
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/181484

Please be advised that this information was generated on 2019-06-02 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/154384704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/181484

Improving Maintenance by Creating
a DSL for Configuring a Fieldbus

Mathijs Schuts
Philips

Best, The Netherlands
mathijs.schuts@philips.com

Jozef Hooman
TNO-ESI, Eindhoven & Radboud University,

Nijmegen
The Netherlands

jozef.hooman@tno.nl

Abstract
The high-tech industry produces complex devices in which
software plays an important role. Since these devices have
been developed for many decades, an increasing part of the
software can be classified as legacy which is difficult to
maintain and to extend. To improve the maintainability of
legacy components, domain specific languages (DSLs) pro-
vide promising perspectives. We present a DSL for creat-
ing configuration files that describe the topology of a field-
bus. This DSL improves the maintainability and extensibil-
ity of a legacy component. Compared to the current way-of-
working, the configuration files generated by the DSL are of
higher quality due to the concise representation of DSL in-
stances and additional validation checks. To raise the level of
abstraction even more, we have created a second DSL which
allows a concise description of system configurations and
the generation of topologies.

Categories and Subject Descriptors D.2.7 [Distribution,
Maintenance, and Enhancement]: Restructuring, reverse en-
gineering, and reengineering

Keywords Legacy Software, Software Maintenance, Do-
main Specific Languages, Industrial Application

1. Introduction
The software life cycle consists of a number of distinct
phases (Vyatkin 2013). The first phase of an software sys-
tem is its construction. During construction the system is
specified, designed, build and tested. After acceptance by the
customer it is taken into use and needs to be maintained by
the constructor of the system. The system is taken out of use

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

DSM’16, October 30-November 04 2016, Amsterdam, Netherlands
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4894-2/16/10. . . $15.00
DOI: http://dx.doi.org/10.1145/3023147.3023152

when it has reached end-of-life and it is replaced by its suc-
cessor.

(Bennett et al. 2000) propose a staged model in which the
maintenance phase is split up into an evolution stage and a
servicing stage. In the evolution stage, changes are made to
cope with changes in functional and non-functional require-
ments. If evolutionary changes are no longer possible, the
system moves to the servicing stage. In the servicing stage
only service patches are applied to keep the system alive.

In the high-tech industry, complex software intensive sys-
tems have been produced for many decades. While the sys-
tems for the customer might be new, they are constructed by
a collection of many components from which some can be
characterized as legacy components (Breivold et al. 2011). If
one projects the software life cycle on the individual compo-
nents of a system then legacy components are components
that are in the maintenance phase of the software life cy-
cle (Froschauer et al. 2008).

According to (Vliet 2008) 50-75 % of all effort on a soft-
ware system is spent in the maintenance phase. Hence, for
improving the software life cycle most can be gained by im-
proving the effort that needs to be spent in the maintenance
phase.

Legacy components are often the result of decades of de-
velopment with dozens of man-year invested. Creating new
implementations would require a similar investment and typ-
ical more resources than keeping the legacy implementation
alive; scarce resources that could also be used to implement
product innovations.

Most research on Domain Specific Language (DSL) (Van
Deursen et al. 1998) focuses on the development of new
components (Cao et al. 2009). The aim of our work is to
investigate whether a DSL could improve the maintainability
and extensibility of a legacy component in the context of
high-tech systems. The aim is to keep components longer in
the evolution state. We would like to get an answer to the
following questions:

• Is it financially feasible to extend the life of a legacy
component using a DSL?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

DSM’16, October 30, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4894-2/16/10...$15.00

http://dx.doi.org/10.1145/3023147.3023152

28

• What are the pros and cons of using a DSL compared to
the current way of working?

In this paper we try to answer these research questions
based on experiences at Philips. We have created a DSL to
generate topology files for a fieldbus used in systems for im-
age guide therapy. These systems are used during minimally
invasive medical treatments, such as the treatment of cardiol-
ogy and vascular diseases. An example is the interventional
X-ray system shown in Figure 1, where X-ray images sup-
port minimally-invasive medical procedures such as placing
a stent via a catheter.

Figure 1. Interventional X-ray System

Given the long history of these systems and the frequent
need for changes to support new medial procedures, it is
important to keep the software architecture and its compo-
nents flexible and extensible. Hence, ways need to be found
to manage legacy implementations.

An example of such a legacy implementation is the com-
ponent which uses a fieldbus. A fieldbus is an industrial net-
work for real-time distributed control. It is used to manage
and control the position of the X-ray beam with respect to
the patient. This can be done by moving the table or the stand
which holds the X-ray generator and detector. The table and
stands come in many configurations. For all combinations,
a separate fieldbus configuration needs to be created. In the
foreseeable future about 2000 different topology configura-
tion files are needed. For this reason, we investigated the use
of a DSL to generate the configuration files.

This paper is organized as follows. We relate our work to
the literature in Section 2. Section 3 describes our industrial
case. The developed DSL is presented in Section 4. Section 5
describes validation checks that have been added to the lan-
guage. To raise the abstraction level, a second language is
created, as described in Section 6. Section 7 contains an
overview of the results and an answer to our research ques-
tions.

2. Related Work
In the literature there are three main directions for improving
maintainability and extensibility challenges: model-based
reverse engineering, object orientation and domain specific
languages.

An application of model-based reverse engineering is de-
scribed in (Bergmayr et al. 2016). The fREX tool reverse
engineers the executable behaviour of a software system.
The result is an fUML model that can be used to generate
a new implementation while removing obsolete technolo-
gies from the code base. An alternative way of improving
the maintainability of legacy software is to transform the
legacy implementation. Rascal (Basten et al. 2015) is a tool
created for meta-programming, e.g., reverse engineering and
re-engineering of legacy software.

Object-oriented analysis and design (Sarnath et al. 2010)
has been advocated as a way to create maintainable systems
using variability and commonality analysis (Coplien et al.
1998) and design patterns (Wolfgang 1994). (Deursen 1997)
describes the differences between object-oriented frame-
works and DSLs and provides criteria to chose between the
two approaches. The paper also contains a DSL for the fi-
nancial domain to hide legacy libraries written in COBOL.

According to (Ward 1994), DSLs improve the main-
tainability of new software due to code size reduction and
improved readability. In (Batory et al. 2002) a DSL for a
command-and-control simulator for Army fire support has
been defined. They report on improvements of the main-
tainability and extensibility by raising the abstraction using
domain concepts.

In contrast to the work mentioned above, our work con-
centrates on improving the maintainability of legacy soft-
ware. Related to our work, (Fehrenbach et al. 2013; Erdweg
et al. 2014) try to improve the maintainability of large soft-
ware systems by an evolutionary process that can be used
to incrementally refactor an implementation and raise ab-
straction using an extensible programming language called
SugarJ. SugarJ enables the use of multiple small embedded
DSLs, e.g. they created DSLs for XML and SQL. Major ben-
efit of these embedded DSLs is that instances can be stati-
cally validated, e.g., to check whether an XML file has the
right closure. The embedded DSLs are placed in libraries, to
enable incremental introduction of generated code in a code
base. By importing the DSLs in a source file, the DSL can
be used only when required.

At a large Austrian electricity company with more than
140 power plants, a DSL has been developed for a legacy
software system. The system describes schedules that are
used for trading electricity between companies (Sobernig
et al. 2014). They conclude the following: “This project re-
port shows that a DSL-based system refactoring can pro-
vide benefits in terms of reduced code redundancy for an
improved maintainability of a code base.”

29

Different from the related work above, we used DSLs
to improve the use of configuration files instead of source
code. Tolvanen et al. (Tolvanen et al. 2005) describe over 20
industrial applications of DSLs, including the generation of
configuration files. They observed that DSLs are beneficial
for design guidance and early error prevention or detection.
In addition, they report that DSLs increase productivity due
to the raised level of abstraction.

Software Product Line Engineering (SPLE) addresses
modelling and analysis of commonality and variability. Sys-
tem configurations can be generated from the resulting mod-
els. Berger et al. (Berger et al. 2013) conducted a survey on
the industrial usage of variability modelling. They conclude
that the SPLE community focuses on creating methods and
tools for new systems and a shift might be needed towards
support for legacy software.

3. Configuring the X-ray System
The interventional X-ray system depicted in Figure 1 con-
sists of a number of building blocks such as the patient ta-
ble, one or two stands which hold an X-ray generator and
a detector, and a stand mover that can position the stands
away from the table. A building block has a number of axes
that are used to position the X-ray beam with respect to the
patient. The axes are controlled by motion drives which are
connected by means of a fieldbus.

For each building block there are a number of variations,
e.g., they may have a different number of axes or might come
from different third-party vendors. For example, the table
can have one, two, three, four, five or six moveable axes.
Moreover, there are many possible combinations of these
building blocks, leading to many systems configurations de-
pending on the wishes of the customer. The fieldbus needs a
topology description for all these combinations. In addition,
past and future configurations need to be supported.

Figure 2 depicts an example network topology. A number
of components can be distinguished: a computer, a Hub,
a stand, a table, and a stand mover. The computer runs
the fieldbus master and also hosts the motion application.
The fieldbus Hub is an embedded device that supports the
use of tree topologies. The Hub is optional; for instance, a
configuration with only a table does not need a Hub. Because
of the Hub, different cable sets toward the table and stand(s)
can be bundled. A stand consists of two motion drives, each
controlling a number of axes, and a node that is used to
prevent collisions between the stand and other objects in
the room. The table has a motion drive for every axis. So
the table has up to six motion drives. The stand mover has
a motion drive that controls a number of axes to move the
stand away from the table.

Every node or motion drive in the fieldbus has a certain
type. A type is a combination of a vendor and model. The
concept is that every motion drive in the system can be
replaced by a compatible type from another vendor. The Hub

has two nodes of TYPE A1 and TYPE A2. A stand uses
devices of TYPE D and TYPE E. The table uses motion
drives from TYPE B and the stand mover from TYPE C.

The nodes of the Hub have four ports. The node of
TYPE A1 is connected to a master via port A. The nodes
TYPE A1 and TYPE A2 are internally connected via port
D of TYPE A1 and port A of TYPE A2. The motion drives
have two ports: A and B. At the end of a branch it is possible
that a port is not connected to another device.

The arrows in Figure 2 describe the flow of messages
over the fieldbus. The master sends a packet to the node it
is connected to. A packet consists of different fields. Every
node in the network has its own field. Every node reads and
writes its field of the message. At the end, the master receives
a message with all updates of the nodes. The master sends a
message with a time interval of 2 milliseconds.

During the start-up of the network, the master reads a
configuration file that describes the physical network. The
master then starts the network by programming the nodes.
The nodes need to be programmed such that they know
their field, the elements of this field, and the address of the
elements.

To create the configuration files of the master, a commer-
cial tool is used. A tutorial of 29 pages describes how a con-
figuration file needs to be created. The first two pages ex-
plain how to install the tool and some basic explanation of
the topologies used in the system. The remaining 27 pages
describe what needs to be filled in when making network
topologies for the system. Currently, the system needs about
40 different topology configuration files. All files are created
with the commercial tool.

To test the configuration files, it is too expensive to phys-
ically build 40 different complete systems, in terms of ef-
fort, lead time and system cost. Hence, for testing a lab set-
up is created. In the lab set-up the master is started using a
stripped version of the motion application. The nodes, such
as the motion drives, are placed on a board. Using the board
it is possible to reroute the cables to test different configura-
tions.

The configuration files are formatted using eXtensible
Markup Language (XML). Today, the simplest configuration
file consists of 2147 lines and the most extensive configura-
tion contains 13128 lines.

4. DSL for Fieldbus Configurations
The number of configurations explodes when multiple sup-
pliers and motion drive types have to be supported. The com-
mercial tool that is used to create network topologies has
many settings and options. However, for the system config-
urations we want to describe, the settings and options are
always the same. The only variation between the different
configurations is the number of nodes, their type and how
they are connected to each other.

30

Figure 2. Fieldbus Topology

To handle these differences, a DSL is created to generate
configuration files for the fieldbus. The DSL only describes
the variations; the fixed options and settings are defined by
the generator. For creating the language, Eclipse (Geer 2005)
is used with the Xtext and Xtend plug-ins (Bettini 2013). The
choice for this language workbench was pragmatic because
the Philips engineer who created the language was familiar
with these tools. Figure 3 presents an example instance of the
language. Each topology needs to have a name which is used
as the file name for the generated configuration. After the
network keyword the ordering of the nodes is described. The
language has predefined node types. In the language used
at Philips the types have more meaningful names, but for
confidentiality reasons we use abstract names in this paper.

Figure 3. Example Topology Description

Figure 3 presents the network topology of the system
configuration depicted by Figure 2. The example presents
a single network topology, but typically a DSL instance con-
sists of multiple topology definitions. The master is always
present in a topology and hence omitted in the DSL in-
stances. The nodes TYPE A1 and TYPE A2 of the Hub are
connected to each other. Because the connection between
TYPE A1 and TYPE A2 is hardwired inside the Hub, this
information does need to be provided when creating a DSL

instance. The other devices (nodes and motion drives) are
implicitly connected via port A to port B of the previous de-
vice. Hence, this information does not have to be described
in a DSL instance. With “prev TYPE A2 port C TYPE C” a
branch is created by connecting port C of TYPE A2 to port
A of TYPE C. Similarly, a branch is created from TYPE A1
to TYPE D.

From every topology in a DSL instance, an XML config-
uration file is generated. The XML configuration file gen-
erator has been defined using multi-line template expres-
sions (Bettini 2013). The settings that are always the same
for network topologies are part of the template. The con-
figuration settings that vary, e.g., the position of the nodes
and the fields, are calculated and filled in the right position.
A DSL instance of 5 lines describing an existing topology
leads to an XML file of 13128 lines. The output of the gen-
erator has been validated by generating ten existing network
topologies and comparing the configuration files with the
ones that are produced with the commercial tool.

5. Checking the Topology
To prevent that the user of the language makes faults in
describing network topologies, validation rules have been
added to check the validity of a network topology. For ex-
ample, it is physically impossible to connect two branches
of motion drives to the same port of the Hub. Figure 4 shows
the validation rule that a port of a specific node can only
be used once within a topology. The rule checks for every
topology and for every pair of nodes which have the same
predecessor that they are connected to different ports of this
predecessor.

31

Figure 4. Validation Rule

In addition to the rule in Figure 4, there are validation
rules to check that:

• Within a DSL instance, a typology has a unique name.
• Within a topology, the types TYPE A1 and TYPE A2 are

paired. TYPE A1 and TYPE A2 are either both present
or both not present.

• Within a topology, TYPE A1 comes before TYPE A2
and is connected to TYPE A2.

Using the commercial tool there are many ways to pro-
duce a faulty configuration file. The DSL and the above de-
scribed validation rules provide enough confidence in the
validity of the produced configuration files. Creating a hard-
ware set-up in the lab to check the correctness of a network
configuration is no longer needed.

6. DSL to Describe System Configurations
Once a year a new system release is being made. Because
the system is a medical device, for such a release all func-
tionality needs to be verified and validated using strict rules
of authorities. Hence, all supported network topology con-
figurations are part of the annual release.

When in the future many network topology configuration
files are needed, it is still a gigantic and error-prone task to
create them all. For this reason, we investigated the possibil-
ity to further raise the abstraction level. The result is a second
language to represent system level configurations and gen-
erate a DSL instance of the previously described network
topologies. The system configuration DSL consists of two
parts: the first part describes building block definitions and
the second part describes system configuration descriptions
which consists of combinations of the build blocks.

Figure 5 shows a fragment of the building block defini-
tions. Every building block has a unique id. Building blocks
have a type, for instance, a stand can be based on the floor or
the ceiling. Also the table is a building block.

Figure 5. Building Block Definitions

Depending on which options a customer chooses, the ta-
ble can have one up to six motorized degrees of freedom.
Hence, there are six combinations of motion drives for a ta-
ble. For certain building blocks, nodes from multiple ven-
dors can be used. Recall that in the topology descriptions of
the first DSL, nodes of a certain type are used. The relation
between vendors and types has been encoded in the gener-
ator, e.g., VENDOR A corresponds to types TYPE C and
TYPE D. Also information about which port of a building
block needs to be connected is hard coded into the generator
because this will never change.

Figure 6. System Configuration Descriptions

32

A fragment of two system configuration descriptions is
shown in Figure 6:

• Configuration1 describes a system configuration consist-
ing of a ceiling stand with motion drives of vendor A.
This is a very basic example that results in a single net-
work topology.

• Configuration2 consists of a ceiling stand and a table. The
table can have from 1 up to 6 motion drives and each of
these motion drives can be either from VENDOR A or
VENDOR B. If a table has one motion drive it can be of
two different vendors, leading to two network topologies.
If a table has two motion drives, then four different com-
binations are possible, etcetera. When we sum all possi-
bilities, we get 126 network topologies.

The Configuration2 example makes the need for the sys-
tem configuration language clear. The number of network
topologies grows exponentially with the number of different
vendors that need to be supported.

Using the system configuration language, the generation
of the configuration files takes a two step approach. In the
first step, an instance of the system configuration language
generates an instance with network topology descriptions.
From the network topologies, XML configuration files are
generated.

7. Concluding Remarks
We have presented an approach to improve the maintenance
of a legacy component using two DSLs. The first DSL de-
scribes network topologies from which XML files are gen-
erated for the master of a fieldbus network. Because of the
expected large number of topologies in the future, we further
raised the abstraction level by means of a second DSL that
describes system configurations and generates an instance of
the first network topology DSL. The experiences with these
DSLs at Philips leads to the following observations on the
questions posed in Section 1.

• Is it financially feasible to extend the life of a legacy com-
ponent using a DSL?
We calculate the Return On Investment (ROI) for the pre-
sented DSL. First we compute the required investment
for the DSL approach. To learn the domain and the struc-
ture of the configuration XML files took 10 hours. The
construction of the DSL took about 40 hours including
the creation of the validation rules. In total it took about
50 hours to create the DSL. We expect new vendors in the
future and estimate that it will take 30 hours to extend the
DSL framework with support for these vendors.
Next we compare the DSL approach with the current
way-of-working. We estimate that approximately 8 hours
are required to manually create a topology file, build
a physical hardware set-up and test if the master can
start the fieldbus. Of the 8 hours approximately half an

hour is needed required to create the topology file. If we
multiply these 8 hours of work with the the 2000 network
topologies we need in the future, it takes 16000 hours
which is 10 man-years.
Using the DSL we expect it takes around 20 hours to
create instances describing the system configurations for
the 2000 topologies. These 20 hours plus support for new
vendors (30 hours) plus the 50 hours to create the DSL
itself leads to 100 hours of investment. ROI = (gain from
investment – cost of investment) / cost of investment =
(16000 - 100) / 100 = 159. Hence, the DSL has a high
ROI which indicates that the investment in the DSL will
be preferred above keeping the current way-of-working.

• What are the pros and cons of using a DSL compared to
the current way of working?
We list a number of advantages and disadvantages of
using a DSL compared to the current way of working.
We start with the advantages, in addition to the large ROI
computed in the previous point:

Our DSLs are simple and easy to use; the users of
the commercial tool, which are software engineers,
should be able to create a new network topology and
a new system configuration in a short amount of time.

Creating a network topology can be done in less time
than with the current way of working, i.e., using the
commercial tool.

The validation rules check if a network topology is
valid, while with the commercial tool faults can be
introduced that can only be found when a topology is
build and tested.

Below a list of disadvantages:

The generators of the DSLs contain additional code
that needs to be archived, supported and maintained.

C++ is the programming language that is used at
Philips. The generators of the DSLs can be pro-
grammed in Xtend and/or Java. The switch in pro-
gramming language will create a barrier for some
software engineers although the generator only needs
to be supported by a few software engineers. There
will be more users for the language than there are
software engineers that need to maintain the language.

The preferred Integrated Development Environment
(IDE) at Philips is Microsoft Visual Studio (MSVS).
We have investigated and compared multiple solu-
tions to create DSLs using MSVS, but the outcome
of the investigation is that we can only use Eclipse
for our needs. Installing a second IDE and switching
between IDEs is a disadvantage.

At Philips, we clearly have a maintenance challenge when
2000 network topologies need to be supported. In this case,
the DSL approach has a large ROI and, despite a few draw-

33

backs, provides a very good solution for this future mainte-
nance problem. In general, due to the challenges with main-
taining legacy components and the experiences presented in
this paper, Philips will continue with the DSL approach.

Acknowledgments
We would like to thank the anonymous reviewers for a num-
ber of very useful remarks.

References
H. Vliet, Software Engineering: Principles and Practice, John

Wiley & Sons, 2008.

V. Vyatkin, Software Engineering in Industrial Automation: State-
of-the-Art Review, IEEE Transactions on Industrial Informatics,
Vol. 9, No. 3, 2013, pp. 1234-1249.

R. Froschauer, D. Dhungana, and P. Grunbacher, Managing the
lifecycle of industrial automation systems with product line
variability models, in Proc. 34th Euromicro Conf. Software
Eng. Adv. Applic., 2008, pp. 35-42.

H. Pei Breivold, I. Crnkovic and M. Larsson, A systematic review
of software architecture evolution research, Information and
Software Technology, Elsevier, 2011, pp 16-40.

K. Bennett and V. Rajlich, Software Maintenance and Evolution: A
Roadmap, in Proc. Conf. The Future of Software Engineering,
2000, pp. 73-87.

L. Bettini, Implementing Domain-Specific Languages with Xtext
and Xtend, Packt Publishing, 2013.

D. Geer, Eclipse Becomes the Dominant Java IDE, IEEE Com-
puter, Vol. 38, No. 7, 2005, pp. 16-18.

J. Coplien, D. Hoffman and D. Wiess, Commonality and Variability
in Software Engineering, IEEE Computer, Vol. 15, No. 6, 1998,
pp. 37-45.

R. Sarnath and D. Brahma, Object-Oriented Analysis and Design,
Springer, 2010.

A. van Deursen, Domain-Specific Languages versus Object-
Oriented Frameworks: A Financial Engineering Case Study,
in Proc. Smalltalk and Java in Industry and Academia, 1997.

D. Batory, C. Johnson, B. Macdonald and D. von Heeder,
Achieving Extensibility Through Product-Lines and Domain-
Specific Languages: A Case Study, ACM Transactions on
Software Engineering and Methodology, Vol. 11, No. 2, April
2002, pp. 191-214.

S. Fehrenbach, R. Paige and E. van Wyk, Software Evolution
to Domain-Specific Languages, in Proc. 6th International
Conference on Software Language Engineering, LNCS, Vol.
8225, 2013, pp. 96-116.

P. Wolfgang, Design Patterns for Object-Oriented Software
Development, Addison-Wesley Publishing Co., 1994.

M. Ward, Language Oriented Programming, Software - Concepts
and Tools, 1994.

S. Sobernig, M. Strembeck and A. Beck, Developing a Domain-
Specific Language for Scheduling in the European Energy
Sector, in Proc. Conference on Software Language Engineering,
LNCS, Vol. 8225, 2013, pp. 19-35.

S. Erdweg, S. Fehrenbach and K. Ostermann, Evolution of
Software Systems with Extensible Languages and DSLs, IEEE
Computer, Vol. 31, No. 5, 2014, pp. 68-75.

B. Basten, J. van den Bos, M. Hills, P. Klint, A. Lankamp, B.
Lisser, A. van der Ploeg, T. van der Storm and J. Vinju, Modular
language implementation in Rascal - experience report, in
Journal Science of Computer Programming, Vol. 114, Elsevier,
2015, pp. 7-19.

A. Bergmayr, H. Bruneliere, J. Cabot, J. Garcia, T. Mayerhofer
and M. Wimmer, fREX: fUML-based reverse engineering of
executable behavior for software dynamic analysis, in Proc.
of the 8th International Workshop on Modeling in Software
Engineering, ACM, 2016, pp. 20-26.

A. Van Deursen and P. Klint, Little languages: little maintenance?,
Journal of software maintenance, Vol. 10, No. 2, 1998, pp.
75-92.

J.-P. Tolvanen and S. Kelly, Defining domain-specific modeling
languages to automate product derivation: Collected experi-
ences, International Conference on Software Product Lines,
Springer, 2005, pp. 198-209.

L. Cao, B, Ramesh and M. Rossi, Are domain-specific models
easier to maintain than UML models?, IEEE software, 2009,
Vol. 26, No. 4, pp. 19-21.

T. Berger, R. Rublack, D. Nair, J. Atlee, M. Becker, K. Czarnecki
and A. Wasowski, A survey of variability modeling in industrial
practice, Proceedings of the Seventh International Workshop
on Variability Modelling of Software-intensive Systems, ACM,
2013, pp. 7:1-7:8.

34

