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ABSTRACT

Whitespace Exploration

Jason L. Daniel

As engineering systems grow in complexity so too must the design tools that we use

evolve and allow for decision makers to efficiently ask questions of their model and

obtain meaningful answers. The process of whitespace exploration has recently been

developed to aid in engineering design and provide insight into a design space where

traditional design exploration methods may fail. In an effort to further the research

and development of whitespace exploration algorithms, a software package called

Thalia has been created to allow for automated data collection and experimentation

with the whitespace exploration methodology.

In this work, whitespace exploration is defined and the current state of the art

of whitespace exploration algorithms is reviewed. The whitespace exploration library

Thalia along with a collection of benchmarking cases are described in detail. A set

of experiments on the benchmark cases are run and analyzed to further understand

the behavior of the algorithm and outline initial performance results which can later

be used for comparison to aid in improving the methodology.

iv



ACKNOWLEDGMENTS

Thanks to:

• Dr. David D. Marshall for never telling me that a problem was too difficult to

solve and inspiring me to explore the wonder that is computational science.

• My Parents for all of their love and support.

• Phoenix Integration for showing me how things are done in the real world, and

supporting the continued development of whitespace exploration.

• Robert Hawkins for always reminding me to always be world class and the good

times we had doing awesome science in the “sad lab”.

• Edgar Busovaca for his humor, friendship, and love of science.

• William Keel for teaching me the importance of the user in software develop-

ment.

v



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Whitespace Exploration Algorithm . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Thalia: Automated Whitespace Exploration Utility . . . . . . . . . . . . . 10

2.1 The Automated Whitespace Exploration Algorithm . . . . . . . . . . 11

2.1.1 Pareto Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Constraint Search . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.4 Direction Search . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.5 Exploration Search . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Thalia Whitespace Exploration Library . . . . . . . . . . . . . . . . . 25

2.3 Thalia Command Line Interface . . . . . . . . . . . . . . . . . . . . . 26

2.4 pyThalia Post Processing Library . . . . . . . . . . . . . . . . . . . . 26

3 Benchmark Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Disk Brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Circle Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Whipple Shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Benchmark Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Circle Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Disk Brake Model Results . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Circle Packing Model Results . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Whipple Shield Model Results . . . . . . . . . . . . . . . . . . . . . . 85

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

vi



APPENDICES

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.1 Circle model variable change histories . . . . . . . . . . . . . . . . . . 101

A.2 Disk Brake model variable change histories . . . . . . . . . . . . . . . 103

A.3 Circle Packing model variable change histories . . . . . . . . . . . . . 103

A.4 Whipple Shield model variable change histories . . . . . . . . . . . . 107

vii



LIST OF TABLES

Table Page

2.1 Whitespace exploration algorithm inputs . . . . . . . . . . . . . . . 14

2.2 The Pareto search step configuration parameters . . . . . . . . . . . 15

2.3 The constraint search step configuration parameters . . . . . . . . . 19

2.4 Sensitivity analysis step configuration parameters . . . . . . . . . . 21

2.5 The direction search step configuration parameters . . . . . . . . . 22

2.6 The exploration search step configuration parameters . . . . . . . . 24

3.1 Circle model objective variables . . . . . . . . . . . . . . . . . . . . 31

3.2 Circle model design variables . . . . . . . . . . . . . . . . . . . . . 31

3.3 Circle model constraint variables . . . . . . . . . . . . . . . . . . . 32

3.4 Circle model non-design variables . . . . . . . . . . . . . . . . . . . 32

3.5 Disk Brake model objective variables . . . . . . . . . . . . . . . . . 34

3.6 Disk Brake model design variables . . . . . . . . . . . . . . . . . . 34

3.7 Disk Brake model constraint variables . . . . . . . . . . . . . . . . 34

3.8 Disk Brake model non-design variables . . . . . . . . . . . . . . . . 35

3.9 Objective variables for the circle packing problem . . . . . . . . . . 37

3.10 Circle packing model design variables . . . . . . . . . . . . . . . . . 37

3.11 Circle packing constraint variables . . . . . . . . . . . . . . . . . . 37

3.12 Circle packing model non-design variables . . . . . . . . . . . . . . 37

3.13 Whipple shield model objective variables . . . . . . . . . . . . . . . 39

3.14 Whipple shield model design variables . . . . . . . . . . . . . . . . 39

3.15 Whipple shield model constraint variables . . . . . . . . . . . . . . 39

3.16 Whipple shield non-design variables . . . . . . . . . . . . . . . . . . 40

4.1 Circle model exploration objective variables . . . . . . . . . . . . . 43

4.2 Circle model exploration design variables . . . . . . . . . . . . . . . 43

4.3 Circle model exploration constraint variables . . . . . . . . . . . . . 43

4.4 Circle model exploration non-design variables . . . . . . . . . . . . 43

4.5 Pareto search configuration for the Circle model . . . . . . . . . . . 44

viii



4.6 Constraint search configuration for the Circle model . . . . . . . . . 44

4.7 Sensitivity analysis configuration for the Circle model . . . . . . . . 44

4.8 Direction search configuration for the Circle case . . . . . . . . . . 45

4.9 Exploration search configuration for the Circle model . . . . . . . . 45

4.10 First round box constraint activity for the Circle model . . . . . . . 48

4.11 First round constraint activity for the Circle model . . . . . . . . . 48

4.12 The initial sensitivities for the Circle model . . . . . . . . . . . . . 48

4.13 Final box constraint activity for the Circle model . . . . . . . . . . 52

4.14 Initial constraint activity for the Circle model . . . . . . . . . . . . 52

4.15 Final sensitivities for the Circle model . . . . . . . . . . . . . . . . 52

4.16 Disk brake model objective variable setup . . . . . . . . . . . . . . 58

4.17 Disk brake model design variable setup . . . . . . . . . . . . . . . . 58

4.18 Disk brake model constraint variable setup . . . . . . . . . . . . . . 59

4.19 Disk Brake model exploration variable configuration . . . . . . . . . 59

4.20 Pareto search configuration for the Disk Brake model . . . . . . . . 60

4.21 Constraint search configuration for the Disk Brake model . . . . . . 60

4.22 Sensitivity analysis configuration for the Disk Brake model . . . . . 60

4.23 Direction search configuration for the Disk Brake model . . . . . . 62

4.24 Exploration search configuration for the Disk brake model . . . . . 62

4.25 Initial box constraint activity for the Disk Brake model . . . . . . . 62

4.26 Initial constraint activity for the Disk Brake model . . . . . . . . . 63

4.27 Initial sensitivities for the Disk Brake model . . . . . . . . . . . . . 63

4.28 Final box constraint activity for the Disk Brake model . . . . . . . 65

4.29 Final constraint activity for the Disk Brake model . . . . . . . . . . 67

4.30 Lower bound history for g3 constraint . . . . . . . . . . . . . . . . . 68

4.31 Final sensitivities for the Disk Brake model . . . . . . . . . . . . . 68

4.32 Circle packing model design variable configuration . . . . . . . . . . 74

4.33 Circle packing model objective variable configuration . . . . . . . . 74

4.34 Circle packing model constraint variable configuration . . . . . . . 75

4.35 Circle packing model non-design variable configuration . . . . . . . 75

4.36 Pareto search configuration for the circle packing model . . . . . . . 75

4.37 Constraint search configuration for the Sphere Packing model . . . 76

ix



4.38 Sensitivity analysis configuration for the Sphere Packing model . . 76

4.39 Direction search configuration for the circle packing model . . . . . 76

4.40 Exploration search configuration for the Sphere Packing model . . . 77

4.41 Initial sensitivities for the circle packing case . . . . . . . . . . . . . 79

4.42 Whipple shield objective variable configuration . . . . . . . . . . . 85

4.43 Whipple shield design variable configuration . . . . . . . . . . . . . 85

4.44 Whipple shield constraint variable configuration . . . . . . . . . . . 86

4.45 Whipple shield non-design variable configuration . . . . . . . . . . 86

4.46 Pareto search configuration for the Whipple Shield model . . . . . . 87

4.47 Constraint search configuration for the Whipple Shield model . . . 87

4.48 Sensitivity analysis configuration for the Whipple Shield model . . 87

4.49 Direction search configuration for the Whipple Shield model . . . . 88

4.50 Exploration search configuration for the Whipple Shield model . . . 88

4.51 Initial box constraint activity for the Whipple Shield model . . . . 89

4.52 Initial constraint activity for the Whipple Shield model . . . . . . . 90

4.53 Initial sensitivities for the Whipple Shield model . . . . . . . . . . . 91

4.54 Final box constraint activity for the Whipple Shield model . . . . . 92

4.55 Final constraint activity for the Whipple Shield model . . . . . . . 93

A.1 Circle model r box bound change history . . . . . . . . . . . . . . . 101

A.2 Circle model constraint c change history . . . . . . . . . . . . . . . 102

A.3 Circle model non-design variable change history . . . . . . . . . . . 102

A.4 Disk Brake model design variable Ri box bound change history . . 103

A.5 Disk Brake model design variable Ro box bound change history . . 104

A.6 Disk Brake model design variable F box bound change history . . . 104

A.7 Disk Brake model constraint g3 bound change history . . . . . . . . 105

A.8 Disk Brake model constraint g4 bound change history . . . . . . . . 105

A.9 Disk Brake model constraint g5 bound change history . . . . . . . . 106

A.10 Disk Brake model non-design variable change history . . . . . . . . 106

A.11 Circle Packing model non-design variable change history . . . . . . 107

A.12 Whipple Shield model design variable s box-bound change history . 108

A.13 Whipple Shield model design variable tb box-bound change history . 109

x



A.14 Whipple Shield model variable tw box-bound change history . . . . 109

A.15 Whipple Shield model variable AR box-bound change history . . . 110

A.16 Whipple Shield model constraint δb bound change history . . . . . . 110

A.17 Whipple Shield model constraint ωn bound change history . . . . . 111

A.18 Whipple Shield model non-design variable change history . . . . . . 111

xi



LIST OF FIGURES

Figure Page

1.1 Value of design space exploration early on in the design process . . 1

1.2 Whitespace in a design exploration . . . . . . . . . . . . . . . . . . 2

1.3 Design exploration that does not produce the desired system . . . . 3

1.4 Original whitespace exploration methodology [12] . . . . . . . . . . 8

2.1 Thalia Command Line Interface . . . . . . . . . . . . . . . . . . . . 27

2.2 The hypervolume indicator in 2D[7] . . . . . . . . . . . . . . . . . . 28

3.1 Diagram of the Disk Brake model [16] . . . . . . . . . . . . . . . . 33

4.1 Initial design space for the Circle model . . . . . . . . . . . . . . . 46

4.2 Initial decision space for the Circle model . . . . . . . . . . . . . . 47

4.3 Initial Pareto search convergence for the Circle case . . . . . . . . . 47

4.4 Initial direction search for the Circle model . . . . . . . . . . . . . . 49

4.5 Initial exploration search convergence for the Circle model . . . . . 49

4.6 Final exploration search convergence for the Circle model . . . . . . 50

4.7 Final decision space for the Circle model . . . . . . . . . . . . . . . 51

4.8 Final Pareto search convergence for the Circle model . . . . . . . . 51

4.9 Final direction search for the Circle model . . . . . . . . . . . . . . 53

4.10 Final exploration search convergence for the Circle model . . . . . . 53

4.11 Pareto front progression for the Circle model exploration . . . . . . 54

4.12 Hypervolume progression for the Circle model exploration . . . . . 55

4.13 Hypervolume progression for the Circle model batch runs . . . . . . 55

4.14 Mean Pareto front distance progression for the Circle model batch
run in objective space . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.15 Mean Pareto front distance progression for the Circle model batch
run in decision space . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.16 Mean function evaluations for the Circle model batch runs . . . . . 57

4.17 Initial design space for the Disk Brake model . . . . . . . . . . . . 61

4.18 Initial Pareto search convergence for the Disk Brake model . . . . . 61

xii



4.19 Initial direction search for the Disk Brake model . . . . . . . . . . . 64

4.20 Initial exploration search convergence for the Disk Brake model . . 64

4.21 Final design space for the Disk Brake model . . . . . . . . . . . . . 65

4.22 Final decision space for the Disk Brake model . . . . . . . . . . . . 66

4.23 Final Pareto search convergence for the Disk Brake model . . . . . 67

4.24 Final direction search for the Disk Brake model . . . . . . . . . . . 69

4.25 Final exploration search convergence for the Disk Brake model . . . 69

4.26 Pareto front progression for the Disk Brake model exploration . . . 70

4.27 Hypervolume progression for the Disk Brake model exploration . . 71

4.28 The hypervolume progression for the Disk Brake model batch runs 71

4.29 Mean Pareto front distance progression for the Disk Brake model
batch run in objective space . . . . . . . . . . . . . . . . . . . . . . 72

4.30 Mean Pareto front distance progression for the Disk Brake model
batch run in decision space . . . . . . . . . . . . . . . . . . . . . . 72

4.31 Mean function evaluations for the Disk Brake model batch run . . . 73

4.32 Initial design space for the circle packing model . . . . . . . . . . . 77

4.33 Initial Pareto search convergence for the circle packing model . . . 78

4.34 Initial direction search for the circle packing model . . . . . . . . . 79

4.35 Final design space for the circle packing model . . . . . . . . . . . . 80

4.36 Final Pareto search convergence for the circle packing model . . . . 80

4.37 Pareto front progression for the circle packing model exploration . . 81

4.38 Hypervolume progression for the circle packing model exploration . 82

4.39 Hypervolume progression for the circle packing model batch runs . 82

4.40 Mean Pareto front distance progression for the circle packing model
batch run in objective space . . . . . . . . . . . . . . . . . . . . . . 83

4.41 Mean Pareto front distance progression for the circle packing model
batch run in decision space . . . . . . . . . . . . . . . . . . . . . . 83

4.42 Mean function evaluations for the circle packing model batch run . 84

4.43 Initial design space for the Whipple Shield model . . . . . . . . . . 89

4.44 Initial decision space for the Whipple Shield model . . . . . . . . . 90

4.45 Final design space for the Whipple Shield model . . . . . . . . . . . 92

4.46 Final decision space for the Whipple Shield model . . . . . . . . . . 93

4.47 Pareto front progression for the Whipple Shield model exploration . 94

xiii



4.48 Hypervolume progression for the Whipple Shield model batch runs 94

4.49 The mean Pareto front distance progression for the Whipple Shield
model batch run in objective space . . . . . . . . . . . . . . . . . . 95

4.50 The mean Pareto front distance progression for the Whipple Shield
model batch run in decision space . . . . . . . . . . . . . . . . . . . 96

4.51 The mean function evaluations for the Whipple Shield model batch
run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xiv



Chapter 1

INTRODUCTION

In engineering design, the ability to effectively explore the design space and iterate

on concepts can mean the difference in producing a successful system or one fraught

with cost and schedule overruns. As technology and design exploration methods have

matured, computer models and experiments are being more widely used in engineering

design. Often in engineering, the design process is derived to meet a set of system

requirements, however requirements often change and it is important to be able to

ask ‘what if’ questions of an engineering model in order to design systems that will be

robust and adaptable. There are also cases in design where the requirements are not

well known or that one seeks designs that are simply the best possible and one wishes

to understand what factors are holding the system back from improved performance.

The importance of design space exploration and the ability to do so early on in the

project has a direct relation to project costs. Changes in the design are easier to

make and much less costly early on as shown in Figure 1.1.

Figure 1.1: Value of design space exploration early on in the design process
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Any exploration of the design space could be considered to reside under the um-

brella of methods referred to as whitespace exploration; the development of tools

and algorithms designed to provide information about previously unexplored regions

the the design space. The problem that whitespace exploration is truly trying to

solve however, is that of a design space where some exploration has already occurred

through a design of experiments, optimization, or similar methods, and yet there still

exist regions of the space that contain no information. This is what is referred to as

the whitespace as shown in Figure 1.2.

Figure 1.2: Whitespace in a design exploration

There exist a variety of reasons why a design engineer would wish to explore

the whitespace of a model. The most straightforward example is that none of the

designs found meet system requirements, and that the desired design exist in the

whitespace as shown in Figure 1.3. Alternatively one may wish to improve upon

an existing system and wishes to know the most effective way to push the design

into other regions of the design space. By providing answers to the question of why

2



the whitespace exist for a model, better decisions can be made as to where additional

effort should be placed in the design process, or if the desired region of the whitespace

is truly inaccessible, that alternative architectures may need to be explored.

Figure 1.3: Design exploration that does not produce the desired system

1.1 The Whitespace Exploration Algorithm

Whitespace exploration has the primary goal of finding designs in the whitespace

of a design space that have not yet been reached. The current baseline algorithm

proposed by [12] volunteers that in a sufficiently explored design space that regions

of whitespace will exist due to the assumptions made about the model. Assumptions

for a model can manifest in a few different ways

• Design Variable Box Constraints

The upper and lower bounds specified for input design variables may prevent

designs from reaching the whitespace.
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• Model Constraints

The specified model output constraints may prevent designs from reaching the

whitespace.

• Non-Design Input Variables

Model inputs that were set as constants may prevent designs from populating

the whitespace.

The process of whitespace exploration seeks to examine and modify these assump-

tions in order to produce designs within the whitespace through a mixture of design

space exploration techniques. The design variable box bounds are often set based on

either some physical constraint, mathematical property of the parameter, or educated

guess about what is appropriate. In all cases obtaining insight into which box con-

straints are active and preventing progression towards a desired design can encourage

a deeper look into ways that they could be relaxed.

Model output constraints become an important assumption to examine when the

Pareto front, or a portion of it, is active on the constraint boundary. Constraints that

are tied to system requirements or preference are the likely candidates to investigate

for relaxation to allow for improved system performance. Those constraints that are

physical in nature to allow proper function of the system are less likely to allow for

modification, but may spur discussion of the system architecture to remove or work

around such constraints if they are preventing progress.

The non-design variables are the most unique perspective of whitespace explo-

ration and they represent a paradigm shift in how we look at system inputs. The

non-design variables are inputs to the model that are typically considered constants.

Examples of these types of variables could be theoretical efficiency values, holdovers

from previous design decisions, or based on physical properties. While a parameter

like the speed of light can be considered a non-design variable, it is also one that is

4



unlikely to be changed. A parameter such as the coefficient of drag on a wing, how-

ever, is something that can be changed through engineering work. While non-design

variables are typically something we do not want to change, otherwise they would be

considered design variables, the current model may state that something has to give

and the modification of a non-design variable may be the solution.

In all cases where an assumption is shown to be a factor in preventing progression

into the design space, whitespace exploration can be used to show the decision maker

what they get in return for modifying that assumption to assess if the effort required

to change the parameter is worth the potential performance gain.

The inputs to the original whitespace exploration algorithm presented in [12] are

as follows

• Analysis Model

The model is treated as a ‘black box’ which takes input values and produces

output values.

• Design Variables

These are the tune-able input parameters for the model and have lower and

upper bound constraints associated with them.

• Constraints

These are the output variable constraints on the model which determine if a

design is valid or invalid.

• Non-Design Variables

These are the variables that would typically be considered constant inputs for

the model but do have variability to them. These variables also have lower and

upper bounds associated with them.
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• Baseline Design

This is a specified set of inputs that produce a valid output for the model to be

used as the starting point for the whitespace exploration process.

• Desired Point

This is a set of objective values in the whitespace that we wish to move towards.

• Exploration Configuration Parameters

These are the set of user specified parameters that are utilized by the sub-

processes in the whitespace exploration process.

The whitespace exploration algorithm consist of eleven unique steps.

1. Generate Pareto Front

An initial Pareto front is generated from the model.

2. Select the Desired Point in the Whitespace

A point in the objective space is selected by the decision maker that the Pareto

front will be driven toward.

3. Relax Response Constraints

If possible, response variable constraints are relaxed.

4. Identify the Selected Point on the Pareto frontier

A point on the Pareto front is selected by the decision maker as a representative

of the Pareto front.

5. Identify Non-Design Variables as candidates for modification

Non-design variables that could be modified are selected by the decision maker

for investigation

6



6. Perform a sensitivity study on the selected variables

A sensitivity analysis is performed about the selected point to determine which

of the non-design variables have an affect on the system objectives.

7. Select variables to modify based on sensitivity results

The decision maker selects non-design variables that were shown to have an

affect on the system objectives.

8. Determine optimum combination of values for selected variables

A search is performed to determine the values of the selected non-design vari-

ables that would best move the selected point in the direction of the desired

point.

9. Determine step size

The decision maker determines a step size to apply to the values found by the

previous step.

10. Apply variable changes

Update the non-design variable values after the step is applied to the model.

11. Generate new Pareto front

A new Pareto front is generated from the updated model and the process is

repeated until sufficient progress of the Pareto front into the whitespace has

been achieved.

1.2 Motivation

In general this work seeks to aid in maturing methods for design space exploration.

More specifically we are interested in improving the new class of algorithms called

7



Figure 1.4: Original whitespace exploration methodology [12]

whitespace exploration which have the potential to improve design space exploration

and provide an answer to a question faced by design engineers.
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Given a set of solutions for a model where no design meets system requirements,

what process can be applied to reach the desired design?.

In this work a variety of terminology is also set forth to aid in further discussion

about the topics presented. In the optimization community, there exists a variety

of well known test problems and published performance metrics on those problems

for different algorithms which allows for direct comparison with newly developed

algorithms. In a similar fashion to optimization it is necessary to develop a set of

test problems and comparable metrics for whitespace exploration algorithms to allow

for direct comparison and proof that new algorithms have indeed found an improved

procedure. The analyses performed on the benchmark problems are also used to illicit

issues with the current algorithm and provide motivation for future research in the

area.

This work also serves to promote the Thalia library and associated utilities so

that other interested researchers might be able to use it to further this evolving field.
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Chapter 2

THALIA: AUTOMATED WHITESPACE EXPLORATION UTILITY

In order to achieve the objectives of this work a software utility was developed to

aid in the research and development of whitespace exploration algorithms dubbed

Thalia. The initial manual whitespace exploration algorithm along with a prototype

for whitespace exploration was developed at Phoenix Integration [12] was built on

Phoenix Integration’s Model Center Cloud system which provided an example of how

whitespace exploration could be implemented and deployed in an enterprise environ-

ment. While the cloud system Whitespace Explorer met the needs of that research,

for the goals of this work it was desired to have a system that was more lightweight

and faster as there is significant overhead incurred by the machinery required for a

cloud architecture in both developer time and model evaluation. Another aspect of

the original Whitespace Explorer that did not fit well with this research is the required

user interaction at each step in the whitespace exploration process. While the human

in the loop aspect of whitespace exploration is very important, the goal of this work

is to quickly assess bulk behaviors and gain insights into the whitespace exploration

process in order to promote further improvement and so a new framework was devel-

oped using an automated approach was deemed a to be a more efficient approach to

achieve these goals.

The Thalia: Automated Whitespace Exploration software package is a collection

of tools developed in Java along with some modifications to the original baseline

whitespace exploration algorithm to allow for easy modification of the whitespace

exploration methodology and bulk data gathering via automated whitespace explo-

rations. The software package developed for this work contains multiple pieces created

with future use and extensibility in mind.
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• Thalia Whitespace Exploration Library

A Java library that contains all the necessary components to set up and run a

whitespace exploration

• Thalia CLI

A command line interface for interacting with the Thalia Whitespace Explo-

ration Library

• Thalia SDK

A collection of extendable classes and interfaces used to integrate and define

new models that can be used in Thalia

• Benchmark Model Suite

A collection of test models suitable for studying whitespace exploration

• pyThalia

A python package developed for post processing the results of explorations pro-

duced by Thalia.

2.1 The Automated Whitespace Exploration Algorithm

The algorithm used for whitespace exploration that is implemented in Thalia is a

modified version of the original algorithm where each part that involves human inter-

action has been replaced with an automated procedure. The algorithm is split into

five steps, each iteration of these steps is called a round. The execution of multiple

rounds until some stopping criteria is met is called an exploration. After each round

the model is updated and a new Pareto front can be generated that is expected to be

closer to the desired point.

The automated version of the whitespace exploration algorithm that is imple-

mented in Thalia is initialized with a workflow and a configuration. The workflow
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specifies the analysis model inputs, outputs, and a run method for performing the

analysis. The configuration contains all of the information and tuning parameters

needed to run an exploration.

For the automated algorithm used in this work some assumptions are made. These

assumptions serve to simplify the analysis and scope the use cases that are investigated

in this research. The assumptions are as follows:

• The model is considered a black box

The model contains only inputs and outputs and no introspection will be per-

formed based on any internal information from the model during the explo-

ration.

• All variables are real and continuous

Only real valued, continuous input and output variables are considered.

• Only the progression of the Pareto front is considered

While the concepts of whitespace exploration could be applied to a wide variety

of cases, in this work only the progression of the Pareto front into the whitespace

is considered.

• The input variables will not change

The input variables specified at the beginning of an exploration will remain the

same throughout the exploration with no additions or removals of variables.

Any changes to the variables that are considered in an exploration would result

in a separate exploration for the purposes of this work.

• The output variables will not change

The objective and output constraint variables specified in the exploration will

remain the same throughout the exploration. Changing of these variables would

be considered a new exploration.
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• The desired point will not change

The desired point will remain the same throughout an exploration. A change

in the location of the desired point would be considered a new exploration for

the purposes of this work/

The five steps utilized for the automated whitespace exploration process are as

follows:

1. Pareto Search

A search for the Pareto front is performed.

2. Constraint Search

Active output constraints and design variable box constraints are found.

3. Sensitivity Analysis

A sensitivity analysis is performed to identify non-design variables that may

affect progression of the Pareto front into the whitespace.

4. Direction Search

A search to find the optimal set of non-design variable values is sought which

defines the direction of progress into the whitespace.

5. Exploration Search

A search is performed to obtain a step size for progressing the selected point

into the whitespace and updating the model to a new baseline.

A whitespace exploration problem definition is similar to that of a multi-objective

optimization problem and consist of specifying the input variables, output variables,

and a convergence criteria. In Thalia the convergence criteria for an exploration is

simply a set number of rounds that are run, with each round, hopefully, progressing
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the Pareto front further into the whitespace towards the desired point. These inputs

are summarized in Table 2.1.

Table 2.1: Whitespace exploration algorithm inputs

Exploration Settings

Property Description

Max Rounds The maximum number of rounds

(iterations) to run the exploration

Baseline Design A set of valid inputs for the model

that represents a typical design or

starting point

Desired Point The desired point in the whites-

pace

Design Variables The model design variables

Objective Variables The model objective variables

Constraint Variables The model constraint variables

Non-Design Variables The model non-design variables

2.1.1 Pareto Search

The goal of the Pareto search step is to find the model’s Pareto front for the current

baseline design. The Pareto search step utilizes the Non-Dominated Sorting Genetic

Algorithm 2 commonly referred to as NSGA-II [5]. This is a popular and robust

multi-objective optimization algorithm that uses genetic operators on an evolving

set of solutions known as individuals in it’s search. In Thalia a modified version of

the jMetal NSGA-II implementation is used [6]. The configuration parameters for

this step that are set a priori to the exploration primarily contain of the adjustable

14



parameters to the NSGA-II algorithm which are summarized in Table 2.1.

Table 2.2: The Pareto search step configuration parameters

Pareto Search Configuration

Property Description

Population Size The populations size used for the ge-

netic search algorithm

Max Evaluations The maximum number of evaluations

for the Pareto search

Convergence Tolerance Pareto search convergence Tolerance

Convergence Generations Number of convergence generations

Crossover Probability The genetic search algorithm crossover

probability

Crossover Index The genetic search algorithm crossover

index

Mutation Probability The genetic search algorithm mutation

probability

Mutation Index The genetic search algorithm mutation

index

Given that the true Pareto front would not be known in a real engineering scenario,

the approximation of the true front that produced by NSGA-II is used. The Pareto

front is considered to be sufficiently resolved when a set of convergence metrics have

not changed more than a specified tolerance for a set number of generations of the

algorithm. The different metrics are utilized to examine the size and shape of the

Pareto front and assumes that if the front is seen to be unchanging for a number of

generation then further execution of the search algorithm will not yield better results.
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These metrics are used in favor of a set number of model evaluations or generations

as is also common in order to better compare results between different models as a

set number evaluations may produce a sufficiently resolved front for one model while

producing one that is unresolved for another model without tweaking this parameter

on a model by model bases.

The three convergence metrics used are the expansion metric, density metric, and

goodness metric [3]. The expansion metric tracks the ‘growth’ of the Pareto front

by observing the change in the range of objective values. The range is calculated for

each objective using

RN
i = |fimax − fimin

| . (2.1)

where RN
i is the range of the i’th objective of a design in the Pareto front for gen-

eration N . The expansion metric is then calculated from the maximum normalized

difference between the rangeRN
i of the current generation and the previous generation

EN = max

{∣∣∣∣RN
i −RN−1

i

RN
i

∣∣∣∣} . (2.2)

The density metric represents the change in the Pareto front density between gener-

ation and is calculated using

D =
size(FN)

VN
(2.3)

where size(FN) is the number of solutions in the Pareto front and VN is the volume

of the N ’th generation’s Pareto front calculated using

VN =
i=K∏
i=0

|fimax − fimin
| (2.4)

where K is the number of objectives. The frontier goodness metric also referred to as

simply ‘goodness’ tracks the ratio of solutions in the Pareto front, to the population

size.

GN =
M −FN

M
(2.5)
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An optimization run is considered converged when the metrics have not changed

within a specified tolerance ε for a set number of generations Gconv. A generation is

flagged as approaching convergence when the following criteria is met

max(|EN − EN−1|, |DN −DN−1|, |GN − GN−1|) < ε. (2.6)

If Gconv consecutive generations are flagged as approaching convergence than the

optimization is considered converged and it’s execution is halted.

Once the NSGA-II algorithm has converged, and a Pareto front found, the entire

set of evaluated solutions is then passed into the NSGA-II non-dominated sorting

procedure to produce the final Pareto front that is used for calculations in the pro-

ceeding steps. This final step is so that the most complete Pareto front is used based

on information already obtained by the search process and not constrained by the

population size specified for the NSGA-II algorithm.

Along with finding the Pareto front, the Pareto search step is also used to identify

the selected point on the front. In the manual version of the whitespace exploration

algorithm, the selected point is chosen by the user, but since this is an automated

algorithm, an automated procedure is used for choosing the selected point. In this

case, the Pareto front is normalized on a scale of zero to one with the normalization

factor also being applied to the desired point, then the closest point on the Pareto

front to the desired point is chosen as the selected point. The normalization process

leads to the selected point being chosen on the portion of the Pareto front that has

the largest range.

2.1.2 Constraint Search

The constraint search step uses the Pareto front produced by the Pareto search step

and seeks to identify active constraints. A constraint, either output constraint or

design variable box constraint is determined to be active if a sufficient portion of
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designs in the Pareto front are within a specified tolerance from the constraint value.

The box constraint activity of each design is checked against the normalized decision

variable value using

xinormalized =
xi − xlb
xub − xlb

. (2.7)

If the normalized value for a solution is less than the relative tolerance value than it

is considered active on the lower box constraint, and if it is greater than one minus

the relative tolerance value than it is considered active on the upper box constraint.

If the percentage of designs that are active on a box constraint is equal to or greater

than the box constraint change tolerance value than that constraint is flagged for

modification, and the lower, upper, or both box constraint values will be modified by

the box constraint change percentage for the next round in the exploration.

A similar process for the output constraints is used whereby each solution in the

Pareto front is checked for activity based on how close it’s values are to the constraint

boundary, if a sufficient number of solutions are considered active specified by the

constraint change tolerance, than that constraint will be modified by the constraint

change percentage for the next round.

2.1.3 Sensitivity Analysis

The sensitivity analysis step is used to determine which non-design variables should

be used as inputs for the direction search step. The output of the sensitivity analysis

step is the relative influence for each of the non-design variables with respect to each

of the objective variables. Based on user configuration, those variables that have

a sensitivity above a specified tolerance are chosen for use in the direction search

step. The sensitivity analysis calculation begins by creating a stencil of designs to be

evaluated are used in a finite difference calculation. For each dimension two design
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Table 2.3: The constraint search step configuration parameters

Constraint Search Configuration

Property Description

Box Constraint Relative Tolerance The tolerance for indicating that a solu-

tion is active on a given box constraint

Box Constraint Change Tolerance The tolerance for indicating that

enough Pareto front solutions are ac-

tive on the box constraint to trigger a

modification

Box Constraint Change Percentage The percentage amount to modify a

flagged box constraint for the next

round

Constraint Relative Tolerance The tolerance for indicating that a solu-

tion is active on a given box constraint

Constraint Change Tolerance The tolerance for indicating that

enough Pareto front solutions are ac-

tive on the constraint to trigger a mod-

ification

Constraint Change Percentage The percentage amount to modify a

flagged constraint for the next round
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points are specified at

xLi = xi(1− εs) (2.8)

xUi = xi(1 + εs) (2.9)

where the ‘lower point’ xLi is the value of the selected point on dimension i minus

the stencil size parameter εs and the ‘upper point’ xUi is the value of the selected

point plus the stencil size parameter. This results in 2N total points for the stencil

where N is the number of dimensions in the decision space.A non-dimensionalization

parameter is used and is calculated as

Di,j =
xj
ui

(2.10)

where i ranges the number of output variables and j ranges the number of input

variables evaluated at the selected point that is the center of the stencil. The partial

derivatives are calculated for each output - input pair

∂U

∂X
= Di,j ∗

U+
i,j − U−

i,j

Hj

(2.11)

where Ui,j is the output value for output i and input j, with the + and − denoting

the high and low values for the stencil. Hj is the spacing for input j and Di,j is the

non-dimesionalization parameter. With the partial derivatives known, the relative

influence Φi,j of each input on each output using the central difference formula

Φi,j =
∂Ui,j
∂Xi,j

/

n∑
i=0

∂Ui,j
∂Xi,j

. (2.12)

The relative influence value Φi,j scales the sensitivity values for each output between

0 and 1 and indicates how influential an input is compared to the others.

2.1.4 Direction Search

The direction search step is used to find the direction vector composed of the non-

design variables that will move the selected point into the whitespace in the direction
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Table 2.4: Sensitivity analysis step configuration parameters

Sensitivity Analysis Configuration

Property Description

Stencil Size A percentage value applied to each in-

put to create the finite difference stencil

Selection Tolerance The sensitivity tolerance for a variable

to be selected for inclusion in the direc-

tion search

of the desired point. The direction search is set up in the form of an optimization

problem where the objective is to maximize the dot product between two vectors in

the model’s objective space. The first vector is constructed from the selected point

and the desired point, the second vector is constructed from the selected point and a

new point called the calculated point which is the point in objective space that is found

as a result of changing the non-design variables of the selected point. By optimizing

the dot product between these two vectors, we hope to achieve a dot product of one,

which results in a calculated point that is directly in line with our desired point.

The optimization algorithm used in Thalia for the direction search is a version of

NSGA-II that has been modified to be more efficient for a single objective. In place

of the standard non-dominated sorting procedure used in NSGA-II, the population is

sorted by objective value and the desired number of best individuals are carried over

to the next generation to maintain elitism. Note that because the direction search is

a single objective problem and there is no Pareto front, the algorithm does not use

the same procedure as the Pareto front search for it’s convergence criteria and instead

checks to see if the best found objective value has changed for a specified number of

generations.
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Table 2.5: The direction search step configuration parameters

Direction Search Configuration

Property Description

Population Size The populations size used for the ge-

netic search algorithm

Max Evaluations The maximum number of evaluations

for the direction search

Convergence Tolerance direction search convergence Tolerance

Convergence Generations Number of convergence generations

Crossover Probability The genetic search algorithm crossover

probability

Crossover Index The genetic search algorithm crossover

index

Mutation Probability The genetic search algorithm mutation

probability

Mutation Index The genetic search algorithm mutation

index

2.1.5 Exploration Search

The exploration search step uses the direction found by the direction search step and

adjusts the non-design variables in order to project the selected point into the whites-

pace. Once there has been sufficient progress into the whitespace by the exploration

search, a new point is defined, the exploration point, which will then become the new

baseline design for the next round of exploration. The goal of this step is that if a

representative design in the Pareto front, the selected point, can be moved into the

whitespace towards the desired point, then the rest of the Pareto front will follow. In
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the manual whitespace exploration algorithm the user determines what is sufficient

before moving on to the next round.

In Thalia, a Golden Section search [15] is used to find the exploration point that

is closest to the desired point. The search iterates on an input exploration parameter

ηe which is a multiplier on the vector calculated vector which is the calculated vector

from the selected point to the resultant calculated point from the direction search.

An input value of zero for the exploration parameter results in the selected point

itself, while a value of one would give the calculated point. It is desired that other

values of the exploration parameter will give a point in line with the direction found

by the direction search, however this is model dependent and nonlinearities that exist

between the non-design variables and the objective space could cause the exploration

point to veer away. By setting a limit on ηe, the amount of progression of the selected

point into the whitespace at each round can be controlled.

The objective for the Golden Section search is based on two vectors, the explo-

ration vector Ve and the desired vector Vd which are defined in Equations 2.13 and

2.14.

Ve = pe − ps (2.13)

Vd = pd − ps (2.14)

where pe is the current exploration point, ps is the selected point, and pd is the

desired point, which are all defined in the objective space. The objective that we seek

to minimize is the negative ratio of norms of these vectors called the exploration ratio

given by Equation 2.15.
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Er = −||Ve||
||Vd||

(2.15)

In Thalia, the euclidean norm is used although any norm would be suitable. The

more negative the exploration ratio Er is, the closer the exploration point is to the

desired point.

Table 2.6: The exploration search step configuration parameters

Exploration Search Configuration

Property Description

Max Evaluations The maximum number of evaluation

that can be performed by the explo-

ration search

Search Tolerance The golden section search convergence

tolerance

Max Distance The maximum input value of the explo-

ration parameter
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2.2 Thalia Whitespace Exploration Library

The primary entry point for to the library for running a whitespace exploration is the

Exploration class. The class constructor takes in three arguments, a workflow which

defines the model, a configuration which defines all the setup information required

to execute an exploration, and an optional status object which is used as a callback

mechanism to provide on-line information about the progress of an exploration. The

whitespace exploration is initiated by calling the run method which returns a results

object containing all of the data pertaining to the run.

The workflow fully defines the model that an exploration is going to be performed

on. For the purposes of the exploration, the analysis is treated as a black box analysis

where each time the workflow is called for evaluation, all inputs are fed to the analysis

and all output values obtained. A workflow is defined by a name, it’s inputs, it’s

outputs and an evaluate method. New workflows can be created by implementing an

interface and specifying the necessary model metadata in the concrete class.

Whitespace exploration being composed of a collection of different algorithms

contains a variety of tuning parameters that will affect it’s search process. These

parameters are defined in a configuration object that is passed to the library. The

Thalia command line interface allows for this configuration to be defined in a JSON

file that is provided as one of the input parameters. A basic configuration would

consist of:

• Design Variables The names of the model input variables that are the design

variables which will be used during the Pareto front search and constraint search

steps along with the variable upper and lower box bounds.

• Objective Variables The names of the objectives of the model along with the

search goal, to either minimize or maximize the objective.
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• Constraint Variables The names of the output variables that represent model

constraints along with values for the upper or lower bound of what is to be

considered valid for a design.

• Non-Design Variables The names of the input variables that are not consid-

ered design variables but can be changed. Lower and upper bounds are also

provided to ensure that nonsensical designs are not found.

For any option that is not specified, a default value is used. Part of the output of

an exploration is a full representation of the configuration saved in JSON format that

can be later used and modified as input for further experiments. This configuration

file is also used as an input for the post processing utilities.

2.3 Thalia Command Line Interface

The Thalia command line interface wraps the Thalia whitespace exploration library

and provides an easy way to set up and run whitespace explorations. The help

output for the interface is shown Figure 2.1 which shows the options to provide the

workflow, configuration file, data file output location, and the option to execute a

number of batch runs on the same model. In the specified output directory, data files

containing all model evaluations and runtime metadata is stored for every step in the

exploration which can then be loaded into the pyThalia post processing library for

further analysis.

2.4 pyThalia Post Processing Library

The pyThalia post processing library is a collection of utilities for performing analysis

on the results of a whitespace exploration. The library loads the results of one or
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|_| |_| |_/_/ \_\_____|___/_/ \_\

Automated Whitespace Exploration Utility

******************************************

usage: Thalia [-b <arg>] [-c <arg>] [-h] [-o <arg>] [-w <arg>]

Execute a whitespace exploration

-b,--batch <arg> number of batch runs to perform

-c,--config <arg> path to the exploration configuration file

-h,--help display this message

-o,--output <arg> path to the output directory

-w,--workflow <arg> path to the jar containing the workflow

Example Usage: thalia -c=/path/to/configuration.json

-w=/path/to/workflow.jar -o=/path/to/output/location -b=30

Figure 2.1: Thalia command line interface

more explorations that were run using the Thalia command line tool and serves as

an easy way to perform data analysis using the Python programming language.

The pyThalia library also contains utilities for evaluating a set of metrics that

can be used to better understand the results of an exploration. One such metric

is the hypervolume indicator, also known as the Lebesgue measure or S metric [10]

and is a popular metric for tracking the progress of a multi-objective evolutionary

algorithm. The metric itself can be thought of as representing the ‘size’ of the Pareto

front in relation to a reference point as shown in Figure 2.2. The specific value of the

hypervolume indicator bears little meaning, however the relative change between the

value can tell a compelling story about how a Pareto front has evolved over some set

of operations.

Using the hypervolume indicator in the context of whitespace exploration, the

desired point is used as the reference point, and so the hypervolume roughly represents
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Figure 2.2: The hypervolume indicator in 2D[7]

the volume of whitespace that is left to be explored at each round. The hypervolume

can be misleading however in cases where the variable box bounds and constraints are

modified, causing the Pareto front to grow in size resulting in a larger hypervolume

value that would compete with the amount the volume is reduced due to progression

towards the desired point. Despite these issues with the hypervolume indicator, it can

serve as an additional tool particularly in high dimensional objective spaces where

direct visualization of the Pareto front progression may be difficult.

Another metric extracted by pyThalia is the mean function evaluations of the

algorithm. The mean function evaluations of an algorithm, or MFE, is the number

of times that the analysis model needed to be evaluated for the algorithm to reach a

certain state. If the time to evaluate the analysis model is significantly longer than

any of the other operations in the algorithm, which is typically true for engineering

analyses, then MFE is a good indicator of computational complexity for an algorithm.

For an algorithm to be worthwhile in practice, the computational cost of running it
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must be low enough to incentivize it’s use in practice, making it an important metric

to examine and provides a straightforward way to compare the performance of new

whitespace exploration implementations.

The last derived metric that we will use to examine an exploration is the mean

Pareto distance. The mean Pareto distance metric is the average all pairs distance

between the Pareto front generated at consecutive rounds as given in Equation 2.16.

∑N
i=0

∑M
j=0 ||fi − fj||
K

(2.16)

where N is the number of solutions in the current exploration round’s Pareto front

and M is the number of solutions in the previous round’s Pareto front. The metric is

useful for giving a relative indication of how much progress the Pareto front has made

at each round. While the actual value of the metric does not have much meaning, the

trend that it shows is useful for telling if regular progression into the whitespace is

being made. The mean Pareto distance metric can be applied to both the objective

space and the decision space. Examining the metric gives an indication of how much

the design has changed for a resultant step in the objective space for the Pareto front.
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Chapter 3

BENCHMARK CASES

In order to evaluate the whitespace exploration algorithm and develop metrics to

observe it’s behavior, a variety of test cases were developed. Whitespace exploration

problems share many similarities with multi-objective optimization problems as both

require some set of of input design variables, objectives and constraints along with a

model that maps the decision space to the objective space. Also like multi-objective

optimization problems, in order for them to be interesting, the objectives must be

conflicting, otherwise the solution will not be a Pareto front but simply a single

point will be found as the optimal solution. The difference between a multi-objective

optimization problem and a whitespace exploration problem, for the purposes of this

work, lies in the non-design variables. For a whitespace exploration problem to be

interesting, it must also have a set of non-design variables that can be modified

which will have an affect on the Pareto front. Another important aspect of these test

cases is that they be computationally inexpensive to evaluate. In it’s current state

whitespace exploration still requires a significant number of model evaluations which

would be harmful for promoting rapid development and experimentation. Lastly it is

desirable that the models and their parameters make intuitive sense to the researcher.

Whitespace exploration seeks to challenge assumptions made in a model and so it is

beneficial to have an understanding beforehand what those assumptions are and how

they would be expected to change to reach the desired goal. For all of these reasons,

coming up with good test cases for whitespace exploration is a difficult task. The

four cases that are presented here exemplify the previously outlined criteria for a good

whitespace exploration model.
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3.1 Circle

Circle is a very simple model that was developed expressly for testing whitespace ex-

ploration. The model got it’s name because in the objective space, the set of possible

designs give the shape of a circle. A constraint was also added which effectively slices

off a piece of the circle. The non-design variables represent the centroid of the circle

and so it makes intuitive sense that if we want to move the Pareto front towards the

desired point then the center of the circle should then move in the direction of the of

the desired point. The circle model does not relate to any engineering system but was

instead created to be similar to the Rosenbrock Banana function for optimization; a

simple mathematical problem that has just enough complexity to exercise the algo-

rithm. The input and output variables for the model are summarized in Tables 3.1 -

3.4.

Table 3.1: Circle model objective variables

Objective Variables

Objective Description

f1 Objective 1

f2 Objective 2

Table 3.2: Circle model design variables

Design Variables

Variable Description

θ Angle input

r Distance input

The objective variables f1 and f2 can be calculated using Equations 3.1 and 3.2.
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Table 3.3: Circle model constraint variables

Constraint Variables

Variable Description

c Model constraint

Table 3.4: Circle model non-design variables

Non-Design Variables

Variable Description

xc Circle centroid x position i

yc Circle centroid y position

f1 = r cos (θ) + xc (3.1)

f2 = r sin (θ) + yc (3.2)

The constraint c can be evaluated with

c = r2 − (f1 − xφ)2 − (f2 − yφ)2 (3.3)

where

φ = arctan

(
yc
xc

)
(3.4)

xφ = xc − 2.0rmax cos (φ) (3.5)
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yφ = yc − 0.5rmax sin (φ) (3.6)

3.2 Disk Brake

The Disk Brake model is a simple engineering design problem involving the mechan-

ical design of a disk brake. The model contains two objectives and was originally

developed for testing multi-objective optimization algorithms and presented in [1]

while the equations that were used for implementing the model were drawn from [16].

The physical configuration for the problem is shown in Figure 3.1.

Figure 3.1: Diagram of the Disk Brake model [16]

The input and output variables that comprise the model are summarized in Tables

3.5 - 3.8.

The two objective values can be calculated with Equation 3.7
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Table 3.5: Disk Brake model objective variables

Objective Variables

Variabl Description

mb The total mass of the brake

ts The brake stop time

Table 3.6: Disk Brake model design variables

Design Variables

Variable Description

Ri inner radius of the discs

Ro outer radius of the discs

F engaging force

n number of friction surfaces

Table 3.7: Disk Brake model constraint variables

Constraint Variables

Variable Description

g1 minimum distance between radii

g2 maximum length of the brake

g3 pressure constraint

g4 temperature constraint

g5 generated torque constraint

mb = mf

(
R2
o −R2

i

)
(n− 1) (3.7)

for the mass of the brake and Equation 3.8 for the stopping time,
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Table 3.8: Disk Brake model non-design variables

Non-Design Variables

Variable Description

mf static mass factor

tsf static stop time factor

ts =
tsf (R2

o −R2
i )

Fn (R3
o −R3

i )
(3.8)

The problem was modified from it’s original form by adding the two non-design

variable parameters mf and tsf which were originally specified as constant values

in the equations. It is also of note that the design variable n for the number of

friction surfaces is expected to be a discrete integer value but has been modified

in it’s implementation here to be a continuous input that is rounded to it’s nearest

integer value before calculation. The five output constraints for the model are defined

as follows:

The geometric constraint for distance between radii is given by

g1 = (Ro −Ri)− 20.0 ≥ 0 (3.9)

and the maximum length of the brake constraint by

g2 = 30− 2.5(n+ 1) ≥ 0. (3.10)

The pressure constraint is given by

g3 = 0.4− F

3.14(R2
o −R2

i )
≥ 0 (3.11)
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The temperature constraint is given by

g4 = 1− 2.22× 10−3F (R3
o −R3

i )

(R2
o −R2

i )
2

≥ 0 (3.12)

along with the generated torque constraint by

g5 =
2.66× 10−2Fn(R3

o −R3
i )

(R2
o −R2

i )
− 900 ≥ 0 (3.13)

3.3 Circle Packing

The Circle Packing problem is a straightforward model that represents a collection

of five circles in 2D space with the goal of arranging them to minimize the principal

moments of inerta about the origin of the system. Circle packing, and the packing

problem in general is a longstanding problem in mathematics [17] that also has appli-

cations in engineering, related to the efficient layout of components in a design. This

is still an active area of research [13]. While the problem is simple to visualize, it’s

discrete nature makes it difficult for optimization algorithms to solve and produces

complex Pareto front shapes which make it an ideal candidate for testing whitespace

exploration algorithms.

For this work the classic circle packing problem has been modified with the in-

clusion of non-design variables that the whitespace exploration algorithm can take

advantage of. Each circle contains it’s position in the x-y plane along with a ra-

dius and area density which are used in the inertia calculations. In order to prevent

overlap of the circles an interference constraint is maintained which invalidates any

arrangement that has overlapping circles.

The output objective variables are the principle moments inertia for each axis (x

and y). In order to minimize the inertia of the system the circles must be arranged
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into various ”packed” configurations.

Table 3.9: Objective variables for the circle packing problem

Objective Variables

Objective Description

Ixx Moment of inertia about the x-axis

Iyy Moment of inertia about the y-axis

Table 3.10: Circle packing model design variables

Design Variables

Variable Description

xi x position of circle i

yi y position of circle i

Table 3.11: Circle packing constraint variables

Constraint Variables

Variable Description

I The system interference between circles to prevent overlap

Table 3.12: Circle packing model non-design variables

Non-Design Variables

Variable Description

ri Radius of circle i

ρi Area density of circle i

The objective values are calculated by evaluating the inertia about the origin for

each circle and then summing up the inertia of each circle to obtain the inertia of the
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system. The objectives are evaluated with the following relations give in Equation

3.14.

Ixx =
n∑
i=1

πρir
2
i

(
r2i
4

+ x2i

)
Iyy =

n∑
i=1

πρir
2
i

(
r2i
4

+ y2i

) (3.14)

The interference constraint, I, for the system is calculated by looking at the all

pairs distances between each circle and checking if it is less than the sum of radii for

the circles in question, if it is then we know that there is some degree of overlap. If

there is no overlap than nothing is added to the systems overall interference value.

I = dij − (ri + rj) (3.15)

where ri and rj are the radii of the circles i and j respectively and the distance

between the two, dij is evaluated with

dij =
[
(xj − xi)2 + (yj − yi)2

]1/2
. (3.16)

If the system has no interference than the solution will have an interference value

of zero, if there is some interference in the system then it will have some negative real

value which increases in magnitude the more interference there is.

3.4 Whipple Shield

The Whipple Shield model is an aerospace engineering design problem involving the

mechanical design of the shield coupled with structural design constraints related to

the launch environment. A whipple shield is a passive protection system for satellites
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against micrometeorites and orbital debris and so the goal of the problem is to maxi-

mize the protection capabilities of the shield while keeping mass and volume as small

as possible.

Table 3.13: Whipple shield model objective variables

Objective Variables

Objective Description

Cd Critical diameter of the shield

ms Shield mass

Vs Shield Volume

Table 3.14: Whipple shield model design variables

Design Variables

Variable Description

s Spacing between bumper and wall

tb Bumper thickness

tw Wall thickness

A Support beam aspect ratio

Table 3.15: Whipple shield model constraint variables

Constraints

Variable Description

δb Support beam deflection during launch

ωn Support beam natural frequency

The critical diameter, CD, is calculated using empirical equations based on the

relative impact velocity [2], for this model the worst case of a direct impact is assumed.
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Table 3.16: Whipple shield non-design variables

Non-Design Variables

Variable Description

Sw Shield Width

Sh Shield Height

amax Max acceleration during launch

ρb Density of the bumper material

ρw Density of the wall material

σmax Yield strength of the wall material

vrel Relative velocity of implact

ρp Density of the projectile material

E Modulus of elasticity of the posts

ρs Density of the support post material

A different relationship is sued depending on the relative velocity of the impact, for

velocities less than 3 km/s

CD =

tw√σmax/40 + tb

0.6

√
ρb + v

2/3
rel

18/19

, (3.17)

for velocities between 3.0 km/s and 7.0 km/s

CD =

[
tw
√

σmax

40
+ tb

1.248
√
ρp

]18/19
×
(

1.75− Vrel
4

)
+[

1.071t2/3w ρ−1/3
p ρ

−1/9
b S1/3

(
σ

70

1/3
)]
×
(
Vrel
4
− 0.75

)
,

(3.18)

for velocities greater than 7.0 km/s

CD = 3.918t2/3w ρ−1/3
p ρ

−1/9
b v

−2/3
rel S1/3(σmax/70)1/3. (3.19)

The volume of the shield is calculated as

Vs = SwSh(tb + S + tw) (3.20)
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and the total mass of the shield as

ms = ρb(SwShtb) + ρw(SwShtw) + ρsSπ(S/AR)2. (3.21)

The whipple shield model has two constraints related to the launch environment which

include the max deflection of the shield during launch and the natural frequency of the

system. The deflection constraint δb is derived from standard strength of materials

relationships and given by

δb = amax

[
Eπ
( s

2A

)2(sπr2ρs
2

+ SwShtbρb

)]−1

(3.22)

while the natural frequency constraint ωn is evaluated with

ωn =
3Eπr4

s3ρbSwShtb + s4πr2ρs
. (3.23)
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Chapter 4

BENCHMARK MODEL RESULTS

For the analysis of the automated whitespace exploration algorithm implemented in

the Thalia whitespace exploration framework, we collect the output of thirty runs of

the algorithm where each run consists of ten rounds of exploration. The data from

each case is then post processed to calculate various metrics and visualizations to

examine how the exploration progressed. For each of the models, an in depth look at

a single exploration run is reviewed along with the results of the thirty batch runs.

In the results we are looking to see that they make sense in the context of the

model, e.g. the correct variables are chosen for the direction search. Through the

post processed output we are also looking to see what the results of the exploration

can tell us about the problem; were there aspects of it that made it difficult for the

exploration to progress? was there a high variance in the results over the thirty runs?

4.1 Circle Model Results

The variable configuration specified for the exploration is summarized in Tables 4.1

- 4.4 and gives the initial bounds that were set where appropriate. For this case

the design variable θ has it’s bounds fixed as modifying them does not make sense

in the context of the model. The variable r is free to have it’s bounds modified

by the algorithm should it be found to be an active box constraint. The individual

design variable box bound, constraint variable bound, and non-design variable change

histories are given in Appendix A.1 for this case.

The configuration values for each of the exploration steps is summarized in tables

4.5 - 4.9.
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Table 4.1: Circle model exploration objective variables

Objective Variable Configuration

Variable Goal

f1 Minimize

f2 Minimize

Table 4.2: Circle model exploration design variables

Design Variable Configuration

Variable Lower Bound Upper Bound

θ 0.0 2π

r 0.0 1.0

Table 4.3: Circle model exploration constraint variables

Constraint Variable Configuration

Variable Lower Bound Upper Bound

c N/A 0.0

Table 4.4: Circle model exploration non-design variables

Non-Design Variable Configuration

Variable Lower Bound Upper Bound

xc 1.0 6.0

yc 1.0 6.0
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Table 4.5: Pareto search configuration for the Circle model

Pareto Search Configuration

Population Size 40

Max Evaluations 12000

Convergence Tolerance 0.01

Convergence Generations 10

Crossover Probability 0.9

Crossover Index 20.0

Mutation Probability 0.5

Mutation Index 20.0

Table 4.6: Constraint search configuration for the Circle model

Constraint Search Configuration

Box Constraint Relative Tolerance 0.05

Box Constraint Change Tolerance 0.05

Box Constraint Change Percentage 0.05

Constraint Relative Tolerance 0.05

Constraint Change Tolerance 0.05

Constraint Change Percentage 0.05

Table 4.7: Sensitivity analysis configuration for the Circle model

Sensitivity Analysis Configuration

Stencil Size 0.01

Selection Tolerance 0.1
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Table 4.8: Direction search configuration for the Circle case

Direction Search Configuration

Population Size 20

Max Evaluations 2000

Convergence Tolerance 0.01

Convergence Generations 5

Crossover Probability 0.9

Crossover Index 20.0

Mutation Probability 0.5

Mutation Index 20.0

Table 4.9: Exploration search configuration for the Circle model

Exploration Search Configuration

Max Evaluations 100

Search Tolerance 0.01

Exploration Distance 1.0

The Pareto search results showing the design space at the start of the exploration

for the Circle model are given in Figure 4.1 with the corresponding input decision

space shown in Figure 4.2. In Figure 4.1 we can see the circular design space where

the model gets it’s name from, with the upper portion of the Pareto front active on

the constraint and the lower portion active on the box constraints. The convergence

history for the Pareto search shown in Figure 4.3 we see that a bulk of the Pareto front

was found very quickly however the constraint caused some issues for the algorithm

to get proper resolution around the constrained area as shown by the gaps in the

Pareto front in Figure 4.2. The selected point shown on the Pareto front in Figure
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4.1 was found using the automated procedure which sought the closest point on the

Pareto front to the desired point which happens to be on the ‘knee’ of the front.

Figure 4.1: Initial design space for the Circle model

In the first round, we find that the box constraint upper bound for the variable r

is found to be active. The upper bound of the output constraint is also active. Visual

inspection of the Pareto front leads us to expect a near even split on the percentage

of Pareto front points active on either constraint, which is reported by the algorithm.

The upper box constraint has 64.03 percent of its solutions on the active boundary

and 43.17 percent on the active output constraint boundary. Both are of a significant

enough percentage to be flagged by the algorithm for relaxation in the next round.

The sensitivity analysis results are summarized in Table 4.12 and show what was

expected for this model, the first objective f1 only has dependence on the non-design

input xc and is correctly found to have a sensitivity of one, the same is true for

objective f2 and the non-design input xy.
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Figure 4.2: Initial decision space for the Circle model

Figure 4.3: Initial Pareto search convergence for the Circle case
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Table 4.10: First round box constraint activity for the Circle model

Box Constraint Activity

Variable Lower % Activity Upper % Activity

r 0.0 INACTIVE 64.03 ACTIVE

Table 4.11: First round constraint activity for the Circle model

Constraint Activity

Variable Lower % Activity Upper % Activity

c 0.0 INACTIVE 43.17 ACTIVE

Table 4.12: The initial sensitivities for the Circle model

Sensitivities

Output Input Sensitivity

f1 xc 1.0

f1 yc 0.0

f2 xc 0.0

f2 yc 1.0

The direction search step for the first round is shown in Figure 4.4 in the objective

space. The search is centered at the selected point and visual inspection shows that

a variety of points are found that are in line with the desired point.

The exploration search step history for the first round is shown in Figure 4.5

and shows the objective continues to decrease out to the set maximum exploration

parameter value of one.

Figure 4.6 shows the results of the Pareto search step on the tenth and final round.
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Figure 4.4: Initial direction search for the Circle model

Figure 4.5: Initial exploration search convergence for the Circle model
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We can see that the Pareto front is now much closer to the desired point and has

grown in size due to the upper bound on the design variable r being relaxed. The

convergence history for the Pareto search shown in Figure 4.8 shows that in the final

round had more difficulty time converging on a front, and that there still exist some

gaps in the front likely due to the larger search area.

Figure 4.6: Final exploration search convergence for the Circle model

Table 4.13 shows the box constraint activity for the final round, and we see that

the upper bound on the design variable r is still active for a significant portion of the

Pareto front. The output constraint, c, has decreased in activity significantly from

the first round as shown in Table 4.14.

The sensitivities at the final round are just the same as they were in the first

round as shown in Table 4.15, which is expected since nothing in the model would

cause the effect of the non-design variables to change with respect to the objectives.

In the direction search, we notice that the selected point has moved up the Pareto
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Figure 4.7: Final decision space for the Circle model

Figure 4.8: Final Pareto search convergence for the Circle model
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Table 4.13: Final box constraint activity for the Circle model

Box Constraint Activity

Variable Lower % Activity Upper % Activity

r 0.0 INACTIVE 44.33 ACTIVE

Table 4.14: Initial constraint activity for the Circle model

Constraint Activity

Variable Lower % Activity Upper % Activity

c 0.0 INACTIVE 7.5 ACTIVE

Table 4.15: Final sensitivities for the Circle model

Sensitivities

Output Input Sensitivity

f1 xc 1.0

f1 yc 0.0

f2 xc 0.0

f2 yc 1.0

front due to the Front size changing. The direction search is still able to find a dot

product of one and has a direct line towards the desired point as shown in Figure 4.9.

Looking at the exploration as a whole, Figure 4.11 shows the Pareto front pro-

gression for each round the exploration. The figure shows a very regular progression

of the Pareto front towards the desired point with the front increasing in size along

the way due to constraint and box-constraint relaxation.

The hypervolume progression of the Pareto front as shown in Figure 4.12 tells
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Figure 4.9: Final direction search for the Circle model

Figure 4.10: Final exploration search convergence for the Circle model
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Figure 4.11: Pareto front progression for the Circle model exploration

a similar tale to the Pareto front progression plot in Figure 4.11 where we have

a regular march towards the desired point, thus decreasing the hypervolume. The

slope of the curve deceases slightly as the rounds progress due to the Pareto front

size itself increasing because of constraint and box constraint relaxation.

The hypervolume progression for the batch runs are shown in Figure 4.13. The

min and max values for the hypervolume at each round are nearly indistinguishable

from the mean line which gives high confidence that any further explorations on the

model with this configuration will result in nearly identical behavior. For the simple

circle model this is to be expected as there are no other pathways that could be found

through the random processes in the algorithm. Any variance over the set of batch

runs is likely due to the Pareto search step not fully resolving the endpoints of the

Pareto front.

The mean Pareto front distance progression graphs for both the objective space
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Figure 4.12: Hypervolume progression for the Circle model exploration

Figure 4.13: Hypervolume progression for the Circle model batch runs
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and the decision space are shown in Figure 4.14 and Figure 4.15 respectively. For the

Pareto front in the objective space, it is clear that as the exploration progressed the

distance between successive Pareto fronts decreased slightly. In the decision space, the

Pareto front distances remained relatively constant The reason for the Pareto front

not making the same progress each round could be due to the constraint relaxation

not ‘keeping up’ with the non-design variable changes.

Figure 4.14: Mean Pareto front distance progression for the Circle model
batch run in objective space

The mean function evaluations for the batch runs shown in Figure 4.16 had an

average of 2000 evaluations per round but varied between 1000 and 3000 evaluations

per round which is significant and could be too computationally expensive to run for

all but the fastest models.
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Figure 4.15: Mean Pareto front distance progression for the Circle model
batch run in decision space

Figure 4.16: Mean function evaluations for the Circle model batch runs
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4.2 Disk Brake Model Results

The results for the disk brake model have many similarities to the Circle model dis-

cussed previously. The exploration is set up to minimize the two objectives, brake

mass and stop time of the brake. The disk brake exploration has four design vari-

ables, three of which were allowed to have their bounds modified by the whitespace

algorithm; inner radius, outer radius, and engaging force. The number of friction

surfaces design variable, n, was not allowed to vary. The individual design variable

box bound, constraint variable bound, and non-design variable change histories are

given in Appendix A.2 for this case.

Table 4.16: Disk brake model objective variable setup

Objective Variable Configuration

Variable Goal

mb MINIMIZE

ts MINIMIZE

Table 4.17: Disk brake model design variable setup

Design Variable Configuration

Variable Lower Bound Upper Bound

Ri 55.0 80.0

Ro 75.0 110.0

F 1000.0 3000.0

n 2.0 20.0

Of the five model constraints, the three that related to material properties were

allowed to be modified, g3, g4, and g5, while the constraints related to the physical
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form of the system remained constant.

Table 4.18: Disk brake model constraint variable setup

Constraint Variable Configuration

Variable Lower Bound Upper Bound

g1 0.0 N/A

g2 0.0 N/A

g3 0.0 N/A

g4 0.0 N/A

g5 0.0 N/A

Table 4.19: Disk Brake model exploration variable configuration

Non-Design Variable Configuration

Variable Lower Bound Upper Bound

mf 1e-5 1e-3

tsf 1e6 1e8

The Pareto search configuration was set to suggested values in Thalia, with a

population size set to twenty times the number of design variables and a maximum

number of evaluations which would allow for three-hundred generation of the search

algorithm which should be sufficient for proper resolution of the Pareto front.

The results of the first round Pareto search for the single run analysis is shown

in Figure 4.17. We can see from the figure that a very regular Pareto front is found

with many of the solutions found being near the Pareto region. The constraint space

also appears to lie ’in front’ of the Pareto front.

The constraint search results summarized in Table 4.25 and Table 4.26 show that

nearly the entire Pareto front is active on the upper bound box constraint of the
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Table 4.20: Pareto search configuration for the Disk Brake model

Pareto Search Configuration

Population Size 80

Max Evaluations 24000

Convergence Tolerance 0.01

Convergence Generations 10

Crossover Probability 0.9

Crossover Index 20.0

Mutation Probability 0.25

Mutation Index 20.0

Table 4.21: Constraint search configuration for the Disk Brake model

Constraint Search Configuration

Box Constraint Relative Tolerance 0.05

Box Constraint Change Tolerance 0.05

Box Constraint Change Percentage 0.05

Constraint Relative Tolerance 0.05

Constraint Change Tolerance 0.05

Constraint Change Percentage 0.05

Table 4.22: Sensitivity analysis configuration for the Disk Brake model

Sensitivity Analysis Configuration

Stencil Size 0.01

Selection Tolerance 0.1
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Figure 4.17: Initial design space for the Disk Brake model

Figure 4.18: Initial Pareto search convergence for the Disk Brake model
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Table 4.23: Direction search configuration for the Disk Brake model

Direction Search Configuration

Population Size 20

Max Evaluations 2000

Convergence Tolerance 0.01

Convergence Generations 5

Crossover Probability 0.9

Crossover Index 20.0

Mutation Probability 0.5

Mutation Index 20.0

Table 4.24: Exploration search configuration for the Disk brake model

Exploration Search Configuration

Max Evaluations 100

Search Tolerance 0.01

Search Distance 10.0

engaging force design variable.

Table 4.25: Initial box constraint activity for the Disk Brake model

Box Constraint Activity

Variable Lower % Activity Upper % Activity

Ri 0.0 INACTIVE 6.47 ACTIVE

Ro 0.0 INACTIVE 1.99 INACTIVE

F 0.0 INACTIVE 99.50 ACTIVE

Like the Circle model, each non-design variable has a direct relationship to their
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Table 4.26: Initial constraint activity for the Disk Brake model

Constraint Activity

Variable Lower % Activity Upper % Activity

g3 0.0 INACTIVE 0.0 INACTIVE

g4 0.0 INACTIVE 0.0 INACTIVE

g5 0.0 INACTIVE 0.0 INACTIVE

respective objective variables which was found during the sensitivity analysis step

and summarized in Table 4.27.

Table 4.27: Initial sensitivities for the Disk Brake model

Sensitivities

Output Input Sensitivity

mb tsf 0.0

mb mf 1.0

ts tsf 1.0

ts mf 0.0

Given the direct relationship of the non-design variables on the objectives, the

direction search is able to find a direction vector in line with the desired point.

In the final round, the Pareto search does indeed find a Pareto front that is

closer to the desired point than the one found initially and interestingly many invalid

solutions that are non-physical with zero or negative mass for the system as shown

in Figures 4.21 and 4.22.

At the end of the exploration, the engaging force upper bound box constraint

is still the primary constraint interacting with the Pareto front, however the other

design variables have also increased significantly in activity.
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Figure 4.19: Initial direction search for the Disk Brake model

Figure 4.20: Initial exploration search convergence for the Disk Brake
model
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Figure 4.21: Final design space for the Disk Brake model

Table 4.28: Final box constraint activity for the Disk Brake model

Box Constraint Activity

Variable Lower % Activity Upper % Activity

Ri 0.0 INACTIVE 19.79 ACTIVE

Ro 0.0 INACTIVE 3.74 ACTIVE

F 0.0 INACTIVE 98.93 ACTIVE
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Figure 4.22: Final decision space for the Disk Brake model

The output constraint activity in the last round is zero for all of the specified

constraints as shown in Table 4.29 however if we look at the lower bound history for

the output constraint g3 shown in Table 4.30 we can see that during rounds 2, 7,

and 9 that the constraint was active and relaxed. Although g3 did experience some

activity, g4 and g5 were not active during the duration of the exploration.

In the final round, the sensitivity values in Table 4.31 are the same as those found

in the first round which is as expected

Figure 4.26 shows the Pareto front progression for the entire exploration. Similar

to the circle model, we have a regular progression of the Pareto front with some

change in size to to constraint relaxation.

Figure 4.27 shows how the hypervolume of the Pareto front evolved during the
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Figure 4.23: Final Pareto search convergence for the Disk Brake model

Table 4.29: Final constraint activity for the Disk Brake model

Constraint Activity

Variable Lower % Activity Upper % Activity

g3 0.0 INACTIVE 0.0 INACTIVE

g4 0.0 INACTIVE 0.0 INACTIVE

g5 0.0 INACTIVE 0.0 INACTIVE
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Table 4.30: Lower bound history for g3 constraint

g3 Lower Bound History

Round Lower Bound

1 0.0

2 -0.05

3 -0.05

4 -0.05

5 -0.05

6 -0.05

7 -0.0525

8 -0.0525

9 -0.0551

10 -0.0551

Table 4.31: Final sensitivities for the Disk Brake model

Sensitivities

Output Input Sensitivity

mb tsf 0.0

mb mf 1.0

ts tsf 1.0

ts mf 0.0
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Figure 4.24: Final direction search for the Disk Brake model

Figure 4.25: Final exploration search convergence for the Disk Brake
model
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Figure 4.26: Pareto front progression for the Disk Brake model exploration

exploration. Similar to the Circle model, the hypervolume shows a regular trend

towards a reduced volume of whitespace.

The batch run hypervolume progression begins to show some variability across

the thirty runs, this is likey due to the endpoints of the Pareto front being difficult

to resolve by the Pareto search algorithm.

The Pareto progression results given in Figures 4.29 and 4.30 show that as the

exploration progresses the distances between Pareto fronts in the objective space tend

to get larger, while in the decision space the tend to get smaller. In this case the data

appears to be misleading as looking at the Pareto front progression in Figure 4.26

shows the gap between fronts decreases at each round. The increasing Pareto distance

metric is likely due to the Pareto front ‘shrinking’ slightly faster than it progresses

causing the distance between fronts to increase.

The mean function evaluations for the disk brake model shown in Figure 4.31
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Figure 4.27: Hypervolume progression for the Disk Brake model explo-
ration

Figure 4.28: The hypervolume progression for the Disk Brake model batch
runs
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Figure 4.29: Mean Pareto front distance progression for the Disk Brake
model batch run in objective space

Figure 4.30: Mean Pareto front distance progression for the Disk Brake
model batch run in decision space
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shows a similar trend to the circle model with a slight upward trend towards the end

of the exploration which could be caused by the increased load on the Pareto search

algorithm due to the widened search space from relaxing output variable and box

constraints.

Figure 4.31: Mean function evaluations for the Disk Brake model batch
run
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4.3 Circle Packing Model Results

The circle packing model represents the most dynamic case presented in this work

due to the complexity of the Pareto front and high dimensionality of the search space.

Logically we expect that the whitespace exploration algorithm should drive the values

of the radius and area density down as this will reduce the inertia of the individual

circles and thus the system. The variable configuration for the exploration is given

in Tables 4.32 - 4.35. The model setup confines the spheres in to a square area and

the variable box bounds are not allowed to be modified during the exploration to

maintain this confinement. The interference output constraint is also not allowed to

be modified because allowing the circles to overlap would go against the purpose of

this model. The individual design variable box bound, constraint variable bound, and

non-design variable change histories are given in Appendix A.3 for this case.

Table 4.32: Circle packing model design variable configuration

Design Variable Configuration

Variable Lower Bound Upper Bound

xi 0.0 5.0

yi 0.0 5.0

Table 4.33: Circle packing model objective variable configuration

Objective Variable Configuration

Variable Goal

Ixx MINIMIZE

Iyy MINIMIZE

The tuning parameters for the exploration are given in Tables 4.36 through 4.40.
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Table 4.34: Circle packing model constraint variable configuration

Constraint Variable Configuration

Variable Lower Bound Upper Bound

I 0.0 N/A

Table 4.35: Circle packing model non-design variable configuration

Non-Design Variable Configuration

Variable Lower Bound Upper Bound

ri 2.0 2.5

ρi 6.0 10.0

Notable differences in the circle packing configuration compared to the other models

is in the Pareto search configuration, Table 4.36 where the optimization algorithm

has been tuned to handle the large number of design variables.

Table 4.36: Pareto search configuration for the circle packing model

Pareto Search Configuration

Population Size 300

Max Evaluations 200000

Convergence Tolerance 0.01

Convergence Generations 40

Crossover Probability 0.9

Crossover Index 20.0

Mutation Probability 0.1

Mutation Index 20.0

The initial design space for the circle packing model in Figure 4.32 shows the
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Table 4.37: Constraint search configuration for the Sphere Packing model

Constraint Search Configuration

Box Constraint Relative Tolerance 0.05

Box Constraint Change Tolerance 0.05

Box Constraint Change Percentage 0.05

Constraint Relative Tolerance 0.05

Constraint Change Tolerance 0.05

Constraint Change Percentage 0.05

Table 4.38: Sensitivity analysis configuration for the Sphere Packing model

Sensitivity Analysis Configuration

Stencil Size 0.01

Selection Tolerance 0.1

Table 4.39: Direction search configuration for the circle packing model

Direction Search Configuration

Population Size 100

Max Evaluations 10000

Convergence Tolerance 0.01

Convergence Generations 5

Crossover Probability 0.9

Crossover Index 20.0

Mutation Probability 0.1

Mutation Index 20.0
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Table 4.40: Exploration search configuration for the Sphere Packing model

Exploration Search Configuration

Max Evaluations 100

Search Tolerance 0.01

Exploration Distance 0.5

large area of constrained space and the complex shape that makes up the valid design

space. The Pareto search convergence, Figure 4.33 highlights the difficulty of the

problem, taking nearly 500 generations for the algorithm to converge.

Figure 4.32: Initial design space for the circle packing model

The sensitivity analysis results given in Table 4.41 appear to be random and are

highly dependent on the orientation of the circles for the selected point. The sensi-

tivity values emphasize an issue with the current implementation of the sensitivity

analysis as some of the non-design variables that would have an affect on the Pareto
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Figure 4.33: Initial Pareto search convergence for the circle packing model

front are not selected for use in the direction search.

The direction search evaluations in Figure 4.34 show that with the selected non-

design variables, solutions are found that are in line with the desired point.

The design space found in the last round of the exploration is given in Figure 4.35,

shows the drastic improvement in Pareto front progress to the desired point. Figure

4.36 continues to show the difficulty in finding the Pareto front for this model.

The Pareto front progression for the entire exploration is given in Figure 4.37

which shows that continued improvement in the Pareto front that was achieved early

on in the exploration, while later on as the front drew close to the desired point

progress slowed down. The Pareto front is shown to vary in shape throughout the

exploration and does show the algorithms resilience to a dynamic front.

The hypervolume progression for the single run is given in Figure 4.38 and for

the batch runs in Figure 4.39 which shows a large degree of variance early on in
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Table 4.41: Initial sensitivities for the circle packing case

Sensitivities

Output Input Sensitivity Output Input Sensitivity

Ixx r1 0.054 Iyy r1 0.408

Ixx r2 0.0783 Iyy r2 0.072

Ixx r3 0.0286 Iyy r3 0.046

Ixx r4 0.521 Iyy r4 0.168

Ixx r5 0.010 Iyy r5 0.016

Ixx ρ1 0.014 Iyy ρ1 0.290

Ixx ρ2 0.038 Iyy ρ2 0.000

Ixx ρ3 0.007 Iyy ρ3 0.000

Ixx ρ4 0.243 Iyy ρ4 0.000

Ixx ρ5 0.005 Iyy ρ5 0.000

Figure 4.34: Initial direction search for the circle packing model
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Figure 4.35: Final design space for the circle packing model

Figure 4.36: Final Pareto search convergence for the circle packing model
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Figure 4.37: Pareto front progression for the circle packing model explo-
ration

the exploration but converged to nearly zero for all thirty runs. Due to the discreet

nature of the problem, the initial population has a large affect on the resulting Pareto

front found by the Pareto search algorithm. The large exploration step size used in

this case causes the Pareto front to become very close to the desired point as the

non-design variables are all driven towards zero.

The mean Pareto distance given in Figure 4.40 also shows a similar trend to the

hypervolume progression as the magnitude of the objective values decreases drastically

through the exploration.

This problem took significantly more functional evaluations than the other models,

requiring nearly two orders of magnitude more than the circle model.
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Figure 4.38: Hypervolume progression for the circle packing model explo-
ration

Figure 4.39: Hypervolume progression for the circle packing model batch
runs
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Figure 4.40: Mean Pareto front distance progression for the circle packing
model batch run in objective space

Figure 4.41: Mean Pareto front distance progression for the circle packing
model batch run in decision space
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Figure 4.42: Mean function evaluations for the circle packing model batch
run

84



4.4 Whipple Shield Model Results

The whipple shield model, unlike the previous three presented here, contains three

objectives and serves as an example of how the algorithm extends to three dimensions.

The configuration for the variables is given in Tables 4.42 - 4.45 along with the explo-

ration configuration parameters in Tables 4.46 - 4.50. The individual design variable

box bound, constraint variable bound, and non-design variable change histories are

given in Appendix A.4 for this case.

Table 4.42: Whipple shield objective variable configuration

Objective Variable Configuration

Variable Goal

CD MAXIMIZE

ms MINIMIZE

Vs MINIMIZE

Table 4.43: Whipple shield design variable configuration

Design Variable Configuration

Name Lower Bound Upper Bound

s 8.0 25.0

tb 0.05 0.8

tw 0.5 1.5

A 8.0 30.0

The first round Pareto search results are shown in Figure 4.43 which takes on the

appearance of a curved plate in three dimensions and the optimization algorithm has

done a good job at getting even coverage over the front.
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Table 4.44: Whipple shield constraint variable configuration

Constraint Variable Configuration

Name Lower Bound Upper Bound

δb N/A 10.0

ωn N/A 100.0

Table 4.45: Whipple shield non-design variable configuration

Non-Design Variable Configuration

Name Lower Bound Upper Bound

Sw 1.0 1000.0

Sh 1.0 1000.0

amax 1.0 100.0

ρb 1.0 5.0

ρw 1.0 5.0

σmax 10.0 100.0

vrel 1.0 40.0

ρp 1.0 5.0

E 10e6 10e8

ρs 1.0 5.0
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Table 4.46: Pareto search configuration for the Whipple Shield model

Pareto Search Configuration

Population Size 80

Max Evaluations 24000

Convergence Tolerance 0.01

Convergence Generations 10

Crossover Probability 0.9

Crossover Index 20.0

Mutation Probability 0.25

Mutation Index 20.0

Table 4.47: Constraint search configuration for the Whipple Shield model

Constraint Search Configuration

Box Constraint Relative Tolerance 0.05

Box Constraint Change Tolerance 0.05

Box Constraint Change Percentage 0.05

Constraint Relative Tolerance 0.05

Constraint Change Tolerance 0.05

Constraint Change Percentage 0.05

Table 4.48: Sensitivity analysis configuration for the Whipple Shield model

Sensitivity Analysis Configuration

Stencil Size 0.01

Selection Tolerance 0.1
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Table 4.49: Direction search configuration for the Whipple Shield model

Direction Search Configuration

Population Size 100

Max Evaluations 10000

Convergence Tolerance 0.01

Convergence Generations 5

Crossover Probability 0.9

Crossover Index 20.0

Mutation Probability 0.1

Mutation Index 20.0

Table 4.50: Exploration search configuration for the Whipple Shield model

Exploration Search Configuration

Max Evaluations 100

Search Tolerance 0.01

Exploration Search Distance 50.0

The decision space for the first round in Figure 4.44 shows that many of the

initial box constraints are active as summarized in Table 4.51. None of the output

constraints are active with only the deflection constraint δb seeing a small number of

solutions on the constraint boundary shown in Table 4.52.

The sensitivity analysis results in Table 4.53, which do not include sensitivities

of zero for brevity, correctly identifies the correct relationships for the model’s non-

design variables

The final design space given in Figure 4.45 shows how the Pareto front shape has
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Figure 4.43: Initial design space for the Whipple Shield model

Table 4.51: Initial box constraint activity for the Whipple Shield model

Box Constraint Activity

Variable Lower % Activity Upper % Activity

s 13.17 ACTIVE 4.80 INACTIVE

tb 99.68 ACTIVE 0.0 INACTIVE

tw 12.17 ACTIVE 14.56 ACTIVE

A 29.29 ACTIVE 0.0 INACTIVE
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Figure 4.44: Initial decision space for the Whipple Shield model

Table 4.52: Initial constraint activity for the Whipple Shield model

Constraint Activity

Variable Lower % Activity Upper % Activity

δb 0.0 INACTIVE 1.59 INACTIVE

ωn N/A N/A 0.0 INACTIVE
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Table 4.53: Initial sensitivities for the Whipple Shield model

Sensitivities

Output Input Sensitivity

CD ρp -0.231

CD σmax 0.231

CD ρw -0.076

CD vrel -0.462

ms ρb 0.011

ms ρs 0.005

ms ρw 0.321

ms Sw 0.332

ms Sh 0.332

Vs Sw 0.5

Vs Sh 0.5

evolved. Inspection of the bounds also highlights the improvement that was made,

particularly in the critical diameter, CD, and volume, Vs, objectives. The final decision

space, Table 4.46 shows that many of the design variables still have active boundaries

and that we now have an active deflection constraint, summarized in Tables 4.54 and

4.55 respectively.

The Pareto front progression for the exploration is given in Figure 4.47 and shows

a steady progression towards the desired point along with an expansion of the front

in all directions.

The hypervolume progression for the batch runs is given in Figure 4.48 and shows

a familiar trend towards a smaller volume as the exploration proceeds. At least one

run appears to have made drastic progress in the first round.
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Figure 4.45: Final design space for the Whipple Shield model

Table 4.54: Final box constraint activity for the Whipple Shield model

Box Constraint Activity

Variable Lower % Activity Upper % Activity

s 12.81 ACTIVE 5.49 INACTIVE

tb 89.79 ACTIVE 0.0 INACTIVE

tw 8.10 ACTIVE 29.52 ACTIVE

A 31.82 ACTIVE 0.0 INACTIVE
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Figure 4.46: Final decision space for the Whipple Shield model

Table 4.55: Final constraint activity for the Whipple Shield model

Constraint Activity

Variable Lower % Activity Upper % Activity

δb 0.0 INACTIVE 8.69 ACTIVE

ωn N/A N/A 0.0 INACTIVE
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Figure 4.47: Pareto front progression for the Whipple Shield model explo-
ration

Figure 4.48: Hypervolume progression for the Whipple Shield model batch
runs
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The Pareto front distance progression in Figures 4.49 and 4.50 show that after the

first round, progress in the objective space dropped significantly while the movement

in the decision space steadily increased.

Figure 4.49: The mean Pareto front distance progression for the Whipple
Shield model batch run in objective space

The mean function evaluations in Figure 4.51 for the model again highlights the

issue of the large number of function evaluations currently required by the algorithm.
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Figure 4.50: The mean Pareto front distance progression for the Whipple
Shield model batch run in decision space

Figure 4.51: The mean function evaluations for the Whipple Shield model
batch run

96



Chapter 5

CONCLUSION

In this work, whitespace exploration has been explained to be a new class of algorithms

focused on searching previously unexplored regions of the design space. The software

package Thalia was developed to aid in further development and research of these

algorithms in an automated fashion. Four different benchmark models were developed

and a set of tests were run on them to examine the efficacy of the current whitespace

exploration algorithm and discover any issues.

One of the primary issues facing whitespace exploration is the sheer number of

model evaluations that are required. Using the circle packing model as an example

of the type of complexity that could be expected in real world engineering models,

required on average around 15000 model evaluations each round. If we assume that an

average engineering model takes a minute to run this would require around ten days

of CPU time. The large amount of time needed to run a whitespace exploration could

be a serious limiting factor to it’s use in an engineering design environment. Luckily,

some gains could be had by performing the model evaluations in parallel, however this

requires a high performance computing environment and the ability to run multiple

copies of the model, which is often limited by commercial software licensing.

The exploration parameter, ηe, is another aspect of the current algorithm that

leaves a lot to be desired. In it’s current state it is an arbitrary input parameter to

make the algorithm work, but does not have a direct physical meaning to aid the

designer in selecting an appropriate value.

The use of the selected point proved to be effective through the benchmark cases,

however for cases like the circle packing model, it can have a large affect on how the
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exploration progresses. The selected point is also built on an assumption that a single

point on the Pareto front is representative of the front itself which may not always

be true. The development of methods that view the Pareto front as a whole would

be a great boon for whitespace exploration.

Future work on improving whitespace exploration should focus first and foremost

on reducing the large number of function evaluations the algorithm currently requires.

A bulk of the evaluations lie in the Pareto search step which would be the first place

to look for improving the overall algorithmic efficiency. The next steps for whites-

pace exploration should focus on developing input parameters and output metrics

that would make sense to design engineers that don’t have a dedicated background

in design space exploration. Improving the general usability and understanding of

whitespace exploration results would go a long way towards bringing these methods

into a mainstream engineering environment.

Additionally comparisons between the manual algorithm and the automated al-

gorithm developed in this work should be compared to determine if one approach

is inherently better than the other along with assessing possible use cases for either

implementation.
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APPENDICES

Appendix A

A.1 Circle model variable change histories

These are the variable change histories for design variable box bounds, constraints,

and non-design variables at each round in the single exploration analysis of the Circle

model.

Table A.1: Circle model r box bound change history

Round Lower Bound Upper Bound

0 0.0 1.0

1 0.0 1.05

2 0.0 1.1025

3 0.0 1.157625

4 0.0 1.215506

5 0.0 1.276281

6 0.0 1.340095

7 0.0 1.407100

8 0.0 1.477455

9 0.0 1.551328
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Table A.2: Circle model constraint c change history

Round Lower Bound Upper Bound

0 0.0

1 0.05

2 0.0525

3 0.055125

4 0.057881

5 0.060775

6 0.063814

7 0.067004

8 0.070355

9 0.073872

Table A.3: Circle model non-design variable change history

xc yc

10.0 10.0

9.283665 9.306700

8.560448 8.620585

7.840174 7.931379

7.152403 7.209736

6.472502 6.480673

5.826383 5.721509

5.184855 4.958463

4.578005 4.167558

3.963205 3.382816
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A.2 Disk Brake model variable change histories

These are the variable change histories for design variable box bounds, constraints,

and non-design variables at each round in the single exploration analysis of the Disk

Brake model.

Table A.4: Disk Brake model design variable Ri box bound change history

Round Lower Bound Upper Bound

0 55.0 80.0

1 55.0 84.0

2 55.0 88.2

3 52.25 92.61

4 52.25 97.2405

5 52.25 102.102525

6 49.6375 107.207651

7 49.6375 112.568033

8 47.155625 118.196435

9 47.155625 124.106257

A.3 Circle Packing model variable change histories

These are the variable change histories non-design variables at each round in the

single exploration analysis of the Disk Brake model. Note that for the circle packing

model design variable box bounds and constraint bounds were not allowed to change

during the exploration.

103



Table A.5: Disk Brake model design variable Ro box bound change history

Round Lower Bound Upper Bound

0 75.0 110.0

1 75.0 115.5

2 75.0 121.275

3 71.25 127.33875

4 71.25 133.705687

5 71.25 140.390971

6 67.6875 147.410520

7 67.6875 154.781046

8 67.6875 162.520098

9 67.6875 170.646103

Table A.6: Disk Brake model design variable F box bound change history

Round Lower Bound Upper Bound

0 1000.0 3000.0

1 1000.0 3150.0

2 1000.0 3307.5

3 1000.0 3472.875

4 1000.0 3646.51875

5 1000.0 3828.8446875

6 1000.0 4020.2869218

7 1000.0 4221.3012679

8 1000.0 4432.3663313

9 1000.0 4653.9846479
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Table A.7: Disk Brake model constraint g3 bound change history

Round Lower Bound Upper Bound

0 0.0

1 -0.05

2 -0.05

3 -0.05

4 -0.05

5 -0.05

6 -0.0525

7 -0.0525

8 -0.055125

9 -0.055125

Table A.8: Disk Brake model constraint g4 bound change history

Round Lower Bound Upper Bound

0 0.0

1 0.0

2 0.0

3 0.0

4 0.0

5 0.0

6 0.0

7 0.0

8 0.0

9 0.0
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Table A.9: Disk Brake model constraint g5 bound change history

Round Lower Bound Upper Bound

0 0.0

1 0.0

2 0.0

3 0.0

4 0.0

5 0.0

6 0.0

7 0.0

8 0.0

9 0.0

Table A.10: Disk Brake model non-design variable change history

ms tsf

100.0 100.0

92.951799 92.916477

85.857459 85.879164

78.914335 78.692617

71.748538 71.728080

64.678274 64.666580

57.612724 57.600362

50.527956 50.553413

43.476315 43.473315

36.413635 36.404229
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Table A.11: Circle Packing model non-design variable change history

r1 ρ1 r2 rho2 r3 ρ3 r4 ρ4 r5 ρ5

1.605 7.036 0.813 8.252 1.636 3.423 2.264 2.416 0.640 4.188

1.207 7.691 0.813 8.252 1.636 3.423 1.678 2.667 0.640 4.188

0.927 6.915 0.813 8.252 1.636 3.423 1.306 2.263 0.536 4.188

0.664 6.316 0.852 8.252 1.188 3.423 0.931 1.800 0.440 4.188

0.648 5.956 0.580 8.252 1.092 3.423 0.717 1.0 0.274 4.188

0.551 4.970 0.536 8.252 1.081 3.423 0.613 1.0 0.274 4.188

0.641 4.021 0.377 8.088 0.899 3.423 0.635 1.0 0.274 4.188

0.355 4.832 0.258 8.088 0.409 3.423 0.618 1.0 0.274 4.188

0.25 3.950 0.258 8.088 0.409 3.423 0.559 1.0 0.25 4.188

0.25 3.037 0.400 8.088 0.409 3.423 0.507 1.0 0.25 4.188

A.4 Whipple Shield model variable change histories

These are the variable change histories for design variable box bounds, constraints,

and non-design variables at each round in the single exploration analysis of the Disk

Brake model.
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Table A.12: Whipple Shield model design variable s box-bound change
history

Round Lower Bound Upper Bound

0 8.0 25.0

1 7.6 26.25

2 7.22 27.5625

3 6.859 28.940625

4 6.51605 30.387656

5 6.190247 31.907039

6 5.880735 33.502391

7 5.586698 35.177510

8 5.307363 36.936386

9 5.041995 38.783205
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Table A.13: Whipple Shield model design variable tb box-bound change
history

Round Lower Bound Upper Bound

0 0.05 0.8

1 0.0475 0.8

2 0.045125 0.8

3 0.042868 0.8

4 0.040725 0.8

5 0.038689 0.8

6 0.036754 0.8

7 0.034916 0.8

8 0.033171 0.8

9 0.031512 0.8

Table A.14: Whipple Shield model variable tw box-bound change history

Round Lower Bound Upper Bound

0 0.5 1.5

1 0.475 1.575

2 0.45125 1.65375

3 0.428687 1.736437

4 0.407253 1.823259

5 0.386890 1.914422

6 0.367545 2.010143

7 0.349168 2.110650

8 0.331710 2.216183

9 0.315124 2.326992
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Table A.15: Whipple Shield model variable AR box-bound change history

Round Lower Bound Upper Bound

0 8.0 30.0

1 7.6 30.0

2 7.22 30.0

3 6.859 30.0

4 6.51605 30.0

5 6.190247 30.0

6 5.880735 30.0

7 5.586698 30.0

8 5.307363 30.0

9 5.041995 30.0

Table A.16: Whipple Shield model constraint δb bound change history

Round Lower Bound Upper Bound

0 10.0

1 10.5

2 11.025

3 11.57625

4 12.155062

5 12.762815

6 13.400956

7 14.071004

8 14.774554

9 15.513282
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Table A.17: Whipple Shield model constraint ωn bound change history

Round Lower Bound Upper Bound

0 0.0 100.0

1 0.0 100.0

2 0.0 100.0

3 0.0 100.0

4 0.0 100.0

5 0.0 100.0

6 0.0 100.0

7 0.0 100.0

8 0.0 100.0

9 0.0 100.0

Table A.18: Whipple Shield model non-design variable change history

Sw Sh amax ρb ρw σmax vrel ρp E ρs

100.0 100.0 15.0 2.73 2.73 40.0 12.0 2.73 680000000.0 2.73

90.98 96.34 15.0 2.73 2.81 89.04 12.0 2.73 680000000.0 2.73

94.17 88.68 15.0 2.73 2.79 100.0 12.0 2.73 680000000.0 2.732

87.31 91.08 15.0 2.73 2.79 100.0 12.0 2.73 680000000.0 2.732

99.93 73.97 15.0 2.73 2.80 100.0 12.0 2.73 680000000.0 2.732

128.64 51.85 15.0 2.73 2.80 100.0 12.0 2.73 680000000.0 2.732

107.41 57.87 15.0 2.73 2.80 100.0 12.0 2.73 680000000.0 2.732

137.13 40.40 15.0 2.73 2.78 100.0 12.0 2.73 680000000.0 2.732

120.55 43.80 15.0 2.73 2.71 100.0 12.0 2.73 680000000.0 2.732

149.08 31.69 15.0 2.73 2.70 100.0 12.0 2.73 680000000.0 2.732
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