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ABSTRACT

We argue that comparison with observations of theoretical models for the velocity distribution of pulsars must be done directly with
the observed quantities, that is parallax and the two components of proper motion. We have developed a formalism to do so, and
applied it to pulsars with accurate VLBI measurements. For computational convenience, we model the data with Maxwellians. We
find that a distribution with two Maxwellians improves significantly on a single Maxwellian. The “mixed” model takes into account
that pulsars move away from their place of birth, a narrow region around the Galactic plane. The best model has 42% of the pulsars in
a Maxwellian with average velocity σ

√
8/π = 120 km s−1, and 58% in a Maxwellian with average velocity 540 km s−1. About 5% of

the pulsars has a velocity at birth less than 60 km s−1. For the youngest pulsars (τc < 10 Myr), these numbers are 32% with 130 km s−1,
68% with 520 km s−1, and 3%, with appreciable uncertainties. Our analysis shows that the velocity distribution is wider than can be
described with a single Maxwellian; it does not prove that two Maxwellians provide a better description than other wide models.

Key words. stars: neutron – pulsars: general – methods: statistical

1. Introduction

The study of the velocities of pulsars is interesting on its own ac-
count, as a pointer to the formation process of a neutron star, but
also has ramifications beyond this. In particular, some neutron
stars are found in binaries and in globular clusters, as accreting
X-ray sources or as pulsars. These neutron stars were born with
velocities less than the escape velocity from the binary or from
the cluster.

Neutron stars that have the same velocities as their progen-
itors, move with the rotation of the galaxy, with small veloci-
ties with respect to the local standard of rest (LSR), unless their
progenitor is a member of a close binary or a runaway star. To
investigate the velocities that neutron star acquires at birth in ad-
dition to the progenitor velocity, one therefore investigates their
velocity v with respect to the LSR.

This investigation is complicated for pulsars with large ve-
locities as these are affected by an acceleration in the Galactic
potential that varies between their place of birth and their current
location, and because their current LSR differs from the LSR at
their place of birth. Thus the current v of a pulsar differs from
the v at birth. If the age and full space velocities were known, we
could solve this complication by integrating the pulsar orbit back
in time, but proper motion studies only provide two of the three
velocity components, and ages of pulsars are usually uncertain.
By limiting the study to young pulsars, one may reduce the ef-
fect of these complications. As well described by Brisken et al.
(2003a, in particular Sect. 5.1), correlations between spin-axis
and velocity, between luminosity and velocity, and/or between
velocity and distance to the Galactic plane, among others, intro-
duce selection effects in the observations. Such selection effects
can only be corrected for in a full population study. Even so,
determining the observed v distribution is a useful step toward
a full population study, and various efforts have been published
(see Table 5).

Arzoumanian et al. (2002) compare synthesized model popu-
lations with the observed periods, period derivatives, dispersion
measures, fluxes, and the absolute values of Galactic latitudes
and of proper motions. They conclude that the velocity distri-
bution of pulsars is bimodal, with a low-velocity and a high-
velocity component.

Brisken et al. (2003a) investigate the velocity component vl
in the direction of Galactic longitude. Their study is based on
interferometric proper motion measurements (mostly their own).
For each pulsar, they compute a probability distribution P(D)
for the distance D (based on the parallax or on the dispersion
measure DM, allowing for the limited accuracy in converting
DM to D) and combine this with the probability function P(µl)
for the proper motion µl (allowing for measurement uncertainty)
to compute the probability distribution P(vl). The set of P(vl) is
fitted with a model in which this distribution is described by two
zero-centred Gaussian distributions, representing a slow and a
fast component.

Hobbs et al. (2005) construct velocity distributions P(v1D)
where v1D is either vl or vb and P(v2D) where v2D ≡

√
vl

2 + vb
2

for a larger sample of pulsars, including measurements based on
timing. vb is the velocity component in the direction of latitude.
Hobbs et al. assume that these observed v1D and v2D distribu-
tions are projections of an isotropic velocity distribution P(v),
and then reconstruct P(v) by using a clean algorithm to decon-
volve P(v1D) and P(v2D). The advantage of this method is that it
is non-parametric, that is it does not assume a prescribed form
for P(v). The reconstructed form turns out to be well described
by a Maxwellian, with σ = 265 km s−1.

Faucher-Giguère & Kaspi (2006) extend the method of
Brisken et al. (2003a) in two ways. First they consider a variety
of models for the distribution of vl, and second they extend the
maximum-likelihood model with a Bayesian analysis of proba-
bility ratios for the comparison of different models.
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Whereas these studies agree that the space (that is 3D) veloc-
ities of neutron stars are high, averaging as much as 450 km s−1,
they differ on the fraction of low-velocity neutron stars. Hobbs
et al. (2005) argue that the low-velocity tail of the pulsar velocity
distribution is due to projection effects, and that very few pulsars
have space velocities below 60 km s−1. (For a Maxwellian with
σ = 265 km s−1 the fraction is 0.003.) In the acceptable models
discussed by Faucher-Giguère & Kaspi (2006) the derived frac-
tion of pulsars with space velocities less than 60 km s−1 varies
from 0.012 (for a two-component Gaussian) to 0.135 (for the
Paczyński distribution).

One reason for us to make a new study of the pulsar veloci-
ties is to resolve the differences between the predicted numbers
of low-velocity pulsars in these recent studies. Among nine very
accurate pulsar velocities v⊥ (=

√
vl

2 + vb
2) listed by Brisken et al.

(2002, Table 5), two are smaller than 40 km s−1. The probability
of finding two such low-v⊥ pulsars in a sample of nine is 0.004
for an isotropic Maxwellian with σ = 265 km s−1. This suggests
that the pulsar velocities may be overestimated by Hobbs et al.
(2005).

A second reason for a new study is the development by
Verbiest et al. (2012), of a Bayesian method to combine dif-
ferent distance indicators into a single probability distribution
P(D) for each pulsar. The main distance indicator is the paral-
lax, where the Lutz-Kelker (1973) effect is taken into account,
with the Galactic pulsar distribution as a prior. For the study of
pulsar velocities we correct some errors in the equations given by
Verbiest et al. (2012) for use of the parallax (see Igoshev et al.
2016 and Bailer-Jones 2015), and add the measurements of the
proper motions. The third and final reason for our new study of
pulsar velocities is the increased number of accurately measured
proper motions and parallaxes (see Table 2).

In Sect. 2 we describe the master list of observed proper mo-
tions that we use in our study. We describe the ingredients of
the likelihood function for pulsars and their use in determining
the parameters of the velocity distribution in Sect. 3, and ap-
ply these to various models: a single isotropic Maxwellian in
Sect. 4, the sum of two isotropic Maxwellians in Sect. 5, and a
mixture of one or two isotropic and semi-isotropic Maxwellians
in Sect. 7. (In the semi-isotropic Maxwellian distribution veloc-
ities towards the Galactic plane are excluded, as explained in
Sect. 6.) We use Maxwellians for computational convenience: an
isotropic Maxwellian may be decomposed in three independent
Gaussians in any three mutually perpendicular directions, and as
a result a large part of the calculations can be done analytically.
The use of Maxwellians futhermore enables direct comparisons
with previous papers, most of which also use Maxwellians. We
leave the rather more complicated study of other models to fu-
ture work.

Before we proceed, we describe the notation we use: we dif-
ferentiate between the actual (and generally unknown) properties
of the pulsar, and the measured (or nominal) values, by indicat-
ing the latter with a prime (′). The actual proper motion is the
sum of three components: one due to the peculiar velocity of
the pulsar, one due to the difference between the local standards
of rest of the pulsar and of the Sun, and one due to the pecu-
liar motion of the Sun (Eqs. (6)–(9)). The measured parallax and
proper motion differs from the actual values due to measurement
errors (Eqs. (1)–(3)), and may be skewed due non-uniform dis-
tributions of positions and velocities (Fig. 2). For convenience,
our notation is summarized in Table 1.

Table 1. Notation used in this paper.

Actual (unknown) values
Parallax, distance $ D = 1/$

equatorial Galactic
Peculiar velocity v vα, vδ, vr vl, vb, vr
Peculiar proper µv = v/D µα∗,v = vα/D µl∗,v = vl/D

motion µδ,v = vδ/D µb,v = vb/D
v⊥ =

√
vα2 + vδ2 =

√
vl

2 + vb
2

Proper motion: µα∗ = µα∗,G + µα∗,v; µδ = µδ,G + µδ,v

Measured (nominal) values
Parallax, distance $′ D′ = 1/$′

Velocitya v′ v′α, v
′
δ, v
′
r v′l , v

′
b, v
′
r

Proper motiona µ′ µ′α∗ = v′α/D µ′l∗ = v′l/D
µ′δ = v′δ/D µ′b = v′b/D

v′⊥ =

√
v′α

2 + v′δ
2 =

√
v′l

2 + v′b
2

Notes. (a) The measured values differ from the actual values not only due
to measurement error, but also due to correction for Galactic rotation.

2. Data

To obtain a master list of pulsars with measured proper motions,
we start by collating articles with proper motion measurements.
The ATNF Catalogue, version 1.541 (Manchester et al. 2005),
was very helpful in this.

Brisken et al. (2000) note that VLBI measurements of proper
motions need to be corrected for ionospheric refraction. We
therefore do not use articles with proper motions from VLBI
published before 2000. To select first-born, single pulsars we re-
ject recycled pulsars (that is those with Ṗ < 5 × 10−18 s s−1),
pulsars in binaries, and pulsars in globular clusters.

In this first application of our new method we prefer to
use relatively accurate measurements. We therefore omit pulsars
with distances determined only from dispersion measures, and
pulsars with proper motions determined from pulse timing. In
both cases, the errors are at least an order of magnitude larger
than the errors obtained with VLBI, and often only correspond
to (upper or lower) limits. Distances from dispersion measures
have uncertainties dominated by systematic effects, with highly
non-Gaussian distributions. (For pulsars distances and disper-
sion measures, see for example Yao et al. 2017; for proper mo-
tions from timing, see Hobbs et al. 2004.) We also omit proper
motions of pulsars derived from displacements in X-ray or op-
tical images, which are relative to other objects in the field of
view. The conversion to absolute proper motions in the Interna-
tional celestial reference system (ICRS) adds significantly to the
error.

This leaves us with the VLBI measurements of the articles
listed in Table 2. Although the measurement of the proper motion
components are not independent of each other, the covariance
value is only provided by Brisken et al. (2003a) who give no par-
allax values. We therefore ignore covariances between µ′α∗ and
µ′δ. In the majority of the measurements, the errors are symmet-
ric, and where asymmetric, the difference is small. We simplify
our analysis by taking the largest error when errors are asymmet-
ric. (Test calculations in which the smallest error is taken give the
same results.)

1 www.atnf.csiro.au/research/pulsar/psrcat

A57, page 2 of 15

www.atnf.csiro.au/research/pulsar/psrcat


F. Verbunt et al.: The observed velocity distribution of young pulsars

Fig. 1. Illustrations of data from our master list of pulsars Table D.1. Top: celestial distribution in Galactic coordinates. The blue lines show the
observed proper motion µ′ and the red lines the correction due to Galactic rotation (for nominal distance D′), in 0.5 Myr. Below left: nominal
velocities in the celestial plane. The circle indicates the median value for v⊥ for the projection of a Maxwellian:

√
2 ln 2σ, for σ = 265 km s−1.

Below right: cumulative distributions of the observed v′⊥, and of v⊥, blue: according to Hobbs et al. (2005), red: according to our best solution,
with the p-value according to a one-sided Kolmogorov-Smirnov test that the observed distribution is drawn from the theoretical one.

Table 2. Sources for proper motions in our master list.

S Source N n
1 Brisken et al. (2002) Table 4 6 2
2 Brisken et al. (2003b) Table 3 1 1
3 Chatterjee et al. (2001) Table 2 1 1
4 Chatterjee et al. (2004) Table 1 1 1
5 Deller et al. (2009) Table 3 4 2
6 Chatterjee et al. (2009) Table 2 12 9
7 Kirsten et al. (2015) Table 5 3 3

Total: 28 19

Notes. S source indicator, N number of entries used (isolated pulsars
with parallax measurements), n with age less than 10 Myr. Later mea-
surements may replace earlier ones; the source actually used is indicated
in Table D.1.

The resulting master list of observed proper motions in equa-
torial coordinates is given in Table D.1. The proper motions
in this table are the observed proper motions µ′α∗ and µ′δ, not
corrected for Galactic rotation and peculiar solar velocity. The
celestial distribution, measured proper motions and nominal ve-
locities of the pulsars in our master list are illustrated in Fig.1.

From the top figure we learn that the correction for Galactic
motion in general is small. The lower figures add to our sus-
picion that a single Maxwellian with σ = 265 km s−1 seriously
underestimates the number of pulsars with low velocities.

3. Ingredients

3.1. Probabilities

To determine the pulsar velocity distribution we use the mea-
sured values of the parallax $′ and of the two components
of the proper motion µ′α∗ and µ′δ. The conditional probabilities
of obtaining these measured values when the actual values are
$ = 1/D, µα∗ and µδ can be written separately as

gD($′|D)∆$′ =
1

√
2πσ$

exp
[
−

(1/D −$′)2

2σ$2

]
∆$′, (1)

gα(µ′α∗|µα∗)∆µ
′
α∗ =

1
√

2πσα
exp

[
−

(µα∗ − µ′α∗)
2

2σα2

]
∆µ′α∗, (2)

gδ(µ′δ|µδ)∆µ
′
δ =

1
√

2πσδ
exp

− (µδ − µ′δ)
2

2σδ2

 ∆µ′δ, (3)
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where σ$, σα and σδ are the measurement errors for the parallax
and for the two components of the proper motion, respectively.
To obtain the joint probability of the measured and actual val-
ues, these equations must be complemented with the equations
indicating the probability density functions of the actual distance
and proper motion.

The probability density fD(D) of the distance D of the pulsar
to the Earth for a galactocentric pulsar distribution is given by
Verbiest et al. (2012). In the notation of Igoshev et al. (2016):

fD(D) ∝ D2R1.9 exp
[
−
|z(D, b)|

h
−

R(D, l, b)
H

]
≡ D2F (D), (4)

with

z = D sin b; and R =

√
R0

2 + (D cos b)2 − 2D cos b R0 cos l, (5)

where R and R0 are the galactocentric distance of the pulsar and
the Sun, respectively, projected on the Galactic plane. Through
F (D) also fD(D) is a function of Galactic coordinates l, b.

3.2. Proper motions

The proper motion of a pulsar µα∗, µδ is the sum of the proper
motion of its standard of rest with respect to the Sun µα∗,G, µδ,G
and the proper motion caused by its velocity with respect to its
local standard of rest µα∗,v, µδ,v:

µα∗ = µα∗,G + µα∗,v; µδ = µδ,G + µδ,v. (6)

The derivation of µα∗,G and µδ,G is described in Appendices A
and B. The velocity of the local standard of rest is assumed to
be the Galactic rotation velocity, vR(R0) for the Sun and vR(R)
for the pulsar. The peculiar velocity of the Sun is [U, V , W],
where the components are respectively in the direction from the
Sun towards the Galactic centre, in the direction of the Galac-
tic rotation, and perpendicular to the Galactic plane. In Galactic
coordinates

D µl∗,G = U sin l − [V + vR(R0)] cos l + vR(R) cos(θ + l), (7)

and

D µb,G =
[
U cos l + [V + vR(R0)] sin l − vR(R) sin(θ + l)

]
sin b

−W cos b. (8)

The angle (θ + l) is computed from:

tan(θ + l) =
R0 sin l

R0 cos l − D cos b
· (9)

The values for [U, V , W], vR and R0 that we use are listed in
Table 3. To compare velocities expressed in km s−1 with proper
motions expressed in mas/yr, we use the conversion

v(km s−1) = 4.74 µ(mas/yr) D(kpc). (10)

The pair µl∗,G, µb,G, is converted to the pair in equatorial coor-
dinates µα∗,G, µδ,G with the rotation given by Eqs. (B.12) and
(B.13). µl∗,G and µb,G depend on the (unknown) distance. This
is the reason that Table D.1 gives the observed proper motions,
not corrected for Galactic rotation and solar motion. µα∗,v and
µδ,v depend on the peculiar velocity v of the pulsar and on the
direction of this velocity.

Table 3. Values of constants defining coordinate transformations and
velocity corrections.

Galactic pole, longitude node
αGP = 192◦.85948 δGP = 27◦.12825 lΩ = 32◦.93192 a

Peculiar velocity Sun
U = 10.0 km s−1 V = 5.3 km s−1 W = 7.2 km s−1 b

Galactic rotation
vR(R0) = vR(R) = 220 km s−1 b

Distance Galactic center, scales pulsar distribution
R0 = 8.5 kpc h = 0.33 kpc H = 1.7 kpc c

Notes. For explanation of these constants see Appendices A and B.
a: from Perryman et al. 1997, b: from Dehnen & Binney 1998, c: from
Verbiest et al. (2012).

3.3. Best solution and fiducial intervals

In the following sections we will discuss a number of models,
and for each model compute a likelihood Li(σ) for an individual
pulsar labelled i, as a function of the parameter vector σ. We
then construct the deviance L with

L(σ) = −2
N∑

i=1

ln Li(σ), (11)

where N is the number of pulsars. σopt is the parameter vector
for which Eq. (11) reaches its minimum. We write differences
with the optimal solution as

∆L(σ) ≡ L(σ) − L(σopt). (12)

For appropriate choices of Li these differences approximate a χ2

distribution. For a parameter vector consisting of a single param-
eter, we estimate its 68% range by determining for which values
Eq. (12) is equal to 1. To determine the range of values if the
vector parameter has three parameters, we proceed as follows.
We fix the value of one parameter at an offset from the opti-
mal value, and then determine the combination of the two other
parameters that gives the lowest value for ∆L(σ). We vary the
offset until this lowest value is 1. Repeating this for each of the
three parameters for positive and negative offsets from the best
values gives the ranges listed in Table 4.

The best parameter values and the fiducial ranges determined
this way do not depend on the normalization of Li: a constant
multiplicative factor x to any Li leads to a constant additive factor
−2 ln x in Eq. (11) and drops out in Eq. (12). We will also use the
deviance to compare different models, using

dL ≡ La(σa
opt) − L

b(σb
opt), (13)

where indices a and b refer to the different models. The distribu-
tion of dL approximates a χ2 distribution less well than ∆L, but
we will use this difference as a rough indication of relative merit
of models.

4. Maxwellian velocity distribution

The Maxwellian velocity distribution is characterized by a single
parameter σ:

f (v, σ)dv =

√
2
π

v2

σ3 exp
[
−
v2

2σ2

]
dv; (0 < v < ∞). (14)
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Table 4. Results of the model calculations for all 28 pulsars in our master list (A), and for the 19 youngest pulsars (τc < 10 Myr, Y).

Sample Single Maxwellian Two Maxwellians vl Gaussian
N σ range dL σ1 range σ2 range w range dL σ range

(km s−1) (km s−1) (km s−1) (%) (km s−1)
Isotropic models A 28 244 221–271 ≡0 77 62–97 321 278–375 42 29–54 −14 240 209–279
Mixed models A 22 + 6 239 219–267 −18 75 61–95 316 276–369 42 30–55 −33
Isotropic models Y 19 277 247–314 ≡0 83 62–117 335 287–398 32 17–47 −6 263 223–314
Mixed models Y 14 + 5 273 245–310 −16 82 61–115 328 285-391 32 17–48 −22

Notes. For the mixed models we give separately the number of pulsars from a semi-isotropic and an isotropic distribution (see Table D.1). For each
model we give the best parameters and their approximate 68% range determined by setting Eq. (12) to unity. Within each sample we also give the
differences in deviance dL (Eq. (13)) between each model and the model with a single isotropic Maxwellian, which gives an indication of their
relative merits.

In the isotropic case, the Maxwellian may be decomposed in
three independent Gaussians in any three mutually perpendic-
ular directions. We choose the directions of increasing right as-
cension, increasing declination, and the radial direction. This en-
ables us to write the joint probability of measured values$′, µ′α∗,
µ′δ and actual values D, vα = Dµα∗,v and vδ = Dµδ,v as

Pmaxw($′, µ′α∗, µ
′
δ,D, vα, vδ, vr) = G(vα, σ)G(vδ, σ)G(vr, σ)

×
fD(D)∫ Dmax

0 fD(D)dD

1

σ$
√

2π
exp

[
−

(1/D −$′)2

2σ$2

]

×
1

σα
√

2π
exp

[
−

(µα∗,G(D) + vα/D − µ′α∗)
2

2σα2

]
×

1

σδ
√

2π
exp

− (µδ,G(D) + vδ/D − µ′δ)
2

2σδ2

 , (15)

where

G(v, σ) =
1

σ
√

2π
exp

[
−
v2

2σ2

]
; (−∞ < v < ∞). (16)

To obtain the value of σ which gives the most likely correspon-
dence with the measurements, we must take into account con-
tributions to the likelihood of all distances and velocities. We
therefore define the likelihood for the Maxwellian as

Lmaxw(σ) =

∫ Dmax

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

PmaxwdvαdvδdvrdD. (17)

The radial velocities occur only in G(vr, σ), and thus the integral
over vr can be computed separately:

∫ ∞
−∞

G(vr, σ)dvr = 1. The
integrals over vα and vδ are more involved, but can also be solved
analytically. Thus, for vα

∫ ∞

−∞

exp

−1
2

 vα2

σ2 +

(
vα + D(µα∗,G − µ′α∗)

)2

D2σα2


 dvα

=
√

2π
(

1
σ2 +

1
D2σα2

)−1/2

exp
[
−

1
2

D2(µα∗,G − µ′α∗)
2

σ2 + D2σα2

]
, (18)

and analogously for vδ. Taken together these results lead to

Lmaxw(σ) = C

∫ Dmax

0
fD(D) exp

[
−

(1/D −$′)2

2σ$2

]
IαIδdD, (19)

where

C ≡

[
(2π)3/2σ$σασδ

∫ Dmax

0
fD(D)dD

]−1

,

Iα ≡

(
1 +

σ2

D2σα2

)−1/2

exp
[
−

1
2

(D µα∗,G − D µ′α∗)
2

σ2 + D2σα2

]
,

Iδ ≡

(
1 +

σ2

D2σδ2

)−1/2

exp
−1

2
(D µδ,G − D µ′δ)

2

σ2 + D2σδ2

 ·
The integral over distances in Eq. (19) is computed numerically,
out to Dmax = 10 kpc. C ensures that each distribution in Eq. (15)
is normalized to unity; in the computations Cmay be ignored, as
it only adds a constant in the deviance (Eq. (11)) and drops out
in Eq. (12).

To illustrate the effect of the various factors in the integrand
of Eq. (19) we show these separately in Fig. 2, for two pulsars.
For a fixed velocity, the proper motion scales inversely with the
distance. The large parallax of PSR 0034−0721, combined with
its relatively small proper motion, favours a Maxwellian with a
small average velocity, but still allows a Maxwellian with a high
average velocity as this has a finite tail at low velocities. In con-
trast, the smaller parallax of PSR B1508+55 combined with its
large proper motion, demands a Maxwellian with a large average
velocity, because high velocities have vanishingly low probabil-
ity in a Maxwellian with a low average velocity.

Labelling the likelihoods of Eq. (19) for each of N pul-
sars with i, we compute the deviance L with Eq. (11). ∆L(σ)
(Eq. (12)) is shown for three pulsar samples in Fig. 3. The sam-
ple of all 28 pulsars in our master list (Table D.1) leads to
σopt ' 244 km s−1, with a range of about 50 km s−1 found from
∆L = 1; see Table 4. To illustrate the influence of a single pulsar,
we also show ∆L(σ) for the sample of 27 pulsars remaining after
removing PSR B1508+55, the pulsar with the worst likelihood
for σ = 245 km s−1. This sample has σopt ' 210 km s−1. The
reason for this shift is evident from Fig. 2: the measurements of
PSR B1508+55 require a large value of σ. Removing any one of
the 27 other pulsars from the full sample leads to a much smaller
shift.

The pulsar velocities of young pulsars, less affected by ac-
celeration in the Galactic gravitational field, are more indicative
of the pulsar velocities at birth, and therefore we also investi-
gate the sample of the 19 youngest pulsars with characteristic
age τc < 10 Myr. This leads to a higher optimal distribution pa-
rameter σopt ' 280 km s−1. The smaller number of pulsars also
leads to a wider range of σ for which ∆L(σ) < 1. An upper
limit to τc of 5 Myr leads to the same σopt as for 10 Myr, but
further widens the uncertainty range. Removing PSR B1508+55
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Fig. 2. Illustration for two pulsars of the contributions to the integrand of the likelihood Lmaxw(σ) (Eq. (19)) of the separate factors fD(D)gD($′|D)
(top graphs; Eqs. (1) and (4)), Iα and Iδ (middle graphs). Each curve has been normalized separately to maximum unity. Iα and Iδ are shown for for
three values σ of the Maxwellian (Eq. (14)). The lower graphs show the integrand of the likelihood Lmaxw(σ) for three values of σ, as a function
of distance, normalized to the highest maximum of the three. The measurements of PSR J0034−0721 (left) favour a low value of σ. Those of
PSR B1508+55 (right) require a high value of σ, and the integrands for σ = 50 and 100 km s−1 are indistinguishable from zero in this graph.

from the sample of young pulsars reduces the optimal distribu-
tion sample to σopt ' 235 km s−1.

Figures 1 and 2 indicate that a single Maxwellian is not a
good description of the velocity distribution of young radio pul-
sars. We are therefore not unduly worried about the shifts in σopt
between the different samples, but move on to investigate more
promising models.

5. Sum of two Maxwellians

We investigate a velocity distribution which is the sum of two
Maxwellians, one to explain the lower observed velocities, and
one for the higher velocities. Defining the vector of parameters
σ = [σ1, σ2, w] we write

fv(v,σ)dv =

√
2
π
v2

 w
σ3

1

exp
−1

2
v2

σ2
1

+
(1 − w)
σ3

2

exp
−1

2
v2

σ2
2

 dv.

(20)

The likelihood for the sum of two Maxwellians is the sum of the
likelihoods of the two Maxwellians: in analogy with Eq. (19) we
have

L2maxw(σ) = wLmaxw(σ1) + (1 − w)Lmaxw(σ2). (21)

Fig. 3. Variation of L with velocity distribution parameter σ for the
model with a single isotropic Maxwellian (dotted lines), and for the
mixed model in which most pulsars have an assumed semi-isotropic
velocity distribution (solid lines). The colour coding indicates the pulsar
sample: all 28 pulsars in our master list, the 27 pulsars remaining after
removing PSR B1508+55, and the 19 youngest (τ < 10 Myr) pulsars.
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Fig. 4. Contours of L(σ) in three σ1, σ2 planes with fixed w, for the
model with two isotropic Maxwellians. Contours of constant ∆L(σ)
(Eq. (12)) are shown for values 1 and 4, in each plane, The best solution
is indicated with •. Top: all pulsars. σopt = (77 km s−1, 321 km s−1,
0.42). Below: pulsars with τc < 10 Myr. σopt = (83 km s−1, 335 km s−1,
0.32).

We compute Lmaxw(σ) on a grid of values of σ, in steps of
1 km s−1, and use the subroutine AMOEBA of Press et al. (1986),
which implements the downhill simplex method of Nelder and
Mead, to obtain the optimal values of w, σ1 and σ2 for which
L, computed from Eq. (21) with Eq. (11), has its minimum. The
results are listed in Table 4, and illustrated in Fig. 4.

To decide on the significance of the second Maxwellian,
we note that it adds two parameters to the model with one
Maxwellian, and compute the deviance difference dL with
Eq. (13). We first investigate the sample of all 28 pulsars in
our master list (sample A). For this sample, dL = −14, indicat-
ing that the addition of a second Maxwellian is very significant
(∆χ2 = −14 corresponds to a 99.8% confidence level for two
added parameters). The low-velocity component represents be-
tween 29% and 54% of the pulsar population. Figure 4 shows
that the values of σ1 and σ2 are mildly correlated with w: a
larger (smaller) fraction of the low-velocity component leads to
larger (smaller) values of σ1 and σ2. The shift, however, lies
well within the error range of σ1 and σ2; the main effect of the
correlation between σ1 and σ2 is to mitigate the drop of pulsar
numbers with velocities between σ1 and σ2.

Fig. 5. Nominal distance from the Galactic plane z′ = sin b/$′, range
sin b/($′ ± σ$), as a function of longitude. The blue points indi-
cate pulsars nominally moving away from the plane, that is z′ and
v′z = µ′b cos b/$′ have the same sign; the red points are pulsars nom-
inally moving towards the plane. The grey band indicates the scale
height of 50 pc of O-stars. The numbers refer to the sequence num-
ber in Table D.1. Numbers 16 at z′ = 1.6 kpc and 17 at 5.5 kpc, re-
spectively, are outside the frame, and both are moving away from the
Galactic plane.

The sample of 19 pulsars in our list with characteristic age
τc < 10 Myr (sample Y) leads to the same result, but with some-
what lager error margins for the parameters σ. For these young
pulsars, the evidence for a second Maxwellian is still significant
(∆χ2 = −6 is 95% confidence).

6. Semi-isotropic Maxwellian velocity distribution

The isotropic Maxwellian velocity distribution has a major ad-
vantage in enabling us to compute three out of four integrals in
Eq. (17) analytically. However, once the pulsar has moved away
from the Galactic plane, we have more information, that we will
put to use in this section: the pulsar velocity must be directed
away from its place of birth, which for sufficiently large |z| im-
plies that vz > 0 when z > 0 and vz < 0 when z < 0. For these
pulsars we assume an intrinsic distribution for the velocity which
is an isotropic distribrution from which the velocities towards the
Galactic plane have been removed: and refer to this distribution
as semi-isotropic.

To quantify “sufficiently large” we show the nominal val-
ues of distance to the Galactic plane z′ = D′ sin b in Fig. 5, to-
gether with a band indicating the scale height of O stars, as a
proxy for the place of birth of pulsars. Five pulsars in our list
of 28 are moving towards the Galactic plane. Two of these, PSR
B0329+54 (#4 in our master list) and PSR J0538+2817 (#7) are
within the region where pulsars are born, and thus may well be
moving towards the plane. PSR J2144−3933 (#26) is the old-
est pulsar in our sample, and may well be a returning pulsar.
PSR B0818−13 (#11) and PSR B1237+25 (#15) are too young –
assuming their characteristic age is indicative of their real age –
to have reversed motion, and their motion towards the Galactic
plane must be apparent. We may write vz as (see Fig. B.1)

vz = Dµb cos b + vr sin b. (22)
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Hence a pulsar is moving away from the plane if

zvz > 0 if vr >
−µb cos b
$ sin b

· (23)

Entering the nominal values $′ and µ′b, we obtain vr >

120 km s−1 (#11) and vr > 12 km s−1 (#15), indicating that these
pulsars may well be moving as expected: away from the plane.

In computing for the case of semi-isotropic Maxwellians, we
choose axes parallel to the (local) direction of right ascension
and declination, and along the line of sight, and write the spatial
velocity as

u = (vα, vδ, vr) = (v sin ξ1 cos ξ2, v sin ξ1 sin ξ2, v cos ξ1), (24)

where

0 ≤ ξ1 ≤ π; 0 ≤ ξ2 ≤ 2π.

To determine which velocities lead to vz away from the Galac-
tic plane, we first convert the velocities to Galactic coordinates
using Eqs. (A.9), (A.10):

(vl, vb, vr) = (v sin ξ1 cos(ξ2−φ), v sin ξ1 sin(ξ2−φ), v cos ξ1), (25)

where φ is given by Eq. (A.11). Entering vb and vr from Eq. (25)
into (22) we obtain

vz = v[sin ξ1 sin(ξ2 − φ) cos b + cos ξ1 sin b]. (26)

Thus, the sign of vz does not depend on the speed v. The condi-
tion vz > 0 if b > 0 and vz < 0 if b < 0 may be written

sin(ξ2 − φ) >
− tan b
tan ξ1

· (27)

We rewrite the joint probability of Eq. (15) for the semi-isotropic
case as

Psim($′, µ′α∗, µ
′
δ,D, v, ξ1, ξ2) = 0 if zvz < 0,

Psim($′, µ′α∗, µ
′
δ,D, v, ξ1, ξ2) = C exp

[
−

(1/D −$′)2

2σ$2

]
× exp

[
−

(µα∗,G(D) + v sin ξ1 cos ξ2/D − µ′α∗)
2

2σα2

]
× exp

− (µδ,G(D) + v sin ξ1 sin ξ2/D − µ′δ)
2

2σδ2


× fD(D) sin ξ1 2

√
2
π

v2

σ3 exp
[
−

v2

2σ2

]
if zvz > 0. (28)

Here C is defined with Eq. (19), and a factor 2 is added to
normalize the semi-Maxwellian. The likelihood for the semi-
isotropic Maxwellian follows:

Lsim(σ) =

∫ Dmax

0

∫ 2π

0

∫ π

0

∫ ∞

0
Psimdvdξ1dξ2dD. (29)

Equation (26) shows that the condition that vz is in the correct di-
rection is determined by the angles ξ1 and ξ2 and does not depend
on v, and this allows the integral in Eq. (29) over the velocity to
be done analytically. The integrals over the angles and distance
are done numerically. Details are given in Appendix C.

7. The mixed model

In our mixed model we assume that the pulsars in the grey band
in Fig. 5 (#4, 5, 7, 9, 19) and the oldest pulsar (#26) are drawn
from an isotropic velocity distribution, whereas all others are
drawn from a semi-isotropic distribution, in which the veloci-
ties towards the Galactic plane are excluded. The distribution
parameter σ for the semi-isotropic distribution is equal to the σ
for the isotropic distribution. In analogy with Eq. (11) we define
the deviance for the mixed model as

Lmixed(σ) = −2

∑
i

ln Lsim,i(σ) +
∑

j

ln Lmaxw, j(σ)

 . (30)

Where the sums over i and over j are for the pulsars whose veloc-
ity is drawn from a semi-isotropic distribution and an isotropic
distribution, respectively. The best value for σ is the value for
which Eq. (30) reaches its minimum, and its range is deter-
mined from ∆L = 1. The results are given in Table 4 and Fig. 3,
and are not very different from those for the single isotropic
Maxwellian, both for sample A of all pulsars, and for sam-
ple Y for the youngest pulsars. For the dL value it is seen that
the mixed model is a significant improvement on the isotropic
model. We return to this below, for the more interesting case of
two Maxwellians.

In a more realistic model the semi-isotropic distribution is
composed of two semi-Maxwellians, with the same distribution
parameters σ as the two isotropic Maxwellians that compose the
isotropic distribution. In analogy with Eq. (21) we now have

L2sim(σ) = wLsim(σ1) + (1 − w)Lsim(σ2), (31)

and in analogy with Eq. (30)

L2mixed(σ) = −2

∑
i

ln L2sim,i(σ) +
∑

j

ln L2maxw, j(σ)

 , (32)

where the sums over i and over j are for the pulsars whose veloc-
ity is drawn from a semi-isotropic distribution and an isotropic
distribution, respectively. We use the subroutine AMOEBA of Press
et al. (1986) to obtain the optimal values of w, σ1 and σ2 for
which L2mixed has its minimum, and ∆L = 1 for the range of
these parameters. The results are given in Table 4 and Fig. 6.

The best values and the ranges for σ1, σ2 and w for the
semi-isotropic model are not significantly different from those
of the isotropic model. Contour plots in the σ1-σ2 planes also
are not significantly different from those for the model with two
isotropic Maxwellians shown in Fig. 4.

The factor 2 in (the last line of) Eq. (28) ensures that the
semi-Maxwellian is normalized to unity. As remarked above,
a constant multiplicative factor for any likelihood drops out
in Eq. (12), and thus does not affect the best solution and its
range(s) within one model. However, to compare between mod-
els one must use the same normalizations of the separate dis-
tributions between the different models, and this requires the
factor 2 in Eq. (28). The dL values listed in Table 4 show that
the mixed model is a highly significant improvement above the
isotropic Maxwellian model, for the full sample A, and that it is
still significant for sample Y of young pulsars.

It is interesting to look at this is some more detail. Suppose
for the moment that the contributions to the integral of Eq. (17)
are zero for vz velocities towards the plane, then the only dif-
ference between L2maxw(σ) and L2mixed(σ) is the multiplicative
factor 2 in Eq. (28). In sample A for all pulsars, this affects only
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Fig. 6. As Fig. 4, now for the mixed model. σopt for all pulsars and for
the youngest pulsars are listed in Table 4.

the 22 pulsars for which a semi-Maxwellian applies, and leads
to an added term in Eq. (32) equal to −2 × 22 × ln 2 ' −30.5.
In sample Y 14 of the young pulsars are affected, leading to an
added term −2× 14× ln 2 ' −19.4. The actual differences dL in
deviance between the mixed models and purely isotropic models
are smaller than this, which indicates that vz velocities towards
the plane in fact do contribute to the integral of Eq. (17), also
for pulsars for which such velocities are not expected. This im-
plies that the isotropic model overestimates the likelihoods for
these pulsars. PSR B0818−13 (#11) is a case in point: its appar-
ent v′z velocity is towards the plane (Fig. 5), and thus vz velocities
towards the plane may be expected to contribute noticeably to
integral Eq. (17).

In Fig. 7 we show the ratio of the likelihoods for the mixed
and isotropic two-Maxwellian model for each pulsar separately.
The six pulsars whose velocities are drawn from an isotropic ve-
locity distribution also in the mixed model by definition have a
ratio of one of the likelihoods for the mixed and isotropic two-
Maxwellian model. The eleven pulsars with ratios closest to the
maximum possible, 1.8 < Lmixed/Liso < 2 say, are all young.
For these pulsars, almost all velocities contributing to Li in the
isotropic model contribute also in the mixed model. For 11 pul-
sars (sample A) or 3 pulsars (sample Y) the velocity range that
contributes to Li is restricted by the condition that vz be away

Fig. 7. Ratio of the likelihoods in the mixed and isotropic models shown
for each pulsar . The red colour indicates old pulsars, with τc > 10 Myr.
To illustrate the pure effect of the normalization of the velocity distri-
bution, we use the same parameters σ = (76 km s−1, 318 km s−1, 0.32)
for both likelihoods. Use of σopt for each model separately gives rise to
small shifts.

from the Galactic plane, as shown by the difference of their
Lmixed/Liso from the normalization factor 2.

8. The distribution of longitudinal velocities

For comparison with earlier studies we also determine the model
parameter σ by only using the measurements of the parallax and
the measurements µ′l∗ of the proper motion in the direction of
Galactic longitude. For this we choose the coordinates in the di-
rections of Galactic longitude and latitude, and radial. We rewrite
Eqs. (15) and (17) as

Pgauss($′, µ′l∗,D, vl, vb, vr) = Cl fD(D)G(vl, σ)G(vb, σ)G(vr, σ)

× exp
[
−

(1/D −$′)2

2σ$2

]
× exp

− (µl∗,G(D) + vl/D − µ′l∗)
2

2σl
2

 , (33)

where

Cl ≡

[
2πσ$σl

∫ Dmax

0
fD(D)dD

]−1

,

and

Lgauss(σ) =

∫ Dmax

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

PgaussdvldvbdvrdD. (34)

µl∗ and its error σµ are obtained from µα∗, µδ and their errors
with Eq. (A.9). The integrals over vb and vr are decoupled from
the other integrals, and equal to 1. Equation (34) is rewritten:

Lgauss(σ) = Cl

∫ Dmax

0
fD(D) exp

[
−

(1/D −$′)2

2σ$2

]
Il dD, (35)

where

Il ≡

(
1 +

σ2

D2σl
2

)−1/2

exp
−1

2
(D µl∗,G − D µ′l∗)

2

σ2 + D2σl
2

 ·
In this case, there is no difference between the isotropic and
mixed model, because vz does not affect vl. We compute the de-
viance (Eq. (11)) with Eq. (35), to determine the values σopt
for which the deviance reaches its minimum, and their range
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Table 5. Comparison of the results of our best model with those obtained in some earlier studies.

Single Maxwellian Two Maxwellians
σ range σ1 range σ2 range w range

Reference (km s−1) (km s−1) (km s−1) (%)
Arzoumanian et al. (2002)a 290 260–320 90 75–110 500 350–750 40 20–60
Brisken et al. (2003a) 99 294 20
Hobbs et al. (2005) 265 239–291
Faucher-Giguère & Kaspi (2006) 290 260–320 160 130–180 780 640–930 90 87–100
Mixed model sample A 239 219–267 75 60–95 316 276–368 42 30–52

Notes. (a) Arzoumanian et al. (2002) fit Gaussians; comparison of their Eq. (1) with our Eq. (20) shows that these are components of Maxwellians.
Thus, their σ values may be compared directly with those in the other papers, contrary to the statement by Brisken et al. (2003a, below their
Eq. (3)).

Fig. 8. Variation of L with σ when only measurements of the parallax
$′ and of the proper motion µ′l∗ in the direction of Galactic longitude are
used (solid lines). For comparison the results for the mixed model, that
uses parallaxes and both proper motions µα∗, µδ are also shown (dotted
lines).

from ∆L = 1. The results are listed in Table 4 and shown in
Fig. 8. Interestingly, PSR B1508+55 is not an outlier in vl: its
proper motion is almost completely in the direction of Galac-
tic latitude (see Fig. 1). For sample A (all pulsars), σopt is the
same as for the isotropic or semi-isotropic single Maxwellian;
for sample Y (youngest pulsars) it is marginally lower. The
limitation to only one component of the proper motion leads
to a reduced accuracy of σopt, as expected. As a consequence
the superposition of two Gaussians (that is components of two
Maxwellians in the direction of Galactic longitude) does not
improve significantly over the single Maxwellian description
(σ = 109 km s−1, 277 km s−1, 0.27, dL = 1).

9. Conclusions and discussion

Previous work derived the velocity distribution of pulsars from
the observed distances and proper motions, and then compared
this distribution with model distributions. This reduces the in-
formation present in the observations, complicates error propa-
gation, and has lead to wrong likelihood definitions. The uncer-
tainties in the proper motions determined from timing are two to
three orders of magnitude larger than those of the proper mo-
tions in our master list, that are determined from VLBI. The
larger number of such proper motions (less than one order of

magnitude) does not make up for their larger uncertainties, so
that inclusion of these proper motions does not significantly im-
prove the analysis. The use of distances determined from disper-
sion measures further complicates the analysis, because the re-
lated distance uncertainties are dominated by systematic effects,
and cannot be described with a Gaussian, even in approximation.

Our approach is more reliable because we a) derive predic-
tions for the observed parameters (parallax and proper motion)
from the model, and compare these directly with the relevant
measurements; b) only use VLBI determinations from after 2000
of both parallax and proper motion, whose uncertainties are well
described with Gaussians; and c) include the intrinsic Galac-
tic distribution of pulsars (as expressed in fD(D), Eq. (4)). Our
mixed model furthermore takes into account that velocity com-
ponent vz perpendicular to the Galactic plane of a young pulsar
well away from that plane must be in the direction away from
the plane.

Applying this to the pulsars in our master list, we find that the
description of the velocity distribution of the pulsars with two
Maxwellians improves significantly on the description with a
single Maxwellian. Our model describing vl with a single Gaus-
sian gives a similar value for σ as the (mixed or isotropic) single
Maxwellian, as expected for an isotropic velocity distribution.
Comparison with earlier results, compiled in Table 5, shows that
our more accurate method leads to more accurately determined
model parameters. We show in Fig. 1 that our best solution cor-
responds well with the observed distribution of v⊥. One would be
tempted to conclude that our whole analysis apparatus can be re-
placed with a straightforward fit of the cumulative v⊥ according
to the model to the observed cumulative data for v′⊥! The reasons
for the succes of the simpler method are the relatively small er-
rors in the parallax, which limit the importance of fD(D), and
the smallness of the correction for Galactic rotation with respect
to the observed proper motions: µα∗,G � µ′α∗ and µδ,G � µ′δ
(Fig. 1). Indeed, ignoring the corrections for Galactic rotation
hardly affects the results (Verbunt & Cator 2017). Corrections
for Galactic motion matter only for distances much larger than
those of the pulsars in our master list.

Whereas our results indicate that the available velocity mea-
surements are adequately described by the sum of two (isotropic
or semi-isotropic) Maxwellians, they do not prove that the actual
distribution is given by this model, in preference to for example
(sums of) isotropic Gaussians, Paczyński functions (see Eqs. (4),
(5) of Paczyński 1990), or exponentials – all of which inciden-
tally peak at zero velocity. Indeed, Maxwellians may be some-
what unlikely, as the condition required for the Maxwellian dis-
tribution in a mono-atomic gas, that is continuous redistribution
of kinetic energy by frequent elastic collisions between atoms,
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certainly is not met by young pulsars. Our results do indicate
that the velocity distribution is wide, with relative contributions
of higher and lower velocities which appear incompatible with
a single Gaussian, Paczyński function or exponential. The ade-
quateness of two Maxwellians for the description of the currently
available data (as suggested by Fig. 1) implies that more veloc-
ity data are necessary to discriminate between this model and
models that use other functional forms.

With the exception of Brisken et al. (2003a), who do not give
error estimates, all previous authors find significantly higher ve-
locities for the high-velocity component than we do. The com-
pilation in Table 5 illustrates that the fraction of pulsars in the
high-velocity component (1 − w) is inversely related to the char-
acteristic velocity of that component. A small number of erro-
neously very high velocities leads to a high value of σ2. Because
the combination of σ2 > 500 km s−1 with a low value of w, thus
high 1 − w, would lead to a much higher fraction of pulsars with
v⊥ > 370 km s−1, say, than observed, the high value of σ2 forces
a high value of w. We suggest that the higher velocities derived
by previous authors are affected by the inclusion of unreliable
distances determined from dispersion measures. In the case of
Arzoumanian et al. (2002) we note that all parallaxes are from
before 2000, that is not corrected for differential ionospheric re-
fraction. As Hartman (1997) has shown, underestimating veloc-
ity errors leads to overestimating velocities.

The analysis by Hobbs et al. (2005) is based on the nomi-
nal velocities v′⊥ = µ′⊥/$

′, and does not take into account the
large errors in both distances and proper motions of their sam-
ple. These errors blur the intrinsic distribution. We suggest that
this prevents Hobbs et al. from recognising the presence of low
velocities, and from recovering a bimodal velocity distribution
in their analysis. The best model with two velocity components
by Faucher-Giguère & Kaspi (2006) allows w = 1, that is the
second component is not significant. Our analysis in Sect. 8 sug-
gests that this is due to their small sample size (34 pulsars, of
which only eight have a measured parallax).

Our results imply that the velocity contrast between the low-
and high-velocity components is a factor 3 to 6, and that 30 to
50% of the pulsars arise from the low-velocity component. It has
been suggested (Podsiadlowksi et al. 2004) that pulsars formed
from small iron cores or via electron capture would have a lower
kick velocity than those formed from higher-mass core collapse,
which may lead to a bimodal velocity distribution of pulsars.
The existence of a class of neutron stars with low birth velocity
has been derived from the properties of Be X-ray binaries (Pfahl
et al. 2002) and the properties of millisecond pulsars binaries
(Van den Heuvel 2004).

The fact that some pulsars are born in binaries and others
from single stars will also affect the velocity distribution of sin-
gle pulsars. Whether the observed bimodal velocity distribution
reflects these different origins can be investigated in a population
synthesis.

One of the goals of our work was to determine the fraction
of pulsars with velocities small enough to remain bound to a
globular cluster, or in a binary. In Fig. 9 we show the fraction of
pulsars with velocity less than v as a function of v. For a typi-
cal escape velocity of a globular cluster, 60 km s−1 say, it is seen
that this fraction is about 5% in our best model (mixed, for sam-
ple A). It varies from about 3% to about 7.5% in the range of
σ1. At these low velocities, the fraction of pulsars is dominated
completely by the low-velocity component, and therefore varies
linearly with w for fixed σ1 and σ2.

Finally, we mention two reasons why the determination
of pulsar velocities from a local sample may lead to an

Fig. 9. Top: our best velocity distribution for all pulsars and for the
youngest pulsars, together with a single Maxwellian. The vertical dotted
lines indicates the median velocities: 313, 370 and 408 km s−1. Below:
fraction f (<v) of pulsars with velocity less than v, for the best mixed
model for all pulsars (black), and for the lowest and highest value in
the range of σ1 (red, blue). Solid lines: all pulsars; dashed lines: pulsars
with τc < 10 Myr. In grey we show the fraction for a single Maxwellian
(Hobbs et al. 2005).

underestimate of the average velocity. The first one is Galac-
tic drift: motion in the Galactic gravitational potential leads to
reduction of the velocity of a pulsar that moves away from the
center of the galaxy, and an increase if it moves towards the cen-
ter. Thus if pulsars with an origin closer to the Galactic cen-
ter contribute more to the locally observed sample than pulsars
with an origin further out, the locally measured velocity distribu-
tion underestimates the distribution at birth (Hansen & Phinney
1997). The second reason is related to the velocity perpendicu-
lar to the plane: pulsars with a high |vz| move further from the
plane, and thus must have a higher luminosity to be detected. In
a flux-limited sample this leads to an over-representation of the
low-velocity pulsars. These effects can be studied best in a pop-
ulation synthesis that takes these and other selection effects into
account. Since such a synthesis involves also a larger number of
parameters, a first step would be the measurement of more pulsar
distances and proper motions.
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Appendix A: Transformations of equatorial
to Galactic coordinates

For the convenience of the reader we summarize the equations
for coordinate transformations that we use. Lane (1979) gives
(two of the three) equations for conversion from Galactic to
equatorial for B1950.0. He notes that the equatorial coordinates
of the Galactic pole αGP, δGP and the Galactic longitude lΩ of
the node where the Galactic plane (b = 0) crosses the equator,
define the coordinate transformation and thus also the equatorial
coordinates of the centre l = b = 0. We note that this centre
does not coincide exactly with the actual centre of the galaxy
(for example as defined by Sgr A∗). We give all three equations,
rewriting them slightly to show explicitly the role of αGP, δGP,
and lΩ. The coordinate transformation is composed of three rota-
tions: one around the Galactic z-axis to bring the Galactic centre
to the node (this replaces l with l − lΩ), one around the equato-
rial z-axis to bring the spring node to the node (this replaces α
with α − αΩ = α − (αGP + π

2 ), and finally around the now com-
mon x-axis over an angle π

2 − δGP to align the Galactic pole with
the equatorial pole. The resulting equations are (see also Lane
1979),

cos
(
α − αGP −

π

2

)
cos δ = cos(l − lΩ) cos b, (A.1)

sin
(
α − αGP −

π

2

)
cos δ = cos

(
π

2
− δGP

)
sin(l − lΩ) cos b

− sin
(
π

2
− δGP

)
sin b, (A.2)

sin δ = sin
(
π

2
− δGP

)
sin(l − lΩ) cos b

+ cos
(
π

2
− δGP

)
sin b. (A.3)

To find the equatorial coordinates αGC, δGC for the centre of the
coordinate system, we enter l = b = 0 and combine Eqs. (A.1),
(A.2) to find:

tan
(
αGC − αGP −

π

2

)
=

cos
(
π
2 − δGP

)
sin(−lΩ)

cos(−lΩ)
, (A.4)

sin δGC = sin
(
π

2
− δGP

)
sin(−lΩ). (A.5)

Perryman et al. (1997) give the pole and node longitude for
J2000.0 as

αGP = 192◦.85948, δGP = 27◦.12825, lΩ = 32◦.93192. (A.6)

and with Eqs. (A.1)–(A.3), these define the coordinate transfor-
mation for J2000.0 in the ICRS system. Entering these values in
Eqs. (A.4), (A.5) we find

αGC = 266◦.40500, δGC = −28◦.93617. (A.7)

For later reference we combine Eqs. (A.1), (A.2) for the Galactic
center l = b = 0 into

tan(−lΩ) =
sin

(
αGC − αGP −

π
2

)
/ cos

(
π
2 − δGP

)
cos

(
αGC − αGP −

π
2

) , (A.8)

and verify that entering the coordinates for pole and centre from
Eqs. (A.6), (A.7) in Eq. (A.8) we re-obtain lΩ correctly.

The next step is to determine the transformation of the proper
motions. This is done by Smart (1938, Chap. 1.41), who notes

that it corresponds to a rotation over an angle φ between the lo-
cal directions of the lines of constant l and constant α, or equiv-
alently between the lines of constant b and constant δ. With the
notation µl∗ ≡ µl cos b and µα∗ ≡ µα cos δ we write Smart’s
Eqs. (4), (5) as

µl∗ = µα∗ cos φ + µδ sin φ, (A.9)
µb = −µα∗ sin φ + µδ cos φ. (A.10)

From spherical trigonometry the angle φ is given by

tan φ =
sin(α − αGP)

cos δ tan δGP − sin δ cos(α − αGP)
, (A.11)

(Smart 1938, Eq. (3)). The angle φ may also be found by taking
the time derivative of the equation defining the transformation
equatorial coordinates to Galactic latitude (cf. Lane 1979)

sin b = sin δ cos
(
π

2
− δGP

)
− sin

(
π

2
− δGP

)
sin

(
α − αGP −

π

2

)
cos δ, (A.12)

and equating the result to Eq. (A.10).
For Galactic to equatorial we may write analogously to

Eqs. (A.9) and (A.10):

µα∗ = µl∗ cos φ2 + µb sin φ2, (A.13)
µδ = −µl∗ sin φ2 + µb cos φ2. (A.14)

We equate the time derivative of Eq. (A.3) to (A.14) to obtain

tan φ2 =
− cos(l − lΩ)

cot
(
π
2 − δGP

)
cos b − sin(l − lΩ) sin b

· (A.15)

Applied to the same source, φ = −φ2, and thus either angle may
be computed with Eq. (A.11) or with Eq. (A.15).

Appendix B: Proper motions and velocity
corrections

The space velocity of a star in the Galaxy may be decomposed
into the average space velocity of its surroundings and its veloc-
ity with respect to this average, that is its peculiar velocity. The
velocity of the local standard of rest for the Sun is its Galactic
rotation velocity, vR(R0), where R0 is the distance to the Galac-
tic centre. The peculiar velocity of the Sun is usually written
[U, V , W], where the components are respectively in the direc-
tion from the Sun towards the Galactic centre, in the direction
of the Galactic rotation, and perpendicular to the Galactic plane.
The total velocity of the Sun may thus be written

u� = [U,V + vR(R0),W]. (B.1)

For a pulsar in the Galactic plane, with b = 0, the velocity of the
local standard of rest is also given by the rotation velocity vR(R)
around the centre of the galaxy, at the galactocentric distance of
the pulsar R (see Fig. B.1). This velocity is in the plane of the
galaxy, in the direction perpendicular to the line connection the
pulsar to the Galactic center. For a pulsar far from the plane, the
meaning of the Local Standard of Rest is less obvious, because
the halo stars do not participate in the rotation of the disk. The
birthplace of the neutron star is (with the few exceptions men-
tioned above) in the Galactic plane, therefore we use for its local
standard of rest the Galactic rotation uR(R) of its projection on
the Galactic plane. The total velocity of a pulsar at distance D
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Fig. B.1. Definition of angles and distances in the Galactic plane (z = 0),
and (inset) of the projected distance Dp to the pulsar. S is the Sun, GC
the Galactic centre, P the pulsar and Pp the projection of the pulsar
position on the Galactic plane.

and Galactic coordinates l, b, may be written in the same coordi-
nate frame as used for the Sun (see Fig. B.1):

up = [Up + vR(R) sin θ,Vp + vR(R) cos θ,Wp], (B.2)

with [Up,Vp,Wp] the peculiar velocity of the pulsar. To obtain
the velocity in the l-direction, we write the unit vector in this
direction as:

l = [− sin l, cos l, 0]. (B.3)

Thus the observed relative velocity in the longitude direction is

l · (up − u�) = (µl∗,v + µl∗,G)D ≡ µl∗D, (B.4)

where the peculiar velocity in the longitude direction is

vl ≡ µl∗D ≡ −Up sin l + Vp cos l, (B.5)

and the correction for Galactic rotation and solar peculiar veloc-
ity is

µl∗,G D ≡ U sin l − [V + vR(R0)] cos l + vR(R) cos(θ + l). (B.6)

The angle (θ + l) may be computed from (see Fig. B.1):

tan(θ + l) =
R0 sin l

R0 cos l − Dp
=

R0 sin l
R0 cos l − D cos b

, (B.7)

with Dp the projected distance towards the pulsar. Equation (7)
follows from Eqs. (B.4)–(B.7).

The unit vector in the b-direction may be written

b = [− sin b cos l,− sin b sin l, cos b], (B.8)

and the relative velocity in this direction

b · (up − u�) = (µb,v + µb,G)D ≡ µbD, (B.9)

with

vb ≡ µb,G D = −Up sin b cos l − Vp sin b sin l + Wp cos b, (B.10)

and

µb,GD = U sin b cos l + [V + vR(R0)] sin b sin l −W cos b
− vR(R) sin(θ + l) sin b. (B.11)

For a pulsar in direction l, b, we can compute µl∗,G and µb,G, as
a function of distance D from Eqs. (B.6), (B.7) and (B.11). Be-
cause the rotation of the sum of two vectors is equal to the sum
of two rotated vectors, symbolically: R(a +∆a) = R(a) +R(∆a),
we may rotate the corrections with Eqs. (A.9), (A.10). Hence:

µα∗,G = µl∗,G cos φ2 + µb,G sin φ2, (B.12)
µδ,G = −µl∗,G sin φ2 + µb,G cos φ2, (B.13)

where φ2 is given by Eq. (A.15).

Appendix C: Numerical evalution of the likelihood
in for a semi-anisotropic Maxwellian

To integrate Eq. (29), we first separate the terms involving the
velocity and define

Iv = e−A3

∫ ∞

0
v2e−A1v

2−A2vdv, where

A1 ≡
1

2σ2 +
1
2

(
sin ξ1 cos ξ2

Dσα

)2

+
1
2

(
sin ξ1 sin ξ2

Dσδ

)2

,

A2 ≡
sin ξ1

D

[
(µα∗,G − µ′α∗) cos ξ2

σα2 +
(µδ,G − µ′δ) sin ξ2

σδ2

]
,

A3 ≡
(µα∗,G − µ′α∗)

2

2σα2 +
(µδ,G − µ′δ)

2

2σδ2 · (C.1)

The result of this integral is

Iv =
A2e−A3

4A1
2

[
√
πeE2

(
1

2E
+ E

)
erfc(E) − 1

]
; E ≡

A2

2
√

A1
·

(C.2)

Entering this in Eq. (29), we obtain:

Lsim(σ) =

∫ Dmax

0

∫ 2π

0

∫ π

0
C fD(D) exp

[
−

(1/D −$′)2

2σ$2

]
× sin ξ1 2

√
2
π

1
σ3 Iv(D, ξ1, ξ2)dξ1dξ2dD. (C.3)

Returning to Eq. (28), we note that for fixed distance D, velocity
v and angle ξ1, Psim reaches it maximum when the arguments
of the exponents that include the proper motions are zero. The
value of ξ2 for which this is the case follows from

tan ξ2m =
µ′α∗ − µα∗.G(D)
µ′δ − µδ,G(D)

· (C.4)

Because this angle is the same for every v, the same value
of ξ2 also maximizes the integrand of Eq. (C.3). The in-
tegration of Eq. (C.3) is done in three steps. First we fix
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D and ξ1, and determine the range of ξ2 from the condi-
tion Eq. (27) (or equivalently by testing with Eq. (26) that
vz is in the right direction). We divide this range in three
parts, one given by (ξ2m − h) to (ξ2m + h), and the other
two dividing the remaining range, and integrate over ξ2
in each part separately with a 64-node Gaussian quadrature.

Appendix D: Master list

Table D.1. Master list of the pulsars used in our study.

B-name J-name l b $′ σ$ µ′α∗ σα µ′δ σδ τc Ref.
(◦) (◦) (mas) (mas/yr) (mas/yr) (Myr)

1 J0034−0721 110.42 −69.82 0.93 0.08 10.37 0.08 −11.13 0.16 36.7 6
2 J0108−1431 140.93 −76.82 4.17 1.42 75.05 2.26 −152.54 1.65 166.4 5
3 B0136+57 J0139+5814 129.22 −4.04 0.37 0.04 −19.11 0.07 −16.60 0.07 0.4 6
4 B0329+54 J0332+5434 i 145.00 −1.22 0.94 0.11 17.00 0.27 −9.48 0.37 5.5 1
5 B0355+54 J0358+5413 i 148.19 0.81 0.91 0.16 9.20 0.18 8.17 0.39 0.6 4

6 B0450+55 J0454+5543 152.62 7.55 0.84 0.05 53.34 0.06 −17.56 0.14 2.3 6
7 J0538+2817 i 179.72 −1.69 0.72 0.12 −23.57 0.10 52.87 0.10 0.6 6
8 B0628–28 J0630−2834 236.95 −16.76 3.01 0.41 −46.30 0.99 21.26 0.52 2.8 5
9 B0656+14 J0659+1414 i 201.11 8.26 3.47 0.36 44.07 0.63 −2.40 0.29 0.1 2

10 B0809+74 J0814+7429 140.00 31.62 2.31 0.04 24.02 0.09 −43.96 0.35 122.0 1

11 B0818–13 J0820−1350 235.89 12.59 0.51 0.04 21.64 0.09 −39.44 0.05 9.3 6
12 B0919+06 J0922+0638 225.42 36.39 0.83 0.13 18.35 0.06 86.56 0.12 0.5 3
13 B0950+08 J0953+0755 228.91 43.70 3.82 0.07 −2.09 0.08 29.46 0.07 17.5 1
14 B1133+16 J1136+1551 241.90 69.20 2.80 0.16 −73.95 0.38 368.05 0.28 5.0 1
15 B1237+25 J1239+2453 252.45 86.54 1.16 0.08 −106.82 0.17 49.92 0.18 22.9 1

16 B1508+55 J1509+5531 91.33 52.29 0.47 0.03 −73.64 0.05 −62.65 0.09 2.3 6
17 B1541+09 J1543+0929 17.81 45.78 0.13 0.02 −7.61 0.06 −2.87 0.07 27.5 6
18 B1556–44 J1559−4438 334.54 6.37 0.38 0.08 1.52 0.14 13.15 0.05 4.0 5
19 B1929+10 J1932+1059 i 47.38 −3.88 2.78 0.06 94.06 0.09 43.24 0.17 3.1 7
20 J1935+1616 52.44 −2.09 0.22 0.12 1.13 0.13 −16.09 0.15 0.9 6

21 B2016+28 J2018+2839 68.10 −3.98 1.03 0.10 −2.64 0.21 −6.17 0.38 59.8 1
22 B2020+28 J2022+2854 68.86 −4.67 0.61 0.08 −3.46 0.17 −23.73 0.21 2.9 7
23 B2021+51 J2022+5154 87.86 8.38 0.78 0.07 −5.03 0.27 10.96 0.17 2.7 7
24 B2045–16 J2048−1616 30.51 −33.08 1.05 0.03 113.16 0.02 −4.60 0.28 2.8 6
25 B2053+36 J2055+3630 79.13 −5.59 0.17 0.03 1.04 0.04 −2.46 0.13 9.5 6

26 J2144−3933 i 2.79 −49.47 6.05 0.56 −57.89 0.88 −155.90 0.54 272.3 5
27 B2154+40 J2157+4017 90.49 −11.34 0.28 0.06 16.13 0.10 4.12 0.12 7.1 6
28 B2310+42 J2313+4253 104.41 −16.42 0.93 0.07 24.15 0.10 5.95 0.13 49.3 6

Notes. The last column gives the reference in Table 2 from which the parallax with error (Cols. 7, 8), and the proper motions with their errors
(Cols. 9–12) are taken. In the case of asymmetric errors we take the larger one. Columns 11 gives the characteristic age τc ≡ P/(2Ṗ). An i in Col. 5
indicates that the model velocity distribution for this pulsar is isotropic in the models that mix isotropic and semi-isotropic velocity distributions.

We find that h = 2π/70 leads to accurate results. Second, we
integrate over ξ1 with one 64-node Gaussian quadrature. Finally,
we integrate over D, in steps of 100 pc, for Dmax = 10 kpc.

We compute Lmaxw−si(σ) on a grid of values of σ, in steps of
5 km s−1, interpolate linearly to get a grid with steps of 1 km s−1.
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