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ABSTRACT

SD-MCAN: A Software-Defined Solution for IP Mobility in Campus Area Networks

Adam Calabrigo

Campus Area Networks (CANs) are a subset of enterprise networks, comprised of

a network core connecting multiple Local Area Networks (LANs) across a college

campus. Traditionally, hosts connect to the CAN via a single point of attachment;

however, the past decade has seen the employment of mobile computing rise dra-

matically. Mobile devices must obtain new Internet Protocol (IP) addresses at each

LAN as they migrate, wasting address space and disrupting host services. To prevent

these issues, modern CANs should support IP mobility: allowing devices to keep a

single IP address as they migrate between LANs with low-latency handoffs. Tradi-

tional approaches to mobility may be difficult to deploy and often lead to inefficient

routing, but Software-Defined Networking (SDN) provides an intriguing alternative.

This thesis identifies necessary requirements for a software-defined IP mobility sys-

tem and then proposes one such system, the Software-Defined Mobile Campus Area

Network (SD-MCAN) architecture. SD-MCAN employs an OpenFlow-based hybrid,

label-switched routing scheme to efficiently route traffic flows between mobile hosts

on the CAN. The proposed architecture is then implemented as an application on the

existing POX controller and evaluated on virtual and hardware testbeds. Experimen-

tal results show that SD-MCAN can process handoffs with less than 90 ms latency,

suggesting that the system can support data-intensive services on mobile host devices.

Finally, the POX prototype is open-sourced to aid in future research.
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Chapter 1

INTRODUCTION

Enterprise networks must support Internet traffic from thousands of hosts. Tradi-

tionally, a host remained stationary, connected to the network at a single point of

attachment; however, the past decade has seen the employment of mobile computing

rise dramatically. As such, modern networks must support mobile devices: devices

whose points of attachment change as users physically move around the network.

1.1 Campus Area Networks and Mobility

Campus Area Networks (CANs) are a specific subset of enterprise networks, typically

comprised of a network core connecting multiple Local Area Networks (LANs) across

the physical area of a college campus. CANs provide connectivity to thousands of stu-

dents and faculty simultaneously. To this end, CANs are designed with performance

and reliability in mind.

However, CANs demonstrate several noticeable shortcomings. Often built from

a wide variety of hardware (switches, routers, middleboxes, etc.) from different ven-

dors, CANs can be difficult for network operators to manage. With devices running

different proprietary OSes and protocols, network updates must be tailored to each

unique device, making network policy changes time-consuming to deploy. Addition-

ally, the behavior of hosts on CANs indicates a clear need for Internet Protocol (IP)

mobility which often goes unsatisfied.

CANs exemplify the need for mobility in enterprise networks, as the majority of

students and faculty carry one to many mobile devices on their person as they navigate

the campus. Whether mobile phones, laptop computers, etc. these devices connect
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to many unique access points across multiple LANs as a student walks from one end

of campus to another. In their 2005 study of user traffic patterns on the Dartmouth

campus, Kotz and Essien found that 40% of mobile sessions involved roaming to

different subnets [30]. Upon each connection, a host obtains a local IP address using

Dynamic Host Configuration Protocol (DHCP). The DHCP server contains a pool of

valid IP addresses and leases these addresses to hosts for a given duration. Before the

lease expires, it must be renewed; however, when the device leaves the network, the

host's assigned address remains unavailable for the duration of the lease regardless of

whether or not the address remains in use. Thus, as students move around campus,

addresses are leased for longer than they are used, resulting in wasted address space.

As hosts have become increasingly mobile on CANs in the last decade, their data

needs have also evolved. The modern campus-goer streams music and video while

navigating campus, in addition to making phone and video calls over IP. Such data-

intensive services require a reliable connection to the network. When a person moves

to a new LAN and their device leases a new IP address, these services are disrupted.

In addition to wasted address space, the disruption of host services reveals a need for

mobility on CANs.

The demand for mobility in CANs creates several new challenges in regards to

routing and connectivity in the network. Many approaches to mobility on campus

networks have emerged. Some approaches, based on the original Internet Engineering

Task Force (IETF) standard Mobile IP (MIP), use additional IP addresses to allow

mobile devices to remain identifiable by their original IP addresses as they move

across LANs. These solutions may be difficult to deploy and often lead to inefficient

routing of packets throughout the CAN. Mobility on the CAN has also been achieved

using Virtual LANs (VLANs) without the need for additional addresses [57]. Com-

mercial solutions to mobility exist, including offerings from Cisco Systems and Aruba

Networks. Cisco provides mobile IP configuration via the iOS on its routers [1], while

2



Aruba offers a line of mobility controllers (hardware boxes) to provide mobility to

enterprise networks [2]. While these solutions function well, this thesis focuses on

applying a new technology, software-defined networking (SDN), to the problem of

mobility on campus area networks.

1.2 Software-Defined Networking as a Solution

Software-Defined Networking (SDN) provides an intriguing alternative to traditional

mobility approaches. A new networking paradigm, SDN decouples the control and

data planes of networking devices. Traditionally, the control plane of a switch or

router makes forwarding decisions while the data plane forwards the packets. SDN

removes the control plane from network devices, choosing instead to centralize control

of the network to a separate server, called a controller. Centralizing control provides

a complete view of the network which the controller can leverage to make routing

decisions and forward those decisions to the network devices, which now act as dumb

devices. SDN's centralized network view makes it an ideal tool for mobility solutions.

This thesis identifies four design criteria for any successful CAN mobility solution:

compatibility with the existing network, routing efficiency, handoff latency, and scal-

ability. It then proposes a mobility solution, the Software-Defined Mobile Campus

Area Network (SD-MCAN) architecture, designed to satisfy these criteria. SD-MCAN

is built on OpenFlow, a popular and widely supported implementation of the SDN

paradigm. In OpenFlow, network devices route packet flows based on flow tables,

and a centralized controller manages all traffic flows on the network through the in-

stallation of flow table entries. Using OpenFlow, SD-MCAN's operation is three-fold.

First, it acts as a mobility-enabled DHCP server to all LANs on the CAN. This

allows SD-MCAN to lease a single IP address to all hosts on the network, even mo-

bile hosts. Additionally, SD-MCAN maintains a complete view of the core network

3



topology and tracks the location of all hosts on the network. Finally, SD-MCAN

utilizes this complete network view to efficiently route traffic flows using a hybrid,

label-switched routing scheme. The scheme is hybrid as SD-MCAN installs flow table

entries proactively in the network core and reactively on the network edges.

To evaluate the proposed system, a prototype is built as an application on top of

POX, a modular, Python-based SDN controller. The prototype is tested on virtual

and hardware networks to analyze handoff performance and scalability. Experimen-

tal results show that the SD-MCAN prototype suffers only transient performance

degradation (<400 ms performance degradation) during host handoffs. The proto-

type handles host migration with minimal performance impact, packet loss <2% and

throughput degradation <15%, when hosts move constantly at intervals greater than

two seconds. The prototype also handles constant movement at shorter intervals, al-

beit with more significant performance impact (3.5% packet loss and 21% throughput

degradation). While the SD-MCAN prototype is limited due to its Python implemen-

tation, analysis shows that a production quality SD-MCAN deployment is capable of

handling host handoffs with <90 ms of negative performance impact. This suggests

that SD-MCAN could support data-intensive services on mobile host devices.

Large scale experimentation shows that SD-MCAN's label-switched routing scheme

keeps core flow tables small (average 11 entries for 1024 mobile hosts); however, edge

flow tables do not scale as well (average 362 entries for 1024 mobile hosts), limiting

SD-MCAN's deployability on network devices with restricted flow table sizes. While

edge flow tables can grow large, experimental results show that the load on the con-

troller remains reasonable (<21 packets per second with a host moving every 10 ms);

thus, the presented SD-MCAN design is feasible on networks with devices containing

adequately sized flow tables given the number of hosts on the network.
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1.3 Contributions

This thesis focuses on applying modern SDN technologies to current problems in

CANs, namely the need for scalable mobility with fast handoffs between LANs. The

contribution of this thesis is as follows.

1. Identifies urgent design considerations for applying SDN to mobility problems

on CANs,

2. Presents and specifies a new OpenFlow-based CAN architecture called SD-

MCAN,

3. Introduces a novel hybrid, label-switched mobile routing scheme for use in SD-

MCAN,

4. Details three new Python-based applications for extending the POX controller

to implement an SD-MCAN prototype, and

5. Provides a comprehensive evaluation of the system's performance.

The remainder of this thesis documents the research and design decisions behind

SD-MCAN. Chapters 2 and 3 discusses background research and related work, re-

spectively. Chapter 4 presents design considerations and the SD-MCAN architecture,

and Chapter 5 details the implementation of the SD-MCAN prototype on the POX

controller. Chapter 6 features the experimentation and validation of the prototype

on a virtual test bed of Open vSwitches using the Mininet tool. Finally, Chapter 6

suggests areas of future work, and Chapter 6 draws conclusions from this work.
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Chapter 2

BACKGROUND

Since the introduction of Mobile IP (MIP) by the IETF in 1996, understanding of and

approaches to mobility in IP networks have significantly evolved, as have networks

themselves. This chapter begins with a short introduction to two networking con-

cepts which inform SD-MCAN, the Dynamic Host Configuration Protocol (DHCP)

and the Multi-Protocol Label Switching (MPLS) system, followed by an examination

of mobility through MIP and the improvements that have been made since its incep-

tion. The chapter then surveys the evolution of alternative networking paradigms,

leading to the emergence of SDN. Finally, this chapter introduces OpenFlow, the

SDN implementation upon which this work builds.

2.1 Dynamic Host Configuration Protocol

To begin this section, it must be noted that this section presupposes a minimal

knowledge of TCP/IP in the reader. A more in-depth discussion of these concepts

is outside the scope of this work, but can be found in [51]. Instead, this section

provides a brief introduction to the history and the operation of the Dynamic Host

Configuration Protocol (DHCP).

2.1.1 History

In the early days of the Internet, hosts connected to the Internet needed to know

and statically configure their IP addresses in order to use the Internet Protocol. This

demands some knowledge of the network configuration; therefore, a host without this

information would not be able to send datagrams over a network using IP. Emerging
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in 1984, the now-obsolete Reverse Address Resolution Protocol (RARP) offered a

solution to this problem by allowing a host to request its IPv4 address from a server

[21].

But RARP fell short in its reliance on the data link layer and its demand for many

servers across the network. The following year, RFC 951 introduced the Bootstrap

Protocol (BOOTP). Unlike RARP, BOOTP operates on the network layer and uti-

lizes relay agents, removing RARP's need for a server on every IP subnet. BOOTP

allocates IP addresses out of an address pool [16].

First introduced in [19], DHCP superceded BOOTP by introducing the concept of

address leases. Based on BOOTP, DHCP dynamically allocates IP addresses from an

address pool. The key innovation of DHCP is its ability to reclaim allocated addresses

back into its address pool after expiration. DHCP has been updated numerous times

since.

2.1.2 Operation

Like BOOTP, DHCP utilizes the User Datagram Protocol (UDP) for connectionless

communication with hosts on a network. DHCP's operation has four phases when

initiating a lease. To start, the client broadcasts a DHCP Discovery on its network.

The DHCP server receives this broadcast, reserves an IP address from its address pool,

and unicasts a DHCP Offer message to the client. Upon receiving the offer, the client

sends a DHCP Request packet, verifying that it wants the offered IP address. Finally,

the server sends a DHCP Acknowledge packet back to the client, acknowledging that

the IP address has been leased. This packet contains information about the duration

of the lease. Figure 2.1 below shows this process.
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Figure 2.1: DHCP Session

The client must periodically renew its lease with the server to keep its lease. If the

client knows that it is leaving the network, it may send a DHCP Release packet to the

server, indicating that it is no longer using the lease. In response, the server will add

the leased IP address back to its address pool. However, clients often do not know

when they will be disconnected from the network (i.e. when a computer is manually

unplugged from the network). In this case, the leased IP address remains unused for

the remaining duration of its lease before being added back into the address pool.
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2.2 Multi-Protocol Label Switching

Traditional IP routers route datagrams via a series of lookups in a routing table. The

router receives a datagram, determines the datagram's next-hop, and forwards the

datagram out of the interface connected to that next hop. This process occurs at

each router in the datagram's path across the network. In large networks, routing

tables grow large and route look-ups become costly.

This motivated the creation of Multi-Protocol Label Switching (MPLS), a method

of protocol-independent data transfer using label switching to reduce the number

of look-ups in the datagram's path [47]. MPLS is often considered a “layer 2.5”

protocol as it sits between the link layer (layer 2) and the network layer (layer 3) in

the traditional OSI model. It combines the functionality of layer 3 routing with the

simplicity of layer 2 switching.

Rather than route like traditional routers, MPLS utilizes label switching. When

a packet enters the network, the first router, called a Label Edge Router (LER),

performs a traditional routing look-up. However, instead of finding the next hop, the

LER locates the packet's destination router on another edge of the network and finds

a precalculated path between the routers, called a Label Switched Path (LSP). The

LER pushes a label onto the ingress packet, and routers along the LSP, called Label

Switching Routers (LSRs), route the packet using label switching only. A final LER

pops the label off before the packet leaves the network. Figure 2.2 below shows an

example MPLS network.
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Figure 2.2: MPLS Network

In order for an LSP to be used, it must be shared across the routers; this is because,

although the LSP is network-wide, the labels are only link-local. Two MPLS routing

protocols are commonly employed to share labels: Label Distribution Protocol (LDP)

and Resource Reservation Protocol with Traffic Engineering (RSVP-TE). RSVP-TE

is the more complex protocol, but some complex MPLS networks use both protocols.

2.3 Mobility

Campus Area Networks (CANs) consist of multiple Local Area Networks (LANs)

interconnected via layer 3 routing devices. Classically, college campuses housed com-

puters in fixed locations, i.e. a node subscribed to a single LAN via a fixed point

of attachment. However, the proliferation of mobile devices (laptops, cellphones) on

campuses and the change in student needs have created new demands.

In modern CANs, devices move around campus, disconnecting from one LAN and

connecting to another as students and faculty navigate the physical area. As they

move, students stream music and video, as well as making calls over IP. Typically,

CANs employ DHCP to allocate IP addresses to nodes; thus, a node occupies multiple
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addresses as it moves between LANs. These inter-LAN handoffs disrupt services like

video streaming and voice-over-IP (VoIP). Given the needs of students, it becomes

evident that modern CANs must support lossless handoffs between LANs over IP.

The original design of the Internet did not account for this need, which becomes

evident when looking at the role of IP addresses. At a high level, IP addresses

serve two main functions in computer networks: 1) they allow end nodes, which this

work will also refer to as hosts, to be uniquely identified by other hosts, and 2) they

provide layer 3 devices a means of routing Internet datagrams between hosts [51].

Looking at these functions in terms of mobility, the physical movement of a mobile

node between points of attachment in a network without connectivity loss, reveals an

inherent conflict.

A host needs a stable IP address in order to be identified by other hosts, yet data-

grams will always be routed to a stable IP address along the same path (disregarding

network congestion impacts on routing). This inhibits mobility, as datagrams bound

for a mobile host will always be routed to the same location regardless of the host’s

physical location.

2.3.1 Mobile IP

Mobile IP, introduced in RFC 2002, addresses this issue by distributing the function-

ality of a host’s IP address across two addresses, a home address for identification

and a care-of address (CoA) for routing [40]. Mobile IP has since become known

as Mobile IPv4 (MIPv4), and its specification has been updated in RFC 5944 [41].

MIPv4 labels hosts as Mobile Nodes (MNs) and extends IP with three main functions

to provide mobility to MNs: 1) agent discovery, 2) node registration, and 3) tunneling

[43].

MIPv4 achieves mobility through the use of Mobility Agents (MAs), which take
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the form of Home Agents (HAs) and Foreign Agents (FAs). An HA is a router on

the MN’s home network, the network having a network prefix matching that of the

MN’s home address, while an FA is a router on any other network. In order for these

MAs to provide utility, MNs must be made aware of their presence.

The agent discovery mechanism of MIPv4 allows MAs to make themselves known

to MNs through advertisements. MAs periodically broadcast advertisements to at-

tached subnets. Upon receiving an advertisement, a MN checks whether the adver-

tising agent is on its home network. If the MA is on the MN’s home network, then

the MN operates as it would with unextended IP; however, if the MA is on a foreign

network, then the MN must obtain a CoA from the FA and register its CoA with its

HA. Alternately, an impatient MN may send its own advertisement to elicit a MA

advertisement.

After obtaining a CoA from an FA, the MN registers its CoA with its HA through

registration. The HA creates a binding, linking the CoA and the home address. This

process is important, as the HA must know the location of the MN in order to forward

traffic to the MN. As long as the MN stays on a foreign network, it will continually

register new CoAs with its HA.

Other nodes still identify the MN by its home address, thus all traffic bound

for the MN will be addressed to its home address. Fortunately, the HA knows the

MNs current location after successful registration and can forward MN-bound traffic

accordingly. This process is known as tunneling.

In tunneling, the home agent intercepts datagrams headed for the MN’s home ad-

dress and reroutes them to the MN’s CoA. MIPv4 accomplishes this by encapsulating

the IP datagram in a new IP header (a tunnel header) containing the MN’s CoA as

destination IP address. The tunnel header uses a special value in the IP protocol field

to divulge the presence of the encapsulated datagram inside.
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When another node, a Correspondent Node (CN), sends a datagram to the MN,

the HA will tunnel the datagram to the MN via the FA. Going the other direction,

the MN’s response does not have to be tunneled and can be handled using normal

IP routing (assuming the CN is not itself an MN). This creates a situation known as

triangle routing, shown in Figure 2.3.

Triangle routing is often inefficient [15]. Consider, for example, a case where the

MN’s current foreign network is the CN’s network and the MN’s home network is

across the campus in another building. If the CN sends datagrams to the MN, that

traffic will be routed across the campus, only to be tunneled back to the subnet from

whence it originated. This problem is often the focus of routing optimization in newer

mobility protocols, seen in later sections.

Figure 2.3: Triangle Routing
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2.3.2 Mobile IPv6

Due to the exhaustion of IPv4 address space, the IETF introduced IPv6 in RFC

2460 [18]. IPv6 features 128-bit addresses versus IPv4’s 32-bit addresses, allowing

for practically limitless address space. This protocol necessitated its own mobility

solution, known as Mobile IPv6 (MIPv6) [42]. MIPv6 operates similarly to MIPv4,

so this section will focus on the differences between the protocols and the various

extensions which researchers have developed to improve MIPv6.

The idea behind MIPv6 remains the same as that of MIPv4: HAs forward data-

grams to a MN’s CoA to enable mobility. However, MIPv6 makes use of IPv6’s

address configuration protocols, Neighbor Discovery and Address Auto-configuration,

to remove the need for FAs. Rather, MIPv6 uses Access Routers (ARs) to track

MNs. Additionally, MIPv6 features built-in route optimization. MIPv6 also has its

own drawbacks. MNs must send Binding Updates (BUs) every time they move be-

tween ARs, which leads to a significant amount of signaling between devices and

limits the scalability of the protocol.

2.3.2.1 Extensions

Many extensions have been introduced to further improve MIPv6. Hierarchical MIPv6

(HMIPv6) aims to reduce the amount of signaling between MNs, CNs, and HAs [50].

It accomplishes this through the use of Mobility Anchor Points (MAPs). A MAP

acts as a local HA, located using a Regional CoA (RCoA). The MAP then maps

the MN's home address to an On-Link CoA (LCoA), hidden from the rest of the

network. Thus, the MN's HA is only aware of the MAP, which may have multiple

ARs connected to it. As the MN moves between ARs in a single MAP, its HA does

not need to be notified. This way, HMIPv6 localizes signaling from the rest of the

network. Proxy MIPv6 (PMIPv6) offers a similar solution but utilizes Mobile Access
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Gateways (MAGs) for mobility management rather than MAPs [8].

2.4 Software-Defined Networking

Computer networking presents many challenges on both a local and global scale.

Within enterprises, network administrators must translate high-level policies into

low-level commands, a significant task given that the typical network is comprised

of a vast array of devices, each utilizing many different protocols. Globally, internet

ossification, the idea that Internet protocols are so widely used that they can no longer

be realistically changed, presents a monumental challenge to network evolution. This

ossification can be seen in the extremely slow adoption of IPv6. As of 2014, only

12% of allocated prefixes are IPv6 [17]. Software-Defined Networking (SDN) arose in

response to this ossification.

2.4.1 Overview

Traditional packet-switched networks rely on distributed protocols to forward packets;

that is, each switch has a control plane for determining the forwarding of traffic and

a data plane for forwarding traffic out of interfaces. The control plane features data

tables for storing and looking up path information, and the data plane consists of the

underlying hardware interfaces on the switch [20]. Figure 2.4 depicts a traditional

packet-switching network.

15



Figure 2.4: Packet-Switching Network

SDN simplifies network management by decoupling forwarding hardware from

control decisions [39]. A new paradigm for programmable networks, it centralizes

control decisions into software-based controllers, leaving network devices to function

as basic packet forwarding hardware. Figure 2.5 shows the same packet-switching

network, now deployed using the SDN architecture.

Figure 2.5: Packet-Switching Network with SDN

This decoupling means that the distribution model of the control plane no longer

needs to match the distribution model of the data plane. This results in greater control

over packet switching throughout the network. By centralizing the control plane to a
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remote controller, SDNs provide the network operator flexibility to experiment with

new protocols and alter network policy. See the Related Work chapter for modern

examples of SDN deployments.

2.4.2 History

SDN has emerged as a popular buzzword for programmable networks in recent years.

However, when considering the history of programmable networks, it becomes clear

that SDN is the result of the natural evolution of programmable networks over the

last twenty years. This section aims to provide background on the development of

programmable networks leading to the rise of SDN. In doing so, it details the ideas

at the core of the SDN paradigm and the design decisions that molded its evolution.

Before the advent of programmable networks, networks were proprietary. A net-

work was composed of switches, routers, and other middleboxes (such as load bal-

ancers and firewalls), each making control decisions with proprietary software and

forwarding packets out of proprietary interfaces. In such a closed network, control is

distributed across devices. These devices operate on the protocol level and need to

be configured via configuration interfaces by a network administrator. Thus, these

networks were complex and resistant to innovation [52].

2.4.2.1 Clean Slate Approach to Networking

The explosion of the Internet in the 1990s led to the rise of more complicated network

applications and stoked researchers' interest in network development. However, inno-

vation at the protocol level involved the slow process of testing and standardization

through the Internet Engineering Task Force (IETF). Frustration with this process,

combined with reducing costs of computing, gave rise to research into clean slate ap-

proaches to networking, where the focus was rethinking network architecture rather
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than improving the existing Internet [52].

One of these approaches was active networking (AN), which proposed viewing

network nodes much the same way as programmable computers, where an application

programming interface (API) provides access to underlying resources like CPUs and

queues. Thus executable programs could be deployed dynamically into network nodes.

In the mid-1990s, funding from the U.S. Defense Advanced Research Projects Agency

(DARPA) created the Architectural Framework for Active Networks, which defined a

unified vocabulary and framework for active networking research collaboration [13].

This minimal framework was intentionally general in order to allow researchers to

work independently and experiment with new paradigms. The framework accommo-

dated two predominant active network programming models at the time: the capsule

model and the programmable router model. In the capsule model, programs to be

executed by network nodes are carried in-band inside data packets. Alternately, in

the programmable router model, programs are defined by an external mechanism and

carried out-of-band [22].

Researchers realized several potential benefits to these approaches. With pro-

grammable nodes, service providers could potentially alter network behavior and

deploy new services much faster than in traditional networks. Similarly, researchers

could experiment with new features without disrupting normal network service. AN

also had the potential to allow network administrators to create and deploy services

in reaction to current network conditions [9].

While AN offered a new paradigm to accelerate network innovation, AN solutions

never saw large-scale deployment due to their inability to provide exciting solutions

to urgent problems [12]. However, AN research did generate several enduring ideas

which informed future work, including SDN. AN advocated the idea of programmable

networks as a solution to stagnate network innovation. While AN focused mostly on
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data-plane programmability, SDN focuses on control-plane programmability. Regard-

less, AN first recognized the need for separating normal and experimental traffic on

production networks, a principal which pervades modern SDN literature.

2.4.2.2 ForCES and RCP

As the Internet developed in the 1990s, link speeds increased to accommodate larger

volumes of traffic, particularly in network cores. To meet this need for speed, vendors

began implementing the data plane of network devices entirely in hardware while the

control plane remained software. As this traffic increase continued into the 2000s,

demand for network performance, reliability, and traffic engineering (TE) grew as

well. The difficulty in ensuring these qualities using conventional routing protocols

led to innovation.

One of these innovations came in the form of Forwarding and Control Element

Separation (ForCES). Introduced in RFC 3746, ForCES defines a framework and

protocol for standardizing information exchange between the control and data planes

of networking devices [56]. Standardizing this communication allows the control and

data planes to be physically separate in a network. ForCES intended to allow vendors

to develop data and control plane devices independently, speeding up innovation [55].
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Figure 2.6: ForCES Router with Separate Blades

To this end, ForCES supports two forms of separation: blade level and box level.

At blade level separation, ForCES replaces communication between proprietary inter-

faces of the control and data planes in a single box. Figure 2.6 above illustrates one

such configuration in a router with two control blades and multiple forwarding planes.

At box level, control and data planes can exist in physically separate boxes but form

a single networking element. Figure 2.7 shows a single ForCES router composed of

four separate boxes.

Figure 2.7: ForCES Router with Separate Boxes

20



Another innovation came via the Routing Control Platform (RCP) [11], which col-

lects information about external network destinations and internal network topology

and chooses Border Gateway Protocol (BGP) routes for the routers in an Autonomous

System (AS). The significant innovation here is the introduction of a logically-centered

control plane. This control plane utilizes a complete view of the AS topology to install

BGP routes [20]. Figure 2.8 below shows the simple setup of an RCP AS.

Figure 2.8: AS using RCP

2.4.2.3 Ethane

In the late 2000s, the Ethane project at Stanford University coupled centralized con-

trol with simple, flow-based Ethernet switches, laying the groundwork for modern

SDN [14]. Ethane presents a management architecture for enterprise networks, fea-

turing two main components: the controller and the switch. The controller contains

the policy for routing of all packets throughout the network; Ethane allows no com-

munication between hosts without explicit permission. The controller knows the

network topology and allows packets to navigate the network by installing flows in

the switches.
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The Ethane switch is a dumb device, featuring a flow table and a secure channel

to the controller. When a packet enters the switch, one of two things occurs. If the

packet is in the flow table, the switch forwards the packet according to the controller's

instruction. If the packet is not in the flow table, then the switch forwards the packet

to the controller along with the port on which the packet arrived. The Ethane project

is the base on which OpenFlow, the SDN API used in this thesis, is built.

2.5 OpenFlow

The term SDN emerged in reference to Stanford’s OpenFlow project and is often

used synonymously with OpenFlow to this day; however, the two are not the same.

SDN is a paradigm, and OpenFlow is a widely-used API implementation of that

paradigm. Other implementations exist, notably FlowVisor, POF, and Cisco OpFlex.

Researchers developed OpenFlow as a way to implement experimental protocols on

in-use networks [38].

Since the introduction of OpenFlow 1.0 in 2009, the protocol has seen numerous

updates. While the current version of OpenFlow is 1.5, this work focuses on version

1.3, as newer versions do not yet have widespread support by hardware manufacturers.

This section aims to introduce the overall architecture of OpenFlow and provide and

overview to its operation as it pertains to this work.

2.5.1 OpenFlow Architecture

OpenFlow follows the SDN paradigm: network devices become OpenFlow Switches

(OFSs), controlled by a separate SDN controller. In this way, OpenFlow allows the

controller(s) to dictate the paths of packets across the network. Because all control

plane decisions are made in the controller, OpenFlow provides far more flexibility with

regard to traffic engineering and quality-of-service than routing protocols or access
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control lists [10]. Additionally, OpenFlow frees the network operator from having

to manage proprietary software on vendor switches differently: the controller can

uniformly manage switches from different vendors, assuming they support OpenFlow.

Each OFS contains one or more flow tables, which associate an action with a flow

entry. In this context, a flow is a stream of traffic consisting of many packets. Flow

tables allow the controller to control all flows in the network. Each OFS also has

a secure OpenFlow channel, connecting it to a remote SDN controller. Figure 2.9

above shows the basic OFS architecture.

The secure channel between the controller and an OFS takes the form of a network

connection between an interface on the controller and an interface exported from the

OFS [45]. The channel is typically encrypted through TLS, although it may not be.

The controller utilizes the OpenFlow Protocol (OFP) to communicate with switches

in the network. An OFS acts as a dumb device, simply forwarding flows according to

its flow tables.

Figure 2.9: OpenFlow Architecture
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2.5.2 OpenFlow Channel

The OpenFlow channel is the interface through which the controller connects to the

switch [45]. In most cases, the controller maintains multiple OpenFlow channels, one

for each switch with which the controller is connected. The channel may be in-band

or out-of-band.

The channel connection setup resembles that of a standard TLS or TCP con-

nection. By default, the OpenFlow controller is located on TCP port 6633 or 6653,

depending on the OpenFlow version. If the devices use TLS, then the connection will

be encrypted. Both devices authenticate by exchanging certificates signed by a site-

specific private key. To enable this, the switch must be configured with certificates

to authenticate traffic to and from the controller.

Figure 2.10 below shows the initial connection handshake between the switch and

the controller. The switch knows the IP address of the controller and initiates the con-

nection. Upon connecting, both the controller and the switch send an OFPT HELLO

message. The message contains a header with a version field; this field is set to the

highest OFP versions supported by both devices. The devices negotiate what version

of OFP to use. If this version is supported by both parties, then the connection goes

ahead; otherwise, the connection is terminated.
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Figure 2.10: OpenFlow Connection Setup

After establishing the connection, the controller sends an OFPT FEATURES REQUEST

to the switch, containing only a header. The controller collects the switch's informa-

tion through via the switch's OFPT FEATURES REPLY response. This packet tells

the controller the switch's datapath ID, the number of packets that the switch can

buffer, the number of flow tables supported by the switch, and the capabilities of the

switch.

If at any point the OpenFlow channel connection is lost, then the switch fails into

one of two modes: fail secure mode or fail standalone mode. In fail secure mode, the

switch resumes its operation except that it no longer forwards packets and messages

to the controller. Rather, these packets are dropped instead. In fail standalone mode,

the switch reverts to behaving like a legacy switch and stops using OpenFlow. The
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switch's configuration determines which fail mode it enters.

2.5.3 OpenFlow Protocol

All switch management occurs through this channel via one of three message types:

controller-to-switch, asynchronous, and symmetric. This section provides an incom-

plete survey of the distinctions and uses of these three message types and the scenar-

ios in which they are employed. For a complete treatment, see the official OpenFlow

specification [44].

2.5.3.1 Controller-to-Switch Messages

Controller-to-switch messages provide the controller a means of configuring and up-

dating switches, and they do not always require a response. First, the controller

utilizes these messages to learn about each switch during the initial handshake, seen

in the previous section. After setup, the controller can access and modify the switch

configuration at any time. Notably, this configuration includes how many bytes of

each packet are sent to the controller from the switch as well as how many flow tables

are in the switch.

The controller also uses controller-to-switch messages to modify the state of the

switch. The OFP FLOW MOD message allows the controller to add, remove, and

modify flow entries from a switch's flow tables. See the next section for more infor-

mation on the capabilities of these messages.

The final controller-to-switch message type that this section will detail is the

packet-out message. The controller uses packet-out messages for two purposes: 1) to

create and send new packets out of a given switch port and 2) to forward packet-in

packets out of a specified switch port. The packet-out must contain an action set

telling the switch where to send the packet.
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2.5.3.2 Asynchronous Messages

Unlike controller-to-switch messages, asynchronous message are sent exclusively from

the switch to the controller without any solicitation from the controller. Switches use

these messages to alert the controller of some action, whether that be incoming pack-

ets, switch changes, or errors. Asynchronous messages come in four main varieties:

packet-in, flow-removed, port-status, and error.

The packet-in message allows a switch to yield control of a packet's routing to

the controller. In most cases, this occurs when a packet fails to match any of the

flow entries in the switch's flow tables. The controller uses the packet-in to calculate

where the packet should be sent in the network and sends packet-out messages to

reflect these new paths in the switch's flow tables.

Flow-removed messages tell the controller when a flow has been removed from a

flow table in a switch. These messages are only generated for flows which have a

flag set explicitly indicating this behavior. Port-status messages simply inform the

controller of a change on one of the switch's ports. This includes ports being brought

up or down, whether directly by a user or due to failure. Finally, the switch can

notify the controller of any problems via error messages.

2.5.3.3 Symmetric Messages

Both switches and controllers send symmetric messages, hence their name. Like

asynchronous messages, symmetric messages are sent without solicitation. These

messages come in three flavors, two of which are relevant to this work. The switch

and the controller exchange hello messages during the initial connection setup, shown

back in Figure 2.10. Additionally, echo messages are sent between the two devices to

verify the liveliness of the connection.
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2.5.4 OpenFlow Switches

Vendor switches that support OpenFlow come in two varieties. The first type,

OpenFlow-only switches, handle packets only with the OpenFlow pipeline of flow

tables. The second type are OpenFlow-hybrid switches. These switches process

packets with two possible pipelines: the OpenFlow pipeline and the normal pipeline.

The normal pipeline refers to the normal operation of the vendor switch, whether

that be layer 2 switching or layer 3 routing, etc. This section details the operation of

OFSs and the OpenFlow pipeline.

2.5.4.1 Flow Tables

Every OFS contains at least one flow table containing flow entries. OFP provides

the controller three options for managing these entries in its connected switches,

called OFP Flow Commands (OFPFC). These commands include adding, removing,

and updating flowtable entries; their functions are shown in Table 2.1 below. The

controller can push changes both proactively (before receiving packets) or reactively

(in response to incoming packets).

Table 2.1: OFP Flow Mod Commands

Command Function

ADD Installs a new flow.

MODIFY Modifies all matching flows.

MODIFY STRICT Modifies flows strictly matching wildcards and priority.

DELETE Deletes all matching flows.

DELETE STRICT Deletes flows matching wildcards and priority.

Each flow entry contains match fields, priority, counters, actions to perform on

packets matching the match fields, timeouts, and a cookie. Match fields consist of an
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ingress port, packet header fields, and other data which the flow table uses to match

against packet contents.

The priority field dictates the matching precedence of the flow entry: entries with

higher priorities are matched before those of lesser priorities. In the case of equal

priority entries, the entries are matched in the (potentially arbitrary) order in which

they appear in the table. Counters are updated when packets match flow entries,

recording statistical data on the entries. Each entry has two timeouts, an idle timeout

and a hard timeout, which determine when entries expire. The idle timeout tells the

switch to remove the entry if it does not match a packet for a given duration, and the

hard timeout tells the switch to remove the entry after a given duration regardless

of match activity. Lastly, the cookie is a value chosen and used by the controller to

identify specific flows; this value is not used in processing packets.

2.5.4.2 Matching

As mentioned in the previous section, each flow entry must have a priority assigned

to it. This field is critical, as the table matches entries against the packet based

on priority. A packet may match multiple entries in the table, but only the highest

priority match will be selected. If a packet matches multiple entries of the same

priority, then whichever entry is matched first will be selected. Table 2.2 shows a list

of OpenFlow match fields relevant to this work. For a complete list of match fields,

refer to the OpenFlow specification.
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Table 2.2: OFP Match Fields

Field Bits Description

IN PORT 32 Ingress port; either physical of logical.

ETH DST 48 Ethernet destination MAC.

ETH SRC 48 Ethernet source MAC.

ETH TYPE 16 Ethernet type.

IP PROTO 8 IP protocol number.

IPV4 SRC 32 IPv4 source address.

IPV4 DST 32 IPv4 destination address.

MPLS LABEL 20 Label in the first MPLS header.

Flow entries can also have fully and partially wildcarded fields, meaning that the

entry can match a packet on a near match. Essentially, this tells the flow entry that

certain information in the packet is not necessary to the routing of the packet. This

has multiple benefits. Entire fields in the entry can be ignored, i.e. an entry can

match a packet by IP destination address but not IP source address. On the other

hand, wildcarding allows field matches to be less specific; therefore, a single entry can

match more flows and the size of the flow table is reduced. For example, the IP source

field can be set to a subnet address 192.168.1.0/24 to match all traffic coming from

a specific subnet rather than needing 254 flow entries for every host in the network.

2.5.4.3 Actions

When a packet matches a flow entry, the actions in that entry's action set are applied

to the packet. Actions come in many distinct types, and not all actions must be

supported by all vendor switches. Table 2.3 below shows actions relevant to this

work. Again, the complete list of actions can be found in the OpenFlow specification.
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Table 2.3: OFP Actions

Action Required Description

Drop Yes Not an explicit action, but rather

the default when the action set is

empty.

Output Yes Forwards a packet to the specified

port.

Set-Field No Modify a field in the packet.

Push-Tag/Pop-Tag No Add, modify, or remove a VLAN

or MPLS header.

Change-TTL No Modify IP or MPLS time-to-live

(TTL) field.

A flow entry applies actions to the matched packet in the order in which they

appear in the action list. Each action is immediately applied as it is reached in the

list; that is, only the first action in the list is applied to the original packet and the

results of the actions are cumulative. If the action list contains an output action,

then that action should be the last action in the list. Any actions after the output

action will be ignored.

2.5.4.4 Pipeline

Every OFS processes packets in a pipeline featuring sequentially-numbered flow ta-

bles, each containing multiple flow entries. It is worth noting that an OFS does not

need multiple flow tables: a switch may only have a single flow table. In fact, the

pipeline for single-table switches is greatly simplified. Figure 2.11 below outlines the

pipeline of an OFS with multiple flow tables.
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Figure 2.11: OFS Pipeline

When a packet arrives at the switch, it is directed to the first flow table. The

flow table matches the packet against its flow entries. If a match is found, the flow

entries actions are added to the action set. The entry set is empty when the packet

first enters the switch. Each flow entry also has a set of instructions to perform when

a packet matches. If the instruction set includes a Goto instruction, then the packet

is sent to the flow table specified by the instruction. This continues until either the

packet reaches the switch's last flow table or no more Goto actions occur. At this

point, the action set is executed on the packet. The action set can only contain one

action of a given type.

2.5.4.5 Table-Misses

When a packet does not match any flow entries in the flow table, a table-miss occurs.

Each flow table must support a special flow entry to account for this situation. This

table-miss flow entry has all fields wildcarded and low priority; thus, any other entry

must be matched first. However, this entry behaves as a normal entry in that it may

be added or removed by the controller and it can be set to expire.

When a packet matches only the table-miss entry, one of three actions typically

occurs: the switch sends the packet (or part of the packet) to the controller, the
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switch directs the packet to another flow table, or the switch drops the packet. If the

switch does not have a table-miss flow entry, unmatched packets will be dropped by

default.
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Chapter 3

RELATED WORK

Since the introduction of OpenFlow, numerous tools and controllers have emerged

to facilitate the design of software-driven networks. This chapter first introduces

available SDN controllers and network virtualization tools. It then discusses how

these tools have been employed in several SDN use cases.

3.1 SDN Controllers

The SDN paradigm depends on two components: a software controller and switches.

Many vendors manufacture SDN-enabled switches; however, a suitable controller must

be selected to realize an SDN architecture. In recent years, researchers have developed

several SDN controllers; each has its own defining characteristics [28].

This section provides a brief overview of the architecture and OpenFlow support

of four widely-used controllers: POX, Ryu, Floodlight, and OpenDaylight. All are

modular and support OpenFlow; however, they are written in different languages

and support different versions of OpenFlow [49]. This section is not intended to

provide a thorough technical specification of these controllers. For that, please refer

to each controller's specification documents.

3.1.1 POX

POX [37] is an open source, pure Python SDN controller which evolved out of the

NOX controller (written in C++) [3]. Officially, POX supports only OpenFlow 1.0,

limiting its utility. While POX's Python implementation makes it slower than other

controllers, it also provides the benefits of rapid design and deployment. For this
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reason, POX is often used in research networks but rarely used in production networks

[26].

POX can be deployed on Windows, Linux, and Mac OSes. Immediately after in-

stallation, POX can be run as a Python script with no modification; however, running

POX alone has little functionality. POX provides functionality by running compo-

nents. POX components are event-driven applications defining network behavior,

written in Python using the POX API. The POX API is built around a core object.

When invoked, a component registers with the core, enabling components to commu-

nicate with each other and share resources. These components can parse and forward

incoming packets, create and send OpenFlow messages, and listen to asynchronous

events. POX is a competent OpenFlow controller, but its lack of documentation gives

it a steep learning curve.

3.1.2 Ryu

Like POX, Ryu is component-based and written purely in Python, allowing for agile

development [6]. Ryu supports OpenFlow versions 1.0 through 1.5, and is more ac-

tively updated than POX. It features an expansive collection of libraries and supports

far more protocols than just OpenFlow.

The Ryu architecture is built around the Ryu manager, the main executable

at runtime. Ryu applications are run on top of this manager, which runs a core

process component that handles memory and event management. Ryu provides even

more flexibility than POX by allowing components to be written in other languages.

Overall, Ryu is feature-rich and more recently updated than POX.
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3.1.3 Floodlight

In contrast to POX and Ryu, Floodlight is an Apache-licensed, Java-based controller

for OpenFlow, making it better suited to production networks [4]. Like the controllers

mentioned thus far, Floodlight is both a controller and a collection of applications

built on the controller. The controller contains the logic to interact with and control

an OpenFlow network. The applications, built as Java modules with Floodlight's

REST API, provide user-defined functionality to the network. When running, the

Floodlight controller's applications expose the REST API, allowing any other REST

applications to invoke services. Floodlight is well documented and supports OpenFlow

version 1.0 through 1.4

3.1.4 OpenDaylight

OpenDaylight [5] is the result of a community-led and industry-supported collabo-

ration from the Linux Foundation, started in 2013 to encourage innovation in SDN.

Since its inception, OpenDaylight has seen six releases. The most recent, Carbon,

was released in June 2017. OpenDaylight is widely used in commercial networks

[27], featuring in over 50 vendor services. It is available only on Linux and supports

OpenFlow versions 1.0 through 1.3.

A Model-Driven Service Abstraction Layer (MS-SAL) resides at the core of Open-

Daylight. The SAL processes interactions between network devices and applications,

represented as objects. The SAL also provides a means of data exchange between

the networking devices, represented using the YANG modeling language, a language

which models configuration and state data manipulated by the Network Configura-

tion Protocol (NETCONF). OpenDaylight is modular, providing network flexibility.

It is also multi-protocol, supporting OpenFlow, BFP, OVSDB, and more.
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3.2 Virtualization Tools

Network virtualization provides an abstraction of a network, decoupled from the un-

derlying network hardware. Virtualization does not require SDN, and SDN does not

require virtualization. Rather, SDN enables network virtualization, and virtualiza-

tion facilitates the evaluation of SDNs. This section details two virtualization tools

that are valuable to SDN research: Open vSwitch and Mininet.

3.2.1 Open vSwitch

Prior to switch virtualization, servers required physical connection to hardware-based

switches. The creation of virtual switches removed this requirement, allowing servers

to connect to a software layer rather than a physical switch. This section discusses

Open vSwitch (OVS), a widely used virtual switch [45].

OVS is an open-source, multi-layer software switch that allows the forwarding

functions of a switch to be extended via OpenFlow. While open to programmatic

extension, OVS supports many standard protocols and management interfaces. Pri-

marily written in C, OVS is portable and can be used both as a software switch on

a virtual machine (VM) or as a control stack for switching hardware. These char-

acteristics have led to widespread support for OVS; Table 3.1 below depicts notable

platforms that support OVS.
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Table 3.1: OVS Support

Platform Supported

Operating Systems Linux, Windows, FreeBSD, NetBSD,

ESX

Virtual Machines KVM, VirtualBox, Docker, Xen

Cloud Management OpenStack, openQRM, OpenNebula,

oVirt, CloudStack

The OVS architecture has three main components: ovsdb-server, ovs-vswitchd,

and a kernel module. A database server, the ovsdb-server component monitors and

updates the configuration of the switch. It communicates with a remote controller (of-

ten an OpenFlow controller) via the OBSDB protocol. The ovs-vswitchd component

is a daemon that serves as the data plane of the OVS. This component handles the

core networking functionality of the OVS. Like ovsdb-server, ovs-vswitchd connects

to the remote controller; however, it uses OpenFlow protocol rather than OVSDB.

This channel allows the controller to dictate packet forwarding via the installation of

flow rules in the OVS. It also communicates with the kernel module using netlink.

The kernel module is responsible for the OVS's packet switching. It contains a

cache to speed up the matching of packets to flow entries. When a packet enters

an interface, the kernel module attempts to match it to a cached flow entry. If the

kernel module cannot find a match, the packet is sent to user space. Figure 3.1 below

depicts the three components in the OVS architecture.
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Figure 3.1: OVS Architecture

3.2.2 Mininet

Described as “a network in a laptop”, Mininet provides researchers a means of rapidly

prototyping large and varied network topologies in a single machine [34]. Mininet de-

rives it scalability from its lightweight, OS-level virtualization, making use of processes

and network namespaces (containers for network state). This removes the significant

memory overhead of running each network device as a VM [33]. To illustrate how

Mininet virtualizes a network topology, this section shows both a physical topology

and how that topology is represented on a single machine.
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Figure 3.2: Physical Topology

Figure 3.2 illustrates a network topology featuring two hosts and a switch, man-

aged by an OpenFlow controller; Figure 3.3 shows how Mininet creates that topology.

Each host is a shell process in its own network namespace. Each namespace provides

its shell process exclusive ownership to virtual Ethernet interfaces and routing ta-

bles. A pipe from the core Mininet process mn to each shell process allows Mininet

to communicate with and monitor each host. Mininet utilizes software switches for

packet switching. This topology, for example, employs an OVS to simulate an L2

switch. Mininet represents each link in the topology as a virtual Ethernet (veth)

pair, which acts like a wire between two fully functional interfaces. Lastly, an Open-

Flow controller (either in the machine or remote) updates the flow entries in the OVS

to manage packet switching on the network.
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Figure 3.3: Mininet Implementation of Physical Topology

After running a topology, Mininet provides the user a command line interface

(CLI). The CLI enables users to run commands on hosts, adjust the topology and

run diagnostics. Additionally, Mininet features a programmable Python API, allow-

ing topologies and tests to be created as Python scripts and run directly from the

command line. Overall, Mininet is scalable and portable; its ability to be loaded onto

a VM and run on any Linux machine makes it a valuable tool for SDN researchers.
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3.3 SDN Applications

Given its ability to eliminate the need for middleboxes and provide rapid deployment

of new services, researchers have applied SDN to several networking environments.

This section surveys SDN solutions.

Wide Area Networks are networks across large distances, typically carrying large

amounts of traffic within locations of an organization. Thus, WANs must demonstrate

both high performance and high reliability, avoiding congestion and service outages.

Traditionally, network designers met these requirements using high-end routers pro-

visioned to low average link utilization (30-40%), leading to both wasted resources

and high costs [25]. Software-defined WANs (SD-WANs) address both of these issues

by providing unified network management to simpler hardware.

Google's B4 SD-WAN exemplifies the benefits of SDN in WANs [25]. B4 is a

private WAN that connects all of Google's data centers around the globe. As one

might assume, this network has significant bandwidth demands. Using OpenFlow

and simple routers built from merchant silicon, B4 allows Google's WAN to operate

at near 100% utilization via traffic engineering. Importantly, B4 employs a hybrid

approach, supporting both existing protocols and new traffic engineering services.

The research shows that B4 succeeds in maximizing link utilization; however, it also

shows that bottlenecks in control-plane to data-plane communication pose a challenge

to SDN deployments.

In recent years, researchers have applied the SDN paradigm to the problems of

IP mobility [35] [29] [54] [36] [46] [53]. This research has taken the form of both SDN

implementations of existing protocols and entirely new protocols built using SDN.

In [35], Lee et al. surmise that existing approaches to IP mobility are not easily

applied to real network topologies due to the difficulty in updating numerous dif-
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ferent network devices. They proposed a PMIPv6 implementation over SDN using

OpenFlow, and concluded that the proposed approach circumvents the limitations

of non-SDN approaches. Similarly, Kim et al. implemented an OpenFlow-based

PMIPv6 architecture and found that the SDN approach provided a more flexible

PMIPv6 solution [29].

More recently, researchers have been creating their own SDN-based mobility pro-

tocols. In [54], Wang and Bi propose a new mobility protocol employing OpenFlow

switches with the POX controller. They provide both simulated and practical val-

idation, suggesting that their implementation has advantages over existing work in

route efficiency and handoff time.
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Chapter 4

DESIGN

College campus networks are a special use case of enterprise networks, sometimes

called campus area networks (CANs). Multiple interconnected local area networks

(LANs), limited to a specific geographical location (a campus), comprise a CAN.

This area includes all of the campus's buildings, whether administrative, academic,

athletic, etc. The CAN links LANs throughout the buildings of a campus. This

work classifies Cal Poly's campus network as a CAN and treats the Cal Poly CAN as

representative of a typical CAN.

Unlike many WANs or datacenter networks, CANs feature the unique challenge

of accounting for many different hosts moving throughout the campus, roaming from

one LAN to another as they go. This mobility is due to the widespread use of mobile

computers and cellphones by faculty and students. Both groups have similar data

needs: support for video and music streaming, phone calls over IP, and messaging

services, etc. While moving between IP subnets on campus, these services will be

disrupted if hosts need to obtain new IP addresses. Thus, the need for IP mobility

on the CAN is clear.

Cal Poly's CAN is built from networking devices, such as legacy switches and

routers, middleboxes, etc. that are not configured for mobility. The standard option

would be to employ mobile IP (MIP) on the CAN, but this creates several problems.

Triangle routing poses the problem of inefficient routing and wasted bandwidth, and

slow handoffs may result from MIPs two-stage handoff process. MIP extensions have

been proposed to solve these problems, but they require specialized modifications to

the protocol stacks of network devices [15]. This requirement is not ideal in the CAN

due to the variety of vendor devices on the network.
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Due to its improved control over network resources, SDN can be applied to solve

the mobility problems in CANs. This work proposes an OpenFlow-based Software-

Defined Mobile CAN (SD-MCAN) architecture with inherent mobility support. By

enforcing mobility policy from a centralized controller, SD-MCAN eliminates rout-

ing inefficiencies and minimizes handoff latency. Additionally, the utilization of SDN

removes the administrative hassle of managing proprietary software across differ-

ent vendor devices. This section begins with a discussion of the motivation and

design considerations informing the development of SD-MCAN. It then details the

SD-MCAN architecture and routing scheme.

4.1 Design Considerations

Four design considerations shape the design of the proposed SD-MCAN architecture:

1) compatibility, 2) route efficiency, 3) handoff latency, and 4) scalability. This sec-

tion introduces these considerations and the problems that motivate them, providing

rational for the design decisions detailed in the next section.

4.1.1 Compatibility

As institutions of learning, colleges are impacted by budgetary restrictions; their net-

works are as well. Thus, any proposed networking solution must be cost-effective.

Like all CANs, Cal Poly's network is composed of many different LANs connected

through a central mesh of routers. This physical topology is built from switches

and routers spread throughout the buildings on campus and interconnected by both

fiber-optic and copper links. These devices are incorporated into the campus infras-

tructure; thus, any SDN system requiring modification to the pre-existing physical

topology would be both expensive to implement and disruptive to the network's nor-

mal operation.
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Another consideration is the number of different protocols currently in use on the

CAN. The proposed solution enables mobility between the many LANs on campus;

however, it must also be compatible with any layer 2, layer 3, and layer 4 protocols

currently in use. The system's operation must be fully compatible with existing

networking protocols so as to not disrupt operation within the connected LANs. In

this way, the mobility solution is transparent.

In summary, for any SDN-based routing solution to be deployable on CANs, it

must:

1. be cost-effective

2. be readily deployable over the existing topology

3. support existing protocols

4.1.2 Route Efficiency

The efficiency of assigned routes must also be considered in the design of any mobility

system. If the system does not optimize the routes given to mobile host flows, then

packets could end up routed across far more physical distance than necessary. This

inefficiency results in increased latency for mobile hosts on the network and increased

network congestion.

MIP's triangle routing problem, described in Chapter 2, provides a perfect ex-

ample of how inefficient routing could exist on Cal Poly's CAN. Suppose a student

first connects to the campus network at one end of campus, making that first hop

router her home agent. The student then walks to her next class in a building on the

other side of campus, where she tries to send a file to her friend using File Transfer

Protocol (FTP). Supposing her friend's home network is in that same building, the

file must travel all the way across campus to the first student's home agent and be
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tunneled back to the classroom in order to send a file between students that may well

be sitting a few feet away from each other.

4.1.3 Handoff Latency

CANs host many different services over IP traffic, including video streaming, music

streaming, and VoIP. While low-bandwidth applications are resilient to short disrup-

tions in IP connectivity, the aforementioned high-bandwidth services require more

reliable connections, otherwise connection interruptions become apparent to the end

user. The aim of any mobility system should be to provide low-latency handoffs so

that an end user does not notice an interruption in service even if they are moving

between LANs. Ensuring fast handoffs requires both efficient routing and avoiding

congestion at the SDN controller. Congestion at controller interfaces results in in-

creased handoff latency as it increases the time required to install new flows for a

mobile host; thus, the presented design intends to achieve fast handoffs via minimiz-

ing controller congestion.

4.1.4 Scalability

As previous sections have detailed, an OpenFlow-based SDN architecture has two

components: a controller and switches. The controller manages routing by installing

flow entries into the flow tables of the connected switches. This leads to several

problems when the network scales. In regard to CANs, the limiting factor is the

number of hosts in the network. The campus topology is stable: it will not change

save for a new switch installed every once in a while. Thus, topology changes will

never overload the controller. However, as the number of connected (and mobile) hosts

increases, so does the number of required flows in each switch and the demand on the

controller. If the controller becomes overloaded with packet-ins from the switches,
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then performance will suffer significantly. Colleges often have thousands students on

campus; a mobility system must scale with host demand.

Therefore, to scale to the required number of hosts, a mobility system must:

1. minimize congestion at controller interfaces

2. quickly install new flow rules

3. limit the number of flow entries in switches

4.2 Architecture

With the design requirements specified, this section details how the design of SD-

MCAN satisfies these requirements. This section begins with an overview of the

proposed SD-MCAN architecture. It then details the function of the architecture's

components and how they communicate with each other. Finally, it discusses the

policies dictating how traffic is routed throughout the network.

4.2.1 Assumptions

In pursuit of simplicity, several assumptions are made in the examples presented

in this section. The examples assume that the CAN only supports IPv4 traffic.

Additionally, the hosts used in the examples represent a single interface on a host;

this representation is useful for depicting host movement. These assumptions apply

only to the presented examples: they are not enforced in the system design. The

system can easily support both IPv4 and IPv6, as well as multiple interfaces per

host.
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4.2.2 Overview

SD-MCAN is an SDN-based system, built on OpenFlow, that replaces the core of

a campus network. The SD-MCAN topology maps directly to the existing topology

of the underlying CAN, and the system requires little modification to existing net-

working devices. A server is added to the core of the network; this server runs the

OpenFlow controller that manages the network. The network devices at and near the

core of the CAN become OpenFlow switches via software updates to vendor hardware.

Outside of the core, nothing changes for the LANs on the existing network. From

the view of the LANs, and all the hosts on them, SD-MCAN behaves exactly like the

current legacy routers; the key difference is that SD-MCAN supports IP mobility.

Devices at the core of the network are assigned either the role of Edge Router

(ER) or Core Router (CR). CRs form a complete mesh at the center of the network;

they do not connect directly to the LANs. Rather, their purpose is to route IP traffic

between the ERs based on MPLS labels, essentially forming an MPLS tunnel across

the network core. ERs connect the core mesh to the LANs. The ERs serve two

purposes: pushing MPLS labels onto ingress traffic and popping them off of outgress

traffic.

When a packet enters the network, the LAN of the destination host is determined

and a label is added to the packet in the form of an MPLS header. The controller

labels traffic according to the destination host's current location in the network. If a

host is found to be mobile, the controller updates the host's current LAN: the routing

process does not differentiate between static and mobile hosts.
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Figure 4.1: Network Architecture

Figure 4.1 illustrates the overall architecture of SD-MCAN. It must be noted that

ERs and CRs do not need a one-to-one ratio, nor does each ER need to connect only

to a single LAN. The core can have an arbitrary number of switches, and multiple

LANs can connect to a single ER. In this sense, both ERs and CRs can be linked like

legacy routers.

4.2.3 Components

The SD-MCAN OpenFlow controller manages the flow of traffic in the network using

complementary components. The controller contains three modules, each providing

its own functionality: a Topology Tracker (TT), a DHCP Server (DS), and a Route

Manager (RM). The TT interacts with OpenFlow to deliver a complete view of the

50



status of the OpenFlow switches and the location of hosts in the network. The DS

behaves like a standard DHCP server, allocating IP addresses to hosts across all of

the network's LANs; however, it features the added functionality of managing mobile

hosts on the network. Finally, the RM leverages information provided by the other

modules to install flow rules to the switches on the network. Figure 4.2 below shows

the components of the OpenFLow controller at the heart of SD-MCAN. This section

covers each component in detail.

Figure 4.2: Controller Architecture

4.2.3.1 Topology Tracker

TT is responsible for storing and updating the controller's knowledge of the net-

work topology. This component uses information provided by OpenFlow to create a

graphical representation of the switch topology, where switches are nodes and links

are edges. These edges also contain information about which switch ports are used

in the link.
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OpenFlow makes tracking switch locations and links straightforward by provid-

ing the controller topology updates via three events : Connection Up (CU) events,

Connection Down (CD) events, and Port Status (PS) events. Figure 4.3 shows how

network information reaches TT via events. When an OpenFlow switch completes

its initial connection to the controller, the controller raises a CU event. TT hears the

event and obtains the switch's datapath identifier (DPID) and connection interface.

Figure 4.3: TT Topology Update Process

Each switch has a DPID to uniquely identify it to the controller and a connection

interface out of which the controller can communicate with the switch. TT takes

this information and stores it as a node in the network graph. After registering the

switch, TT immediately installs two flow entries into the switch's flow table. A table-

miss entry specifies that the switch should send unmatched packets to the controller,

and a special ARP-based entry allows TT to check the liveliness of hosts (more on

this below). Inversely, when a switch disconnects from the controller, TT uses the

resulting CD event to remove the switch's node from the network graph. When a

switch-to-switch (SS) link is added to the network, OpenFlow registers a PS up event
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containing the link switch and port information. Using this information, TT adds a

new edge to the graph. Similarly, when a link goes down, OpenFlow registers a PS

down event, and TT removes the edge from its graph.

OpenFlow provides detailed information about the status of switch-to-switch links

and ports; however, it provides no default support for locating hosts. TT leverages

OpenFlow Packet-In (PI) events to track the location of hosts around the network.

When a packet fails to match any flows entries in a switch, the switch forwards that

packet to the controller as a packet-in. OpenFlow then raises a PI event; by listening

for PI events with a high priority, TT receives the packets first as they enter the

controller.

Upon receiving the packet-in, TT first parses the packet's Ethernet header. TT

looks at the packet's source MAC address to determine the source host. If TT does

not have an entry for this host in its topology graph, it creates an entry for the new

host. This entry contains the host's MAC address and the DPID of the ER to which

the host is connected. If TT already has an entry for the host, TT checks whether

the host has moved by looking at the ER at which the PI arrived. If the new ER

does not match the ER in the host's entry, then TT updates the host's entry with

the host's new location.

After discovering or updating the host, TT parses the packet's next header. If

this next header is an IP header and contains a DHCP packet, then TT forwards the

packet to the DS component. Otherwise, TT forwards the packet to the RM. Figure

4.4 below shows the flow of this process.
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Figure 4.4: Topology Tracker Packet-In Processing

While switches automatically send liveliness updates to the controller over OFP,

the controller must manually check host liveliness. Monitoring host liveliness prevents

the system from unnecessary re-learning of host information while also removing

unneeded host entries in memory. This results in a more stable network graph at

the cost of a slight overhead. TT check host liveliness by periodically sending ARP

requests to known hosts via packet-out messages from their connected ERs; these

ARP requests contain a special address as the MAC source in their ARP header.
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When a host responds with an ARP reply with the special address as the destination

MAC, the ER sends the response directly to the controller, matching a special flow

entry installed when the switch first connects to the controller. Figure 4.5 shows

the match and action fields of this flow entry. At this point, TT updates the host's

liveliness information. If a host fails to respond for a given host liveliness interval,

then TT marks the host as expired and removes the host from the network graph.

Figure 4.5: Topology Tracker ARP Flow Entry

TT provides one final service to SD-MCAN: it monitors the stability of the net-

work. The network is considered stable if no new switches have joined the network and

no new SS links have been added to the network in a given period of time, called the

stability interval. When the controller starts up, it handles all of the switch CU events

and PS events for the currently connected devices. Once these switches have stopped

joining the network, TT will alert the DHCP server that the topology is stable. The

addition of host-switch links does not impact the stability of the network.

4.2.3.2 DHCP Server

When TT knows the network topology to be stable, the DS component initializes. The

DS component largely behaves like a typical DHCP server, allocating IP addresses to

hosts on the network from an address pool; however, DS also discovers mobile hosts.

Like TT, DS installs a flow entry into ER flow tables as soon as they connect to the

controller, seen in Figure 4.6. This entry ensures that all DHCP traffic goes to the
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controller. In this way, ERs function as DHCP relays in SD-MCAN, allowing DS to

serve IP addresses to all LANs on the network.

Figure 4.6: DHCP Flow Entry

A host cannot send packets over IP without a valid IP address. Therefore, each

host must broadcast DHCP discovery packets to obtain a valid IP address upon

connecting to an SD-MCAN ER. As mentioned in the previous section, TT receives

these packets and, upon identifying them as DHCP packets, forwards them to DS. DS

allocates an IP address from the IP address pool and creates DHCP packets, which

OpenFlow then forwards to the ER as a packet-out. The ER then communicates with

the host and completes the DHCP lease process. Figure 4.7 depicts this initial lease

process in SD-MCAN.

Additionally, DS keeps a mapping from each host interface to its IP address. When

a host migrates to a new LAN, it sends a new DHCP discovery. When DS receives

this packet, it recognizes that the host currently has another IP address leased to it

from another LAN's address pool. To prevent allocating the host interface multiple

addresses, DS marks the interface as mobile and extends its current lease. This

provides SD-MCAN a key benefit over existing mobility approaches: SD-MCAN does

not require multiple addresses per host interface.
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Figure 4.7: DHCP Server Packet Flow

Figure 4.8 illustrates how DS processes incoming DHCP packets. Through this

behavior, DS enables SD-MCAN to make better use of its address space by preventing

interfaces from holding multiple addresses across LANs. Anytime DS issues a DHCP

lease, it notifies TT of the interface's IP address change.

Like a typical DHCP server, DS periodically checks for lease expiration. DS stores

information about each IP lease in a lease table, including the duration of the lease

and when it will expire. If DS finds an expired entry, it adds the expired IP address

back into the address pool. If the IP address belonged to a mobile host interface,

then DS unmarks the interface as mobile.
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Figure 4.8: DHCP Server Packet-In Proccessing

When a host attempts to send IP traffic to a destination outside its LAN, it

will send the traffic to its default gateway. Typically, a host's default gateway is

the router interface to which the LAN is directly connected. In SD-MCAN, the

OpenFlow switches responsible for routing packets through the core network do not

have interface-specific IP addresses. Rather, DS assigns each LAN-facing ER interface

a fakeway IP address. When a host leases an IP address from DS, the resulting DHCP

lease packet contains information about the host's default gateway IP address: DS

inserts the fakeway address here. When a host ARPs for its default gateway, an ER

receives the ARP packets and respond with a designated dummy MAC address. In

this way, SD-MCAN simulates normal router operation.
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4.2.3.3 Route Manager

The RM utilizes a complete view of the network, provided by TT and DS, to man-

age all packet routing on SD-MCAN. RM implements hybrid, label-switched routing,

similar to MPLS. In fact, RM uses MPLS tagging to enable label-switching on the

network; however, whereas MPLS routers exchange label information using a dis-

tributed routing protocol (LDP or RSVP-TE), RM centrally manages the labeling of

all routes on the SD-MCAN network.

As mentioned earlier, the OpenFlow switches on the network function as either

CRs or ERs. RM utilizes a hybrid routing scheme: the controller updates CR flow

entries proactively and ER flow entries reactively. ERs provide two functions: they

push labels onto ingress traffic and they pop labels off of outgress traffic. Like a normal

MPLS network, the hosts on SD-MCAN never encounter labeled traffic; labels are

only used within the core network. Once TT determines that the network is in a

stable state, RM analyzes the core mesh of CRs and assigns a link-local label to each

core link. Each label represents part of a unidirectional path to a specific destination

LAN.

When a packet from a new flow enters an ER, it will match only the default flow

entry, so the ER sends a packet-in message to the SD-MCAN controller via OpenFlow.

TT receives the packet and performs any host identification it needs before passing

the packet to RM. RM first verifies that the packet's destination MAC address is

either the designated default gateway dummy MAC address or a valid host before

ensuring that the packet is an IP packet. After verifying the packet, RM queries TT

and DS to obtain the current location of the destination IP host on the network. If

RM finds the host on the network, RM looks up the correct label for the packet and

the MAC address of the destination host (if the ingress packet was addresses to the

gateway dummy MAC). RM then creates and installs a flow entry for the packet flow
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into the ERs flow table.

ERs contain two types of flow entries: push entries and pop entries. Push entries

match on three fields. They match the destination MAC address, EtherType, and

destination IP address fields. The destination MAC address should be either a host

MAC (in the case that the destination host's home LAN is the same as the source host)

or the dummy default address MAC. The EtherType will be IP, and the destination IP

address will be the IP address of the destination host. All other fields are wildcarded.

Figure 4.9 below shows the match fields and actions of a push flow entry.

Figure 4.9: Push Flow Entry

A push flow entry also contains four actions in its action list. In the case where the

incoming packet's destination MAC is the dummy default gateway MAC, the entry

rewrites the destination MAC address to the actual MAC address of the destination

host. In this way, SD-MCAN simulates legacy router behavior. Next, the flow entry

pushes the appropriate label onto the packet as an MPLS tag. RM determines this

label by looking up the source host's next hop ER interface and the current LAN

of the destination host. Then, the IP TTL is decremented. Finally, the flow entry

forwards the modified packet out the appropriate core-facing interface. Push flow

entries are not permanent; they expire if no packet matches the entry after a specified

idle timeout. This way, unused flows are quickly removed from flow tables, decreasing

the size of the flow tables.
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ERs also contain pop flow entries. Pop entries are simpler than push entries,

and the ER contains less of them. Pop entries match two fields: EtherType and

MPLS label. EtherType is once again IP, and the label corresponds to one of the

ERs connected LANs; all other fields are wildcarded. The label lets the ER know

out of which interface to forward the packet. The pop flow entry holds four actions

as well. It pops the MPLS label off of the packet before decrementing the IP TTL,

rewriting the Ethernet checksum, and forwarding the packet out the interface facing

the destination LAN, signified by the label. Figure 4.10 shows a pop flow entry. Like

push entries, pop entries expire if not used.

Figure 4.10: Pop Flow Entry

CRs also contain flow entries; however, CR flow tables are not updated nearly as

often as ER flow tables. While an ER updates its flow table with every new flow

it sees, CRs only receive flow table updates when a new LAN joins the network.

Importantly, this limits the load on the SD-MCAN controller because the controller

rarely sends or receives packets with the CRs. When TT finds the topology to be

stable, RM creates a unique label for each CR-to-CR link for each destination LAN.

RM then installs all of the required flow table entries at once into the CRs. CRs

route packets entirely based on the labels pushed by ERs. Figure 4.11 below shows

the format of a CR flow entry. These flow entries do not have idle timeouts like ER

flow entries.
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Figure 4.11: CR Flow Entry

Figure 4.12 below outlines an algorithm by which RM could install CR flow entries.

The purpose of CR flow entries is to route packets between all LANs on the network

using only label-switching. To this end, this algorithm computes the shortest path

between every pair of LANs using Dijkstra's algorithm. The routing metric used is

implementation-specific, allowing for potential traffic engineering. For each pair of

switches along the path toward a LAN, a unidirectional label is allocated. If a label

already exists for that link-LAN pair, then the algorithm simply retrieves that label.

Each flow entry has two defining fields: an ingress label to match against packets

and an outgress label to add to the packet before forwarding it along the path. The

ingress label is simply the label assigned to the previous link in the path, and the

outgress label is the label to be applied to a packet before sending it to the next link

along the path. The algorithm does not install flow entries into the first or last switch

along the path: this is because these switches are ERs.
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Figure 4.12: CR Flow Entry Algorithm

When a CR receives a packet flow, the CR checks only the label on the packet.

Due to the pre-installed flows, the CR automatically knows what label to place on

the packet and out of which port to forward the packet in order to route it to the

proper LAN. This approach to flow table management offers multiple benefits. First,

this approach prevents CRs from ever sending packet-in messages to the controller,

lessening demand on the controller and alleviating congestion. This also makes packet

routing in the core much faster because flow misses will never occur (save for link

malfunctions) and the flows will always take the efficient paths to their destination

LANs.

Additionally, label-switching in the core allows the core to scale well. OpenFlow-

enabled vendor switches have limits to how large of flow tables they can support.

Typically, a switch can support more L2 flows than L3 flows, as L3 flows require

more memory. By employing label-switching at the core, SD-CAN allows CR flow

tables to occupy less memory in the underlying switch hardware, providing space for
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more flows. Finally, using L2 flow entries allows the core to route packets faster, as

switches can match packets against L2 flows faster than they can L3 flows. Figure

4.13 shows an example of a flow routed across the SD-MCAN core, while Table 4.1

shows the contents of packet header fields at each hop.

Table 4.1: Flow Packet Fields per Hop

Hop DST MAC MPLS Tag

1 f0:00:00:00:56:b1 None

2 9e:3b:d5:f1:d8:3d 16

3 9e:3b:d5:f1:d8:3d 17

4 9e:3b:d5:f1:d8:3d 18

5 9e:3b:d5:f1:d8:3d None

Figure 4.13: Label-switched Flow
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4.2.4 Routing

With the core SD-MCAN components established, this section illustrates how SD-

MCAN routes traffic flows across the network. The section presents several routing

examples, on simple topologies, featuring both static and mobile hosts. The examples

detail how SD-MCAN handles communication setup between hosts and the migration

of mobile hosts around the network.

4.2.4.1 Connection Establishment

Figure 4.14: Communication Establishment between H1 and H2

Figure 4.14 depicts the establishment of a TCP session between two hosts, H1 and H2,

on LAN1 and LAN2 respectively. The figure presumes that both hosts already leased

an IP address from the controller, and therefore the controller knows the location of

both hosts. H1 starts the session by sending the first TCP SYN packet to its first-hop

switch ER1. The packet does not match any flow entries in ER1, so ER1 forwards
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the packet to the controller as a packet-in. The controller sees that the packet is

destined for H2, which is on LAN2. Thus, the controller updates ER1's flow table

with an entry that matches packets addressed to H2 and pushes an MPLS label onto

those packets signifying that the packet should be routed to LAN2. The controller

also updates ER2's flow table with an entry that matches the LAN2 MPLS label.

When a packet matches that label, ER2 pops the label and forwards the packet out

the LAN2-facing interface.

After adding the two flow entries to ER1 and ER2, ER1 pushes an MPLS label

onto the packets and forwards the TCP stream toward the network core. The CRs

route the flow to ER2 using pre-installed flow entries, and ER2 pops the MPLS label

off the stream before forwarding the stream to LAN2.

4.2.4.2 Host Migration

Figure 4.15: H2 LAN Migration
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Figure 4.15 illustrates SD-MCAN behavior when H2 moves from LAN2 to LAN3

during the same TCP session. When H2 connects to LAN3, it sends out a new

DHCP discovery packet to retrieve an IP address on the new network. ER3, now

the closest switch to H2, receives the packet and forwards it to the controller. The

controller recognizes H2 and leases H2 the same IP address it had on LAN2 (Note:

had the lease on H2's LAN2 IP address expired, H2 would be leased a new LAN3

address). The controller then updates H2's entry to reflect its new location on LAN3

before sending flow removal packet-out messages to all ERs, removing any push flow

entries for H2.

Meanwhile, H1 continues to send TCP packets to H2 during H2's migration to

LAN3. The controller removes the push flow entry in ER1, so ER1 sends the next

ingress flow packet to the controller, which repeats the connection establishment pro-

cess with the knowledge that H2 now resides on LAN3. The connection suffers mini-

mal interruption (on the order of milliseconds), requiring minor TCP retransmission

as the controller adds flow entries in ER1 and ER3.

These examples illustrate how SD-MCAN routes IP flows and supports mobility

in the network by tracking the location of hosts. The presented routing approach

offers several benefits. By pre-installing CR label-switched flow entries, the controller

ensures that every route takes the shortest path between LANs without having to

compute shortest paths during handoffs, reducing handoff latency. The utilization of

label-switched routing results in smaller core flow tables, faster flow-table lookups,

and lower memory requirements on switch hardware. Additionally, aggressive flow

removal during mobility handoffs prevents ER flow tables from being temporarily

bloated during mobility handoffs.
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Chapter 5

IMPLEMENTATION

Several SDN technologies exist with which SD-MCAN may be implemented. The

selection of an appropriate implementation depends on multiple factors, including

compatibility with available networking hardware and ease of prototyping. This chap-

ter discusses the rationale behind the currently deployed SD-MCAN prototype. The

selected implementation allows for rapid prototyping via compatible virtualization

tools while also being well-suited to the networking hardware available at Cal Poly.

5.1 Controller

SD-MCAN is an OpenFlow-based SDN solution; thus, an OpenFlow controller must

be used in its implementation. Chapter 3 introduced four established controllers, all of

which were considered for use in this implementation. However, this implementation

is built on the POX controller for several reasons. While POX's documentation is

minimal, the fact that it's written purely in Python and provides an accessible API

makes it incredibly well-suited for rapid prototyping. POX's modular design also

makes it well-suited to SD-MCAN's component-based architecture.

One goal of this thesis is to deploy an SD-MCAN prototype on a physical testbed

on Cal Poly's campus; thus, the selected OpenFlow controller must be supported by

the available switches. As the only networking lab on campus, Cal Poly's Cisco Net-

working Lab provides the physical testbed on which this work evaluates SD-MCAN.

The lab is fitted with Cisco Catalyst 3850 series switches; these switches support

OpenFlow versions 1.0 and 1.3. The documentation explicitly lists POX as a sup-

ported controller; thus this prototype is developed using POX.
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POX does have its limitations. The latest official release of POX supports only

OpenFlow 1.0; this limits its utility as several newer features of OpenFlow are not

supported. Notably for SD-MCAN, OpenFlow 1.0 does not support MPLS tagging.

This prototype implements label-switching using VLAN tagging instead. While this

disables VLAN support in the presented test networks, it also provides an appropriate

estimation of the performance of MPLS tagging in a production SD-MCAN network.

As both MPLS and VLAN sit near layer 2, OpenFlow switches process their flow

rules at analogous speeds. Additionally, the presented prototype does not feature

other newer OpenFLow features like the TTL decrement and Ethernet checksum

rewrite actions.

Figure 5.1: POX Controller with SD-MCAN

With this drawback, it may appear as though the POX controller is not well-suited

to an SD-MCAN prototype; however, the OpenFlow restrictions on the available
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networking hardware prevent a fully-functioning SD-MCAN from being implemented

on hardware regardless of controller selection. While the Catalyst 3850 switches

support OpenFlow 1.3, they only support a subset of OpenFlow 1.3 functionality;

this subset excludes MPLS tagging. Therefore, selecting an OpenFlow 1.3-compatible

controller, such as OpenDaylight, would necessitate the development of a second

controller prototype for hardware testing. With two different prototypes, comparing

simulated and practical performance would be difficult. Therefore, the presented

prototype uses POX as it allows for comparable testing on simulated and hardware

testbeds.

Figure 5.1 above depicts the POX implementation of the prototype SD-MCAN

controller. The main POX executable, pox.py resides at the heart of the controller

and contains the POX core object. POX's default OpenFlow library enables OFP on

the controller. The SD-MCAN prototype utilizes the Discovery module of the POX

OpenFlow library to track links on the network; this module uses specially-crafted

Link Layer Discovery Protocol (LLDP) packets [32] to discover the topology.

The three components of SD-MCAN are implemented as Python applications,

written using the POX API, which run on top of the POX core object. All three

components register with the core object, as does the OpenFlow library; registering

allows the components to communicate with each other. The SD-MCAN components

communicate with the OpenFlow library to send and receive OpenFlow messages,

enabling communication with OpenFlow switches as well as the retrieval of topology

information via OFP. The dhcp server and topology tracker components exchange

information via POX events, and the route manager component accesses resources

from the other SD-MCAN components through the POX core. For this implementa-

tion, the route manager installs the CR flow entries using only hop-count as a routing

metric for the shortest path algorithm. This is simple and should be improved in

production-ready implementations.
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The code for this SD-MCAN prototype is available on GitHub. The current ver-

sion supports only IPv4 networking and a single interface per host, but the controller

could easily be extended to support IPv6 and multiple interfaces. Thus, the proto-

type is only evaluated on IPv4 traffic in this work. ER flow entry idle timeouts are

set at 15 seconds; this value is chosen because it allows the controller to limit flow

table sizes. Additionally, host idle timeout is set at 30 seconds. These values are low

to allow aggressive flow and host table management. The values could be increased

to decrease the amount of controller messages needed at the cost of accuracy.

5.2 Simulation

The SD-MCAN prototype is first evaluated on a virtual network. The network is run

as a Mininet instance on a single laptop, the specifications of which can be seen in

Table 5.1 below. Mininet utilizes Open vSwitches as switches on the network, while

processes with unique networking namespaces simulate hosts on the network. Table

5.2 shows which versions of these tools are used.

Table 5.1: Laptop System Specification

Operating System CPU Clock Memory

Ubuntu 16.04 LTS Intel Core

i7-3520M

2.90 GHz 12 GB DDR3 RAM

Table 5.2: Network Virtualization Software

Network Switch Controller

Mininet 2.2.1 Open vSwitch 2.5.2 POX 0.5.0
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5.3 Hardware Testbed

SD-MCAN's architecture enables rapid deployment on vendor switches with need for

only minimum switch firmware updates. To evaluate the SD-MCAN prototype on

vendor switches, a testbed of Cisco Catalyst 3850 series switches, each running iOS

3.07, is set up in Cal Poly's networks lab. 1 Gbps copper Ethernet links connect the

switches. To enable OpenFlow support, the Cisco Plug-in for OpenFlow version 2.0.7

is installed on the switches via an OVA package. This plug-in runs in a virtual service

container on the switch OS.

After installing the package, the virtual service is installed and enabled. OpenFlow

is configured on each switch to use OpenFlow Protocol version 1.0 and connect to

a remote controller using IPv4; each switch connects to the controller out-of-band

via a dedicated interface. Additionally, specific ports on each switch are designated

OpenFlow ports, allowing OpenFlow traffic to be isolated. On edge switches, the

default flow table miss behavior is set to forward packets to the controller, while

core switches are configured to drop unmatched packets. This prevents unnecessary

packet-in messages to the controller during handoffs.

With the plug-in enabled and configured, the switches support all OpenFlow 1.0

functionality; however, the switches have several notable restrictions. The Catalyst

3850 supports only 1000 L2 flows and 500 L3 flows. Additionally, the maximum

sustained rate of flow programming can not exceed 40 flows per second and the rate

of packet-in messages sent to the controller cannot exceed 300 packets per second.

Unfortunately, through testing, the plug-in is found not to support certain action

combinations that the SD-MCAN prototype requires. VLAN tag rewriting is found

to not work at all. As a work around, the IP Type-of-Service (ToS) byte of the IP

header is used to store the desired label. For the IPv4 datagrams the prototype will be
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routing, the IP ToS value can be assumed to be zero when entering the network. Thus,

this value is used as the ”no label” value. The available ToS values are extremely

limited due to the format of the ToS bits. The first six bits of ToS define the DiffServ

Code Points (DSCP), while the least significant two bits are reserved for Explicit

Congestion Notification (ECN). OpenFlow only uses the DSCP bits of ToS, so the

only valid non-zero values are shown in Table 5.3 below. This label pool is extremely

limited compared to the 4 byte MPLS label field in the MPLS header.

Table 5.3: Valid Non-Zero ToS Values

32 40 48 56 64 72 80

88 96 104 112 120 128 136

144 152 160 184 192 224

However, the switches are then found to be unable to process the rewriting of both

Ethernet addresses and IP ToS bits. Cisco was contacted and confirmed the limitation

and that the plugin is no longer in development. Cisco will replace the plug-in with

a new package to be released in the future. This discovery proves disappointing as

it leaves SD-MCAN unable to be evaluated in full on the testbed; however, a work-

around is found to allow basic testing on the testbed. As a hack, Ethernet destination

address rewriting is removed from flow rules. Thus, limited CR and ER flow entries

are employed on the Cisco switches, seen in Figures 5.2, 5.3, and 5.4 below.

Figure 5.2: Limited ER Push Flow Entry
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Figure 5.3: Limited ER Pop Flow Entry

Figure 5.4: Limited CR Flow Entry

This hack allows only testing of UDP traffic on the physical testbed, whereas the

simulated testbed allows for both TCP and UDP. This is because the lack of Ethernet

destination MAC change causes the receiving host to drop the packets. While the

physical testbed is limited it still allows observations to be made about SD-MCAN's

potential on vendor hardware.
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Chapter 6

VALIDATION

With the theoretical benefits of SD-MCAN established, this chapter examines the

practical performance of the implemented SD-MCAN controller prototype. Perfor-

mance is evaluated through four sets of experiments; the first three experiments utilize

a Mininet virtual network with Open vSwitches, and the final experiment is conducted

on the Cisco hardware testbed. Experiment set A confirms the completeness of the

proposed prototype. Experiment set B focuses on evaluating the handoff performance

of the controller, and experiment set C analyzes switch and controller load at scale.

Finally, experiment set D shows how the system performs on vendor hardware.

6.1 Experiment Set A - Completeness

Before testing the performance of the SD-MCAN prototype, its operation must be

verified. This experiment set contains two experiments to ensure that the SD-MCAN

prototype behaves as expected in regard to DHCP functionality and flow table man-

agement. For this experiment set, a simple three-LAN topology is constructed on

Mininet, shown in Figure 6.1. The topology features 6 switches, 3 core and 3 edge,

with all switches connected by 1 Gbps links with 1 ms delay. LAN1 hosts subnet

192.168.0.0/24 and attaches to the network via S4. LAN2 and LAN3 host subnets

192.168.1.0/24 and 192.168.2.0/24 at S5 and S6, respectively. The POX controller,

running the SD-MCAN application, resides on the loopback interface on port 6633.
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Figure 6.1: Experiment Set A Mininet Topology

For the first experiment, 253 hosts are connected on each LAN; this is the maxi-

mum number of hosts supported on each subnet due to the network address, broadcast

address, and fakeway address. IPv6 and multicast are disabled on the hosts. After

connecting, each host runs dhclient to lease an IPv4 address from the controller, then

the ifconfig command is used to verify the proper IP configuration. After connecting

all hosts, a 254th host attempts to connect to each LAN, and the controller confirms

that the leases are declined as no address space remains. Finally, all hosts are dis-

connected from the network, and the controller confirms that the expired leases are

added back in to the controller's address pool.

The next experiment features 2 hosts, H1 and H2. H1 connects to S4, and H2

connects to H2 to S5; both connect via a 100 Mbps link with 1 ms delay. After

connecting the hosts, dhclient and ifconfig are run to obtain and verify an IP address
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on each host. Next, H1 sends 2 ping packets to H2, verifying the connection between

the two. The connectivity indicates that the controller properly installs all needed flow

entries. To verify this, the ovs-ofctl dump-flows command is run for each switch in the

network. ofctl is a command line tool for monitoring and administering OpenFlow

switches; the dump-flows command prints out the contents of a given switch's flow

table. Figure 6.2 shows the printouts for the edge switches S4, S5, and S6; the

complete flow table printouts from this experiment can be found in Appendix A.

Figure 6.2: Edge Switch Flow Tables Static

The printouts verify that each switch has special flow entries for handling ARP,

DHCP, and LLDP packets (used by POX's OpenFlow component). Additionally, S4

has a push rule for H1 and a pop rule for H2, while S5 has a push rule for H2 and a

pop rule for H1. Since S6 sees no traffic, its flow table contains only the three special

entries. This matches the expected controller behavior.

After verifying the flows, H2 is moved from LAN2 on S4 to LAN3 S5, and the

process is repeated a second time. Once again, dhclient and ifconfig are run on H2 to

verify that the controller leased H2 its LAN2 IP address. H1 is made to ping H2, and

the flow tables are dumped again. Figure 6.3 shows the edge switch flow tables after

H2 goes mobile. The flow tables reflect H2's new location, as S6 now contains a push

entry for H1 and a pop entry for H2 while S4's push entry for H2 has been updated.
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This scenario demonstrates that the SD-MCAN prototype controller handles mobile

hosts as defined in the design.

Figure 6.3: Edge Switch Flow Tables Mobile

6.2 Experiment Set B - Handoff Performance

This experiment set evaluates the handoff performance of the SD-MCAN controller

prototype on a virtual network through two different experiments. The methodology

is significantly inspired by research conducted by Wang and Bi [54]. To begin, a multi-

LAN topology is constructed in Mininet based on the real CAN at Cal Poly. The

network consists of a core mesh of 5 switches. Each core switch connects to a single

edge switch, and each edge switch is connected to a single LAN. No virtual switches

comprise each LAN; instead, hosts are connected directly to the edge switches to

simulate a LAN connection. In total, the topology features 10 switches and 14 links;

each link is assigned 1 Gbps bandwidth and 1 ms delay to simulate real network

conditions. Figure 6.4 below shows the topology. As Mininet does not support in-

band messaging between controller and switch, all communication between the two

occurs out-of-band through the loopback interface on port 6633.
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Figure 6.4: Experiment Set B Mininet Topology

In these experiments, 2 hosts are connected to the network. Once again, IPv6

and multicast are disabled on the hosts. H1 remains static, always attached to LAN1

via S6, while H2 moves around the topology acting as a mobile host. Each host is

attached to an edge switch with a 100 Mbps bandwidth, 1 ms delay link. This limits

each host's bandwidth to prevent the network from exceeding the total available

bandwidth on the underlying laptop hardware.

The experiments employ Iperf, a widely-used network testing tool, to generate

both TCP and UDP traffic between the hosts. The stationary host H1 acts as the

Iperf server, while the mobile host H2 acts as the client. During each experiment, Iperf

monitors and records TCP and UDP metrics, revealing how H2's movement impacts
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the network's performance. Additionally, ubiquitous packet-sniffing tool Wireshark

is used to analyze metrics that Iperf does not detail.

In the first experiment, Iperf is run with both TCP and UDP between H1 and

H2 for 60 seconds. During this time, H1 remains stationary at S6. Meanwhile, H2

walks clockwise around the LANs on the path [S7, S8, S9, S10, S6, S7, S8, S9, S10,

S6, S7, S8], making one handoff every five seconds. At each new point of connection,

dhclient is run on H2 to force it to ask for a new DHCP lease. Figures 6.5, 6.6, and

6.7 show plots of the TCP throughput, UDP packet loss and jitter of the 11 handoffs,

collected by Iperf during each 1 second interval.

Figure 6.5: TCP Throughput

Throughput is the amount of data transmitted over a give period of time. The

throughput graph shows that each handoff degrades end-to-end performance and that

the degradation varies in severity from between 20% and 50%. While the degradation
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is significant, it is also transient; the TCP transmission recovers within one second.

Figure 6.6: UDP Packet Loss

Looking at UDP, a connectionless transmission protocol, allows each handoff's

impact on packet loss to be seen. The plot indicates that each handoff results in a

3-6% packet loss. As with the TCP throughput drop, this packet loss is transient

and recovers quickly. The packet loss is due to the brief interval in which the edge

switch flow tables have not been updated. Iperf also reveals the jitter, the variation

in delay of received packets, between the hosts. As this metric only considers received

packets, the impact of each handoff on the UDP jitter is slight (always under 1 ms).
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Figure 6.7: UDP Jitter

During the Iperf walk experiment, Wireshark sniffs packets on port 1 of S6. An-

alyzing the resulting packet trace allows for a closer look at TCP behavior during

the 11 handoffs. Figure 6.8 shows the round-trip-times (RTTs) for the TCP stream,

while Figure 6.9 shows the progression of sequence numbers. The RTT graph reveals

a significant spike in RTT during each handoff, although the impact varies between

handoffs from just over 45 ms to almost 270 ms. The sequence plot shows that the

TCP stream remains relatively smooth despite the handoffs.

82



Figure 6.8: Walk TCP RTT

Figure 6.9: Walk TCP Sequence Numbers

To understand the performance degredation during handoffs, specific handoffs are

examined more closely. Handoffs 1 and 11 are chosen, as they experience the most

severe and least severe impact on RTT, respectively. Figure 6.10 depicts the RTT of

TCP packets during handoff 1. Packets are lost during the handoff when the edge

switch flow tables have not yet been updated. After the updates, there is a brief
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period of high RTTs due to data retransmission.

The TCP sequence plot for handoff 1, shown in Figure 6.11, reveals further in-

formation. Notably, the plot indicates a period of 460 ms between the connection

interruption and connection resumption. Near the end of the 460 ms interruption, a

packet-in arrives to resume the connection at H2's new location. This can be seen on

the plot by the two isolated packets. The following spike in sequence numbers shows

duplicate ACKs before fast retransmission allows the TCP stream to recover.

Figure 6.10: Handoff 1 TCP RTT

Figure 6.11: Handoff 1 TCP Sequence Numbers

Figures 6.12 and 6.13 depict the RTT and sequence numbers for handoff 11. These
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plots match the plots for handoff 1, with the only difference being the duration of the

delay. This delay ranges from 250 to 460 ms, durations which may be unacceptable

for high-data applications like video streaming. Interestingly, the sequence number

plots suggest that the majority of the disruption time may not be due to the SD-

MCAN functionality but rather the delay in moving H2 on Mininet and deficiencies

in POX's implementation of OpenFlow.

Figure 6.12: Handoff 11 TCP RTT

Figure 6.13: Handoff 11 TCP Sequence Numbers

To analyze the actual TCP stream disruption due only to SD-MCAN, Wireshark

also sniffs on the loopback interface. This allows controller traffic to be investigated.
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The controller packets are divided into two distinct periods, designated A and B.

Handoff period A is calculated by subtracting the time when the first OpenFlow

port status message is transmitted from the time when the controller recognizes H2's

new location; this is the period during which Mininet moves the virtual host and

POX's OpenFlow implementation discovers the topology change. Handoff period B

is calculated by subtracting the time at which the controller receives the first packet-

in from the moved H2 from the time when the last flow table modification is sent

out. This period represents the time take for SD-MCAN to process the handoff and

update all relevant flow tables.

Figure 6.14: Handoff Time

Figure 6.14 shows the time taken by both periods during each of the 11 handoffs.

While the total TCP interruption time ranges from 250 to 460 ms, the time taken by

SD-MCAN to process the handoffs ranges only from 60 to 90 ms. Figure 6.15 and

Table 6.1 provide a better picture of how much of the total handoff time is occupied

by handoff periods A and B. The data shows that handoff period A accounts for

around 74-87% of the handoff time. The result reveals that the majority of the TCP

disruption is not due to SD-MCAN, but rather to Mininet and POX. This suggests

that a production-quality version of SD-MCAN, using a Java or C-based controller,
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would have handoff latencies appropriate even for demanding applications.

Figure 6.15: Handoff Time

Table 6.1: Percentage of Handoff Spent in Each Handoff Period

Handoff % Period A % Period B

1 86.79 13.21

2 79.55 20.45

3 81.82 18.18

4 80.56 19.44

5 80.00 20.00

6 74.29 25.71

7 78.38 21.62

8 81.25 18.75

9 78.13 21.88

10 78.95 21.05

11 80.65 19.35
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In the previous experiment, the mobility interval is fixed at 5 seconds. While

this provides a clear look at the performance impact of each handoff, it gives no

information about how the frequency of handoffs impacts the overall performance

of an end-to-end connection on the network. In the next experiment, H2 is walked

around the LANs for 60 seconds again, but the mobility interval is varied from 5

seconds down to 1 second.

Figures 6.16 and 6.17 show the average packet loss and average TCP throughput of

the H1-H2 connection at different mobility intervals. As one might predict, through-

put increases with the mobility interval while packet loss drops. Notably, these plots

show that significant performance degradation only occurs at short intervals which

are unlikely to occur in a practical setting. Regardless of likelihood, the data proves

that SD-MCAN supports handoffs over short intervals at a performance cost.

Figure 6.16: Average TCP Throughput vs. Mobility Interval
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Figure 6.17: Average UDP Packet Loss vs. Mobility Interval

6.3 Experiment Set C - Scalability

This experiment set evaluates the prototype SD-MCAN implementation at a signifi-

cantly larger scale. The first experiment analyzes the traffic load on the controller in

a larger network of mobile hosts, while the second examines the impact of the system

on the size of flow tables in the network. The same topology from experiment set B

is employed here with one significant change. The original 10 switches remain con-

trolled by a POX controller running the SD-MCAN application on port 6633, but an

additional 5 switches are added on each edge to form each LAN; these new switches

are connected to a second POX controller on port 6634. The second POX controller

runs a built-in application that simulates the behavior of a legacy L2 switch on each

switch. Figure 6.18 shows this topology, which now contains 35 switches and 39 links.
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Figure 6.18: Experiment Set C Mininet Topology

In the first experiment, 100 hosts are connected to the network via a 1 Mbps/1

ms delay link, each host on a randomly selected LAN. Low bandwidth links are

used to prevent the simulation from exceeding the maximum available throughput

on the underlying hardware. After connecting, each host runs dhclient to lease an

IP address before sending ICMP packets to an available host (if one exists) using

the ping utility. After all 100 hosts connect to the network, each host is moved to a

randomly selected new location on the network. As Mininet does not handle multi-

threading well, each host is moved one at a time. As with experiment set B, the hosts

are moved according to a specified mobility interval. As the hosts become mobile,

Wireshark sniffs the loopback interface on port 6633 (the location of the SD-MCAN

controller). The Wireshark capture provides information about both the input and

output load on the controller. Figure 6.19 plots the controller input load (in packet-
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ins per second) for each given mobility interval, while Figure 6.20 plots the output

load (in flow modifications per second).

Figure 6.19: Packet-in Rate

Figure 6.20: Flow Mod Rate

The first data point allows the hosts to move as fast as Mininet will allow; from

91



the previous experiment set this value is known to be around 10 ms. After that, hosts

are added at intervals of 1 to 5 seconds. Both plots show that the mobility interval

contributes little to the controller load if the interval exceeds 1 second. This trend

suggests that the mobility handoffs only cause heavy load on the controller when

many hosts move in a short time period (less than 1 second); otherwise, the handoffs

are unlikely to cause congestion on the controller.

In Figure 6.19, the packet-in rate changes only slightly as the mobility interval

increases; this indicates that the dominant source of controller packet-ins is not mo-

bility handoffs but something else. To investigate this, the packet-ins from each run

are analyzed in the Wireshark captures. As expected, packet-ins come from 4 sources:

Link-layer Discovery Protocol (LLDP) packets used by POX's OpenFlow module to

track the topology, DHCP packets sent to the controller when each hosts connects to

a new point in the network, ARP packets used when hosts ARP hosts on other LANs

or by the controller to check host liveliness, and flow table misses during handoffs.

Figure 6.21 shows the packet-ins per second at each mobility interval broken down

by type. The graph shows that as the mobility interval gets longer (over 1 second),

the volume of LLDP and ARP packet-ins dominates the total load on the controller.

This indicates that improving the efficiency of how POX's OpenFlow module gathers

topology data could lead to significant decreases in controller load. Furthermore,

decreasing the host liveliness timeout in the SD-MCAN application would also lead

to less load, albeit at the cost of accuracy.
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Figure 6.21: Packet-in Rate by Type

While the first experiment of this experiment set looked at controller load, the

next experiment focuses on how the number of hosts on a network influences the size

of the flow tables in the network's switches. The setup of this experiment resembles

that of the last test. After loading the topology in Mininet, a new host is connected

to a randomly selected LAN every second. After connecting each host, dhclient is run

to lease an IP address. The connected host then pings another host on the network,

selected at random, using the ping utility. This process continues until 1024 hosts

have been connected to the network. After adding each host, a script is executed that

processes the ovs-ofctl dumpflows command output to count the number of flows in

all flow tables in the SD-MCAN switches. Figure 6.22 below shows a plot of the

average number of flow table entries in both core and edge switches connected to the

SD-MCAN controller given varying numbers of connected hosts.

93



Figure 6.22: Flow Table Sizes

As expected, the number of flow entries in the core, label-switching switches re-

mains constant regardless of the number of hosts on the network. This is because the

core flow tables are updated proactively when the network topology stabilizes; host

activity has no impact. Conversely, edge flow table entries are installed reactively in

response to host activity on the network. The plot shows that edge flow tables scale

linearly with the number of connected hosts. Clearly, the size of the edge switch flow

tables limits the scalability of SD-MCAN; however, this is unavoidable as the label-

pushing edge flow rules must rewrite the destination MAC addresses of the incoming

packets. For SD-MCAN to be production-ready, the network must have hardware

that supports large enough flow tables for the expected number of hosts.
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6.4 Experiment Set D - Physical Testbed

This experiment set contains a single experiment, designed to confirm the transiency

of handoff performance impact on vendor switches. To begin, a simple three-LAN

topology is constructed, shown in Figure 6.23 below. Details of the switch configu-

rations can be found in the Implementation chapter. In total, the topology features

6 switches and 8 links, each supporting 1 Gbps bandwidth; the switches connect to

the controller out-of-band on a dedicated subnet. Two hosts, H1 and H2, connect to

the network at switches S4 and S5, respectively. Both the hosts and the controller

run Ubuntu 16.04 LTS and connect to the network via 1 Gbps interfaces. IPv6 and

multicast are disabled on the host interfaces. H1 remains static, always attached to

LAN1 via S4, while H2 moves around the topology acting as a mobile host.

Figure 6.23: Physical Testbed Topology

As with experiment set B, this experiment set employs Iperf to generate UDP
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traffic between the hosts. The stationary host H1 acts as the Iperf server, while the

mobile host H2 acts as the client; Iperf monitors and records UDP packet loss and

jitter, revealing how H2's movement impacts the network's performance. To establish

a performance baseline on the physical testbed, Iperf is run between the two hosts

for 60 seconds, during which time both hosts remain stationary. Figure 6.24 depicts

the UDP packet loss, and Figure 6.25 shows the UDP jitter.

Figure 6.24: Physical Testbed Baseline UDP Packet Loss

Between the hosts, the packet loss is minimal, ranging between 0 and .2%. On

the same connection, jitter ranges from .01 to .04 ms. These values are well below

Cisco's acceptable packet loss and jitter thresholds and can be attributed to minor

congestion on the host NICs. Figure 6.26 shows the Iperf connection summary, as

reported by the client, H2. Iperf achieves 814 Mbps bandwidth between the hosts

with a total packet loss of .097%.
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Figure 6.25: Physical Testbed Baseline UDP Jitter

Figure 6.26: Physical Testbed Baseline UDP Summary

With a baseline established, the experiment is run a again. This time, H2 walks

around the topology, visiting each LAN before returning to its original LAN (making

a total of 3 handoffs). Figure 6.27 shows the new UDP packet loss, while Figure

6.28 shows the new jitter. The packet loss plot shows significant spikes around each

handoff (81% to 89% loss). At first glance, this appears significantly higher than the

packet loss in experiment set B's simulated tests; however this discrepancy is due to

the time taken to disconnect and reconnect H2 around the physical network. Iperf

shows that each handoff takes about 3 seconds before the flow of packets resumes, at

which point Iperf reports substantial loss. The jitter plot shows that the inter-LAN
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handoffs make no impact on jitter; this is because Iperf's jitter reporting only factors

in successfully transmitted packets.

Figure 6.27: Physical Testbed Walk UDP Packet Loss

Figure 6.28: Pysical Testbed Walk UDP Jitter

Importantly, the graphs show that, as with the simulated tests, the performance

degradation due to each handoff is transient, and the connection recovers quickly.

The high packet loss reported after 3 seconds suggests that the speed at which a host

passes between LANs will have significant impact on SD-MCAN's ability to provide

fast handoffs; this observation comes as no surprise. TCP performance of SD-MCAN
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on the physical testbed cannot yet be determined because the flow actions have to

be restricted to prevent conflicts on the Cisco switches, causing TCP packets to be

dropped by the receiving host network stack. Such tests will be possible once Cisco

releases new OpenFlow software for the available Catalyst switches. While this test

is limited, it functions as a proof-of-concept that SD-MCAN is deployable on vendor

hardware, given the vendor properly supports the necessary OpenFlow components.
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Chapter 7

FUTURE WORK

This thesis focuses on defining and validating the core functionality of the SD-MCAN

architecture: providing IP mobility to CANs with support for fast handoffs. With

that functionality verified, several areas of improvement remain before SD-MCAN

is ready for production deployment. This thesis identifies two areas in which future

research can refine the presented architecture: controller and security. This chapter

provides insight on these areas of future research in the continued development of

SD-MCAN into a production-ready architecture.

7.1 Controller Placement

The proposed SD-MCAN architecture employs a single controller at the network

core. In [23], Heller et al. conclude that a single controller is adequate in many SDN

scenarios. Indeed, experimental data from this work shows that a single controller

is enough to handle all traffic in the target CAN topology. Regardless, controller

placement in the SD-MCAN architecture is worth further investigation that this thesis

chooses to defer to future work.

Additional research is required to determine if different controller placement in SD-

MCAN would improve the reliability of the system. In [24], Hu et al. compare several

controller placement selection algorithms. They find that, for certain topologies,

placing both too few and too many controllers degrades performance. Future work

on SD-MCAN should define metrics for evaluating the impact of controller placement

on the network performance.
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7.2 Security and Accessibility

SDN proves advantageous in many network scenarios, as this work has shown in

CANs. While SDN can provide additional security benefits, it may also create new

vulnerabilities [48]. Thus, a thorough investigation of the security implications of

SD-MCAN is warranted before deployment. This section outlines potential security

concerns and paths for research.

In its current iteration, SD-MCAN's only security comes throug the use of Trans-

port Layer Security (TLS) in the secure channel between the controller and the

switches. Unfortunately, the actual utilization of TLS depends on vendor support;

TLS may not be used at all if the underlying switches do not support it. In [7], Benton

et al. perform an analysis of the security vulnerabilities of OpenFlow. They find that

widespread failure in TLS adoption leaves OpenFlow vulnerable to man-in-the-middle

attacks. Without TLS, any OpenFlow-based system has no way of verifying that flow

tables accurately enforce the controller's policy. A simple fix to this is to ensure that

all switches and controllers on a production implementation of SD-MCAN implement

TLS; however, this may come at a cost to network operators.

Benton et al. also recognize the denial-of-service (DOS) risks inherent in Open-

Flow. The centralization of the controller provides benefits in respect to network

management and control; however, centralized control, coupled with network pro-

grammability, also leads to increased risk of DOS attacks. Malicious users could

overload the controller and flood switch flow tables with bogus flow entries. Benton's

study recommends the use of multiple controllers with careful rule design to lessen

the risk.

In [31], Kreutz et al. identify several threats to the security of SDN systems. They

discuss forged traffic flows, switch vulnerabilities, attacks on control plane commu-
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nication, and controller vulnerabilities as possible sources of failure in SDN systems.

In response, they present what they call a secure and dependable SDN platform,

advocating replication with diverse controllers. Additionally, they advocate writing

self-healing mechanisms into controllers. A production SDN deployment should be

robust and resistant to attack. As of this work, SD-MCAN has yet to implement

these features. Future work should analyze the relevance of these potential security

flaws to SD-MCAN and propose secure solutions.
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Chapter 8

CONCLUSION

The types of devices, and the applications that those devices run, on college campuses

indicate a clear need for mobility on campus area networks. Existing approaches like

mobile IP provide mobility at the cost of inefficient routing and significant hardware

updates. With the rise of SDN, decoupling control and data planes emerges as a valid

solution to the mobility problem in CANs.

This work first identified four key design considerations which a successful SDN-

based CAN mobility system must satisfy: compatibility, route efficiency, handoff

latency, and scalability. Compatibility is a critical factor in making an SDN system

deployable on a real CAN. As colleges have limited funding and may not be able to

make significant changes to there preexisting networks, any SDN deployment should

be deployable over the existing topology to ensure a cost-effective system. Route

efficiency is necessary in ensuring that bandwidth is not wasted across the network

and that users do not suffer high latency on their traffic flows. Users on CANs are

often mobile; therefore any mobility solution needs to support fast handoffs, allowing

users to migrate LANs without noticeable service disruptions. Finally, the SDN

system should scale to satisfy the needs of the campus.

After specifying these requirements, this work proposed SD-MCAN, an OpenFlow-

based architecture for enabling mobility in the CAN. Additionally, a POX-based

SD-MCAN prototype was implemented to evaluate the performance of the proposed

architecture. The system design allows for deployment on vendor switches with only

two minor changes to the existing network. First, a controller must be added to

the network, and second, the existing network devices must be updated to support

OpenFlow if they do not already. Additionally, SD-MCAN mimics the behavior of
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legacy routers, ensuring compatibility with existing protocols.

SD-MCAN utilizes a hybrid, label-switched routing scheme to provide both route

efficiency and fast handoffs. At the network core, the controller proactively installs

all core router flow entries as soon as the topology stabilizes. These core flow entries

ensure that all inter-LAN packets are routed along optimal paths. Alternately, SD-

MCAN reactively installs push and pop flow entries into edge routers in response to

network packets. Coupled with aggressive flow removal, this reactive routing allows

the controller to quickly update network paths for mobile hosts. Furthermore, short

flow entry idle expiration times ensure that unused flows are quickly deleted, helping

to limit the size of flow tables.

Experimental results show that the SD-MCAN prototype suffers only transient

performance degradation (around 400 ms performance degradation) during host hand-

offs. The prototype handles host migration with minimal performance impact, packet

loss <2% and throughput degradation <15%, when hosts move constantly at inter-

vals greater than two seconds. The prototype also handles constant movement at

shorter intervals, albeit with more significant performance impact (3.5% packet loss

and 21% throughput degradation). While the SD-MCAN prototype is limited due

to its Python implementation, analysis shows that a production quality SD-MCAN

deployment is capable of handling host handoffs with <90 ms of negative performance

impact, as, on average, 80% of the handoff period can be attributed to the time it

takes to move the host and reconnect to the network. This suggests that SD-MCAN

could support data-intensive services on mobile host devices.

Large scale experimentation shows that SD-MCAN's label-switched routing scheme

keeps core router flow tables small (average 11 entries for 1024 mobile hosts); how-

ever, edge router flow tables scale more linearly with the number of hosts (average

362 entries for 1024 mobile hosts), limiting SD-MCAN's deployability on network

104



devices with restricted flow table sizes. While edge flow tables can grow large, exper-

imental results show that the load on the controller remains reasonable (<21 packets

per second with a host moving every 10 ms); thus, the presented SD-MCAN design

is feasible on networks with devices containing adequately sized flow tables given the

number of hosts on the network.

Finally, UDP tests on a physical testbed of Cisco switches in Cal Poly's networks

lab show that the SD-MCAN suffers only transient performance degradation due to

handoffs on vendor hardware. While the available hardware limits the prototype,

the results suggest that a full-featured, production version of SD-MCAN is deploy-

able on vendor hardware with proper OpenFlow support. Ultimately, SD-MCAN

succeeds in meeting the identified criteria for IP mobility on CANs, suggesting that

SDN's centralized network control is well-suited to the mobility needs of college area

networks.
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APPENDIX: EXPERIMENT A2 FLOW TABLE PRINTOUTS

Figure A.1: Experiment A2 Flow Tables 1
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Figure A.2: Experiment A2 Flow Tables 2
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