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Abstract 
Purpose – The purpose of this paper is to present a dynamic model to measure the degree of system’s 
leanness under dynamic demand conditions using a novel integrated metric. 
Design/methodology/approach – The multi-stage production system model is based on a system 
dynamics approach. The leanness level is measured using a new developed integrated metric that 
combines efficiency, WIP performance as well as service level. The analysis includes design of experiment 
technique at the initial analysis to examine the most significant parameters impacting the leanness score 
and then followed by examining different dynamic demand scenarios. Two scenarios were examined: one 
focussed low demand variation with various means (testing the impact of demand volumes) while the 
second focussed on high demand variation with constant means (testing the impact of demand variability). 
Findings – Results using the data from a real case study indicated that given the model parameters, 
demand rate has the highest impact on leanness score dynamics. The next phase of the analysis thus 
focussed on investigating the effect of demand dynamics on the leanness score. The analysis highlighted 
the different effects of demand variability and volumes on the leanness score and its different components 
leading to various demand and production management recommendations in this dynamic environment. 
Research limitations/implications – The presented lean management policies and 
recommendations are verified within the scope of similar systems to the considered company in 
terms of manufacturing settings and demand environment. Further research will be carried to extend 
the dynamic model to other dynamic manufacturing and service settings. 
Practical implications – The developed metric can be used not only to assess the leanness level of the 
systems which is very critical to lean practitioners but also can be used to track lean implementation 
progress. In addition, the presented analysis outlined various demand management as well as lean 
implementation policies that can improve the system leanness level and overall performance. 
Originality/value – The presented research develops a novel integrated metric and adds to the few 
literature on dynamic analysis of lean systems. Furthermore, the conducted analysis revealed some new 
aspects in understanding the relation between demand (variability and volume) and the leanness level of 
the systems. This will aid lean practitioners to set better demand and production management policies in 
today’s dynamic environment as well as take better decisions concerning lean technology investments. 
Keywords Lean manufacturing, Manufacturing management, Demand management 
Paper type Research paper 

Nomenclature 
AOUT(t) actual output at time t CTi(t) cycle time at time t for station i 
AQL acceptable quality level D(t) number of defects at time t 
B(t) backlog level at time t DD(t) delivery delay at time t 
B0(t) initial backlog at time t DR(t) demand rate at time t 
COT(t) changeover time at time t DSR(t) desired shipment rate at time t 
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DT delay time (due to quality) 
FGI(t) finished goods inventory at time t 
FOR(t) filled order rate at time t 
FR(t) finishing rate at time t 
IT(t) inspection time at time t 
LS(t) leanness score at time t 
MA(t) machine availability at time t 
MOPT(t) minimum order processing time 

at time t 
MSR(t) maximum shipment rate at time t 
NAT net available time 
NOT(t) net operating time at time t 
OEE(t) overall equipment effectiveness 

at time t 
OSL(t) overall service level at time t 
OWE(t) overall WIP efficiency at time t 
PDT planned downtime 
PE(t) performance efficiency at time t 
PIR(t) production input rate at time t 

PRi(t) 

QC(t) 
QCOR(t) 

QCSR(t) 
QR(t) 
QS(t) 
SPT 
SR(t) 
TDD 
TGWIP(t) 
THCT 
THOUT(t) 
TWIP(t) 
UPDT(t) 
WIPi(t) 

production rate at time t for 
station i 
quality control level at time t 
quality control output rate at 
time t 
quality control start rate at time t 
quality rate at time t 
quality signal at time t 
scheduled production time 
shipment rate at time t 
target delivery delay 
target WIP at time t 
theoretical cycle time 
theoretical output at time t 
total WIP at time t 
unplanned downtime at time t 
WIP level at time t for station i 

1. Introduction 
Due to global competition and market dynamics, companies all over the world are 
under tremendous pressure to reduce their costs and increase their service level. There 
are many tools and strategies that manufacturing organizations can implement to 
achieve these goals. Lean manufacturing is one of the strategies that was implemented 
by many companies in their effort to attain the shortest cycle time and reduce costs by 
eliminating different wastes in their systems. The success of companies that adopted 
lean principles has increased the interest toward lean manufacturing. The companies 
and organizations that are in other areas such as the service industry and the 
healthcare sector are also applying lean principles to reduce their cost and improve 
their systems. Although many companies are interested in lean and trying to 
implement lean tools, the percentage of companies that have a successful lean initiative 
is not very high. According to Christopher (2000), lean works best in high volume, low 
variety and predictable environments. However, reality reveals that today’s 
manufacturing settings are faced with different dynamics and uncertainties than 
these ideal conditions. An example of such uncertainty is the customer demand. 
Demand dynamics is a critical parameter in today’s environment to sustain customer 
satisfaction and keep competitive edge for firms. Minor fluctuations in demand at the 
end-user or the retail level cause high variation in demand for upstream point in the 
supply chain. This is referred to as the Bullwhip effect. 

This paper addresses two important aspects in lean systems’ implementation. 
The first aspect is how to measure the leanness level from an integrated and 
dynamic perspective. Second, the paper aims at studying the impact of demand 
uncertainty on the leanness level dynamics. The approach starts with 
proposing a new dynamic model to measure the degree of leanness using system 
dynamics (SD) approach. This is followed by a design of experiments (DOE) 
technique to test the different model parameters significance on the developed 
integrated leanness score. Finally, the impact of different demand uncertainty 



scenarios are investigated to provide insights and recommendations for managing 
both internal lean parameters as well as external demand management decisions to 
secure a successful lean implementation. 

2. Literature review 
Research about lean systems, philosophies, tools and techniques can be found in Womack 
and Jones (2003), Black (2007), Abdulmalek and Rajgopal (2007), Staats et al. (2011), 
Elsayed et al. (2013) and Yang et al. (2015). The review in this section will focus on leanness 
assessment as well as dynamic analysis of manufacturing systems using SD since both 
topics are related to the proposed work. 

Examples of research work-related leanness level assessment include a checklist of 
36 indicators that was developed to assess the changes toward lean manufacturing by 
Sanchez and Perez (2001). Using the results from a survey for manufacturing plants 
located in the Spanish region of Aragon, they analyzed which lean production 
indicators were more used to assess the company’s improvements in their production 
systems, and the determinants on the use of these indicators. They divided these 
indicators into six groups which reflect the major characteristics of lean as: elimination 
of zero value activities, multifunctional teams, continuous improvement, production 
and delivery JIT, supplier integration and flexible information system. Savsar and 
Al-Jawini (1995) used simulation to analyze the performance of just-in-time production 
system. The model measured the effects of random processing times, numbers of 
kanbans between stations, variability in demand, line length and kanban operating 
policies on some system performance measures, such as throughput rate, work-in-
process inventory and station utilizations. Elnadi and Shehab (2014) presented a 
conceptual model that can be used in measuring the degree of product-service system 
(PSS) leanness in UK manufacturing companies. The model assessed PSS leanness 
based on five lean enablers (supplier relationship, management leanness, workforce 
leanness, process excellence and customer relationship), 21 criteria (supplier delivery, 
culture of management, process optimization, etc.) and finally 73 attributes. Detty and 
Yingling (2000) used discrete event simulation as a tool to support organizations with 
the decision to implement lean manufacturing through quantifying the benefits 
achieved from applying lean principles. The current status of lean production 
assessment in China was also evaluated by Taj (2008). Nine key areas of manufacturing 
were evaluated in this assessment which were: inventory; team approach; processes; 
maintenance; layout/handling; suppliers; setups; quality; and scheduling and control. 
The results were displayed in the score worksheet and a lean profile chart was created 
to display the status of the plant and the gaps between the current situation and their 
specific lean targets. Almomani et al. (2014) proposed an integrated model of 
lean assessment and analytical hierarchy process (AHP) to define the route of lean 
implementation based on the perspective priorities for improvement. AHP was used to 
set the priorities of implementing lean in the different perspectives of the enterprise, 
according to the following criteria: lean radar score, cost of implementation, financial 
gains, time of completion, technological and administrative obstacles, and the degree of 
risk involved. Quality, cost, delivery, and motivation key performance indicators were 
used to measure the improvements achieved via applying this approach. Wan et al. 
(2007) used data envelopment analysis techniques to pinpoint the leanness frontier as a 
benchmark for the leanness score. The resulting leanness score indicated “how lean the 
system is” or “how much leaner it can become.” The metrics used in the analysis were 
time and cost based. In addition, Pakdil and Leonard (2014) developed a comprehensive 



tool called the leanness assessment tool (LAT) using both quantitative (directly 
measurable and objective) and qualitative (perceptions of individuals) approaches to 
assess lean implementation. The LAT measured leanness using eight quantitative 
performance metrics: time effectiveness, quality, process, cost, human resources, 
delivery, customer and inventory. The previous metrics were captured using fuzzy 
membership function highlighting both improvement successes and needs in lean 
implementation. Fuzzy logic was further used in many researches as a measuring tool 
for lean production. Behrouzi and Wong (2011) developed fuzzy membership functions 
to assess the lean performance in manufacturing systems. It supported an efficient 
measurement of lean performance by producing a final integrated unit-less score. 
Susilawati et al. (2015) proposed a procedure for measuring degree of lean application 
which combines the advantage of the various procedures and improve the weakness of 
various procedures. The procedure used fuzzy number for scoring degree of application 
of lean practices focussing in qualitative factors like culture and satisfaction. 

Various approaches were used to dynamically model and analyze manufacturing 
systems including SD introduced by Forrester (1961). Examples of dynamic analysis of 
manufacturing systems using SD is the three-echelon production distribution system 
used as a supply chain reference model for comparing various methods of improving 
total dynamic performance by Wikner et al. (1991). Helo (2000) shows how agility is 
built into supply chains. Three simulation models were studied: the demand 
magnification effect in supply chain, the analysis of capacity surge effects, and the 
trade-off between capacity utilization and lead times. The analysis recommended 
smaller order sizes, echelon synchronization and capacity analysis as methods of 
improving the responsiveness of a supply chain. Poles (2013) explored the interaction 
between the physical flow, information flows and company policies to generate the 
dynamics of the re-manufacturing process. Deif and ElMaraghy (2014) presented 
dynamic systems approach to study challenges of implementing production leveling 
and its associated costs in a lean cell producing at takt time. Results showed that 
determining the most feasible leveling policy is highly dictated by both the cost and 
limitations of capacity scalability. In addition, delivery sequence plans of different 
products/parts is needed to achieve mix leveling and lot sizes affect the feasible 
production leveling policy while implementing lean principles. Zhang et al. (2012) used 
system engineering concept to compare the SD models of traditional supply chain 
and leagile supply chain to show the benefits of leagile supply chain. The results 
showed that shorten the length of supply chain, share the information, cooperation and 
production delay can effectively weaken the Bullwhip effect. Deif (2012) examined the 
performance of a lean cell under uncertainty using SD. The cell performance was 
compared under certain and uncertain external (demand) and internal (machine 
availability) conditions. Results showed that although lean cell was expected to be 
responsive to external waste, however, this was not the case under the considered 
uncertain conditions. Huang et al. (2012) compared between two models for a supply 
chain under two conditions of supply disruptions, without backup supplier, and with a 
contingent supplier. The retailer’s total profits are also compared under these two 
circumstances of supply disruptions to assist the decision makers better dealing with 
the backup purchasing strategy. The supply chain studied only involves one retailer 
and two independent suppliers that are referred to as major supplier and backup 
supplier. Georgiadis and Michaloudis (2012) investigated the impact of dynamic 
disturbances in manufacturing process on the production planning and control in 
job-shop manufacturing by using SD. They analyzed the system response under 



different arrival patterns for customer orders and the existence of various real-time 
events related to customer orders and machine failures. They also assess the 
performance by determining the backlogged orders, WIP inventories and tardy jobs. 
Ali and Deif (2013) used SD to model a manufacturing system and investigated the 
effect of shrinking the target delivery delay (TDD) to increase the responsiveness level 
on the leanness level of the system. 

From the aforementioned review, there are much more work related to lean 
manufacturing implementation and analysis than that dedicated for assessing the 
degree of leanness of systems. In addition, fewer work account for such assessment 
from a dynamic perspective. A deeper analysis of the reviewed papers focussing on 
lean assessment reveals that the assessment approaches focussed on metrics that are 
more endogenous (internal system parameters like throughput, quality WIP, etc.) 
rather than exogenous (external or customer-related parameters). The fewer research 
which included customer-related metrics to assess lean performance mainly focussed 
on response time to measure customer satisfaction. It is clear that with lean 
systems dedicated to value creation and given that customers define such value, more 
customer-related metrics should be used in assessing lean performance. It is also 
important to note that dynamic approaches are more favored in assessing lean 
performance of manufacturing systems than static approaches. In the reviewed 
literature, limited work considered the dynamic nature of assessment especially when it 
comes to capturing demand uncertainty. Also, the review shows that SD as a powerful 
dynamic modeling tool had been dedicated mainly to general manufacturing systems 
application or supply chain while very few work used SD in the lean assessment context. 

This research contributes to the few literature available for dynamic assessment of lean 
systems. One contribution is through integrating service level as a customer-related 
measure with WIP and overall equipment effectiveness (OEE) as internal performance 
measures in one new metric. Furthermore, this work proposes a SD model to capture the 
dynamic impact of various system’s parameters (including for the first time the uncertainty 
of demand in terms of both volume and mix) on lean performance of a manufacturing 
system. The new model and metric in addition to the presented analysis offers various 
insights and recommendations for lean management policies. 

3. Dynamic manufacturing model with leanness score 
The model introduced by Ali and Deif (2014) is modified as shown in 
Figure 1. The model is developed using Vensim™ as an interactive SD simulation 
environment. Data for a real case study in the central kitchen industry will be used to 
demonstrate the model, measure the degree of leanness and assess the impact of 
significant parameters on the new leanness score. The modeled manufacturing system 
consists of four components; production system, backlog system, quality system and 
leanness score calculation system. The production system includes five stages, three of 
them are dedicated for assembly and/or manufacturing, one for finishing processes, 
and the final one for finished goods inventory which is highly linked to the quality 
inspection rate. All stages are controlled by stochastic cycle time at each stage. The 
different model components (stages) are explained in details in the following sections. 

3.1 Model components 
3.1.1 Production system. A multi-stage production system representing several 
production activities is used to model the manufacturing system as shown in Figure 2. 
The developed multi-stage, multi-product production system is a WIP-based system 
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Dynamic 

manufacturing model 
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Figure 2. 
Production system 

where the WIP level is controlled by changing the production rate as shown in 
Equation (1). The WIP level at each station is calculated by the difference between the 
production rate of the current station and the production rate of the subsequent one: 

WIPi t ð ð 1 ð Þ–PRi t ð Þ ð Þ; 0Þ; 0Þð Þ ¼ INTEG IF THEN ELSE PRi t ð ÞX0; PRi 1 t –PRi t (1) 

Production rate is expressed as the reciprocal of cycle time as seen in Equation (2). 
The production rates of each station (with the exception of the production input rate) 
are affected by the availability of the machines and their cycle times. For simplicity, it is 
assumed that all stations inside the production system have the same availability. 
This assumption will not affect the analysis in this case. As for the cycle times they are 
modeled using stochastic random normal distribution functions as shown in 
Equation (3). Normal distribution is an acceptable reflection to the uncertainty 
associated with typical machine times in the considered case study: 

production unit MAð Þt
PRi t (2)ð Þ ¼

CTiðtÞ 100 

CTi t ð Þ COT t (3)ð Þ ¼ RANDOM NORMAL Min; Max; Mean; SD; Seed ð Þ  

The input production rate is equal to the demand rate (no over capacity is considered) 
as this reflects the traditional practice of lean systems trying to produce at demand (see 
following equation): 

PIRð Þ ¼t DRð Þt (4) 

Since the manufacturing system is producing products in the same family, it is 
assumed that changeover time is constant for all stages and it is also modeled using 
normal distribution to capture more of the uncertainty in the considered manufacturing 
environment (see following equation): 

COT t ð (5)ð Þ ¼ RANDOM NORMAL Min; Max; Mean; SD; SeedÞ 
3.1.2 Backlog system. Order backlog measures the delay between the placement and 
delivery of orders (see Figure 3). Such delays can be caused by administrative activities 

Changeover time 

CT2 
CT3CT1 

WIP for 

Production 

WIP for 
stage 1 Production rate 1 

WIP for 
stage 2 Production rate 2 

WIP for 
stage 3 Production rate 3 

finishing 
CT4 

input rate 

<Machine Finishing rate 

Backlog Availability> 

Demand rate Filled order rate 
Finished 
goods 

inventory 
Shipment rate 



�

such as credit approval and order processing, by the need to customize or configure the 
product to the needs of particular customers, and by delays in shipping to the customer 
site, among others. Backlog is captured as the difference between the required demand 
rate and the actual filled order rate as expressed in following equation: 

ð ð Þ FOR tB tð Þ ¼ INTEG DR t – ð Þ; B0Þ (6) 

The initial backlog is set to equal the TDD of incoming orders (see following equation): 

B0 t DR t (7)ð Þ ¼ TDD ð Þ  

While the shipment rate and filled order rate are numerically equivalent and have same 
units (product/hour), they are two dissimilar concepts as shown in Equation (8). 
The shipment rate represents the physical product that leaves the organization, while 
the order fulfillment rate captures the information flow (Sterman, 2000): 

FORð Þ ¼t SRð Þt (8) 

The shipment rate as shown in Equation (9) depends on the minimum between either 
the desired shipment rate or the maximum shipment rate: 

SRð Þ ¼t MIN DSR ð ð Þt ; MSRð Þt Þ (9) 

The desired shipment rate is the rate that ensures that orders are filled within the TDD 
as seen in Equation (10). In a lean context, firms would strive to minimize the TDD: 

B tð Þ
DSR t (10)ð Þ ¼  

TDD 

The maximum shipment rate based on the firm’s present inventory level and the 
minimum order processing time as specified by following equations: 

FGIð Þt
MSR t (11)ð Þ ¼  

MOPTð Þt

FGI t ð ð ð Þ SR t ð Þ SR t ; 0Þð Þ ¼ INTEG IF THEN ELSE FR t – ð ÞX0; FR t – ð Þ ; 1Þ (12) 

Finished 
goods 

inventory 
Shipment rate 

Backlog 
Demand rate Filled order rate 

Minimum order 
Desired 

Shipment rate 
Maximum 

shipment rate 
processing time 

Initial backlog 

Target delivery 
delay 

Figure 3. 
Backlog system 
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The minimum order processing time represents the minimum time required to process and 
ship an order and it is expressed as normal random function as shown in following equation: 

MOPT t ð (13)ð Þ ¼ RANDOM NORMAL Min; Max; Mean; SD; SeedÞ 
3.1.3 Quality system. Quality control level is calculated as the difference between the 
quality control output rate and quality control start rate as shown in following equation 
(see Figure 4): 

QC t ð ð ð Þ – QCOR t ð Þ – QCOR ð Þt ; 0Þ; 1Þð Þ ¼ INTEG IF THEN ELSE QCSR t ð ÞX0; QCSR t

(14) 

The sampling plan in this system is conducted after the third production stage where a 
specified number of samples are sent for quality testing as shown in following equation: 

QCSR t ð Þ  ð (15) ð Þ ¼ PR3 t sample sizeÞ 

The quality control output rate equals the quality control start rate with a fixed delay 
function accounting for inspection and rework times as shown in following equation: 

QCOR t ð ð Þ ð Þ t (16)ð Þ ¼ DELAY FIXED QCSR t ; IT t ; QCSR ð ÞÞ 

Inspection time is expressed as random normal function to reflect the stochastic nature 
of the inspection process as shown in following equation: 

IT t ð Þ (17)ð Þ ¼ RANDOM NORMAL Min; Max; Mean; SD; Seed 

The inspection process is designed based on the acceptable quality level (AQL) and 
directly controls the finishing rate. If the number of defects is less than the AQL, the 
finishing rate is delayed by only the inspection cycle time. However, if the number of 

Inspection time 

Quality 
Control QC output rate QC start rate 

Quality rate 

Defects Time Unit 
WIP for 

Production rate 3 
finishing 

CT4 
Quality signal 

<Theoretical 
AQL output> 
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Finishing rate 

<production unit>Finished
Figure 4. Delay time goods
Quality system inventory 
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defects is greater than AQL, the finishing rate is delayed by inspection time and an 
extra rework delay time as indicated in following equations: 

Production unit Production unit MAð Þt
FRðtÞ ¼ IF THEN ELSE QSX1; ; (18)

CT4ð Þt ð ÞþDTCT4 t 100 

QS t ð ð ÞpAQL; 1; 0Þð Þ ¼ IF THEN ELSE D t (19) 

The number of defects is displayed in Equation (20) as a stochastic function of quality 
control output rate: 

D t ð QCOR; Maxð Þ ¼ RANDOM NORMAL Min QCOR; Mean 
QCOR; SD QCOR; SeedÞ� Time Unit (20) 

3.1.4 Leanness score system. The new leanness score system developed in this model 
consists of three metrics (shown in Equation (21)) which are: overall work-in-process 
efficiency (OWE), OEE and overall service level (OSL) as displayed in Figure 5. 

The new assessment system is meant to capture three fundamental lean outcomes in 
any system, mainly production stability/leveling (reflected in the WIP level), production 
efficiency (reflected in quality and availability) and responsiveness to market (reflected 
in service level). The leanness score is presented as percentage ensures that the 
assessment is dimensionless for tracking and comparison purposes. In this paper, 
the score is the average of the three components and all the three components have the 
same weight which can be changed in further research (where some lean results could 
be of concern to the manufacturing mangers and thus would receive higher weight). 
The three components of the proposed leanness score are explained as follows: 

OEE t ð ÞþOSL tð ÞþOWE t ð Þ
LSð Þ ¼  t 100 (21)

3 
3.1.4.1 Overall WIP efficiency. OWE is an indicator of the accumulation of 
WIP overtime reflecting internal efficiency as well as stability (see Figure 6). 
A manufacturing unit must balance WIP to maintain productivity for known and 
future requirements. So, organizations should establish its target WIP and compare 
their actual WIP with this target as shown in following equation: 

TGWIPð Þt TWIP ð Þt
OWE t TGWIP t ð Þ; ;ð Þ ¼ IF THEN ELSE ð ÞpTWIP t

TWIP ð Þt TGWIPð Þt
(22) 

Overall WIP Leanness score 
efficiency 

Overall service 
level 

OEE 

Figure 5. 
Leanness score 

system 
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Figure 6. 
Overall WIP 
efficiency 

Figure 7. 
Overall equipment 
effectiveness 

Target WIP level is calculated based on little’s law multiplying the demand rate 
(assuming that in the ideal lean state it should equate the production rate) by 
the theoretical cycle time. Actual WIP level is the average of all WIP accumulated over 
the different production stages (see following equations): 

TGWIP tð Þ ¼ DR tð Þ  THCT (23) 

TWIP tð Þ ¼  

P4 
i¼1 WIPi tð Þ  

(24)
4 

3.1.4.2 OEE. OEE is a measure for lean manufacturing environments, and it should be 
viewed as a “Continuous Improvement Engine” that provides a robust outline for the lean 
journey (see Figure 7). OEE consists of three factors: performance efficiency, machine 
availability and quality rate. It can be calculated as displayed in following equation: 

MAð Þt PEð Þt Rð Þt
OEE t (25)ð Þ ¼  

100 100 100 

The availability portion of the OEE metric represents the percentage of scheduled time 
that the operation is available to operate and it is calculated as Equation (26). 
The availability metric is a pure measurement of uptime that is designed to exclude the 
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effects of quality, performance and scheduled downtime events. The losses due to 
wasted availability are called availability losses: 

NOTð Þt
MAð Þ ¼  t 100 (26)

NAT 

Net available time is calculated as the scheduled production time subtracted by 
planned downtime (see following equation): 

NAT ¼ SPT PDT (27) 

Net operating time is the unplanned downtime subtracted from net available time 
(see Equation (28)). Unplanned downtime is the unscheduled downtime events and it is 
calculated as a random function to reflect the stochastic uncertainty of machines in 
production environments as shown in Equation (29): 

NOT t UPDT t (28)ð Þ ¼ NAT ð Þ  

UPDT ð Þ ¼t RANDOM NORMAL Minð ; Max; Mean; SD; Seed Þ SPT (29) 

The performance portion of the OEE metric represents the speed at which the work 
center runs as a percentage of its designed speed. The performance metric is a pure 
measurement of speed that is designed to exclude the effects of quality and availability. 
The losses due to wasted performance are also often called speed losses. It is calculated 
as the percentage between actual output and theoretical output (see Equation (30)). 
Deviation from target output indicates cases of either lower production or 
overproduction and both are considered wastes from lean perspective: 

THOUTð Þt
PEð Þ ¼t IF THEN ELSE AOUTð Þt XTHOUT ð Þt ; 

AOUTð Þt
AOUTð Þt

100; 100 (30)
THOUTð Þt

Actual output is the net operating time times the minimum of all the three production 
stages rates as shown in following equation: 

AOUT ð Þ ¼t NOTð Þt ð ð ð Þ; PR2 t Þ ð ÞMIN MIN PR3 t ð Þ ; PR1 t Þ (31) 

Theoretical (or target) output is the multiplication of scheduled production time and the 
demand rate (see following equation): 

THOUT t DR t (32)ð Þ ¼ SPT ð Þ  

The quality portion of the OEE metric represents the good units produced as a 
percentage of the total units produced (see Equation (33)). The quality metric is a pure 
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Figure 8. 
Overall service level 

measurement of process yield that is designed to exclude the effects of availability and 
performance. The losses due to defects and rework are called quality losses: 

QCð Þt Dð Þt
QRð Þ ¼  t 100 (33)

QCð Þt
3.1.4.3 OSL. OSL reflects the level at which the customer orders is filled on time 
(see Figure 8). It is the ratio between the TDD and actual delivery delay as shown in 
Equation (34). The actual delivery delay is the ratio between the backlog in the system 
and the filled order rate as seen in Equation (35): 

TDD
OSL t (34)ð Þ ¼  

DDð Þt

Bð Þt
DD t (35)ð Þ ¼  

FORð Þt

4. Significance of demand dynamics on leanness level 
The analysis in this paper is based on the data of an industrial case study of a kitchen 
equipment manufacturer. The company is one of the leading companies in Egypt in the 
field of central kitchen equipment since 1980. Their business scope is importing, 
designing, manufacturing and supplying all central kitchens equipment and laundries 
for hotels, touristic villages, restaurants and hospitals. The company’s data used by the 
developed model is shown in Table AI. 

Before investigating the impact of demand dynamics on the developed leanness score, 
the significance of demand among other parameters in the presented model was explored. 
A DOE technique was employed for that purpose where the six stochastic parameters of 
the 15 input parameters where selected for the DOE analysis. Excluding the deterministic 
parameters was based on our interest to explore the dynamics generated by uncertainty 
and variability. The six parameters are shown in Table I. 

A full factorial DOE method was implemented where each factor had two levels 
selected as a minimum and maximum. The values for each of the parameters were 
based on the selected case study historical data. The 26 ¼ 64 runs were carried out 
while monitoring the response (leanness score). Full factorial was used to identify main 
effects and factor interactions without any confounding or ambiguity (Montgomery, 
2005). All runs and their response are shown in Table AII. 

The significance of main factors and the two factors interactions were investigated. 
The normal plot for standardized effects is shown in Figure 9. 

Backlog 
Demand rate Filled order rate 

Delivery delay 

Overall service 
level Target delivery 

delay 



From Figure 2, the most significant factors are demand rate (highest), defects, 
changeover time with demand rate interaction, demand rate with unplanned 
downtime interaction, defects with demand rate interaction, unplanned downtime, 
minimum order processing time, changeover time and they are shown in Figure 10 
with their relative significance. 

It is shown from these results that demand rate has a major effect on the leanness 
score. The significance DOE analysis was used to confirm and pave the road to the 
importance of exploring the impact of demand dynamics on the leanness level of 
manufacturing systems. Understanding demand variability and its impact on leanness 
level and how it relates to other internal parameters is vital in successful lean 
implementation and this what will be partially examined in the next sections. 

5. Impact of demand dynamics on leanness score 
After examining the parameters’ significance and illustrating that the most significant 
parameter on leanness score in the developed model is demand rate, in this section, the 
leanness score and its components are investigated under different degrees of demand 
variability. Demand variability is captured using coefficient of variation (CV). CV refers 
to a statistical measure of the distribution of data points in a data series around the mean. 

Parameter Minimum Maximum 

COT 
D 
DR 
IT 
MOPT 
UPDT 

0.003 
(5/100) × QCOR 

10 
0.005 
6 

0.016 × SPT 

0.005 
(10/100) × QCOR 

20 
0.007 
7 

0.03 × SPT 
Table I. 
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It represents the ratio of the standard deviation to the mean. The data are taken from 
the company history and gathered from the last 10 years. 

First, the leanness score and its components’ will be examined under low levels of 
demand variation (CV ¼ 0.33, 0.5, 0.22) with varying levels of demand means. Then, the 
dynamics associated with higher levels of demand variation (i.e. CV ¼ 0.5, 1.5, 1) with 
constant mean will be investigated. 

5.1 Dynamics of low demand CV with varying means 
The behavior of the model is investigated in this section under overall low level of CV. 
However, the average and the standard deviation of the selected demand patterns are 
changing at different magnitudes to be able to see the behavior of the system when 
excited under different means of demand. Table II shows the different values of 
demand mean, standard deviation and their CV. 

In this analysis, various demand patterns are considered. The first pattern is one of 
high demand average and high standard deviation (the highest CV) and it is referred to 
as DR1, the next pattern is the low demand average and low standard deviation and it is 
referred to as DR2. Finally the system is investigated under what we labeled as the 
normal average demand referred to as DR which fits between the previous two patterns. 
Such analysis will enable lean practitioners to envision the impact of different demand 
excitation patterns to the systems and also draw a clearer picture of how demand 
variability in general (going from low to normal to high and also varying both average 

CV Demand rate value 

DR 0.33 RANDOM NORMAL (10, 20, 15, 5, 1) 
DR1 0.5 RANDOM NORMAL (21, 63, 42, 21, 1) 
DR2 0.22 RANDOM NORMAL (8, 12, 10, 2, 1) 



and standard deviation) can help better understand how a lean system reacts and thus 
develop optimal demand management policies as well as internal operational plans. 

5.1.1 The impact of low demand CVs on the OEE. Figure 11 shows the effect of the 
considered demand patterns on the OEE. 

It is shown from the figure that the highest effectiveness for equipment, in the 
selected settings, was maintained with the normal demand rate DR which has a 
medium CV. The main reason behind this performance was that the current production 
level average was close to the mean of this demand pattern leading to high production 
efficiency. DR1 which has the highest CV shows the lowest OEE due it’s mean high 
deviation from the current production rate and also due to high level of variability that 
impact both quality and production availability. On the other hand, DR2; which have 
the lowest CV has a relative moderate OEE performance between the previous two 
demand patterns. The cases of higher or lower values of demand means than the 
production level will have a negative effect on the OEE metric. This is because the 
theoretical output depends on the demand rate, so higher or lower values of demand 
will affect the ratio between the theoretical output and the actual output negatively and 
in turn the performance efficiency and OEE. The variability level (reflected in the CV 
values) was not the major contributor to the OEE performance. 

5.1.2 The impact of low demand CVs on the OSL. The effect of the considered 
demand patterns on the OSL is shown in Figure 12. 

It can be observed that DR2 pattern has the highest and fasted level of OSL performance, 
while over longer time (64 hours or eight days) the OSL for DR pattern reaches the same 
100 percent level. In contrast, producing to chase the DR1 pattern will get the OSL level to 
decrease overtime till it reaches near zero at the end of the simulation period. 

The impact of variability is clear in this analysis. Since DR pattern had a higher CV 
than DR2 pattern, this variation caused the backlog to accumulate till the shipment rate 
was increased via more production and finally reach the 100 percent service level over 
longer time. The system at the DR1 pattern (which has the highest value for demand 
mean and the highest CV) showed the lowest service level performance. This manifests 
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that both the demand volume and variability contributed to the deterioration of the 
OSL in the considered case study. This suggests that improving service levels in these 
types of demand patterns requires investments and upgrades in the current production 
capabilities. It also suggests relaxing the TDD to be able to cope with similar demand 
patterns as a demand management policy. 

5.1.3 The impact of low demand CVs on the overall WIP efficiency. Overall WIP 
efficiency behavior according to the different demand patterns is shown in Figure 13. 

Since production started with zero WIP, the WIP efficiency was initially zero. 
After running the production, the WIP started to accumulate till it reached the desired 
target WIP leading to an OWE of 100 percent. However, with the considered demand 
patterns, the WIP continued to accumulate due to the implemented push production 
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policy and with no WIP control lean policies (like supermarkets) leading to a drop in the 
OWE till it reached close to zero over extended time The variability level (CV value) for 
each demand pattern adds to the relative speed of the deterioration of its respective 
OWE behavior. In these scenarios, companies have to work on smoothing the flow of 
production utilizing different pulling techniques from downstream. 

5.1.4 The impact of low demand CVs on the leanness score.  Figure 14 displays the  
effect of the selected demand patterns on the new developed leanness score. The figure 
integrates the OEE, OSL and OWE dynamic behaviors into the leanness score metric. 
The leanness score for the considered case study at the DR pattern (with the average 
demand mean and average CV) starts with a low performance then it increases till 
reaches the highest performance level among the three patterns (about 60 percent). 
Although the Leanness score for the system at DR2 pattern (lowest demand mean with 
lowest CV) is lower than with the DR pattern (average demand level and average CV), it 
shows a more steady performance than with the DR pattern due to the OSL behavior that 
reached its maximum level quickly. Leanness score for the system at the DR1 pattern 
(with the highest demand mean and highest CV) starts at an average performance then 
decreases to less than 20 percent as the impact of its high volume and variability 
manifest themselves in deteriorating both the OSL as well as OWE within the system. 

5.2 Dynamics of high demand CV with constant means 
The model is studied next under higher degrees of demand variability (CV) while keeping 
same mean for different demand patterns. Table III shows the selected demand patterns. 
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CV Demand rate value Table III. 
Data of higher 

DRL 0.5 RANDOM NORMAL (10, 20, 15, 7.5, 1) demand variation 
DRH 1.5 RANDOM NORMAL (21, 63, 15, 22.5, 1) with stable means 
DRM 1 RANDOM NORMAL (8, 12, 15, 15, 1) scenario 



Figure 15. 
OEE with higher CV 
and stable means of 
demand 

5.2.1 The impact of higher demand CV on the OEE. Figure 15 shows the effect of 
higher CVs with stable means of demand rate on the OEE metric. 

The figure shows that the system responding to the demand rate with the lowest CV 
(DRL) has the best OEE (average of 80 percent) while responding to the demand rate 
with the highest CV (DRH) lead to the worst OEE performance (average of 45 percent). 
Although the system is responding to the same demand average, however, increasing 
the variability of the demand will affect negatively both the quality level and the 
performance efficiency leading to the deterioration of OEE performance. This aligns 
with the continuous effort of today’s process improvement approaches (e.g. Lean Six 
Sigma) to capture, reduce and eliminate variations within manufacturing systems. 

5.2.2 The impact of higher demand CV on the OSL. The effect of the same demand 
patterns on the OSL is shown in Figure 16. 

The performance of the system’s OSL with the DRM demand pattern which has the 
medium level of variation (CV) is better than its performance with demand pattern with 
low CV (DRL) which also reaches 100 percent level but after longer time. This is because 
within these parameter settings, the range of values for DRL is higher than that for 
DRM which caused the system to experience some higher orders in some instants 
leading to higher backlog in the case of DRL. These instants resemble cases like sudden 
increase in volume or rush orders. The system’s had the worst OSL when experienced 
the demand with the highest CV leading to a near zero performance overtime reflecting 
the disability of the system to cope with this level of demand variation while 
maintaining the target due dates due to internal turbulence. 

5.2.3 The impact of higher demand CV on the overall WIP efficiency. The behavior of 
overall WIP efficiency for the selected demand patterns is shown in Figure 17. 

The performance of the OWE of the system with all demand patterns deteriorates 
overtime. This is because WIP levels usually reflects the stability of the system, and with 
demand patterns that exhibit variations, WIP will tend to increase in order to stabilize the 
system resulting in low OWE levels and leading to having the actual WIP to be higher 
than the target WIP. In the considered case study, the average production cycle time is 
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close to the average demand mean of all patterns, however, the variability within these 
demand patterns lead to the accumulation of WIP between production stages. 

5.2.4 The impact of higher demand CV on the leanness score. The leanness score 
dynamics against the selected demand patterns is displayed in Figure 18. 

The highest leanness level for the system was with the demand having the lowest 
variability (DRL), however, it reaches its best performance after some time due to the OSL 
low performance as discussed earlier. The leanness level of the system with the medium 
variability is close to the previous one yet with better consistency. This consistency is 
due to experiencing less instants of sudden increase in volume or rush orders. In this 
specific settings, the company is not in need to put effort to reduce the demand variation 
level from medium to low as it does not pay back from leanness score perspective. 
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It is also clear that the system when experiencing the highest variation with the DRH 

pattern will have the worst leanness profile. In such demand scenarios, decision makers 
should pursue more effort in demand management to avoid or reduce this level of 
variation or adjust the system capabilities to cope better with such levels. 

6. Summary and recommendations 
This paper presented a new metric to assess the degree of leanness of a manufacturing 
system under dynamic conditions and was further demonstrated using a real case study. 
The new metric integrated OEE, service level and WIP performance to measure the 
system’s leanness degree. This integration offers a more comprehensive leanness 
assessment that reflects system efficiency, responsiveness to customers and internal 
stability. Such integration is critical within lean systems that focus on value creation to 
customers as well as internal system performance. Furthermore, the model captured the 
dynamics associated with different manufacturing uncertainties and their relation to the 
developed leanness score (including for the demand volume and variability dynamics). 

A DOE analysis was carried out to examine the most significant parameters 
affecting the proposed leanness score which was shown, given the selected input data 
of the case study, to be the demand rate. This was followed by an analysis to examine 
the impact of demand volume and variability on the leanness level and its components. 
The following lean management policies and recommendations (within the scope of 
similar manufacturing systems to the considered company) were obtained: 

� The OEE dynamics was negatively affected in all demand scenarios by variability. 
This is associated to the adverse effect variation has on quality and productivity. 
However, it was shown that in cases of low variation (lower values of CV), the 
higher impact on OEE was the synchronization between demand mean and the 
current production level average. The results suggest that to improve OEE, 
demand management policies should reduce variability passed on from the 
demand patterns to production and that production planners should work to align 
production levels with the demand mean to avoid lower productivity results. 



� The service level in the presented model was sensitive to high level of variation in 
demand showing very low performance with high CV. As variability is reduced, 
service level increases overtime depending on the production ability to catch up 
and clear backlog. In addition, instants of sudden increase in volume and rush 
orders contributed to the reduction in the OSL performance in the considered 
case study. The responsiveness level in dynamic demand environment can be 
improved (in addition to the typical variation reduction recommendation) by 
maintaining a dynamic production capacity that can scale up productivity with 
fast ramp up profile to clear backlog accumulated due to demand variability. 

� The overall WIP efficiency in the presented analysis demonstrated how demand 
variation at any level will lead to high levels of accumulated WIP. WIP 
accumulation is an expected internal production reaction in order to maintain 
stability and efficiency. This phenomenon was further manifested due to the push 
production policies employed by the selected case study. Results confirm the 
importance of absorbing demand variation through different lean techniques like a 
balanced Heijunka boxes as well as moving toward continuous flow if possible or at 
least employing different pull techniques to avoid high level of WIP accumulations. 

� The new leanness score was demonstrated to be a successful assessment metric 
for the system’s leanness level in this dynamic environment. Results highlighted 
how the metric reflected the general deterioration trend of the leanness level of the 
system under high level of variations even with smaller volumes of demand. In 
addition, the new score was useful in showing how the leanness level of the system 
using the three considered components (and given the selected case study) is very 
close in cases of low and medium variations. This can help lean mangers in deciding 
whether the investment in managing demand to reduce the level of variation from 
medium to low and/or to increase production capacity will pay off or not. 

The presented work will be extended to include more industrial applications. In 
addition, the impact of stochastic changeover time and inspection time on the leanness 
score performance will be investigated. Furthermore, the economic perspective of lean 
implantation will be studied by adding the cost element into the proposed model and 
metric. Finally, changing the weight for each of the leanness score components will be 
studied to reflect different managerial policies and priorities. 
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Appendix 1 

Parameter Value Unit 

AQL (1/100) × THOUT 
COT RANDOM NORMAL (0.003, 0.005, 0.004, 0.001, 1) 
CT1 RANDOM NORMAL (0.05, 0.06, 0.055, 0.005, 1)-COT 
CT2 RANDOM NORMAL (0.03, 0.04, 0.035, 0.005, 1)-COT 
CT3 RANDOM NORMAL (0.06, 0.07, 0.065, 0.005, 1)-COT 
CT4 RANDOM NORMAL (0.055, 0.065, 0.06, 0.005, 1)-COT 
D RANDOM NORMAL ((5/100) × QCOR, (10/100) × QCOR, (7.5/100) × QCOR, 

(2.5/100) × QCOR, 1) × Time Unit 
DT 0.005 
DR RANDOM NORMAL (10, 20, 15, 5, 1) 
IT RANDOM NORMAL (0.005, 0.007, 0.006, 0.001, 1) 
MOPT RANDOM NORMAL (6, 7, 6.5, 0.5, 1) 
PDT (2/100) × SPT 
QCSR PR3 × (20/100) 
TDD 2 
THCT 1 
UPDT RANDOM NORMAL (0.016, 0.03, 0.023, 0.007, 1) × SPT 

Parts 
Hour 
Hour 
Hour 
Hour 
Hour 
Parts 

Hour 
Parts/hour 
Hour 
Hour 
Hour 
Parts/hour 
Hour 
Hour 
Hour 

Table AI. 
Company data 



Appendix 2 

COT Defects DR IT MOPT UPDT Response 

0.003 0.05 10 0.007 7 0.03 54.74315 
0.005 0.05 20 0.005 6 0.016 33.72218 
0.005 0.1 10 0.007 7 0.016 53.10217 
0.005 0.1 10 0.007 7 0.03 53.35221 
0.005 0.05 10 0.005 6 0.03 54.39086 
0.005 0.05 20 0.007 7 0.016 33.30398 
0.003 0.1 20 0.005 6 0.03 29.28129 
0.005 0.05 10 0.005 7 0.016 53.78052 
0.005 0.1 20 0.007 6 0.016 31.36727 
0.003 0.05 20 0.005 6 0.016 32.35737 
0.005 0.1 10 0.005 6 0.016 53.43671 
0.003 0.1 10 0.005 6 0.03 54.41546 
0.005 0.1 20 0.007 7 0.03 29.98033 
0.003 0.1 10 0.007 6 0.03 54.41546 
0.003 0.05 20 0.007 6 0.03 31.08528 
0.005 0.05 10 0.007 7 0.016 53.78052 
0.005 0.1 20 0.007 6 0.03 30.18623 
0.005 0.1 20 0.005 6 0.03 30.18623 
0.005 0.05 20 0.007 6 0.016 33.72218 
0.003 0.05 10 0.007 6 0.016 54.84606 
0.003 0.1 20 0.005 6 0.016 30.4111 
0.005 0.1 20 0.005 6 0.016 31.36727 
0.003 0.05 20 0.007 7 0.016 32.0476 
0.003 0.05 10 0.007 6 0.03 55.12858 
0.005 0.1 20 0.005 7 0.016 31.14493 
0.003 0.1 20 0.007 6 0.016 30.4111 
0.003 0.05 20 0.005 7 0.03 30.8047 
0.005 0.1 10 0.005 6 0.03 53.70631 
0.003 0.1 10 0.005 6 0.016 54.13935 
0.003 0.05 20 0.007 6 0.016 32.35737 
0.005 0.05 20 0.007 6 0.03 32.33182 
0.003 0.1 20 0.005 7 0.03 29.1067 
0.005 0.05 10 0.007 7 0.03 54.03677 
0.003 0.1 20 0.007 6 0.03 29.28129 
0.005 0.05 10 0.005 7 0.03 54.03677 
0.003 0.1 20 0.005 7 0.016 30.22431 
0.005 0.1 10 0.007 6 0.03 53.70631 
0.005 0.05 10 0.007 6 0.016 54.11505 
0.005 0.05 10 0.007 6 0.03 54.39086 
0.003 0.05 10 0.005 6 0.03 55.12858 
0.003 0.05 20 0.007 7 0.03 30.8047 
0.003 0.1 20 0.007 7 0.016 30.22431 
0.005 0.05 20 0.005 7 0.03 31.96293 
0.005 0.1 10 0.007 6 0.016 53.43671 
0.003 0.1 10 0.007 7 0.03 54.03003 
0.003 0.05 20 0.005 6 0.03 31.08528Table AII. 0.003 0.05 10 0.005 7 0.016 54.48055

Parameters 
significance 
experiment (continued ) 



COT Defects DR IT MOPT UPDT Response 

0.005 0.05 20 0.005 6 0.03 32.33182 
0.003 0.05 10 0.007 7 0.016 54.48055 
0.003 0.1 10 0.007 7 0.016 53.77384 
0.003 0.1 10 0.005 7 0.016 53.77384 
0.003 0.1 10 0.007 6 0.016 54.13935 
0.005 0.1 10 0.005 7 0.016 53.10217 
0.003 0.1 20 0.007 7 0.03 29.1067 
0.003 0.05 10 0.005 7 0.03 54.74315 
0.003 0.05 10 0.005 6 0.016 54.84606 
0.005 0.05 10 0.005 6 0.016 54.11505 
0.005 0.1 20 0.007 7 0.016 31.14493 
0.005 0.1 10 0.005 7 0.03 53.35221 
0.003 0.1 10 0.005 7 0.03 54.03003 
0.005 0.1 20 0.005 7 0.03 29.98033 
0.005 0.05 20 0.007 7 0.03 31.96293 
0.003 0.05 20 0.005 7 0.016 32.0476 
0.005 0.05 20 0.005 7 0.016 33.30398 Table AII. 
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