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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� A modification of UVE-PLS is pro-
posed, in which UVE-PLS is repeated
until no further reduction in variables
is obtained.

� The variable set with the global
RMSECV minimum is selected and
used for PLS modelling.

� The method is called Global-
Minimum Error Uninformative-Vari-
able-Elimination for PLS, denoted as
GME-UVE-PLS.

� GM-UVE-PLS usually eliminates
significantly more variables than the
UVE-PLS method.
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a b s t r a c t

The calibration performance of Partial Least Squares regression (PLS) can be improved by eliminating
uninformative variables. For PLS, many variable elimination methods have been developed. One is the
Uninformative-Variable Elimination for PLS (UVE-PLS). However, the number of variables retained by
UVE-PLS is usually still large.

In UVE-PLS, variable elimination is repeated as long as the root mean squared error of cross validation
(RMSECV) is decreasing. The set of variables in this first local minimum is retained. In this paper, a
modification of UVE-PLS is proposed and investigated, in which UVE is repeated until no further
reduction in variables is possible, followed by a search for the global RMSECV minimum. The method is
called Global-Minimum Error Uninformative-Variable Elimination for PLS, denoted as GME-UVE-PLS or
simply GME-UVE. After each iteration, the predictive ability of the PLS model, built with the remaining
variable set, is assessed by RMSECV. The variable set with the global RMSECV minimum is then finally
selected. The goal is to obtain smaller sets of variables with similar or improved predictability than those
from the classical UVE-PLS method.

The performance of the GME-UVE-PLS method is investigated using four data sets, i.e. a simulated set,
NIR and NMR spectra, and a theoretical molecular descriptors set, resulting in twelve profile-response (X-
y) calibrations. The selective and predictive performances of the models resulting from GME-UVE-PLS are
statistically compared to those from UVE-PLS and 1-step UVE, one-sided paired t-tests.

The results demonstrate that variable reduction with the proposed GME-UVE-PLS method, usually
eliminates significantly more variables than the classical UVE-PLS, while the predictive abilities of the
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resulting models are better. With GME-UVE-PLS, a lower number of uninformative variables, without a
chemical meaning for the response, may be retained than with UVE-PLS. The selectivity of the classical
UVE method thus can be improved by the application of the proposed GME-UVE method resulting in
more parsimonious models.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Partial Least Squares is a commonly used multivariate regres-
sion technique, which is able to deal with a large number of noisy
and correlated variables, as well as with rather small numbers of
samples [1e3]. However, both theoretical [4e8] and experimental
evidence [3,9e13] exist that elimination of uninformative variables
improves the performance of the PLS calibration. Additionally, a
better interpretation of the PLS models, lower measurement costs,
or a reduced risk of overfitting may be obtained [10].

For PLS1, modelling one response y, many variable elimination
methods have been published [3,9e11,14e17], among which the
Uninformative-Variable Elimination for PLS [18]. UVE-PLS is a var-
iable elimination method based on the significance of the PLS
regression coefficients. The importance of each variable in the
model is determined by its significance, being the ratio of the PLS
regression coefficient and its standard deviation, estimated from
jack-knifing. Variables below a cut-off value, calculated from arti-
ficial random variables added to the data set, are eliminated. The
method has been widely applied in analytical chemistry
[3,13,16e24].

Several modifications to UVE-PLS are also reported. Two robust
modifications were already proposed in the original paper of
Centner et al. [18]. In the first, called UVE-M, to estimate the sig-
nificances of the variables, the mean PLS regression coefficient was
replaced by the median and the standard deviation by the inter-
quartile range, determined from jack-knifing. In the second, UVE-a,
the cut-off value corresponds to a user defined quantile of the
ranked significances of the artificial added variables. Later modifi-
cations include (i) improvement of the calculation of the standard
error of the regression coefficients [25], (ii) estimation of a cut-off
threshold based on Monte Carlo (MC) selection of calibration
samples rather than the addition of artificial randomvariables (MC-
UVE) [13], or based on randomization of the response vector [26],
(iii) the use of a new cut-off criterion [27], (iv) ensemble UVE-PLS
(EUVEPLS), based on an ensemble of different calibration sets,
which are randomly selected from the available calibration samples
[28,29], and (v) wavelet transform (WT) techniques combined with
UVE in Relevant Component Extraction for PLS (RCE-PLS) [30,31],
and with MC-UVE in WT-MC-UVE [13].

However, the number of variables retained by UVE-PLS is rather
large [16,32], probably because often variable elimination is
stopped after only one elimination step instead of repeated steps,
see Section 2.2. After UVE-PLS, the number of retained variables
occasionally has been further reduced by a genetic algorithm (UVE-
GA-PLS) [9,33e35], interval PLS (UVE-iPLS) [9], or a successive
projections algorithm (UVE-SPA) [32,36,37].

Both in the original paper of Centner et al. [18] and in that of
Westad and Martens [38], uninformative variables are removed
iteratively as long as the root mean squared error of cross validation
decreases and the set of variables in the thus found first local
RMSECV minimum is retained. In this study, a modification of the
UVE method is proposed in which uninformative variables are
removed iteratively until no further reduction of variables is
possible. Finally, the variable set corresponding to the global

RMSECV minimum is selected, which may be smaller than that
corresponding to the first local minimum. The goal is to obtain
smaller sets of variables, resulting in more parsimonious models
with similar or improved predictability, than those from the UVE-
PLS method [18,38]. The method is called Global-Minimum Error
Uninformative-Variable Elimination for PLS.

The utility and effectiveness of the GME-UVE-PLS and the
original UVE-PLS method are tested and compared, using four data
sets resulting in 12 X-y combinations (see Table 1). The X-profiles
consist of simulated data, NIR and NMR spectra, and molecular
descriptors used to build Quantitative Structure-Retention Rela-
tionship (QSRR) models for reversed-phase liquid chromatography
(RPLC).

2. Theory

2.1. PLS model

The aim of PLS is to model the relationship between a data
matrixX and a response vector y by using a set of latent variables or
PLS factors that maximize the explained covariance between them.
The PLS1 model is developed from a calibration set of N objects or
observations with one response or dependent variable in the y
vector and K predictor variables in the Xmatrix. The y(N x 1) vector
consists of the N responses denoted by yi (i ¼ 1,…, N). The X(N x K)
matrix consists of K column vectors of independent predictor var-
iables denoted by xk (k ¼ 1, …, K). The objective of PLS is to select
the optimal number A (A � K) of PLS factors, which are linear
combinations of the original variables xk. The PLS model is given by
Eqs. (1) and (2).

X ¼ TPT þ EA (1)

y ¼ TqT þ fA (2)

where T(N x A) is a score matrix, P(K x A) a matrix with the x-
loading vectors pa (a¼ 1, 2,…, A) as columns, q(1� A) the y-loading
vector, EA and fA the residual matrix for X and the residual y-vector,
respectively, after the extraction of A factors. The optimal number
of PLS factors, A, can be determined using cross validation (CV).
Further details on PLS can be consulted in Refs. [1,2,39].

2.2. Uninformative-Variable Elimination (UVE)

Uninformative-Variable Elimination for PLS is introduced in
Ref. [18]. UVE-PLS determines the fitness of each predictor variable
k in the X(N � K) matrix against those of L artificial random vari-
ables from a matrix R(N � L). R is added to X, resulting in an
augmented matrix [X R] (N � (K þ L)). These added random vari-
ables have very small absolute values, of the order of magnitude of
about 10�10, so that their influence on the PLS regression co-
efficients of the predictors is negligible.

The PLS regression coefficients bk are calculated in a vector b
with K þ L coefficients, from

J.P.M. Andries et al. / Analytica Chimica Acta 982 (2017) 37e4738

http://creativecommons.org/licenses/by-nc-nd/4.0/


b ¼ W
�
PTW

��1
q (3)

whereW((K þ L) � A) is the [X R]weight matrix, P((K þ L) � A) the
[X R]-loading matrix, q(1 � A) the y-loading vector, and A the
(optimal) number of PLS1 factors [1].

Influential predictor variables have large positive or negative
coefficients bk with low uncertainties [38]. Therefore, their signif-
icance will be large. The significance of the PLS regression coeffi-
cient of variable k, denoted as SIGk, is defined as the t-value,
calculated from n fold leave-more-out jack-knifing [40] as

SIGk ¼ tk ¼

���bk
���

sbk

(4)

with tk the absolute t-value for variable k, bk and sbk the mean and
standard deviation of the estimated coefficients bk for a given
variable k.

A suitable cut-off value SIGcut-off is calculated from the signifi-
cances of the L artificial variables. Predictor variables k with SIGk

below the cut-off value SIGcut-off are classified as uninformative and
eliminated. Using the remaining variables, a new PLS model is built
and the predictive ability estimated by cross validation, resulting in
a new RMSECV. If the new RMSECV is smaller than the RMSECV
before the elimination step, a new X matrix is formed with the
remaining variables and a new PLS model developed with
complexity Anew ¼ A-1. In UVE, variable elimination is repeated as
long as the RMSECV decreases [18,38] and stops at an increase.
Therefore, in UVE-PLS, the variable set corresponding to the first
local RMSECV minimum is finally selected. In 1-step UVE, a
simplified and pragmatic version of UVE, which is frequently
encountered in the literature [13,31,41e44], variable elimination is
conducted in only one step.

Several options exist to estimate a suitable cut-off value, such as
(i) taking the maximum of the significances of the L artificial vari-
ables, max(SIGart) [18], (ii) taking a fraction of max(SIGart) using a
cut-off factor fcut-off � 1, resulting in SIGcut�off ¼ fcut�off ,maxðSIGartÞ
[13], (iii) taking the maximum of the fcut-off $100% quantile of the L
artificial variables [27]. The latter is also implemented in theMatlab
procedure uvepls.m of the ChemoAC Toolbox [45].

In UVE-PLS, the number of eliminated variables is variable
because of the variability in the added artificial random variables.
Consequently, upon replication of the procedure, different variable
sets are retained.

2.3. Global-Minimum Error Uninformative-Variable Elimination
(GME-UVE)

In GME-UVE, uninformative variables are groupwise eliminated

iteratively until nomore variables can be removed. In each iteration
step, the number of added artificial random variables L is equal to
the number of remaining predictor variables. From all iterations,
the global RMSECVminimum is determined and the corresponding
variable set selected.

A first difference with the UVE method from Ref. [18], described
in Section 2.2, is that the stop criterion is not an increase in
RMSECV, but the fact that no more variables are eliminated. A
second difference is that the global RMSECV minimum is used as
criterion for the selection of variables and not the first local mini-
mum. The reason is that possibly, besides the first local RMSECV
minimum, a lower global one exists originating from a lower
number of retained variables. A third difference is that after each
iteration, a new PLS complexity is determined as described below,
and not by taking Anew ¼ A-1 as described in Section 2.2.

However, retaining the variable set from the global RMSECV
minimum is the main characteristic of GME-UVE.

In Fig. 1, for the GME-UVE-PLS method, an example of a RMSECV
plot as a function of the number of retained variables is shown. The
curve stops when all uninformative variables are eliminated. In
Fig. 1, the 1-step UVE, the first local RMSECV minimum, and the
global RMSECV minimum are at clearly different numbers of
variables.

The global RMSECVminimum corresponds to a lower number of
retained variables than the first local minimum, which itself is at a
lower number than 1-step UVE. The stop location of variable
elimination, i.e. the end of the curve, is different from the location

Table 1
Results of full spectrum modelling of all data sets. Abbreviations: see text.

Data set Response y Model number PLS complexity Number of X variables RMSEP

Simulated y 1 2 1000 0.090
Corn Moisture 2 15 700 0.012

Oil 3 11 700 0.060
Protein 4 14 700 0.090
Starch 5 15 700 0.170

Alcohols Propanol 6 19 14000 0.823
Butanol 7 19 14000 0.678
Pentanol 8 19 14000 1.025

Chromatographic Log kw on Col1 9 7 1243 0.514
Log kw on Col2 10 7 1243 0.506
Log kw on Col3 11 7 1243 0.541
Log kw on Col4 12 7 1243 0.525

Fig. 1. RMSECV values as a function of the number of retained variables for the GME-
UVE-PLS method on the Simulated set, with 1-step UVE, the first local minimum, and
the global minimum approaches; cut-off ¼ 1.00.
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for the selection of variables, i.e. the global RMSECV minimum,
although it is possible that these locations are identical.

The GME-UVE-PLS method consists of five steps. First, the data
set is split into a training and a test set. After pre-processing, the
predictive ability of the resulting full spectrum PLS model is
assessed by internal validation with the training set, using
segmented cross validation (SCV), see Section 2.5.1. The optimal
number of PLS factors A is determined by the application of the
adjusted Wold's R criterion, Radj < 0.98; see Section 2.5.3.

In the second step, a suitable cut-off factor, fcut-off, for the
groupwise elimination of uninformative variables is chosen, either
after a few test runs, or in a systematic way, after the application of
a range of cut-off factors, as discussed below.

In the third step, iteratively, variables with SIGk < SIGcut-off are
groupwise eliminated, until no more variables are removed. After
each iteration step, using the retained variables in X, a new optimal
PLS factor number A0 is determined by SCV, with a maximum equal
to the number of remaining variables.

As an additional action to avoid over-fitting, during variable
elimination, in the intermediate steps, a different criterion is used
for the factor number determination. The minimal RMSECV is used
instead of the R criterion Radj < 0.98. This allows also a fast variable
elimination process. The newly determined factor number A0 is
used in the subsequent step.

In the fourth step, a graph of RMSECV against the number of
remaining variables is made, and the global minimum determined,
see the example in Fig. 1. The variable set corresponding to this
global minimum is selected and considered the best remaining set.

In the fifth step, using the best remaining set, the PLS model is
externally validated by the root mean squared error of prediction
(RMSEP) using the test set. First a renewed determination of the
optimal number of PLS factors A00 , with a maximum equal to the
number of remaining variables, is done by SCV and with the
application of the R criterion Radj < 0.98.

In this study SIGcut-off is taken as the maximum of the fcut-off
$100% quantile of the L artificial variables. For the elimination of
uninformative variables a suitable cut-off factor fcut-off can be cho-
sen. Ideally, this is the cut-off factor corresponding to the minimal
number of retained variables and minimal RMSECV. However, the
cut-off factor is also suitable if it corresponds to the minimal
number of retained variables for which the resulting RMSECV is
considered suitable for the application at hand. The authors have
the experience that, usually, the range fcut-off ¼ 0.90e1.00 is
appropriate.

In this study, fcut-off is determined systematically, after the
application of a range of cut-off factors (see Section 4.1). However, it
is also possible to choose a suitable cut-off factor after a few test
runs, applying some user defined cut-off values in the range fcut-
off ¼ 0.90e1.00. Because UVE is in general a fast method, a suitable
cut-off factor is found fast after a few test runs.

The number of eliminated variables by UVE depends on the
applied cut-off, SIGcut-off. Because of the random character of the
added artificial variables, the number of remaining variables can
vary between different replicates of the method. Therefore, to
determine a suitable cut-off factor, the GME-UVE procedure was
repeated eleven times for each cut-off and, to get robust results, the
run with the median number of retained variables is used.

2.4. Relation between GME-UVE, 1-step UVE and UVE

In the graph of RMSECV vs. number of retained variables, three
characteristic points can be observed: that after 1-step UVE, the
first local RMSECV minimum, and the global RMSECV minimum,
see Fig. 1.

The retained variable set in the first local RMSECV minimum

corresponds to that obtained, often after several iterations, by the
original UVE method [18]. The retained variable set in the point for
1-step UVE corresponds to that obtained after the application of
only one iteration in the UVE method. The retained variable set in
the global RMSECV minimum is selected by the GME-UVE method.

These three characteristic points can be used to compare the
selective and predictive performances of the three corresponding
methods: 1-step UVE, UVE, and GME-UVE. When two points
coincide, the results of the corresponding methods are identical.
For example, if the first local minimum coincides with the global,
there is no difference in the retained variable sets of the UVE and
GME-UVE methods.

2.5. Model validation

2.5.1. Internal validation
The predictive abilities of the PLS1 models are assessed by in-

ternal validation with the training set, using venetian blinds SCV,
resulting in the root mean squared error of cross validation,

RMSECV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ncal

XNcal

i¼1

ðyi � byiÞ2
vuut (5)

where yi and ŷi are the experimental and predicted responses,
respectively, for the ith calibration sample when situated in a left-
out segment of the training or calibration set, Ncal is the number of
calibration samples in the training set.

2.5.2. External validation
Before and after variable reduction, the predictive abilities of the

PLS1 models, developed with the training set, are also assessed by
external validation using a test set, resulting in the root mean
squared error of prediction,

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntest

XNtest

i¼1

ðyi � byiÞ2
vuut (6)

where yi and ŷi are the experimental and predicted responses,
respectively, for the ith test-set sample, Ntest is the number of test-
set samples.

2.5.3. Model complexity
Before and after variable reduction, the best complexity A of a

PLS1 model is determined by venetian blinds segmented (n-fold)
cross validation. The complexity corresponding to the minimal
RMSECV is used. However, to avoid overfitting, often a simpler
model with a similar error is selected by the application of an
adjusted Wold's R criterion, Radj, [46,47]. The idea is that an addi-
tional PLS factor should only be included in the model if the
RMSCEV improves with at least 2% (i.e. if Radj < 0.98) [48]. First, the
minimum in the RMSECV vs. model-complexity curve is deter-
mined. Thereafter, for models with less complexity A than the one
giving the minimal RMSECV, AMin_RMSECV, with 1 < A < AMin_RMSECV,
two successive values of RMSECV, i.e. RMSECVA-1 and RMSECVA, are
pairwise compared using Eq. (7).

Radj ¼
RMSECVA

RMSECVA�1
(7)

The maximal complexity A < AMin_RMSECV for which Radj < 0.98, is
then considered as the best.

2.5.4. Comparison of methods
Because of the added random variables in the UVE method, the
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selective and predictive results can vary between different GME-
UVE runs. Therefore, GME-UVE runs were repeated 100 times
and, for each run, the characteristic points identified. Thereafter,
the numbers of retained variables KBest and RMSEP's of the resulting
PLS models are determined. They are used for the comparison of
the selective and predictive performances of the three corre-
sponding UVE methods, see Section 4.2. The comparisons for dif-
ferences in methods are made by paired t-tests, using the
Bonferroni correction for multiple testing [49].

3. Data and methodology

3.1. Data sets

3.1.1. Simulated set
The first data set is simulated. It represents the profiles of

mixtures of onemain-compound and three interferents. The profile
of the main-compound consists of five Gaussian peaks (A-E)
g(m,s,h), with mean m, standard deviation s and height h
(gA(100,8,0.1), gB(235,8,0.3), gC(250,8,0.25), gD(265,8,0.3),
gE(400,10,0.5)). The profile of the main-compound is formed by
gA þ gB þ gC þ gD þ gE. The profiles of the three interferents 1, 2 and
3 consist of three individual Gaussian peaks (F-H), gF(235,8,0.2),
gG(265,8,0.2), and gH(400,10,0.5), respectively. The peaks A-E in the
profile of the main-compound are shown in the top of Fig. 2 (Left)
and the peaks of the interferents are shown in the bottom.

Three kinds of interactions between the main-compound and
the interferents are built in the profile.

� Peak A in themain-compound profile is free of interactions with
any interferent.

� Peaks B and D overlap with peak C in the peak complex BCD in
the main-compound profile and interact with interferents 1
(peak F) and 2 (peak G), respectively. Peaks F and G of the
interferents have the same mean and standard deviation as
those of the main-component peaks B and D, respectively, but
the heights are lower.

� Peak E in the main-compound profile interacts with interferent
3 (peak H). Mean, standard deviation and peak heights of peaks
E and H are equal.

Uncorrelated random responses for the main component and
the three interferents Y(i,j) between 0 and 1 were randomly
generated, using the Matlab function for uniformly distributed

pseudorandom numbers rand, where i and j are indices for the
samples (i ¼ 1 … 120) and components (j ¼ 1 … 4), respectively.
The analyte profiles of the mixture samples i were generated,
combining the responses as weight factors with the above
mentioned profiles, by Y(i,1)$(gA þ gB þ gC þ gD þ gE)þ Y(i,2)$
gF þ Y(i,3)·gG þ Y(i,4)·gH.

The analyte profiles in the mixtures cover a range of 500 x
variables. These variables are informative. Additionally, 500 unin-
formative variables are added, consisting of random numbers be-
tween 0 and 0.8. The latter have high signal levels, comparable to
that of the informative. This is to investigate whether the GME-
UVE-PLS method is capable to find informative variables in pro-
files containing many uninformative variables at similar signal
levels. Additionally, noise is added to the simulated profiles, con-
sisting of random numbers in the range between 0 and 0.005, i.e.
small compared to the signals of the main-compound. The data set
is split into a training set of 100 and a test set of 20 samples using
the duplexmethod [50], while 10-fold cross validation is conducted
during model building.

In Fig. 2 (Right) the heat map is given for the correlation co-
efficients for the variable range [1, 500]. It shows the correlation
structure of the informative variables. Only variables in the peak
areas are correlated.

3.1.2. Corn set
The second data set consists of NIR spectra of 80 corn samples

with a wavelength range of 1100e2498 nm with 2 nm intervals,
resulting in 700 predictor variables. This data set, labelled corn
from the “m5” spectrometer, is provided by Eigenvector Research
[51]. Moisture, oil, protein and starch contents of the samples are
the responses. The data set is split into a training set of 60 and a test
set of 20 samples using the duplex method. An 8-fold cross vali-
dation is conducted during model building.

3.1.3. Alcohols set
The third data set is composed of 231 samples and contains 1H

NMR spectra of mixtures of the alcohols propanol, butanol and
pentanol, with chemical shifts from 0.65 to 3.85 ppm, resulting in
14000 predictor variables. The data set was downloaded from the
website in Ref. [52]. Details are described in Ref. [53]. The propanol,
butanol and pentanol percentages in the mixtures are used as re-
sponses. The data set is split into a training set of 171 and a test set
of 60 samples using the duplexmethod. A 10-fold cross validation is
conducted during model building.

Fig. 2. Simulated set; (Left) Informative part; (Top) Profile of the main-compound (d) built up with five Gaussian peaks A-E; (Bottom) Profiles of the three interferents 1, 2 and 3,
formed by three Gaussian peaks F-H; (Right) Heat map for the correlation coefficients between the informative variables.
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3.1.4. Chromatographic set
The fourth data set consists of chromatographic data originating

from Ref. [54]. Log kw values of 25 structurally diverse test analytes
are used as response on four C18 reversed-phase liquid chroma-
tography (RPLC) columns, Zorbax RX-C18, Hypersil ODS, Polygosil-
60-5-C18 and Alltima C18 5U. Experimental retentions were
measured using as mobile phase methanol-buffer mixtures. The
columns are numbered as Col1-Col4.

For the 25 analytes, conformational analysis was performed
using the molecular dynamics module of the HyperChem V 7.5
Professional software [55]. Geometry optimization was performed
by the molecular mechanics Force Field (MMþ) method. The
lowest-energy conformers from the MM þ based simulations were
found using the PolakeRibi�ere conjugate gradient algorithm (RMS
gradient equal to 0.05 kcal/(Å mol) as stop criterion. Molecular
descriptors were calculated for each analyte using Dragon V5 [56]
and autoscaled. Descriptors with constant and near-constant
values, and with at least one missing value were excluded, result-
ing in a data set with 1246 molecular descriptors. The data set for
the four X-y combinations is split into a training set of 19 and a test
set of 6 analytes using the Kennard and Stone method [57]. Because
of the small calibration set, leave-one-out cross validation is con-
ducted during model building. The molecular descriptors are used
to build Quantitative Structure-Retention Relationships (QSRR) to
model and predict the retention of analytes, log kw, on the columns.

3.2. Software

All calculations are made with in-house programs developed in
Matlab (V. 7.14) (The Math Works, Natick, MA, USA). The proced-
ures for the duplex splitting and the Kennard Stone algorithm are
from the ChemoAC Toolbox [45]. Molecular descriptors of the
analytes in the chromatographic set are calculated with Dragon
software V5 (Kode Chemoinformatics, Pisa, Italy) [56] and the
geometrical representations of the analytes were obtained in
Hyperchem 7.5 Professional software (Hypercube, Gainesville,
Florida) [55]. Paired t-tests are conducted with the Statistics
Toolbox of Matlab.

4. Results and discussion

The four data sets form 12 X-y combinations. The responses of
all sets are pre-processed by mean centering. The independent
variables of the chromatographic set are autoscaled while those of
the other data sets are mean centered. First, for each of the 12 re-
sponses, a PLS1 model is developed. The optimal complexities are
determined for the full spectrum models, by segmented cross
validation and applying the criterion Radj < 0.98. RMSECV and
RMSEP are estimated as described in Section 2.5. The optimal PLS
complexity, the number of variables and RMSEP values for the full
spectrum models are shown in Table 1. Variable reduction by the
GME-UVE-PLS method is then applied on the 12 X-y combinations.

4.1. Selection of a suitable cut-off factor

The applied cut-off factor has a large influence on the results of
the GME-UVE method. For the reduction of a large number of un-
informative variables, a high cut-off factor is preferred. However, if
it is too high, informative variables may also be removed, resulting
in reduced predictive abilities of the remaining variable sets, and
hence higher RMSECV's. If a too low cut-off factor is applied, not all
uninformative variables will be eliminated, resulting in larger
remaining variable sets.

To investigate systematically the influence of the cut-off factor,
repeated GME-UVE-PLS runs are conducted at different cut-off

levels, ranging from 0.90 to 1.00, with steps of 0.01. Because the
number of eliminated variables is variable, the GME-UVE runs are
repeated eleven times at each cut-off level. For each run, the global
RMSECVminimum is determined, together with the corresponding
numbers of remaining variables. A suitable cut-off factor will result
in a low number of remaining variables and a low corresponding
RMSECV. To get robust results, at each cut-off level, the runwith the
median number of variables in the global RMSECV minimum is
selected. The cut-off level with the minimal median number of
remaining variables is then selected (Fig. 3).

4.2. Analysis of the data sets

For all X-y combinations, suitable cut-off factors are determined
as described above, followed by GME-UVE variable reduction.

The number and identity of the remaining variables, and the
RMSECV's of the resulting models in the characteristic points can
vary between different GME-UVE runs because of different added
random variables. Therefore, 100 repeated UVE runs are carried out
for each X-y combination and the characteristic points were
identified.

At each run, for the remaining variable sets in the characteristic
points, the numbers of retained variables KBest are determined and
the optimal number of PLS factors re-determined by SCV and the
application of the criterion Radj < 0.98. Additionally, in the char-
acteristic points, RMSEP values are estimated using the remaining
variable sets and these optimal number of PLS factors.

The characteristic points of two or even the three methods may
coincide. For 100 runs and 3 methods, this results in a 100 � 3
matrix for both the numbers of retained variables and RMSEP's.

The numbers of retained variables KBest and RMSEP's of the
resulting PLS models in the characteristic points are used for the
comparisons of the selective and predictive performances of the
three UVE methods. The comparisons are made by paired t-tests,
using the Bonferroni correction for multiple testing, see Ref. [49].

The numbers of retained variables for GME-UVE are equal to or
smaller than those of UVE, and the latter are equal to or smaller
than those of 1-step UVE. Ideally, this will also apply for the cor-
responding RMSEP's. To test this statistically, one sided paired t-
tests are carried out at the 95% confidence level for the pairs of KBest

and of RMSEP's of (i) GME-UVE and UVE, (ii) GME-UVE and 1-step
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UVE, and (iii) UVE and 1-step UVE, to find out whether the values of
the first method are significantly lower than those of the second
method.

4.3. Results for the data sets

In this section, an overview is given of the results after 100
repeated GME-UVE runs for each X-y combination. For each data
set, the analysis of one X-y combination is fully described. For the
other X-y combinations, only the main results are reported. The
selective and predictive performances of the three UVE methods
are compared by paired t-tests as described in Section 4.2.

Additionally, for the four discussed X-y combinations, the
retained variable sets are investigated for the presence of variables
with a chemical meaning relevant to the response, to evaluate the
quality of the selective ability of the UVE methods.

4.3.1. Simulated set
For the Simulated set, in Fig. 4 (Left) results are shown for the

100 repeated GME-UVE runs with a cut-off¼ 1.00. In the graph, the
RMSEP as a function of the number of variables is given for the
three methods. The points for 1-step UVE lie in the range [100, 200]
for variables and those for the first local minima in awider range [4,
150], covering both a large part of RMSEP range found. 67 runs have
a global minimum with a lower number of retained variables than
the corresponding first local minimum. The results for the global
minima are concentrated in the bottom left corner with relatively
small ranges for both the numbers of retained variables ([6, 64])
and the RMSEP's ([0.005, 0.037]).

In Table 2 (model 1) the t-values are shown for the paired t-tests
comparing the numbers of variables for the pairwise comparison of
the three methods. The t-values are in absolute values larger than
the critical one-sided Bonferroni corrected value jtj ¼ 2.15. This
means that the remaining numbers of variables of GME-UVE are
significantly smaller than those of UVE, and that the latter are
significantly smaller than those of 1-step UVE. Therefore, for this
data set, the selective ability of the GME-UVE method is signifi-
cantly better than that of the UVE method, which in turn is
significantly better than that of 1-step UVE.

The t-values are also shown for the paired t-tests on the
RMSEP's for the three comparisons. They are also lower than the
critical value. Thus the RMSEP's of GME-UVE are significantly

smaller than those of UVE, which in turn are significantly smaller
than those of 1-step UVE. Therefore, for this data set, the predictive
ability of the GME-UVE method is better than that of the UVE
method, and the latter is better than that of 1-step UVE.

Fig. 4 (Right) shows the profiles and retained variables after a
GME-UVE example run with selections for 1-step UVE, in the first
local and in the global RMSECV minimum. After 1-step UVE, all
noisy variables are eliminated and correlated variables (see Fig. 2
(Right), belonging to peaks of the main-compound, are retained.
All retained variables for the three UVE methods have a meaning
because they are part of the peaks of the main-compound. No
uninformative variables from the range [501, 1000] are retained.
The GME-UVE method clearly results in the smallest number of
retained variables.

4.3.2. Corn set
For the Corn set with response Oil, in Fig. 5 (Left) results are

given for 100 repeated GME-UVE runs with a cut-off ¼ 0.95. Again,
the RMSEP as a function of the number of retained variables are
shown. The numbers of retained variables for 1-step UVE lie in the
range [100, 300] and those of UVE in the range [10, 150]. 27 runs
have a global minimum in the range [10, 100]. The entire RMSEP
range observed seems to be rather independent of the numbers of
retained variables.

In Table 2 (model 3) calculated t-values are shown for the paired
t-tests for numbers of variables for the three pairs of UVE methods.
The calculated t-values are significant. This means that the
remaining numbers of variables of GME-UVE are significantly
smaller than those of UVE, and that the latter are significantly
smaller than those of 1-step UVE. Therefore, for this X-y combi-
nation, the selective ability of the GME-UVE method is significantly
better than that of the UVE method, which in turn is significantly
better than that of 1-step UVE.

For RMSEP only for the comparison of UVE and 1-step UVE the
calculated t-value is borderline significant. Thus, the RMSEP's of
UVE are borderline significantly smaller than those of 1-step UVE.
The calculated absolute t-values for the comparion of RMSEP's of
GME-UVE with those of UVE and 1-step UVE, 0.37 and �1.72, are
smaller than the critical t-value. Therefore, for this X-y combina-
tion, the predictive ability (i) of the UVE method is significantly
better than that of 1-step UVE, and (ii) of GME-UVE is similar to that
of both UVE and 1-step UVE.
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Fig. 4. Simulated set; (Left) RMSEP vs. number of retained variables for 100 repeated GME-UVE-PLS runs; (Right) Profiles and retained variables after a GME-UVE-PLS run with
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Fig. 5 (Right) shows the corn spectra, the retained wavelengths
by the three UVE methods after an example run, and the specific

absorption bands for oil. These bands are at 1650e1780 nm and
2100e2200 nm [58,59]. The three UVE methods have retained

Table 2
Results for the 100 times repeated GME-UVE runs. Abbreviations: see text.

Data set Response Model Cut-off Number of global minima Method characteristics global RMSECV
minimum*

(M1)

1st local
RMSECV
minimum*

(M2)

1-step
UVE*

(M3)

t-values of paired t-tests
for numbers of retained
variables or RMSEP's

M1-M2 M1-M3 M2-M3

Simulated y 1 1.00 67 Range PLS complexity [2,2] [2,2] [2,2]
number of variables 55* 108 167 ¡12.52 ¡16.14 ¡13.62
RMSEP 0.027* 0.037 0.078 ¡7.06 ¡23.20 ¡18.10

Corn Moisture 2 1.00 1 Range PLS complexity [2,2] [2,15] [14,15]
number of variables 8 8 82 �1.00 ¡30.81 ¡30.77
RMSEP 0.0005 0.0005 0.0038 �1.00 ¡28.71 ¡28.71

Oil 3 0.95 27 Range PLS complexity [5,11] [5,11] [5,11]
number of variables 67 90 192 ¡3.16 ¡22.31 ¡11.56
RMSEP 0.067 0.067 0.069 0.37 �1.72 ¡2.20

Protein 4 0.92 26 Range PLS complexity [6,14] [7,14] [9,14]
number of variables 64 78 238 ¡4.38 ¡46.55 ¡33.23
RMSEP 0.051 0.054 0.086 ¡2.69 ¡21.34 ¡19.92

Starch 5 0.94 16 Range PLS complexity [8,15] [8,15] [11,15]
number of variables 91 100 196 ¡2.68 ¡21.57 ¡18.94
RMSEP 0.136 0.136 0.142 0.11 ¡2.25 ¡2.70

Alcohols Propanol 6 0.90 22 Range PLS complexity [11,19] [12,19] [17,19]
number of variables 446 642 1855 ¡4.08 ¡35.19 ¡23.38
RMSEP 0.784 0.769 0.767 2.98 1.78 0.21

Butanol 7 0.90 30 Range PLS complexity [9,19] [12,19] [15,19]
number of variables 571 801 1657 ¡5.11 ¡22.18 ¡16.73
RMSEP 0.778 0.763 0.735 2.11 4.75 4.58

Pentanol 8 0.90 34 Range PLS complexity [11,19] [12,19] [16,19]
number of variables 450 732 1886 ¡5.11 ¡26.97 ¡17.49
RMSEP 0.951 0.940 0.984 2.10 ¡3.64 ¡5.30

Chromatographic Log kw Col1 9 0.99 59 Range PLS complexity [1,7] [2,5] [3,5]
number of variables 45 112 145 ¡9.64 ¡16.05 ¡6.09
RMSEP 0.295 0.368 0.382 ¡9.83 ¡11.76 ¡3.78

Log kw Col2 10 0.99 26 Range PLS complexity [1,7] [2,5] [3,5]
number of variables 38 112 335 ¡4.12 ¡66.02 ¡33.00
RMSEP 0.323 0.349 0.348 ¡4.85 ¡4.27 0.40

Log kw Col3 11 0.99 39 Range PLS complexity [2,7] [3,5] [5,5]
number of variables 67 132 351 ¡5.64 ¡81.71 ¡20.56
RMSEP 0.325 0.364 0.369 ¡6.33 ¡6.92 ¡2.21

Log kw Col4 12 0.99 32 Range PLS complexity [2,7] [2,5] [5,7]
number of variables 71 114 338 ¡4.61 ¡56.37 ¡21.92
RMSEP 0.312 0.341 0.372 ¡4.75 ¡8.86 ¡5.82

M1 corresponds to GM-UVE-PLS; M2 corresponds to UVE-PLS; M3 corresponds to 1-step UVE; * For methods M1, M2 and M3, mean values are given for numbers of variables
and RMSEP's.
Critical one sided Bonferroni corrected jtj-value is 2.15; significant t-values in bold.
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Fig. 5. Corn set, response oil; (Left) RMSEP vs. number of retained variables for 100 repeated GME-UVE-PLS runs; (Right) Spectra and selected variables after a GME-UVE-PLS run
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variables with a chemical meaning, i.e. in the first absorption band.
The graph shows that the selective ability is best for the GME-UVE
method.

For the Corn set, responses moisture, protein and starch, for the
three UVE methods, the ranges for the PLS complexities of the
resulting models, the means of the numbers of retained variables
and the RMSEP's, and the results of the paired t-tests are given in
Table 2. It is also found that, for the 100 repeated runs, for each
method, the PLS complexities of the resulting models can vary
largely. For moisture, only one run with a global minimum,
different from the local minimum, is observed. For the other re-
sponses, GME-UVE results in the smallest data sets, which however
do not always lead to the best predictions (only the case for
protein).

4.3.3. Alcohols set
For the Alcohols set with response propanol, in Fig. 6 (Left) re-

sults are given for the 100 repeated GME-UVE runs with a cut-
off ¼ 0.90. The graph shows that a cluster of retained variables
exists for 1-step UVE in the range [1700, 2050]. The numbers of
retained variables for the first local minima are in the range [100,
1000] well separated from 1-step UVE. 22 runs have a global
minimum and are smaller than the first local minimum, located in
the range [50, 300]. No relation seems to be observed between
RMSEP and the number of retained variables.

In Table 2 (model 6) calculated t-values are shown for the paired
t-tests for numbers of variables for the three pairs of UVE methods.
The calculated t-values are significant, i.e. the remaining numbers
of variables of GME-UVE are significantly smaller than those of UVE,
which again are significantly smaller than those of 1-step UVE.
Therefore, for this X-y combination, the selective ability of the
GME-UVE method is significantly better than that of the UVE
method, which in turn is significantly better than that of 1-step
UVE.

The t-values for the paired t-tests for RMSEP's for three pairs of
UVE methods, shown in Table 2 (model 6), are occasionally signif-
icant. For instance, the t-value (2.98) for the comparison of RMSEP's
of GME-UVE and UVE is significant, but indicates that the RMSEP's
of GME-UVE are significantly higher. The t-values for the compar-
ion of RMSEP's of GME-UVE with those of 1-step UVE and of UVE
with those of 1-step UVE, 1.78 and 0.21, are not significant.

Therefore, for this X-y combination, the predictive ability of GME-
UVE (i) is worse than that of UVE, and (ii) is similar to that of 1-
step UVE. Additionally, the predictive ability of UVE is similar to
that of 1-step UVE.

Fig. 6 (Right) shows the 1H NMR spectra of mixtures of alcohols
and the retained variables by the three UVE methods after one
example run. The retained variables for the three UVE methods are
spread over the entire spectra, but the number of retained variables
for GME-UVE is much lower than that of UVE and 1-step UVE, see
also Table 2.

For the other responses, butanol and pentanol, it was also seen
that GME-UVE results in the smallest variable sets, but not in better
predictive models.

4.3.4. Chromatographic set
For the Chromatographic set, with response log kw on the Zor-

bax RX-C18 RPLC column (Col1), in Fig. 7 (Left) results are given for
100 repeated GME-UVE runswith a cut-off¼ 0.99. The graph shows
that most points of 1-step UVE are above 100 variables. Below 100
variables, the points for the three methods are mixed. 59 runs have
a global minimum, different from the first local minimum, located
in the range [2, 61]. More global minima are found at low RMSEP
values.

In Table 2 (model 9) the calculated t-values are lower than the
critical value jtj ¼ 2.15. The remaining numbers of variables of GME-
UVE are significantly smaller than those of UVE, which are signifi-
cantly smaller than those of 1-step UVE. Therefore, for this X-y
combination, the selective ability of the GME-UVE method is best.

Simultaneously, the RMSEP's of the resulting models of GME-
UVE are significantly lower than those of UVE, and those of UVE
are significantly lower than those of 1-step UVE. Consequently, for
this X-y combination, the predictive ability of the GME-UVE
method is better than that of UVE, which in turn is significantly
better than that of 1-step UVE. These observations can be made for
all columns.

Fig. 7 (Right) shows the absolute values of autoscaled molecular
descriptors, the retained variables by the three UVE methods after
one example run, and a small band with molecular descriptors
related to the logarithm of the n-octanolewater partition coeffi-
cient, log P. It is well known that the retention time in RPLC is
affected by the log P of the compounds [60].

0 500 1000 1500 2000 2500
0

0.5

1

1.5

Number of variables

R
M

S
E

P

1-step
1st Local minimum
Global minimum

1 2 3 4

0

2

4

6

8

10
x 104

1-step
1st-Loc-Min
Global-Min

Chemical shift (ppm)
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The number of retained variables for GME-UVE (11) in the
example run is much lower than that of UVE and 1-step UVE. In the
global minimum, among others, the following log P related mo-
lecular descriptors (see the Dragon molecular descriptor list [61])
are retained: MLOGP, MLOGP2, ALOGP, ALOGP2, BLTF96, BLTD48,
and BLTA96. This indicates that the retained variables in the global
minimum have a chemical meaning.

4.4. Comparison of 1-step UVE, UVE and GME-UVE

The retained variable sets for the three approaches are
compared for their selective and predictive performances.

In Table 2, for the 12 X-y combinations, results are given for 100
repeated GME-UVE runs. Calculated t-values of paired t-tests are
shown for differences in numbers of retained variables and
RMSEP's for (i) GME-UVE and UVE (M1-M2), (ii) GME-UVE and 1-
step UVE (M1-M3), and (iii) UVE and 1-step UVE (M2-M3).

The number of times that a global minimum different from the
first local minimum is observed, varies strongly between the X-y
combinations, from once for model 2 to 67 times for model 1. In 379
of 1200 runs (i.e. ±32%) a global minimum different from the first
local minimum existed.

Eleven X-y combinations have a global minimum with signifi-
cantly lower numbers of retained variables than in the corre-
sponding first local minimum. From these 11 combinations, 6 have
significantly lower RMSEP's at the global minima (jtj>2.15) and 4
have RMSEP's which are not significantly different (jtj<2.15). Thus,
for 11 of 12 X-y combinations, GME-UVE has a significantly better
selective ability than UVE, while the predictive ability of 6 combi-
nations is significantly better and that of 4 it is similar.

For all X-y combinations, GME-UVE has a significantly better
selective ability than 1-step UVE, while the predictive ability for 9
combinations is significantly better and of 2 it is not significantly
different.

Classical UVE is beneficial compared to 1-step UVE, because for
all X-y combinations, the selectivity of UVE is significantly better
than for 1-step UVE, while the predictive ability for 9 combinations
is significantly better and for 2 it is similar.

Therefore, it is advantageous to apply the global RMSECV min-
imum as selection criterion for UVE instead of the first local
RMSECV minimum as in Ref. [18]. Because a global minimum,

different from the local, does not occur in every run, it is recom-
mended to apply a few repeated GME-UVE runs. This improves the
chance to find smaller retained variable sets with better predictive
abilities. GME-UVE is a fast method, therefore, replication of runs is
not a serious drawback.

5. Conclusions

In this study, a modification of UVE-PLS, called GME-UVE-PLS or
GME-UVE, in which UVE is repeated until no further elimination of
variables is obtained, is proposed and investigated. The retained
variables in the global RMSECV minimum are selected for GME-
UVE-PLS. The predictive and selective abilities of GME-UVE, using
the global RMSECV minimum, were compared statistically with
those of the classical UVE method, using the first local RMSECV
minimum, and 1-step UVE.

The number of retained variables for GME-UVE method is usu-
ally found significantly lower than that of the classical UVEmethod,
and the latter is significantly lower than that of 1-step UVE, while
the predictive abilities of the resulting models often are better or
similar.

Usually, with 1-step UVE and UVE, a higher number of variables
without a clear chemical meaning in relation to the response are
retained than with GME-UVE.

A global minimum, different from the first local minimum, im-
proves the chance to find smaller retained variable sets with better
predictive abilities. Because a global minimum does not occur in
every run, it is recommended to repeat a few GME-UVE runs. The
selectivity of the UVE method thus can further be improved by the
application of the GME-UVE method resulting in more parsimo-
nious models.
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Fig. 7. Chromatographic set; (Left) RMSEP vs. number of retained variables for 100 repeated GME-UVE-PLS runs; (Right) Absolute values of autoscaled molecular descriptors and
selected variables after a GME-UVE-PLS run with selections for 1-step UVE, in the first local RMSECV minimum, and in the global RMSECV minimum; Molecular descriptors related
to log P (see text).
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