
Multi-Criteria Flow-Shop Scheduling Optimization

A Senior Project Submitted

In Partial Fulfillment

Of the Requirements for the Degree of

Bachelor of Science in Industrial Engineering

Presented to:

The Faculty of California Polytechnic State University,

San Luis Obispo

By:

Teja Arikati

Project Advisors: Reza Pouraghabagher & Karla Carichner

Graded By: Date of Submission: .

Checked by: Approved by: .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/154376525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

 I would like to thank all my professors over the years for giving me the

opportunity to grow and learn at Cal Poly. I would personally like to thank my project

advisors Dr. Pouraghabagher and Karla Carichner for advising me during this project.

Also, my interest in Operations Research was stemmed from Dr. Freed’s classes and I

would like to thank her for helping me realize my passion for Operations Research.

Table of Contents

Abstract ... 1

Introduction ... 2

Background/Literature Review .. 3

Mixed Integer Linear Programming Formulation ... 6

Design Requirements .. 9

Implementation .. 11

Results .. 14

Conclusion .. 17

References .. 19

Appendix ... 20

1

Abstract

 A flow-shop is a type of manufacturing job shop where similar jobs follow a

similar, linear sequence through the shop. Every day, flow-shops receive several

different orders and it is up to the scheduler to plan the daily schedule. This schedule

should be designed to prevent bottlenecks in the shop, to have on-time delivery of

products, and satisfy several other requirements. Often times, schedulers perform

subjective scheduling and utilize simple heuristics or just intuition to schedule the jobs.

With computer-based scheduling, schedulers can now create schedules and determine

quantitatively what sorts of schedules work best. Currently, much of the computer-

based schedules only try to optimize for one KPI such as Total Tardiness.

This paper considers incorporating multiple-criteria into computer based

scheduling so that schedulers can have more flexibility and develop schedules which

optimize multiple-criteria; this paper specifically considers minimizing Total Tardiness

and maximizing Throughput. Comparisons between single-criterion models and the

multiple-criteria model are made and it is discovered the multiple-criteria model provides

a great compromise in optimizing both KPIs. A user-friendly program is developed

where schedulers of any flow-shop can utilize the software to compute schedules for

cases up to 10 jobs and 10 machines.

2

Introduction

Flow-shops are manufacturing shops where similar products or jobs follow a

specific set of processing steps and the parts made are generally quite similar. Also, all

the jobs follow a linear order where they don’t go and revisit a previous machine for

processing. This is different from a job-shop where a job can follow any order among

the machines and can even visit a machine multiple times. Job scheduling is a huge

problem which every flow-shop company faces. When orders come into a flow-shop, the

main role of the scheduler is to schedule the jobs so that the jobs are built on-time and

as fast as possible. Many flow-shops do this manually. Below is an example of a flow-

shop compared to a job-shop:

Figure 1: Comparison between Flow-shop and Job-Shop

Since the jobs follow a linear fashion in a flow-shop, the scheduling of jobs in

flow-shops tends to be simpler than for jobs in job-shops. For this project, the scope will

be focused only on flow-shop scheduling.

3

 The goal of this project is to develop a general-purpose software application

which will provide a manufacturing company with the optimal flow-shop schedule. This

general-purpose software application should work with any flow-shop company. What

an “optimal” flow-shop schedule may vary day to day therefore a multi-criteria

formulation is created where schedulers can set their preferences for different KPIs. A

comparison between a single criterion-formulation and the multi-criteria formulation will

be conducted to determine the effectiveness of the new model.

Background/Literature Review

 As stated above in the introduction, flow-shop scheduling is a difficult venture

which every flow-shop tries to tackle. The complexity of flow-shop scheduling falls in the

NP hard classification (Hanen 1994). What this means is that it takes exponentially

more effort to schedule jobs as more jobs are added. For this reason, several heuristics

and other methods are used to tackle this problem. Literature for flow-shop scheduling

exploded after the introduction of a heuristic algorithm by S.M. Johnson which is now

called Johnson’s Algorithm (Johnson 1954). This algorithm uses a list of rules to

develop a flow-shop schedule that optimizes for total elapsed time. For two machines,

this algorithm provides a schedule with the minimum Total Elapsed time but for

schedules with more than two machines, this algorithm doesn’t guarantee the best

solution. 70 years after the formulation of the Johnson’s Algorithm, the depth of

research into flow-shop scheduling is lackluster. Only over the last 20 years, with the

explosion of computing power, have researchers started considering more innovative

ways of solving this problem. Several different heuristics have been developed for flow-

4

shop scheduling and these methods include genetic algorithms and ant-colony

optimization (Pezzella 2008). Most of the research, however, focuses on single-criterion

optimization and the research that does cover multi-criteria only covers bi-criteria for

machine counts less than 3 (Dhingra 2010). The purpose of this paper is to fill in the

research and implementation gap for multi-criteria flow-shop scheduling.

Looking at flow-shop scheduling formulations, several different Mixed-Integer

Linear Programming (MILP) formulations are found in literature. In the literature, three

distinct formulations appear. These three different formulations described by Wagner

(Wagner 1959), Wilson (Wilson 1989), and Manne (Manne 1960) are listed under

Appendix A, B, C respectively. To quickly go over the three formulations:

1. The first formulation by Wagner revolves around the relationships between

Idle Times, Wait Times, and Processing times of consecutive jobs between

consecutive machines.

2. The second formulation by Wilson revolves around the relationships between

Start Times and Processing times of consecutive jobs between consecutive

machines.

3. The third formulation by Manne revolves around the relationships between

Completion Times, Processing times, and precedence requirements of

consecutive jobs between consecutive machines.

In a paper by Ronconi and Birgin (Ronconi & Birgin 2012), the computation times

for all three methods were measured by solving sample cases which varied in number

of jobs and number of machines. These formulations were run through a Simplex Solver

which is the same algorithm used by Microsoft Excel’s solver. The results showed

5

similar results between Wagner’s and Wilson’s formulations with Wilson’s formulation

being slightly faster. Manne’s formulation was significantly slower and even infeasible

for large sample sizes (15 jobs and 10 machines). The exact run times are listed in

Appendix D.

 Modeling multi-criteria objectives could be done in several ways. Two methods

will be discussed in this literature review. The first method is through applying a

weighted average to each objective directly. Each objective is included in the objective

function and a weight from 0-1 is applied to each objective (Dhingra 2010). The sum of

all the weights must equal 1. This methodology follows the same principles as weighted

averages and other “weighted” calculations. A disadvantage of this method is that it is

difficult to gauge the actual “weight” given to each objective because of their different

ranges. What is meant by this is that each of these objectives has values which lie in

different ranges and different magnitudes. For example: Tardiness could range from 0

days to 20 hours, Total Elapsed Time from 100 hours to 200 hours, and Total Flow

Time from 300 hours to 500 hours. If equal weighting was applied to each of these

objectives, Total Flow Time would have higher priority compared to TET or Tardiness

because it has a larger range than the other two KPIs. To combat this, there must be a

way to normalize every objective so that the desired priority is applied to each objective.

The way to normalize objectives is through the application of fuzzy set theory.

Fuzzy set theory is a part of set theory and was introduced by Lotfi Zadeh (Zadeh

1965). The purpose of fuzzy set theory is to apply a continuous gradient to generally

discrete constraints. This paper will be looking at the normalization part of fuzzy set

theory. To normalize the objectives, the range of each of the objectives must be known.

6

Using the previous example, the general range for tardiness is [0,20] hours, for TET is

[100,200] hours, and for TFT is [300,500] hours. To normalize each objective, we would

divide each objective by their total range. By doing this, each objective is effectively

transformed to a value between 0 and 1. Now, the weighted average method can be

utilized to combine these objectives into an objective function. A great example of fuzzy

set theory application in scheduling is given by Sima Rokni (2010). The formulation is

shown in Appendix E.

Mixed Integer Linear Programming Formulation

 Based on the literature review, 3 popular formulations exist for flow-shop

scheduling. 2 of these formulations, the ones by Wagner and Wilson, are more efficient

and feasible. Wagner’s and Wilson’s formulations proved to perform quite similarly.

Below is a table comparing both algorithms by listing the total number of constraints,

total binary variables, total continuous variables, complexity of code, and computational

run-times.

of
Constraints

of
Binary
Variables

of
Continuous
Variables

Ease of
Implementation

Computational
Run-times

Wagner nm + 3n - 1 n2 nm + 3n - 1 Medium-High Great

Wilson
2nm + 3n -

m n2 2nm + 3n - m Medium Great

 Table 1: Comparison between Wagner’s and Wilson’s Formulation

 Although Wilson’s formulation would generally have more continuous variables

and number of constraints than Wagner’s, the code complexity required to implement

Wilson’s algorithm would be simpler than Wagner’s. Since the performance of both

7

algorithms is similar, the easier implementation of Wilson’s formulation was chosen for

the foundation of the model presented in this report.

Variables & inputs of the following model with their corresponding bound

constraints are listed below:

𝑥𝑖𝑗 𝑖𝑠 𝑏𝑖𝑛𝑎𝑟𝑦 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖𝑗 ∈ {0,1},

𝑇𝑗 ≥ 0, 𝐶𝑗𝑚, 𝑆𝑗𝑘

𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚, 𝑝𝑖𝑘, 𝑑𝑖

What each of these variables means are as follows: 𝑥𝑖𝑗 is equal to 1 if job 𝑖 (there

are n number of jobs and these jobs are labelled between 1 and n) is in the 𝑗-th position

of the sequence, equal to 0 otherwise. 𝑇𝑗 is the Tardiness of the 𝑗-th job in the sequence

(remember here that this is not related to 𝑖 which is the original label of the jobs, the 𝑗

only corresponds to the sequence order). 𝐶𝑗𝑚 corresponds to the completion of the 𝑗-th

job of the sequence at machine 𝑚 (the last machine). 𝑆𝑗𝑘 corresponds to the start time

of the 𝑗-th job at machine 𝑘. 𝑖 is ordered from 1 to 𝑛 where 𝑛 is the number of jobs in the

flow-shop. 𝑗 is ordered from 1 to 𝑛 where 𝑛 is the number of jobs in the flow-shop (the

length of the sequence is the same as the number of jobs). 𝑘 is ordered from 1 to m

where m is the number of machines in the flow-shop. 𝑝𝑖𝑘 is the processing time of job 𝑖

at machine k. 𝑑𝑖 is the due date of job 𝑖.

The following formulation is for the single-criterion flow-shop model which aims to

minimize total Tardiness of the jobs:

8

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑇𝑗

𝑛

𝑗=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑇𝑗 ≥ 𝐶𝑗𝑚 − ∑ 𝑥𝑖𝑗𝑑𝑖,

𝑛

𝑖=1

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗

𝐶𝑗𝑚 = 𝑆𝑗𝑚 + ∑ 𝑥𝑖𝑗𝑝𝑖𝑚, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗

𝑛

𝑖=1

𝑆𝑗+1,𝑘 ≥ 𝑆𝑗𝑘 + ∑ 𝑥𝑖𝑗𝑝𝑖𝑘

𝑛

𝑖=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑒𝑥𝑐𝑒𝑝𝑡 𝑛 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘

𝑆𝑗,𝑘+1 ≥ 𝑆𝑗𝑘 + ∑ 𝑥𝑖𝑗𝑝𝑖𝑘

𝑛

𝑖=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 𝑒𝑥𝑐𝑒𝑝𝑡 𝑚

𝑆11 ≥ 0

∑ 𝑥𝑖𝑗 = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗

𝑛

𝑖=1

∑ 𝑥𝑖𝑗 = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖

𝑛

𝑗=1

The single-criterion option for maximizing throughput requires just changing the

objective function as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐶𝑗𝑚

𝑛

𝑗=1

The multi-criteria option which optimizes for both throughput and tardiness

requires the addition of fuzzy constraints as discussed before during the literature

review. What this requires is the addition of two user inputs 𝑓𝛼 𝑎𝑛𝑑 𝑓𝛽 which are the

normalizing factors which will effectively convert two factors into a range between 0 and

9

1. Also two more inputs indicating importance must be included and these inputs will be

labelled as 𝑃𝛼 𝑎𝑛𝑑 𝑃𝛽 . The constraints will remain the same as before from the single-

constraint formulation. The revised objective function is as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (
𝑃𝛼 ∗ 𝐶𝑗𝑚

𝑓𝛼
+

𝑃𝛽 ∗ 𝑇𝑗

𝑓𝛽
)

𝑛

𝑗=1

Design Requirements

Program Input Requirements

 Since there is no specific customer in this project, the parameters and constraints

were set for ease and practicality so that virtually any flow-shop could use the program.

The basic expected inputs from the flow-shop will be as follows.

1. Jobs & Machines

A list of jobs that need to be completed is provided. This should also include the

number of jobs and the number of machines in the flow-shop.

2. Manufacturing Run Times:

The manufacturing lead time for each of these jobs including wait time, queue

time, setup time, and run time should be provided. However, a run time for each

job at each machine is sufficient if other specific data is not available.

3. KPIs or Goals to Achieve:

The scheduler needs to input what KPIs or goals are to be optimized as well as a

ranked priority for each of these. For example, a scheduler could choose to

minimize Tardiness and maximize Throughput with ranks of 1 and 2 respectively.

10

This means the program will try to achieve the Tardiness goal with a higher

priority compared to the Throughput goal.

User Interface Requirements:

The program will have a clean and intuitive layout which a tester can easily

interface with. This will be presented through a Python interactive interface. The

scheduler can then type the mentioned inputs above through this application. There will

be an option to run random jobs through a flow-shop or to input actual processing times.

After running the program, a clean and clear output of the job schedule should be

displayed. Another key aspect to the User Interface will be clear graphical outputs of the

results. Bar graphs and statistical comparisons will be displayed to show the differences

between various program designs (single-criterion vs multi-criteria).

Technical Aspects/Backend Design Requirements:

This program will be built from ground up in Python. There will be two programs

built; the first will be an implementation of the single-criterion flow-shop scheduling

program and the second will be an implementation of the multi-criteria flow-shop

scheduling program. Wilson’s formulation proved to be one of the fastest

computationally and the easiest to implement therefore this formulation will be used. For

the multi-criteria design, the use of fuzzy constraints will be incorporated so that the

schedulers can accurately assign priorities to different KPIs. The optimization add-on,

which will be the workhorse for computing the results, is Gurobi Optimization Version 7.

This software package is industry leading in terms of having the fastest run-times for

11

Mixed Integer Linear Programming Formulations. A free academic license was acquired

for Gurobi.

Implementation

 In this section, the back-end code used to incorporate the constraints and the

objectives will be described. The entire code is in Appendix F. Following this

explanation, an overview of the User Interface will be described.

Code

 Firstly, all the variables need to be initialized. The binary 𝑥𝑖𝑗 variables, the

continuous start time variables 𝑆𝑗𝑘, and the continuous Tardiness variables 𝑇𝑗 are

initialized in the code below:

Figure 2: Code for variable initialization

 Secondly, tardiness and completion time constraints need to be specified. These

are the lines in the formulation: 𝑇𝑗 ≥ 𝐶𝑗𝑚 − ∑ 𝑥𝑖𝑗𝑑𝑖,
𝑛
𝑖=1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗; 𝐶𝑗𝑚 = 𝑆𝑗𝑚 +

 ∑ 𝑥𝑖𝑗𝑝𝑖𝑚, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑛
𝑖=1 . The code is listed below:

Figure 3: Code for tardiness and completion time constraints

12

 Thirdly, the start time constraints need to be specified. These are the lines in the

formulation: 𝑆𝑗+1,𝑘 ≥ 𝑆𝑗𝑘 + ∑ 𝑥𝑖𝑗𝑝𝑖𝑘
𝑛
𝑖=1 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑒𝑥𝑐𝑒𝑝𝑡 𝑛 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘; 𝑆𝑗,𝑘+1 ≥ 𝑆𝑗𝑘 +

 ∑ 𝑥𝑖𝑗𝑝𝑖𝑘
𝑛
𝑖=1 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 𝑒𝑥𝑐𝑒𝑝𝑡 𝑚; 𝑆11 ≥ 0. The code is listed below:

Figure 4: Code for start time constraints

 Fourthly, the binary constraints need to be specified. These are the

corresponding lines in the formulation: ∑ 𝑥𝑖𝑗 = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ;𝑛
𝑖=1 ∑ 𝑥𝑖𝑗 = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖.𝑛

𝑗=1 The

code is listed below:

Figure 5: Code for binary constraints

13

Lastly, the objective functions need to be defined. These three objective

functions are defined: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑇𝑗
𝑛
𝑗=1 ; 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐶𝑗𝑚

𝑛
𝑗=1 ; 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (

𝑃𝛼∗𝐶𝑗𝑚

𝑓𝛼
+𝑛

𝑗=1

𝑃𝛽∗𝑇𝑗

𝑓𝛽
). The code is listed below:

Figure 6: Code for Objective function definitions

User Interface

In the User Interface, the user can change the number of jobs to any number

from 1 to 5 and the number of machines to any number from 1 to 5. There is also a

choice to choose which scenario (objective) function to run. The first two scenarios are

the single-criterion objective functions while the third scenario is the multi-criteria

objective function. After this, the throughput and total tardiness of the flow-shop is

displayed. A graph displaying the difference in throughput and tardiness of the chosen

scenario to the other two scenarios is also visualized at the bottom.

14

Figure 7: Sample User Interface

Results

 To test the effectiveness of each of the scenarios, an experiment was conducted

comparing each scenario’s tardiness and throughput results. In this experiment, the

flow-shop was scheduled to have 10 jobs with each of these jobs needing to be

processed at 10 machines. The run times of each of these jobs at each of the machines

was randomly created by the computer following a uniform distribution between 4 and

16. The due dates of each of these jobs were randomly created by the computer

15

following a uniform distribution between 90 and 200. The throughput and tardiness

results were recorded for each of the scenarios. The experiment was run 20 times by

the computer and all the data was stored into Python arrays. The experiment took 10

minutes to complete on an Intel i5-6300U CPU.

 Based on this experiment, the average tardiness and average throughput of each

of the scenarios are as follows:

 Average Tardiness Average Throughput

Single-Criterion:
Minimize Tardiness

80.65 .001110

Single-Criterion:
Maximize Throughput

189.6 .001160

Multi-Criteria:
Optimize Both Criteria

96.05 .001146

Table 2: Average Tardiness and Average Throughput of each Model

Looking at the data, it is necessary to perform statistical analyses to determine

significance. To compare the values, one-way ANOVAs were performed in Python to

compare tardiness values and throughput values. Conducting ANOVA to compare the

tardiness values and throughput values among the programs resulted in a p-value of

.0000144 for tardiness and a p-value of .0038 for throughput. This means at a 95%

confidence level; the values of tardiness and throughput are statistically different.

To visualize the data sets, bar graphs and box-plots are presented below

comparing the tardiness and throughput performance of each of the three models:

16

Figure 8: Bar graphs comparing Throughputs and Tardiness of each Model

Figure 9: Box plots comparing Throughputs and Tardiness of each Model

Based on the results, there is a 3.2% greater throughput with the multi-criteria

model compared to the single-criterion tardiness model. Also there is a 49.3%

improvement in Total Tardiness with the multi-criteria model compared with the single-

criterion throughput model. The multi-criteria model, as would be expected, resulted in

total tardiness and throughput values in between corresponding tardiness and

throughput values in both single-criterion models. This can be visually seen in the bar

17

graphs and the box-plots. Sample run cases with different machine and job counts with

all three different scenarios display similar results to the results found with the 20 run

experiment conducted with 10 jobs and 10 machines.

Conclusions

The results from the experiment prove that the multi-criteria program performs as

planned. The multi-criteria program proved to provide solutions which were

compromises between the single-criterion models. The feasibility of the multi-criteria

program was of concern but all programs finished within 20 seconds for even 10 job and

10 machine scenarios. This program proves to become infeasible as machine and job

counts go past 20 where run times take an hour or more but even the single-criterion

program started to become infeasible at these scales.

Since there was no industry sponsor, it was difficult to find a way to do an

economic analysis. If an industry sponsor was available for this project, comparisons of

throughput and tardiness between subjective scheduling and computer-based

scheduling could be made. Based on the time saved, an economic analysis could be

conducted to see how much money could be saved.

Scheduling is a problem that flow-shops face on a daily problem. With various

priorities, such as customer deadlines and production efficiency, it can be difficult to

develop a schedule which can satisfy every goal and objective. As discussed in this

paper, computer-based scheduling can help schedulers create schedules that satisfy

different KPI requirements. With the inclusion of multi-criteria objectives and the

development of a user-friendly interface for schedulers to interact with, the proposed

program in this paper offers a simplistic tool that schedulers can utilize to create more

18

optimum schedules. The requirements each day may change and perhaps priorities for

each different KPI may change as well. Having low tardiness may be important one day

while having high throughput may be important another day. The ability to alter priorities

gives schedulers higher flexibility and flexibility is extremely important in a flow-shop

where requirements can change at a moment’s notice.

19

References:

1. A. Dhingra, P. Chandna, "Multi‐objective flow-shop scheduling using hybrid

simulated annealing", Measuring Business Excellence, Vol. 14 Iss: 3 (2010),

pp.30 – 41

2. C. Hanen. "Study of a NP-hard cyclic scheduling problem: The recurrent job-

shop." European journal of operational research 72.1 (1994): 82-101.

3. S.M. Johnson, “Optimal two- and three-stage production schedules with setup

times included”, Naval Res. Log. Quart. I (1954) 61-68.

4. A. S. Manne, “On the job-shop scheduling problem”, Operations Research 8

(1960), pp. 219–223,

5. F. Pezzella, G. Morganti, G. Ciaschetti, “A genetic algorithm for the Flexible Job-

shop Scheduling Problem”, Computers & Operations Research, Volume 35,

Issue 10 (2008), Pages 3202-3212

6. S. Rokni “Optimization of industrial shop scheduling using simulation and fuzzy

logic”, University of Alberta M.S. Thesis (2010)

7. D. Ronconi, E. Birgin, “Mixed-integer programming models for flowshop

scheduling problems minimizing the total earliness and tardiness”, Just-in-Time

Systems (2012), pp. 91-105

8. H. M. Wagner, “An integer linear-programming model for machine scheduling,

Naval Research Logistic 6 (1959), pp. 131–140,

9. J. M. Wilson, “Alternative formulations of a flow-shop scheduling problem”,

Journal of the Operational Research Society 40 (1989), pp. 395–399,

10. L. A. Zadeh . “Fuzzy sets”. Inform. Contr. 8 (1965):338-53,

http://www.emeraldinsight.com/author/Dhingra%2C+Ashwani
http://www.emeraldinsight.com/author/Chandna%2C+Pankaj

20

Appendix

A. Wagner’s MILP Formulation for Flow-Shop Scheduling

21

B. Wilson’s MILP Formulation for Flow-Shop Scheduling

C. Manne’s MILP Formulation for Flow-Shop Scheduling

22

D. Run Times for each formulation. (MUB1,MUB2,MUB3 are Wagner, Wilson, and

Manne Respectively)

E. Fuzzy Constraint Formulation

23

F. Complete Back-End Code

24

