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ABSTRACT 

Early Empirical Evidence for the Effects of Adaptive Ramp Metering on 

Measures of Travel Time Reliability 

Travis Charles Low 

 

Adaptive ramp metering (ARM) is a critical component of smart freeway 

corridors under an active traffic management portfolio. While improving capacity 

through smart corridors and application of proactive traffic management solutions is less 

costly and easier to deploy than freeway widening, conversion to smart corridors still 

represents a sizable investment for a state department of transportation. Early evidence of 

improvements following these projects can be valuable to agencies. However, in the U.S. 

there have been limited evaluations, of smart corridors in general and ARM in particular, 

based on real operational data. This thesis explores travel time reliability measures for the 

eastbound (EB) Interstate 80 (I-80) corridor in the San Francisco Bay Area before and 

after implementation of ARM using INRIX data. These measures include buffer index, 

planning time, and measures from the literature that account for both skew and width of 

the travel time distribution. The measures are estimated for the entire corridor as well as 

corridor segments upstream of a bottleneck that historically have the worst measures of 

reliability. A new metric for measuring unreliability that may be derived from readily 

available INRIX data is also proposed in the thesis using data from the study corridor. 

While the ARM system is relatively new, the results indicate positive trends in measures 
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of reliability even as the number of incidents on the corridor has increased in line with the 

national crash trends. The spatio-temporal trend evaluation framework used here may be 

used in the future to obtain more robust conclusions. However, since multiple smart 

corridor components were installed simultaneously, it may not be possible to fully isolate 

the effects of the ARM, or any of the other systems, individually. 

 

Keywords: Adaptive Ramp Metering, ITS, Travel time reliability, Smart Corridors, 

INRIX data 
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1. INTRODUCTION 

Smart corridors that implement various ITS technologies are a key component of 

addressing congestion issues, especially in regions where freeway expansion is not a 

feasible option. Interstate 80 (I-80) is a transcontinental freeway connecting the two 

major metropolitan areas of San Francisco and New York City. Through the San 

Francisco Bay Area in northern California, the freeway serves as a heavily-traveled 

corridor connecting to Sacramento. The 19-mile section between the Carquinez Bridge 

and the I-80/I-580/I-880 interchange (near the San Francisco-Oakland Bay Bridge) is one 

of the most congested corridors in the region with over 270,000 vehicles per day. The 

freeway ranges in width from 4 to 5 lanes per direction, including a High Occupancy 

Vehicle (HOV) lane in effect during peak commute times and requiring 3 or more 

persons per vehicle. The California Department of Transportation (Caltrans) estimates 

there are 4 to 5 collisions and 16,000 vehicle-hours of delay each day. Furthermore, an 

estimated 25% of congestion is incident-related (Caltrans, 2016a). 

This research analyzes a new adaptive ramp metering system implemented on this 

19-mile section, including its effects on travel time reliability. Additionally, new 

measures of travel time reliability are analyzed using data from the study corridor. As 

noted by the Federal Highway Administration (FHWA), many drivers either adjust their 

schedules or budget extra time to allow for traffic delays but are less tolerant of 

unexpected delays (TTI & Cambridge, 2006). This makes travel time reliability an 

important performance measure to consider. 
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1.1 RAMP METERING OVERVIEW 

First implemented in 1963 on Chicago’s Eisenhower Expressway, ramp metering 

is now a widely used active traffic management technique. Ramp metering regulates on-

ramp flows before/during congestion, breaks up platoons, and smoothly converts multiple 

on-ramp lanes to one. It is generally considered to be one of the most cost-effective 

freeway management strategies (Mizuta et al., 2014). 

1.1.1 Ramp Metering Strategies 

There are three primary methods for determining metering rates, each requiring 

different infrastructure investments (DKS Associates, 2010). With Fixed Time ramp 

metering, the rate is programmed by time-of-day based on historical patterns. Typically 

used in locations with predictable traffic conditions, the equipment required for this 

strategy is the simplest but does not allow for any optimization based on actual traffic 

conditions. As a result, meter violation rates are typically the highest when using a Fixed 

Time strategy. For example, on a day when congested conditions end earlier than usual, a 

Fixed Time meter would continue using a restrictive metering rate, causing unnecessary 

delay and emissions at the ramp and likely resulting in user frustration. 

With Local Traffic Responsive ramp metering, freeway mainline detectors in the 

vicinity of the ramp determine its metering rate. The controller utilized pre-defined 

relationships between freeway flow and ramp demand. Ramps are treated as discrete 

units rather than as part of a system. Violation rates are more reasonable with this 

strategy because it responds in an intelligent way to current conditions by, for example, 

using a higher metering rate when freeway flow is lower. This strategy can utilize a 
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predictive algorithm which anticipates the onset of freeway congestion and proactively 

adjusts the metering rate. 

With Adaptive Ramp Metering (ARM), an algorithm calculates the optimal 

metering rate in real time for each ramp along a corridor, often with an ultimate goal of 

controlling a bottleneck. While similar to Local Traffic Responsive ramp metering, ARM 

uses a virtual intelligence engine to deploy a response strategy based on modeled 

conditions. In addition to managing recurring congestion, ARM can manage freeway 

incidents by using more restrictive metering upstream of the incident and less restrictive 

metering downstream. 

An ARM system operates by detecting traffic speed and volume immediately 

upstream and downstream of the on-ramp, as well as the on-ramp traffic volume. It also 

communicates with ramp metering nodes at upstream locations to determine the volume 

and speed of freeway traffic approaching the on-ramp. The system then coordinates the 

regulation of on-ramp traffic along the corridor to prevent the loss of freeway capacity. 

Metering rates are adjusted based on conditions on the freeway upstream of the on-ramp, 

conditions on the freeway at the on-ramp, and conditions on the on-ramp itself. 

The ARM system is controlled from a traffic operations center, where the 

controllers can be remotely overridden or reprogrammed. ARM necessitates the most 

complex hardware and software of the three ramp metering strategies. Requirements 

include detectors upstream and downstream of the ramps, a communication medium, and 

a central computer linked to the ramps. The detector technologies must measure vehicle 

volume, occupancy, and speed. A downstream detector may also be used as the upstream 
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detector for the next location in cases where ramps are spaced relatively close together. 

The typical detector requirements for ARM are shown schematically in Figure 1. 

 

 

Figure 1: Typical Detector Requirements for Adaptive Ramp Metering (DKS Associates, 

2010) 

All three of these ramp metering strategies can be made responsive to queues 

spilling back onto local streets. Queue length detectors can be implemented at the 

upstream end of the on-ramp to alert the ramp meter when the queue is about to spill into 

the local cross street. The ramp meter then adjusts its rate or turns off. 

1.1.2 Ramp Metering in California 

The California Department of Transportation (Caltrans) states in their Ramp 

Metering Design Manual (Caltrans, 2016b) and in their Ramp Metering Development 
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Plan (Caltrans, 2016c) that they are committed to using ramp metering as an effective 

traffic management strategy. Caltrans considers ramp metering to be an integral strategy 

for reducing congestion, reducing travel times, and increasing safety. Ramp metering is 

used to maintain efficient operations by keeping freeways operating at or near capacity, 

thus optimizing the transportation system for travelers. Caltrans uses ramp metering as a 

part of a coordinated and integrated traffic management system. They use it in 

consistency with their goal of maximizing capacity while providing good stewardship of 

public investment and minimizing environmental impacts. 

1.2 MOTIVATION 

For numerous reasons, freeway widening would have been a poor choice for the 

study corridor. Much of the freeway right-of-way is physically constrained by fully 

developed communities or by environmentally sensitive areas bordering San Francisco 

Bay. The estimated cost to widen would have been cost prohibitive, in the hundreds of 

millions of dollars (Caltrans, 2016a). Regardless of cost, freeway widening would likely 

have been politically unpopular as well as ineffective over time. The congested nature of 

this corridor means that adding capacity would have likely induced even more demand, 

such as from choice transit users or from drivers who currently shift their trips to off-peak 

periods. 

Traditional demand management strategies, such as HOV lanes and park and ride 

lots, already existed along the corridor. In fact, the HOV lanes already required three or 

more occupants per vehicle, rather than the typical two or more. With collision rates as 

much as twice the statewide average, there were also concerns over safety, secondary 

collisions, and resulting additional congestion. An Active Traffic Management (ATM) 
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system was identified as the best solution for the corridor, addressing recurring 

congestion as well as incidents and being a sustainable transportation infrastructure 

investment. The project goals for the ATM system were to optimize corridor 

performance, provide real-time information to users, improve travel time reliability, 

improve access for first-responders, and reduce secondary collisions and their related 

congestion. 

The ultimate project, called the I-80 SMART Corridor, was a collaboration of 

multiple agencies and was constructed in phases over several years at a cost of $79 

million. Most project elements came online during summer 2016. While the ARM 

component of the project is the focus of this research, the I-80 SMART Corridor also 

includes several other Intelligent Transportation System (ITS) components such as 

variable advisory speed signs, lane use signs, and traffic information boards. The project 

extends to local streets as well, specifically the parallel arterial San Pablo Avenue, with 

traffic signal management and “Trailblazer” signs which direct detouring vehicles back 

onto the freeway after bypassing a major incident. 

Even though ramp metering has been used throughout California and the San 

Francisco Bay Area for decades, the study corridor was historically never included under 

a ramp metering system due to complicated political and institutional concerns. With 

ARM instrumentation installed and operational along the study corridor, it has become 

the first Bay Area corridor to utilize ARM rather than Local Traffic Responsive ramp 

metering. The project construction work included installing ramp meters on 43 on-ramps 

in total, plus “end of queue” detectors and, in a few instances, preferential HOV lanes. 

An image of a typical installation is shown in Figure 2. 



7 

 

 

 

Figure 2: Typical single lane metered on-ramp on I-80 SMART Corridor (Caltrans, 

2016a) 

The ramp meters were first activated in August 2016, with Local Traffic 

Responsive ramp metering. The ARM system of operation began in April 2017. All 

traffic operations for the project corridor, including the ARM system, are controlled from 

the Caltrans/California Highway Patrol Traffic Management Center in Oakland. 

One perception of installing ramp metering along the project corridor is that long-

distance commuters who traverse the entire length of the corridor on their way to and 

from other destinations will experience the project’s benefits at the expense of users who 

make shorter trips within the corridor. However, this is not expected to be the case on the 

project corridor since ramp metering has provided benefits in safety and mobility to all 

users in studies throughout the United States (DKS Associates, 2010). 
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1.3 ORGANIZATION OF THE THESIS 

Following this Introduction is a chapter which provides a review of Adaptive 

Ramp Metering and Travel Time Reliability. Chapter 3 details the source of the data, the 

scope of the study area, and the methodologies used for estimating metrics of Travel 

Time Reliability. The following chapter presents a performance analysis of the corridor 

before and after implementation of Adaptive Ramp Metering and also includes 

exploration of a new measure of Travel Time Reliability. Chapter 5 draws conclusions on 

the early effectiveness of the Adaptive Ramp Metering system as well as on the future 

usefulness of the new Travel Time Reliability measure presented. The final chapter also 

presents ideas on future expansion of this research. 
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2. LITERATURE REVIEW 

This literature review covers studies looking at general effectiveness of ramp 

metering, studies looking specifically at adaptive ramp metering, and various studies of 

travel time reliability measures. 

2.1 RAMP METERING EFFECTIVENESS 

Implementing ramp metering has been found to be a worthwhile investment and 

has resulted in benefits including increased speeds, reduced travel times, reduced 

collisions, and reduced emissions (Mizuta et al., 2014) (Ahn et al., 2007) (Haj-Salem & 

Papageorgiou, 1995) (Kang & Gillen, 1999). 

Despite these benefits, the public often perceives ramp meters as an unnecessary 

impediment, resulting in the systems being unpopular. One extreme debate over ramp 

metering involved a legislatively mandated “ramp meter holiday” in the Twin Cities of 

Minneapolis and St. Paul, Minnesota. Ramp meters had been in use since 1969 to 

optimize freeway safety and efficiency, though their effectiveness was being questioned 

following increases in congestion and meter wait times. For the test, the ramp meters 

were shut off for eight weeks so that their effectiveness could be tested. 

The legislature’s authorized study (Cambridge Systematics, 2001) found 

numerous benefits from ramp metering in the metro area. The use of ramp metering 

resulted in a 22% savings in freeway travel time and a 14% increase in freeway 

throughput. Throughout the system, collisions increased by 26% without ramp metering. 

Considering the entire congestion management system, the benefit/cost ratio was 

determined to be 5:1. Traveler surveys showed an increased appreciation for ramp 

metering after the shut-off though also support for modifications, including shortened 
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wait times. Another study of the shutoff (Levinson & Zhang, 2006) investigated several 

performance measures with and without the ramp meters. It was found that the ramp 

meters were particularly helpful for long trips relative to short trips. Another finding was 

that the ramp meters reduced travel time variation. The authors recommended a more 

refined ramp control algorithm which explicitly considers ramp delay. 

2.2 ADAPTIVE RAMP METERING 

One of the first tests in California of adaptive ramp metering (Pham et al., 2002) 

occurred in Los Angeles County and found increases in mainline speed, decreases in 

travel time, and reductions in freeway delay compared to the existing local mainline 

responsive strategy. The most benefits occurred when using a combined global and local 

ramp metering strategy. In a simulation model of adaptive ramp metering on the I-405 

freeway in southern California (Chu et al., 2004) it was found that adaptive ramp 

metering can reduce freeway congestion effectively compared to fixed-time control. It 

was also found that ramp metering becomes less effective under incident scenarios with 

severe traffic congestion. 

A study of a newly deployed adaptive ramp metering system in Portland, Oregon 

(Ahn et al., 2007) found mixed results, with an increase in freeway delay possibly being 

traded for lower on-ramp delay. A study in Australia (Papamichail et al., 2010) found that 

a coordinated ramp metering strategy led to a significant increase in throughput and 

reduction of travel times compared with the previous metering system. 

A simulation model of an adaptive system in Minnesota (Xin et al., 2004) found 

that freeway performance was compromised in favor of reducing ramp delays. A Dutch 

coordinated ramp metering algorithm was simulated and found to outperform non-
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coordinated metering (Yuan et al., 2009). Another coordinated ramp metering algorithm 

was implemented in Germany and showed promising results (Bogenberger et al., 2002). 

2.3 TRAVEL TIME RELIABILITY 

Most of the studies involving field evaluations of ramp metering in the U.S. have 

focused on measures of on-ramp delays, mainline delays, fuel consumption, and/or 

resulting emissions. This research will instead focus on assessing the effects of ramp 

metering on measures of travel time reliability. Several relevant studies of travel time 

reliability are examined below in detail. 

2.3.1 Assessments of Traditional Measures 

In some of the earliest research into travel time reliability measures for use as 

practical performance measures, Lomax et al. (2003) grouped measures into three broad 

categories based on differences in communication and calculation: Statistical Range, 

Buffer Time Measures, and Tardy Trip Indicators. The study recommended the following 

measures: Percent variation, Misery Index, and Buffer Time Index. 

Pu (2011) compared numerous reliability measures and explored their 

mathematical relationships. It was found that the coefficient of variation, instead of the 

standard deviation, is a good proxy for several other measures. It was found that, 

especially in cases where travel time distributions are heavily skewed, the average-based 

buffer index or average-based failure rate is not always appropriate. In these cases, the 

author recommends the median-based buffer index or failure rate (percent of on-time 

arrival). 
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2.3.2 New Measure Based on Width and Skew of Travel Times 

Van Lint et al. (2008) challenged existing travel time reliability measures, based 

predominantly on variance of travel times, and propose a new measure based on both 

width and skew. Their research included an empirical investigation of a 19 km study 

segment on the A20 freeway in The Netherlands with a free flow travel time of around 11 

minutes. 

First, a schematic overview of factors influencing the distribution of travel times 

was presented (shown below in Figure 3). The authors note that the list is not exhaustive. 
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Figure 3: Factors Influencing the Distribution of Travel Times (Van Lint et al., 2008) 

Their empirical investigation which followed supported the claim that heavy 

skewing in travel distributions can have substantial economic consequences. For 

example, in 2002 close to 350,000 travelers traversed the study segment on Thursday 

afternoons between 5:00 and 6:00 pm. It was found that the 5% most delayed travelers 

had encountered more than 25 minutes of delay, amounting to more than 17,000 travelers 

incurring at least 7,200 hours of delay in total. Similarly, approximately 7,500-8,000 

hours of delay had been incurred by the 50% least delayed travelers. Therefore, the 

authors argue, this left-skewed travel time distribution is extremely undesirable, 

especially since extremely long delays are likely to have much more serious 
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consequences than modest delays. They conclude that not only the variance should guide 

reliability discussions, but also the skewness. 

A new measure for travel time reliability based on both width and skew was 

derived, called UIr. The measure incorporates two new percentile-based indicators for 

width and skew that are insensitive to outliers. UIr can be interpreted as the likelihood of 

incurring a very bad travel time, relative to the median. 

It was shown that all travel time reliability measures are highly inconsistent, even 

commonly used indicators such as the misery index and the buffer time index. 

Furthermore, choosing between measures and setting thresholds is subject to debate 

without objective and quantitative criteria such as economic or societal costs. 

2.3.3 Assessment of New Measure 

Bhouri et al. (2012) assessed travel time reliability of hard shoulder running on 

the A4-A86 motorway in France, particularly the reliability indicators. The study 

segment is 3 km in length. The authors stated that a smaller planning time increases 

driver satisfaction. Even if Planning Time does not decrease, a smaller Buffer Time 

implies greater reliability. 

The authors then addressed the lambda-var and lambda-skew indicators proposed 

by Van Lint et al. (2008), used to measure respectively the width and the skew of a travel 

time distribution. They report the lambda-var indicator is robust for both reliability and 

congestion. However, the lambda-skew indicator was found to have a weakness since the 

travel time in non-congested traffic, used in the calculation, was determined largely by 

the roadway’s automatic speed control systems. The authors concluded that UIr was 

therefore not an effective indicator, since it incorporates lambda-skew. 
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2.3.4 Effects of Ramp Metering Strategy 

Bhouri et al. (2013) evaluated the ramp metering on the A6W motorway in France 

by studying the impacts on traffic and travel time reliability. Their focus was on reducing 

daily uncertainty in travel times to provide travelers with greater consistency. The 

evaluation used measurements of traffic volume, occupancy rate, and speed in addition to 

estimated travel time. The paper compared the reliability and travel time impacts of two 

different freeway ramp metering strategies: ALINEA, a local strategy which maintains 

freeway density around the critical value, and CORDIN, a coordinated strategy. 

Four traffic indices were considered: Total Time Spent (TTS), expressed in 

vehicles times hours; Total Travel Distance (TTD), expressed in vehicles times 

kilometers; Mean Speed, defined as TTD/TTS; and Travel Time, calculated using the real 

speed measurements of consecutive measurement stations. Congestion mapping of iso-

occupancy curves in space and time was drawn using the loop detector occupancy 

measurements and the real data collection time slice of 6 minutes. Several reliability 

measures were considered: Standard Deviation and Coefficient of Variation; Buffer Time 

and Planning Time; Misery Index; and Probabilistic indicators. 

The field test site comprised five on-ramps with a total motorway length of about 

20 km. Traffic flow, occupancy rate, and speed measurement stations were available at 

roughly 500 m spacing intervals. The three strategies (No Control, ALINEA, and 

CORDIN) were applied over alternate weeks for a period of about 16 months. Data was 

then extracted from the traffic management system database and screened to discard 

major detector failures, atypical traffic patterns (weekends and holidays), and significant 
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traffic incidents. Demand variation impacts were minimized by averaging the selected 

days for each strategy. 

The evaluation results for the traffic indices, examining the period of 6:00-11:00 

am, showed CORDIN performed better than ALINEA. Both metering strategies 

improved TTS and TTD compared to No Control. Using the congestion mapping, the 

quantitative results of the TTS indices were qualitatively confirmed. The CORDIN 

strategy was found to give better results for Total Travel Time. 

Studying travel time variability, both ALINEA and CORDIN were found to 

reduce the average travel time and the travel time variability, with no significant 

differences between the resulting daily variabilities of the two. Depending on the measure 

used, both metering strategies reduced travel time variability by 24-37%. For both, the 

Planning Time was reduced by about 14 minutes. Since the mean travel time only 

improved by 3-4 minutes with metering, the authors argued that the reduced travel time 

variability, evidenced by the Planning Time, is the main improvement from the user 

perspective. 

2.4 CONCLUSIONS FROM THE LITERATURE REVIEW 

Several previous studies of Adaptive Ramp Metering were simulation based. In 

this study, we examine the effectiveness from a user perspective. Therefore, travel time 

reliability is the performance measure in this study since system users typically plan for 

expected delays but are less tolerant of unexpected delays. 

The impact on Travel Time Reliability of Adaptive Ramp Metering as part of a 

Smart Corridor implementation has not been thoroughly studied in the U.S. context. This 
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is important since the driver population and cultural differences may have effects on 

system compliance and therefore effectiveness.  
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3. DATA AND METHODOLOGY 

3.1 DATA SOURCE 

Data for this research has been obtained from INRIX Insights (see Figure 4) using 

probe vehicle data. INRIX Insights provides data fields for speed, travel time, and several 

user-oriented travel time reliability measures. Data is available down to one-minute 

granularity. INRIX Insights provides additional data visualization and retrieval tools 

which allow for the analysis of bottlenecks, traffic incidents and events, and the cost of 

delays. The suite of tools is meant to allow agencies to support operations, planning, 

analysis, research, and performance measures generation. The focus is providing 

effective information on metrics that departments of transportation can use to 

communicate with the public or decision-makers. 

 

 

Figure 4: Screenshot of INRIX Insights 
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3.2 RESEARCH SCOPE 

While the I-80 SMART Corridor project encompasses both directions of the 

freeway, only the eastbound direction of I-80 was selected for this research. This is 

because a portion of the westbound direction had already been equipped with lane use 

signs that could potentially confound the effects of the adaptive ramp metering. The 

analysis corridor begins at the Powell Street eastbound off-ramp, just after the I-80/I-

580/I-880 interchange, and ends at the Pomona Street eastbound on-ramp, just before the 

Carquinez Bridge, for a total distance of 19 miles. The extent of the project corridor is 

shown in Figure 5. 
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Figure 5: 19-mile Smart Corridor project map (Caltrans, 2016a) 

To capture the most typical commute congestion patterns, the data analyzed in 

this research is from mid-week (Tuesdays, Wednesdays, and Thursdays). Data is 

analyzed during the month of May from each of the years 2011 through 2017, inclusive. 
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The month of May generally captures travel patterns before the summer travel season but 

is after the months with the most rain. 

During the month of May 2017, Adaptive ramp metering was activated from 6:00 

AM to 6:00 PM. At all other times, local traffic responsive metering was activated as 

needed. During the month of May in all prior years (including 2016), no ramp metering 

was deployed. 

3.3 MEASURES OF RELIABILITY 

Travel time reliability was chosen as the broad class of measure for the before-

after evaluation since this class of measures appears to relate well to the way in which 

users make their travel decisions. As mentioned previously, while many drivers either 

adjust their schedules or budget extra time to allow for recurring traffic delays, they tend 

to be less tolerant of unexpected delays. 

3.3.1 Traditional Measures 

Mean travel time, standard deviation, and variance are the fundamental statistics 

that reveal freeway corridor performance. In addition, the buffer methods for quantifying 

travel time reliability address the additional travel time that users should account for, due 

to the travel time variability on their route, to arrive on time. Buffer Time (BT) is defined 

as the extra time a user should add to the mean travel time in order to arrive on time 95% 

of the time, computed as the difference between the 95th percentile travel time (T95) and 

the mean travel time (M). Buffer Index (BI) is defined as the ratio between the Buffer 

Time and the mean travel time. It is calculated as: 

 

𝐵𝐼 =
𝑇95 −𝑀

𝑀
…𝐸𝑞. 1 
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The Buffer Index is useful for users to assess how much extra travel time should 

be allowed to account for daily uncertainty in travel conditions. For example, if the mean 

travel time is 20 minutes and the Buffer Index is 40%, then the Buffer Time equals 8 

minutes. Therefore, to ensure on-time arrival with 95% certainty, the user should allow 

28 minutes for the trip which averages 20 minutes (Bhouri et al., 2013). 

Planning Time (PT) is another frequently used reliability measure. It is defined as 

the total travel time needed to ensure an on-time arrival 95% of the time, or simply the 

95th percentile travel time (T95). The Planning Time Index (PTI) is defined as the 95th 

percentile travel time divided by free-flow travel time (Tff): 

 

𝑃𝑇𝐼 =
𝑇95
𝑇𝑓𝑓

…𝐸𝑞. 2 

 

For example, if the free flow travel time is 15 minutes and the Planning Time 

Index is 1.60, then users should plan 24 minutes of total travel time to ensure on-time 

arrival with 95% certainty. The buffer methods use the 95th percentile value of the travel 

time distribution as a reference for their definitions. As a result, they more explicitly 

account for the extreme values of travel time delay (Bhouri et al., 2013). Travel Time 

Index (TTI) is the travel time represented as a percentage of the free-flow travel time 

(INRIX, 2017). 
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3.3.2 Measures Accounting for the Skew and the Width of Travel Time 

Distribution 

As discussed in the Literature Review, Van Lint et al. (2008) proposed new 

measures for assessing travel time reliability by analyzing day-to-day travel time 

distributions and characterizing by width and skew, with wider and/or more skewed 

distributions resulting in less reliable travel times. These measures have not been applied 

in the U.S. yet. They proposed a measure for skew, λskew, defined as the ratio of the 

distance between the 90th and 50th percentile travel times and the distance between the 

50th and 10th percentile travel times: 

 

𝜆𝑠𝑘𝑒𝑤 =
𝑇90 − 𝑇50
𝑇50 − 𝑇10

…𝐸𝑞. 3 

 

In general, as λskew increases the probability of experiencing extreme travel times 

increases, relative to the median. If λskew > 1 then the users with greater delay lose more 

time than the users with less delay gain, with respect to the median travel time. Van Lint 

et al. (2008) also proposed a measure for width, λvar, defined as the distance between the 

90th and 10th percentile travel times relative to the median: 

 

𝜆𝑣𝑎𝑟 =
𝑇90 − 𝑇10

𝑇50
…𝐸𝑞. 4 
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Large values of λvar indicate the travel time distribution has a large width, relative 

to its median. Van Lint et al. (2008) combined λvar and λskew to derive a travel time 

reliability measure based on both skew and width, called the Unreliability Indicator (UIr): 

 

𝑈𝐼𝑟 =
𝜆𝑣𝑎𝑟𝑙𝑛(𝜆𝑠𝑘𝑒𝑤)

𝐿𝑟
…𝐸𝑞. 5 

 

Lr represents the route length. The purpose of dividing by the route length is to 

determine travel time unreliability per unit length, avoiding location specificity. In this 

research, we have proposed substitute measures that may potentially be used since they 

may be readily derived from the INRIX data. The next chapter provides details of 

specific evaluation metrics and evaluation of spatio-temporal trends to evaluate the early 

evidence of effectiveness of ramp metering strategies. 
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4. ANALYSIS AND RESULTS 

The analysis involves examination of long-term trends in travel time reliability 

measures from the year 2011 through 2017. Potentially confounding factors that may 

affect travel time reliability, including trends in aggregate travel demand and incident 

counts, are also examined. It should be noted that the Smart Corridor project was first 

operational on I-80 for the 2017 data and primarily involves ARM on the EB corridor 

under consideration in this study. 

4.1 DEMAND 

Traffic volumes at several points along the study corridor from 2011 to 2015 (the 

most recent year with traffic census data available) show a pattern of generally increasing 

demand, as shown in Table 1. These increasing demand volumes provide context to 

travel time reliability measures discussed in this research.  
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Table 1: I-80 Traffic Volumes (Caltrans, 2016a & 2017) 

 

 

4.2 ANALYSIS OF 19-MILE I-80 SMART CORRIDOR 

This first set of analyses considers the full length of the eastbound project 

corridor, a distance of 19 miles, during May midweekdays (i.e., Tuesdays, Wednesdays, 

and Thursdays) for each year “Before” (2011–2016) and “After” (2017). 

4.2.1 Speed and Travel Time 

The average speed along the corridor was generated using INRIX Insights, 

averaged by hour, and is shown below as a bar chart in Figure 6. A heat map of speeds 

along the corridor, comparing only 2016 to 2017, is shown below in Figure 7. 
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Figure 6: Bar chart of hourly midweekday speed for 19-mile eastbound I-80 SMART 

Corridor 2011–2017 
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Figure 7: Heat map of hourly midweekday speed along 19-mile eastbound I-80 SMART 

Corridor 2016–2017 

The figures above indicate that traffic generally moves close to free-flow speed 

outside of the PM peak hours, which is when the eastbound direction carries commuters 

returning home from San Francisco and Oakland. However, the decrease in speed 

associated with these PM peak hours can begin as early as the 12 PM hour on the 

westernmost portion of the corridor and can last into the 7 PM hour. This potentially 

early onset of congestion and late amelioration of congestion causes issues related to 

travel time reliability. During the congestion, speeds dropped to well below half of their 

free-flow value during the worst hours (typically 4, 5, and 6 PM). 

Comparing only 2016 to 2017, it appears the ARM system is associated with 

small increases in speed that contribute to a slight lessening of the congested period. 

However, looking at the historical trends, speeds varied from year to year and effects are 

harder to discern. 
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The travel time for the corridor, averaged by hour, is shown below in Figure 8. 

 

 

Figure 8: Hourly midweekday travel time for 19-mile eastbound I-80 SMART Corridor 

2011–2017 

The free-flow travel time for the corridor is approximately 17.5 minutes. 

Generally, travel times are close to this except during the PM peak hours when they can 

rise well above 35 minutes. The historical travel times have been variable during the PM 

peak hours, though it appears they may be on a slight increasing trend since 2011. 
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4.2.2 Travel Time Reliability Measures 

Hourly Buffer Indices (Figure 9), Planning Time Indices (Figure 10), and Travel 

Time Indices (Figure 11) were computer for the 19-mile corridor. 

 

 

Figure 9: Hourly midweekday buffer index for 19-mile eastbound I-80 SMART Corridor 

2011–2017 
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Figure 10: Hourly midweekday planning time index for 19-mile eastbound I-80 SMART 

Corridor 2011–2017 
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Figure 11: Hourly midweekday travel time index for 19-mile eastbound I-80 SMART 

Corridor 2011–2017 

As seen in the figures above, for the entire 19-mile eastbound corridor the indices 

all varied widely since 2011 during the congested PM peak hours. In general, during the 

off-peak periods from midnight to noon, the indices remained low (with a few 

exceptions). Regardless of the oscillating year over year trends, it can be seen that during 

the worst of the congestion users often need to allow well over 3 times the free-flow 

travel time to ensure 95% on-time arrivals. 
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4.3 ESTIMATION OF UNRELIABILITY INDICATOR 

To calculate the Unreliability Indicator UIr defined by Van Lint et al. (2008) 90
th

, 

50
th

, and 10
th

 percentile values of travel time need to be estimated. INRIX data directly 

only provides 95
th

, Average, and 5
th

 percentile values. To estimate the former set of 

values, i.e., 90
th

, 50
th

, and 10
th

 percentiles, travel time data for all study days was 

downloaded at the 1-minute granularity and analyzed at 5-minute intervals. Therefore, 

there were 60 to 75 travel time observations for any given 5-minute period on a study day 

(e.g., 1:00 PM to 1:05 PM) depending on the number of study days (i.e., midweek days) 

in each month. Using these observations, needed travel time percentiles can be estimated 

for the Unreliability Indicator equation. 

As an alternative to calculating the Unreliability Indicator using this process, a 

new measure was created using percentiles that are readily available through INRIX 

Insights. For this method, called the Modified Unreliability Indicator (MUI), the 5th and 

95th percentile travel times (directly available from INRIX) were substituted for the 10th 

and 90th percentile, respectively. Additionally, the average travel time (also directly 

available from INRIX) was substituted for the 50th percentile. Modified equations for 

λskew and λvar values are shown below as Equations 6 and 7. The results are then used to 

calculate the MUI based on the previously established Equation 5, shown again below. 

 

𝜆𝑠𝑘𝑒𝑤 =
𝑇95 − 𝑇𝑎𝑣𝑔

𝑇𝑎𝑣𝑔 − 𝑇5
…𝐸𝑞. 6 

 

𝜆𝑣𝑎𝑟 =
𝑇95 − 𝑇5
𝑇𝑎𝑣𝑔

…𝐸𝑞. 7 
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𝑈𝐼𝑟 =
𝜆𝑣𝑎𝑟𝑙𝑛(𝜆𝑠𝑘𝑒𝑤)

𝐿𝑟
…𝐸𝑞. 5 

 

The MUI was compared to the Unreliability Indicator (UI) for the entire 

eastbound I-80 corridor, shown in Figure 12 below. 
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Figure 12: Comparison of Unreliability Indicators 

Both unreliability indicators show that the shoulders of the PM peak period, 

typically the 1 PM and 7 PM hours, are the least reliable. However, the MUI shows more 

unreliability throughout the day than the UI. Despite their similarities and the greater 

practicality of estimating the MUI, they are not necessarily interchangeable. The 

relationship between these two indicators is explored in section 4.7. 
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4.4 SPATIAL ANALYSIS USING SUB-SEGMENTS 

In addition to analyzing the entire study corridor of 19 miles, smaller segments 

were analyzed by dividing the corridor into three sequential sub-segments. The first 

chosen boundary point was the I-80/I-580 interchange near Richmond where capacity 

reduces from 5 to 4 lanes. The second chosen boundary point was the Pinole Valley Road 

interchange. The Bottleneck Ranking tool on INRIX Insights confirmed anecdotal reports 

that a bottleneck routinely forms on eastbound I-80 at Pinole Valley Road. The segment 

lengths, sequentially, were 4, 10, and 5 miles. Buffer indices for each sub-segment are 

shown below sequentially in Figure 13, Figure 14, and Figure 15. 
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Figure 13: Hourly midweekday buffer index for eastbound I-80 between Powell St. and I-

580 (Richmond) 2011–2017 
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Figure 14: Hourly midweekday buffer index for eastbound I-80 between I-580 

(Richmond) and Pinole Valley Rd. 2011–2017 
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Figure 15: Hourly midweekday buffer index for eastbound I-80 between Pinole Valley 

Rd. and Pomona St. 2011–2017 

The sub-segment analysis shows that, aside from unusual conditions in 2016, the 
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unreliability focused on segments upstream of this bottleneck. Using the Pinole Valley 

Road interchange as the downstream end-point, the segment length was increased by the 

distance to the previous upstream on-ramp in a sequential manner. Figure 16 shows a 

schematic diagram depicting three such segments as an illustration. 

 

 

Figure 16: Three upstream segments closest to Pinole Valley Road bottleneck 

MUI for the month of May for years 2011-2017 was estimated for 9 segments 

identified using the process depicted in Figure 16. For each segment from 2011–2017 the 

MUI was estimated for the 5 PM hour and is shown in Figure 17. 
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Figure 17: Midweekday Modified Unreliability Indicator for cumulative segment lengths 

upstream of Pinole Valley interchange on eastbound I-80 2011–2017 
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Figure 16).  In addition to an examination of annual trends in MUI, trends in travel time, 

traffic incidents, and Buffer Index were also examined. Travel time distributions for the 

three study segments during the 5 PM hour are shown in Figure 18. 

 

 

Figure 18: Midweekday Travel Time Distribution during 5 PM hour for three segments 

on eastbound I-80 (2011–2017) 



43 

 

While the months of May during 2013 and 2016 had numerous outliers with high 

travel time, all of the other years, including 2017, did not have any. 

Traffic incidents and events for the month of May were available on INRIX 

Insights for the study segments beginning with 2013. For traffic incidents and events, 

those occurring downstream of the bottleneck location up to the next interchange were 

included as well, adding an additional 1.5 miles. Buffer index, MUI, and UI were 

estimated for the 5 PM hour beginning May 2011. These trends are shown below in 

Figure 19. The circular blue data points represent historical values (from 2011– 2016) of 

each measure (i.e., Incident Count, Buffer Index, MUI, and UI) and are used to estimate 

the trends shown in Figure 19(d) through Figure 19(l). The square red data points in each 

chart represent the measures post-implementation (from May 2017). 
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Figure 19: Midweekday Incident Count, Buffer Index and Modified Unreliability 

Indicator for three segments on eastbound I-80 (2011–2017) 

Figure 19(a) through Figure 19(c) indicate that the incident counts in these 

segments were increasing during the years before ARM. Buffer Index had a slight 
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increasing trend during the years 2011 through 2016. MUI and UI show a decreasing 

trend for the years 2011 through 2016. Looking at 2017 values, the incident count was 

the highest of recent years. Despite this, the study segments all experienced a Buffer 

Index improved from the historical trend and MUI on track with the historical decreasing 

trend. However, for UI, the 2017 value is slightly above the historical trend for the 

longest of the three segments. 

4.7 CORRELATION BETWEEN UI AND MUI 

MUI is an alternate measure used in this study which allows for the calculation of 

unreliability using the travel time metrics readily available from the INRIX Insights data. 

In order to better understand the relationship between UI and MUI, correlation 

coefficients were estimated to compare the corresponding travel times used in the 

equations in addition to the measures themselves. 

The correlation coefficients for the full length of the corridor were calculated to 

compare the UI and MUI. Additionally, the corresponding travel times used in the 

equations were compared (i.e. the tenth percentile travel time used in the UI equation was 

compared to the fifth percentile travel time used in the MUI equation). Each correlation 

coefficient is calculated from 24 comparisons. The results are shown in Figure 20. 
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Figure 20: Correlation Coefficients for 19-mile Corridor 

The correlation between UI and MUI varied from year to year, with some years 

above 0.8 and other years below 0.5. However, average and median travel time were 

strongly correlated for all years. UI and MUI had their lowest correlation of about 0.3 in 

2016, the same year that T90 and T95 had their lowest correlation of about 0.91. 

To give more context to the correlation coefficients between UI and MUI, and 

between T50 and Tavg, the average value of each metric for each year was calculated for 

comparison, shown in Figure 21 below. 
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Figure 21: Averages of Hourly Values Used in Correlation Calculation 

It can be seen that T50 and Tavg have similar average values each year, with Tavg 

expectedly being slightly larger due to extreme values always being high and influencing 

the average more than the median. However, average MUI was always higher than 

average UI, often more than double, indicating that the two are likely not directly 

interchangeable. The segment level correlation analysis may be found in Appendix A. 
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5. CONCLUSIONS 

This research attempts to examine the effect of ARM on traffic operations 

immediately following the implementation of the system. Early evidence is useful for 

agencies as they report to elected officials and plan for future implementations. The focus 

of this research is on measures of travel time reliability since system users are expected to 

be less tolerant of the unexpected delays even as they plan for expected delays. 

Specific measures of reliability used in this study include Buffer Index and Buffer 

time. In addition, based on a review of relevant literature, robust measures based on 

different percentiles of travel times were also identified and estimated for the before 

(May 2016) and after (May 2017) period. The Modified Unreliability Indicator (MUI) 

was determined to be a more practical metric as it could be estimated using readily 

available data from INRIX Insights. The comparison between the before and after period 

was set up to minimize confounding variables. 

5.1 TRAVEL TIME RELIABILITY 

Preliminary investigations with the entire 19-mile I-80 EB corridor revealed that 

the shoulders of the PM peak hours tend to be the least reliable times of the day due to 

the uncertainty of how early congestion will form and how long it will persist. Following 

the preliminary investigations focus of the analysis was shifted onto the corridor 

segments with the worst travel time reliability. These segments were located upstream of 

the bottleneck on eastbound I-80 at the Pinole Valley Road interchange. Three segments 

of the corridor were examined for further analysis: i) from Appian Interchange to Pinole 

Valley interchange (0.96 miles), ii) from Fitzgerald Interchange to Pinole Valley 

interchange (1.71 miles), and iii) from Hilltop Interchange to Pinole Valley interchange 
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(2.55 miles). The addition of ARM along I-80 east of San Francisco in 2017 has 

generally appeared to show improvements in available travel time reliability metrics as 

compared to those measured in 2016. However, looking at the historical trends since 

2011, the improvements become less pronounced given the variability from year to year. 

It is noteworthy that even in light of an increasing number of incidents, the unreliability 

as measured by Buffer Index and the MUI seem to be below and on the temporal trend 

line, respectively. 

5.2 CORRELATIONS 

UI and MUI had varying correlation coefficients each year and their average 

values for the full 19-mile corridor showed that MUI was often double the UI value. This 

makes it difficult to directly compare MUI values with UI values. 

5.3 FUTURE RESEARCH 

This research has presented a promising approach for the use of granular data for 

a before and after active traffic management performance evaluation. The framework to 

examine spatio-temporal trends needs to be implemented over a longer horizon for more 

robust conclusions. With the availability of data, further analysis could also be 

conducted, including other days (Mondays, Fridays, and weekends), additional months to 

account for possible seasonal effects, and for additional segments (including portions of 

westbound I-80). Through the Caltrans Performance Measurement System (PeMS) and 

through INRIX Insights, a wide array of potential dashboard-style analyses can be 

conducted with relative ease. Putting the data in the hands of analysts and decision-

makers can improve not only day-to-day operations, but also more long-term operational 

strategies. 
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Future research should also investigate whether time of day has an effect on how 

UI and MUI are correlated. Another important area for future research is investigating 

user perceptions and satisfaction related to the ARM system and comparing those results 

to the operations data. To that end, a User Satisfaction Survey instrument was designed 

for the I-80 ARM system and is included in Appendix B. 

In conclusion it should also be noted that since ramp metering may impact ramp 

queues and arterial performance, further analysis of travel times on ramps and on nearby 

arterials, specifically San Pablo Avenue, also needs to be performed to understand the 

true impact of the project. Another caveat to consider is that as part of the I-80 SMART 

Corridor project, several other traffic management components in addition to ramp 

metering were added to the I-80 corridor nearly simultaneously. Thus, it may not be 

entirely possible to isolate the effects of the ARM or any of the other systems 

individually with 100% confidence. 

  



51 

 

REFERENCES 

Ahn, S., Bertini, R., Auffray, B., Ross, J., & Eshel, O. (2007). Evaluating benefits of 

systemwide adaptive ramp-metering strategy in Portland, Oregon. Transportation 

Research Record: Journal of the Transportation Research Board, (2012), 47-56. 

Bhouri, N., Aron, M., & Kauppila, J. (2012). Relevance of travel time reliability 

indicators: a managed lanes case study. Procedia-Social and Behavioral 

Sciences, 54, 450-459. 

Bhouri, N., Haj-Salem, H., & Kauppila, J. (2013). Isolated versus coordinated ramp 

metering: Field evaluation results of travel time reliability and traffic 

impact. Transportation Research Part C: Emerging Technologies, 28, 155-167. 

Bogenberger, K., Vukanovic, S., & Keller, H. (2002). ACCEZZ—adaptive fuzzy 

algorithms for traffic responsive and coordinated ramp metering. Applications of 

Advanced Technologies in Transportation (2002), 744-753. 

California Department of Transportation. (2016a). I-80 SMART Corridor Project: Media 

Resources. Retrieved from http://www.dot.ca.gov/80smartcorridor/media-

resources.html.  

California Department of Transportation. (2016b). Ramp Metering Design Manual. 

Retrieved from http://www.dot.ca.gov/trafficops/tm/ramp.html. 

California Department of Transportation. (2016c). Ramp Metering Development Plan. 

Retrieved from http://www.dot.ca.gov/trafficops/tm/ramp.html. 

California Department of Transportation. (2017). Traffic Census Program. Retrieved 

from http://www.dot.ca.gov/trafficops/census/. 



52 

 

Cambridge Systematics. (2001). Twin Cities Ramp Meter Evaluation. Minnesota 

Department of Transportation. 

Chu, L., Liu, H. X., Recker, W., & Zhang, H. M. (2004). Performance evaluation of 

adaptive ramp-metering algorithms using microscopic traffic simulation 

model. Journal of Transportation Engineering, 130(3), 330-338. 

DKS Associates. (2010). Interstate 80 Integrated Corridor Mobility Project: Concept of 

Operations. Alameda County Congestion Management Agency. 

Haj-Salem, H., & Papageorgiou, M. (1995). Ramp metering impact on urban corridor 

traffic: Field results. Transportation Research Part A: Policy and Practice, 29(4), 

303-319. 

INRIX. (2017). INRIX Insights Help. Retrieved from 

https://inrix.ritis.org/analytics/help/. 

Kang, S., & Gillen, D. (1999). Assessing the benefits and costs of Intelligent 

Transportation Systems: ramp meters. California PATH Research Report UCB-

ITS-PRR-99-19, California PATH Program, Institute of Transportation Studies, 

University of California, Berkeley. 

Levinson, D., & Zhang, L. (2006). Ramp meters on trial: Evidence from the Twin Cities 

metering holiday. Transportation Research Part A: Policy and Practice, 40(10), 

810-828. 

Lomax, T., Schrank, D., Turner, S., & Margiotta, R. (2003). Selecting travel reliability 

measures. Texas Transportation Institute & Cambridge Systematics, Inc. 



53 

 

Mizuta, A., Roberts, K., Jacobsen, L., & Thompson, N. (2014). Ramp Metering: A 

Proven, Cost-Effective Operational Strategy—A Primer. FHWA Office of 

Operations, U. S. Department of Transportation. 

Papamichail, I., Papageorgiou, M., Vong, V., & Gaffney, J. (2010). Heuristic ramp-

metering coordination strategy implemented at Monash Freeway, 

Australia. Transportation Research Record: Journal of the Transportation 

Research Board, (2178), 10-20. 

Pham, H., Jreij, W., Otani, C., Kalkatechi, H., Toorawa, I., Kao, J., ... & Torchin, R. 

(2002). SWARM Study Final Report on W/B Foothill Freeway (W/B LA-210). 

California Department of Transportation. 

Pu, W. (2011). Analytic relationships between travel time reliability 

measures. Transportation Research Record: Journal of the Transportation 

Research Board, (2254), 122-130. 

Texas Transportation Institute and Cambridge Systems, Inc. (2006). Travel Time 

Reliability: Making It There on Time, All the time. FHWA Office of Operations, 

U. S. Department of 

Transportation. http://ops.fhwa.dot.gov/publications/tt_reliability/ 

Van Lint, J. W. C., Van Zuylen, H. J., & Tu, H. (2008). Travel time unreliability on 

freeways: Why measures based on variance tell only half the 

story. Transportation Research Part A: Policy and Practice, 42(1), 258-277. 

Xin, W., Michalopoulos, P., Hourdakis, J., & Lau, D. (2004). Minnesota's new ramp 

control strategy: Design overview and preliminary assessment. Transportation 

Research Record: Journal of the Transportation Research Board, (1867), 69-79. 



54 

 

Yuan, Y., Daamen, W., Hoogendoorn, S., & Vrancken, J. (2009). Coordination concepts 

for ramp metering control in a freeway network. IFAC Proceedings 

Volumes, 42(15), 612-618. 

 

  



55 

 

APPENDICES 

 

APPENDIX A: SEGMENT LEVEL CORRELATION ANALYSIS 

 

In addition to the full length corridor, correlations were similarly calculated for 

the three overlapping segments immediately upstream of the Pinole Valley Road 

bottleneck. The results are shown in Figure 22, Figure 23, and Figure 24. 

 

 

Figure 22: Correlation Coefficients for 0.96-mile Segment 
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Figure 23: Correlation Coefficients for 1.71-mile Segment 
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Figure 24: Correlation Coefficients for 2.55-mile Segment 

The 2016 correlation for UI and MUI was stronger for the segments compared to 

the full length corridor, while the 2017 correlation was weaker. The travel time 

percentiles often showed a lower correlation compared to the full length corridor. 

  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2016 2017

UI-MUI T10-T5 T50-Tavg T90-T95



58 

 

APPENDIX B: USER SATISFACTION SURVEY INSTRUMENT 



I-80 Adaptive Ramp Metering User Satisfaction Survey
Cal Poly San Luis Obispo, in partnership with the Bay Area’s Metropolitan Transportation Commission, is 
conducting a User Satisfaction Survey for the new adaptive ramp metering on I-80 in Alameda and 
Contra Costa Counties (see map and pictures below). Your input on how the ramp metering is working 
will help us to plan similar operational improvements to manage congestion. Your participation will take 
approximately 5-10 minutes.

Please only complete this survey if you have been using any section of I-80 highlighted below for six 
months or longer. Note that this survey only covers the new ramp metering on I-80 and not any other 
new features.

* Required

Map of I-80 Ramp Metering Corridor



Example of Ramp Metering



Example of Metering Light



1. You must be 18 or older to participate in this survey. *
Mark only one oval.

 I am 18 or older. Skip to question 2.

 I am under 18. Skip to "Thank you for your interest in I-80.."

Skip to "Thank you for your interest in I-80.."

Thank you for your interest in I-80.
However, you must be 18 or older to participate in this survey.

Start this form over.

Informed Consent Form
INFORMED CONSENT TO PARTICIPATE IN A RESEARCH PROJECT, “Evaluation of I-80 Adaptive 
Ramp Metering: User Satisfaction and Operational Perspective” 
 
 A research project on Adaptive Ramp Metering is being conducted by Dr. Anurag Pande in the 
Department of Civil and Environmental Engineering at Cal Poly, San Luis Obispo. The purpose of the 
study is to evaluate user perceptions and acceptance of Adaptive Ramp Metering. 
 
 You are being asked to take part in this study by completing the following questionnaire. Your 
participation will take approximately 5-10 minutes. Please be aware that you are not required to 
participate in this research, you may omit any items that you prefer not to answer, and you may 
discontinue your participation at any time without penalty. 
 
  There are no risks anticipated with participation in this study. Your responses will be provided 
anonymously to protect your privacy. A $5.00 Starbucks gift card will be offered to each participant. You 
will have to provide your email address to obtain the card. Potential benefits associated with the study 
include making Adaptive Ramp Metering more effective and contributing to knowledge in the field of 
transportation. 
 
 If you have questions regarding this study or would like to be informed of the results when the study 
is completed, please feel free to contact Dr. Anurag Pande at (805) 756-2104, apande@calpoly.edu. If 
you have concerns regarding the manner in which the study is conducted, you may contact Dr. Michael 
Black, Chair of the Cal Poly Institutional Review Board, at (805) 756-2894, mblack@calpoly.edu, or Dr. 
Dean Wendt, Dean of Research, at (805) 756-1508, dwendt@calpoly.edu. 
 
 If you agree to voluntarily participate in this research project as described, please indicate your 
agreement by completing and submitting the following questionnaire.  Please print a copy of this consent 
form now for your reference, and thank you for your participation in this research.

2. Do you volunteer to participate? *
Mark only one oval.

 Yes, I volunteer. Skip to question 3.

 No, I do not volunteer. Skip to "Thank you for your interest in I-80.."

Skip to "Thank you for your interest in I-80.."

Thank you for your interest in I-80.
However, in order to participate, you must select "Yes, I volunteer." at the bottom of the Informed Consent 
Form.

Skip to question 2.

User Satisfaction Survey

mailto:apande@calpoly.edu
mailto:mblack@calpoly.edu
mailto:dwendt@calpoly.edu


Map of I-80 Ramp Metering Corridor



3. How long have you been using the highlighted section of I-80?
Mark only one oval.

 Less than 1 year

 1-5 years

 More than 5 years

4. How often do you use the highlighted section of I-80?
Mark only one oval.

 At least 4 days per week

 2 to 3 days per week

 1 or no days per week

5. What times of day do you travel Westbound (towards Oakland/San Francisco) on I-80?
Please select all that apply.
Check all that apply.

 Between 5 AM and 10 AM on weekdays

 Between 3 PM and 7 PM on weekdays

 Other times on weekdays

 Weekends

6. What times of day do you travel Eastbound (towards Vallejo/Sacramento) on I-80?
Please select all that apply.
Check all that apply.

 Between 5 AM and 10 AM on weekdays

 Between 3 PM and 7 PM on weekdays

 Other times on weekdays

 Weekends

7. When you use the highlighted section of I-80, what is the total distance you are normally
driving?
Mark only one oval.

 Less than 5 miles

 5-10 miles

 11-20 miles

 21-30 miles

 31-40 miles

 41-50 miles

 More than 50 miles



8. What type of driver do you consider yourself?
Mark only one oval.

1 2 3 4 5

Extremely Defensive Extremely Aggressive

9. Recently, what does the metering light look like when you are merging onto the highlighted
section of I-80?
Mark only one oval.

 Normally, the metering light is on

 Normally, the metering light is off (blank)

 I usually don't drive through any of the new ramp meters on this section

10. Do you normally use a ramp meter that is for "HOV 3+"?
Mark only one oval.

 Yes

 No

 I usually don't drive through any of the new ramp meters on this section

11. Recently, what is your normal wait time to get through the ramp meter?
Mark only one oval.

 No wait

 Up to 30 seconds

 Up to 1 minute

 Up to 2 minutes

 Up to 3 minutes

 Up to 4 minutes

 Up to 5 minutes or longer

 I usually don't drive through any of the new ramp meters on this section

12. Please answer the following questions about the highlighted section of I-80:
Mark only one oval per row.

Strongly
Disagree

Slightly
Disagree

Too soon to tell/No
opinion

Slightly
Agree

Strongly
Agree

On this section of I-80,
congestion is a problem.
On this section of I-80,
ramp metering is a good
idea.



13. Please answer the following questions about the results of the new ramp metering on I-80:
Mark only one oval per row.

Strongly
Disagree

Slightly
Disagree

Too soon to tell/No
opinion

Slightly
Agree

Strongly
Agree

It is now easier to
merge onto the freeway.
There is now less
congestion on the
freeway.
There is now less stop-
and-go traffic on the
freeway.
Traffic now flows
smoother on the
freeway.
The morning commute
now takes less time
overall.
The afternoon commute
now takes less time
overall.
My travel time is now
more predictable.
Collisions are now less
severe.
I now feel safer.
The surface streets now
have more congestion.
I am now more likely to
take surface streets
instead of I-80.

14. Please answer the following questions about the new ramp metering on I-80:
Mark only one oval per row.

Strongly
Disagree

Slightly
Disagree

Too soon to tell/No
opinion

Slightly
Agree

Strongly
Agree

The speed of the
metering lights adjusts
correctly for the current
conditions.
Buses and carpools
should receive priority
when possible.
I would prefer to have
more delay at the ramp
meter so I could have
less delay on the
freeway.
Other drivers usually
obey the metering
lights.
The new ramp meters
were well explained to
the public.
Overall, the new ramp
meters are beneficial.
More ramp meters
should be built in the
Bay Area.



15. What is your gender?
Mark only one oval.

 Male

 Female

 Other

 Prefer not to answer

16. What is your age?
Mark only one oval.

 18-24

 25-34

 35-44

 45-54

 55-64

 65 or above

 Prefer not to answer

17. What is the highest level of education that you have completed?
Mark only one oval.

 Graduate School or higher

 College Degree

 Some college

 High School

 Did not graduate from high school

 Prefer not to answer

18. What is your yearly personal income?
Mark only one oval.

 $0 to $19,999

 $20,000 to $39,999

 $40,000 to $79,999

 $80,000 to $119,999

 $120,000 to $159,999

 $160,000 or above

 Prefer not to answer



Powered by

19. Taking all things into account, how satisfied are you with your life these days? (1 = extremely
dissatisfied, 10 = extremely satisfied)
Mark only one oval.

 1 (extremely dissatisfied)

 2

 3

 4

 5

 6

 7

 8

 9

 10 (extremely satisfied)

 Prefer not to answer

20. Please write any comments you have about the ramp metering on I-80:
 

 

 

 

 

Thank You

21. Thank you for your participation in this survey.
To receive a $5.00 Starbucks gift card, please
write your email address below.
Your email address will only be used to send you
your gift card. Also, it will not be associated with
your survey answers.

https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms
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