (31)

where in the second step we assumed that pure stand-
ing waves are produced in the primordial universe, and
that their phases are independent of k. Thus, we see that
within MDR models, primordial standing waves with co-
sine temporal phase are amplified, while waves with a
sine temporal phase are obliterated at late times. This
is one of the few aspects in which MDR scenarios can be
distinguished from inflation and other scenarios (but see
also [13]).

VI. CONCLUSIONS

Observational constraints on the Doppler peaks in the
cosmic microwave background power spectrum show that
primordial perturbations enter the horizon at late times
as standing waves with a sine temporal phase. It is usu-
ally assumed that perturbations are formed as stochas-
tic traveling waves and then some mechanism (such as
squeezing in the inflationary scenario) turns them into
standing waves. In this paper we examined the possibil-
ity that the primordial fluctuations were already standing
waves before they left the horizon. This possibility could
arise from correlations between modes moving in oppo-
site directions, due to a non-trivial inner product struc-
ture in the quantum gravitational Hilbert space. Indeed
such correlations were first suggested in [5] in relation to
the possible coupling between right and left gravitons. In
that context the correlations and the resulting standing
waves break translational invariance.
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In this paper we laid down the conditions that an en-
semble of standing waves has to satisfy in order not to
break translational invariance: the spatial phases need
to be uniformly distributed. This observation allowed us
to show that a nontrivial correlator between the com-
plex amplitudes of the primordial modes can in fact en-
code translationally-invariant standing waves. This re-
quires consideration of the correlator (15) between c0(k)
and c0(k

′), besides the standard correlator between c0(k)

and c†0(k
′). We showed that, in the correlator between

c0(k) and c†0(k
′), a non-zero contribution proportional

to δ(k + k
′) (whose coefficient we called W ) signals the

production of standing waves with preferred nodal po-
sitions (and non-uniformly distributed φkx). The same
kind of contribution showing up in the correlator between
c0(k) and c0(k

′) (whose coefficient we called Q) signals
the production of standing waves with statistically trans-
lational invariant random nodal positions (and uniformly
distributed φkx). Finally, the contribution to the latter
correlator coming from δ(k − k

′) (whose coefficient we
called Z) signals breaking of translational invariance for
travelling waves.
We then examined how the input of standing waves

into the usual squeezing process would work out. De-
pending on the temporal phase of the standing waves,
squeezing can either enhance or suppress them. Specif-
ically, waves with a cosine temporal phase are sup-
pressed, while those with a sine temporal phase are en-

hanced. The complementary result is found when in-
stead of squeezing in the standard inflationary scenario
one looks at the late-time behaviour of perturbations in
theories with modified dispersion relations.
It is interesting that the non-trivial correlators respon-

sible for primordial standing waves are in fact the “pump
terms” appearing in the squeezing formalism [17]. This
is by now means accidental, since formally the two pro-
cesses are very similar, even though in the former stand-
ing waves result from the structure of the inner product
in Hilbert space, whereas in the latter from the structure
of the Hamiltonian as the modes leave the horizon. But
it does not mean the two could not interact non-trivially
beyond what has been investigated in this paper. In this
sense it would be interesting to examine the impact of
squeezing on the Ashtekar formalism [14], where the re-
ality conditions intervene at a rather late stage in the
quantization procedure to select the physical states as
the ones we know [15, 16].

VII. ACKNOWLEDGEMENTS

We thank Robert Brandenberger, Carlo Contaldi and
Toby Wiseman for discussions related to this paper. We
acknowledge partial support from the John Templeton
Foundation. JM was also supported by an STFC consol-
idated grant.

[1] L. P. Grishchuk and Y. V. Sidorov, Phys. Rev. D 42

(1990) 3413. doi:10.1103/PhysRevD.42.3413
[2] A. Albrecht, P. Ferreira, M. Joyce and

T. Prokopec, Phys. Rev. D 50 (1994) 4807
doi:10.1103/PhysRevD.50.4807 [astro-ph/9303001].

[3] S. Dodelson, AIP Conf. Proc. 689 (2003) 184
doi:10.1063/1.1627736 [hep-ph/0309057].

[4] G. Gubitosi and J. Magueijo, JCAP 11, 014
(2017) doi.org/10.1088/1475-7516/2017/11/014
arXiv:1706.09065 [gr-qc].

[5] G. Gubitosi and J. Magueijo, Phys. Rev. D 95,
no. 2, 023520 (2017) doi:10.1103/PhysRevD.95.023520
[arXiv:1610.05702 [gr-qc]].

[6] J. Magueijo, Phys. Rev. D 79 (2009) 043525
doi:10.1103/PhysRevD.79.043525 [arXiv:0807.1689 [gr-
qc]].

[7] G. Amelino-Camelia, M. Arzano, G. Gubitosi and
J. Magueijo, Phys. Rev. D 87 (2013) no.12, 123532
doi:10.1103/PhysRevD.87.123532 [arXiv:1305.3153 [gr-
qc]].

[8] J. Magueijo, Phys. Rev. Lett. 100 (2008) 231302
doi:10.1103/PhysRevLett.100.231302 [arXiv:0803.0859
[astro-ph]].

[9] G. Amelino-Camelia, M. Arzano, G. Gubitosi and
J. Magueijo, Phys. Rev. D 88 (2013) no.4, 041303

doi:10.1103/PhysRevD.88.041303 [arXiv:1307.0745 [gr-
qc]].

[10] G. Amelino-Camelia, M. Arzano, G. Gubitosi and
J. Magueijo, Phys. Rev. D 88 (2013) no.10, 103524
doi:10.1103/PhysRevD.88.103524 [arXiv:1309.3999 [gr-
qc]].

[11] G. Amelino-Camelia, M. Arzano, G. Gubitosi and
J. Magueijo, Int. J. Mod. Phys. D 24 (2015)
no.12, 1543002 doi:10.1142/S0218271815430026
[arXiv:1505.04649 [gr-qc]].

[12] P. Horava, Phys. Rev. D 79 (2009) 084008
doi:10.1103/PhysRevD.79.084008 [arXiv:0901.3775
[hep-th]].

[13] G. Gubitosi and J. Magueijo, arXiv:1711.02973 [gr-qc].
[14] A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986).

doi:10.1103/PhysRevLett.57.2244
[15] J. Magueijo and D. M. T. Benincasa, Phys. Rev. Lett.

106, 121302 (2011) doi:10.1103/PhysRevLett.106.121302
[arXiv:1010.3552 [gr-qc]].

[16] L. Bethke and J. Magueijo, Phys. Rev. D 84

(2011) 024014 doi:10.1103/PhysRevD.84.024014
[arXiv:1104.1800 [gr-qc]].

[17] L. Grishchuk, H. A. Haus and K. Bergman, Phys. Rev.
D 46, 1440 (1992). doi:10.1103/PhysRevD.46.1440

http://arxiv.org/abs/astro-ph/9303001
http://arxiv.org/abs/hep-ph/0309057
http://arxiv.org/abs/1706.09065
http://arxiv.org/abs/1610.05702
http://arxiv.org/abs/0807.1689
http://arxiv.org/abs/1305.3153
http://arxiv.org/abs/0803.0859
http://arxiv.org/abs/1307.0745
http://arxiv.org/abs/1309.3999
http://arxiv.org/abs/1505.04649
http://arxiv.org/abs/0901.3775
http://arxiv.org/abs/1711.02973
http://arxiv.org/abs/1010.3552
http://arxiv.org/abs/1104.1800

