
Stack Semantics of Type Theory

Thierry Coquand
Göteborgs Universitet

Bassel Mannaa
IT-Universitetet i København

Fabian Ruch
Göteborgs Universitet

April 2017

Abstract

We give a model of dependent type theory with one univalent universe and propositional
truncation interpreting a type as a stack, generalizing the groupoid model of type theory. As
an application, we show that countable choice cannot be proved in dependent type theory
with one univalent universe and propositional truncation.

1 Introduction

The axiom of univalence [?, ?] can be seen as an extension to dependent type theory of the two
axioms of extensionality for simple type theory as formulated by Church [?]. This extension
is important since, using universe and dependent sums, we get a formal system in which we
can represent arbitrary structures (which we can not do in simple type theory) with elegant
formal properties. The goal of this paper is to contribute to the meta-theory of such systems
by showing that Markov’s principle and countable choice are not provable in dependent type
theory extended with one univalent universe and propositional truncation. For simple type
theory such independence results can be obtained by using sheaf semantics, respectively over
Cantor space (for Markov’s principle) and open unit interval (0, 1) (for countable choice). There
are however problems with extending sheaf semantics to universes [?, ?]. In order to address
these issues we use a suitable formulation of stack semantics, which, roughly speaking, replaces
sets by groupoids. The notion of stack was introduced in algebraic geometry [?, ?] precisely in
order to solve the same problems that one encounters when trying to extend sheaf semantics to
type-theoretic universes. The compatibility condition for gluing local data is now formulated
in terms of isomorphisms instead of strict equalities. In this sense, our model can also be seen
as an extension of the groupoid model of type theory [?]. One needs to formulate some strict
functoriality conditions on the stack gluing operation, which seem necessary to be able to get a
model of the required equations of dependent type theory.

We see this work as a first step towards the proof of independence of countable choice from
type theory with a hierarchy of univalent universes and propositional truncation, which we hope
to obtain by an extension of our model to an ∞-stack version of cubical type theory [?].

The paper is organized as follows. We first present a slight variation of the groupoid model
that we find convenient for expressing the stack semantics. We then explain how to represent
propositional truncation in this setting, and how it can be used to formulate countable choice.
We then notice that, even in a constructive meta-logic where countable choice fails, the axiom
of countable choice does hold in this groupoid model. The groupoid model can be refined
rather directly over a Kripke structure, and we present then our notion of stacks over a general
topological space together with a proof that we get a model of dependent type theory with one
univalent universe and propositional truncation. Instantiating our model to the case of Cantor
space and open unit interval (0, 1) we obtain the results that Markov’s principle and countable

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/154382024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

⊢ ()

Γ ⊢ A

⊢ Γ.A

⊢ Γ

⊢ 1 ∶ Γ→ Γ

⊢ � ∶ Θ→ Δ ⊢ � ∶ Δ→ Γ

�� ∶ Θ→ Γ

Γ ⊢ A ⊢ � ∶ Δ→ Γ

Δ ⊢ A�

Γ ⊢ A

Γ.A ⊢ q ∶ Ap
Γ ⊢ a ∶ A ⊢ � ∶ Δ→ Γ

Δ ⊢ a� ∶ A�

A1 = A A(��) = (A�)� a1 = a a(��) = (a�)�

Γ ⊢ A

⊢ p ∶ Γ.A→ Γ

Γ ⊢ A ⊢ � ∶ Δ→ Γ Δ ⊢ a ∶ A�

⊢ (�, a) ∶ Δ→ Γ.A

1� = � �1 = � �(��) = (��)� p(�, a) = � q(�, a) = a (p�,q�) = �

Γ.A ⊢ B

Γ ⊢ ΠAB

Γ.A ⊢ b ∶ B

Γ ⊢ �b ∶ ΠAB

Γ ⊢ f ∶ ΠAB Γ ⊢ a ∶ A

Γ ⊢ app (f, a) ∶ B [a]

app (�b, a) = b [a] �app (fp,q) = f

Figure 1: Type theory

choice cannot be proved in dependent type theory with one univalent universe and propositional
truncation.

2 Type theory

As in [?], we will use a generalized algebraic presentation of type theory that is name-free and has
explicit substitutions. For instance, if we write A→ B for ΠA(Bp) then we have Γ ⊢ �q ∶ A→ A
since Γ.A ⊢ q ∶ Ap. The advantage of using such a presentation is that it makes it easier to
check the correctness of the model: Building such a model is reduced to defining operations such
that certain equations hold. The main rules are presented in figures ??, ??, ?? and ??. We omit
equivalence, congruence and substitution rules. The conversion rules assume appropriate typing
premises.

We write [a] for the substitution (1, a) and [a, b] for ([a] , b).

3 Groupoid model

In this section, we review the groupoid model of [?], with a slightly different presentation inspired
from [?]. We work in a set theory with a Grothendieck universe U (or a suitable constructive
version of it if we work in a constructive set theory such as CZF [?]).

A groupoid is given by a set Γ of objects and for each �, �′ ∈ Γ a set Γ(�, �′) of paths/isomor-
phisms along with a composition operation � ⋅ �′ in Γ(�, �′′) for � in Γ(�, �′) and �′ in Γ(�′, �′′)
and a unit element 1� in Γ(�, �) and an inverse operation �−1 in Γ(�′, �) satisfying the usual unit,
inverse and associativity laws. We may write � ∶ � ≅ �′ for � in Γ(�, �′).

2

Γ ⊢ A small Γ.A ⊢ B small

Γ ⊢ ΠAB small

Γ.A ⊢ B discrete

Γ ⊢ ΠAB discrete

Γ ⊢ U

Γ ⊢ A small discrete

Γ ⊢ |A| ∶ U

Γ ⊢ a ∶ U

Γ ⊢ El a small discrete

El |A| = A |El a| = a

Γ ⊢ A small

Γ ⊢ A

Γ ⊢ A discrete

Γ ⊢ A

Figure 2: Universe in type theory

Γ ⊢ A Γ ⊢ a ∶ A Γ ⊢ b ∶ A

Γ ⊢ PathAa b discrete

Γ ⊢ A small Γ ⊢ a ∶ A Γ ⊢ b ∶ A

Γ ⊢ PathAa b small

Γ ⊢ A Γ ⊢ a ∶ A

Γ ⊢ ref l a ∶ PathAaa

Γ ⊢ A Γ.A.Ap.PathApp qpq ⊢ C
Γ.A ⊢ c ∶ C

[

q, ref lq
]

Γ ⊢ a ∶ A Γ ⊢ b ∶ A Γ ⊢ p ∶ PathAa b

Γ ⊢ J c a b p ∶ C [a, b, p]

J c a a (ref l a) = c [a]

Figure 3: Equality in type theory

3

Γ.A ⊢ B

Γ ⊢ ΣAB

Γ ⊢ a ∶ A Γ ⊢ b ∶ B [a]

Γ ⊢ (a, b) ∶ ΣAB

Γ ⊢ p ∶ ΣAB

Γ ⊢ p.1 ∶ A

Γ ⊢ p ∶ ΣAB

Γ ⊢ p.2 ∶ B [p.1]

(a, b) .1 = a (a, b) .2 = b (p.1, p.2) = p

Γ ⊢ N small discrete Γ ⊢ 0 ∶ N

Γ ⊢ n ∶ N

Γ ⊢ suc n ∶ N

Γ.N ⊢ C Γ ⊢ c ∶ C [0] Γ.N.C ⊢ d ∶ C
[

sucq
]

p Γ ⊢ n ∶ N

Γ ⊢ rec c d n ∶ C [n]

rec c d 0 = c rec c d (suc n) = d [n, rec c d n]

Γ ⊢ N2 small discrete Γ ⊢ 0 ∶ N2 Γ ⊢ 1 ∶ N2

Γ.N2 ⊢ C Γ ⊢ c ∶ C [0] Γ ⊢ d ∶ C [1] Γ ⊢ b ∶ N2

Γ ⊢ rec2 c d b ∶ C [b]

rec2 c d 0 = c rec2 c d 1 = d

Figure 4: Dependent sum, natural numbers and Booleans in type theory

A map � ∶ Δ → Γ between two groupoids Δ and Γ is given by a set-theoretic map � � in Γ
for � in Δ and a map � � in Γ(� �, � �′) for � in Δ(�, �′) which commutes with unit, inverse and
composition.

A family A of groupoids indexed over a groupoid Γ, written Γ ⊢ A, is given by a family of
sets A� for each � in Γ and sets A�(u, u′) for each � in Γ(�, �′) and u ∈ A� and u′ ∈ A�′. We
may write ! ∶ u ≅� u′ for ! element of A�(u, u′) and we may omit the subscript � if it is clear
from the context. We also have unit 1u ∶ u ≅1�

u and inverse !−1 ∶ u′ ≅�−1 u and composition
! ⋅!′ ∶ u ≅�⋅�′ u′′ also satisfying the unit, inverse and associativity laws. We furthermore should
have a path lifting structure, which is given by two operations u� in A�′ and u ↑ � ∶ u ≅� u� for
u in A� and � ∶ � ≅ �′ satisfying the laws

u1� = u (u�)�′ = u(� ⋅ �′) u ↑ 1� = 1u (u ↑ �) ⋅ (u� ↑ �′) = u ↑ (� ⋅ �′)

We see that u ↑ � “lifts” the path � ∶ � ≅ �′ given an initial point u in A�.
Each A� has a canonical groupoid structure, defining A�(u, u′) to be A1�(u, u′). If � ∶ � ≅ �′

we can define a groupoid map A� → A�′ using the lifting operation. We thereby recover the
groupoid model as defined in [?].

If � ∶ Δ → Γ and Γ ⊢ A we define Δ ⊢ A� by composition: (A�)� is A(� �) and (A�)�(v, v′)
is A(� �)(v, v′).

A section Γ ⊢ a ∶ A is given by a family of objects a� in A� together with a family of paths
a� ∶ a� ≅� a�′ satisfying the laws a1� = 1a� and a(� ⋅ �′) = a� ⋅ a�′.

If Γ ⊢ A, we define a new groupoid Γ.A: An object (�, u) in Γ.A is a pair with � in Γ and
u in A� and a path (�, !) ∶ (�, u) ≅ (�′, u′) is a pair � ∶ � ≅ �′ and ! ∶ u ≅� u′. We then have
p ∶ Γ.A → Γ defined by p(�, u) = � and p(�, !) = � and the section Γ.A ⊢ q ∶ Ap defined by
q(�, u) = u and q(�, !) = !.

4

We say that a family Γ ⊢ A is small if each set A� and A�(u, u′) is in the given Grothendieck
universe U. We say that this family is discrete if the lifting is uniquely determined: Given u
in A� and � ∶ � ≅ �′ there is a unique u′ in A�′ such that A�(u, u′) is inhabited and this set
is a singleton in this case. This notion of discrete family can be characterized in terms of the
common definition of discrete groupoid, which says that a groupoid is discrete if the only paths
are units.

Lemma 1. Γ ⊢ A is discrete if and only if each groupoid A�, � ∈ Γ, is discrete.

Proof. Assume Γ ⊢ A to be a discrete family and let ! ∈ A1�(u, u′) be an arbitrary path. We
immediately have u′ = u and ! = 1u by discreteness of Γ ⊢ A and 1u ∈ A1�(u, u).

For each � ∈ Γ, assume A� to be a discrete groupoid and let !′ ∈ A�(u, u′), !′′ ∈ A�(u, u′′)
be two arbitrary paths over some � ∈ Γ(�, �′). Then, !′′ can be expressed as the composite of
!′ and !′−1 ⋅!′′ ∈ A1�′(u′, u′′). The discreteness of A�′ forces !′−1 ⋅!′′ to be a unit path so that
u′′ = u′ and !′′ = !′.

We define U to be the following groupoid: An object X in U is exactly an element of the
given Grothendieck universe U, and an element of U(X,X′) is a bijection between X and X′.
We can then define the small and discrete family U ⊢ El by taking ElX to be the set X and
u ≅� u′ to be the subsingleton set {0 | u′ = �u}, that is u ≅� u′ is inhabited and is the singleton
{0} exactly when u′ = �u.

Proposition 1. The family U ⊢ El is a universal small and discrete family: If Γ ⊢ A is small
and discrete, then there exists a unique map |A| ∶ Γ → U such that El |A| = A (with strict
equality).

For Γ ⊢ A and Γ.A ⊢ B we define Γ ⊢ ΠAB by taking (ΠAB)� to be the set of functions c u
in B(�, u) and c ! in B(1�, !)(c u, c u′) commuting with unit and composition, and (ΠAB)�(c, c′)
to be the set of functions ! ∶ c u ≅(�,!) c′ u′ such that (!0) ⋅ (c′ �′) = (c �) ⋅ (!1) if � ∶ u0 ≅� u1
and �′ ∶ u′0 ≅�′ u

′
1 and !0 ∶ u0 ≅� u′0 and !1 ∶ u1 ≅� u′1. There is then [?, ?] a canonical way to

define a composition operation (we need the path lifting structure for Γ ⊢ A) and path lifting
structure for Γ ⊢ ΠAB.

Proposition 2. If Γ.A ⊢ B is discrete, then so is Γ ⊢ ΠAB.

Proof. In order to show that Γ ⊢ ΠAB is a discrete family, it suffices to show that (ΠAB)�
is a discrete groupoid for each � ∈ Γ. Assume Γ.A ⊢ B to be a discrete family and let ∈
(ΠAB)1�(c, c′) be an arbitrary path. In particular, Bu is a discrete groupoid forcing 1u ∈
B1u(c u, c′ u) to be a unit path for each u ∈ A� so that c′ u = c u for all u ∈ A�. The discreteness
of Γ.A ⊢ B also forces c′ ! = c ! and ! = 1c ! in B!(c u′, c u′′) for all ! ∈ A1�(u′, u′′), which
concludes c′ = c and = 1c.

If Γ ⊢ A and Γ ⊢ a0 ∶ A and Γ ⊢ a1 ∶ A we define the discrete family Γ ⊢ PathAa0 a1. We
take (PathAa0 a1)� for � ∈ Γ to be the set A1�(a0�, a1�) and (PathAa0 a1)�(!,!′) for � ∶ � ≅ �′
to be the subsingleton {0 |! ⋅ a1� = a0� ⋅ !′}.

It is then possible [?, ?] to check that this defines a model of type theory as presented by
the rules of figures ??, ??, ?? and ??.

5

3.1 Propositional truncation

We say that a groupoid is a proposition if and only if there exists exactly one path between two
objects. So Γ is a proposition if and only if each set Γ(�, �′) is a singleton. More generally, we
say that a family Γ ⊢ A is a proposition if each set A�(u, u′) is a singleton.

Lemma 2. Γ ⊢ A is a proposition if and only if each groupoid A�, � ∈ Γ, is a proposition.

Proof. It is clear that each A� is a proposition if the whole family Γ ⊢ A is a proposition.
Assume now each A� to be a proposition and let � ∈ Γ(�, �′) as well as u ∈ A�, u′ ∈ A�′.

Then, the set A�(u, u′) is inhabited by the composite (u ↑ �) ⋅ pu�,u′ of the lifting of u over � with
the unique path between u� and u′ in A�′. Furthermore, for any two paths !,!′ ∈ A�(u, u′) the
composite !−1 ⋅ !′ is forced to be the unit path at u′ so that !′ = ! ⋅ !−1 ⋅ !′ = !.

We define as usual (where names are used for readability)

isPropA = Π(x0 x1 ∶ A)PathAx0 x1

Proposition 3. If Γ ⊢ A, then there exists a section Γ ⊢ p ∶ isPropA if and only if each groupoid
A�, � in Γ, is a proposition.

Proof. It is enough to show that there exists a family of paths p�,u,u′ ∈ A1�(u, u′), u, u′ ∈ A�,
� ∈ Γ, satisfying p�,u,u′ ⋅ !′ = ! ⋅ p�′,v,v′ for all ! ∈ A�(u, v) and !′ ∈ A�(u′, v′), u, u′ ∈ A�,
v, v′ ∈ A�′, � ∈ Γ(�, �′), �, �′ ∈ Γ, if and only if each groupoid A�, � ∈ Γ, is a proposition.

Assume such a family p and let � ∈ Γ, u, u′ ∈ A�, then A1�(u, u′) is inhabited by the composite
p�,u,u′ ⋅ (p�,u′,u′)−1 and, moreover, any other path ! ∈ A1�(u, u′) satisfies p�,u,u′ ⋅ 1u′ = ! ⋅ p�,u′,u′ so
that A1�(u, u′) is indeed a singleton.

In the opposite direction, we can actually assume the whole family Γ ⊢ A to be a proposition.
Then, defining p�,u,u′ to be the unique path from u to u′ satisfies p�,u,u′ ⋅ !′ = ! ⋅ p�′,v,v′ because
there exists exactly one path from u to v′ over �.

For Γ ⊢ A we define Γ ⊢ ‖A‖ as follows. For each � in Γ we take ‖A‖ � = A�, and for each �
in Γ(�, �′), u in A� and u′ in A�′ we take ‖A‖ �(u, u′) to be a fixed singleton {0}. We then have
sections of Γ ⊢ isProp ‖A‖ and Γ ⊢ A→ ‖A‖, and given sections of Γ ⊢ isPropB and Γ ⊢ A→ B
there is a section of Γ ⊢ ‖A‖ → B. In this way, we get a model of the propositional truncation
operation.

3.2 Countable choice

The statement of countable choice can be formulated as the type [?]

CC = Π(A ∶ N → U)(Π(n ∶ N) ‖El (An)‖)→ ‖Π(n ∶ N)El (An)‖

Notice that we can develop the groupoid model in a constructive meta-theory where countable
choice may or may not hold.

Theorem 1. The statement CC is valid in the groupoid model (even if countable choice does
not hold in the meta-theory).

Proof. It is enough to define c Af = f and c � ! = 0 to get () ⊢ c ∶ CC.

6

4 Stack model

4.1 Groupoid-valued presheaf model

We suppose given a poset with elements U, V ,W ,X,…. The groupoid model extends directly
as a groupoid-valued presheaf model over this poset. A context is now a family of groupoids
Γ(U) indexed by elements of the given poset such that objects � and paths � in Γ(U) can be
restricted to �|V and �|V in Γ(V) if V ⊆ U such that the restriction operation defines a groupoid
map Γ(U) → Γ(V) which is the identity map for V = U and the composite of Γ(X) → Γ(V) and
Γ(U)→ Γ(X) for V ⊆ X ⊆ U .

For a given context Γ, we define then what is a family Γ ⊢ A. It is given by a family of sets
A� for each U and � in Γ(U) together with a restriction u|V in A(�|V) for u in A� satisfying
u|U = u and (u|X)|V = u|V , as well as a family of sets A�(u, u′) for each � ∶ � ≅ �′ in Γ(U),
u in A� and u′ in A�′ together with a restriction !|V in A(�|V)(u|V , u′|V) for ! in A�(u, u′)
satisfying !|U = ! and (!|X)|V = !|V . In particular, we require the restriction operation on
the sets A�(u, u′) to commute with unit and composition. Such a family is called small if the
sets A� and A�(u, u′) are elements in the Grothendieck universe U, and it is called a proposition
if the canonical groupoid structure on each A� defines a proposition, or, equivalently, if each
set A�(u, u′) is a singleton. Furthermore, we should have a lifting operation u ↑ � with the
law (u ↑ �)|V = (u|V) ↑ (�|V). A family is called discrete if the liftings u ↑ � are uniquely
determined: Given U and � in Γ(U) and given u in A� and � ∶ � ≅ �′ there is a unique u′ in A�′
such that A�(u, u′) is inhabited, and this set is a singleton in this case.

We can extend the groupoid model to this setting.
An element c of (ΠAB)� for � in Γ(U) is a function c u in B(�|V , u) for V ⊆ U and u in A(�|V)

and c ! in B(1�|V , !)(c u, c u′) for ! in A1�|V (u, u′) commuting with unit and composition such
that (c a)|W = c (a|W) and (c !)|W = c (!|W) if W ⊆ V ⊆ U .

An element in (ΣAB)� for � ∈ Γ(U) is a pair (a, b) where a ∈ A� and b ∈ B(�, a) with
restrictions (a, b)|V = (a|V , b|V). Paths in (ΣAB)�((a, b), (a′, b′)), where � ∶ � ≅ �′ are pairs
(!, �) where ! ∶ a ≅� a′ and � ∶ b ≅(�,!) b′ with restrictions (!, �)|V = (!|V , �|V).

Given sections a0 and a1 of A, an element in (PathAa0 a1)� for � ∈ Γ(U) is a path ! ∶ a0� ≅
a1� with restrictions as in A. For every element ! and path � ∶ � ≅ �′ there is a unique path
from ! over � going to (a0�)−1 ⋅ ! ⋅ a1� ∶ a0�′ ≅ a1�′.

4.2 Stack structure

We assume given a topological space with a notion of basic open closed under nonempty inter-
section and a notion of covering of a given basic open by a family of basic opens. We consider
only coverings (Ui)i∈I of some basic open U where the set of indices I is small. To simplify the
presentation we assume that each basic open set is nonempty. We write Uij for Ui ∩Uj and Uijk
for Ui ∩ Uj ∩ Uk when they are nonempty.

Since basic opens form a poset, we can consider the notion of type family over this poset as
defined in the previous subsection.

In the following we will define what is a stack structure on a type family.
We recall that a sheaf F is given by a presheaf, i.e. a family of sets F (U) with restriction

maps u|V in F (V) for V ⊆ U such that u|U = u and (u|V)|W = u|W if W ⊆ V ⊆ U , which
satisfies the condition that if we have a covering (Ui)i∈I of U and a family of compatible elements
ui in F (Ui) (i.e. ui|Uij = uj|Uij) then there exists a unique u in F (U) such that u|Ui = ui for all i.

A type family Γ ⊢ A is called a prestack if it satisfies the following sheaf condition on paths:
If � ∶ � ≅ �′ is in Γ(U), u and u′ are in A� and A�′ respectively and we have a family of paths

7

!i ∶ u|Ui ≅�|Ui u
′
|Ui which is compatible (that is !i|Uij = !j|Uij), then we have a unique path

! ∶ u ≅� u′ such that !|Ui = !i for all i.
For each basic open U and � in Γ(U) we define what is the set of descent data D(A)�. A

descent datum is given by a covering (Ui)i∈I of U and a family of objects ui ∈ A(�|Ui) with paths
'ij ∶ ui|Uij ≅�|Uij uj|Uij , when Ui meets Uj , satisfying the cocycle conditions1

'ii = 1ui 'ij|Uijk ⋅ 'jk|Uijk = 'ik|Uijk

This forms a set since the index set is restricted to be small (otherwise this might be a proper
class in general).

If d = (ui, 'ij) is an element of D(A)� and V ⊆ U we define its restriction d|V , element of
D(A)�|V , which is the family (ui|V ∩Ui, 'ij|V ∩Uij) restricted to indices i such that V meets Ui.
A gluing operation glue d = (u, 'i) gives an element u in A� together with paths 'i ∶ u|Ui ≅ ui
such that 'i|Uij ⋅ 'ij = 'j|Uij and satisfies the law (glue d)|V = glue(d|V), that is glue(d|V)
should be (u|V , 'i|V ∩ Ui) where we restrict the family to indices i such that V meets Ui. This
functoriality property will be crucial for checking that we do get a model of type theory with
dependent product.

A stack structure on a prestack Γ ⊢ A is given by a gluing operation2.
Consider a prestack Γ ⊢ A and descent datum d = (ui, 'ij) ∈ D(A)� with glue d = (u, 'i) as

above. Let v ∈ A� with paths #i ∶ v|Ui ≅ ui satisfying #i|Uij ⋅ 'ij = #j|Uij . We remark that
while it is not necessarily true that u = v, the prestack condition implies that we have a path
v ≅ u.

Note that while it is sufficient to define the notion of sheaf as a property because of the
uniqueness part of the sheaf condition, it is crucial that our notion of stack is in general a
structure, i.e. given with an explicit operation fixing a particular choice of glue.

A stack is not the same as a groupoid object in the sheaf topos. A prime example of a stack
whose presheaf of objects is not a sheaf is the universe of sheaves: If we define F (U) to be the
collection of small sheaves over U then there is a natural restriction operation F (U)→ F (V) for
V ⊆ U , and one can check that the gluing of a compatible family of elements is not unique up
to strict equality in general (but it is unique up to isomorphism). Notice that if we try to define
the stack structure using global choice as in [?, 3.3.1, page 28] then the functoriality condition
(glue d)|V = glue(d|V) will not hold. There is however a more canonical definition of gluing
which satisfies this condition, which will provide the interpretation of a univalent universe.

There is also a simple example of a prestack that is not a stack but whose presheaf of objects
is a sheaf. Consider the topological space given by basic opens U1, U2, U12 with U1∧U2 = U12 and
the groupoid-valued presheaf G given by the propositions on the sets G(1) = ∅, G(U1) = {x1},
G(U2) = {x2} and G(U12) = {x1, x2}. There are no matching families of objects or morphisms
in G so that both the presheaf of objects and the presheaf of morphisms trivially satisfy the
sheaf property. However, the descent datum given by d1 = x1, d2 = x2 and d12 the unique path
between x1|U12 and x2|U12 cannot have a glue because G(1) is empty.

Taking as objects the subset D(A)(�, C) ⊆ D(A)� of descent data on a covering C = (Ui)i∈I
of U and a path between two descent data (ui, 'ij) and (vi, ij) to be a family of paths !i ∶
ui ≅ vi satisfying !i ⋅ ij = 'ij ⋅ !j has a natural groupoid structure. Moreover, the canonical
restriction from A� to D(A)� extends to a functor from the canonical groupoid structure on A�
to D(A)(�, C). The prestack condition for A then says that this functor is fully faithful and a
gluing operation witnesses that it is essentially surjective. If A is a stack, then the canonical
functor A�→ D(A)(�, C) is an equivalence of groupoids.

1The first condition is not logically necessary.
2Notice that we shall not require the context Γ to be a prestack or have a stack structure.

8

4.3 Dependent product

The collection of types with a stack structure is closed under dependent product.

Theorem 2. If Γ.A ⊢ B has a stack structure then Γ ⊢ ΠAB has a stack structure.

Proof. Let (ui, 'ij) ∈ D(ΠAB)� be a descent datum on a covering (Ui)i∈I of U . We construct a
glue (u, 'i) that commutes with restriction.

Given x, x′ ∈ A(�|V) and � ∶ x ≅ x′ on V ⊆ U , we construct (u x, 'i x) as the glue of
dx = (ui x, 'ij x) and u � ∶ u x ≅� u x′ as the unique path matching u x ≅ ui x ≅�|V ∩Ui ui x

′ ≅ u x′
given by the composite of 'i x, ui � and the inverse of 'i x′ on V ∩ Ui. If in particular V ⊆ Ui,
then this completely determines 'i ∶ u|Ui ≅ ui. The uniqueness of u � is needed to show that u
respects units and composites as well as restriction of paths. For u to also respect restriction of
objects we need the fact that (glue dx)|W = glue dx|W = glue dx|W for W ⊆ V .

Let !i ∶ u|Ui ≅�|Ui u
′
|Ui be a matching family of paths. We show that there is a unique

glue ! ∶ u ≅� u′. It is uniquely determined by the glues !� ∶ u x ≅(�|V ,�) u′ x′ of !i � ∶
u x ≅(�|V ∩Ui,�|V ∩Ui) u

′ x′ for � ∶ x ≅�|V x′. In particular, !� = !i � if V ⊆ Ui. Again, the
uniqueness of !� lets us show that ! respects composites and restrictions.

4.4 Universe of sheaves

We define U(V) to be the collection of all small sheaves over V . There is a natural restriction
operation U(V)→ U(W) if W ⊆ V .

Theorem 3. U has a stack structure.

Proof. Let Fi ∈ U(Ui) with 'ij ∶ Fi|Uij ≅ Fj|Uij be a descent datum on a cover (Ui)i∈I of U . We
construct a glue F ∈ U(U) and 'i ∶ F |Ui ≅ Fi. We define F (V) for V ⊆ U as the set of families
(xi)i where xi ∈ Fi(V ∩ Ui) and 'ij(xi) = xj . Furthermore, we define F (V) → F (W) for W ⊆ V
component-wise by the restriction Fi(V ∩Ui)→ Fi(W ∩Ui) and 'i by the projection to the i-th
component. For 'i to be an isomorphism we need the fact 'ii = 1 and 'ij ⋅ 'jk = 'ik.

We claim that the presheaf F satisfies the sheaf property. Indeed, let vk ∈ F (Vk) be a
matching family for F on a cover (Vk)k∈K of V . The i-th components of vk are a matching
family for Fi on the induced cover (Vk ∩ Ui)k∈K of V ∩ Ui and the gluing operation D(Fi)(Vk ∩
Ui) → Fi(V ∩ Ui) of a discrete stack is a bijection so that we obtain a glue v ∈ F (V) of vk by
gluing component-wise. This glue is unique because it is component-wise unique.

Let now !i ∶ G|Ui ≅ H|Ui, G,H ∈ U(U) be a matching family of paths on a cover (Ui)i∈I of
U . For x ∈ G(V), V ⊆ U the family !i x in H(V ∩Ui) is compatible because !i = !j on V ∩Uij .
We define !x to be the unique glue in H(V) such that (!x)|V ∩ Ui = !i x. The uniqueness of
glues allows us to verify that ! respects restriction and that the such defined ! is the unique
path that agrees with !i on Ui.

We define U ⊢ El by taking ElF to be the small set F (V) if F is in U(V) and El�(a, a′) to be
the set {0 | �a = a′} if � is an isomorphism between F and F ′ in U(V) and a is in F (V) and a′
is in F ′(V).

Theorem 4. The family U ⊢ El is a universal small and discrete stack: If Γ ⊢ A is small and
discrete stack, there exists a unique map |A| ∶ Γ→ U such that El |A| = A (with strict equality).

4.5 Dependent sums

Theorem 5. If Γ ⊢ A and Γ.A ⊢ B have stack structures then we can glue descent data and
paths in Γ ⊢ ΣAB.

9

Proof. Let ((ui, vi), (!ij , �ij)) ∈ D(ΣAB)� be a descent datum on a covering (Ui)i∈I of U . We
construct a glue ((u, v), (!i, �i)) that commutes with restriction.

Let (u, !i) to be the glue of the datum (ui, !ij) ∈ D(A)�. We describe a descent datum in
D(B)(�, a). The object part of this descent datum is given by vi!−1i ∈ B(�|Ui, u|Ui). We have
then paths (vi!−1i ↑ !i) ∶ vi!−1i ≅!i vi and thus paths

(vi!−1i ↑ !i)|Uij ⋅ �ij ⋅ (vj!−1j ↑ !j)−1|Uij ∶ vi!−1i |Uij ≅ vj!−1j |Uij

These satisfy the cocycle condition. Thus we have a descent datum in D(B)(�, u). Let (v, �′i)
be the glue of this datum. We have paths �i ≔ �′i ⋅ (vi!

−1
i ↑ !i) ∶ v|Ui ≅!i vi

We then take the glue of ((ui, vi), (!ij , �ij)) to be given by ((u, v), (!i, �i)). Since

�′i |Uij ⋅ (vi!
−1
i ↑ !i)|Uij ⋅ �ij ⋅ (vj!−1j ↑ !j)−1|Uij = �′j|Uij

we have that �i|Uij ⋅ �ij = �j|Uij .
Let � ∶ � ≅ �′. Given a matching family of paths (!i, �i) ∶ (u, v)|Ui ≅�|Ui (u

′, v′). Since A have
a stack structure we have a unique ! ∶ u ≅� u′ with !|Ui = !i. But then �i ∶ v|Ui ≅(�,!)|Ui v

′
|Ui

is a matching family for the stack B and thus have a unique � ∶ v ≅(�,!) v′ where �|Ui = �i.

4.6 Paths

Descent data for the discrete family Γ ⊢ PathAa0 a1 correspond to matching families of paths
for A and they have unique glues if A is a prestack. Unique choice then gives us a function
from descent data to glues for PathAa0 a1 which, also by uniqueness, necessarily commutes with
restriction.

Proposition 4. If Γ ⊢ A has a stack structure and Γ ⊢ a0 ∶ A and Γ ⊢ a1 ∶ A then Γ ⊢
PathAa0 a1 has a discrete stack structure.

4.7 Univalence

An equivalence between two types A and B is a map f ∶ A → B such that for each y ∶ B the
fiber of f above y is contractible. If both A and B are discrete stacks, then f being contractible
means that f is an isomorphism. As in [?, 5.4], we have then a one-to-one correspondence
between the type of equivalences El a ≃ El b and the type of paths Path U a b.

4.8 Propositional truncation

We define the family of sets ‖A‖ � inductively. For every basic open U , � ∈ Γ(U) and u ∈ A�
let u ∈ ‖A‖ �. Moreover, for every covering (Ui)i∈I of a given basic open U , � ∈ Γ(U) and ui ∈
‖A‖ (�|Ui) let (Ui, ui)i∈I ∈ ‖A‖ �. Notice that this forms a set since the index set I is restricted to
be small. (Without this restriction, we will get a class and not a set in general.) Then, we define
the family of functions ‖A‖ � → ‖A‖ (�|V) recursively. For every pair of basic opens V ⊆ U ,
� ∈ Γ(U) and x ∈ ‖A‖ � let x|V ≔ u|V if x = u with u ∈ A� and x|V ≔ (Uj ∩ V , uj|Uj ∩ V)j∈J ,
where J ⊆ I is the restriction to indices i ∈ I such that Ui meets V , if x = (Ui, ui)i∈I with
ui ∈ ‖A‖ (�|Ui). Lastly, we define the type family ‖A‖ to be the proposition on the family of
sets and functions just defined. The collection of discrete families Γ ⊢ A discrete is not closed
under propositional truncation: Given � ∶ � ≅ �′ and x ∈ ‖A‖ �, then there is a unique path
x ≅� x′ that connects x to each element x′ ∈ ‖A‖ �′.

The family Γ ⊢ ‖A‖ always has a stack structure, even without assuming one on Γ ⊢ A.
If we have a covering (Vl)l∈L of U and for each l in L we have an element xl of ‖A‖ (�|Vl),

10

then this family xl always defines in a unique way a descent datum and we can consider the
family (Vl, xl)l∈L, which defines a gluing of the family xl. This operation furthermore satisfies
the functoriality condition.

4.9 Example: One-point space

One of the simplest examples of the notion of stack is that where the poset of basic opens has
exactly one object V . In that case, a covering of V is a nonempty finite family (Vi)i∈I where each
Vi = V and a stack is a single groupoid G with a gluing operation. That is, for any family (ui)i∈I
of elements in G and paths 'ij ∶ ui ≅ uj satisfying 'ij ⋅ 'jk = 'ik we have glue(ui, 'ij) = (u, 'i)
such that 'i ∶ u ≅ ui and 'i ⋅ 'ij = 'j . We can use this example to motivate the definition of
propositional truncation given above. Suppose we naively truncate the groupoid G to get the
proposition ‖G‖ on the objects of G, then we have no way of defining the gluing operation on
‖G‖ since we lack a particular choice of glue for a given descent datum.

5 Countable choice

5.1 A stack model where countable choice does not hold

We write U, V ,W ,… nonempty open rational intervals included in the open unit interval (0, 1).
For each n, and i = 1,… , n we let U n

i be ((i − 1)∕(n + 1), (i + 1)∕(n + 1)) so that (U n
i)i=1,…,n is a

covering of (0, 1).
We let |N| be the constant presheaf where each |N|(V) is the set ℕ of natural numbers and

N = El |N|. We have [?]

Lemma 3. |N| is a (small) sheaf.

It is also well-known that in the sheaf model over (0, 1), there are Dedekind reals that are not
Cauchy reals [?]. It is simple to transform this fact to a counter-example to our type-theoretic
version of countable choice.

We define A ∶ N → U by letting An be the subsheaf of the (small) constant sheaf |Q|(V) = ℚ
of rational numbers

(An)(V) =
{

r ∈ ℚ
|

|

|

|

∀(x ∈ V) |x − r| < 1
n + 1

}

Notice that each i∕(n + 1) is an element of (An)(U n
i).

Proposition 5. In this model

1. the type Π(n ∶ N) ‖El (An)‖ is inhabited

2. the type Π(n ∶ N)El (An), and hence also the type ‖Π(n ∶ N)El (An)‖, is empty

Proof. For each open set V , we let sV n be the family (V ∩ U n
i , i∕(n + 1)), i such that V and

U n
i meet, in ‖El (An)‖ (V). Since we have (sV n)|W = sW n if W ⊆ V , this defines a section of

Π(n ∶ N) ‖El (An)‖.
For the second point, it is enough to notice that, for each given V , the set

(An)(V) =
{

r ∈ ℚ
|

|

|

|

∀(x ∈ V) |x − r| < 1
n + 1

}

is empty for n large enough.

Corollary 1. In this model, the principle of countable choice CC does not hold.

Corollary 2. One cannot show countable choice in type theory with one univalent universe and
propositional truncation.

11

6 Markov’s principle

The interpretation of the type N was especially simple on the space (0, 1) using the fact that
its basic opens are connected. We will now consider the “dual” case where the space is totally
disconnected. We assume from now on that the basic opens are nonzero elements e, e′,… of
a Boolean algebra with decidable equality. We consider only coverings of e given by a finite
partition ei, i ∈ I , of e, that is a finite set of disjoint elements ei ⩽ e such that e =

⋁

i∈I ei.
Given a type family Γ ⊢ A and � ∈ Γ(e), a descent datum d ∈ D(A)� for this family is now

simply given by a partition ei, i ∈ I , of e and a family ui ∈ A�|ei.
We can now strengthen the notion of stack structure by further imposing that we have

(glue d)|ei = ui for d = (ui) ∈ D(A)�. This strict gluing condition states that the required
equalities between (glue d)|ei and ui are strict equalities. In fact, it is enough to require glue(u) =
u for partitions consisting of exactly one element.

This refinement is needed for the elimination of natural numbers and Booleans in the uni-
verse.

Proposition 6. If Γ.A ⊢ B satisfies the strict gluing condition, then so does Γ ⊢ ΠAB.

Proposition 7. If Γ ⊢ A and Γ.A ⊢ B satisfy the strict gluing condition, then so does Γ ⊢ ΣAB.

If U(e) is the collection of sheaves on e, we can refine the stack structure on U in order to
satisfy the strict gluing condition: If ei is a partition of e and Fi is a sheaf on ei we define
F = glue(ei, Fi) by taking F (e′), for e′ ⩽ e, to be the product of all Fi(e′ ∧ ei) if e′ meets strictly
more than one ei, and to be exactly Fi(e′) if e′ ⩽ ei. This defines a sheaf, and the functoriality
law glue(ei, Fi)|e′ = glue(ei ∧ e′, Fi|ei ∧ e′) is satisfied.

6.1 Natural numbers and Booleans

We define the sheaf |N| by taking |N|(e) to be the set of families (ei, ni) where ei is a partition
of e and ni ≠ nj if i ≠ j. We define similarly |N2| where ni can only take the values 0 or 1, and
|N1|(e) = {0}, and |N0|(e) is the empty set. We define then N = El |N| and similarly for N2, N1

and N0.
We define suc(ei, ni) to be (ei, ni + 1) and 0(e) is the element (e, 0).
The rec operator is then defined as a section of Γ.N ⊢ C

(rec c d)(�, 0) = c�
(rec c d)(�, n + 1) = d(�, n, (rec c d)(�, n)), where n ∈ ℕ
(rec c d)(�, (ei, ni)) = glue(ei, (rec c d)(�|ei, ni))

given sections Γ ⊢ c ∶ C [0] and Γ.N.C ⊢ d ∶ C
[

sucq
]

p.
We remark that the strict gluing condition is needed to make the above definition work,

i.e. so that for m ∈ N(e) and e′ ⩽ e we have ((rec c d)�m)|e′ = (rec c d)�|e′m|e′.

6.2 A stack model where Markov’s principle does not hold

We can express Markov’s principle in type theory by the type:

MP ≔ Π(ℎ ∶ N → N2)(¬¬(Σ(x ∶ N)El isZero (ℎx))→ Σ(x ∶ N)El isZero (ℎx))

where isZero ∶ N2 → U is defined by isZero ≔ �y.rec2 ||N1
|

|

|

|

N0
|

|

y and the type ¬A by A→ N0.
We could also consider the version where we use weak existential ∃(x ∶ A)B = ‖Σ(x ∶ A)B‖

instead of sigma type, but the two versions are logically equivalent [?, Exercise 3.19].

12

Take a countably infinite set of variables p0, p1,… . Consider the free Boolean algebra gen-
erated by the atomic formulae pn. We write pn = 0 for ¬pn and pn = 1 for pn. An object e in this
algebra represents then a compact open in Cantor space {0, 1}ℕ, where a conjunctive formula
⋀

pi = bi represents the set of sequences in {0, 1}ℕ having value bi at index i. A formula e in the
algebra is then a finite disjunction of these.

We have an interpretation of type theory in stacks over this algebra, and we are going to
see that Markov’s principle is not valid in this interpretation. We define f in N → N2 by taking
f n, n ∈ N(e), at ei to be ((e0, 0), (e1, 1)) where eb is ei ∧ (pni = b) if ei meets both (pni = 0) and
(pni = 1), and to be (ei, b) if ei ⩽ (pni = b).

Proposition 8. In this model

1. ¬¬(Σ(x ∶ N)El isZero (f x)) is inhabited.

2. Σ(x ∶ N)El isZero (f x) is not inhabited.

Proof. To show that ¬¬(Σ(x ∶ N)El isZero (f x)) is inhabited it is sufficient to show that for all
e the set (¬(Σ(x ∶ N)El isZero (f x)))(e) is empty. For that it will be sufficient to show that for
some e′ ⩽ e we have that (Σ(x ∶ N)El isZero (f x))(e′) is not empty. But given any e we can
simply choose e′ = (pn = 0) ∧ e for some n big enough. Thus El isZero (f n) at e′ is {0} and
(Σ(x ∶ N)El isZero (f x))(e′) is not empty.

We now show that Σ(x ∶ N)El isZero (f x) is not inhabited. For any n = (ei, ni) in N(1) where
(ei) is a partition of 1, we can find exactly one ei which contains (as a compact open subset of
Cantor space) the constant function 1. This element ei meets pni = 1 so that El isZero (f n) is the
empty set at (pni = 1) ∧ ei and hence also at 1.

Corollary 3. In this model Markov’s principle does not hold.

Corollary 4. One cannot show Markov’s principle in type theory with one univalent universe.

The situation however is different from the one of countable choice. The following provides an
alternative argument that Markov’s principle cannot be proved in type theory with one univalent
universe3.

Proposition 9. Markov’s principle does not hold in the groupoid model in a set theory where
Markov’s principle does not hold (for instance in suitable sheaf models of CZF [?]).

In [?] it was shown that Markov’s principle is independent from type theory with one (non-
univalent) universe. The paper describes an extension of type theory where the principle does
not hold and proves the consistency of that extension with a normalization argument. We note
however that the model given here does not give an interpretation of the extended type theory in
[?]. In particular the universe (inductively defined) in that extension satisfies the sheaf property.

7 Conclusion

One special case of sheaf models are Boolean-valued models, for instance as in the work [?], and
it would be interesting to formulate a stack version of these models as well.

We expect that essentially the same kind of models can be defined over a site and not only
over a topological space. In particular, it should be possible to extend the sheaf model in [?] to a
stack model of type theory with an algebraic closure of a given field, where existence of roots is

3This argument gives also a proof that Markov’s principle is independent of a hierarchy of univalent universes
by considering the cubical set model [?] in a set theory where Markov’s principle does not hold.

13

formulated using propositional truncation (as explained in the cited work, this existence cannot
be stated using strong existence expressed by sigma types). Another example could be a stack
version of Schanuel topos used in the theory of nominal sets [?].

As stated in the introduction, the argument should generalize to an ∞-stack version of the
cubical set model [?]. The coherence condition on descent data will be infinitary in general, but
it will become finitary when we restrict the homotopy level (and empty in particular in the case
of propositions).

References

[1] Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in cubical sets.
In Ralph Matthes and Aleksy Schubert, editors, 19th International Conference on Types
for Proofs and Programs (TYPES 2013), volume 26 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 107–128, Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[2] Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic,
5(2):56–68, 1940.

[3] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory:
a constructive interpretation of the univalence axiom. CoRR, abs/1611.02108, 2016.

[4] Thierry Coquand and Bassel Mannaa. The independence of Markov’s principle in type
theory. In Delia Kesner and Brigitte Pientka, editors, 1st International Conference on
Formal Structures for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto,
Portugal, volume 52 of LIPIcs, pages 17:1–17:18. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016.

[5] Laura Crosilla and Michael Rathjen. Inaccessible set axioms may have little consistency
strength. Annals of Pure and Applied Logic, 115(1–3):33–70, 2002.

[6] Nicola Gambino. Heyting-valued interpretations for constructive set theory. Annals of Pure
and Applied Logic, 137(1–3):164–188, 2006.

[7] Jean Giraud. Cohomologie non abélienne. Springer-Verlag, Berlin-New York, 1971. Die
Grundlehren der mathematischen Wissenschaften, Band 179.

[8] Alexander Grothendieck and Jean Dieudonné. Éléments de géométrie algébrique. I. Le
langage des schémas. Institut des Hautes Études Scientifiques. Publications Mathématiques,
(4):228, 1960.

[9] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In
Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford Logic
Guides, pages 83–111. Oxford Univ. Press, New York, 1998.

[10] Martin Hofmann and Thomas Streicher. Lifting Grothendieck universes. December 2014.

[11] Bassel Mannaa and Thierry Coquand. A sheaf model of the algebraic closure. In Paulo
Oliva, editor, Proceedings Fifth International Workshop on Classical Logic and Computa-
tion, CL&C 2014, Vienna, Austria, July 13, 2014., volume 164 of EPTCS, pages 18–32,
2014.

14

[12] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

[13] Fabian Ruch. The path model of intensional type theory. Master’s thesis, Chalmers Uni-
versity of Technology, Gothenburg, Sweden, 2015.

[14] Dana S. Scott. Stochastic �-calculi: an extended abstract. Journal of Applied Logic,
12(3):369–376, 2014.

[15] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics: An Introduction,
volume II of Studies in Logic and the Foundations of Mathematics. North-Holland, 1988.

[16] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[17] Vladimir Voevodsky. The equivalence axiom and univalent models of type theory. (Talk at
CMU on February 4, 2010). ArXiv e-prints, February 2014.

[18] Chuangjie Xu and Martín Escardó. Universes in sheaf models. February 2016.

15

