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Impairments in decision-making are frequently observed in neurodegenerative diseases, but the mechanisms underlying such
pathologies remain elusive. In this work, we study, on the basis of novel time-delayed neuronal population model, if the delay
in self-inhibition terms can explain those impairments. Analysis of proposed system reveals that there can be up to three positive
steady states, with the one having the lowest neuronal activity being always locally stable in nondelayed case.We show, however, that
this steady state becomes unstable above a critical delay value for which, in certain parameter ranges, a subcritical Hopf bifurcation
occurs. We then apply psychometric function to translate model-predicted ring rates into probabilities that a decision is being
made. Using numerical simulations, we demonstrate that for small synaptic delays the decision-making process depends directly
on the strength of supplied stimulus and the system correctly identifies to which population the stimulus was applied. However, for
delays above the Hopf bifurcation threshold we observe complex impairments in the decision-making process; that is, increasing
the strength of the stimulus may lead to the change in the neuronal decision into a wrong one. Furthermore, above critical delay
threshold, the system exhibits ambiguity in the decision-making.

1. Introduction

Gamma-Aminobutyric Acid (GABA) is the most prevalent
inhibitory neurotransmitter in the human brain [1, 2]. There
is a body of evidence that aging has a major influence on
the effectiveness of the GABAergic synapses [3]. Moreover,
as found in the recent studies with the use of magnetic
resonance spectroscopy (MRS, [4, 5]), local GABA concen-
trations in the frontal areas influence cognitive performance
in aging adults. Taken together, aging can cause a reduced
release of GABA to the intersynaptic cleft and decrease the
quality of the synaptic transmission. This can result in an
increase of the synaptic delays in the local inhibition.

On the other hand, in the aging process, the sensory
capacity is declining, which affects the cognitive functions
[6–8]. In particular, the working memory—which involves

active manipulation of information—is affected, and this
effect can further influence the perceptual decision-making
[9]. (One important note here is that there is a differ-
ence between perceptual decision-making and making the
abstract complex choices: the latter was reported not to be
impaired in the elderly subjects [10], and some studies even
report that elderly subjects are actually more efficient at
making complex decisions [11, 12].Therefore, in the paper we
refer to the perceptual decision-making.).

In 1996, Salthouse [13] proposed a processing-speed
theory of age-related deficits in cognition, for example, in
working memory and perceptual decision-making. Accord-
ing to this theory, reduction in the processing speed can
cause impairments in the cognitive functions for two major
reasons. Cognitive functions can decline either because nec-
essary logic operations cannot be executed within the time
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limit, or because the higher-order operations are blocked by
slow execution of lower-order operations.This subject-matter
was further experimentally investigated from different angles
[14–16], but the consensus in the field is that, in general,
the elderly subjects are slower in perceptual decision-making
than youngsters.

In this work, we propose a mechanism linking the two
aspects of aging in cortical networks: the neurodegeneration
in the local inhibitory synapses and the processing-speed
related impairments in perceptual decision-making. This
mechanism is based on a neuronal population model of
decision-making based on a winner-take-all mechanism.
The novelty lies in combining a winner-take-all mechanism
well routed in the decision-making neuroscience, with the
systemof delayed differential equations representing the local
inhibition within the two competing populations. With the
use of this model, we are able to demonstrate that, for small
synaptic delays in the local inhibition within the competing
populations, the decision-making process depends directly
on the strength of the stimulus, and the network is able
to correctly identify the direction the stimulus came from.
However, large delays can lead to a subcritical Hopf bifurca-
tion resulting in complex decision-making process impair-
ments. In particular, we demonstrate that, above the Hopf
bifurcation point, increasing the strength of the stimulus
can confuse the network and cause a wrong decision to be
made. Furthermore, for delay values above critical threshold
the system exhibits ambiguity in the decision-making. This
effect can explain how the experimentally found difficulties
in decision-making in elderly adults can be caused by loss in
cognitive capacities [14].

The paper is organized in the following way. In Section 2,
we introduce the model. In Section 3, qualitative analysis of
the model, focusing on the stability analysis and Hopf bifur-
cation appearance, is made. Firstly, we present the analytic
results for a symmetric model with no delay (Section 3.1) and
thenwith positive delay (Section 3.2). In Section 4, we present
the simulations undertaken to explore the dynamic repertoire
of themodel. In Section 5, we critically discuss the results and
give recommendations for the future research.

2. Perceptual Decision-Making Model

Thefamous perceptual experiment on rhesusmonkeys [17] by
Shadlen and Newsome, involved a binary classification task:
themonkeys had to assesswhether themajority of themoving
dots on the screen moved to the left or to the right. In the
literature, onemodel proposed tomodel the decision-making
in this experiment was the slow reverberation mechanism
by Wang [18]. In Wang’s model, two populations of densely
interconnected, spiking neurons compete with each other
once being supplied by noisy inputs. This model involves
simulations of two competing pools of stochastic spiking
neurons. Since Wang’s work was published, some rodent
[19] and computational [20] models were proposed to study
perceptual choices.

In this work, we focus on modeling the most basic
perceptual decision-making in neuronal networks. In such
conditions, the network needs to disambiguate between two

Population 1 Population 21 1
delay  delay 

I1(t) I2(t)

Figure 1: A neuronal population model of decision-making. Neu-
rons in the first population project to the neurons in the second
population and vice versa. Both neuronal populations receive
self-inhibition with delay (𝜏, dashed arrows with flat heads). In
addition, they receive external inputs 𝐼1(𝑡) and 𝐼2(𝑡), respectively.
The dynamics of this system is described by (1).

sensory stimuli.We consider changes in the firing rates 𝑟(𝑡) of
two positively interconnected self-inhibiting neuronal popu-
lations that receive external inputs 𝐼1(𝑡) and 𝐼2(𝑡), respectively
(Figure 1).

In order to describe the temporal dynamics of considered
system (Figure 1), we introduce a system of delay differential
equations (DDEs [21]) in the following form:̇𝑟1 (𝑡) = 𝛼 (𝐼1 (𝑡) − 𝑟1 (𝑡 − 𝜏) + 𝜖𝑓 (𝑟1 (𝑡) 𝑟2 (𝑡)) 𝑟2 (𝑡)) ,̇𝑟2 (𝑡) = 𝛼 (𝐼2 (𝑡) − 𝑟2 (𝑡 − 𝜏) + 𝜖𝑓 (𝑟1 (𝑡) 𝑟2 (𝑡)) 𝑟1 (𝑡)) , (1)

where 𝛼 = 1/𝜏𝑟, 𝜏𝑟 denotes a model time scale, 𝜏 denotes the
delay in self-inhibition, and 𝜖 is a coefficient describing the
maximal capacity of a synapse, related to its anatomy. The
function 𝑓 characterizes interactions between populations
through synaptic plasticity which undergoes a Hebbian rule
[22]; that is, the dynamics of synaptic weights is firing rate-
dependent. For in-depth analytical and numerical investiga-
tions we have chosen a biologically plausible [23] sigmoid
function 𝑓(𝑥) = 𝑥2/(1 + 𝑥2).

In reality both populations considered in the proposed
model are embedded in a larger network; therefore even
in the absence of the population-specific sensory stimulus,
they receive a constant input. Therefore, in the resting state,
this system receives equal constant inputs 𝐼1(𝑡) = 𝐼2(𝑡) ≡𝐼 to both nodes and, due to the system’s symmetry, both
populations will be firing with the same rates. The symmetry
breaks down if one of the populations receives an additional,
external stimulation. The decision-making in this system
means decoding which of the two populations received
an additional stimulus (without estimation of the stimulus
magnitude).The decoding is based on the difference between
the two firing rates: the larger the difference 𝑟1(𝑡) − 𝑟2(𝑡),
the more likely the decision that the population 1 received
the stimulation.The evidence behind each of the two options
accumulates over time; therefore the psychometric function
for the first population takes the integral form of𝑝1 (𝑡) = 11 + exp (−𝛽∫𝑡

0
(𝑟1 (𝜉) − 𝑟2 (𝜉)) 𝑑𝜉) , (2)
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where 𝛽 is a parameter influencing the slope of the sigmoid
function with respect to the cumulative difference ∫𝑡

0
(𝑟1(𝜉) −𝑟2(𝜉))𝑑𝜉. Similarly, we define the psychometric function for

the second population as𝑝2 (𝑡) = 11 + exp (−𝛽∫𝑡
0
(𝑟2 (𝜉) − 𝑟1 (𝜉)) 𝑑𝜉) . (3)

Values 𝑝1(𝑡) and 𝑝2(𝑡) can only asymptotically approach 1;
therefore we add a condition that if, at a given time point 𝑡,𝑝1(𝑡) exceeds the threshold value of 1 − 𝛾 (where 𝛾 is a given
precision), the decision is made.

3. Qualitative Behavior of the Model

In this section, we provide the analytical results regarding the
behavior of solutions of (1) for 𝛼 = 1 and constant symmetric
input 𝐼. Notice that the qualitative dynamics of (1) does not
depend on 𝛼.
3.1. Behavior of the Model for 𝜏 = 0 and Constant Symmetric
Input 𝐼. In this subsection, we present a detailed analysis of
the model dynamics for 𝜏 = 0 and 𝐼1(𝑡) = 𝐼2(𝑡) ≡ 𝐼, as it is a
crucial first step in the analysis of time-delayedmodels.While
looking for steady states of (1), we need to solve the system of
equations 𝐼 − 𝑟1 + 𝜖𝑟2𝑓 (𝑟1𝑟2) = 0,𝐼 − 𝑟2 + 𝜖𝑟1𝑓 (𝑟1𝑟2) = 0, (4)

which yields 𝑟1 − 𝑟2 + 𝜖(𝑟1 − 𝑟2)𝑓(𝑟1𝑟2) = 0. It is then obvious
that both coordinates of any steady state are the same. Let us
denote a steady state by (𝑟, 𝑟). Clearly, 𝐼−𝑟+𝜖𝑟𝑓(𝑟2) = 0, and
the number of steady states depends on the shape of the graph
of ℎ𝜖(𝑟) = (1−𝜖)𝑟+𝜖(𝑟/(1+𝑟4)). Notice that the reference case𝜖 = 1 is specific, as for 𝜖 ̸= 1 the function ℎ is asymptotically
linear ∼ (1 − 𝜖)𝑟, while for 𝜖 = 1 it tends to 0 as 𝑟 → ∞.

Let us consider 𝜖 = 1. Then we have ℎ1(𝑟) = (1 −3𝑟4)/(1+𝑟4)2, and thereforeℎ1 is increasing for 𝑟 ∈ [0, 4√27/3],
achieves its maximum ℎ𝑚1 = 4√27/4 ≈ 0.5699 at 𝑟𝑚 = 4√27/3,
and decreases to 0 for 𝑟 > 𝑟𝑚. This implies that there are two
steady states for 0 < 𝐼 < ℎ𝑚1 and no steady state for 𝐼 > ℎ𝑚1 ,
while for 𝐼 = ℎ𝑚1 there is a bifurcation. The reference value𝐼 = 0.4 < ℎ𝑚1 , so there exist two steady states, 𝑟 ≈ 0.4115 and𝑟 ≈ 1.1827.

For 𝜖 ̸= 1, we have ℎ𝜖(𝑟) = 1−𝜖+𝜖((1−3𝑟4)/(1+𝑟4)2), and
looking for zeros of ℎ𝜖 we obtain (1 − 𝜖)𝑟8 + (2 − 5𝜖)𝑟4 + 1 =0, and we see that this quadratic equation has two positive
solutions for 𝜖 ∈ (16/25, 1), no real solution for 𝜖 < 16/25,
and one positive solution for 𝜖 > 1. This means that for𝜖 < 16/25 the function ℎ𝜖 is increasing, for 𝜖 ≥ 1 it has one
maximum and tends either to 0 (for 𝜖 = 1) or to −∞ (for𝜖 > 1), while for 𝜖 ∈ (16/25, 1) it is first increasing, then
decreasing, and eventually increasing linearly to +∞.

Corollary 1. For 𝜖 < 16/25 there is one steady state of (1); for𝜖 ≥ 1 there are two steady states for small values of 𝐼 and no

steady state for larger 𝐼 values; for 𝜖 ∈ (16/25, 1) there is one
steady state for small and sufficiently large values of 𝐼, while for
intermediate 𝐼 values 3 steady states exist.

Notice that due to its symmetric structure the system
described by (1) always has solutions lying within a straight
line 𝑟2 = 𝑟1. Clearly, assuming 𝑟1 = 𝑟2 = 𝑟 from both
equations of (1) we obtaiṅ𝑟 = 𝐼 − 𝑟 + 𝜖𝑟𝑓 (𝑟2) . (5)

The number of steady states determines the dynamics of (5).
Let us assume that 𝜖 < 16/25. Then there is only one steady
state 𝑟 and the right-hand side of (5) is positive for 𝑟 < 𝑟 and
negative for 𝑟 > 𝑟. Therefore, 𝑟 is globally attractive. If 𝜖 ≥ 1,
then there are two steady states 𝑟 < 𝑟 for small 𝐼, and the
right-hand side is positive for 𝑟 < 𝑟 and 𝑟 > 𝑟 and negative
for 𝑟 ∈ (𝑟, 𝑟). This means that 𝑟 is locally stable, while 𝑟 is
unstable. Moreover, solutions for 𝑟(0) > 𝑟 tends to∞. If there
is no steady state, then all solutions tend to +∞, as they are
increasing and unbounded. For 𝜖 ∈ (16/25, 1) there can be
up to three steady states. Assume that there are three steady
states 𝑟 < 𝑟 < 𝑟. In this case 𝑟 and 𝑟 are stable, while 𝑟 is
unstable. Moreover, for 𝑟(0) > 𝑟 solutions tend to 𝑟.

It is obvious that the symmetry of (1) implies that the
phase space is divided into two symmetric subspaces by the
straight line 𝑟2 = 𝑟1. Moreover, the dynamics of (5) is crucial
in determining the whole model dynamics. Notice that ̇𝑟1 =𝐼 − 𝑟1 + 𝜖𝑟2𝑓(𝑟1𝑟2) < 𝐼 − 𝑟1 + 𝜖𝑟2 and for 𝑟2 < (𝑟1 − 𝐼)/𝜖
we have ̇𝑟1 < 0. Similarly, for 𝑟2 > 𝐼 + 𝜖𝑟1 we have ̇𝑟2 < 0.
Moreover, these straight lines are asymptotes for null-clines of
(1).Therefore, asymptotic dynamics for large values of 𝑟1, 𝑟2 is
related to the dynamics of (5) for large 𝑟, as it determines the
direction of the vector-field in the region between the null-
clines. Three generic types of the model dynamics when at
least one steady state exists are presented in Figure 2.

3.2. Model Behavior for 𝜏 > 0 and Constant Symmetric Input𝐼. Now, we aim to study the influence of the delay on the
dynamics of the model. Our main goal is to show that there
exists such time delay 𝜏th > 0 for which the steady state (𝑟, 𝑟)
loses stability and a Hopf bifurcation occurs. Moreover, we
would like to analyze the type of this bifurcation.

Before starting the analysis, we first state some general
results that will be useful in this section. Let us consider a
general DDE �̇� = 𝑔 (𝑥𝑡) ,𝑔 (0) = 0, (6)

with a smooth function 𝑔. Let𝑊(𝜆, 𝜏) denote a characteristic
function for (6) at 𝑥 = 0. Assume that𝑊(𝜆, 𝜏) = 𝑊𝐼 (𝜆, 𝜏) ⋅ 𝑊𝐼𝐼 (𝜆, 𝜏) ,𝑊𝐼 (𝜆, 𝜏) = 𝑃 (𝜆) + 𝑄 (𝜆) 𝑒−𝜆𝜏, (7)
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Figure 2: Examples of the phase space portrait of (1) for 𝐼 = 0.4 and 𝜖 = 0.5 (a) (there is only one steady state, stable node at around(0.41, 0.41)); 𝜖 = 0.87 (b) (there are three steady states: stable nodes at around (0.41, 0.41) and (2.77, 2.77) and a saddle at around (1.55, 1.55));𝜖 = 1 (c) (there are two steady states: a stable node at around (0.41, 0.41) and a saddle at around (1.18, 1.18)).
where𝑃 and𝑄 are polynomials, deg𝑃 > deg𝑄. Togetherwith
(6) we consider �̇� = 𝑔1 (𝑥𝑡) ,𝑔1 (0) = 0, (8)

for which𝑊𝐼 is a characteristic function.
Lemma 2. Assume that 𝑃 and 𝑄 have no common imaginary
root and 𝑊𝐼 has a pair of purely imaginary simple eigenvalues±𝑖𝜔0 (𝜔0 > 0) for some critical value 𝜏 = 𝜏0 > 0,
and moreover these eigenvalues satisfy transversality condition(𝑑/𝑑𝜏)Re 𝜆(𝜏)|𝜏=𝜏0 ̸= 0. If 𝑊𝐼𝐼(𝑖𝜔0, 𝜏) ̸= 0, then ±𝑖𝜔0 is a
pair of simple eigenvalues of 𝑊(𝜆, 𝜏) for 𝜏 = 𝜏0 which satisfies
transversality condition. Moreover, the eigenvalues of (6) cross
imaginary axis in the same direction as the eigenvalues of (8).

Proof. We only need to check transversality condition. The
derivative (𝑑/𝑑𝜏)Re 𝜆(𝜏)|𝜏=𝜏0 for (6) is obtained from the
relation𝑑𝑑𝜏 (𝑊𝐼 (𝜆, 𝜏))𝜏=𝜏0 ⋅ 𝑊𝐼𝐼 (𝜆, 𝜏)𝜏=𝜏0 + 𝑊𝐼 (𝜆, 𝜏)𝜏=𝜏0⋅ 𝑑𝑑𝜏 (𝑊𝐼𝐼 (𝜆, 𝜏))𝜏=𝜏0 = 0. (9)

As 𝑊𝐼(𝜆, 𝜏)|𝜏=𝜏0 = 0 while 𝑊𝐼𝐼(𝜆, 𝜏)|𝜏=𝜏0 ̸= 0, this implies(𝑑/𝑑𝜏)(𝑊𝐼(𝜆, 𝜏))|𝜏=𝜏0 ̸= 0 which is the relation determining
transversality condition for (8).

Lemma 2 holds under weaker assumptions, that is, for𝑃 and 𝑄 being analytic functions, not only polynomials;
compare [24] for more details. However, for our analysis, it
is sufficient to consider the presented version.

The next lemma is a simple consequence of Proposition 1
from [24].

Lemma3. Let𝑊𝐼(𝜆, 𝜏) = 𝜆+𝛾+𝑒−𝜆𝜏, |𝛾| < 1.Then there exists
a pair of purely imaginary eigenvalues ±𝑖𝜔0, 𝜔0 = √1 − 𝛾2, for𝜏0 = arccos(−𝛾)/𝜔0 for which eigenvalues cross imaginary axis
from left to right. Moreover, a steady state 𝑥 = 0 loses stability
for 𝜏 = 𝜏0 and cannot gain it again for 𝜏 > 𝜏0.
Proof. Following [24] we define an auxiliary function𝐹𝐴(𝜔) = |𝑃(𝑖𝜔)|2 − |𝑄(𝑖𝜔)|2 = 𝜔2 + 𝛾2 − 1. It is obvious
that 𝜔0 = √1 − 𝛾2 is a simple zero of 𝐹𝐴. Looking for critical
delay related to this pair of eigenvalues ±𝑖𝜔0, we need to solve
a system of equations

cos (𝜔0𝜏) = −𝛾,
sin (𝜔0𝜏) = 𝜔0 > 0. (10)

It is obvious that we obtain a sequence of critical delays 𝜏𝑛 =(1/𝜔0)(arccos(−𝛾) + 2𝑛𝜋), 𝑛 ∈ N. However, as the derivative
of the auxiliary function is positive, eigenvalues always cross
imaginary axis from left to right (independently of 𝑛), which
means that a switch of stability appears only at 𝜏 = 𝜏0.

Now, we turn to the main topic of this subsection that is
analysis of (1) for 𝜏 > 0.While studying aHopf bifurcation,we
follow the ideas introduced in [25]. Let us rewrite the system
described by (1) in its functional form (cf. [26, 27]); that is,�̇� = 𝐿 (𝑋𝑡) + 𝐺 (𝑋𝑡) , (11)

where 𝑋 = (𝑥, 𝑦) = (𝑟1 − 𝑟, 𝑟2 − 𝑟) and 𝑋𝑡(ℎ) = 𝑋(𝑡 + ℎ) forℎ ∈ [−𝜏, 0], 𝐿 is a linear part, and 𝐺 is nonlinear part of the
system. Hence,

𝐿 (𝑥𝑡, 𝑦𝑡) = (𝐿1 (𝑥𝑡, 𝑦𝑡) , 𝐿2 (𝑥𝑡, 𝑦𝑡)) = (−𝑥𝑡 (−𝜏) + 𝜂𝑥𝑡 (0) + (𝜂 + 𝛽) 𝑦𝑡 (0) , −𝑦𝑡 (−𝜏) + 𝜂𝑦𝑡 (0) + (𝜂 + 𝛽) 𝑥𝑡 (0))𝑇 ,



Complexity 5𝐺 (𝑥𝑡, 𝑦𝑡) = (𝐺1 (𝑥𝑡, 𝑦𝑡) , 𝐺2 (𝑥𝑡, 𝑦𝑡))= ((𝑦𝑡 (0) + 𝑟) (𝐹 (𝑥𝑡, 𝑦𝑡) − 𝛽) − 𝜂 (𝑥𝑡 (0) + 𝑦𝑡 (0)) , (𝑥𝑡 (0) + 𝑟) (𝐹 (𝑥𝑡, 𝑦𝑡) − 𝛽) − 𝜂 (𝑥𝑡 (0) + 𝑦𝑡 (0)))𝑇 ,
(12)

where 𝐹(𝑥𝑡, 𝑦𝑡) = 𝐹(𝑥(𝑡), 𝑦(𝑡)) = 𝜖𝑓((𝑥(𝑡) + 𝑟)(𝑦(𝑡) + 𝑟)),𝜂 = 𝜖𝑓(𝑟2)𝑟2 > 0, and 𝛽 = 𝜖𝑓(𝑟2) > 0. With the linear
operator 𝐿 we are able to associate an operator 𝑇(𝑡)𝑋0 = 𝑋𝑡
which is a solution to (1) for initial data 𝑋0. In this way
we obtain a strongly continuous semigroup generated by an
infinitesimal generator 𝐴 (cf. [26, 27]). If for some critical
value 𝜏0 the generator 𝐴 has an eigenvalue 𝜆 = 𝑖𝜔0, then
a Hopf bifurcation occurs under the assumptions that the
eigenvalues ±𝑖𝜔0 are simple and cross imaginary axis with
nonzero speed when 𝜏 crosses 𝜏0.

Let us denote a characteristic matrix by Δ(𝜆, 𝜏); that is,Δ (𝜆, 𝜏) = (𝜆 + exp (−𝜆𝜏) − 𝜂 − (𝛽 + 𝜂)− (𝛽 + 𝜂) 𝜆 + exp (−𝜆𝜏) − 𝜂) . (13)

Looking for eigenvalues, we need to find zeros of the
characteristic function𝑊(𝜆, 𝜏) = detΔ (𝜆, 𝜏)= (𝜆 + exp (−𝜆𝜏) − 𝜂)2 − (𝜂 + 𝛽)2 . (14)

It is obvious that𝑊(𝜆, 𝜏) = 𝑊𝐼 (𝜆, 𝜏) ⋅ 𝑊𝐼𝐼 (𝜆, 𝜏) ,𝑊𝐼 (𝜆, 𝜏) = 𝜆 − 2𝜂 − 𝛽 + 𝑒−𝜆𝜏,𝑊𝐼𝐼 (𝜆, 𝜏) = 𝜆 + 𝛽 + 𝑒−𝜆𝜏. (15)

Clearly, we can use Lemmas 2 and 3 in the analysis of stability
switches for the steady state (𝑟, 𝑟). In the considered case,
the steady state (𝑟, 𝑟) is stable for 𝜏 = 0; that is, 𝑊(𝜆, 0) =(𝜆 − 2𝜂 − 𝛽 + 1)(𝜆 + 𝛽 + 1) has negative zeros, yielding1 > 2𝜂+𝛽. Hence, both quasi-polynomials𝑊𝐼 and𝑊𝐼𝐼 satisfy
assumptions of Lemma 3. This means that there are two
sequences of critical delays (𝜏𝐼𝑛)𝑛∈N and (𝜏𝐼𝐼𝑛 )𝑛∈N associated
with𝑊𝐼 and𝑊𝐼𝐼, respectively. However, the switch of stability
can occur only for 𝜏𝐼0 or 𝜏𝐼𝐼0 , depending on the magnitude of
those delays. Clearly, according to Lemma 2 eigenvalues cross
imaginary axis in the same direction for both 𝑊𝐼 and 𝑊𝐼𝐼,
which means that they cross from left to right, and therefore
the steady state (𝑟, 𝑟) loses stability for the smallest critical
delay.

As a result, we can state the following theorem.

Theorem 4. Let 𝜏0 = arccos(2𝜂 + 𝛽)/√1 − (2𝜂 + 𝛽)2. The
steady state (𝑟, 𝑟) of (1) is locally asymptotically stable for 𝜏 < 𝜏0
and unstable for 𝜏 > 𝜏0, and at 𝜏 = 𝜏0 a Hopf bifurcation
occurs.

Proof. We only need to check that 𝜏0 = 𝜏𝐼0 < 𝜏𝐼𝐼0 . Notice
that 𝜏𝐼𝐼0 = arccos(−𝛽)/√1 − 𝛽2. Moreover, the function

arccos(𝑥)/√1 − 𝑥2,𝑥 ∈ (−1, 1) is decreasing. As arccos(−𝛽) >
arccos(𝛽) we obtain𝜏𝐼𝐼0 = arccos (−𝛽)√1 − 𝛽2 > arccos (𝛽)√1 − 𝛽2 > arccos (2𝜂 + 𝛽)√1 − (2𝜂 + 𝛽)2= 𝜏𝐼0 . (16)

For the reference values of parameters for 𝑟 ≈ 0.4115 we
obtain 𝛽 ≈ 0.02787 and 𝜂 ≈ 0.05418. Considering 𝑊𝐼 we
obtain 𝜔𝐼0 ≈ 0.9907 and 𝜏𝐼0 ≈ 1.4476. For 𝑊𝐼𝐼 we have 𝜔𝐼𝐼0 ≈0.9996 and 𝜏𝐼𝐼0 = arccos(−𝛽)/√1 − 𝛽2 ≈ 1.5993.

Hence, we study the bifurcation at 𝜏0 = 𝜏𝐼0 and corre-
sponding 𝜔0 = √1 − (2𝜂 + 𝛽)2. Let us denote 𝛽1 = 2𝜂 + 𝛽
to shorten the notation.Therefore, 𝜔0 = √1 − 𝛽21 . Notice that
from the form of𝑊𝐼 we obtain 𝑖𝜔0 + 𝑒−𝑖𝜔0𝜏0 = 𝛽1.

In the following, we base on the ideas presented in [25].
We know that 𝜆 = 𝑖𝜔0 is a purely imaginary eigenvalue of the
infinitesimal generator 𝐴 for 𝜏 = 𝜏0 if there exists a vector
p ∈ C2 such that Δ(𝑖𝜔0, 𝜏0)p = 0 and then Φ(ℎ) = 𝑒𝑖𝜔0ℎp is
an eigenvector for𝐴 at 𝜏0. Moreover, 𝑖𝜔0 is also an eigenvalue
for the adjoint operator 𝐴∗ for 𝜏 = 𝜏0 and Ψ(ℎ) = q𝑒𝑖𝜔0ℎ is
an eigenvector, where qΔ(𝑖𝜔0, 𝜏0) = 0. In the considered case,
we are able to choose q such that q𝑑1Δ(𝑖𝜔0, 𝜏0)p = 1, where𝑑1 is the derivative with respect to the first variable, here 𝜆.

When looking for p = (𝑎, 𝑏)𝑇 we obtain
Δ (𝜆, 𝜏) p = (𝜆 + exp (−𝜆𝜏) − 𝜂 − (𝛽 + 𝜂)− (𝛽 + 𝜂) 𝜆 + exp (−𝜆𝜏) − 𝜂)⋅ (𝑎𝑏) = ( 𝜂 + 𝛽 − (𝜂 + 𝛽)− (𝜂 + 𝛽) 𝜂 + 𝛽 ) ⋅ (𝑎𝑏)= (0, 0)𝑇 ,

(17)

and therefore (𝛽 + 𝜂) 𝑎 − (𝛽 + 𝜂) 𝑏 = 0. (18)

Clearly, 𝑎 = 𝑏 and we can choose p = (1, 1)𝑇. Hence, Φ(ℎ) =𝑒𝑖𝜔0ℎ(1, 1)𝑇 is the eigenvector for the eigenvalue 𝑖𝜔0.
Next, we need to find a vector q that satisfies

qΔ (𝜆, 𝜏) = (𝑎, 𝑏) ⋅ ( 𝜂 + 𝛽 − (𝜂 + 𝛽)− (𝜂 + 𝛽) 𝜂 + 𝛽 ) = (0, 0) , (19)
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whichmeans that coordinates of q satisfy the same relation as
for p, that is, 𝑎 = 𝑏. Next, calculating𝑑1Δ (𝑖𝜔0, 𝜏0)= (1 − 𝜏0 exp (−𝑖𝜔0𝜏0) 00 1 − 𝜏0 exp (−𝑖𝜔0𝜏0)) (20)

we obtain 2𝑎(1 − 𝜏0 exp(−𝑖𝜔0𝜏0)) = 1, that is, 𝑎 = 1/2(1 +𝜏0(𝑖𝜔0 − 𝛽1)), and eventually𝑎 = 12 1 − 𝜏0𝛽1 − 𝑖𝜔0𝜏0(1 − 𝜏0𝛽1)2 + 𝜔20𝜏20 . (21)

The type of the studied bifurcation is determined by a
coefficient𝜇2 of the third term inTaylor expansion of an orbit.
This coefficient reads𝜇2 = Re (𝑐)

Re (q𝑑2Δ (𝑖𝜔0, 𝜏0) p) , (22)

where 𝑑2 denotes a first derivative with respect to the second
variable 𝜏, while 𝑐 = 𝑐𝐼 + 𝑐𝐼𝐼 + 𝑐𝐼𝐼𝐼, and𝑐𝐼 = 12q𝑑31𝐺 (0, 𝜏0) (Φ,Φ,Φ) ,𝑐𝐼𝐼 = q𝑑21𝐺 (0, 𝜏0) (Ψ1, Φ) ,𝑐𝐼𝐼𝐼 = 12q𝑑21𝐺 (0, 𝜏0) (Ψ2, Φ) , (23)

where 𝑑𝑖1, 𝑖 = 2, 3, denotes 𝑖th derivative with respect to the
first variable,Ψ1(ℎ) = (Δ(0, 𝜏0))−1𝑑21𝐺(0, 𝜏0)(Φ,Φ) (in factΨ1
is a constant function as it does not depend on ℎ), andΨ2(ℎ) =𝑒2𝑖𝜔0ℎ(Δ(2𝑖𝜔0, 𝜏0))−1𝑑21𝐺(0, 𝜏0)(Φ,Φ).

If 𝜇2 > 0, then the bifurcation is supercritical; that is,
periodic solutions appear for 𝜏 > 𝜏0 and are stable in such
a case. If 𝜇2 < 0, then the bifurcation is subcritical: periodic
solutions exist for 𝜏 < 𝜏0, and as the steady state is stable in
this case, periodic orbits are necessarily unstable.

First, we calculate the denominator of 𝜇2. We have𝑑2Δ (𝑖𝜔0, 𝜏0)= (−𝑖𝜔0 exp (−𝑖𝜔0𝜏0) 00 −𝑖𝜔0 exp (−𝑖𝜔0𝜏0))= (−𝜔20 − 𝑖𝜔0𝛽1 00 −𝜔20 − 𝑖𝜔0𝛽1) ,
q ⋅ 𝑑2Δ (𝑖𝜔0, 𝜏0) ⋅ p = −2𝑎 (𝜔20 + 𝑖𝜔0𝛽1) ,

(24)

and we easily check that the real part of this expression is
equal to −𝜔20/((1 − 𝜏0𝛽1)2 + 𝜔20𝜏20 ) < 0.

Next, we would like to calculate the numerator of 𝜇2. To
this end, we need to calculate the derivatives of the nonlinear
part 𝐺 necessary to calculate 𝑐, and we omit bar in the

notation 𝑟. Denoting by 𝑢, V, and 𝑤 test functions from
C([−𝜏, 0],R2), we obtain𝑑1𝐺1 (𝑥𝑡, 𝑦𝑡) (𝑢) = ((𝑦 (𝑡) + 𝑟) 𝐹𝑥 (𝑥 (𝑡) , 𝑦 (𝑡)) − 𝜂)⋅ 𝑢1 (0) + (𝐹 (𝑥 (𝑡) , 𝑦 (𝑡))+ (𝑦 (𝑡) + 𝑟) 𝐹𝑦 (𝑥 (𝑡) , 𝑦 (𝑡)) − 𝛽 − 𝜂) 𝑢2 (0) ,𝑑1𝐺2 (𝑥𝑡, 𝑦𝑡) (𝑢) = (𝐹 (𝑥 (𝑡) , 𝑦 (𝑡))+ (𝑥 (𝑡) + 𝑟) 𝐹𝑥 (𝑥 (𝑡) , 𝑦 (𝑡)) − 𝛽 − 𝜂) 𝑢1 (0)+ ((𝑥 (𝑡) + 𝑟) 𝐹𝑦 (𝑥 (𝑡) , 𝑦 (𝑡)) − 𝜂) 𝑢2 (0) ,𝑑21𝐺1 (𝑥𝑡, 𝑦𝑡) (𝑢, V) = (𝑦 (𝑡 + 𝑟) 𝐹𝑥𝑥 (𝑥 (𝑡) , 𝑦 (𝑡)))⋅ 𝑢1 (0) V1 (0) + (𝐹𝑥 (𝑥 (𝑡) , 𝑦 (𝑡))+ (𝑦 (𝑡) + 𝑟) 𝐹𝑥𝑦 (𝑥 (𝑡) , 𝑦 (𝑡))) (𝑢1 (0) V2 (0)+ 𝑢2 (0) V1 (0)) + (2𝐹𝑦 (𝑥 (𝑡) , 𝑦 (𝑡))+ (𝑦 (𝑡) + 𝑟) 𝐹𝑦𝑦 (𝑥 (𝑡) , 𝑦 (𝑡))) 𝑢2 (0) V2 (0) ,𝑑21𝐺2 (𝑥𝑡, 𝑦𝑡) (𝑢, V) = (2𝐹𝑥 (𝑥 (𝑡) , 𝑦 (𝑡))+ (𝑥 (𝑡) + 𝑟) 𝐹𝑥𝑥 (𝑥 (𝑡) , 𝑦 (𝑡))) 𝑢1 (0) V1 (0)+ (𝐹𝑦 (𝑥 (𝑡) , 𝑦 (𝑡)) + (𝑥 (𝑡) + 𝑟) 𝐹𝑥𝑦 (𝑥 (𝑡) , 𝑦 (𝑡)))⋅ (𝑢1 (0) V2 (0) + 𝑢2 (0) V1 (0))+ ((𝑥 (𝑡) + 𝑟) 𝐹𝑦𝑦 (𝑥 (𝑡) , 𝑦 (𝑡))) 𝑢2 (0) V2 (0) ,𝑑31𝐺1 (𝑥𝑡, 𝑦𝑡) (𝑢, V, 𝑤)= ((𝑦 (𝑡) + 𝑟) 𝐹𝑥𝑥𝑥 (𝑥 (𝑡) , 𝑦 (𝑡))) 𝑢1 (0) V1 (0) 𝑤1 (0)+ (𝐹𝑥𝑥 (𝑥 (𝑡) , 𝑦 (𝑡))+ (𝑦 (𝑡) + 𝑟) 𝐹𝑥𝑥𝑦 (𝑥 (𝑡) , 𝑦 (𝑡)))⋅ (𝑢1 (0) V1 (0) 𝑤2 (0) + 𝑢1 (0) V2 (0) 𝑤1 (0)+ 𝑢2 (0) V1 (0) 𝑤1 (0)) + (2𝐹𝑥𝑦 (𝑥 (𝑡) , 𝑦 (𝑡))+ (𝑦 (𝑡) + 𝑟) 𝐹𝑥𝑦𝑦 (𝑥 (𝑡) , 𝑦 (𝑡))) (𝑢1 (0) V2 (0) 𝑤2 (0)+ 𝑢2 (0) V1 (0) 𝑤2 (0) + 𝑢2 (0) V2 (0) 𝑤1 (0))+ (3𝐹𝑦𝑦 (𝑥 (𝑡) , 𝑦 (𝑡))+ (𝑦 (𝑡) + 𝑟) 𝐹𝑦𝑦𝑦 (𝑥 (𝑡) , 𝑦 (𝑡))) 𝑢2 (0) V2 (0) 𝑤2 (0) ,𝑑31𝐺2 (𝑥𝑡, 𝑦𝑡) (𝑢, V, 𝑤) = (3𝐹𝑥𝑥 (𝑥 (𝑡) , 𝑦 (𝑡))+ (𝑥 (𝑡) + 𝑟) 𝐹𝑥𝑥𝑥 (𝑥 (𝑡) , 𝑦 (𝑡))) 𝑢1 (0) V1 (0) 𝑤1 (0)+ (2𝐹𝑥𝑦 (𝑥 (𝑡) , 𝑦 (𝑡))



Complexity 7+ (𝑥 (𝑡) + 𝑟) 𝐹𝑥𝑥𝑦 (𝑥 (𝑡) , 𝑦 (𝑡))) (𝑢1 (0) V1 (0) 𝑤2 (0)+ 𝑢1 (0) V2 (0) 𝑤1 (0) + 𝑢2 (0) V1 (0) 𝑤1 (0))+ (𝐹𝑦𝑦 (𝑥 (𝑡) , 𝑦 (𝑡))+ (𝑥 (𝑡) + 𝑟) 𝐹𝑥𝑦𝑦 (𝑥 (𝑡) , 𝑦 (𝑡))) (𝑢1 (0) V2 (0) 𝑤2 (0)+ 𝑢2 (0) V1 (0) 𝑤2 (0) + 𝑢2 (0) V2 (0) 𝑤1 (0))+ ((𝑥 (𝑡) + 𝑟) 𝐹𝑦𝑦𝑦 (𝑥 (𝑡) , 𝑦 (𝑡))) 𝑢2 (0) V2 (0) 𝑤2 (0) .
(25)

Evaluating the second and third derivative at (0, 0) we obtain𝑑21𝐺1 (𝑢, V) = 2𝜖𝑟3(1 + 𝑟4)3 ((1 − 3𝑟4) 𝑢1 (0) V1 (0) + (3− 𝑟4) (𝑢1 (0) V2 (0) + 𝑢2 (0) V1 (0)) + (3 − 𝑟4) 𝑢2 (0)⋅ V2 (0)) ,𝑑21𝐺2 (𝑢, V) = 2𝜖𝑟3(1 + 𝑟4)3 ((3 − 𝑟4) 𝑢1 (0) V1 (0) + (3− 𝑟4) (𝑢1 (0) V2 (0) + 𝑢2 (0) V1 (0)) + (1 − 3𝑟4)⋅ 𝑢2 (0) V2 (0)) ,𝑑31𝐺1 (𝑢, V, 𝑤) = 2𝜖𝑟2(1 + 𝑟4)4 (12𝑟4 (𝑟4 − 1) 𝑢1 (0) V1 (0)⋅ 𝑤1 (0) + 3 (1 − 6𝑟4 + 𝑟8) (𝑢1 (0) V1 (0) 𝑤2 (0)+ 𝑢1 (0) V2 (0) 𝑤1 (0) + 𝑢2 (0) V1 (0) 𝑤1 (0)) + 2 (3− 8𝑟4 + 𝑟8) (𝑢1 (0) V2 (0) 𝑤2 (0)+ 𝑢2 (0) V1 (0) 𝑤2 (0) + 𝑢2 (0) V2 (0) 𝑤1 (0)) + 3 (1− 6𝑟4 + 𝑟8) 𝑢2 (0) V2 (0) 𝑤2 (0)) ,𝑑31𝐺2 (𝑢, V, 𝑤) = 2𝜖𝑟2(1 + 𝑟4)4 (3 (1 − 6𝑟4 + 𝑟8) 𝑢1 (0)⋅ V1 (0) 𝑤1 (0) + 2 (3 − 8𝑟4 + 𝑟8)⋅ (𝑢1 (0) V1 (0) 𝑤2 (0) + 𝑢1 (0) V2 (0) 𝑤1 (0)+ 𝑢2 (0) V1 (0) 𝑤1 (0)) + 3 (1 − 6𝑟4 + 𝑟8)⋅ (𝑢1 (0) V2 (0) 𝑤2 (0) + 𝑢2 (0) V1 (0) 𝑤2 (0)+ 𝑢2 (0) V2 (0) 𝑤1 (0)) + 12𝑟4 (𝑟4 − 1) 𝑢2 (0) V2 (0)⋅ 𝑤2 (0)) ,

(26)

where 𝑑𝑗1𝐺𝑖(0, 0), 𝑖 = 1, 2, 𝑗 = 2, 3, is denoted by 𝑑𝑗1𝐺𝑖, to
shorten the notation.

Using the formula above, we calculate𝑐𝐼 = 12q ⋅ 𝑑31𝐺(Φ,Φ,Φ)
= 12 (𝑎, 𝑎) ⋅ (12𝜖𝑟2 (5𝑟8 − 22𝑟4 + 5)(1 + 𝑟4)412𝜖𝑟2 (5𝑟8 − 22𝑟4 + 5)(1 + 𝑟4)4 )
= 12𝜖𝑟2 (5𝑟8 − 22𝑟4 + 5)(1 + 𝑟4)4 𝑎.

(27)

To calculate 𝑐𝐼𝐼 we need to evaluate (Δ(0, 𝜏0))−1. We have

(Δ (0, 𝜏0))−1 = 1(1 + 𝛽) (1 − 𝛽1) (1 − 𝜂 𝜂 + 𝛽𝜂 + 𝛽 1 − 𝜂) . (28)

Moreover,

𝑑21𝐺(Φ,Φ) = (4𝜖𝑟3 (5 − 3𝑟4)(1 + 𝑟4)34𝜖𝑟3 (5 − 3𝑟4)(1 + 𝑟4)3 ), (29)

and therefore Ψ1 = (Δ (0, 𝜏0))−1 𝑑21𝐺(Φ,Φ)
= 4𝜖𝑟3 (5 − 3𝑟4)(1 + 𝑟4)3 (1 − 𝛽1) (11) . (30)

Finally,𝑐𝐼𝐼 = q ⋅ 𝑑21𝐺 (Ψ1, Φ)
= 4𝜖𝑟3 (5 − 3𝑟4)(1 + 𝑟4)3 (1 − 𝛽1) (𝑢, 𝑢) ⋅ (4𝜖𝑟3 (5 − 3𝑟4)(1 + 𝑟4)34𝜖𝑟3 (5 − 3𝑟4)(1 + 𝑟4)3 )
= 32𝜖2𝑟6 (5 − 3𝑟4)2(1 + 𝑟4)6 (1 − 𝛽1)𝑢.

(31)

To obtain the last parameter 𝑐𝐼𝐼𝐼 we first need to calculate(Δ(2𝑖𝜔0, 𝜏0))−1.
Let us denote𝑀 = Δ(2𝑖𝜔0, 𝜏0) and calculate the first term

of this matrix; that is,2𝑖𝜔0 + 𝑒−2𝑖𝜔0𝜏0 − 𝜂 = 2𝑖𝜔0 + (𝛽1 − 𝑖𝜔0)2 − 𝜂= 𝛽21 − 𝜔20 − 𝜂 + 2𝑖𝜔0 (1 − 𝛽1) . (32)
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Hence,

det𝑀 = (𝛽21 − 𝜔20 − 𝜂 + 2𝑖𝜔0 (1 − 𝛽1))2 − (𝜂 + 𝛽)2= (𝛽21 − 𝜔20 + 𝛽 + 2𝑖𝜔0 (1 − 𝛽1))⋅ (𝛽21 − 𝜔20 − 𝛽1 + 2𝑖𝜔0 (1 − 𝛽1)) ,𝑀−1 = 1
det𝑀

⋅ (𝛽21 − 𝜔20 − 𝜂 + 2𝑖𝜔0 (1 − 𝛽1) 𝜂 + 𝛽𝜂 + 𝛽 𝛽21 − 𝜔20 − 𝜂 + 2𝑖𝜔0 (1 − 𝛽1)) .
(33)

Next we calculate Ψ2(ℎ) = 𝑒2𝑖𝜔0ℎ𝑉, where
𝑉 = 𝑀−1𝑑21𝐺 (Φ,Φ) = 𝑀−1(4𝜖𝑟3 (5 − 3𝑟4)(1 + 𝑟4)34𝜖𝑟3 (5 − 3𝑟4)(1 + 𝑟4)3 )

= (4𝜖𝑟3 (5 − 3𝑟4) / (1 + 𝑟4)3) (𝛽21 − 𝜔20 + 𝛽 + 2𝑖𝜔0 (1 − 𝛽1))
det𝑀

⋅ (11) = 4𝜖𝑟3 (5 − 3𝑟4)(1 + 𝑟4)3 (𝛽21 − 𝜔20 − 𝛽1 + 2𝑖𝜔0 (1 − 𝛽1)) (11) .
(34)

Finally, we evaluate𝑑21𝐺(Ψ2, Φ)
= 4𝜖𝑟3 (5 − 3𝑟4)(1 + 𝑟4)3 (𝛽21 − 𝜔20 − 𝛽1 + 2𝑖𝜔0 (1 − 𝛽1))
⋅ (4𝜖𝑟3 (5 − 3𝑟4)(1 + 𝑟4)34𝜖𝑟3 (5 − 3𝑟4)(1 + 𝑟4)3 )
= 16𝜖2𝑟6 (5 − 3𝑟4)2(1 + 𝑟4)6 (𝛽21 − 𝜔20 − 𝛽1 + 2𝑖𝜔0 (1 − 𝛽1)) (11) ,

(35)

and therefore𝑐𝐼𝐼𝐼 = 12 (𝑎, 𝑎) ⋅ 𝑑21𝐺(Ψ2, Φ)
= 16𝜖2𝑟6 (5 − 3𝑟4)2(1 + 𝑟4)6 (𝛽21 − 𝜔20 − 𝛽1 + 2𝑖𝜔0 (1 − 𝛽1))𝑎. (36)

Now, we are in a position to check the sign of Re 𝑐, where𝑐 = 𝑐𝐼 + 𝑐𝐼𝐼 + 𝑐𝐼𝐼𝐼. Clearly,𝑐 = 4𝜖𝑟2(1 + 𝑟4)4 (3 (5𝑟8 − 22𝑟4 + 5)
+ 8𝜖𝑟4 (5 − 3𝑟4)2(1 + 𝑟4)2 (1 − 𝛽1)+ 4𝜖𝑟4 (5 − 3𝑟4)2 (𝛽21 − 𝜔20 − 𝛽1 − 2𝑖𝜔0 (1 − 𝛽1))(1 + 𝑟4)2 ((𝛽21 − 𝜔20 − 𝛽1)2 + 4𝜔20 (1 − 𝛽1)2) )
⋅ 𝑎,

(37)

and therefore(1 + 𝑟4)44𝜖𝑟2 Re 𝑐 = (3 (5𝑟8 − 22𝑟4 + 5)
+ 8𝜖𝑟4 (5 − 3𝑟4)2(1 + 𝑟4)2 (1 − 𝛽1)+ 4𝜖𝑟4 (5 − 3𝑟4)2 (𝛽21 − 𝜔20 − 𝛽1)(1 + 𝑟4)2 ((𝛽21 − 𝜔20 − 𝛽1)2 + 4𝜔20 (1 − 𝛽1)2))⋅ Re 𝑎
+ 8𝜔0𝜖𝑟4 (5 − 3𝑟4)2 (1 − 𝛽1)(1 + 𝑟4)2 ((𝛽21 − 𝜔20 − 𝛽1)2 + 4𝜔20 (1 − 𝛽1)2) Im 𝑎,

(38)

where Re 𝑎 = (1 − 𝜏0𝛽1)/2((1 − 𝜏0𝛽1)2 + 𝜔20𝜏20 ) and Im 𝑎 =−𝜔0𝜏0/2((1 − 𝜏0𝛽1)2 + 𝜔20𝜏20 ).
Notice that, for small 𝜖, the first term of the expression

above is dominating, and therefore in the range of parameters
we are interested in the fact that, as 𝑟 < 0.5, the first term
is positive and of the order of units, suggesting that Re 𝑐 >0. This implies that the bifurcation we study is subcritical,
which therefore yields instability of appearing periodic orbits.
However, in general it is necessary to calculate the exact value
of Re 𝑐, as it is difficult to guess its sign.

Now, we calculate Re 𝑐 for the reference parameters with𝜖 = 1. Let us recall that 𝑟 = 0.4115, 𝛽 = 0.02787, 𝜂 = 0.05418,𝜔0 = 0.9907, 𝜏0 = 1.4476, and moreover 𝛽1 = 2𝜂 + 𝛽 =0.13623. We obtain Re 𝑎 ≈ 0.1486 and Im 𝑎 ≈ −0.2655.
Consecutive terms in the brackets are equal to 13.11988735,6.060143781, and −0.6953365688, while the last fraction is1.082692850. Eventually,

Re 𝑐 ≈ 0.6049083964 (18.48469456 ⋅ 0.1486− 1.082692850 ⋅ 0.2655) ≈ 1.487693962 > 0, (39)

which means that, in our reference case, the bifurcation is
subcritical.

In order to complement the analysis above, we can
also show that in the reference case the second bifurcation
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appearing for 𝜏𝐼𝐼0 is subcritical as well. We again denote 𝜏𝐼𝐼0
by 𝜏0, to shorten the notation. Now, the pair 𝜔0, 𝜏0 satisfies𝑖𝜔0 + 𝛽 + exp(−𝑖𝜔0𝜏0) = 0 yielding 𝑖𝜔0 + exp(−𝑖𝜔0𝜏0) = −𝛽,
and from this relation we obtain the vector p = (1, −1)𝑇.
Hence, Φ(ℎ) = exp(𝑖𝜔0ℎ)(1, −1)𝑇 is the eigenvector for the
eigenvalue 𝑖𝜔0. Next, we find q such that q𝑑1Δ(𝑖𝜔0, 𝜏0)p = 1.
As before, coordinates of q satisfies the same relation as for p,
that is, q = (𝑎, 𝑎), 𝑎 == (1/2)((1 + 𝜏0𝛽 − 𝑖𝜔0𝜏0)/((1 + 𝜏0𝛽)2 +𝜔20𝜏20 )). Calculating the denominator of 𝜇2 we obtain

𝑑2Δ (𝑖𝜔0, 𝜏0) = (−𝜔20 + 𝑖𝜔0𝛽 00 −𝜔20 + 𝑖𝜔0𝛽) , (40)

next

q ⋅ 𝑑2Δ (𝑖𝜔0, 𝜏0) ⋅ p = 2𝑎 (−𝜔20 + 𝑖𝜔0𝛽)= 𝑖𝜔0𝜏0 − (𝜏0𝛽 + 1)𝜔20𝜏20 + (𝜏0𝛽 + 1)2 (𝜔20 − 𝑖𝜔0𝛽)
= −𝜔0 + 𝑖 (𝛽 + 𝜏0 (𝛽2 + 𝜔20))𝜔20𝜏20 + (𝜏0𝛽 + 1)2 𝜔0,

(41)

and we easily see that the real part of this expression is
negative.

Next, we calculate𝑐𝐼 = 12q ⋅ 𝑑31𝐺(Φ,Φ,Φ)
= 12 (𝑎, −𝑎) ⋅ ( 12𝜖𝑟2(1 + 𝑟4)2− 12𝜖𝑟2(1 + 𝑟4)2) = 12𝜖𝑟2(1 + 𝑟4)2 𝑎,

𝑐𝐼𝐼 = − 4𝜖𝑟3(1 + 𝑟4)2 1(1 − 𝛽1) (𝑎, −𝑎) ⋅ (− 4𝜖𝑟3(1 + 𝑟4)24𝜖𝑟3(1 + 𝑟4)2 )
= (4𝜖𝑟3)2(1 + 𝑟4)4 2𝑎(1 − 𝛽1) ,

𝑐𝐼𝐼𝐼 = (4𝑟3𝜖)2 𝑢(1 + 𝑟4)4 (2𝑖𝜔0 (𝛽 + 1) + 𝛽2 − 𝜔20 − 𝛽1) .

(42)

Eventually,

𝑐 = 4𝜖𝑟2(1 + 𝑟4)4 (3 (1 + 𝑟4)2 + 8𝜖𝑟41 − 𝛽1+ 4𝜖𝑟4 (𝛽2 − 𝜔20 − 𝛽1 − 2𝑖𝜔0 (𝛽 + 1))4𝜔20 (𝛽 + 1)2 + (𝛽2 − 𝜔20𝛽1)2 )𝑎, (43)

and hence,

sign Re 𝑐 = sign((1 + 𝜏0𝛽)(3 (1 + 𝑟4)2 + 8𝜖𝑟41 − 𝛽1+ 4𝜖𝑟4 (𝛽2 − 𝜔20 − 𝛽1)4𝜔20 (𝛽 + 1)2 + (𝛽2 − 𝜔20 − 𝛽1)2)− 8𝜖𝑟2𝜏0𝜔20 (𝛽 + 1)4𝜔20 (𝛽 + 1)2 + (𝛽2 − 𝜔20 − 𝛽1)2) .
(44)

For our reference values the expression in the brackets equals3.146913951 > 0.
At the end we sum up the results of the Hopf bifurcation

analysis in the following corollary.

Corollary 5. For reference parameter values the system
described by (1) undergoes two subsequent subcritical Hopf
bifurcations.

4. Numerical Simulations

In order to simulate the decision-making process, we assume
a transient change in one of the inputs to the nodes; that is,
we start from the resting state of the network and then solve
(1) with 𝐼2(𝑡) ≡ 𝐼 and

𝐼1 (𝑡) = {{{𝐼 + 𝜎, for 0 ≤ 𝑡 ≤ 𝑇stim,𝐼, for 𝑡 ≥ 𝑇stim, (45)

where 𝑇stim is the stimulation duration time. In a properly
working decision-making network, we should expect that
the bigger the value of 𝜎 is, that is, the stimulus, the faster
the decision in favor of population 1 according to the
psychometric function (2) will be.

In all the numerical experiments, we have chosen 𝜖 = 1
and 𝛼 = 3 (for this value the time scale 𝜏𝑟 allows to reproduce
delays present in real systems). Note that the qualitative
dynamics of the system described by (1) does not depend
on 𝛼. Moreover, we choose a reference value 𝐼 = 0.4 to
reflect that there is a certain baseline input to the network.
Other parameter values fixed across all simulations were 𝛽 =100, 𝛾 = 0.001, and 𝑇stim = 0.5 s. We perform numerical
simulations of the model with respect to the magnitude of
delay 𝜏 and stimulus strength 𝜎. For all of the simulations
we use the built-in MATLAB delayed differential equation
solver dde23 [28] with lowered default tolerances (RelTol and
AbsTol equal to 1𝑒 − 8). We performed the simulations on the
Neuroscience Gateway platform [29].

One important aspect of the considered (1) is that we can-
not guarantee the nonnegativity of solutions as the delayed
self-inhibition termhas a negative sign. It is obvious, however,
that the firing rate cannot have a negative value and, in order
for the model to be physiologically valid, we need to impose
a barrier for the firing rates at zero. Thus, in the simulations,
whenever one of the coordinates reaches value of zero, we
stop the simulation and solve the reduced system with one
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Figure 3: Comparison of the model solutions ((a); (1)) together with the corresponding psychometric function values ((b); (2) and (3)) for
different values of time delay and stimulus strength 𝜎 = 0.05. For small delays, that is, in the stability regime, we observe vanishing oscillations
with no certain decision being made (𝑝1 < 1). Interestingly, for 𝜏 = 0.6 which is above critical destabilizing delay value we observe multiple
preference switches (middle column). For 𝜏 = 0.9 certain decision is being made (𝑝1 = 1).
of the coordinates equal to zero until its derivative becomes
positive again; that is, its delayed value becomes lower than 𝐼.

We start our numerical experiments from simulations in
which stimulus of a fixed magnitude 𝜎 = 0.05 is applied to
the networkwith different delay 𝜏 in the self-inhibition terms.
As it can be expected from the analysis, for small delays,
that is, below the Hopf bifurcation threshold, the solutions
exhibit vanishing oscillations around the stable steady state;
see left panel in Figure 3(a). The stimulus in this particular
case is too small for any certain decision to bemade, and both
psychometric functions remain separated from the value of
1; see left panel in Figure 3(b). It is clear, however, that if the
stimuluswas stronger, then a certain decisionwould bemade,
that is, 𝑝1 would cross the threshold of 1 − 𝛾 at some point.

Interestingly, for delays above the critical value at which
first Hopf bifurcation occurs, we observe very nonintuitive
behavior; see middle panels in Figures 3(a) and 3(b). Namely,
the psychometric function value shows multiple perceptual
switches; that is, there are multiple time points in which there
is a change from 𝑝1 > 𝑝2 into 𝑝2 < 𝑝1. For even larger delays
we observe that a certain decision has beenmade for the same
stimulus of 𝜎 = 0.05magnitude that was insufficient to make

a certain decision in the case of small delays; see right panels
Figures 3(a) and 3(b).

Because of the observed nonintuitive behavior of the
psychometric function, we decided to calculate a decision
map; that is, to evaluate the psychometric function values
on the model solutions for different values of delay 𝜏 and
the stimulus strength 𝜎, see Figure 4. As expected, for delay
values below the critical Hopf bifurcation threshold, the
certainty of the decision depends directly on the strength of
the stimulus, and the networks is always able to correctly
identify that the stimulus was applied to population 1.
Interestingly, this is not the case for larger delays and we
observe that for the same value of delay above the critical first
bifurcation threshold the decision can be opposite depending
on the stimulus strength, compare Figure 4(a). Moreover,
above the bifurcation threshold we can have more than 10
transient decision switches before any certain decision is
made; compare Figure 4(b).

In Figure 5, in order to complete presentation of the
numerical experiments, we show the solution for which
decision made by the network is in favor of the population 2
instead of the population 1 to which the stimulus was applied.
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Figure 4: (a) Decision map resulting from the psychometric function evaluation on solutions to (1) for different values of time delay 𝜏 and
stimulus strengths 𝜎. Yellow regions indicate values for which certain decision is being made in favor of population 𝑟1, that is, 𝑝1 = 1 after
breaching critical 𝛾 distance first. Dark blue regions indicate values for which certain decision is being made in favor of population 2, that is,𝑝2 = 1 after breaching critical 𝛾 distance first. Values in other places are 𝑝1(𝑇) for 𝑇 = 15. (b) Number of decision switches (see a particular
example in middle panel Figure 3(b)) for different delay values 𝜏 and stimulus strengths 𝜎.
5. Discussion

In this study, wemodel perceptual decision-making in elderly
individuals. Although there is an extensive evidence that the
cognitive impairments in aging relate to the slow processing
of information [13, 16, 30, 31], the cortical mechanisms
underlying cognitive impairments in aging remain elusive.
In principle, the decision-making experiments in humans are
mostly performed in young and healthy individuals [32, 33],
which is one of the reasons behind the lack of knowledge
upon the cortical mechanisms of aging.

In order to bridge this gap, we propose to study the
influence of synaptic delays on making perceptual choices
with use of a population model of decision-making based
on a winner-take-all mechanism. In this simple model, the
network needs to make a binary choice between the two
options.The inspiration for thismodelwas a spiking neuronal
network model with a slow reverberation mechanism by
Wang [18], created to explain Shadlen and Newsome’s exper-
iments on perceptual decision-making in rhesus monkeys
[17]. Unlike Wang, we do not use simulations of stochastic
spiking neuronal networks in our study though, but we take
an analytic approach instead. This allows us to study the rich
dynamic repertoire of networks with delay and the influence
of the delay on the outcome decisions.

We achieve two main results that can contribute to
the understanding of the associations between the delayed
GABA-signaling and the cognitive impairments during
aging. Firstly, the decision-making performance is dependent
on the synaptic delays in the local inhibition. For the delays
below the critical value, we observe a clear association
between the magnitude of the stimulus and the probability
of making the correct decision (Figure 4). This result is
concordant with classic experiments on perceptual decision-
making, as typically, a monotonic psychometric curve links

the strength of the stimulus with the decision accuracy [17,
34]. However, for the synaptic delays exceeding the critical
threshold, the system falls into a new dynamical regime and
is no longer precise in making decisions. Dependent on both
the synaptic delays and the signal magnitude, it can even
achieve an accuracy of zero, by always choosing the wrong
option. As known from experiments on reversal learning
in rhesus monkeys [35] and humans [36], aging subjects
exhibit habitual behaviors and are reluctant to relearn rules.
Therefore in some cases, falling into a behavioral schema in
which the wrong decision is being taken in repetitive fashion
is possible in elderly subjects.

The second important result from our study is that, for
delay values above critical threshold, the system exhibits
ambiguity in decision-making, reflected by decision switches.
This result can account for the slow reaction times in
perceptual decision-making in the elderly [37–41]; however
the subsequent experimental validation is necessary in order
to test this hypothesis.

Our model predicts that impairment in the local inhibi-
tion in the cortex can result in the impaired decision-making.
Although GABA concentration in prefrontal cortex and per-
ceptual decision-making are both affected by aging, there is
a lack of computational models characterizing the causal link
between the two.Therefore, the model should be validated in
laboratory conditions. The prediction given by the model is
hard to test in the human cohorts because recordings from
interneurons in the cortex are invasive. However, there are
now tools in translational psychiatry thatmake this validation
viable. For instance, the decision-making quality can be
evaluated in mice in multiple experimental paradigms [19]
and that results can be than correlated with the speed of
synaptic transmission evaluated postmortem in an in vitro
experiment [42].
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Figure 5: Exemplary solution of (1) in which stimulus is being
applied to the population 1, but certain decision is being made in
favor of the population 2, that is, 𝑝2 = 1 after breaching 𝛾 distance
at some point.

One remark to make is that our model is qualitative
rather than quantitative, and the same mechanism can be
encountered at different time scales of inhibition and for
different configurations of inputs and stimuli. There are
multiple GABAergic receptors in the cortex, and they have
their own characteristic timescales. In example, the fast
mode of inhibition is related to the GABA-A receptors
[43, 44] which give synaptic delays lasting for several tens
of milliseconds (excluding the afterdepolarizations lasting
for several tens of milliseconds as well [45–49]). On the
other hand, the slowest mode of inhibition is related to the
metabotropic GABA-B receptors which have a time scale
of a few hundred milliseconds [50]. Still little is known
about the structure and functions of these receptors [51].
In practice, the local inhibition in the nodes of the cortical
network is most probably a combination of the multiple
interacting processes at different time scales. Our model
is a demonstration of the principle and does not require
specification of GABAergic receptors that lead a primary role
in the oscillatory mechanisms considered in this work.

As a summary, the model proposed in this work yields
new insights into the mechanisms of aging in cortical cir-
cuits, mediated by neurodegeneration in the local inhibitory
synapses.
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