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Abstract 

 A flow-shop is a type of manufacturing job shop where similar jobs follow a 

similar, linear sequence through the shop. Every day, flow-shops receive several 

different orders and it is up to the scheduler to plan the daily schedule. This schedule 

should be designed to prevent bottlenecks in the shop, to have on-time delivery of 

products, and satisfy several other requirements. Often times, schedulers perform 

subjective scheduling and utilize simple heuristics or just intuition to schedule the jobs. 

With computer-based scheduling, schedulers can now create schedules and determine 

quantitatively what sorts of schedules work best. Currently, much of the computer-

based schedules only try to optimize for one KPI such as Total Tardiness.  

This paper considers incorporating multiple-criteria into computer based 

scheduling so that schedulers can have more flexibility and develop schedules which 

optimize multiple-criteria; this paper specifically considers minimizing Total Tardiness 

and maximizing Throughput. Comparisons between single-criterion models and the 

multiple-criteria model are made and it is discovered the multiple-criteria model provides 

a great compromise in optimizing both KPIs. A user-friendly program is developed 

where schedulers of any flow-shop can utilize the software to compute schedules for 

cases up to 10 jobs and 10 machines. 
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Introduction 

Flow-shops are manufacturing shops where similar products or jobs follow a 

specific set of processing steps and the parts made are generally quite similar. Also, all 

the jobs follow a linear order where they don’t go and revisit a previous machine for 

processing. This is different from a job-shop where a job can follow any order among 

the machines and can even visit a machine multiple times. Job scheduling is a huge 

problem which every flow-shop company faces. When orders come into a flow-shop, the 

main role of the scheduler is to schedule the jobs so that the jobs are built on-time and 

as fast as possible. Many flow-shops do this manually. Below is an example of a flow-

shop compared to a job-shop: 

 

Figure 1: Comparison between Flow-shop and Job-Shop 

Since the jobs follow a linear fashion in a flow-shop, the scheduling of jobs in 

flow-shops tends to be simpler than for jobs in job-shops. For this project, the scope will 

be focused only on flow-shop scheduling.  
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 The goal of this project is to develop a general-purpose software application 

which will provide a manufacturing company with the optimal flow-shop schedule. This 

general-purpose software application should work with any flow-shop company. What 

an “optimal” flow-shop schedule may vary day to day therefore a multi-criteria 

formulation is created where schedulers can set their preferences for different KPIs. A 

comparison between a single criterion-formulation and the multi-criteria formulation will 

be conducted to determine the effectiveness of the new model. 

 

Background/Literature Review 

 As stated above in the introduction, flow-shop scheduling is a difficult venture 

which every flow-shop tries to tackle. The complexity of flow-shop scheduling falls in the 

NP hard classification (Hanen 1994). What this means is that it takes exponentially 

more effort to schedule jobs as more jobs are added. For this reason, several heuristics 

and other methods are used to tackle this problem. Literature for flow-shop scheduling 

exploded after the introduction of a heuristic algorithm by S.M. Johnson which is now 

called Johnson’s Algorithm (Johnson 1954). This algorithm uses a list of rules to 

develop a flow-shop schedule that optimizes for total elapsed time. For two machines, 

this algorithm provides a schedule with the minimum Total Elapsed time but for 

schedules with more than two machines, this algorithm doesn’t guarantee the best 

solution. 70 years after the formulation of the Johnson’s Algorithm, the depth of 

research into flow-shop scheduling is lackluster. Only over the last 20 years, with the 

explosion of computing power, have researchers started considering more innovative 

ways of solving this problem. Several different heuristics have been developed for flow-
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shop scheduling and these methods include genetic algorithms and ant-colony 

optimization (Pezzella 2008). Most of the research, however, focuses on single-criterion 

optimization and the research that does cover multi-criteria only covers bi-criteria for 

machine counts less than 3 (Dhingra 2010). The purpose of this paper is to fill in the 

research and implementation gap for multi-criteria flow-shop scheduling.  

Looking at flow-shop scheduling formulations, several different Mixed-Integer 

Linear Programming (MILP) formulations are found in literature. In the literature, three 

distinct formulations appear. These three different formulations described by Wagner 

(Wagner 1959), Wilson (Wilson 1989), and Manne (Manne 1960) are listed under 

Appendix A, B, C respectively. To quickly go over the three formulations: 

1. The first formulation by Wagner revolves around the relationships between 

Idle Times, Wait Times, and Processing times of consecutive jobs between 

consecutive machines.  

2. The second formulation by Wilson revolves around the relationships between 

Start Times and Processing times of consecutive jobs between consecutive 

machines. 

3. The third formulation by Manne revolves around the relationships between 

Completion Times, Processing times, and precedence requirements of 

consecutive jobs between consecutive machines.  

In a paper by Ronconi and Birgin (Ronconi & Birgin 2012), the computation times 

for all three methods were measured by solving sample cases which varied in number 

of jobs and number of machines. These formulations were run through a Simplex Solver 

which is the same algorithm used by Microsoft Excel’s solver. The results showed 
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similar results between Wagner’s and Wilson’s formulations with Wilson’s formulation 

being slightly faster. Manne’s formulation was significantly slower and even infeasible 

for large sample sizes (15 jobs and 10 machines). The exact run times are listed in 

Appendix D.  

 Modeling multi-criteria objectives could be done in several ways. Two methods 

will be discussed in this literature review. The first method is through applying a 

weighted average to each objective directly. Each objective is included in the objective 

function and a weight from 0-1 is applied to each objective (Dhingra 2010). The sum of 

all the weights must equal 1. This methodology follows the same principles as weighted 

averages and other “weighted” calculations. A disadvantage of this method is that it is 

difficult to gauge the actual “weight” given to each objective because of their different 

ranges. What is meant by this is that each of these objectives has values which lie in 

different ranges and different magnitudes. For example: Tardiness could range from 0 

days to 20 hours, Total Elapsed Time from 100 hours to 200 hours, and Total Flow 

Time from 300 hours to 500 hours. If equal weighting was applied to each of these 

objectives, Total Flow Time would have higher priority compared to TET or Tardiness 

because it has a larger range than the other two KPIs. To combat this, there must be a 

way to normalize every objective so that the desired priority is applied to each objective.  

The way to normalize objectives is through the application of fuzzy set theory. 

Fuzzy set theory is a part of set theory and was introduced by Lotfi Zadeh (Zadeh 

1965). The purpose of fuzzy set theory is to apply a continuous gradient to generally 

discrete constraints. This paper will be looking at the normalization part of fuzzy set 

theory. To normalize the objectives, the range of each of the objectives must be known. 
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Using the previous example, the general range for tardiness is [0,20] hours, for TET is 

[100,200] hours, and for TFT is [300,500] hours. To normalize each objective, we would 

divide each objective by their total range. By doing this, each objective is effectively 

transformed to a value between 0 and 1. Now, the weighted average method can be 

utilized to combine these objectives into an objective function. A great example of fuzzy 

set theory application in scheduling is given by Sima Rokni (2010). The formulation is 

shown in Appendix E.  

Mixed Integer Linear Programming Formulation 

 Based on the literature review, 3 popular formulations exist for flow-shop 

scheduling. 2 of these formulations, the ones by Wagner and Wilson, are more efficient 

and feasible. Wagner’s and Wilson’s formulations proved to perform quite similarly. 

Below is a table comparing both algorithms by listing the total number of constraints, 

total binary variables, total continuous variables, complexity of code, and computational 

run-times. 

 

# of 
Constraints 

# of 
Binary 
Variables 

# of 
Continuous 
Variables 

Ease of 
Implementation 

Computational 
Run-times 

Wagner nm + 3n - 1 n2 nm + 3n - 1 Medium-High Great 

Wilson 
2nm + 3n - 

m n2 2nm + 3n - m Medium Great 

     Table 1: Comparison between Wagner’s and Wilson’s Formulation 

 Although Wilson’s formulation would generally have more continuous variables 

and number of constraints than Wagner’s, the code complexity required to implement 

Wilson’s algorithm would be simpler than Wagner’s. Since the performance of both 



7 
 

algorithms is similar, the easier implementation of Wilson’s formulation was chosen for 

the foundation of the model presented in this report.  

Variables & inputs of the following model with their corresponding bound 

constraints are listed below: 

𝑥𝑖𝑗  𝑖𝑠 𝑏𝑖𝑛𝑎𝑟𝑦 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖𝑗 ∈ {0,1},  

𝑇𝑗 ≥ 0, 𝐶𝑗𝑚, 𝑆𝑗𝑘  

𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚, 𝑝𝑖𝑘, 𝑑𝑖     

What each of these variables means are as follows: 𝑥𝑖𝑗 is equal to 1 if job 𝑖 (there 

are n number of jobs and these jobs are labelled between 1 and n) is in the 𝑗-th position 

of the sequence, equal to 0 otherwise. 𝑇𝑗 is the Tardiness of the 𝑗-th job in the sequence 

(remember here that this is not related to 𝑖 which is the original label of the jobs, the 𝑗 

only corresponds to the sequence order). 𝐶𝑗𝑚 corresponds to the completion of the 𝑗-th 

job of the sequence at machine 𝑚 (the last machine). 𝑆𝑗𝑘 corresponds to the start time 

of the 𝑗-th job at machine 𝑘. 𝑖 is ordered from 1 to 𝑛 where 𝑛 is the number of jobs in the 

flow-shop. 𝑗 is ordered from 1 to 𝑛 where 𝑛 is the number of jobs in the flow-shop (the 

length of the sequence is the same as the number of jobs). 𝑘 is ordered from 1 to m 

where m is the number of machines in the flow-shop. 𝑝𝑖𝑘 is the processing time of job 𝑖 

at machine k.  𝑑𝑖 is the due date of job 𝑖.  

The following formulation is for the single-criterion flow-shop model which aims to 

minimize total Tardiness of the jobs:  
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑇𝑗

𝑛

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

𝑇𝑗 ≥  𝐶𝑗𝑚 − ∑ 𝑥𝑖𝑗𝑑𝑖,

𝑛

𝑖=1

             𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

𝐶𝑗𝑚 = 𝑆𝑗𝑚 +  ∑ 𝑥𝑖𝑗𝑝𝑖𝑚, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

𝑛

𝑖=1

 

𝑆𝑗+1,𝑘 ≥  𝑆𝑗𝑘 + ∑ 𝑥𝑖𝑗𝑝𝑖𝑘

𝑛

𝑖=1

,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑒𝑥𝑐𝑒𝑝𝑡 𝑛 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘  

𝑆𝑗,𝑘+1 ≥  𝑆𝑗𝑘 + ∑ 𝑥𝑖𝑗𝑝𝑖𝑘

𝑛

𝑖=1

,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 𝑒𝑥𝑐𝑒𝑝𝑡 𝑚  

𝑆11 ≥ 0 

∑ 𝑥𝑖𝑗 = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

𝑛

𝑖=1

 

∑ 𝑥𝑖𝑗 = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

𝑛

𝑗=1

 

 

The single-criterion option for maximizing throughput requires just changing the 

objective function as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐶𝑗𝑚

𝑛

𝑗=1

 

 

The multi-criteria option which optimizes for both throughput and tardiness 

requires the addition of fuzzy constraints as discussed before during the literature 

review. What this requires is the addition of two user inputs 𝑓𝛼 𝑎𝑛𝑑 𝑓𝛽 which are the 

normalizing factors which will effectively convert two factors into a range between 0 and 
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1. Also two more inputs indicating importance must be included and these inputs will be 

labelled as 𝑃𝛼  𝑎𝑛𝑑 𝑃𝛽 . The constraints will remain the same as before from the single-

constraint formulation. The revised objective function is as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (
𝑃𝛼 ∗ 𝐶𝑗𝑚

𝑓𝛼
+  

𝑃𝛽 ∗ 𝑇𝑗

𝑓𝛽
)

𝑛

𝑗=1

 

 

Design Requirements 

Program Input Requirements 

 Since there is no specific customer in this project, the parameters and constraints 

were set for ease and practicality so that virtually any flow-shop could use the program. 

The basic expected inputs from the flow-shop will be as follows. 

1. Jobs & Machines 

A list of jobs that need to be completed is provided. This should also include the 

number of jobs and the number of machines in the flow-shop.  

2. Manufacturing Run Times: 

The manufacturing lead time for each of these jobs including wait time, queue 

time, setup time, and run time should be provided. However, a run time for each 

job at each machine is sufficient if other specific data is not available. 

3. KPIs or Goals to Achieve: 

The scheduler needs to input what KPIs or goals are to be optimized as well as a 

ranked priority for each of these. For example, a scheduler could choose to 

minimize Tardiness and maximize Throughput with ranks of 1 and 2 respectively. 



10 
 

This means the program will try to achieve the Tardiness goal with a higher 

priority compared to the Throughput goal. 

User Interface Requirements: 

The program will have a clean and intuitive layout which a tester can easily 

interface with. This will be presented through a Python interactive interface. The 

scheduler can then type the mentioned inputs above through this application. There will 

be an option to run random jobs through a flow-shop or to input actual processing times. 

After running the program, a clean and clear output of the job schedule should be 

displayed. Another key aspect to the User Interface will be clear graphical outputs of the 

results. Bar graphs and statistical comparisons will be displayed to show the differences 

between various program designs (single-criterion vs multi-criteria).  

Technical Aspects/Backend Design Requirements: 

This program will be built from ground up in Python. There will be two programs 

built; the first will be an implementation of the single-criterion flow-shop scheduling 

program and the second will be an implementation of the multi-criteria flow-shop 

scheduling program. Wilson’s formulation proved to be one of the fastest 

computationally and the easiest to implement therefore this formulation will be used. For 

the multi-criteria design, the use of fuzzy constraints will be incorporated so that the 

schedulers can accurately assign priorities to different KPIs. The optimization add-on, 

which will be the workhorse for computing the results, is Gurobi Optimization Version 7. 

This software package is industry leading in terms of having the fastest run-times for 
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Mixed Integer Linear Programming Formulations. A free academic license was acquired 

for Gurobi. 

Implementation 

 In this section, the back-end code used to incorporate the constraints and the 

objectives will be described. The entire code is in Appendix F. Following this 

explanation, an overview of the User Interface will be described.  

Code 

 Firstly, all the variables need to be initialized. The binary 𝑥𝑖𝑗 variables, the 

continuous start time variables 𝑆𝑗𝑘, and the continuous Tardiness variables 𝑇𝑗 are 

initialized in the code below: 

 

Figure 2: Code for variable initialization 

 Secondly, tardiness and completion time constraints need to be specified. These 

are the lines in the formulation: 𝑇𝑗 ≥  𝐶𝑗𝑚 −  ∑ 𝑥𝑖𝑗𝑑𝑖,
𝑛
𝑖=1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗;  𝐶𝑗𝑚 = 𝑆𝑗𝑚 +

 ∑ 𝑥𝑖𝑗𝑝𝑖𝑚, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑛
𝑖=1  . The code is listed below: 

 

Figure 3: Code for tardiness and completion time constraints 
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 Thirdly, the start time constraints need to be specified. These are the lines in the 

formulation: 𝑆𝑗+1,𝑘 ≥  𝑆𝑗𝑘 +  ∑ 𝑥𝑖𝑗𝑝𝑖𝑘
𝑛
𝑖=1 ,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑒𝑥𝑐𝑒𝑝𝑡 𝑛 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘;  𝑆𝑗,𝑘+1 ≥  𝑆𝑗𝑘 +

 ∑ 𝑥𝑖𝑗𝑝𝑖𝑘
𝑛
𝑖=1 ,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 𝑒𝑥𝑐𝑒𝑝𝑡 𝑚; 𝑆11 ≥ 0. The code is listed below: 

 

Figure 4: Code for start time constraints 

 Fourthly, the binary constraints need to be specified. These are the 

corresponding lines in the formulation: ∑ 𝑥𝑖𝑗 = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ;𝑛
𝑖=1 ∑ 𝑥𝑖𝑗 = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖.𝑛

𝑗=1  The 

code is listed below:  

 

Figure 5: Code for binary constraints 
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Lastly, the objective functions need to be defined. These three objective 

functions are defined: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑇𝑗
𝑛
𝑗=1 ; 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐶𝑗𝑚

𝑛
𝑗=1 ; 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (

𝑃𝛼∗𝐶𝑗𝑚

𝑓𝛼
+𝑛

𝑗=1

 
𝑃𝛽∗𝑇𝑗

𝑓𝛽
). The code is listed below: 

 

Figure 6: Code for Objective function definitions 

User Interface 

In the User Interface, the user can change the number of jobs to any number 

from 1 to 5 and the number of machines to any number from 1 to 5. There is also a 

choice to choose which scenario (objective) function to run. The first two scenarios are 

the single-criterion objective functions while the third scenario is the multi-criteria 

objective function. After this, the throughput and total tardiness of the flow-shop is 

displayed. A graph displaying the difference in throughput and tardiness of the chosen 

scenario to the other two scenarios is also visualized at the bottom. 



14 
 

 

Figure 7: Sample User Interface 

Results 

 To test the effectiveness of each of the scenarios, an experiment was conducted 

comparing each scenario’s tardiness and throughput results. In this experiment, the 

flow-shop was scheduled to have 10 jobs with each of these jobs needing to be 

processed at 10 machines. The run times of each of these jobs at each of the machines 

was randomly created by the computer following a uniform distribution between 4 and 

16. The due dates of each of these jobs were randomly created by the computer 
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following a uniform distribution between 90 and 200. The throughput and tardiness 

results were recorded for each of the scenarios. The experiment was run 20 times by 

the computer and all the data was stored into Python arrays. The experiment took 10 

minutes to complete on an Intel i5-6300U CPU. 

 Based on this experiment, the average tardiness and average throughput of each 

of the scenarios are as follows: 

 Average Tardiness Average Throughput 

Single-Criterion:  
Minimize Tardiness 

80.65 .001110 

Single-Criterion:  
Maximize Throughput 

189.6 .001160 

Multi-Criteria: 
Optimize Both Criteria 

96.05 .001146 

Table 2: Average Tardiness and Average Throughput of each Model 

Looking at the data, it is necessary to perform statistical analyses to determine 

significance. To compare the values, one-way ANOVAs were performed in Python to 

compare tardiness values and throughput values. Conducting ANOVA to compare the 

tardiness values and throughput values among the programs resulted in a p-value of 

.0000144 for tardiness and a p-value of .0038 for throughput. This means at a 95% 

confidence level; the values of tardiness and throughput are statistically different.  

To visualize the data sets, bar graphs and box-plots are presented below 

comparing the tardiness and throughput performance of each of the three models: 
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Figure 8: Bar graphs comparing Throughputs and Tardiness of each Model 

  

Figure 9: Box plots comparing Throughputs and Tardiness of each Model 

Based on the results, there is a 3.2% greater throughput with the multi-criteria 

model compared to the single-criterion tardiness model. Also there is a 49.3% 

improvement in Total Tardiness with the multi-criteria model compared with the single-

criterion throughput model. The multi-criteria model, as would be expected, resulted in 

total tardiness and throughput values in between corresponding tardiness and 

throughput values in both single-criterion models. This can be visually seen in the bar 
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graphs and the box-plots. Sample run cases with different machine and job counts with 

all three different scenarios display similar results to the results found with the 20 run 

experiment conducted with 10 jobs and 10 machines. 

Conclusions 

The results from the experiment prove that the multi-criteria program performs as 

planned. The multi-criteria program proved to provide solutions which were 

compromises between the single-criterion models. The feasibility of the multi-criteria 

program was of concern but all programs finished within 20 seconds for even 10 job and 

10 machine scenarios. This program proves to become infeasible as machine and job 

counts go past 20 where run times take an hour or more but even the single-criterion 

program started to become infeasible at these scales.  

Since there was no industry sponsor, it was difficult to find a way to do an 

economic analysis. If an industry sponsor was available for this project, comparisons of 

throughput and tardiness between subjective scheduling and computer-based 

scheduling could be made. Based on the time saved, an economic analysis could be 

conducted to see how much money could be saved. 

Scheduling is a problem that flow-shops face on a daily problem. With various 

priorities, such as customer deadlines and production efficiency, it can be difficult to 

develop a schedule which can satisfy every goal and objective. As discussed in this 

paper, computer-based scheduling can help schedulers create schedules that satisfy 

different KPI requirements. With the inclusion of multi-criteria objectives and the 

development of a user-friendly interface for schedulers to interact with, the proposed 

program in this paper offers a simplistic tool that schedulers can utilize to create more 
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optimum schedules. The requirements each day may change and perhaps priorities for 

each different KPI may change as well. Having low tardiness may be important one day 

while having high throughput may be important another day. The ability to alter priorities 

gives schedulers higher flexibility and flexibility is extremely important in a flow-shop 

where requirements can change at a moment’s notice. 
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Appendix 
 
 

A. Wagner’s MILP Formulation for Flow-Shop Scheduling 
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B. Wilson’s MILP Formulation for Flow-Shop Scheduling 

 

C. Manne’s MILP Formulation for Flow-Shop Scheduling 
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D. Run Times for each formulation. (MUB1,MUB2,MUB3 are Wagner, Wilson, and 

Manne Respectively) 

 

E. Fuzzy Constraint Formulation
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F. Complete Back-End Code 
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