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ARTICLE

A neuronal mechanism underlying decision-making
deficits during hyperdopaminergic states
Jeroen P.H. Verharen 1,2, Johannes W. de Jong1,3, Theresia J.M. Roelofs1, Christiaan F.M. Huffels1,

Ruud van Zessen1, Mieneke C.M. Luijendijk1, Ralph Hamelink4,5, Ingo Willuhn4,5, Hanneke E.M. den Ouden 6,

Geoffrey van der Plasse1, Roger A.H. Adan1 & Louk J.M.J. Vanderschuren2

Hyperdopaminergic states in mental disorders are associated with disruptive deficits in

decision making. However, the precise contribution of topographically distinct mesencephalic

dopamine pathways to decision-making processes remains elusive. Here we show, using a

multidisciplinary approach, how hyperactivity of ascending projections from the ventral

tegmental area (VTA) contributes to impaired flexible decision making in rats. Activation of

the VTA–nucleus accumbens pathway leads to insensitivity to loss and punishment due to

impaired processing of negative reward prediction errors. In contrast, activation of the

VTA–prefrontal cortex pathway promotes risky decision making without affecting the ability

to choose the economically most beneficial option. Together, these findings show how

malfunction of ascending VTA projections affects value-based decision making, suggesting a

potential mechanism through which increased forebrain dopamine signaling leads to aberrant

behavior, as is seen in substance abuse, mania, and after dopamine replacement therapy in

Parkinson’s disease.
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Impaired decision making can have profound negative con-
sequences, both in the short and in the long term. As such, it is
observed in a variety of mental disorders, such as mania1,2,

substance addiction3–6, and as a side effect of dopamine (DA)
replacement therapy in Parkinson’s disease7,8. Importantly, these
disorders are associated with aberrations in DAergic neuro-
transmission9,10, and DA has been implicated in decision-making
processes11–13. However, ascending DAergic projections from the
ventral mesencephalon are anatomically and functionally het-
erogeneous14–16 and the contribution of these distinct DA path-
ways to decision-making processes remains elusive.

The mesocorticolimbic system, comprising DA cells within the
ventral tegmental area (VTA) that mainly project to the nucleus
accumbens (NAc; mesoaccumbens pathway) and medial pre-
frontal cortex (mPFC; mesocortical pathway), has an important
role in value-based learning and decision making14–16. When an
experienced reward is better than expected, the firing of VTA DA
neurons increases, thereby signaling a discrepancy between
anticipated and experienced reward to downstream regions.
Conversely, when a reward does not fulfill expectations, DA
neuronal activity decreases. This pattern of DA cell activity is the
basis of reward prediction error (RPE) theory17–20, which
describes an essential mechanism through which organisms learn
to flexibly alter their behavior when the costs and benefits asso-
ciated with different courses of action shift. Although the rele-
vance of RPEs in value-based learning is widely acknowledged,
little is known about how different VTA target regions process
these DA-mediated error signals, and how this ultimately leads to
adaptations in behavior.

Here, we used projection-specific chemogenetics combined
with behavioral tasks, pharmacological interventions, computa-
tional modeling, in vivo microdialysis, and in vivo neuronal
population recordings to investigate how different ascending
VTA projections contribute to value-based decision-making
processes in the rat. Specifically, we investigated the mechanism
underlying the aberrant decision-making style that is associated
with increased DA neuron activity. We hypothesized that
hyperactivation of VTA neurons interferes with reward predic-
tion error processing, leading to impaired adaptation to reward
value dynamics. We predicted an important contribution of the
mesoaccumbens pathway in incorporating experienced reward,
loss, and punishment into future decisions, considering the
importance of the NAc in reinforcement learning and motivated
behaviors21–23, and a modulatory role for the mesocortical
pathway in value-based choice behavior, given its involvement in
executive functions, such as decision making and behavioral
flexibility24,25. Furthermore, we tested an explicit prediction
based on a neurocomputational model of the DA system, in
which impaired negative RPE processing is involved in learning
deficits during DA replacement therapy7,26. Our data show that
activation of the VTA–NAc pathway reduces the sensitivity to
loss and punishment as a result of impaired processing of nega-
tive RPEs, whereas activation of the VTA–mPFC pathway pro-
motes risky decision making, but only when this entails no loss of
reward. Together, these findings shed light on the behavioral
mechanisms by which increased activity of distinct ascending DA
projections contributes to deficits in value-based decision-making
processes.

Results
Dopaminomimetic drugs impair serial reversal learning. To
test the role of DA in flexible value-based decision making, rats
were tested in a serial reversal learning task following systemic
treatment with the DA neurotransmission enhancers cocaine and
D-amphetamine. A reversal learning session (Fig. 1a) comprised

150 trials, and started with the illumination of two nose poke
holes in an operant conditioning chamber. One of these was
randomly assigned as active, and responding in this hole resulted
in sucrose delivery under a fixed ratio (FR) 1 schedule of rein-
forcement. When animals had made five consecutive correct
responses, the contingencies reversed so that the previously
inactive hole now became active, and vice versa.

Injection of either drug did not affect the number of trials
needed to reach the criterion of a series of five consecutive correct
responses (Fig. 1b, left panel). However, the number of reversals
achieved in the entire session was significantly reduced in the
drug-treated animals (Fig. 1b, right panel, and Supplementary
Fig. 1a). Thus, cocaine and D-amphetamine impaired task
performance, but this effect did not appear until the moment of
first reversal. We reasoned that this pre- and post-reversal
segregation in drug effects on task performance is related to the
structure of the task (Fig. 1a). That is, after every reversal, the
value of the outcome of responding in the previously active hole
declines and, conversely, the value associated with responding in
the previously inactive hole increases. Accordingly, this task
entails a combination of devaluation and revaluation mechanisms
following reversals.

To understand the nature of the drug-induced deficit in
reversal learning performance, we analyzed the animals’ behavior
in more detail. Perseverative responding, i.e., the average number
of responses in the previously active hole directly after a reversal,
was not altered after cocaine or D-amphetamine treatment
(Fig. 1c). Lose-stay behavior, i.e. the percentage of (unrewarded)
trials in the inactive nose poke hole followed by a response in the
(still) inactive hole, was also not affected (Fig. 1d, left panel).
However, win-stay behavior, i.e., the percentage of responses in
the active nose poke hole after which the animal responded in
that same active hole, was significantly decreased after treatment
with cocaine or D-amphetamine (Fig. 1d, right panel). This drug-
induced reduction in win-stay behavior indicates that even
though the animals received a reward after responding in the
active nose poke hole, they next sampled the inactive hole more
often than after saline treatment. Importantly, win-stay behavior
was only reduced after reversal, indicating that behavioral
impairments were not the result of a general decline in task
performance or sensitivity to reward.

Overall, the effects in the reversal learning task indicate that
increased DA signaling after cocaine or D-amphetamine treat-
ment did not impair the animals’ ability to find the active nose
poke hole at task initiation, hence to assign positive value to an
action. Yet, when the values of (the outcome of) two similar
actions (that is, responding in a nose poke hole) changed relative
to each other, drug-treated animals were impaired in adjusting
behavior, perhaps as a result of a valuation deficit. This suggests
that treatment with these drugs disrupted the process of
integrating recent wins or losses (i.e., a revaluation or a
devaluation impairment, respectively) in decisions.

To gain insight into the mechanisms underlying impaired
reversal learning, we modeled the behavior of each subject by
fitting the data to a computational reinforcement learning model
(Fig. 1e, f and Supplementary Table 1). We used an extended
version of the Rescorla–Wagner model27,28, using two different
learning rates, ɑwin and ɑloss, describing the animal’s ability to
learn from wins and losses, respectively29. Such a model-based
approach investigates task performance based on an extended
history of trial outcomes, and not merely the most recent
outcome, such as win- and lose-stay measures do, providing a
more in-depth analysis of the learning capacity of the animals.

When comparing the Rescorla–Wagner model coefficients of
the animals after saline with those after cocaine and D-
amphetamine treatment, we observed a strong decrease in
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parameter ɑloss without affecting ɑwin or choice stochasticity
factor β (Fig. 1g, h, Supplementary Fig. 1b, c and Supplementary
Table 2). This indicates that cocaine and D-amphetamine
interfere with learning from negative, but not positive, RPEs.

Mesoaccumbens pathway activation impairs reversal learning.
In view of the role of DA in RPE signaling, we hypothesized that
cocaine and D-amphetamine interfered with learning from losses
by overactivation of ascending midbrain DA projections, thereby
disrupting negative RPEs. This same mechanism has been
hypothesized to be involved in the DA dysregulation syndrome in
medicated Parkinson’s disease patients7,30. Such an overactivation
may lead to an inability to devalue stimuli and/or their associated
outcomes, resulting in choice behavior that is not optimally value
based. Specifically, we were interested in the contribution of
projections from the VTA to the NAc and the mPFC to
impairments in reversal learning.

In order to activate neuronal subpopulations of the VTA in a
projection-specific manner, we combined a canine adeno-
associated virus retrogradely delivering Cre-recombinase
(CAV2-Cre) and a Cre-dependent viral vector encoding
hM3Dq(Gq)-DREADD fused to mCherry-fluorescent protein31

(Fig. 2a and Supplementary Fig. 2). This two-viral approach
resulted in high levels of DA specificity (80% of the transfected
neurons in the mesoaccumbens group and 72% of the transfected
neurons in the mesocortical group were positive for tyrosine
hydroxylase, Fig. 2b). To investigate whether the effects of cocaine
and D-amphetamine on reversal learning were driven by
activation of the mesoaccumbens or mesocortical pathway,

animals were injected with clozapine-N-oxide (CNO) immedi-
ately before testing in the reversal learning task.

Chemogenetic activation of the mesoaccumbens pathway
resulted in the same pattern of impairments in reversal learning
as cocaine and D-amphetamine treatment, i.e., a reduction in the
numbers of reversals achieved, without affecting trials to first
reversal criterion (Fig. 2c). This pattern was confirmed by plotting
the cumulative reversals as a function of completed trials (Fig. 2d
and Supplementary Fig. 3a). Similar to cocaine and D-
amphetamine, the performance impairment during mesoaccum-
bens activation was associated with a post-reversal (but not pre-
reversal) decrease in win-stay behavior (Fig. 2e), whereas
perseverative responding and lose-stay behavior were not altered
(Fig. 2f and Supplementary Fig. 3b). Remarkably, during
mesoaccumbens activation, both win- and lose-stay behavior
were around 50% post reversal, indicative of random choice
behavior. Indeed, the Rescorla–Wagner model fitted with a
significantly lower likelihood after mesoaccumbens activation
(Supplementary Fig. 3c), indicating that the animals’ performance
declined such that the model was less able to describe the data
compared to baseline conditions. In contrast to mesoaccumbens
activation, mesocortical activation or CNO injection in a sham-
operated control group had no effect on reversal learning.

The finding that hyperactivity in the mesoaccumbens pathway
evoked similar effects on reversal learning as cocaine and D-
amphetamine did suggest that these drugs exert their influence on
flexible value-based decision making through DA neurotransmis-
sion within the NAc. To directly test this, we performed in vivo
microdialysis in the NAc of animals that expressed Gq-DREADD
in the mesoaccumbens pathway (Fig. 2g). Administration of CNO
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increased baseline levels of DA in the NAc, as well as its
metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homo-
vanillic acid (HVA) (Fig. 2h and Supplementary Fig. 4). Next, we
infused the DA receptor antagonist α-flupenthixol into the NAc
of DREADD-treated animals prior to chemogenetic activation of

the mesoaccumbens pathway in a reversal learning test (Fig. 2i).
This dose of α-flupenthixol had no effect after systemic saline
injection, but it prevented the effect of chemogenetic activation of
the mesoaccumbens pathway on reversal learning (Fig. 2j). This
finding supports the assumption that the effects of
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mesoaccumbens hyperactivity are mediated through NAc DA
receptor stimulation.

Dopamine neuron activity during reversal learning. Consider-
ing the function of RPEs in value updating20, we tested whether
midbrain DA neurons tracked the presence of wins and losses in
the form of RPEs during reversal learning. To this aim, we
measured in vivo neuronal population activity from DA neurons
in the VTA using fiber photometry32 in TH::Cre rats (Fig. 3a and
Supplementary Movie 1).

Around the time of responding, we observed a clear two-
component RPE signal20 (Fig. 3b, c and Supplementary Fig. 5),
i.e., a ramping of DA activity towards the moment of response,
followed by an additional value component. That is, win trials
were associated with a prolonged DA peak, whereas loss trials
were characterized by a rapid decline in DA population activity
after the response was made. No such signals were observed in
animals injected with an activity-independent control fluoro-
phore (Supplementary Fig. 5).

Since mesoaccumbens hyperactivity only affected task perfor-
mance after reversal, we compared DA activity before and after
reversal (Fig. 3c, right panels). In loss trials, we observed
significantly stronger negative RPEs after the first reversal
compared to before reversal. In contrast, DA peaks during the
win trials were similar before and after the first reversal. This
supports our notion that the impairment in reversal learning
during mesoaccumbens hyperactivity was due to selective
interference with learning from negative RPE-guided feedback.

Mesoaccumbal activation impairs adapting to devaluation. To
examine whether the effects of mesoaccumbens hyperactivity on
learning from negative feedback generalizes to conditions beyond
reversal learning, we trained rats on a probabilistic discounting
task (modified from refs. 33,34). In this task, rats could choose
between responding on a ‘safe’ lever, which always produces one
sucrose pellet, or on another, ‘risky’ lever, which produces a larger
reward (i.e., three sucrose pellets) with a given probability. Within
a session, the chance of receiving the large reward after a response
on the risky lever decreases across four trial blocks—in the first
block, animals always received the large reward when pressing the
risky lever, whereas the odds of winning were reduced to 1 in 12
in the fourth block (Fig. 4a and Supplementary Fig. 6a). An
important difference with reversal learning is that in this task, a
response shift is not the best option after a loss per se—lose-stay
behavior at the risky lever may yield the same amount of sucrose
as a shift to the safe lever, depending on the odds in the trial
block. Therefore, an increase in lose-stay or decrease in win-stay
behavior does not necessarily reflect poor choice behavior.

After training, the animals showed stable discounting perfor-
mance, preferring the risky lever in the first block, and shifting

their choice towards the safe lever when the yield of the risky
lever diminished (Fig. 4b, left panel). Mesoaccumbens activation
(Fig. 4b, middle panel) decreased the choice of the risky lever in
the first block and increased choice for the risky lever in the last
block, resulting in a significantly reduced slope of the discounting
curve (Fig. 4b, middle panel, inset), and a lower percentage of
optimal choices (Fig. 4c). Importantly, the inability to discount
the value of the risky lever in the latter blocks of the task is
indicative of an inability to adapt to a declining outcome of
responding on the risky lever (Supplementary Fig. 6b). The
reduced choice for the risky lever in the first block may also be
due to a devaluation deficit, as the receipt of only one sucrose
pellet after responding on the safe lever (compared to the three-
pellet yield of responding on the risky lever) may be perceived as
a ‘loss’, since the relative value of responding on the safe lever is
lower in this block35. In contrast, mesocortical activation only
increased risk seeking in the second block, in which the yield of
responding on the safe (1 pellet) and risky (1 in 3 chance of 3
pellets) levers was equal (Fig. 4b, right panel), so that the amount
of optimal choices remained unaffected (Fig. 4c). Further analysis
of task strategy showed that lose-stay behavior at the risky lever
was increased during activation of the mesoaccumbens and
mesocortical pathways, whereas win-stay and safe-stay behavior
were unaffected (Fig. 4d and Supplementary Fig. 6c). Thus,
activation of both ascending VTA projections made animals less
prone to alter choice behavior after losses, which significantly
impaired task performance during mesoaccumbens activation.
The increase in lose-stay behavior during mesocortical activation
is the result of the preference for the risky lever in the second trial
block, but this did not result in poor choice behavior (Fig. 4c).

To test whether the effects in this task were specific to
devaluation mechanisms, we trained the animals expressing
DREADD in mesoaccumbens neurons on the same task with
increasing instead of decreasing odds of reward at the risky lever
(Fig. 4e). In this condition, mesoaccumbens activation did not
significantly change risky choice in any of the blocks (Fig. 4f),
although a modest but significant decrease was observed in
performance (i.e., a lower fraction of optimal choices; Fig. 4g)
which was caused by a higher preference for the risky lever in the
first few trials (Supplementary Fig. 6d). This could be the result of
a reduced ability of the animals to devalue the outcome of
responding on the risky lever in the initial trials of the first block.
However, since this version of the task primarily relies on
revaluation, rather than devaluation mechanisms, especially in
later blocks (Supplementary Fig. 6b), a mesoaccumbens
stimulation-induced devaluation deficit caused no further
changes in behavior. Indeed, win-stay and lose-stay behavior
were unaffected by mesoaccumbens activation (Fig. 4g).

In sum, the effects of chemogenetic activation in the
probabilistic discounting task support our hypothesis that

Fig. 2 Chemogenetic activation of the mesoaccumbens, but not mesocortical, pathway mimicked the effects of cocaine and D-amphetamine on reversal
learning. a Experimental design. b (Left panel) Representative histology images showing coronal sections stained for tyrosine hydroxylase (left), DREADD-
mCherry (middle), and an overlay (right). Scale bar, 500 μm. (Right panel) Co-staining of mCherry with tyrosine hydroxylase, showing the percentage of
DREADD-transfected neurons that is dopaminergic (mean± s.d.). Data from n= 9 (mesoaccumbens), n= 8 (mesocortical) animals. c–f Chemogenetic
mesoaccumbens stimulation mimicked the effects of cocaine and D-amphetamine on reversal learning. All data: n= 17 control, n= 17 mesoaccumbens, n=
16 mesocortical group; ****p< 0.0001 in post-hoc test. See Supplementary Table 3. g Microdialysis was used to measure extracellular concentrations of
DA and its metabolites in the NAc after chemogenetic mesoaccumbens stimulation. Scale bar, 500 μm. h NAc levels of DA and its metabolites were
elevated 1 h after an i.p. CNO injection in DREADD-infected animals compared to controls (post-hoc tests, DA, p= 0.0002; DOPAC, p< 0.0001; HVA,
p= 0.0008; ***p<0.001, ****p<0.0001; see also Supplementary Fig. 4). i Prior to reversal learning, animals received systemic CNO (or saline) for
DREADD stimulation and a microinjection with α-flupenthixol (or saline) into the nucleus accumbens. j α-Flupenthixol itself had no effect on reversal
learning, but prevented the CNO-induced impairment on reversal learning (ANOVA, p= 0.0024; post-hoc test: **p= 0.0019, *p= 0.0397). Note that
animals had a higher baseline of reversals in this experiment, because the animals were trained on the task (see Methods). Sal saline, Flup α-flupenthixol,
ns not significant
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mesoaccumbens activation results in an inability of animals to
adapt behavior to lower-than-expected outcomes, which under
physiological circumstances is mediated by negative RPE signals
in DA cells. In contrast, mesoaccumbens hyperactivity did not
markedly interfere with adaptations to higher-than-expected
outcomes. Furthermore, mesocortical activation increased risky
choice behavior, but only when this was without negative
consequences for the net gain in the task.

Dopamine activation does not change static reward value.
Changes in static reward value may influence behavior in tasks
investigating dynamic changes in reward value, such as the
reversal learning task. For example, food rewards may be less or
more appreciated due to changes in feelings of hunger, satiety, or
pleasure. Alternatively, operant responding may become habitual
rather than goal directed when manipulating the striatum,
although this is thought to be mediated by its dorsal parts rather
than the NAc22,36.

To assess whether alterations in static reward value or in the
associative structure of operant responding contributed to the
behavioral changes evoked by DA pathway stimulation, rats were
subjected to operant sessions in which they could lever press for
sucrose under an FR10 schedule of reinforcement. Activation of
the mesoaccumbens and mesocortical pathways did not alter the
total number of lever presses (Fig. 5a), suggesting that absolute

reward value was unchanged. We also tested animals in operant
sessions, whereby in half of the sessions the animals were pre-fed
with the to-be obtained reward. This type of devaluation tests
whether animals retain the capacity to adjust operant behavior to
changes in (the representation of) reward value. Prefeeding
robustly diminished lever pressing for sucrose, both in a non-
reinforced extinction session and under an FR5 schedule of
reinforcement. Importantly, this effect of reward devaluation was
not affected by mesoaccumbens or mesocortical activation
(Fig. 5b), indicating that responding remained goal directed36.

Consistent with previous findings37,38, activation of the
mesoaccumbens pathway increased operant responding under a
progressive ratio schedule of reinforcement39 (Fig. 5c), which is
usually thought to reflect an increased motivation to obtain
food37–39. However, in light of the present findings, we interpret
this finding as that mesoaccumbens hyperactivity renders animals
less able to devalue the relative outcome of pressing the active
lever when the response requirement increases over the session,
hence leading to increased response levels. Such an action
devaluation likely involves negative RPE signals from DA
neurons.

Mesoaccumbens hyperactivity evokes punishment insensitivity.
To test whether the devaluation deficit as a result of mesoac-
cumbens hyperactivity also resulted in an inability to incorporate
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Fig. 4 Chemogenetic activation of the mesoaccumbens and the mesocortical pathway alters probabilistic discounting. a Task design. b Discounting curves
for individual groups. (Left panel) Sham control group (saline vs CNO; Sidak’s test, p> 0.1 for all blocks). (Middle panel) During mesoaccumbens
hyperactivity, animals have a smaller preference for the risky lever in the first block (Sidak’s test, p= 0.0468), a larger preference for the risky lever in the
last block (p= 0.0468; blocks 2 and 3 both p> 0.1), and a significantly diminished discounting rate (inset, p= 0.0002). (Right panel) Mesocortical
activation increased choice for the risky lever in the second block (Sidak’s test in block 2, p= 0.0247; blocks 1, 3, and 4, all p> 0.1). Asterisks in discounting
curves indicate significant difference between saline and CNO treatment. Insets display the average steepness of the discounting curve (statistical
comparison with Sidak’s test). c Mesoaccumbens activation reduces the percentage optimal choices in the probabilistic discounting task (i.e., % best
choice in blocks 1, 3, and 4; two-way ANOVA; effect of CNO, p= 0.0331; group×CNO interaction, p= 0.0016; post-hoc Sidak’s test, p= 0.5082 for control
group, p= 0.0004 for mesoaccumbens group, p= 0.7533 for mesocortical group). d Chemogenetic activation of the mesoaccumbens or mesocortical
pathway had no effect on win-stay behavior (two-way ANOVA; effect of CNO, p= 0.36; group×CNO effect, p= 0.26), but did increase lose-stay behavior
(two-way repeated ANOVA; effect of CNO, p= 0.0026; group×CNO effect, p= 0.0622; post-hoc Sidak’s test, p= 0.9988, p= 0.0177 and p= 0.0203 for
control, mesoaccumbens, and mesocortical groups, respectively). e Task design of the probabilistic discounting task with increasing probabilities. f
Mesoaccumbens activation did not affect the discounting curve (Sidak’s test in every block, p> 0.1). g Mesoaccumbens activation decreased performance
on the task (paired t-test, p= 0.0143), but not win-stay (paired t-test, p= 0.32) or lose-stay behavior (paired t-test, p= 0.85). Data are shown as mean±
standard error of the mean; ns not significant, *p < 0.05, ***p < 0.001
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explicitly negative consequences into a decision, we subjected
animals to a novel punishment task, in which reward taking was
paired with an increasing chance of an inescapable foot shock
(Fig. 6a). As expected, the introduction of this 0.3 mA foot shock
punishment diminished responding for sucrose, an effect that
persisted after injection of CNO in the mesocortical and sham
control groups (Fig. 6b). In contrast, activation of the mesoac-
cumbens pathway completely abolished this punishment-induced
reduction in responding, as the animals took as many rewards as
under non-punishment conditions. This finding suggests that

during mesoaccumbens hyperactivity, reward value is not prop-
erly discounted—in other words, animals are not able to take the
increasingly negative consequences of an action into account.
Consistent with a role for DA neurotransmission in processing
these punishment signals, we observed, using in vivo calcium
imaging, that foot shock evoked a reduction in the activity of
VTA DA neurons (Fig. 6c).

To control for effects on nociception in our punishment task,
we subjected the animals to a tail withdrawal test, and found this
to be not affected by mesoaccumbens activation (Fig. 6d).
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shown as mean± standard error of the mean; **p< 0.01, ****p < 0.0001
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Moreover, anxiety, as tested in the elevated plus maze
(Supplementary Fig. 7a, b), was unaffected by mesoaccumbens
stimulation. Consistent with the literature, we found that
mesoaccumbens stimulation increased locomotion (Supplemen-
tary Fig. 8a), just like cocaine and D-amphetamine do40,41. We
think, however, that the changes in value-based decision making
observed in the punishment task, as well as in the other tasks,
cannot readily be attributed to increased locomotion. First,
reaction times in the punishment task were longer after
mesoaccumbens activation (Supplementary Fig. 8b). Second,
responding in the inactive hole in the punishment task was not
changed (Supplementary Fig. 8c). Third, the effects of mesoac-
cumbens activation in the reversal learning task were restricted to
win-stay behavior after the first reversal. Last, mesoaccumbens
activation did not affect the time for the animals to complete the
reversal learning session (Supplementary Fig. 8d).

RPE processing during mesoaccumbens hyperactivity. There
are three possible explanations for the impaired negative RPE
processing during mesoaccumbens hyperactivity: (1) hyper-
activity of VTA DA neurons abolishes the trough in neuronal
activity caused by negative reward prediction, (2) elevated DA
levels lead to a baseline shift in RPE signaling, after which a
decrease in DA release during negative reward prediction does
not reach the lower threshold necessary to provide a learning
signal in downstream regions, or (3) a combination of both.

To address the first explanation, we unilaterally injected rats
with a mixture of the calcium fluorophore GCaMP6s and Gq-
DREADD and tested the animals for reversal learning (Fig. 7a

and Supplementary Fig. 9). This allowed us to measure RPE
signals from VTA neurons within one animal during baseline
conditions and during hyperactivation of these same neurons.
CNO administration did not impair the ability of VTA DA
neurons to signal RPEs during reversal learning (i.e., deviations
from baseline during reward prediction), inconsistent with the
first possible explanation. By extension, this also excluded the
third explanation. However, the second explanation is consistent
with our findings that chemogenetic stimulation of the mesoac-
cumbens pathway increases the extracellular concentration of
dopamine and its main metabolites in the NAc (Fig. 2h).
Together, these data support a scenario in which the inability to
adjust behavior after loss or punishment during hyperactivation
of the mesoaccumbens pathway is not due to an inability of VTA
neurons to decrease their firing rate during negative reward
prediction, but rather by impaired processing of this learning
signal within the NAc as a result of increased baseline DA levels
(Fig. 7b). This observation fits well with our finding that the
infusion of a DA antagonist into the NAc can prevent the effects
of DREADD activation on reversal learning (Fig. 2j), a
manipulation that restores the degree of NAc DA receptor
activation.

Discussion
Here, we show that hyperactivity of the mesoaccumbens pathway
reduces the ability of animals to use loss and punishment signals
to change behavior by interfering with negative RPE processing.
Using in vivo neuronal population recordings, we show that the
VTA signals reward presentation as well as reward omission
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Fig. 6 Mesoaccumbens but not mesocortical activation attenuates the effect of punishment on responding for sucrose. a Task design. b After saline
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during VTA neuron hyperactivity, meaning that the behavioral
impairments are not caused by blunted DA neuron activity
during negative reward prediction, but rather by impaired pro-
cessing in the NAc as a result of elevated baseline levels of DA.
Therefore, we propose a model (Fig. 7b) in which hyperactive
VTA neurons signal positive and negative RPEs to the NAc, but
because baseline DA tone is increased, the signaling threshold in
the NAc that allows for the incorporation of negative RPEs into
adaptive behavior cannot be reached during reward omission or
punishment.

The majority of neurons transfected with the DREADD virus
had a DAergic phenotype, chemogenetic mesoaccumbens acti-
vation replicated the effects of cocaine and D-amphetamine on
reversal learning, and this effect of chemogenetic mesoaccumbens
activation was prevented by intra-NAc infusion of the DA
receptor antagonist α-flupenthixol. Together, this supports the
notion that the behavioral changes observed in the present study
are the result of chemogenetic stimulation of VTA DA cells.
However, a role for non-DA VTA neurons cannot be excluded
with the currently used techniques. Importantly, alongside the
dense DA innervation, the VTA sends GABAergic, glutamatergic,
as well as mixed DA/GABA or DA/glutamate projections to the

NAc and mPFC16,42,43. The role that these projections play in
behavior is only beginning to be investigated, but on the basis of
what is presently known, we consider it unlikely that the non-
DAergic innervation of the NAc and mPFC is involved in the
behavioral changes observed here. For example, optogenetic sti-
mulation of VTA GABA neurons has been shown to suppress
reward consumption, something we did not observe in our
experiments44. In addition, by inhibiting NAc cholinergic inter-
neurons, stimulation of VTA GABA projections to the NAc has
been shown to enhance stimulus-outcome learning45. However,
increased stimulus salience does not readily explain the deficits in
reversal learning, probabilistic discounting, and punished
responding for sucrose that we found in the present study. Last,
stimulation of VTA–NAc glutamate neurons has been shown to
produce aversive effects46, which in our experiments most likely
would have increased rather than impaired the ability to use
negative feedback to alter behavior. Therefore, we think it is
justified to state that the deficits in reversal learning, probabilistic
discounting, and punished reward taking evoked by chemoge-
netic mesoaccumbens stimulation is the result of increased DA
signaling in the NAc. Reversal learning impairments have pre-
viously been reported after systemic or intra-NAc treatment with
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Fig. 7 Reward prediction error processing after mesoaccumbens stimulation. a Animals were co-injected with GCaMP6s and Gq-DREADD and tested for
reversal learning after injection of saline or CNO. VTA neurons responded in a comparable way during reversal learning after saline and CNO treatment
(repeated measures in n= 4 animals; ANOVA, CNO×time interaction effect, win trials, p= 0.39; lose trials, p= 0.38). See Supplementary Fig. 9a for
individual animals. Scale bar, 1 mm. Data are shown as mean (solid line)± standard error of the mean (shading). b Proposed mechanisms: (I) hyperactivity
of NAc-projecting VTA DA neurons leads to impaired coding of negative reward prediction error troughs, (II) hyperactivity shifts baseline NAc DA levels,
thereby preventing the exceedance of a negative reward prediction error threshold in the NAc and impairing the ability to learn from negative feedback, or
(III) a combination of I and II
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a DA D2 receptor agonist in rats and humans47–49, whereas
probabilistic discounting seems to be dependent on DA D1 rather
than D2 receptor stimulation in the NAc50. Together, this sug-
gests that the behavioral effects of mesoaccumbens hyperactivity
observed here rely on stimulation of both DA receptor subtypes,
depending on the task structure. Interestingly, the punishment
insensitivity we observed after mesoaccumbens stimulation
appears inconsistent with previous studies showing that treat-
ment with amphetamine and the DA D2 receptor agonist bro-
mocriptine make animals more sensitive to probabilistic
punishment in a risky decision-making task, in which animals
can choose between a small and safe reward, and a large reward
with a chance of punishment51,52. In this latter task, however,
presentation of the punishment coincides with the presentation of
the large reward, and it is unknown how DA neurons respond to
such an ambivalent combination of events. Importantly, risky
choice behavior was found to correlate positively with DA D1

receptor expression in the NAc shell52, suggesting that the
influence of NAc DA on behavior in this task may not be
unidirectional.

In contrast to the mesoaccumbens projection, hyperactivity of
the mesocortical pathway did not markedly affect value-based
decision making. It did increase the preference for large, risky
rewards over small but safe rewards in the probabilistic dis-
counting task. However, when one of the two options yielded
more sucrose reward, animals remained capable of choosing the
most beneficial option, perhaps as a result of the differential roles
that prefrontal D1 and D2 receptors play in this task53. That these
animals maintained the capacity to make proper value-based
decisions was also apparent in the reversal learning and punish-
ment tasks. Thus, the patterns of effects of mesocortical stimu-
lation is qualitatively different from the mesoaccumbens-
activated phenotype, even though there is modest overlap, such
as the increased lose-stay behavior in the probabilistic discount-
ing task. Therefore, we do not think that the mesocortical phe-
notype is an attenuated version of the mesoaccumbens one,
although the lower density of the mesocortical projection (Sup-
plementary Fig. 2a) may explain the relative paucity of behavioral
changes after chemogenetic mesocortical stimulation. Notably,
the mesocortical pathway has been shown to be vital for certain
forms of cost–benefit judgment, especially those involving
uncertainty or sudden changes in task strategy25. As a result,
manipulations of prefrontal DA affect tasks like probabilistic
discounting or set shifting, but not reversal learning25,54.

Our data emphasize the importance of balanced DA signaling
in the NAc. It is reasonable to assume that brain DA con-
centrations are tuned to levels that are optimal to survival, and
deviations from this optimum lead to the profound behavioral
impairments seen in certain mental disorders. We think that our
proposed model of mesoaccumbens overactivation can explain
the decision-making deficits that are seen during states of
increased DAergic tone, such as manic episodes, substance abuse,
and DA replacement therapy in Parkinson’s disease. When one
cannot devalue stimuli, actions, or outcomes based on negative
feedback, their value representation remains artificially elevated.
Hence, outcome expectancies of choices will be unrealistically
high, leading to behavior that is overconfident and overoptimistic.
These inflated outcome expectancies have been demonstrated in
human manic patients2, suggesting an inability to devalue goals
towards realistic levels. That this disease state is associated with
abolished negative RPE signaling in the NAc is substantiated by a
functional magnetic resonance imaging study in patients experi-
encing acute mania55, in which activity in the NAc of manic
patients remained high when monetary reward was omitted,
while healthy controls showed a significant reduction in NAc
activity, as expected based on RPE theory.

Most drugs of abuse enhance DA transmission in the brain,
either in a direct (e.g., DA reuptake inhibition) or indirect way
(e.g., disinhibition of DA neurons)56,57. Direct dopaminomi-
metics, such as cocaine and D-amphetamine, are known to mimic
the symptoms of mania, such as increased arousal, euphoria, and
a reduced decision-making capacity10. Impaired learning from
negative feedback may potentially contribute to the escalation of
drug use, since users may be insensitive to the thought of
forthcoming negative consequences during the ‘high’ evoked by
these drugs. Furthermore, DA replacement therapy, often pre-
scribed to Parkinson’s disease patients, has been associated with
the development of problem gambling, hypersexuality, and
excessive shopping behavior, a phenomenon known as the DA
dysregulation syndrome58,59. More than a decade ago, it has
already been hypothesized that these clinical features could be the
result of impaired RPE learning due to ‘overdosing’ midbrain DA
levels30,60. Here, we provide direct evidence to support this
notion.

There is a wealth of evidence to implicate increased DA levels
in harmful decision-making behavior in mental disorders1–3.
Thus far, however, it was unknown through which pathways and
by which mechanisms these effects were mediated. Here, we used
behavioral tasks in rats, combined with projection-specific che-
mogenetics, to show that hyperactivation of the VTA leads to
decision-making deficits by impairing negative feedback learning
through overstimulation of NAc DA receptors. This provides a
mechanistic understanding of why decision making goes awry
during states of hyperdopaminergic tone, providing a possible
explanation for the reckless behaviors seen during drug use,
mania, and DA replacement therapy in Parkinson’s disease.

Methods
Animals. A total of 128 adult male Crl:WU Wistar rats (Charles River, Germany)
were used for the behavioral experiments, weighing ~250 g at the start of the
experiments. Rats were housed in pairs in a humidity- and temperature-controlled
environment under a 12 h:12 h reversed day/night cycle (lights off at 7 am). Rats in
the photometry, microdialysis, and intra-accumbens micro-infusion experiments
were housed individually. Rats were food restricted (4 g of normal chow per 100 g
body weight on test days, 5 g per 100 g body weight on remaining days) during the
following experiments: reversal learning and probabilistic discounting. During the
other behavioral tasks, animals had ad libitum access to standard chow (Special
Diet Service, UK). Animals always had ad libitum access to water, except during
behavioral tests. All experiments were approved by the Animal Ethics Committee
of Utrecht University and conducted in agreement with Dutch laws (Wet op de
Dierproeven, 1996; revised 2014) and European regulations (Guideline 86/609/
EEC; Directive 2010/63/EU).

Surgeries. Anesthesia was induced with an intramuscular injection of a mixture of
0.315 mg/kg fentanyl and 10 mg/kg fluanisone (Hypnorm, Janssen Pharmaceutica,
Beerse, Belgium). Animals were placed in a stereotaxic apparatus (David Kopf
Instruments, Tujunga, USA) and a small incision was made along the midline of
the skull. Then, 1 μl of CAV2-Cre virus (2.3 × 1012 particles/ml) was bilaterally
injected into the NAc (+1.20 mm anteroposterior (AP), ±2.80 mm mediolateral
(ML) from Bregma, and −7.50 mm dorsoventral (DV) from the skull, at an angle of
10°) or the mPFC (+2.70 mm AP, ±1.40 mm ML from Bregma, and −4.90 mm DV
from the skull, at an angle of 10°). The control group received a bilateral injection
of 1 μl saline into the NAc. All animals received a bilateral injection of 1 μl AAV5-
hSyn-DIO-hM3Gq-mCherry (1 × 1012 particles/ml) into the VTA (−5.40 mm AP,
±2.20 mm ML from Bregma, and −8.90 mm DV from the skull, at an angle of 10°).
The viruses were infused at a rate of 0.2 μl/min. After injection, the needle was
maintained at its injection position for 10 min to allow the virus to diffuse into the
tissue. After surgery, the animals were given carprofen for pain relief (5 mg/kg
per day for 3 days, subcutaneous (s.c.)) and saline (10 ml once, s.c.). Animals were
allowed to recover for 7 days before behavioral training continued. Behavioral
testing started at least 6 weeks after surgery to allow for proper viral transfection.

Accumbens micro-infusion. For intra-accumbens micro-infusions, 7 animals were
bilaterally implanted with 26-gauge stainless steel guide cannulas (Plastics One,
Raonoke, USA), 1 mm above the NAc (same coordinates as for CAV2-Cre injec-
tion, see above), after injection of the viral vectors necessary for mesoaccumbens
Gq-DREADD expression. Cannulas were secured to the skull by screws and dental
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cement. Injectors protruded 1 mm beyond the termination point of the guide
cannulas.

Animals were habituated with saline infusions (0.5 μl/side) from 3 days before
the experiment, 15 min before reversal learning training sessions. On the two
experimental days, animals received infusions with saline (0.5 μl/side) or cis-(Z)-α-
flupenthixol dihydrochloride (Sigma-Aldrich, Zwijndrecht, The Netherlands)
dissolved in saline (10 μg dissolved in 0.5 μl/side), together with an intraperitoneal
(i.p.) injection of saline or CNO 15 min prior to reversal learning. The infusion rate
was set to 1 μl/min, and the injectors were left in place for an additional 30 s after
the infusion was complete to allow for the diffusion of saline/flupenthixol into the
brain. Between the time of infusion and testing, animals were placed back into their
home cage.

Behavioral procedures. Animals were trained 5–7 days per week. All behavioral
experiments took place between 9 am and 6 pm. The following behavioral tests
were conducted in operant conditioning chambers (30.5 × 24.2 × 21.0 cm; Med
Associates Inc., USA), placed within sound-attenuated cubicles: fixed ratio and
progressive ratio schedule of reinforcement, reversal learning, prefeeding deva-
luation, probabilistic discounting and the punishment task. Testing for fixed ratio
and progressive ratio of reinforcement, prefeeding devaluation and probabilistic
discounting was conducted in boxes that were equipped with a sucrose receptacle
flanked by two retractable levers and cue lights. The wall on the other side of the
box contained a house light and tone cue generator. Testing for reversal learning
and the punishment task was conducted in different boxes that contained two
illuminated nose pokes, a house light, and a tone cue generator on one side of the
box, and a sucrose receptacle flanked by two cue lights on the other side of the box.
Sucrose pellets used were 45 mg each (SP; 5TUL, TestDiet, USA).

Chemogenetic experiments were conducted in five independent cohorts of
animals:

Cohort 1: Responding for sucrose: fixed ratio 5 (FR5) schedule of reinforcement
with prefeeding devaluation (with levers) (Fig. 5b), progressive ratio (PR) schedule
of reinforcement (with levers) (Fig. 5c), open field (Supplementary Fig. 8a)

Cohort 2: Responding for sucrose: FR10 schedule of reinforcement (with levers)
(Fig. 5a), elevated plus maze (Supplementary Fig. 7)

Cohort 3: Probabilistic discounting (with levers) (Fig. 4), reversal learning (with
nose pokes) (Fig. 2), punishment task (with nose pokes) (Fig. 6)

Cohort 4: Probabilistic discounting (with levers) (Fig. 4), reversal learning (with
nose pokes) (Fig. 2), elevated plus maze (Supplementary Fig. 7), tail withdrawal test
(Fig. 6d)

Cohort 5: Probabilistic discounting (with levers) (Fig. 4f, g), reversal learning
(with nose pokes) (Fig. 2i, j)

CNO (0.3 mg/kg dissolved in 0.3 mg/ml saline) or saline was injected i.p. 20–30
min before the start of every experiment. Unless otherwise indicated, animals were
treated with CNO and saline counterbalanced between days. In between treatment
days, a wash-out period of at least 48 h was used, during which behavioral training
was continued.

Fixed ratio and progressive ratio schedule of reinforcement. Operant sessions
under the FR schedule of reinforcement lasted for 1 h, during which the house light
was illuminated to signal response-contingent reward availability. Animals were
first trained under an FR1 schedule of reinforcement, during which pressing the
active lever resulted in the delivery of one sucrose pellet, the illumination of the cue
light above the active lever for 5 s and retraction of both levers. After a 10-s time-
out period (during which the house light was turned off), the levers were rein-
troduced and the house light was turned on, signaling the start of a new trial.
Pressing the inactive lever was without scheduled consequences. After acquisition
of sucrose self-administration under an FR1 schedule, the response requirement
was increased to FR5 (see below, prefeeding devaluation), or FR10.

Under the PR schedule of reinforcement, the response requirement on the
active lever was progressively increased after each obtained reward (1, 2, 4, 6, 9, 12,
15, 20, 25, etc., see ref. 61). A PR session ended after the animal failed to obtain a
reward within 30 min. The animals were trained under FR and PR schedules before
surgery. After surgery, they were retrained until we observed stable responding for
at least 3 consecutive days at group level.

Reversal learning. Animals were trained to nose poke for sucrose under an
FR1 schedule, in which responding in either of the two illuminated nose pokes
resulted in the delivery of one sucrose pellet. During the reversal learning test, the
nose poke holes were illuminated and responding into one of two holes (the site of
the active hole was counterbalanced between animals) always resulted in reward
delivery, a 0.5 s auditory tone, and switching off the nose poke lights. Responding
into the inactive hole always resulted in an 8 s time-out period during which the
house light and nose poke lights were turned off. A new trial began 8 s after the last
response, which was signaled to the animal by illumination of the nose poke lights.
When the animal made 5 correct consecutive responses in the active hole, the
contingencies were reversed so that the previously inactive hole became the active
one, and the previously active hole became the inactive one. The session ended
when the animal completed 150 trials.

Animals had no prior experience with contingency switches before the reversal
learning experiments. In between treatment days, animals were retrained on an
FR1 schedule of reinforcement, in which responding of any of the two nose poke
holes resulted in reward delivery. Before the intra-accumbens micro-infusions
reversal learning experiments (Fig. 2i, j), animals received 8 reversal learning
training sessions to gain experience with contingency changes. This was done to
minimize the chance on a between-days effect on performance, i.e., a difference in
performance between the first and last testing day not caused by the manipulation.

Win-stay behavior was calculated as the percentage of rewarded trials on the
active nose poke hole followed by a response on that same nose poke hole in the
subsequent trial. Lose-stay behavior was calculated as the percentage of non-
rewarded trials on the inactive nose poke hole after which the animal responded in
that same nose poke hole in the subsequent trial. Trials to criterion was defined as
the total number of trials necessary to reach the first reversal (i.e., 5 consecutive
responses at the active nose poke hole). Perseverative responding was defined as the
total number of consecutive responses at the inactive nose poke hole directly after
a reversal. For example, if after a reversal the animal chooses inactive–inactive–
active, the number of perseverative responses after that reversal is 2.

Prefeeding devaluation. At 1 h before operant testing, animals were individually
housed in standard cages where they had ad libitum access to water and standard
chow (non-devalued situations) or sucrose pellets (devalued situation). The deva-
luation test comprised 10 min of non-reinforced lever pressing, during which
pressing on either of the two levers was without scheduled consequences. This test
was immediately followed by a regular session under an FR5 schedule of reinfor-
cement. The animals were tested 4 times (devalued/non-devalued, CNO/saline),
according to a within-subjects counterbalanced design. Each test day was followed
by at least 2 days of regular FR5 training.

Probabilistic discounting task. This task was modified from refs. 33,34. Animals
were allowed to respond on a safe lever, which always yielded one sucrose pellet,
and a risky lever, which yielded three sucrose pellets with a given probability. The
task comprised four blocks, each consisting of 6 forced trials on the risky lever (in
which only the risky lever was presented), followed by 10 free choice trials (in
which both the safe and the risky lever were presented). The chance of receiving a
large reward at the risky lever decreased across the four trial blocks: 100%, 33%,
16.67%, and 8.33% in blocks 1, 2, 3, and 4, respectively. Choosing the safe lever
resulted in reward delivery (one pellet), a 0.5 s audio tone, and illumination of the
cue light above the safe lever for 17 s. Hereafter, an intertrial interval of 3 s started,
in which house- and cue lights were turned off. A rewarded response on the risky
lever started the same sequence of cues, except that three sucrose pellets were
delivered, with an interval of 200 ms. A non-rewarded response on the risky lever
resulted in a 20 s time-out in which all lights in the operant chamber were turned
off. A new trial was signaled by illumination of the house light and reintroduction
of the levers. A switch of blocks was signaled to the animal by switching the house
light, cue lights, and tone on and off within 2 s (1 s ON, 1 s OFF), three times in a
row. This was immediately followed by the start of the forced trials sequence.

Before training on the probabilistic discounting task, animals were trained to
respond on both levers, in which one lever (the future safe lever) always yielded one
sucrose pellet, and the other lever (the future risky lever) always three sucrose
pellets. There were 3 trial types, each with a 33.3% probability: one in which only
the single-pellet lever presented, one in which only the three-pellet lever was
presented, and one in which both levers were presented so the rats could choose
between either lever. Hereafter, animals were trained on the probabilistic
discounting task until stable task performance was observed (no significant effect of
training day in a repeated-measured analysis of variance (ANOVA) over 3 days).

Win-stay behavior was calculated as the percentage of rewarded trials on the
risky lever followed by a response on the risky lever in the subsequent trial. Lose-
stay behavior was calculated as the percentage of non-rewarded trials on the risky
lever after which the animal responded on the risky lever in the subsequent trial.
Performance was calculated as the percent optimal choices in blocks 1, 3, and 4,
thus percent choice for the risky lever in block 1, and percent choice for safe lever
in blocks 3 and 4.

The discounting rate was calculated as follows:

discounting rate % per blockð Þ ¼
pblock3þpblock4

2 � pblock1
3

ð1Þ

With p being the percentage choice for the risky lever in the subscripted block;
pblock2 was left out of the equation because there is no economically best choice in
the second block.

Punishment task. Animals were placed into the operant chamber and the session
started with illumination of the house light and two nose poke lights. Responding
into the active nose poke hole resulted in the immediate delivery of one sucrose
pellet, a 0.3 s tone cue, and illumination of the cue lights on the other side of the
operant chamber, next to the sucrose receptacle. House light and nose poke lights
were turned off. At 5 s after the termination of the tone cue, a second 0.3 s tone cue
was played, which co-terminated with the chance of a 0.3 s, 0.3 mA foot shock. The
chance of a foot shock increased across four trial blocks: trials 1–10, no
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punishment; trials 11–20, 1 in 3 trials punished; trials 21–30, 2 in 3 trials punished;
trials 31 and up were always punished. Cue lights were turned off after the
tone–foot shock combination terminated, leaving the animals in the dark during
the 5 s intertrial interval. Responding into the inactive hole was registered, but was
without scheduled consequences. The session ended when no response into the
active hole had been made for 5 min. Before animals were tested on the punish-
ment task, animals were trained to nose poke for sucrose under an FR1 schedule of
reinforcement (i.e., the same task, but without foot shock punishment). Between
the two testing sessions, animals were retrained to respond on FR1 (without
punishment) for 2 days.

Tail withdrawal test. This test was modified from ref. 62. The animals were gently
fixated in a towel and 3–5 cm of the tip of their tail was put in a beaker with water
of 50± 1 °C. The latency until tail withdrawal was analyzed from a recorded video
in a frame-by-frame manner. Animals were tested twice after CNO treatment, and
twice after saline treatment (saline and CNO counterbalanced between days, with
48 h in between). The latencies of the two respective tests were averaged. When the
animal did not withdraw its tail within 20 s, the animal was placed back into its
home cage (this happened once in one animal).

Elevated plus maze. The elevated plus maze was made out of gray plexiglas, and
consisted of two open arms (50 × 10 cm) and two closed arms (50 × 10 × 40 cm),
connected by a center platform (10 × 10 cm). The maze was elevated 60 cm above
the floor. Behavior was scored using Ethovision 3.0 (Noldus, Wageningen, The
Netherlands). The total times spent in the closed arms, open arms, and on the
central platform were analyzed. All animals received CNO and were tested once for
5 min.

Open field test. The open field was 100 × 100 cm and made out of dark plexiglas.
During the 5 min test, the open field was illuminated with white light, and a white
noise sound source (85 dB) was used to prevent distraction from ambient noise.
Locomotor activity was measured using video tracking software (Ethovision 3.0,
Noldus, Wageningen, The Netherlands). All animals received CNO and were tested
once.

Computational model. To model the behavior of the animals in the reversal
learning task, we fit the data to an extended Q-learning model. In this model,
animal behavior is captured in three parameters:

ɑwin: learning from positive RPE (win trials)
ɑlose: learning from negative RPE (lose trials)
β: the extent to which choice behavior is driven by value.
This model was chosen because it has a direct relation to midbrain dopamine by

including reward prediction error factors in the equations.
On each trial, the value of left (Qleft) or right (Qright) nose pokes was updated,

depending of which of those was chosen, according to the equation:

Qs;t ¼
Qs;t�1 þ αwin � RPEt�1 for win trials

Qs;t�1 þ αlose � RPEt�1 for lose trials

�
ð2Þ

with

RPEt�1 ¼
1� Qs;t�1 for win trials

0� Qs;t�1 for lose trials

�
ð3Þ

in which Qs,t is the value of the outcome of responding into nose poke s on trial t.
Note that nose poke outcome values ranged from 0 to 1.

Nose poke outcome value at session start, Qleft,t=1 and Qright,t=1,were set at 0.
Nose poke outcome values were converted to action probabilities using a

softmax:

ps;t ¼ eβ�Qs;t

eβ�Qleft;t þ eβ�Qright;t
ð4Þ

in which ps,t is the chance of choosing nose poke s in trial t.
Best-fit model parameters were determined per animal, per session by

minimizing the model’s negative log likelihood �P150
t¼1 logðps;tÞ using MATLAB’s

‘fmincon’ function. Each session’s maximum likelihood was compared to a random
choice model, in which every option had a 0.5 probability of being chosen, thus
having had a log likelihood of 150 trials*log(0.5). The fit of the Rescorla–Wagner
model was compared with this random choice model, both on an individual level
(Supplementary Fig. 1b, Supplementary Fig. 3c), and on a group level
(Supplementary Table 1), using a likelihood ratio test with the p threshold set at a
liberal p = 0.1. This type of comparison is used, since the Rescorla–Wagner model
nests the chance model (chance model is a special case in the Rescorla–Wagner
model in which β = 0). Although some sessions were not well explained by the
Rescorla–Wagner model (i.e., animals chose randomly or used an alternative
strategy; red dots in Supplementary Fig. 1b, Supplementary Fig. 3c), we decided to
include all sessions in our between-treatment comparison to avoid a bias. Including
only those animals in which all sessions were significantly better explained by the

Rescorla–Wagner model than by chance resulted in the same effect (i.e., a decrease
in ɑloss), but with higher statistical significance.

The best-fit parameters for each condition (saline, cocaine, D-amphetamine)
were compared within animals using Wilcoxon matched-pairs signed rank test.

In vivo fiber photometry. A blue LED light (M490F2, Thorlabs, Germany) was
coupled to a 400 µm core fiber optic patch cable (M76L01, Thorlabs) and con-
nected to a fiber mount (F240FC-A, Thorlabs). It was then passed through an
excitation filter (FF02-472/30-25, Semrock), reflected by a dichroic mirror (FF495/
605-Di01-25 × 36, Semrock), and focused onto a 400 µm core (made from BFH48-
400, Thorlabs, CF440, Thorlabs) patch cable towards the animal. For in vivo
experiments, this patch cable was connected to a 400 µm implantable fiber (BFH48-
400, Thorlabs) using a 2.5 mm ceramic ferrule (CF440, Thorlabs). Returning green
light passed through the same patch cable onto the fiber mount. It then passed
through the dichroic mirror and was deflected by a second dichroic mirror (Di02-
R594-25×36, Semrock, USA) and through an emission filter (FF01-535/50-25,
Semrock). The light was then focused onto a silicon-based photoreceiver (#2151
Photoreceiver, Newport Corporation, USA) using a plano-concex lens (#62-561,
Edmund Optics, USA).

After photo-electron conversion, the electrical signal was pre-amplified on the
photodiode (2 × 1010 V/A or 2 × 1011 V/A) and then passed on to a lock-in
amplifier (SR810, Stanford Research Systems). The lock-in amplifier was set to an
AC grounded single input. It was then lock-in amplified in the range of 233–400
Hz, a 12 dB/oct bandwidth roll off, and a 30 or 100 ms time constant for the
subsequent low-pass filtering. Sensitivity settings of the detection ranged from 1
mV to 500 mV, with normal dynamic reserve and no additional notch filters
applied. The lock-in amplifier was set to the max offset (+109.21), and the phase
was set to the hardware auto-adjusted value (typically in the range of 11–22°). The
reference lock-in signal was translated by the hardware into TTL and coupled at 5
V to the LED controller (LEDD1B, Thorlabs) that controlled the blue LED. The
lock-in amplified signal was then run onto an digitizer (Digidata 1550a Digitizer,
Molecular Devices) and captured at 100 Hz – 10 kHz, typically using a 50 Hz low-
pass filter. Additional TTL signals from behavioral events were simultaneously
processed by the digitizer.

To correct for bleaching, raw data points Fx were converted to dF/F by running-
average normalization:

dF
F

� �
x

¼ Fx � F0
F0

ð5Þ

Here, F0 is the baseline, which is calculated as the average of the 50% middle
values in the 30 s following every time point Fx.

The same surgical protocol as described above was used. Nine male TH::Cre rats
(weighing 300–350 g during surgery) were used, and 1 μl of AAV5-FLEX-hSyn-
GCaMP6s or AAV5-hSyn-eYFP (University of Pennsylvania Vector Core) was
injected at a titer of 1012 particles/ml unilaterally into the right VTA. A 400 µm
implantable fiber was lowered to 0.1 mm above the injection site and attached with
dental cement. Animals were tested in the reversal learning task described above,
with the difference that retractable levers were used rather than nose pokes. This
was done to prevent the dopamine transients to be influenced by perseverative
responses into the nose poke hole during the intertrial interval. Here, the levers
remained retracted during the entire intertrial interval, so that no responses could
be made until the start of the next trial. In addition, no cue lights were used and the
house light was turned on continuously to prevent light contamination by the
environment. Moreover, the correct responses in a row needed to obtain a reversal
was set to 8 rather than 5 to increase the number of trials before the first reversal.
Peri-stimulus time histograms were time-locked to the lever press (i.e., the moment
of choice). In addition, 4 animals were injected with a 1 μl mixture of AAV5-FLEX-
hSyn-GCaMP6s and AAV5-hSyn-DIO-hM3Gq-mCherry (both 1012 particles/ml,
unilaterally in the right VTA). The AAV carrying Gq-DREADD was injected
unilaterally in order to not interfere with task performance. Animals were tested in
a counterbalanced fashion, so that half of the animals were first tested with saline,
and the other half with CNO. In all animals expressing GCaMP6s, we tested
whether a modest (0.30 mA) 2 s foot shock punishment evoked a negative RPE
signal in VTA DA neurons. This was repeated 12 times in one session (with an
inter-shock-interval of 40 s).

Microdialysis. For microdialysis experiments, 9 animals were unilaterally
implanted with guide cannulas (AgnTho’s, Lidingö, Sweden), 1.5 mm above the
right NAc (same coordinates as for CAV2-Cre injection, see above), 4 of which also
received an injection of the viral vectors necessary for unilateral mesoaccumbens
Gq-DREADD expression. After 4–6 weeks, a microdialysis probe (PES membrane
protruding 2 mm beyond the cannula, cut-off 15 kD; AgnTho’s, Lidingö, Sweden)
was placed into the guide cannula and secured. The following day, the micro-
dialysis experiment commenced by dialysing Ringer’s solution through the probe at
a rate of 1 µl/min. Each sample contained 15 µl of perfusate (i.e., 15 min), which
was collected in 5 µl antioxidant solution containing 0.02 N HCOOH and 0.1%
cysteine HCl in milli-Q. Saline followed by CNO (1 mg/kg) was injected i.p. during
dialysis.
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Samples were analyzed by high-performance liquid chromatography on an
Alexis 100 2D system (ANTEC Leyden, Zoeterwoude, The Netherlands), at a flow
rate of 0.035 ml/min. The mobile phase consisted a solution of 2.4 mM
octanesulphonic acid, 1 mM KCl, 100 mM phosphoric acid, and 15% methanol in
milli-Q. Chromatograms were analyzed using Clarity software (DataApex, Prague,
Czech Republic).

Immunohistochemistry. Animals were killed by an i.p. injection of sodium pen-
tobarbital and perfused with phosphate-buffered saline (PBS) followed by 4%
paraformaldehyde (PFA) in PBS. The brains were dissected and postfixed in 4%
PFA in PBS for 24 h and then stored in a 30% sucrose in PBS solution. Brain slices
(40 μm) were incubated overnight in a primary antibody solution, containing PBS
with 0.3% Triton-X, 3% goat serum, and primary antibodies (1:1000) against dsRed
(rabbit, Clontech 632496) and TH (mouse, Millipore MAB318). The next day,
brain slices were transferred to a secondary antibody solution containing PBS with
0.1% Triton-X, 3% goat serum, and secondary goat antibodies (1:1000) against
mouse (488 nm, Abcam ab150113) and rabbit (568 nm, Abcam ab175471). After
an incubation period of 2 h at room temperature, slices were washed with PBS and
mounted to glass slides. Histological verification was performed by a researcher
unaware of the outcome of the behavioral experiment.

Exclusion criteria. Only animals that showed bilateral expression of hM3Gq-
mCherry in the VTA were included in analyses. To exclude non-learners, animals
in the probabilistic discounting task that showed a discounting rate of less than
10% per block at the end of training were excluded from the analysis.

Outlier analyses were performed on all data using the ROUT method (Q
threshold set at 1.0%). Two rats were identified as outliers and removed from their
respective datasets: one rat from the mesocortical group in the elevated plus maze
experiment (outlier in time spent in closed arm), and one rat from the in vivo fiber
photometry experiment on the basis of foot shock data (outlier in DA response to
foot shock).

Data analysis and statistics. Data analysis and computational modeling was
performed with MATLAB version R2014a (The MathWorks Inc.), statistical ana-
lyses with GraphPad Prism version 6.0 (GraphPad Software Inc.).

Statistical comparisons were made using a t-test for a single comparison and a
(repeated measures) ANOVA was used for multiple comparisons followed by a t-
test with Šidák’s multiple comparisons correction. Paired, non-normally
distributed data were compared using Wilcoxon matched-pairs signed rank test
with Bonferroni correction for multiple comparisons. Welch’s correction was used
once, in a case where variances in the t-test were unequal.

Bar graphs represent the mean± standard error of the mean, unless stated
otherwise. In all figures: ns not significant, #p < 0.1, *p < 0.05, **p< 0.01, ***p<
0.001, ****p < 0.0001.

Code availability. Custom-written MATLAB and MedPC scripts are available
upon request.

Data availability. The datasets generated during the current study are available
from the corresponding author on reasonable request.
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