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Abstract 21 

Body mass is rarely recorded in amphibians, and other body measurements (e.g. snout 22 

to vent length, SVL) are generally collected instead. However, length measurements, 23 

when used as proxies of body mass in comparative analyses, are problematic if different 24 

taxa and morphotypes are included. We developed allometric relationships to derive 25 

body mass from SVL measurements. We fitted phylogenetic generalized least square 26 

models for frogs (Anura) and salamanders (Caudata) and for several families separately. 27 

We tested whether allometric relationships differed between species with different 28 

mailto:luca.santini.eco@gmail.com


habitat preferences and between morphs in salamanders. Models were fitted with SVL–29 

mass measurements for 88 frog and 42 salamander species. We assessed the predictive 30 

performance of the models by cross-validation. Overall, the models showed high 31 

explained variance and low forecasting errors. Models differed among semi-aquatic, 32 

terrestrial and arboreal frogs, and between paedomorphic and non-paedomorphic 33 

salamanders. Body mass estimates derived from our models allow for comparability of 34 

studies on multiple taxa and can be used for testing theories built upon evolutionary and 35 

ecological processes which are directly related to body mass. 36 

 37 

Key words: Anura, body length, body mass, body size, body weight, Caudata, frog, 38 

salamander, snout to vent length 39 

 40 

INTRODUCTION 41 

Body mass is a fundamental parameter in ecology, as it is related to several key 42 

ecological features, such as species metabolic rates and energy intake (Gillooly et al. 43 

2001; Brown et al. 2004), population abundance (Peters & Wassenberg 1983), dispersal 44 

distance (Jenkins et al. 2007; Hillman et al. 2014) and reproductive output (Blueweiss 45 

et al., 1978). Among vertebrates, body mass is commonly recorded in birds and 46 

mammals, whereas it is less often recorded in amphibians and reptiles (Meiri 2010; 47 

Feldman & Meiri 2013). In amphibians, body mass is highly variable within the same 48 

species, but can also vary in the same individual over short time frames. In fact, body 49 

mass in amphibians depends on the level of hydration of the animal, the physiological 50 

state, the content of the bladder and the cloaca, as well as the reproductive state in 51 

females (Dodd 2010). As a consequence, amphibians’ body masses are rarely reported 52 

in ecological or taxonomic literature as compared to other morphometric measurements. 53 

Among them, snout to vent length (SVL) is the most common measure of body size in 54 

amphibians (Dodd 2010; Vitt & Caldwell 2013). As a result, while SVL is available for 55 

many species, body mass data are sparse in the literature and only available for a 56 

minority of species.  57 



Although SVL is undoubtedly preferable for many applications, information on 58 

body mass is necessary for others. For example, the average body mass of a species is 59 

needed to estimate the biomass of a population or of species assemblages (Watanabe et 60 

al. 2005; Gibbons et al. 2006; Deichmann et al.; Williamson 2008). In many 61 

comparative analyses, SVL is used as a proxy for body mass; however, this presents 62 

conceptual and comparability issues. As an example, macroecological investigation has 63 

largely explored body mass variation along environmental clines in several taxa (Arnett 64 

& Gotelli 2003; Rodríguez et al. 2006; Olson et al. 2009); however, studies focused on 65 

amphibians have employed SVL measurements as a proxy of body mass (Ashton 2002; 66 

Diniz-Filho et al. 2004; Olalla-Tárraga & Rodríguez 2007; Adams & Church 2008; 67 

Cvetković et al. 2009; Ficetola et al. 2010; Guo & Lu 2016). This is conceptually 68 

wrong because the hypotheses proposed so far to explain the environmental clines in 69 

body size are based on mechanisms related to body mass, not length (e.g. Bergmann’s 70 

rule is often explained by the heat conservation advantage of large body mass 71 

[Blackburn et al. 1999; Meiri & Dayan 2003]).  72 

Similarly, macroevolutionary studies focusing on body mass have often 73 

employed mixed body size measurements for different taxa depending on data 74 

availability (Harmon et al. 2010), with unclear consequences for comparisons between 75 

taxa. In comparative conservation analyses body mass is often considered a proxy of 76 

extinction risk (Purvis et al. 2000; Cardillo et al. 2005). However, all comparative 77 

analyses on extinction risk in amphibians have employed SVL as a proxy of mass 78 

(Bielby et al. 2008, 2009; Cooper et al. 2008). This is problematic because SVL does 79 

not account for different body structures (Meiri 2010) and SVL and body mass probably 80 

scale at different rates in frogs (Anura), salamanders (Caudata) and caecilians 81 

(Gymnophiona), and between different morphotypes within these 3 taxonomic orders. 82 

In fact, morphotypes represent adaptations to environments imposing divergent 83 

selective forces (Vidal-García et al. 2014; Vidal-García & Keogh 2015), and 84 

morphological parameters often show distinct relationships (Guo & Lu 2016). 85 

The development of length–mass allometric relationships for amphibians would 86 

contribute to overcome the abovementioned issues. However, while length–mass 87 

allometric relationships are available in scientific literature for a number of taxa (e.g. 88 

Silva 1998; Meiri 2010; Feldman & Meiri 2013), to our knowledge the only available 89 



allometric models for anurans and salamanders date back to the 1980s (Pough 1980). 90 

These are based on a limited number of species (Anura: n = 15; Caudata: n = 16), 91 

including multiple individuals for the same species while not controlling for 92 

phylogenetic autocorrelation. In addition, the raw data used for these relationships were 93 

never published; therefore, it is impossible to know the identity of the species 94 

underlying these relationships. Finally, allometric models that are meant to be used for 95 

predictions should be evaluated for prediction accuracy, yet this is rarely done. 96 

In this study we developed allometric relationships in amphibians to derive body 97 

mass from SVL measurements. We fitted different models for frogs and salamanders, 98 

and tested whether the relationships were different among morphotypes (Moen et al. 99 

2013; Moen et al. 2016) and between paedomorphic and non-paedomorphic species. 100 

We hypothesized that: 101 

1. Allometric relationships between length and mass were different among species with 102 

different habitat preferences (Vidal-García & Keogh 2015), considering that gravity 103 

exerts a different effect on aquatic, terrestrial and arboreal species, and body mass is 104 

likely selected accordingly. Specifically, we predicted that at equal SVL arboreal frogs 105 

would be lighter than terrestrial and fossorial frogs, and terrestrial and fossorial frogs 106 

would, in turn, be lighter than aquatic frogs. Similarly, we predicted that at equal SVL 107 

terrestrial salamanders would be lighter than aquatic salamanders.  108 

2. Paedomorphic species would display different relationships between length and mass 109 

than species undergoing a full development, as metamorphosis implies a major 110 

restructuring of the body’s morphology, anatomy and physiology (Brown & Cai 2007).  111 

We also fitted allometric models for all families having a sufficient sample size, to 112 

evaluate the heterogeneity of the length–mass relationship across the different lineages. 113 

Finally, we used cross-validation to assess the predictive abilities of our models, and, 114 

thus, to evaluate whether they can be successfully used to predict mass for species for 115 

which this parameter is not available. 116 

 117 

METHODS 118 



Data collection 119 

We searched the Web of Science database in August 2016 using the following search 120 

string: (body length OR body mass OR SVL OR length OR weight OR mass OR 121 

allometr*) AND (amphibian OR anur* OR caecilian OR urodel* OR caudat*). We 122 

saved the first 500 returned hits ordered by relevance. In addition, we opportunistically 123 

searched Google Scholar and Google using different combinations of the search terms 124 

“length,” “mass,” “SVL,” “weight,” “amphibian,” “Anura,” “frog,” “Gymnophiona,” 125 

“caecilian,” “Urodela,” “Caudata” and “salamander.” After removing duplicates, titles 126 

and abstracts were scanned by LS and AB for relevance. We recorded the mean, ranges 127 

and individual mass (g) and length (SVL, mm) data of adult male and female 128 

individuals, when possible, or for adults when there was no distinction between sexes. 129 

These data were extracted from tables or graphs using WebPlotDigitizer 3.1 Desktop 130 

(Rohatgi 2016). We recorded mass and SVL data reported together for the same 131 

animals. We supplemented the data found in publications with data collected in the field 132 

by one of the authors (GFF), and from several specialized websites (MVZ Herp 133 

Collection, AmphibiaWeb and CaliforniaHerps). For those species for which we only 134 

found SVL data we performed additional searches using the search string (species 135 

name) AND (SVL OR mass OR length OR weight). Besides morphometric 136 

measurements, we recorded information on the species’ ecology (habitat preference) 137 

and family. We categorized habitat as aquatic/semi-aquatic, fossorial/terrestrial and 138 

arboreal in frogs, and as terrestrial/fossorial and aquatic/semi-aquatic in salamanders. 139 

Insufficient data were found for caecilians and, therefore, we restricted our analyses to 140 

frogs and salamanders. In all our analyses we used one value of SVL and mass per 141 

species by taking an average from multiple individuals and studies weighted by sample 142 

size. All raw data collected are available in the supplementary materials of this 143 

manuscript (Suppl. Table S1). 144 

 145 

Analyses 146 

Data were log10-transformed prior to the analyses to meet the assumptions of 147 

normality, linearity and homoscedasticity of regression models (Suppl. Appendix S1).  148 

We first ran a linear regression between SVL and body mass and tested the residuals for 149 

Pagel’s λ. Pagel’s λ measures the phylogenetic autocorrelation, and ranges from 0 (no 150 



phylogenetic autocorrelation) to 1 (phylogenetic autocorrelation as expected under 151 

Brownian motion). Because Pagel’s λ was always significantly higher than zero (Anura: 152 

λ = 0.873, P < 0.001; Caudata: λ = 0.486, P = 0.016) we used a phylogenetic 153 

generalized least square model (PGLS) to develop the allometric models based on the 154 

phylogeny developed by Pyron (2014).  155 

Amphibians often show sexual dimorphism for body size (Kupfer 2007). In 156 

principle, in sexually dimorphic species we should expect a difference in the allometric 157 

models for males and females only if the body shape changes between the 2 sexes (mass 158 

and SVL proportions remain constant). However, at a given SVL, females might be 159 

heavier because they carry eggs (or embryos). We evaluated this possibility in 160 

preliminary analyses (Suppl. Appendix S2). As we did not observe differences between 161 

the 2 sexes, for the main analyses we pooled males and females We only used averages 162 

that included both males and females. When individual data were available, we 163 

averaged the average mass for the 2 sexes to avoid sex-biased estimates due to 164 

differences in sample sizes. 165 

We used the primary habitat preference as a categorical fixed factor, to account 166 

for differences among morphotypes. However, the sample size of some categories was 167 

small and the distinction between aquatic and semi-aquatic, and terrestrial and fossorial 168 

species is often unclear. Therefore, we clumped aquatic with semi-aquatic species, and 169 

terrestrial with fossorial species in the same categories (semi-aquatic and terrestrial, 170 

respectively). In addition, we used pedomorphosis as an additional categorical fixed 171 

factor to distinguish between morphs in salamanders. We ran 4 PGLS models for frogs 172 

and 7 for salamanders, for a total of 11 models (i.e. 2 sets of candidate models). For 173 

both frogs and salamanders, the first model included only SVL as predictor; the second 174 

included SVL and habitat, the third included SVL and an interactive term for habitat, 175 

and the fourth included SVL and an additive and an interactive term for habitat. For 176 

salamanders, we also considered an additive, an interaction only, and an additive and 177 

interaction model with the category paedomorphic (Table 1). The 2 models with the 178 

interaction terms were considered as we can expect that the difference between 179 

morphotypes increases/decreases with SVL. 180 

For each order, models were ranked using the AIC corrected for small sample 181 

sizes (AICc) (Burnham & Anderson 2002). Models were compared using Akaike 182 



weights (ω), indicating the relative weight of evidence of competitive models. Models 183 

were considered unequivocally supported if ω > 0.9. If no model showed unequivocal 184 

support, we used model averaging, which produced model parameters that take into 185 

account the uncertainty detected by the model selection procedure (Burnham & 186 

Anderson 2002). The average model was calculated by taking the average of models’ 187 

coefficients weighted by the models’ Akaike weights, and assuming a weight of zero for 188 

the models in which a given variable was not included. We also calculated the relative 189 

importance of variables, by summing the weights of all models including that variable. 190 

Then for each family having N ≥ 5, we ran a separate allometric model including only 191 

SVL as a predictor because species belonging to the same family generally have the 192 

same habitat preferences (see Suppl. Table S1). Because in the Ambystomatidae family 193 

measurements for the Axolotl (Ambystoma mexicanum) were particularly influential on 194 

the slope, we ran an additional model excluding the Axolotl. 195 

We used a 5-fold cross-validation to test the accuracy of the allometric models 196 

by splitting the dataset into training (random 80% of the data) and testing datasets 197 

(remnant 20% of the data), where the former was used to fit the model, and the latter to 198 

validate it. For each validation we calculated 2 forecasting error estimates: the root 199 

mean square error (RMSE) and the mean absolute percentage error (MAPE). The 200 

RMSE is a scale-dependent measure, in which the errors are squared before the average. 201 

Therefore, the RMSE penalizes more large errors and it is more sensitive to outliers 202 

than MAPE. Conversely, MAPE is scale-independent and provides an intuitive measure 203 

for interpretation (Hyndman 2006). The cross-validation procedure was repeated 10 204 

times and the forecasting errors averaged. For the allometric models for each family, we 205 

used a jacknife cross-validation instead by removing 1 observation at a time. This was 206 

necessary as the sample size of some families did not allow for conducting a 5-fold 207 

cross-validation. 208 

Our main analyses were limited to species for which paired measurements of 209 

body mass and SVL were available from the same individuals. However, in 210 

interspecific allometric models on traits and taxa for which a limited amount of data are 211 

available, it is not unusual to derive data for the dependent and the independent 212 

variables from separate sources to increase sample size and taxonomic coverage 213 

(Gittleman & Harvey 1982; Pagel & Harvey 1988; Swihart et al. 1988; White & 214 



Seymour 2003; Hendriks et al. 2009; Santini et al. 2013). Therefore, we repeated the 215 

analyses presented in the main text using a larger dataset that also included mass–length 216 

measurements collected from different sources for species for which paired 217 

measurements were not available, and compared the results with those in the main text 218 

(Suppl. Appendix S3).  219 

All analyses were conducted in R 3.0.3 (R Core Team 2016) using the packages 220 

“ape” (Paradis et al. 2004), “caper” (Orme 2013) and “phytools” (Revell 2012). 221 

 222 

RESULTS 223 

Data were gathered from 207 different sources including peer-reviewed articles, PhD 224 

and MSc theses, and specialized websites (see Suppl. Table S1). We found body mass 225 

data on 190 frog species and 88 salamander species, but for 111 and 49 species only 226 

paired SVL measurements calculated on the same individuals were available. Because 227 

not all species in our datasets were included in the phylogeny, we excluded from the 228 

analyses 23 species of frogs and 3 species of salamanders. The final dataset included 88 229 

species of frogs and 46 species of salamanders. Frog species ranged between 15.99 and 230 

262-mm SVL and 0.32 and 1907-g body mass, whereas salamanders ranged between 231 

23.99 and 542-mm SVL and 0.23 and 912.7-g body mass. 232 

In frogs, the best AICc model suggested an interactive effect between habitat 233 

and SVL, but no model was unequivocally supported (ω > 0.9) so we averaged all 234 

models weighting by Akaike ω (Table 1). In the average model, the slope of the length–235 

mass relationship was steeper for semi-aquatic and terrestrial species than for arboreal 236 

species, partly supporting our first prediction (Fig. 1). The importance of habitat as an 237 

additive or interactive term was not very high (Table 2), yet the average model that 238 

accounts for the weight of evidence of the models suggests different estimates (Table 239 

3). 240 

In salamanders, we found 1 highly supported model that included an additive 241 

and an interaction term with the factor “paedomorphic” (Fig. 1, Table 1), in accordance 242 

with our second prediction. Paedomorphic animals displayed a less steep relationship, 243 

indicating longer and lighter bodies. The variance explained by the models was high 244 

(adjusted R2 > 0.9; Table 3). The models on frogs showed good predictive performances 245 

with RMSE ranging between 0.12 and 0.15 and MAPE ranging between 17.97 and 246 



31.01%. The supported model on salamanders had lower predictive performances with 247 

RMSE = 0.28 and MAPE = 44.79% (Table 3). Complete model outputs are presented in 248 

Supplementary Table S7. 249 

We ran allometric models for 5 Anura and 3 Caudata families (Table 3 and 250 

Suppl. Table S7; Fig. 2). The slopes for the individual families differed slightly from 251 

the models at the order level, yet the differences were not significant. The intercepts of 252 

the relationships between families were similar with the exception of true toads 253 

(Bufonidae), which were systematically heavier. These models performed better than 254 

the models at the order level in terms of forecasting errors and explained variance 255 

(Table 3). 256 

Although the sample size of the dataset including unpaired mass–length 257 

measurements was almost twice as large as the dataset including only paired 258 

measurements, the resulting models had lower explained variance and predictive 259 

performances (Suppl. Appendix S3). 260 

 261 

DISCUSSION 262 

Snout to vent length is the most frequently available morphometric measure reported for 263 

amphibians (Dodd 2010; Vitt & Caldwell 2013), yet body mass (although variable 264 

between populations and within individuals [Dodd 2010]) is necessary for some 265 

applications (Watanabe et al. 2005; Gibbons et al. 2006). In this work we developed 266 

allometric relationships that can be used for estimating body mass from SVL 267 

measurements. The allometric models performed well both in terms of explained 268 

variance and forecasting errors, and can, therefore, provide reliable predictions for 269 

species for which average body mass measurements are unavailable. Our allometric 270 

model for frogs provides predictions comparable to those derived from the model in 271 

Pough (1980). Specifically, the model developed by Pough (1980) provides similar 272 

predictions to our model on arboreal species at small SVLs, and similar to our model on 273 

semi-aquatic and terrestrial at larger SVLs (Suppl. Fig. S5). In contrast, Pough’s model 274 

for salamanders provides different results, consistently underestimating the mass of 275 

non-paedomorphic species, and overestimating the mass of paedomorphic species with 276 

SVL > 63 mm while underestimating the mass of larger paedomorphic species (Suppl. 277 

Fig. S5). 278 



 Two main hypotheses (so-called similarity hypotheses) describe how anatomical 279 

structures would be affected by increasing body size (Schmidt-Nielsen 1984). The 280 

geometric similarity hypothesis predicts body length to scale with body mass to the 281 

power of 0.33, whereas the elastic similarity hypothesis predicts body length to scale 282 

with body mass to the power of 0.25. Our results seem to support the geometric 283 

similarity hypothesis better, but do not strictly conform to that, and are in line with 284 

previous length–mass allometries in vertebrates that generally range between 0.25 and 285 

0.32 (Green 2001). 286 

As expected, the relationship between SVL and body mass is somehow 287 

heterogeneous among frogs with different habitat preferences (Moen et al. 2013, 2016), 288 

with arboreal species being lighter than terrestrial and semi-aquatic species at a given 289 

SVL. Furthermore, body mass increases more rapidly with increasing SVL for 290 

terrestrial and semi-aquatic species, suggesting that for arboreal frogs limiting body 291 

mass is particularly important in larger species. These differences result in body mass 292 

estimates that vary by a factor of approximately 1.35–1.85 between arboreal and both 293 

semi-aquatic and terrestrial species (for an SVL range of 16–158 mm). Conversely, 294 

contrary to our predictions, we found only a slight difference between terrestrial and 295 

semi-aquatic species. In frogs, body length and body mass are key determinants of 296 

locomotor performance: longer body length is often associated with longer legs, and 297 

heavier body generally determines higher muscle mass and acceleration (Wassersug & 298 

Sperry, 1977; Ficetola & De Bernardi 2006). Overall, larger and heavier frogs tend to 299 

have better locomotor performance, and heavy body mass is not disadvantageous, even 300 

when taking into account leg length (Emerson 1978; Semlitsch et al. 1999; Ficetola & 301 

De Bernardi 2006). However, arboreal frogs often move on small branches, which may 302 

deform substantially under heavy loads (Astley et al. 2015). Therefore, a limited body 303 

mass likely improves the possibility of movement in the tree canopy. Furthermore, after 304 

hopping, arboreal frogs often land by attaching with toes to small branches. Forces 305 

acting on toes at landing may be up to 14 times the mass of the animal (Bijma et al. 306 

2016), and this might additionally impose limits to body mass. Conversely, these are 307 

probably less important for terrestrial and semi-aquatic frogs.  308 

Contrary to our predictions, the allometric models for salamanders were not 309 

different between terrestrial and semi-aquatic species. As predicted, however, 310 



paedomorphic species exhibited lower slopes than non-paedomorphic species. This 311 

difference is likely associated with the restructuring of body morphology and anatomy 312 

taking place during metamorphosis (Brown & Cai 2007). Nonetheless, caution on the 313 

interpretation of this difference is needed as the number of paedomorphic species in our 314 

sample was low. A comparison between metamorphosed and paedomorphic adults in 315 

species with facultative pedomorphosis could shed light on these differences.  316 

The allometric models for the individual families showed different coefficients, 317 

and generally better predictive performances, than models fitted across all families. 318 

Consequently, allometric relationships for families are preferable for predictions when 319 

possible. An exception is given by the Pelobatidae family (spadefoot toads), for which 320 

the predictive power was lower than that of models including all families. This is 321 

probably because Pelobatidae in our dataset had a very limited range of SVL variation 322 

(SVL range: 49–74 mm) that hampers obtaining relationships with high determination 323 

coefficients and predictive value. 324 

The dataset supplemented with unpaired length–mass measurements allowed us 325 

to use information on a larger number of species and families, but increased the error 326 

associated with the models (Suppl. Appendix S3). In fact, amphibians show strong 327 

intraspecific variation in body size, with differences among individuals within 328 

populations, and among populations within the species (Morrison & Hero 2003; Adams 329 

& Church 2008; Cvetković et al. 2009; Ficetola et al. 2010; Guo & Lu 2016). The 330 

better performance of the model based exclusively on paired measurements suggests 331 

that when analyzing macroecological relationships among morphological traits with 332 

high intraspecific variability, it is better to improve data quality at the expense of 333 

quantity. 334 

Although our models showed consistently high predictive performance, the 335 

accuracy and the generality of the allometric relationships is limited by sample size, 336 

especially in salamanders. For example, more complex models also including habitat 337 

might have been selected for salamanders if a sufficient sample size was provided. 338 

Similarly, within frogs, the three supported models suggest that both the intercepts and 339 

the slopes differ between semi-aquatic, terrestrial and arboreal species but, due to the 340 

limited sample size, the most complex model was not supported (additive and 341 

interactive term for habitat). Therefore, although our models show good predictive 342 



performances, additional data on body mass for frogs and salamanders would contribute 343 

to develop even better allometric models, and, more importantly, to increase the number 344 

of families and species for which family-specific and species-specific models can be 345 

fitted (Deichmann et al. 2008). All data used for the modeling are available in the 346 

supplementary materials of this paper, providing a good basis for further data collection 347 

and studies on amphibians’ morphometric measurements and their intra-specific 348 

variability. 349 

The high predictive power of our models suggests that they can be used in 350 

macroevolutionary and macroecological analyses that require information on species 351 

body mass, especially when these data are not available for some species, or the 352 

available values do not seem to be representative of the species as coming from a few 353 

individuals. Predictions from our models allow estimating body masses that are 354 

comparable between frogs and salamanders, and between different morphotypes in 355 

frogs. Our models would clearly be inappropriate for predictions on single individuals, 356 

because body weight in a specific period strongly depends on the body condition of the 357 

animal. Nevertheless, they will provide a good approximation of the average mass of a 358 

species, provided that representative averages of the species SVL are available. In 359 

conclusion, our models can contribute to uniform conservation, macroecological and 360 

macroevolutionary analyses by employing a single measurement of body size that 361 

increases comparability among taxa and is more directly related to the underlying 362 

ecological processes for which it is used as a proxy. 363 
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Olalla-Tárraga MA, Rodríguez MA (2007). Energy and interspecific body size patterns 462 

of amphibian faunas in Europe and North America: Anurans follow Bergmann’s 463 

rule, urodeles its converse. Global Ecology and Biogeography 16, 606–17. 464 

Olson VA, Davies RG, Orme DL et al. (2009). Global biogeography and ecology of 465 

body size in birds. Ecology Letters 12, 249–59. 466 

Orme D (2013). The caper package: Comparative analysis of phylogenetics and 467 

evolution in R. R Package Version 0.5, 2, 1–36. 468 

Pagel MD, Harvey PH (1988). The taxon-level problem in evolution of mammalian 469 

brain size: facts and artifacts. The American Naturalist 132, 344–59. 470 



Paradis E, Claude J, Strimmer K. (2004). APE: Analyses of phylogenetics and evolution 471 

in R language. Bioinformatics 20, 289–90. 472 

Peters RH, Wassenberg K (1983). The effect of body size on animal abundance. 473 

Oecologia 60, 89–96. 474 

Pough FH (1980). Advantages of ectothermy for tetrapods. The American Naturalist 475 

115, 92–112. 476 

Purvis A, Agapow PM, Gittleman JL, Mace GM (2000). Nonrandom extinction and the 477 

loss of evolutionary history. Science 288, 328–30. 478 

Pyron RA (2014). Biogeographic analysis reveals ancient continental vicariance and 479 

recent oceanic dispersal in amphibians. Systematic Biology 63, 779–97. 480 

R Core Team (2016). R: A language and environment for statistical computing. R 481 

Foundation for Statistical Computing, Vienna, Austria. Available from URL: 482 

http//www.R-project.org/. 483 

Revell LJ (2012). Phytools: An R package for phylogenetic comparative biology (and 484 

other things). Methods in Ecology and Evolution 3, 217–23. 485 
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Table 1 Phylogenetic generalized least square model selection results ordered by 

AICc  

AICc, Akaike information criterion corrected for small sample sizes; ΔAICc, 

difference in AICc 

from the most 

supported model; 

ω, Akaike weights; 

df, degrees of 

freedom; H, habitat 

preference; M, 

mass; P, 

paedomorphic; 

SVL, snout-to-vent 

length; :, 

interaction term; *, 

additive and 

interaction term. 

 

Table 2 Variable importance estimate based on Akaike weights 

SVL, snout-to-vent length. 

Taxon Formula AICc ΔAICc ω Df 

Anura M~SVL:H −129.201 0 0.532 4 

 M~SVL+H −128.216 0.985 0.325 4 

 M~SVL*H −126.567 2.634 0.142 6 

 M~SVL −116.141 13.060 0.001 2 

Caudata M~SVL*P −25.831 0 0.925 4 

 M~SVL:P −20.304 5.527 0.058 3 

 M~SVL+P −16.672 9.159 0.009 3 

 M~SVL*H −14.000 11.831 0.002 4 

 M~SVL:H −13.311 12.520 0.002 3 

 M~SVL −13.217 12.614 0.002 2 

 M~SVL+H −12.504 13.327 0.001 3 

Taxon Variable   Importance 

Anura SVL   1.000 

 Habitat (interaction)  0.674 

 Habitat (additive)  0.467 

Caudata SVL  1.000 

 Paedomorphic (interactive) 0.983 

 Paedomorphic (additive) 0.934 

 Habitat (additive)  0.003 

 Habitat (interaction)  0.004 



 

Table 3 Power laws for predicting body mass (g) from SVL (mm) for anurans, caudates and families with N ≥ 5 



Taxon Formula Power law Adjusted R2 n RMSE MAPE 

Anura Average model 
A: 10−4.328 × SVL3.098 

SA: 10−4.375 × SVL3.215 

T: 10−4.298 × SVL3.181 

0.949–0.966 88 0.119–0.150 17.969-31.010 

   Bufonidae M~SVL 10−3.791(±0.275) × SVL2.914(±0.148) 
0.980 

9 0.081 5.731 

   Hylidae M~SVL 10−4.462(±0.236) × SVL3.201(±0.141) 0.938 35 0.207 18.856 

   Myobatrachidae M~SVL 10−4.586(±0.357) × SVL3.372(±0.228) 0.952 12 0.128 13.206 

   Ranidae M~SVL 10−4.862(±0.749) × SVL3.492(±0.425) 0.847 13 0.179 12.100 

Caudata M~SVL*P 
nP: 10−4.709(±0.255) × SVL3.045(±0.134) 

P: 10−3.567(±0.361) × SVL2.325(±0.246) 

0.940 46 
0.278 44.792 

   Ambystomatidae M~SVL 10−4.215(±1.265) × SVL2.867(±0.696) 0.727 7 0.199 19.070 

   Ambystomatidae (+A.m.) M~SVL 10−2.677(±0.629) × SVL2.012(±0.332) 0.836 8 0.836 11.178 

   Plethodontidae M~SVL 10−4.706(±0.322) × SVL2.968(±0.189) 0.925 21 0.184 19.331 

   Salamandridae M~SVL 10−4.744(±0.414) × SVL3.073(±0.237) 0.933 13 0.176 26.382 



All models’ coefficients, associated standard errors and statistical significance are 

presented in Supplementary Table S7. A, arboreal; adjR2, adjusted R2; H, habitat 

preference; MAPE, mean absolute percentage error; n, sample size; P, paedomorphic; 

RMSE, root mean square error; SA, semi-aquatic and aquatic; SVL, snout-to-vent 

length; T, terrestrial. 

 

Figure legends  

 

Figure 1 Relationships between snout-to-vent length (SVL) and body mass for frogs 

(a) and salamanders (b).  

 

Figure 2 Relationships between snout-to-vent length (SVL) and body mass for 

families with N ≥ 5. + A.m., dataset including the axolotl (Ambystoma mexicanum). 

 


