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1 Introduction

The discovery of asymptotic freedom [1, 2] has played an important role in particle physics.

According to Wilson [3, 4] these theories are fundamental since they are valid at arbitrary

short and long distance scales. Another class of fundamental theories a lá Wilson are

the ones featuring an ultraviolet interacting fixed point, and known as asymptotically safe

theories. The first proof of existence of asymptotically safe gauge-Yukawa theories in four

dimensions appeared in [5]. These type of theories constitute now an important alternative

to asymptotic freedom. One can now imagine new extensions of the Standard Model [6–10]

and novel ways to achieve radiative symmetry breaking [6, 7].

In the original construction [5] elementary scalars and their induced Yukawa inter-

actions play a crucial role in helping make the overall gauge-Yukawa theory safe. Quite

surprisingly supersymmetric cousins of the original model, such as super QCD (SQCD)

with(out) a meson and Yukawa-like superpotentials, do not support asymptotic safety [11].

An alleged UV fixed point, when asymptotic freedom is lost, would typically violate the

a-theorem [12–14] inequality [11]. It is possible to go around this constraint, as we shall

see in much detail below, by considering theories with multiple fields in distinct matter

representations with(out) superpotentials.1

Away from perturbation theory supersymmetry allows us to use a plethora of consis-

tency checks, from unitarity to the a-theorem. These tools help constraining the possible

1We will assume that the list of chiral operators doesn’t change for the UV and IR theory. We allow,

however, for the R charges to differ provided all constraints are satisfied. This is similar to what is typi-

cally assumed when analysing asymptotically free field theories featuring IR fixed points. Here the same

fundamental degrees of freedom can be used to build all the relevant gauge singlet chiral operators in the

strongly interacting IR regime and in the perturbative UV limit.
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existence of conformal field theories. However the theories passing these tests should still

be viewed as potential candidates for a physical fixed point. This is true, of course, also for

the celebrated conformal window of SQCD and its generalizations, as well as for all (old

and new) candidates for UV fixed points we will present in this paper.

The first candidate for a UV safe theory was SQCD with two adjoints, featuring a

large enough number of quark superfields [15] and a superpotential. This mechanism has

been recently generalized in [16] for phenomenologically motivated SO(10) gauge theories

with 3×16 + 10 + 210 + 126 + 126 [17–19] matter representations. The latter is dictated by

the requirement that the R-parity [20–22] is present at all scales [23–25]. These theories

have all R-charges uniquely determined because of the presence of the superpotential and

the vanishing of the all-order NSVZ beta function [26]. One can consider vanishing super-

potentials but then one has to resort to a-maximization [27] to determine the R-charges.

Explicit examples of this type appeared first in [16].

Here we greatly enlarge these families of UV safe supersymmetric candidates, and in

the process we gain further insight on how to construct supersymmetric QFTs consistent

with nonperturbatively safety. We also investigate quiver theories in which an interacting

UV fixed point flows towards an interacting IR one.

The paper is constructed as follows: in section 2 we investigate SQCD with two adjoint

fields and different superpotentials. Section 3 contains a study of SO(10) and SU(5) gauge

theories with different types of vector and chiral like matter without superpotential. Quiver

theories are studied in section 4, and we offer our conclusions in section 5.

2 Safe SQCD with two adjoints and superpotential

In [15] Martin and Wells proposed a theory for which the nonperturbative existence of an

interacting UV fixed point is not excluded by any known constraints. The model features

the following superpotential:

W = Tr [Q̃XQ] + Tr [X3] , (2.1)

and its field content is summarised in table 1. We arrange the number of colours and

flavours such that asymptotic freedom is lost and define the quantity x = Nc/Nf . We

assume that both terms in the superpotential remain in the UV.2 The vanishing of the β-

function for the gauge and holomorphic coupling provides enough constraints to uniquely

determine all the R-charges of the theory at the would be UV fixed point. Moreover, the

anomalous dimensions of the gauge singlet operators do not violate the unitarity bound.

The ∆a between the non trivial fixed point and the IR gaussian turns out to be:

∆a = aFP − aFREE =
1

9x
(1− 4x)(x− 1)2. (2.2)

The non trivial UV fixed point can occur when x < 1/4.

2The case when one or both of them become irrelevant in the UV can be analyzed by employing a-

maximization.
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Fields [SU(Nc)] SU(Nf ) UV (1) U(1)R

Wα Adj 1 0 1

Q 1 2/3

Q̃ −1 2/3

X Adj 1 0 2/3

Y Adj 1 0 1
3

(
1 +

Nf

Nc

)

Table 1. The N = 1 superfield content with the addition of two gauge adjoint chiral superfield

X,Y in the model by Martin and Wells.

It can be shown that this example is part of a larger class of theories defined by the

superpotential

W ∼ Tr [(Q̃Q)nXk1Y k2 ] + Tr [(Q̃Q)mX l1Y l2 ] . (2.3)

where, as before, we assume that these terms in the superpotential are marginal in the

UV for some specific choices of n, k1, k2,m, l1, l2. The symbol ∼ means that we identify all

the superpotentials obtained rearranging the fields in different ways that yield the same R-

charge constraints. The latter together with the vanishing of the NSVZ beta function gives:

2nRQ + k1RX + k2RY = 2 .

2mRQ + l1RX + l2RY = 2 ,

x(RX +RY − 1) + (RQ − 1) = 0 .

(2.4)

To avoid the emergence of free gauge invariants operators we impose:

n = 0 ∧ 2 ≤ k1 + k2 ≤ 6 ∨ k1 = k2 = 0 ∧ 1 ≤ n ≤ 3. (2.5)

We can find a total of 104 potentials providing UV fixed point satisfying all constraints.

Every fixed point satisfies the constraints only in a finite x-interval. For example, for

x = 0.46 which is the highest possible value of x allowing an UV interacting fixed point

connected to the IR free one, we have seven relevant operators. These potentials read:

W1 ∼ Tr [X6] + Tr [Q̃QX4] ,

W2 ∼ Tr [X6] + Tr [(Q̃Q)2X2] ,

W3 ∼ Tr [X6] + Tr [(Q̃Q)3] ,

W4 ∼ Tr [Q̃QX4] + Tr [(Q̃Q)2X2] ,

W5 ∼ Tr [Q̃QX4] + Tr [(Q̃Q)3] ,

W6 ∼ Tr [(Q̃Q)2X2] + Tr [(Q̃Q)3] ,

W7 ∼ Tr [X5] + Tr [(Q̃Q)3] .

(2.6)

Notice that, at the fixed point, the R-charges are the same for the first six potentials

implying that the UV value of the a-function is the same. This implies that some or all

– 3 –
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of the operators above can be added to the superpotential simultaneously. In addition

we expect a manifold of fixed points rather than an isolated one, see for example [28] for

such examples in the IR and [16] for UV fixed points. The actual existence of the fixed

point manifold, or part of it, needs further evidence that goes beyond passing all known

consistency checks. Furthermore the a-theorem variation in between any of these UV fixed

point and the trivial IR one is positive for small x.

3 Safety without superpotentials: the SO(10) and SU(5) templates

We had already noticed in [16] that all the known bounds for the possible existence of

nonperturbative fixed points

∆a > 0 (3.1)

c > 0 (3.2)

1/6 ≤ (a/c) ≤ 1/2 , (3.3)

are abided with no gauge invariant operators (GIO) with R < 2/3 by, for example, for

an SO(10) theory featuring a very large number of generations respectively in the 10 and

126 representation and with vanishing superpotentials. It is therefore timely to generalise

these results.

In the following, the choice of gauge groups SO(10) or SU(5) and their representations

is partially inspired by the fundamental role they play in grand unified extensions of the

Standard Model [29–31]. Supersymmetry is a natural playground for the unification sce-

nario since it almost automatically predicts the correct low energy spectrum that allows for

one step-unification of the 3 gauge couplings [32–35]. As discussed in [16], however, asymp-

totic freedom is never respected in supersymmetric GUTs such as the ones that predict

exact R-parity conservation [20–22] at low energy [23–25]. The reason being that one needs

large matter representations [17–19, 36] under SO(10), making our current investigation

potentially interesting for this line of research.

3.1 The SO(10) template

We start by considering susy SO(10) theories with n1 generations in the representation r1

and n2 in the representation r2 with vanishing superpotential.

We scan for r1 and r2 > r1 over the representations

10, 16, 45, 54, 120, 126, 144, 210 . (3.4)

The constraint of no GIO with R < 2/3 is satisfied by imposing R > 1/3 for real represen-

tations and R > 1/6 for complex representations and we discover that the only solutions

satisfying (3.1)–(3.3) above occur for

(r1, r2) = (10, 126), (16, 126) . (3.5)

The number of generations involved is large. The reason being that to abide all the con-

straints one needs at least n10 ≥ 554, while in the second case n16 ≥ 418. In fact, we now

– 4 –
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argue that there is an infinite number of such solutions for integer number of generations

in the 126 representation. To prove this we note that for n10 ≥ 8490 in the first case and

for n16 ≥ 6191 in the second case there is at least one integer value of n2 for which all

constraints (3.1)–(3.3) are satisfied. Since there is no upper bound on n10 or n16, there is

no upper bound on the number of solutions. We now turn our attention to the possibility

of having a smaller number of matter fields, but clearly still above the critical number

needed to abide the constraints. We find that the most minimal among these solutions

contains n1 = 478 generations of 16 and n2 = 19 generations of 126. For this example we

analyze the flow via the Lagrange multiplier technique [37] which for two type of chiral

matter reduces to

a = 2G+ n1r1a1(R1) + n2r2a1(R2) + λG (TG + n1T1(R1 − 1) + n2T2(R2 − 1)) (3.6)

Extremization over Ri, i = 1, 2, gives

Ri(λG) = 1− εi
3

√
1− λGTi

ri
, ε2i = 1 (3.7)

In the IR (λG = 0) the theory is free, so we are in the ε1,2 = +1 branch. The flow goes

from the IR towards positive λG (that it must be positive here we know from perturbative

calculations which are applicable for small enough λG ∼ g2) until it reaches

λmax
G ≡ Min(ri/Ti) (3.8)

which is, in the two cases (3.5), always given by 126:

λmax
G =

126

35
=

18

5
= 3.6 (3.9)

At this point ε126 changes sign. λG can now only decrease (increasing above λmax
G would

lead to complex value for R126), but now in the branch ε16 = +1, ε126 = −1. We pass

through λG = 0 (which is no more a free theory, because of the different branch) towards

negative values of λG, all the way to the fixed point value of

λ∗G = −41.63 (3.10)

for which (having a(0) = 20894/9):

(R16, R126)(λ∗G) = (0.1697, 2.1816) (3.11)

a(λ∗G) = 2326.5 (3.12)

∆a(λ∗G) = 4.955 (3.13)

c(λ∗G) = 13932.1 (3.14)

(a/c)(λ∗G)− 1/6 = 3.2× 10−4 (3.15)

Notice that 4R16 > 2/3 but in order to avoid a free field with R = 2R16 < 2/3 we need

to have only 16 or only 16 but not both (i.e. we cannot have n1/2 = 239 copies of 16

and 239 copies of 16). This is in principle not necessary for the 126 for which the R126 is

– 5 –
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Figure 1. Flows of R1 (upper left), R2 (upper right), the NSV Z function (lower left) and ∆a (lower

right) as functions of the Lagrange multiplier λG. The blue (orange) curves show the direction of

the flow towards increasing (decreasing) λG. The starting points of the blue curves at λG = 0 are

at the free IR theory.

safely large, but since their total number n2 = 19 is odd, we cannot have half of them in

representation 126 and half of them in 126 to maintain the exchange symmetry between

them (see also the comment in the following section). The flows of the different quantities

are shown in figure 1.

We have therefore found an entire family of solutions that can be asymptotically safe.

Furthermore, the fact that there is a critical number of matter field value above which

the asymptotically safe theory emerges within infrared gauge-matter free theories can be

viewed as the supersymmetric analogue of the large Nf solutions of non-supersymmetric

safe non-abelian gauge-fermion theories recently discussed in [38].

3.2 The SU(5) template

One can repeat the above analysis for SU(5). Considering only fields up to representation

75, i.e. over

5, 10, 15, 24, 35, 40, 45, 50, 70, 70′, 75 (3.16)

(and their conjugates) only the following pairs can lead to consistent UV fixed point and

free IR limits (to be on the safe side we impose here Ri ≥ 1/3 for all, real or complex

representations; also, we assume that the R charges of a field in representation r is the

– 6 –
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r1 n1 + n1̄ R1 = R1̄ r2 n2 + n2̄ R2 = R2̄ ∆a cUV (a/c)UV

5 180 0.36651 70 2 2.06152 6.38 1652. 0.173

5 180 0.35869 75 2 2.05436 0.99 1637. 0.172

10 102 0.43853 70’ 2 1.96316 13.7 1786. 0.179

Table 2. The candidates for UV fixed points with the minimal number of generations in the SU(5)

example.

same as the R charge of an eventual field in the conjugate representation r̄):

(r1, r2) = (5, 35), (5, 40), (5, 70), (5, 70′), (5, 75), (10, 70′), (24, 70′) (3.17)

Differently from SO(10), these SU(5) examples are not automatically anomaly free. In

chiral theories the number of fields n1,2 is different from the number of antifields n1̄,2̄, and

so the R-charges of fields and antifields is, in general, different.3 In this case one should

maximise the a function over 3 different R-charges, i.e. R1,2,1̄,2̄ subject to the vanishing of

the NSVZ beta function. We therefore restrict the analysis over vectorlike examples, e.g.

n1̄ = n1 and n2̄ = n2. In this way the system is symmetric under the exchange of fields

with antifields, and only one independent R charge remains after imposing the vanishing

of the NSVZ beta function. There is an infinite number of solutions, let’s present those

with the minimal number of generations, taking into account only solutions with

n1 ≤ 500 , n2 ≤ 2 (3.18)

We summarise them in table 2. Notice that in order to have the precision in ∆a as specified

in table 2 we had to specify R1,2 with higher precision, since cancellations are at work.

These new families of solutions show that supersymmetric gauge theories with(out)

chiral matter and without superpotential can be asymptotically safe above a critical number

of matter fields. Our results complement the investigation for non supersymmetric chiral

gauge theories performed first in [39]. Our analysis can be straightforwardly extended to

other gauge groups with similar matter content. One can also relax the constraints on the

absence of GIO operators but this will be explored elsewhere.

4 Semi-simple gauge groups

Here we will analyse examples of semi-simple gauge groups starting with the quivers

of [27, 40].

4.1 The SU(N)4 quiver

The field content of the theory along with the gauge and SU(2) flavor symmetries and

charges are shown in table 3. In the N → ∞ limit one recovers the U(N)4 case. We

3We thank the referee for helping correcting a statement in the first version of this work.
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Fields [SU(N)1] [SU(N)2] [SU(N)3] [SU(N)4] SU(2)F

Xa
21 1 1

X3
21 1 1 1

Xa
14 1 1

X43 1 1 1

Xa
32 1 1

X13 1 1 1

X42 1 1 1

Table 3. The quantum numbers of the field content in the quiver example.

consider a superpotential that respects all the symmetries:

W = y1O1 + y2O2 + y3O3

= Tr
[
y1εabX

a
21X

b
14X42 + y2εabX

a
21X13X

b
32 + y3εabX

3
21X

a
14X43X

b
32

]
. (4.1)

We study the following cases:

1. if y3 = 0 there is a free field solution, with all Ri = 2/3 and

a

N2
=

92

9
− 8

N2

N→∞−−−−→ 10.2 (4.2)

a

c
=

23− 18/N2

66− 36/N2

N→∞−−−−→ 0.348 (4.3)

2. if y1 = y2 = y3 = 0 (i.e. W = 0) we have [27]

a

N2
=

2

3

(
3 + 5

√
5
)
− 8

N2

N→∞−−−−→ 9.45 (4.4)

a

c
=

2
3

(
3 + 5

√
5
)
− 8

N2

2
(
3 + 5

√
5
)
− 16

N2

N→∞−−−−→ 1

3
(4.5)

The R-charges of the operators defined in (4.1) are independent on N and equal to

R(O1) = 1.87 , R(O2) = 1.87 , R(O3) = 2.25 (4.6)

3. finally, if any of the yi 6= 0 (i.e. if W 6= 0), we get [40]

a

N2
=

32

3

(
−46 + 13

√
13
)
− 8

N2

N→∞−−−−→ 9.30 (4.7)

a

c
=

32
3

(
−46 + 13

√
13
)
− 8

N2

32
(
−46 + 13

√
13
)
− 16

N2

N→∞−−−−→ 1

3
(4.8)

The R-charges of the operators defined in (4.1) are

R(O1) = 2 , R(O2) = 2 , R(O3) = 2 (4.9)

– 8 –
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Fields [SU(N1)] [SU(N2)] SU(Nf ) SU(Nq)

ψ 1 1

ψ̃ 1 1

Ψ 1 1

Ψ̃ 1 1

χ̃ 1 1

χ 1 1

Q̃ 1 1

Q 1 1

Table 4. Field content of the model introduced in [44].

In the limit N → ∞, the ratio a/c approaches 1/3 for the case of point 2 and 3, in

agreement with the large N expectation for superconformal quivers [41, 42].4

Requiring

(a) ∆a ≡ aUV − aIR > 0,

(b) if yi 6= 0 then R(Oi) ≥ 2 in the IR and R(Oi) ≤ 2 in the UV,

we find that the only UV safe flow is for a vanishing superpotential W = 0 in the UV

(case 2) and for an interacting W 6= 0 but with y3 = 0 in the IR (case 3); in this scenario

we have both an IR and an UV interacting fixed point candidates.

4.2 An SU(N1)⊗SU(N2) example

Theories with safe trajectories for semisimple gauge groups were first analysed and discov-

ered in [43]. For these theories it is possible to achieve RG trajectories connecting UV and

IR interacting fixed points. A supersymmetric model of this type was considered in [44]

which can be also viewed as a variant of the SU(N)4 quiver in which one gauges two of the

previous non-abelian flavour symmetries. We summarise in table 4 the field content.

The model features in addition a Yukawa-type superpotential of the form:

W = y
(

Tr [ψΨ̃χ] + Tr [ψ̃Ψχ̃]
)
. (4.10)

We will consider the model in the Veneziano limit keeping the following ratios fixed:

x1 =
N1

Nf
, x2 =

N2

Nf
, xq =

Nq

Nf
. (4.11)

4The reason is [42], that in this limit the TrU(1)R is proportional to the weighted sum of the NSVZ β

functions, and thus zero at a superconformal fixed point. Since by definition the same trace is proportional

to a− (c/3), the relation a/c = 1/3 follows automatically for any quiver superconformal gauge theory.

– 9 –
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The β function for the gauge and superpotential couplings are:

βy =
3

2
y(Rψ +RΨ +Rχ − 2)

β1 = − 3g3
1

16π2
f(g2

1)[x1 + (Rψ − 1)− x2(RΨ − 1)]

β2 = − 3g3
2

16π2
f(g2

2)[x2 − (Rχ − 1) + x1(RΨ − 1) + xq(RQ − 1)]

(4.12)

where f(g2) ∼ 1 + O(g2) is a scheme dependent function of the couplings. The properly

normalized a-function reads:

a/N2
f = 2(x2

1 + x2
2) + 2x1a1(Rψ) + 2x2a1(Rχ) + 2x1x2a1(RΨ) + 2xqx2a1(RQ). (4.13)

We can now find the nonperturbative candidate fixed points of the theory by setting to zero

the beta functions together with a-maximisation. We also allow for partially interacting

fixed points, following [43], meaning that some of the beta functions vanish trivially at

the origin of their respective couplings. To compare our nonperturbative results with the

perturbative ones given in [44] we introduce the further quantities:

P1 =
x2

x1
, P2 =

x2

x1

xq + x1 − 3x2 + 1

x2 − 3x1 + 1
, ε =

x2 − 3x1 + 1

x1
, (4.14)

and assume P1 = 3/2 and P2 = −5 while, differently from [44], our ε can take any positive

value in the range ]0, 0.16776] for which no free GIO can emerge. We find seven distinct

potential fixed points including the fully non-interacting one in all couplings that pass all

the known nonperturbative tests. Of these fixed points three are the physical ones that go

over the perturbative analysis. Ordering in the descending value assumed by the central

charge a these are the gaussian fixed point at the origin G of all couplings, the interacting

(FP2y) in all couplings except α1 and the fully interacting one (FP12y). We report in figure 2

the nonperturbative R charges for the (semi)interacting fixed points as functions of ε.

With these charges we plot in figure 3 the value of a and a/c as functions of ε.

It is clear from the figure that all bounds are respected and that furthermore the highest

value of a is for FP2y suggesting that if a flow exists between this and the fully interacting

fixed point, it can be seen as an ultraviolet safe fixed point along this trajectory. This is

the susy equivalent of the phenomenon discovered in [43]. In addition we also notice that

the fully gaussian fixed point has the highest possible value of a establishing an hierarchy

of UV fixed points according to which, de facto, any phenomenological interesting field

theory of this type would eventually flow to the fully gaussian one. This is substantially

different from the case of [5] in which, at least perturbatively, the only UV fixed point has

the maximum a. In addition we expect no separatrix directly connecting FP12y with the

gaussian fixed point but a separatrix along the α2 coupling direction connecting it to FP2y

because the linearised flow around the gaussian fixed point must necessarely coincide with

the perturbative analysis.
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Figure 2. Here we draw the R-charges as function of the parameter ε for fixed P1 = 3/2 and

P2 = −5.
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Figure 3. a and a/c as a functions of ε for the (semi)interacting fixed points.

5 Conclusions

We studied the short distance behaviour of several distinct classes of not asymptotically free

supersymmetric gauge theories. In particular we investigated super QCD with two adjoint

fields and generalised superpotentials. Here we showed that candidates for nonperturbative

asymptotic safety can be achieved without violating the known constraints provided the

superpotentials assume specific forms.

We also investigated the possible emergence of asymptotic safety within supersymmet-

ric field theories featuring only gauge interactions. We discovered that asymptotic safety

could be achieved at the cost of introducing a large enough number of matter fields in

distinct representations of the gauge groups. In addition we investigated also semi-simple

gauge theories with superpotentials such as quiver theories, and demonstrated that asymp-

totic safety could be achieved as well. Here the mechanism at play requires connecting the

UV safe theory to an interacting IR one.
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Our results integrate and extend the initial work of ref. [11] by introducing new mech-

anisms to achieve supersymmetric safety.
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