
Optimal Layout for a Component Grid

Michael Ebert
Computer Science

California Polytechnic State University, San Luis Obispo

December 2017
c© 2017 Michael Ebert

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/154376397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Optimal Layout for a Component Grid
Michael Ebert

Abstract—Several puzzle games include a specific type of optimization problem: given components that produce and consume
different resources and a grid of squares, find the optimal way to place the components to maximize output. I developed a method to
evaluate potential solutions quickly and automated the solving of the problem using a genetic algorithm.

Index Terms—Combinatorial Mathematics, Genetic Algorithms, Simulation.

F

1 INTRODUCTION

S EVERAL strategy and puzzle games have a placement
puzzle in them where you must place components on a

grid in order to achieve some result. In two of these games,
Reactor Idle [1] and IndustrialCraft2 [2], the puzzle is power-
themed. The goal of the puzzle in these two games is to
generate electricity from a variety of components that can
be put into four categories: Generators, which generate a
fixed amount of heat; Amplifiers, which increase the effects
of adjacent generators; Distributors, which distribute heat
between adjacent components, and Boilers, which turn heat
into electricity. If too much heat accumulates in a compo-
nent, that component will break. The challenge, therefore,
is to find a design of generators, amplifiers, distributors,
and boilers that, in a limited amount of space and without
exploding, will produce the most amount of power.

This is a NP problem; for C components and N tiles,
there are (C + 1)N possible layouts for a given problem.
Taking a fairly tiny problem size of 4 different components
and 20 tiles of space, this is approximately 9.5 × 1013
combinations. If 1 million layouts were tested per second,
this would take 3 years to brute force. Some of these puzzles
have up to 10 components, and 100 tiles of space. Clearly, a
better method is needed.

However, checking a layout is not fast. The way that the
game runs is in discrete ”ticks”. Every tick, each component
does its action once. Because of this, heat takes time to
propagate across the design. An unstable design may not
initially show any problems. A nearly stable design may
slowly build up heat for several thousand ticks before being
destroyed by excess heat. Additionally, components interact
with each other, such as amplifiers and generators, or dis-
tributors and adjacent components. Because some of their
actions depend on the heat levels of adjacent components,
they remove the possibility of a simple O(1) confirmation
that a layout is valid. A naı̈ve simulation (and the ones used
to check designs in games) simulates designs for hundreds
or thousands of ticks to determine what happens to a
layout. Simulating a design this way can take hundreds of
microseconds. In order to efficiently find a good design, it is
necessary to first construct an algorithm that can simulate a
design several orders of magnitude faster.

M. Ebert, Computer Science, California Polytechnic State University, San
Luis Obispo
E-mail: mebert@pacbell.net
c© 2017 Michael Ebert

I have been interested in these games for a while and
find them fun. The problem also seems like a good candidate
for a computer solution – discrete components and values,
deterministic outcomes, and a clear grading algorithm in
power produced.

1.1 Literature Overview
With regards to efficiently simulating a single layout, the
most relevant area of research is flow maximization. There
are several algorithms to do this, such as the Edmonds-Karp
algorithm [3], which runs in O(V E2), and the push-relabel
algorithm [4], which runs in O(V 2E), and can run faster
with optimizations. A modified push-relabel is needed to
cope with the unique constraints of my problem, namely
that 1) there are ’dumb’ nodes that emit the same amount to
all downstream nodes, which is not possible with the basic
algorithms, and 2) the input is given in discrete steps, not
a continuum. Max-flow algorithms assume that the flow is
effectively continuous – that the total possible flow is an
integer multiple of the potential input. With my puzzle,
source components (generators) produce 100% output all
the time, and the design is invalid if the component network
cannot handle it.

With regards to finding an optimal layout of compo-
nents, most placement optimization research is focused in
two areas: very large integrated circuit (VLSI) placement
and the facility layout problem (FLP). Unfortunately, both
areas operate under a different set of assumptions. Usually,
there is a known number of components to place in a
larger area, and crucially, the components are separated
from each other. This allows the efficiency of the design to be
proportional to the distance between components on small
scales. In the problem that I am trying to solve, components
have very strict placement requirements, and there is a very
complex relationship between component placement and
efficiency.

Most placement optimization solutions rely on simu-
lated annealing or genetic algorithms [5], [6]. Even though
the details of the problems are not commutative, these
algorithms are good places to start.

2 IMPLEMENTATION

As there are several different puzzles that vary only slightly
from each other, I decided to create a solution that would



2

work for all of them with some tweaking. I wanted to avoid
building my implementation around assumptions that were
present in a single puzzle, but would cause my solver to
be useless if used for an other, slightly different puzzle.
As a result, I divided the puzzle-specific elements(number
of components, what each component does, global prop-
erties of the environment, etc.) from the more general ele-
ments of the code (general setup and run drivers, solution
generation algorithm, etc.), which would interact with the
puzzle-specific elements through template instantiation and
metaprogramming. Although separate, the puzzle specific
elements are still defined at compile time for speed. Building
this flexibility dynamically into my solver at runtime is
possible, but would be inefficient, as constants, branches,
and even the effects of entire functions would have to be
evaluated at runtime instead of compile time. This could
dramatically reduce the performance of the code (for ex-
ample, the effects of the ”empty” component: If evaluated
at compile time, it can compile to a no-op, whereas at
runtime, the function still has to be called). Additionally,
since so much more time is spent running the algorithm
than compiling it (hours vs minutes), one of the major
advantages of runtime configuration, being able to make
changes quickly, is rendered meaningless.

2.1 Layout Evaluation

2.1.1 Optimizations

One of the two algorithms that I had to design was a way
to evaluate the performance of a layout. In order to test a
layout quickly, I allowed some inaccuracy in the simulation.
All correct layouts are recognized as correct, but some
incorrect designs are also marked as correct. These can be
easily filtered out in a more rigorous simulation once a small
group of candidate solutions are generated.

There were 4 techniques that I used to speed up the
simulation that had a major impact on how the project was
written.

The main speedup in the simulation comes from elimi-
nating the multiple ticks of simulation needed in the naı̈ve
design, effectively simulating the design in a single step. The
basic idea is that I simulate one tick propagating through the
system and see what resources are left over. This requires
some careful planning in order to avoid problems with loops
and isolated parts of the design.

Secondly, I wrote the code with speed in mind. I used
C++ with heavy use of templates and compile-time con-
stants. This allows for elimination of unnecessary branching
and function calls, resulting in a smaller and faster binary.
Furthermore, most of the code is in header files, compiling
in a single compilation unit. This allowes constant propaga-
tion, inlining, and other optimization techniques to happen
throughout most of the code (This sped up the runtime by
20% when using GCC 6.1.0 -O3).

Thirdly, I wanted to enable concurrent and out-of-
order execution wherever possible. To do this, I divided
up each component’s functionality into two steps: com-
ponent setup() and component action(). All the compo-
nent setup()’s can run in parallel, and same is true of the
component action()’s. After all the component have been

G1 G2

B1 B2D1 D2

Fig. 1. Valid layout that may be marked as faulty

run, usually a grading function is run in order to score the
design.

A fourth decision that I made was that instead of the
traditional setup of a grid of contiguous component prop-
erties, I instead relied on a series of grids, one for each
component property. For example, there is a grid storing
the type of each component, a separate grid storing the
heat of each component, and a third grid storing the energy
production of each component. By storing properties by
type instead of by component, memory access is optimized,
as the simulation code tends to access one or two properties
of all components rather than all the properties of a single
component.

2.1.2 Major problems encountered and solved

One problem that I ran in to was that blindly traversing
a layout is costly because of potential backtracking and
loops. To solve this, I grouped the boilers into ”networks”
of boilers connected by distributors. Since all boilers in a
network are connected, the entire block acts as one large
boiler. I did this by having each valid component (boiler
or distributor) either connect to an adjacent component’s
network or create a new network if one doesn’t exist. If two
different networks are adjacent to a single valid component,
then the two networks are merged. This makes the heat
distribution work much better and have less error cases.

Another problem that I ran into was misallocation of
resources. As an example, take the layout in figure 1. G1
and G2 generate 10 heat per tick, D1 and D2 are distributors
(that distributes heat), and B1 and B2 are boilers that absorb
10 heat per tick. This layout would work in the actual
simulation, but not in a single passthrough simulation like I
am doing. This is because in a single pass, D1 will distribute
5 heat to B1 and B2, and then D2 will distribute 10 more
heat to B2. This will result in 15 heat in B2 and only 5 in
B1. As a result, B2 will not be able to remove all of the
heat and the design will be marked as failed. In the actual
sim, this would happen on the first tick, but on the second
and subsequent ticks, the excess heat from B2 would be
moved over to B1, allowing the design to succeed. It is not
possible to simply sum up the total number of boilers in
the design, as disconnected boilers would be included when
they should not be. This problem prompted me to introduce
a modified push-relabel maximum flow algorithm into the
simulation. If the max flow can remove all the heat, then the



3

num designs = number of designs in each generation
num top = number of top designs to copy, unmodified,
into the next generation
num new designs = number of designs to generate new
each generation (num designs− num top)
num generations = number of generations to simulate
mutate chance = chance of a spontaneous mutation
occuring
end ix =last index of a design (size of a design in places
- 1)
for num generations do

score all designs
copy top num top designs into next generation
for num new designs do

select parents A,B using exponential distribution
select a uniformly random spot R in the middle of the
design 0 ≤ R < end ix
N [0, R) = A[0, R)
N [R, end ix) = B[R, end ix)
select random float S between 0 and 1
if S < mutate chance then

select a random component in N and change it to
a random component

end if
end for

end for

Fig. 2. Genetic algorithm pseudocode

design may work. If not, then the design is guaranteed to
fail.

2.2 Layout Optimization

After I developed a faster evaluator, I used it along with a
genetic algorithm to try to find the optimal layout.

I chose to use a genetic algorithm as it seemed best
aligned with the design of the problem that I was trying
to solve. Layouts already have a authorative score in the
amount of electricity they produce, and this scoring al-
gorithm is an essential part of the simulation itself. Fur-
thermore, this problem does not lend itself to simulated
annealing, as good, bad, and invalid layouts are extremely
close to each other, and there isn’t a linear path between
them.

My genetic algorithm is fairly simple, and a high level
overview is given in figure 2. I was able to parallelize the
simulation of designs, making the algorithm scale nearly
linearly with the number of cores.

3 RESULTS

3.1 Layout Evaluation

The work on designing an algorithm that would evaluate
designs quickly was a massive success. I achieved a 1000-
fold increase in the evaluation speed with only a few sub-
tly flawed invalid designs being misidentified. Additional
speedup may be possible by simple checking of grids to see
if they look invalid – for example, if the total heat emitted by
reactors is greater than the total amount of heat that could

be absorbed by every component on the board, regardless
of connectivity, it can be thrown out immediately.

Additionally, my goal of allowing modification of the
components and their behavior was a success. The code
is very modular. Additional components can be added
in a few minutes, and properties of components can be
changed without having to rewrite significant parts of the
code. Additionally, the grading algorithm can be replaced
or modified with minimal effort (Integrating the maximum
flow algorithm into the code took only a day or so). The
same code framework, slightly modified, could be used to
simulate tower defense designs, for example.

3.2 Layout Optimization
With regards to generating an optimal solution, there is
much more work to be done. While I was able to generate
valid designs, I was never able to produce a design that
was significantly better than what a human could produce
manually in the same amount of time. What would help
would be pruning the space that the genetic algorithm
explored, which I struggled with.

REFERENCES

[1] Baldurans. (2015, Nov.) Reactor idle. [Online]. Available:
http://reactoridle.com/

[2] Alblaka and IC2 Dev Team. (2011, Oct.) Industrialcraft 2. [Online].
Available: http://www.industrial-craft.net/

[3] J. Edmonds and R. M. Karp, “Theoretical improvements in
algorithmic efficiency for network flow problems,” J. ACM,
vol. 19, no. 2, pp. 248–264, Apr. 1972. [Online]. Available:
http://doi.acm.org/10.1145/321694.321699

[4] A. V. Goldberg and R. E. Tarjan, “A new approach to the
maximum-flow problem,” J. ACM, vol. 35, no. 4, pp. 921–940, Oct.
1988. [Online]. Available: http://doi.acm.org/10.1145/48014.61051

[5] C. L. Valenzuela and P. Y. Wang, “Vlsi placement and area
optimization using a genetic algorithm to breed normalized
postfix expressions,” IEEE Transactions on Evolutionary Computation,
vol. 6, no. 4, pp. 390 – 401, Aug. 2002. [Online]. Available:
http://doi.acm.org/10.1145/48014.61051

[6] T. D. Mavridou and P. M. Pardalos, “Simulated annealing
and genetic algorithms for the facility layout problem:
A survey,” Computational Optimization and Applications,
vol. 7, no. 1, pp. 111–126, Jan 1997. [Online]. Available:
https://doi.org/10.1023/A:1008623913524


