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1 Introduction

Constructing phenomenologically interesting quantum field theories which are valid at all

length scales is one of the central topics in theoretical high-energy physics to date. For

gravity, such theories may be realized through the Asymptotic Safety mechanism, see [1–8]

for reviews. As first suggested by Weinberg [9–12] this mechanism could provide a con-

sistent and predictive quantum theory of gravity within the well-established framework of

quantum field theory. The key idea of this program is that the gravitational renormal-

ization group (RG) flow possesses a non-trivial RG fixed point. At this fixed point (some

of) the dimensionless couplings take non-zero values, so that the resulting theory is inter-

acting. This is in contrast to the free (or Gaussian) fixed points underlying asymptotic

freedom where the high-energy completion is provided by a free theory. Starting from the

seminal work [13], there is, by now, substantial evidence that gravity in four spacetime

dimensions actually possesses a non-Gaussian fixed point suitable for Asymptotic Safety.
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In particular, it has been shown that this fixed point is robust under the inclusion of the

two-loop counterterm [14] and is connected to a classical regime through a crossover [15].

Besides ensuring the absence of unphysical divergences, this fixed point also comes with

predictive power: any UV-repulsive direction of the fixed point allows to express the asso-

ciated coupling as a function of the relevant parameters. The resulting relations may be

tested experimentally, at least in principle.

While the prospects of obtaining a quantum description of the gravitational force valid

at all length scales is already intriguing, it is also clear that a realistic description of our

world also requires the inclusion of matter degrees of freedom. While there has already

been significant effort geared towards understanding the role of the Asymptotic Safety

mechanism for gravity-matter systems, the picture is still far from complete. In order

to discuss potential UV-completions of gravity-matter systems it is useful to distinguish

between the two cases where the matter sector of the underlying fixed point is Gaussian or

non-Gaussian in the sense that matter self-interactions are either absent or turned on. On

general grounds, one may expect though that non-trivial interactions in the gravitational

sector also induce non-trivial matter self-couplings, see e.g. [16] for a discussion. Depending

on the details of the approximation used to investigate the fixed point structure of the

gravity-matter system, it is conceivable that a matter fixed point which is actually non-

Gaussian may be projected onto a Gaussian one if the approximation used to probe it does

not include self-interactions. Conversely, a fixed point identified as Gaussian may split into

a Gaussian and non-Gaussian one once additional couplings are probed.

In order to get an idea which matter sectors could actually be compatible with Asymp-

totic Safety, refs. [17–20] studied projections of the full RG flow where the matter sector

contained an arbitrary number of minimally coupled scalars Ns, vectors Nv, and Dirac

fermions ND. Complementary results for the case where spacetime carries a foliation

structure have been reported in [21]. While all studies agree on the statement that the

matter content of the standard model of particle physics leads to a fixed point structure

suitable for realizing the Asymptotic Safety mechanism, the precise values for Ns, Nv, and

ND supporting a NGFP are different. Restricting to the cases where the matter sector

contains scalar fields only, [17–20] report an upper bound Ns . 16 − 20, while in [21]

no such bound is present in agreement with the initial works [22, 23]. This difference

can be traced back to different choices for the coarse graining operators and definitions of

Newton’s constant employed in these works. In particular, refs. [18–20] define Newton’s

constant based on the flat space graviton propagator while [17, 21] resort to a background

Newton’s constant. As argued in [19] matter degrees of freedom contribute differently in

these settings. The two pictures are in qualitative agreement if Ns is small but start to

deviate once the matter contribution becomes significant.

In a complementary approach, the fixed point structure arising within scalar-tensor

theory has been studied in [24–31].1 This setup includes two arbitrary functions of the

scalar field φ, a scale-dependent scalar potential Vk(φ) and a function Fk(φ) encoding the

1For related studies of RG flows of scalar field theories in a fixed (curved) background spacetime see [32–

36].
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coupling of the scalar field to the Ricci scalar. In d = 3 this setting gives rise to a Wilson-

Fisher type RG fixed point which can be understood as a gravitational-dressed version of

the Wilson-Fisher fixed point known in a non-dynamical flat background. In d = 4 the

analogous analysis indentifies a fixed point with a Gaussian matter sector. In particular

the scalar mass and φ4-coupling vanish at this fixed point. Ref. [31] supplements this

setting by a third scale-dependent function Kk(φ) dressing the scalar kinetic term. In this

generalization also a non-Gaussian matter fixed point has been identified.

The influence of gravity on the flow of gauge-couplings has extensively been discussed

in both perturbative [37–44] and non-perturbative [45–49] settings. Fundamental aspects

related to the inclusion of fermions have been discussed in [50, 51] and the compatibility

of light chiral fermions with asymptotic safety has been argued in [52–54]. Starting from

the prediction of the Higgs mass based on Asymptotic Safety [55], mass hierarchies in

the standard model and its extensions have been studied in [56–58] while the influence of

gravitational interactions on the flow of Yukawa-couplings has been studied in [59–64].2

Based on these works there have been several key insights related to asymptotically safe

gravity-matter systems. Firstly, non-Gaussian fixed points in the matter sector may come

with a higher predictive power than their Gaussian counterparts. In ref. [46] this property

has been used to predict the value of the fine-structure constants based on the Asymptotic

Safety mechanism. Secondly, a non-vanishing fixed point value for the U(1) hypercharge

may provide a solution to the triviality problem of the standard model [48]. Thirdly, the

Higgs mass can be predicted correctly based on the beta functions of the standard model

completed by the Asymptotic Safety mechanism above the Planck scale [55].

These salient features are, however, also accompanied by the lurking danger that the

non-vanishing gravitational interactions may induce potentially dangerous terms in the

fixed point action. Typical candidates are higher-derivative terms contributing to propa-

gators of matter fields, which are typically associated with Ostrogradski instabilities or the

violation of unitarity, see [72, 73] for reviews. In this work we initiate the study of this class

of interaction terms for gravity-matter flows. For transparency we focus on the simplest

possible model comprising the Einstein-Hilbert action supplemented by minimally coupled

scalar fields including a higher-derivative term in the scalar propagator. We show that, as

expected, the higher-derivative term is generated along the RG flow. Quite remarkably,

the flow admits RG trajectories for which the ghost degrees of freedom decouple in the

renormalized propagator. These findings constitute a highly non-trivial consistency test

concerning the structure of asymptotically safe gravity-matter systems. From a comple-

mentary viewpoint they also provide the initial step towards extending the classical stability

analysis of Horndeski [69] and “beyond Horndeski” theories [70, 71] to the quantum level.

The remaining work is organized as follows. The Ostrogradski construction and its

loop-holes are reviewed in section 2. Section 3 introduces the setup of our RG computation

incorporating a higher-derivative kinetic term in the scalar sector, and reports the resulting

beta functions in section 3.2. The properties of the RG flow are investigated in section 4

2For a controlled realization of the Asymptotic Safety mechanism in gauged Yukawa-systems and their

phenomenological applications see [65–68].
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and we discuss the consequences of our findings in section 5. Technical details related to the

evaluation of the flow equation using a non-smooth regulator are relegated to appendix A.

2 Higher-derivative terms and Ostrogradski instability

We start by briefly reviewing the classical Ostrogradski instability and its loopholes, mainly

following the expositions [72, 73].

2.1 The instability. . .

It was shown by Ostrogradski in the 1850’s that non-degenerate classical systems containing

time derivatives of finite degree larger than two give rise to Hamiltonians whose kinetic

term is not bounded from below [74]. Irrespective of the exact form of the action, the

unbounded Hamiltonian will yield several unwanted phenomena, related to the instability

of the system. At the classical level, the presence of degrees of freedom coming with a

wrong sign kinetic term allows to accelerate particles to infinite velocity while keeping the

total energy of the system constant.

This type of instability also appears in the corresponding quantum system. While the

presence of higher-derivative terms in the propagators lowers the degrees of divergencies

arising in loop computations, the presence of positive and negative energy states may

trigger an instantaneous decay of the vacuum. Naively, a way out may be to reinterpret

the negative-energy creation and annihilation operators as positive-energy annihilation and

creation operators, respectively. Although this seems to cure the instability of the vacuum

state, this procedure yields states with negative norm. Removing these states from the

physical spectrum, however, yields a non-unitary S-matrix.

In the case of a non-interacting scalar field theory, the Ostrogradski instability can be

nicely illustrated by the Källén-Lehmann representation [75]. This representation expresses

the dressed propagator G(x−y) as a superposition of freely propagating particles with mass

µ ≥ 0 and propagator

Gfree(x;µ2) =

∫
ddp

(2π)d
1

p2 + µ2
eipx . (2.1)

such that

G(x− y) =

∫ ∞
0

dµ2 ρ(µ2)Gfree(x− y;µ2) . (2.2)

For a unitary theory, the spectral density ρ(µ2) is a sum over norm-states with positive

coefficients, thus ρ(µ2) ≥ 0. If ρ(µ2) < 0 for some µ2 in the physical sector of the theory,

then unitarity issues arise.

In this article, we will study a system containing scalar fields φ where the propagator

contains a fourth order kinetic term (see section 3.1)3

Smatter =
1

2
Z

∫
ddp

(2π)d
φ
[
p2 + Y p4

]
φ , (2.3)

3Throughout this work we work with Euclidean signature with a positive definite metric. Unitarity can

then be studied either by performing a Wick rotation to Minkowski space, or by the Euclidean analogue,

reflection positivity. The question which propagators satisfy reflection positivity is adressed in [76].
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where Z denotes a wave-function renormalization and Y is the coupling associated with

the higher-derivative term. This has a propagator expanded in a Fourier basis given by

G(p) =
1

Z

1

p2 + Y p4
. (2.4)

Using partial fraction decomposition, we can expand this in terms of free propagators:

G(p) =
1

Z

(
1

p2
− 1

p2 + 1
Y

)
. (2.5)

We see that the Källén-Lehmann spectrum contains a massless state with positive density,

and a state of mass

µ2 = Y −1 (2.6)

with negative density. The latter state is called a (Ostrogradski) ghost. It is easy to see

that the spectral density is not positive. Therefore the theory will generically be unstable.

2.2 . . .and its loop-holes

Although higher derivatives generically introduce severe fundamental flaws in a theory,

there a number of ways to bypass this problem. This can be done at both the classical and

the quantum level.

One way for curing the Ostrogradski instability at the classical level is to lift the

condition of non-degeneracy. In this case the higher-order time derivatives are removed by

either combining them into total derivatives or using a gauge symmetry. In the former case,

the total derivatives in the Lagrangian do not contribute to the dynamics. Provided that

this procedure removes all higher-derivative terms, this results in a healthy theory.4 In the

latter case, gauge symmetry can be used to impose an extra condition to the equations of

motion. If these constraints remove the higher derivatives, the instability is cured as well.

A second option consists of replacing the terms appearing in the straight bracket of

eq. (2.3) by an entire function of the momentum possessing a single pole of first order. This

strategy results in a non-local theory which contains time-derivatives of infinite order. In

this case the propagator does not admit a partial fraction decomposition and the absence of

poles in the physical spectrum implies that the theory is still stable. However, the question

if the resulting non-local theory is well-posed is subtle. An exposition on the treatment of

this class of theories is given in [78, 79].5

When assessing the stability of a higher-derivative theory at the quantum level, the

situation becomes even more involved. In this case the dressed propagator of the theory

can be obtained from the effective action Γ and one expects that for a stable theory this

propagator does not give rise to Ostrogradski ghosts. Following the discussion of the

classical case above, this may be realized in two ways:

4The point that a healthy theory has to remove the entire tower of higher-derivative terms has been

stressed in [77]. We are greatful to H. Motohashi for bringing this work to our attention.
5For a more detailed discussion of infinite-order theories in the context of gravity we refer to [80–83].
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a) pushing the mass of the Ostrogradski ghost to infinity.

b) completing the dressed propagator into an entire function.

The first case can be illustrated by considering the action (2.3). At the quantum level

the coupling Y will depend on the renormalization group scale k, which we indicate by

Yk. The requirement that the higher order derivative term does not contribute to the

dressed propagator corresponds to demanding that limk→0 Yk → 0. At the level of the

decomposition (2.5), sending Y → 0 means that the ghost mass goes to infinity. The ghost

then decouples from the spectrum of the theory and does not entail an instability.6 This

scenario may be realized in two ways. Firstly, the system may exhibit a fixed point located

at Y∗ = 0. The theory at the fixed point is scale invariant and ghost-free. Secondly, an RG

trajectory may be attracted to the Yk = 0 hyperplane as k → 0. The ghost will drop out

of the effective propagator rendering the renormalized theory effectively ghost-free.

When investigating case a), gravity plays an essential role. In its absence, the ac-

tion (2.3) describes a one-parameter family of non-interacting theories parameterized by

Y . The only ghost-free theory in this set is Y = 0. This picture changes once a minimal

coupling to the gravitational field is included. In this case the gravitational interactions

induce a non-trivial flow of Yk, opening the door to the nontrivial scenarios described above.

At this stage the following remarks are in order. Firstly, we stress that the condition

that the theory should be ghost-free applies to the dressed propagator (obtained at k = 0)

only. At finite values of k it is expected that the process of integrating out quantum

fluctuations mode-by-mode will generate higher-order derivative terms in the intermediate

description. This does not signal the sickness of the theory, as its degrees of freedom should

be read off from the dressed propagator. Secondly, investigating the case b) will require

generalizing the simple ansatz (2.3) to a scale-dependent function of the momentum. In [89]

it has been shown that this class of models suffices to obtain the Polyakov effective action

from a renormalization group computation. This generalization is beyond the present work

though, so we will not discuss this case in detail.

3 RG flows including higher-derivative propagators

Following up on the general discussion of section 2, we now perform a RG computation

determining the scale-dependence of the higher-derivative coupling Y in a gravity-matter

setting. The key results of this section are the beta functions (3.14), (3.15), (3.19) and (3.21)

which govern the RG flow of our projection.

3.1 The functional renormalization group equation and its projection

Currently, the predominant tool for investigating the fixed point structure and RG flows

of gravity and gravity-matter systems is the functional renormalization group equation

(FRGE) for the effective average action Γk [13, 90–92]

∂tΓk =
1

2
Str

[(
Γ

(2)
k +Rk

)−1
∂tRk

]
. (3.1)

6For a similar discussion in the context of higher-derivative gravity see [88].
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Here t ≡ ln(k/k0) denotes the logarithmic RG scale, Γ
(2)
k is the second variation of Γk

with respect to the fluctuation fields and Str contains an integral over loop momenta and a

sum over component fields. The regulator Rk provides a mass-term for fluctuation modes

with momenta p2 . k2 and vanishes for p2 � k2. The interplay of the Rk-terms in

the numerator and denominator then ensures that the RG flow of Γk is actually driven

by quantum fluctuations with momentum scale p2 ≈ k2. In this way the FRGE realizes

Wilson’s picture of renormalization where the RG flow is generated by integrating out

fluctuations shell-by-shell in momentum space.

The FRGE comes with some highly desirable properties. Firstly, it allows the compu-

tation of RG flows without specifying a fundamental action a priori. This feature makes

the equation tailor-made for identifying interacting renormalization group fixed points.

Moreover, the regulator Rk vanishes for k = 0 so that all quantum fluctuations are in-

tegrated out as k → 0. As a consequence the effective average action agrees with the

standard effective action in this limit, limk→0 Γk ≡ Γ. Finally, the framework turns out

to be sufficiently flexible to probe settings where different classes of metric fluctuations

are admitted by either implementing a linear split [13], an exponential split [93, 94], or

an ADM split [95–97] of the gravitational degrees of freedom. Throughout this work, we

will implement a linear split, decomposing the physical metric gµν into a fixed background

metric ḡµν and fluctuations hµν according to

gµν = ḡµν + hµν . (3.2)

Covariant objects carrying a bar are then constructed from the background metric while

unbarred ones are constructed from gµν . Furthermore, we will set d = 4 throughout. While

the generalization to general dimension d is straightforward the rather lengthy nature of

the beta functions in the general case obscures the relevant structures, so that we make

this choice for clarity.

A common technique for finding non-perturbative approximate solutions of the FRGE

consists of making an ansatz for Γk, including the operators of interest, and subsequently

projecting the full flow onto the subspace spanned by the ansatz. The beta functions

governing the scale-dependence of the couplings contained in the ansatz are then read off

from the coefficients multiplying the interaction terms contained in the ansatz. In order to

study the effects of higher-derivative terms appearing in the scalar propagators of gravity-

matter systems, we make the following ansatz for the effective average action

Γk[g, φ, c̄, c; ḡ] ≈ Γgrav
k [g] + Γmatter

k [φ, g] + Γgf
k [g; ḡ] + Sghost[g, c̄, c; ḡ] . (3.3)

The gravitational part of this ansatz is taken of Einstein-Hilbert form

Γgrav
k [g] =

1

16πGk

∫
d4x
√
g [−R+ 2Λk] . (3.4)

It includes a scale-dependent Newton’s constant Gk and cosmological constant Λk. The

gravitational sector is supplemented by a gauge-fixing action Γgf
k and a ghost term

Sghost[g, c̄, c; ḡ]. In order to facilitate the comparison with the results reported in [17],

– 7 –
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we implement the harmonic gauge

Γgf
k =

1

32πGk

∫
d4x
√
ḡ Fµḡ

µνFν , with Fν = D̄µhµν −
1

2
D̄νh . (3.5)

This gauge-fixing is accompanied by a standard ghost-term7

Sgh = −
√

2

∫
d4x
√
ḡ c̄µ

[
D̄ρḡµκgκνDρ + D̄ρḡµκgρνDκ − D̄µḡρσgρνDσ

]
cν . (3.6)

The gravitational part of Γk is supplemented by Ns scalar fields,

Γmatter
k [φ, g] =

1

2
Zk

Ns∑
i=1

∫
d4x
√
g φi

[
∆ + Yk ∆2

]
φi , (3.7)

where ∆ ≡ −gµνDµDν is the Laplacian constructed from the full metric. Besides a wave-

function renormalization Zk, this ansatz contains a scale-dependent coupling Yk associated

with a higher-derivative contribution to the scalar propagator.

3.2 Evaluating the flow equation

Starting from the ansatz (3.3), the goal is to find the beta functions determining the scale-

dependence ofGk,Λk and Yk as well as the scalar anomalous dimension ηs = −∂t lnZk. This

information is obtained by substituting the ansatz into the FRGE and extracting the rele-

vant interaction terms from the trace appearing on the right-hand-side. The explicit evalu-

ation of this operator trace requires specifying the regulator function Rk. Throughout this

work, we will resort to a Litim-type profile function [99, 100], r(z) = (1−z)Θ(1−z), so that

Rk = Zk k2 r(�/k2) . (3.8)

The matrix-valued wave function renormalization Zk is obtained from the substitution

rule � 7→ Pk ≡ � + k2r(�/k2). Following the nomenclature introduced in [2], the coarse

graining operator � is chosen either as

Type I : � = ∆ ,

Type II : � = ∆ + qR̄ ,
(3.9)

where the endomorphism E ≡ qR̄ is chosen such that all curvature terms appearing in

Γ
(2)
k become part of the coarse-graining operator. Using the Litim-profile in the regulating

procedure has the advantage that all operator traces relevant in this work can be performed

analytically. This comes at the price that the regulator is not smooth and the extraction

of external momenta from the traces is non-trivial. In particular, contributions arising

at the boundary of the momentum integrals have to be taken into account carefully. Our

strategy for incorporating such terms is explained in detail in appendix A.

The projection of the operator trace is then done as follows. The flow of Gk and Λk
can be read off from the terms proportional to

∫
d4x
√
ḡR̄ and

∫
d4x
√
ḡ, respectively. These

7As compared to [17], we do not include an anomalous dimension for the ghost fields. Thus our results

correspond to ηc = 0 in [17].
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q

p
p+ q

p

q

p

p+ q

q

Figure 1. Feynman diagrams encoding the scalar contributions to the beta functions. The solid

line denotes the background scalar field φ̄ , the dashed line denotes the fluctuating scalar field

φ̂ , the curly line the graviton propagator. The crossed circle denotes the insertion of the cutoff

operator ∂tRk.

contributions are conveniently found by selecting ḡµν as the metric on a 4-sphere and taking

the background value of the scalar field φ̄ = 0. The resulting operator traces can then be

evaluated using standard heat-kernel techniques [2, 7, 13]. In this way, one arrives at the

beta functions for the gravitational couplings given in eq. (3.14).

The flow in the scalar sector is efficiently computed on an Euclidean background ge-

ometry ḡµν = δµν and by expanding the background scalar field φ̄(x) in terms of Fourier

modes. Setting the fluctuation fields to zero, the scalar sector appearing on the left-hand

side of the flow equation is

Γscalar
k

∣∣∣
φ̂=0

=
1

2
Zk

∫
d4q

(2π)4
φ̄(−q2)

(
q2 + Yk q

4
)
φ̄(q2) . (3.10)

Thus the scale-dependence of Zk and Yk is encoded in terms coming with two powers of

the background scalar field and two and four powers of the momentum q, respectively. The

Feynman diagrams generating these structures are depicted in figure 1. They consist of a

pure graviton tadpole, and two diagrams with scalar-graviton loop formed by connecting

two three-point vertices. The projection of the flow equation then requires extracting the

contributions proportional to q2 and q4 from these diagrams. Following the procedure

described in appendix A, this results in eqs. (3.19) and (3.21).

The result of these computations is conveniently expressed in terms of the dimensionless

couplings

gk ≡ Gk k2 , λk ≡ Λk k
−2 , yk ≡ Yk k2 , (3.11)

and the anomalous dimension of Newton’s constant and of the scalar field

ηN ≡ −(Gk)
−1∂tGk , ηs ≡ −(Zk)

−1∂tZk . (3.12)

The scale-dependence of the dimensionless couplings (3.11) is encoded in the beta functions

which we define according to

∂tgk = βg(g, λ, y) , ∂tλk = βλ(g, λ, y) , ∂tyk = βy(g, λ, y) . (3.13)

For the dimensionless variables, the system of differential equations is autonomous in the

sense that the beta functions are independent of k.

– 9 –
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The explicit expressions for the beta functions in the gravitational sector are

βg = (2 + ηN ) g , (3.14)

βλ = (ηN − 2)λ+
g

48π

(
120

1− 2λ
− 20ηN

1− 2λ
− 96 + 2Ns(6− ηs) +Ns

3βy + y(6− ηs)
1 + y

)
.

The anomalous dimension of Newton’s constant is y and Ns dependent. Inspired by [13],

it can be cast into the following form:

ηN (g, λ, y) =
g (B1(λ) +NsB3(λ, y))

1− gB2(λ)
. (3.15)

The functions B1 and B2 encode the contribution of the gravitational sector. For a Type I

regulator, these functions have been determined in the seminal paper [13]. For a Litim-type

regulator, they read

BType I
1 =

1

3π

(
5

1− 2λ
− 9

(1− 2λ)2
− 7

)
, BType I

2 = − 1

12π

(
5

1− 2λ
− 6

(1− 2λ)2

)
.

(3.16)

For the Type II regulator, cf. eq. (3.9), these functions become

BType II
1 = − 1

3π

(
13

1− 2λ
+ 10

)
, BType II

2 =
1

12π

13

1− 2λ
. (3.17)

Besides the gravitational self-interaction, there is a contribution of the scalar sector to the

running of λ and g. For the latter, the additional scalar part is captured by

B3 =
1

72π

(
12− 3ηs +

4βy + (4− ηs) y
1 + y

)
. (3.18)

In absence of higher derivative terms in the action, i.e. y = 0 and βy = 0 and setting the

relevant ghost contributions to zero, this result agrees with [17]. Note that the choice of

regulator, eq. (3.9), enters into B1 and B2 only.

Next, we turn to the beta functions of the scalar sector. The anomalous dimension for

the scalar field can be expressed as

ηs =
g

1− gS4
(S1 + ηN S2 + βy S3) . (3.19)

where the λ and y dependent coefficients are given by

S1 =
1

105π

1

1− 2λ

(
2

(1 + y)2
+

1

1 + y
− 73− 72 y

)
− 1

15π

1

(1− 2λ)2

(
1

1 + y
+ 9− 4 y

)
,

S2 =
1

60π

1

(1− 2λ)2

(
1

1 + y
+ 4− 3 y

)
,

S3 = − 1

7π

1

1− 2λ

(
1

6(1 + y)2
+

11

30(1 + y)
+

2

5

)
,

S4 = − 1

35π

1

1− 2λ

(
1

4(1 + y)2
− 1

6(1 + y)
− 3− 2 y

)
. (3.20)
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The system is completed by the beta function for the higher-derivative coupling y. Its

general structure follows a similar pattern as ηs:

βy =
1

1− g S8

(
(2 + ηs) y + g (S5 + ηN S6 + ηs S7)

)
. (3.21)

The functions S5 to S8 depend on λ and y and are found to be

S5 =
1

15π

1

1− 2λ

(
12

(1 + y)2
− 44

1 + y
+ 32

)
− 1

30π

1

(1− 2λ)2

(
35

1 + y
− 25 + 85 y

)
,

S6 =
1

12π

1

(1− 2λ)2

(
3

1 + y
− 5 + 5 y

)
,

S7 = − 1

30π

1

1− 2λ

(
3

(1 + y)2
− 11

1 + y
+ 8

)
,

S8 = − 4

15π

1

1− 2λ

(
1

(1 + y)2
− 1

1 + y

)
. (3.22)

Eqs. (3.14), (3.15), (3.19) and (3.21) form an implicit system which can be solved for the

beta functions βλ, βy and anomalous dimensions ηN and ηs. In absence of the higher-

derivative terms in the scalar propagator, which can be switched off by setting y = 0 and

βy = 0, the beta functions agree with the ones reported in [17]. This provides a non-trivial

crosscheck of our derivation.

3.3 Structural properties of the beta functions

The system of beta functions (3.14), (3.15), (3.19) and (3.21) possesses several interesting

properties. Firstly, ηs and βy depend on the number of scalar fields Ns only implicitly. This

feature is readily deduced from the Feynman diagrams in figure 1 which do not contain

closed scalar loops that could give rise to terms proportional to Ns. The number of scalars

then enters the flow in the scalar sector only indirectly through the value of the cosmological

constant and the anomalous dimension of Newton’s constant. This suggests that the fixed

point structure and flow pattern obtained from the beta functions will be rather stable

under a change of the number of scalar fields.

Moreover, the beta functions possess several singular loci where either a beta function

or an anomalous dimension diverges. The projection of these singular lines onto the y = 0-

plane is shown in figure 2. Inspecting βλ and βy one encounters two singular lines

λsing =
1

2
and ysing = −1 , (3.23)

where the denominators in the beta functions vanish.8 In addition one obtains singular

lines when the anomalous dimensions ηN or ηs develop a singularity. For ηN this locus is

independent of y and Ns and implicitly parameterized by the relation

ηsing
N : gB2(λ) = 1 . (3.24)

8The singularity λsing has recently been discussed in [98], where it has been proposed that the strong

RG flows in its vicinity could drive the value of the renormalized cosmological constant to zero dynamically.
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Figure 2. Illustration of the singularity structure of the beta functions (3.14), (3.15), (3.19)

and (3.21) projected onto the y = 0-plane. The black line indicates the fixed singularity at λsing =

1/2. At the blue and purple lines the anomalous dimensions ηN and ηs diverge respectively. The

solid lines apply to the Type I regulator while the dashed result is obtained from the Type II

regularization procedure.

Since B2(λ) depends on the choice of coarse-graining operator, there are two distinguished

structures entailed by this relation. As illustrated in figure 2 the Type I choice leads to

a singular locus which screens the line λsing = 1
2 for positive Newton’s constant while the

Type II coarse graining screens λsing = 1
2 for g < 0. This observation may actually become

important when “quenching the cosmological constant” along the lines proposed in [98]

which presupposes that an RG trajectory emanating from the classical regime can actually

reach the singular locus λsing = 1
2 .

The hypersurface on which the scalar anomalous dimension ηs diverges is given by a

quadratic polynomial in g with λ and y-dependent coefficients

ηsing
s : 1− S3 y − g (S4 + S3 S7 + S8) + g2 S4 S8 = 0 . (3.25)

For y = 0 the resulting line is depicted as the purple line in figure 2. The hypersurface

also screens the line λsing = 1/2 for g > 0. In the Type I coarse graining procedure ηsing
s

is sandwiched between ηsing
N and λsing = 1/2, while for the Type II procedure, it actually

provides the screening of the λsing = 1/2-line. Thus we see that the inclusion of scalar

matter actually alters the singularity structure of the beta functions. At the same time,

we expect that the system is rather insensitive to the inclusion of matter fields. The later

point will be confirmed in more detail by the analysis of the next section.
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Figure 3. Characteristics of the NGFP in the minimally coupled gravity-scalar system as a function

of Ns. Its position in the λ-g-plane and the resulting scalar anomalous dimension η∗s are shown in

the left panel while the stability coefficients are displayed in the right panel.

4 Properties of the renormalization group flow

We now discuss the properties of the RG flow entailed by the system (3.14), (3.15), (3.19)

and (3.21). In section 4.1 we study the flow of the subsystem where the effects of the higher-

derivative terms are switched off. The results provide the basis for analyzing the effects

related to the presence of higher-derivative terms in the scalar propagator in sections 4.2

and 4.4. Throughout the section we focus on the flow generated by the choice (3.16),

restricting ourselves to the discussion of a Type I coarse-graining operator only.

4.1 Minimally coupled scalar fields

The system (3.13) constitutes a set of autonomous coupled first order differential equations

capturing the scale-dependence of {gk, λk, yk}.9 A very important concept for understand-

ing the dynamics of such systems are its fixed points {gi,∗} where, by definition,

βgi({gj,∗}) = 0 . (4.1)

The flow of the system in the vicinity of such a fixed point can be studied by linearizing

the beta functions at {gi,∗}. The stability coefficients θi, defined as minus the eigenvalues

of the stability matrix Bij =
∂βgj
∂gi

∣∣∣
gj,∗

, indicate whether flows along the corresponding

eigendirection are attracted (Re(θi) > 0) or repelled (Re(θi) < 0) by the fixed point

as k → ∞. Eigendirections with Re(θi) > 0 span the UV-critical hypersurface SUV of

the fixed point. By construction any RG trajectory for which the fixed point provides

the high-energy completion must be contained in SUV. The parameters pinpointing a

particular RG trajectory within SUV then constitute free parameters which need to be

fixed by experimental data or other theoretical considerations.

Before delving into the analysis of the full system, it is useful to first analyze the

subsystem obtained from setting yk = 0, βy = 0. In this approximation the contributions

9The anomalous dimensions ηN and ηs can be obtained by evaluating (3.15) and (3.19) along a solution

of this system.
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Ns g∗ λ∗ g∗λ∗ η∗s θ1 θ2

−100 0.333 −0.684 −0.228 −0.046 3.898 1.963

−6 1.530 −0.111 −0.170 −0.556 1.822 1.475

0 0.707 0.193 0.137 −0.766 1.475± 3.043i

1 0.655 0.208 0.136 −0.771 1.599± 3.282i

10 0.419 0.278 0.117 −0.784 2.762± 4.523i

100 0.119 0.389 0.046 −0.768 13.09 8.572

Table 1. Characteristic quantities for the NGFP appearing at selected values of Ns. The case

Ns = 0 corresponds to the Einstein-Hilbert truncation.

of the higher-derivative terms in the scalar sector are switched off and the projection of the

flow equation is given by the Einstein-Hilbert action supplemented by an arbitrary number

Ns of minimally coupled scalar fields. The RG flow resulting from similar projections

has been studied in [17, 19–21, 23]. The analysis of this subsection then facilitates the

comparison with these works.

Fixed point structure. The reduced system possesses two fixed points, a Gaussian and

a non-Gaussian one. The Gaussian fixed point (GFP) is situated in the origin and its

stability coefficients are determined by the mass-dimension of the coupling constants,

(λ∗, g∗) = (0, 0) , θ1 = 2 , θ2 = −2 . (4.2)

The anomalous dimensions vanish at this fixed point. The stability coefficients indicate

that the GFP is a saddle point in the λ-g-plane exhibiting one UV-attractive and one UV-

repulsive eigendirection, also see the left diagram of figure 4. The GFP exists for all values

Ns.

In addition the system possesses a one-parameter family of non-Gaussian fixed points

(NGFPs) parameterized by the number of scalar fields Ns. Its position and stability of

these fixed points as a function of Ns is shown in the left and right diagram of figure 3,

respectively. In addition, explicit values of the position (λ∗, g∗), the universal product λ∗g∗,

the scalar anomalous dimension evaluated at the fixed point η∗s , and the stability coefficients

for selected values of Ns are provided in table 1. Notably, there is a NGFP for all values

Ns. By virtue of eq. (3.14) all NGFPs come with η∗N = −2. The one-parameter family of

NGFP solutions exhibits a maximal value of g∗ = 1.60 at Ns = −7.47. The cosmological

constant λ∗ has an inflection point at (Ns, λ∗) = (−5.23,−0.0399) and has a zero at

Ns = −4.81. The anomalous dimension has inflection points at (Ns, η
∗
s) = (−5.46,−0.600)

and (Ns, η
∗
s) = (35.5,−0.780); it has a minimum at (Ns, η

∗
s) = (14.3,−0.784). The analysis

of the stability coefficients displayed in the right diagram of figure 3 shows that all NGFPs

are UV-attractive in the λ-g-plane. The critical exponents θi have a non-zero imaginary

part forNs ∈ [−6, 93] only. For other values of Ns the critical exponents turn out to be real.
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Figure 4. Three prototypical RG trajectories obtained from numerically integrating the reduced

system of beta functions for Ns = 1 (left). The flow is governed by the interplay of the NGFP and

GFP. The scalar anomalous dimension ηs along the trajectories is shown in the right diagram. The

initial scales k0 are tuned such that the trajectories in the right diagram are disentangled. Notice

that ηs is negative semi-definite along the entire RG flow. In the UV (k → ∞) the anomalous

dimension ηs approaches its fixed point value η∗s = −0.771 independently of the specific initial

conditions. In the IR ηs remains negative and vanishes asymptotically for the solutions of Type Ia

and Type IIa. Trajectories of Type IIIa terminate in the singular line ηsingN triggering the divergence

of ηs at a finite value of k.

In the interval Ns ∈ [−4, 16] the NGFP discussed above is the only non-trivial fixed

point solution. Outside this window the simplified system possesses additional NGFPs.

These are, however, located outside the physically interesting region located at g > 0 and

to the left of the singular lines depicted in figure 2. Therefore, these fixed points will not

be discussed in detail.

Flows away from the NGFP. Beyond the vicinity of the NGFP, where the linearized

approximation of the flow is valid, the RG trajectories can be constructed by integrating the

beta functions of the reduced system numerically. In the case where the critical exponents

of the NGFP are complex (Ns ∈ [−6, 93]) the resulting phase diagram follows the same

classification as in the case of pure gravity [15]. For the case Ns = 1 three prototypical RG

trajectories are shown in the left diagram of figure 4. The trajectories undergo a crossover

from the NGFP, controlling the high-energy regime, to the GFP, controlling the classical

regime of the theory. The RG trajectory connecting the two fixed points is called “Type IIa”

and leads to a vanishing value of the renormalized cosmological constant limk→0 Λk = 0.

Trajectories flowing to the left (right) to this line are called Type Ia (Type IIIa) and give

rise to a negative (positive) value of the cosmological constant in the classical regime. The

present set of flow equations do not allow to continue the Type IIIa solutions to k = 0:

they terminate in the line ηsing
N shown in figure 2 at a finite value of k.

The scalar anomalous dimension obtained along these sample RG trajectories is shown

in the right panel of figure 4. Notably ηs(k) ≤ 0 along the entire flow: at the NGFP one

has η∗s = −0.771 and the scalar anomalous dimension approaches zero when the flow enters
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the classical regime governed by the GFP. Thus the anomalous dimension induced by the

gravitational quantum corrections suppress the propagation of scalar modes on all scales.

The rapid increase of |ηs| for the Type IIIa trajectory close to its termination point is a

clear indication that the present approximation is insufficient in this regime and should

thus not be given too much significance.

4.2 Fixed point structure including higher-derivative terms

We now focus on the fixed point structure of the full system (3.13) including the higher-

derivative coupling yk. Following the structure of the last subsection, we first discuss the

fixed point structure of the system.

Inspecting the beta functions, one finds that the GFP (4.2) has the following extension

(λ∗, g∗, y∗) = (0, 0, 0) , θ1 = 2 , θ2 = −2 , θ3 = −2 . (4.3)

Again there is a GFP for all values of Ns and the anomalous dimensions vanish at this fixed

point. The stability coefficients indicate that the GFP is a saddle point in the λ-g-y-plane

exhibiting one UV-attractive and two UV-repulsive eigendirections. In particular, it may

serve as an IR attractor for RG flows starting at gk > 0 which subsequently leave the GFP

regime along the unstable direction.

The analysis of possible NGFPs starts with the following, intriguing observation: when

restricted to y = 0, the beta function βy, given in eq. (3.21), simplifies to

βy|y=0 = − g

6π

2 + ηN
(1− 2λ)2

(4.4)

Thus βy supports a fixed point at y∗ = 0 if η∗N = −2. From βg one finds that the latter

condition is precisely the anomalous dimension of Newton’s coupling at any NGFP. This

shows that there is an extension of the NGFP discussed in the previous section to the full

system, i.e., for all values of Ns we obtain a NGFP with y∗ = 0. This family of NGFPs

will be called NGFP0 in the sequel. Remarkably, the balancing between the anomalous

dimension η∗N and the other contributions to βy works for d = 4 only. In any other

spacetime dimension the fixed point is shifted away from the y = 0-plane.

A numerical investigation of the fixed point structure for Ns ∈ [−200, 350] reveals

the existence of 3 families of NGFPs, parameterized by Ns, and located in the physically

interesting region. The three families are conveniently labeled by the sign of the fixed

point value y∗ which is either negative (NGFP− branch), zero (NGFP0 branch), or positive

(NGFP+ branch). The positions and stability coefficients of these fixed points are shown

in figure 5. In addition the characteristics for the NGFPs found for Ns = 1 are collected

in table 2. The detailed properties of the fixed point solutions are the following.

NGFP−. The characteristic properties of this family of fixed points is shown in the first

line of figure 5. Their defining criterion is that they are located at y∗ < 0 for all values of

Ns. More precisely, the position y∗ is found to be in the interval −1 < y∗ . −0.76 and ap-

proaches the singularity ysing = −1 in the scalar propagator if |Ns| becomes large. The pro-

file for g∗ is peaked at Ns ≈ 11.3 where g∗ ≈ 2.73. The cosmological constant λ∗ undergoes
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Figure 5. Illustration of the fixed point structure resulting from the full system of beta func-

tions (3.13) as a function of Ns. The characteristics of the NGFP−, NGFP0, and NGFP+ are

shown in the first, second, and third row, respectively.

g∗ λ∗ y∗ g∗λ∗ η∗s θ1 θ2 θ3

GFP 0 0 0 0 0 +2 −2 −2

NGFP− 0.776 0.176 −0.804 0.137 −0.721 1.34± 2.92i 11.3

NGFP0 0.655 0.208 0 0.136 −0.771 1.59± 3.28i −0.529

NGFP+ 0.646 0.211 0.621 0.136 −0.775 1.67± 3.32i 0.357

Table 2. Characteristic features of the four fixed points arising from the full set of beta func-

tions (3.13) for Ns = 1.
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Figure 6. Fixed point value of the scalar anomalous dimension η∗s evaluated for the three classes

of fixed points NGFP−, NGFP0, and NGFP+ as a function of Ns.

a crossover from λ∗ < 0 for Ns & 7 to λ∗ > 0 for negative values Ns. For large negative val-

ues Ns the fixed points are pushed into the corner of singular lines λsing = 1/2, ysing = −1.

The stability coefficients are displayed in the upper right diagram of figure 5. In

the interval Ns ∈ [−54, 350] all three stability coefficients come with a positive real part

indicating that all three couplings are UV-relevant. Within the interval −175 . Ns . 12

the two critical exponents θ1 and θ2 form a complex pair, indicating a spiraling behavior

of the RG flow around NGFP− in their respective directions. Outside this window all θj
are real valued. The scalar anomalous dimension η∗s is shown in figure 6. For Ns . 20, we

find η∗s < 0, indicating a suppression of the scalar propagator at high energies. At Ns ≈ 20

there is a transition to very small and positive values η∗s . 0.1. Notably this is the only

fixed point configuration where η∗s is actually positive.

NGFP0. The characteristic features of this class of fixed points is displayed in the middle

line of figure 5. All fixed points in this family are located at y∗ = 0. Therefore this

family constitutes the natural extension of the NGFP seen in the last subsection. The

profiles specifying the position of these fixed points in the λ∗-g∗-plane resembles the one

of NGFP− discussed above, with the difference that their values are scaled and mirrored

around Ns ≈ 0. This implies that the fixed point is pushed towards the singularity at

λ = 1/2 for large positive Ns. The transition to λ∗ < 0 happens at negative Ns ≈ −4.81

and the maximum value of g∗ ≈ 1.60 is obtained at Ns ≈ −7.47.

The stability properties of the fixed points NGFP0 can again be read off from the

stability coefficients displayed in figure 5. Two of their stability coefficients always come

with a positive real part (indicating that the directions are UV-attractive). On the interval

Ns ∈ (−6, 133] they form a complex conjugate pair while outside this range both of them
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are real valued. The third coefficient θ3 changes sign at Ns = 65. For smaller values

θ3 < 0, indicating that the corresponding NGFP0 is actually a saddle point in the λ-g-y-

plane. For Ns > 65 all three stability coefficients have positive real parts so that the fixed

points are UV-attractors in this case. The scalar anomalous dimension η∗s remains negative

throughout and is bounded by |η∗s | < 0.77.

NGFP+. The characteristic features of this class of fixed points is displayed in the bot-

tom line of figure 5. This class comes with a positive y∗ which grows very rapidly for nega-

tive values of Ns. The position of the fixed points in the λ-g-plane are qualitatively the same

as the ones found for NGFP0. For large positive values Ns & 65 the location y∗ changes sign.

In the interval [−200, 65], all stability coefficients appearing in this family possess a

positive real part, so that the NGFP+ are UV-attractors in the λ-g-y-plane. Similarly to

the other fixed points, the stability coefficients θ1 and θ2 form a complex pair for −4 .
Ns . 265 and are real outside this interval . The scalar anomalous dimension η∗s is negative

throughout and takes values between −2 . η∗s . −0.79.

At this point the following remark is in order. Combining eqs. (2.6) and (3.11), the

mass of the Ostrogradski ghost is

µ2 =
k2

y∗
. (4.5)

Thus µ2 will become infinite for any RG trajectory approaching a NGFP as k →∞. This

is just a consequence of the fact that a fixed point can not support a dimensionful scale.

The relation (4.5) also reveals that the fixed points NGFP0 are very special. Owed to their

position at y∗ = 0 the mass of the Ostrogradski ghost is infinite for all values k. In this

way, the NGFP0 realize the first class of loopholes discussed in section 2.2. Thus the extra

degree of freedom is not present and one expects that the resulting theory does not suffer

from an Ostrogradski instability albeit living in a theory space which permits the presence

of higher-derivative terms in the propagator a priori.

4.3 Phase diagram including higher-derivative terms

We now extend the local analysis of the RG flow, based on its fixed point structure and

stability coefficients, to a global picture. For concreteness, we focus on the case Ns = 1.

The details of the fixed point structure arising in this setting is summarized in table 2.

Since the essential features of the flow are set by its fixed point structure, it is clear that

the analysis applies to an entire window −6 . Ns . 12 where the fixed point structure and

stability coefficients exhibit the same qualitative behavior.

The global structure of the RG flow is obtained by integrating the beta functions (3.13)

numerically. A characteristic set of trajectories obtained this way is shown in figures 7

and 8. Figure 7 then shows the RG trajectories connecting the 3 NGFPs (gray lines) and

the NGFPs with the GFP (blue lines). Since both NGFP± act as UV-attractors in the

λ-y-g-plane and the NGFP0 possesses one IR-attractive eigendirection there is a single RG

trajectory emanating from either NGFP± for k →∞ and ending at the NGFP0 as k → 0.

The GFP possesses 2 IR-attractive eigendirections. As a result, one finds a unique trajec-

tories which starts from NGFP0 and connects to the GFP k → 0 (light blue line). This tra-
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Figure 7. Illustration of the phase diagram resulting from the beta functions (3.13) for Ns = 1.

The GFP and the three NGFPs are marked with red points while the singular loci ysing = −1 and

ηsingN are shaded in gray. The RG trajectories connecting the fixed points are shown in blue (Type

IIa trajectories) and gray. All arrows point from UV to IR.

jectory is the intersection of the two-dimensional UV-critical hypersurface of NGFP0 with

the two-dimensional IR-critical hypersurface of the GFP. In addition there are two families

of solutions which originate from NGFP± and end at the GFP, again coming from the in-

tersection of the 3-dimensional UV-critical hypersurfaces of the NGFPs with the IR-critical

hypersurface of the GFP. These flows are exemplified by the dark blue lines. All together

this set constitutes the generalization of the Type IIa trajectory displayed in figure 4.

Figure 8 then illustrates the generalization of the trajectories of Type Ia and Type IIIa

to the λ-y-g-plane. These trajectories may emanate from all three NGFPs and subsequently

cross over to the GFP. From the vicinity of the GFP they either flow to large negative values

λk (Type Ia) or positive λk (Type IIIa) such that their projection to the λ-g-plane resembles

the left diagram of figure 4. The latter class again terminates in the hypersurface ηsing
N at a

finite value k. Notably, for all physically interesting trajectories which exhibit a crossover

to the GFP, yk flows to zero in the IR, provided that the underlying trajectories do not

terminate at a finite value k. When evaluating the scalar anomalous dimension ηs along

the RG trajectories shown in figures 7 and 8 one again obtains the qualitative behavior

shown in the right diagram of figure 4: for large values of k ηs is determined by its fixed

point value η∗s . Once the RG trajectory enters the vicinity of the GFP quantum effects

become small, ηs � 1 asymptotically.

4.4 Ghost-free RG flows in the infrared

In order to determine the stability of the theory in the presence of higher-derivative terms

one has to study the renormalized scalar propagator obtained from the effective average ac-

tion Γk in the limit k → 0. Defining Y0 ≡ limk→0 Yk the (squared) mass of the Ostrogradski
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Figure 8. Illustration of the phase diagram resulting from the beta functions (3.13) for Ns = 1.

Depicted are typical RG trajectories undergoing a crossover from the NGFP to the classical regime

controlled by the GFP. Depending on whether the classical value of the cosmological constant found

along the flow is positive (orange curves) or negative (blue curves) the trajectories are termed Type

IIIa and Type Ia, respectively. The orange solutions terminate at ηsingN displayed as the gray shaded

surface. All arrows point from UV to IR.

ghost is (cf. eq. (2.6))

µ2 =
1

Y0
(4.6)

Hence instability will disappear from the spectrum if Y0 = 0. Thus the focus of the inves-

tigation is on the IR behavior of yk. Figure 7 demonstrates that all physically interesting

RG trajectories have the property that the dimensionless coupling yk goes to zero in the

IR. This leaves three potential scenarios for the dimensionful coupling Yk = ykk
−2:

1. The dimensionless coupling yk approaches zero slower than quadratically. The canon-

ical scaling of Yk will dominate the flow and Y0 diverges. In this case the ghost

becomes massless and eats up the scalar degree of freedom, see eq. (2.5).

2. The dimensionless coupling falls off faster than k2. The anomalous scaling dominates

the flow, and Yk → 0. The Ostrogradski ghost decouples and the theory is stable.

3. The dimensionless coupling converges exactly quadratically. The dimensionful cou-

pling Yk approaches a constant, which can be either zero or nonzero. The theory is

stable only if this constant is zero.

We will now discuss the IR behavior of the several classes of trajectories. Most of the

physically interesting trajectories fall into the classes Type Ia, Type IIa, or Type IIIa

introduced in figure 4. The only trajectories which are not captured by this classification are

the trajectories connecting the NGFPs which will be discussed separately. Our investigation
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reveals that the phase diagrams shown in figures 7 and 8 realize all of the three cases

described above.

Trajectories ending at the GFP (Type IIa). We start our analysis by considering

Type IIa trajectories for which the cosmological constant Λk flows to zero for k → 0. In this

case the IR completion of the trajectory is provided by the GFP (4.3). The IR attractive

hypersurface of the GFP is spanned by the two eigenvectors associated with the negative

stability coefficients θ2 = θ3 = −2. The explicit expression for these eigenvectors are

e1 = ŷ and e2 = 2+Ns
16π λ̂+ ĝ, where ŷ, λ̂ and ĝ are the unit vectors along the y, λ and g-axis,

respectively. By linearizing the flow at the GFP one finds that along these scaling directions

yk = yk0

(
k2

k2
0

)
⇔ Yk = Yk0 . (4.7)

Hence, there is a single RG trajectory, specified by Yk0 = 0, for which Y0 = 0 and the

mass of the Ostrogradski ghost becomes infinite. This is the trajectory that has no initial

component in the ŷ-direction, i.e. the one that approaches the GFP along e2. Integrating

the beta functions numerically one finds that this trajectory belongs to the UV-critical

hypersurface of NGFP−.

Trajectories of Type Ia and IIIa. Figure 4 illustrates the existence of RG trajectories

where λk flows towards negative or positive infinity as k → 0. The corresponding solutions

are then classified as trajectories of Types Ia and IIIa, respectively. In order to determine

the IR behavior of these trajectories, we numerically integrate the beta functions. Trajec-

tories of Type IIIa terminate at ηsing
N at a finite value of k and can not be completed to

k = 0 in the present approximation. Therefore, we limit our analysis to trajectories of Type

Ia which extend up to k = 0. The IR values Y0 ≡ limk→0 Yk arising within this class of

solutions are conveniently illustrated by studying the behavior of RG trajectories piercing

the y-g-plane located at λ = −0.1 since the flow is essentially perpendicular to this plane.

The resulting structure is illustrated in figure 9. The plot shows that Type Ia trajectories

can emanate from all three NGFPs: trajectories coming from NGFP0 pass the plane at the

blue line while trajectories above (below) this line lie in the UV-critical surface of NGFP+

(NGFP−). Trajectories where Y0 = 0 span the black line in this diagram. Thus there is a

1-dimensional surface of solutions where the renormalized squared mass of the Ostrograd-

ski ghost, (4.6), is infinite such that the resulting degree of freedom does not propagate.

Imposing the physical requirement that the renormalized scalar propagator does not give

rise to an Ostrogradski ghost may then be used to fix one of the free parameters of the

theory from stability considerations.

Trajectories flowing to NGFP0. The final option for taking an IR limit consists in

approaching NGFP0 along its IR-attractive eigendirection. From figure 7 one sees that

there is a one-parameter family of trajectories emanating from either NGFP± which end

at NGFP0 as k → 0. Linearizing the RG flow at the NGFP0 and using the stability

coefficient along the IR attractive eigendirection listed in table 2 yields the RG evolution
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NGFP-

NGFP+

-0.08 -0.06 -0.04 -0.02

y
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0.8

1.0

1.2

g

Figure 9. Behavior of the RG trajectories passing through y-g-plane situated at λ = −0.1. Tra-

jectories passing the plane above (below) the blue line emanate from NGFP+ (NGFP−) while the

high-energy behavior of trajectories building up the blue line is governed by the NGFP0. Trajecto-

ries for which limk→0 Yk = 0 are indicated by the black line.

of yk for these trajectories:

lim
k→0

yk =

(
k

k0

)0.529

yk0 =⇒ Yk =

(
k0

k

)1.471

Yk0 . (4.8)

Since the scaling of the dimensionless y is significantly smaller than k2, the dimensionful

Y diverges as k → 0 for all initial values y 6= 0. As a consequence the IR value of the

ghost mass vanishes and the two terms describing the propagation of the scalar field in

eq. (2.5) mutually cancel. Loosely speaking, the physical degree of freedom is eaten by

the ghost so that the scalar does not propagate anymore. Verifying the robustness of

this cancellation-mechanism requires the inclusion of further powers p6, p8, . . . in the scalar

propagator. This analysis is beyond the scope of the present work, however, and will be

addressed in a forthcoming publication [101].

5 Conclusions and outlook

In this work, we use the effective average action Γk to study the renormalization group

flow of gravity coupled to scalar matter. Our ansatz for Γk is given by the Einstein-Hilbert

action coupled to an arbitrary number of minimally coupled scalar fields. The novel

feature of the setup is the inclusion of a higher-derivative term in the scalar propagator. At

the classical level these types of actions suffer from the so-called Ostrogradski instability

reviewed in section 2: the appearance of degrees of freedom with a wrong-sign kinetic
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term, so-called Ostrogradski ghosts, renders the theory either unstable or non-unitary. At

the same time it is clear that a generic RG flow will generate such potentially dangerous

higher-derivative terms dynamically. This work initiates the systematic study of these

types of terms in the RG framework with the goal of assessing their hazard potential for

asymptotically safe theories.

The quantity that actually encodes the relevant information on the spectrum of the

theory is the renormalized propagator. Exploiting that the effective average action obeys

limk→0 Γk = Γ with Γ being the standard effective action, this quantity can be accessed in

the IR-limit of the flow. Within the present approximation the stability properties of the

theory are captured by the IR-value of the (squared) Ostrogradski ghost mass µ2 = Y −1
0 .

The ghost decouples from the spectrum if Y0 = 0, so that the setting may give rise to stable

(or equivalently unitary) theories even though the generic actions include higher-derivative

kinetic terms.

The detailed study of the RG flow then established the following picture. In absence

of the higher-derivative term the setting gives rise to a unique non-Gaussian fixed point

(NGFP) suitable for rendering the gravity-matter system asymptotically safe. Upon includ-

ing the scale-dependent Ostrogradski ghost mass, this NGFP splits up into three NGFPs

which are labeled by the sign of Y∗. Notably there is one fixed point solution NGFP0 for

which Y∗ = 0 for all values of k.

When projected to the λ-y-g-plane (see figures 7 and 8) the system of NGFPs essen-

tially possesses a UV-critical hypersurface with three relevant directions. Within this space

we have identified a two-dimensional subspace of RG trajectories that have a ghost-free IR

limit. Phrased differently, the Ostrogradski ghost mass corresponds to a relevant direction

of the NGFPs coming with a new free parameter. This freedom can be fixed by the require-

ment that the theory should contain only physical degrees of freedom in the IR. In this

way the construction elegantly circumvents the potential danger of Ostrogradski instabili-

ties by introducing a new free parameter and a mechanism to fix its value simultaneously.

The analysis in section 4 shows that the set of complete, unitary RG trajectories obtained

from the full λ-g-y-system (3.13) is in one-to-one correspondence with the one found in the

reduced system excluding the higher-derivative coupling.

As a byproduct, our analysis also provided new insights on potential bounds on the

number of scalar fields compatible with the asymptotic safety mechanism. Throughout the

calculation, we used a coarse graining operator of Type I (see [2] for an extended discussion),

and extracted the running of ηN from the background Newton’s constant. The resulting

analysis indicates that there are NGFPs suitable for realizing asymptotic safety for all val-

ues Ns. The characteristic fixed point properties shown in figure 3 are strikingly similar to

the ones found for foliated gravity-matter systems [21]. Notably, our results also agree with

the ones reported in [17], where an upper bound Ns . 17 has been obtained. The crucial

difference between the two settings lies in the choice of coarse-graining operator in the grav-

itational sector: our analysis uses a Type I coarse-graining operator while [17] resorts to a

coarse-graining operator of Type II. If the analysis of section 4.1 is repeated for a coarse-

graining operator of Type II, which effectively replaces eq. (3.16) by (3.17), the reduced

system (3.13) gives rise to the same upper bound on the number of scalar fields Ns . 17.
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From figure 2 one then expects that the singular line ηsing
N plays a decisive role in stabilizing

the NGFP for large values Ns. Our analysis demonstrates that the existence of unitary RG

trajectories is a non-trivial feature. A priori, a kinetic function of polynomial type is bound

to have multiple roots, yielding a ghost in the particle spectrum. Further investigations

suggesting themselves include studying a) polynomial truncations including further powers

of the momentum, p6, p8, . . ., or b) truncations of non-polynomial type. In the first case,

a higher-order truncation allows to investigate whether RG properties in lower orders are

stable. In the second case, non-polynomial kinetic functions open up the possibility to

have analytic kinetic functions without multiple roots, giving a ghost-free spectrum. An

example is a propagator of the type e−∆(∆+m2)−1 studied, e.g. in the context of non-local

gravity models [80–83].10 The unitarity conditions on such kinetic functions are studied in a

separate paper [76] and we hope to come back to the other points in the near future as well.
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A Expanding trace arguments including step functions

In this appendix, we collect the technical details underlying the derivation of the beta

functions in the scalar sector. In this case, it is most convenient to choose a flat background

spacetime were ḡµν = δµν . This allows to use momentum space techniques to evaluate the

diagrams shown in figure 1.

A.1 Explicit form of vertex functions and propagators

We start by deriving the relevant propagators and interaction vertices from the ansatz for

the effective average action (3.3). The result is conveniently expressed in terms of the vari-

ations Γ
(k,l;m)
k where the number of derivatives with respect to the metric fluctuations and

scalar fluctuations are denoted by k and l, respectively. The number m denotes the number

of remaining background scalar fields. Moreover, we use the index w to specify whether the

building block is associated with the graviton (w = hh) or scalar fluctuations (w = φφ).

By expanding the gravitational sector up to second order in hµν one finds that the

(inverse) gravitational propagator is given by[
Γ

(2,0;0)
k

]µν,αβ
=

1

32πGk

(
p2 − 2Λk

) [
(1− Ph)− d− 2

2
Ph

]µν,αβ
(A.1)

where 1µναβ ≡ 1
2

(
δαµδ

β
ν + δβµδαν

)
is the unit on the space of symmetric tensors and

[Ph]µν
αβ ≡ d−1δµνδ

αβ the projector on the trace mode. The (inverse) scalar propagator is

10For earlier works on non-local gravity also see [84–87]. We thank A. Mazumdar for pointing out these

references.
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obtained from (3.7) and reads

Γ
(0,2;0)
k = Zk

(
p2 + Yk p

4
)
. (A.2)

For later convenience, we introduce the following short-hand notations for the scale-

dependent coefficients αwn multiplying the p2n terms in the (scalar part) of eqs. (A.1)

and (A.2),

αhh0 = − Λk
16πGk

, αhh1 =
1

32πGk
, αhh2 = 0 ,

αφφ0 = 0 , αφφ1 = Zk , αφφ2 = ZkYK ,

(A.3)

and all coefficients αwn with n ≥ 3 vanishing.

In addition to the propagators, one also needs the (momentum-dependent) three- and

four-point vertices containing one and two derivatives with respect to the background

scalar field. Denoting the momenta associated with the graviton fluctuations, scalar fluc-

tuations, and background scalar field by p̃, p, and q, respectively the 3-point vertex obtained

from (3.7) is [
Γ(1,1,1)(p̃, p, q)

]µν
= Zk

(
p(µqν) − 1

2
δµν(p · q)

)
. (A.4)

Finally, the 4-point vertex is[
Γ(2,0,2)

]µν,ρσ
= −1

2
Zk

[(
1

4
δµνδρσ − 1

2
δµρδνσ

)
(q1 · q2)− ḡµνqρ1q

σ
2 + 2ḡµρqσ1 q

ν
2

]
. (A.5)

All vertices are understood to contain the appropriate symmetrizations in the external

indices and are subject to momentum conservation. Moreover, we set Yk = 0 in order to

keep the expressions for the vertices at a readable length. The contributions proportional

to Yk are easily generated by a computer algebra program. Their precise form is irrelevant

for the discussion of the general structures below.

Applying the implicit regulator prescription p2 7→ Pk = p2 + Rk(p
2) to the propaga-

tors (A.1) and (A.2)

[
Rhhk

]µν,αβ
=

1

32πGk
Rk

[
(1− Ph)− d− 2

2
Ph

]µν,αβ
(A.6a)

Rφφk = Zk
(
1 + Yk

(
2 p2 +Rk

))
Rk. (A.6b)

For the Litim-type cutoff [99, 100] the dimensionful profile function Rk is given by

Rk(p
2) = (k2 − p2)Θ(k2 − p2) . (A.7)

The key advantage of this regulator is that it allows for an analytic evaluation of the

loop integrals shown in figure 1. The distributional character of the regulator renders the

expansion in the external momenta q non-trivial, however. The next subsection discusses

how this expansion can be implemented consistently, also taking into account the non-

trivial boundary terms arising in the expansion procedure.
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A.2 Loop-integrations with a distributional regulator

The loop integrals entailed by figure 1 contain a trace over spacetime indices and an inte-

gration over loop momenta.11 The spacetime indices are taken into account by stringing

together the propagators and vertices contracting the corresponding index structures. This

results in q-dependent scalar loop-integrals of the form

Iw1w2

(m,n) ≡
∫

ddp

(2π)d
Fk(q, p, cos(ϑ)) ∂tRw2

k (p2)(∑2
l=0 α

w1
l (~p+ ~q)2l +Rw1

k ((~p+ ~q)2)
)m (∑2

l=0 α
w2
l p2l +Rw2

k (p2)
)n .
(A.8)

Here m and n encode the number of propagators appearing in the diagram and, in a

slight abuse of notation, the symbol Rhhk (p2) is used to refer to the scalar part of (A.6a).

Diagrams containing 3-point vertices have (m,n) = (1, 2) while the tadpole diagram comes

with (m,n) = (0, 2). The function Fk(q, p, cos(ϑ)) captures the momentum dependence of

the vertices and is polynomial in q and p. In particular it has a well-defined series expansion

around q = 0. Noting that the vertices (A.4) and (A.5) come with one and two powers of the

external momentum, respectively, it is easy to verify that this expansion starts at order q2.

For a general profile function Rk the integrals eq. (A.8) cannot be computed ana-

lytically. Moreover, the presence of the external momentum q and the scale-dependent

couplings make their numerical evaluation computationally very expensive. The profile

function (A.7) allows to bypass this problem by restricting the p-integration to a compact

domain and giving rise to cancellations in the propagators. The former property can be

verified by noting that the logarithmic k-derivative of (A.6), evaluated for a Litim profile,

has the form

∂tRwk (p2) = b̄wk (p2) Θ(k2 − p2) (A.9)

where

b̄hhk (p2) =
1

32πGk

(
2k2 − ηN

(
k2 − p2

))
,

b̄φφk (p2) = Zk
(
2k2 − ηs(k2 − p2) + (∂tYk − ηsYk)(k4 − p4) + 4Yk k

4
)
.

(A.10)

Inspecting (A.8) for the case m = 0 (tadpole diagram) reveals that the step-functions

appearing in the numerator and denominator have the same support. As a result the

integrals simplify significantly

Iw1w2

(0,n) ≡
∫
dΩ

∫ 1

−1
d cos(ϑ)

∫ k

0

dp

(2π)d
pd−1 Fk(q, p, cos(ϑ)) b̄wk (p2)(∑2

l=0 α
w
l k

2l
)n . (A.11)

Here
∫
dΩ denotes an angular integration and the spacetime indices on Fk and b̄wk (p2) are

suppressed for readability. Owed to the simple structure of the denominator, which is

independent of p and ϑ the evaluation of these integrals is rather straightforward.

11We adopt the conventions that the absolute values of the loop momentum and external momentum are

denoted by p and q and p · q = pq cos(ϑ) defines their relative angle ϑ. Moreover, the loop momentum is

parameterized such that the external momentum enters into the propagator without regulator insertion only.
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1cos(ϑ)−1
0
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q = 0

1cos(ϑ)−1
0
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k2
q = 1
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1cos(ϑ)−1
0

p2

k2
q > 2k

Figure 10. The value of Θ(k2 − (~p + ~q)2) for three different values of q. In the gray regions the

step function evaluates to 1 while it vanishes in the white regions.

The case where m 6= 0 is non-trivial, however. Owed to the step-function in the

numerator the full integration domain is reduced to a d-dimensional ball of radius k, i.e.,

p ∈ [0, k] and cos(ϑ) ∈ [−1, 1]. In this domain the second set of propagators again undergoes

the simplification (A.11). In the first set of propagators the regulator leads to terms

proportional to Θ(k2− (~p+ ~q)2), however. As illustrated in figure 10, the value of the step

function has a non-trivial dependence on the absolute value of q and the angle ϑ. Thus,

unless q = 0, there is always a part of the integration domain on which the denominator

does not become trivial. As a result performing the integral becomes very involved. In

order to complete the evaluation of the flow equation we then expand the integrands around

q = 0, taking the distributional character of the integrand into account. This allows us to

obtain analytic expressions for the resulting integrals. This is achieved as follows.

The first step uses the Heaviside function in the numerator of eq. (A.8) to restrict

the integration domain to p ∈ [0, k]. Following the derivation of (A.11) the factor(∑2
l=0 α

w2
l p2l +Rw2

k (p2)
)n

becomes independent of p- and q. Together with the angu-

lar integration
∫

dΩ it can then be absorbed into a prefactor

Nn
k ≡

(
2∑
l=0

αwl k
2l

)−n ∫
dΩ (A.12)

so that eq. (A.8) reduces to

Iw1w2

(m,n) = Nn
k

∫ 1

−1
d cos(ϑ)

∫ k

0

dp

(2π)d
pd−1 Fk(q, p, cos(ϑ)) b̄w2

k (p2)(∑∞
`=0 α

w1
` (~p+ ~q)2` +Rw1

k ((~p+ ~q)2)
)m . (A.13)

In the next step we eliminate the step function from the denominator. For this purpose

we insert the following partition of unity

1 = Θ((~p+ ~q)2 − k2) + Θ(k2 − (~p+ ~q)2) , (A.14)

defined in the weak sense. Furthermore we set Θ(0) = 1
2 , so that this point is distributed

evenly among the two terms. Inserting (A.14) into (A.13) then gives

Iw1w2

(m,n) = Nn
k

∫ 1

−1
d cos(ϑ)

∫ k

0

dp

(2π)d
pd−1 Fk(q, p, cos(ϑ)) b̄w2

k (p2)×

×

 Θ((~p+ ~q)2 − k2)(∑2
`=0 α

w1
` (~p+ ~q)2`

)n +
Θ(k2 − (~p+ ~q)2)(∑2

`=0 α
w1
` k2`

)n
 .

(A.15)
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The anomalous dimension of the scalar field and the beta function for Yk are encoded

in the terms proportional to q2 and q4, respectively. For the present computation it thus

suffices to expand (A.15) around q = 0. The integral kernel itself is a distribution and thus

its formal expansion yields distributional coefficients. In a weak sense, which is suitable

in the present context, the formal expansion coefficients can be constructed by using the

integral representation of the Heaviside distribution

Θ(s) ≡ lim
ε→0+

1

2πi

∫ ∞
−∞

dt (t− iε)−1 eits . (A.16)

Substituting s = (±(k2 − (~p + ~q)2)) and expanding the kernel in powers of q, we obtain,

after taking the proper limit

Θ(±(k2 − (~p+ ~q)2) ) ' Θ(±(k2 − p2))∓ 2p cos(ϑ)δ(±(k2 − p2)) q

+
[
2p2 cos2(ϑ)δ′(±(k2 − p2))∓ δ(±(k2 − p2))

]
q2 +O(q3) .

(A.17)

Since the expansion of Fk(q, p, cos(ϑ)) starts at order q2 it then suffices to terminate this

expansion at order q2. When inserting this representation into eq. (A.15) we encounter

terms in which the delta-distribution has to be evaluated on the boundary of the integral

domain. Using Θ(0) ≡ 1
2 , these can be evaluated by noting that∫

[0,a]
dz G(z)δ(a− z) ≡ 1

2
G(a) (A.18)

which follows from

G(a) = G(0) +

∫
[0,a]

dz ∂zG(z) Θ(a− z)

=
1

2
G(a) +

∫
[0,a]

dz G(z)δ(a− z) .

(A.19)

Finally, terms containing the nth derivative of the delta-function are evaluated using∫
[0,1]

dz G(z) ∂ns δ(s)
∣∣
s=±(1−z) =

1

2
(±1)nG(n)(1) . (A.20)

The weak identities (A.18) and (A.20) are sufficient to derive the relevant trace contribu-

tions for the scalar beta functions.

A.3 Master integrals

We close the discussion by deriving a set of master integrals, which form the basis of our

loop computations

Ĩw,m(q, cos(ϑ)) ≡
∫ k

0

dp

(2π)d
f(p)

 Θ((~p+ ~q)2 − k2)(∑2
`=0 α

w
` (~p+ ~q)2`

)m +
Θ(k2 − (~p+ ~q)2)(∑2

`=0 α
w
` k

2`
)m
 . (A.21)

Based on the relation (A.17), these integrals admit a series expansion in q,

Ĩw,m(q, cos(ϑ)) ' Ĩ(0)
w,m + Ĩ(1)

w,m q +
1

2
Ĩ(2)
w,m q

2 +O(q3) , (A.22)
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where the series coefficients Ĩ
(n)
w,m depend on cos(ϑ). The first three coefficients in this ex-

pansion are found by substituting (A.17) into (A.21) and evaluating the resulting integrals

using the identities (A.18) and (A.20)

Ĩ(0)
w,m =

(
2∑
`=0

αw` k
2`

)−m ∫ k

0

dp

(2π)d
f(p) , (A.23a)

Ĩ(1)
w,m = 0 , (A.23b)

Ĩ(2)
w,m = −mk3 cos2(ϑ)

(
αw1 + 2αw2 k

2
)( 2∑

l=0

αwl k
2l

)−(m+1)
f(k)

(2π)d
. (A.23c)

This result completes the discussion on carrying out the momentum integrals entailed by

figure 1. Note that the surface terms do not enter into the computation of the scalar anoma-

lous dimension. They contribute to higher-order kinetic terms in the propagator only.
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