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ABSTRACT

A Data-Driven Approach to CubeSat Health Monitoring

Serbinder Singh

Spacecraft health monitoring is essential to ensure that a spacecraft is operating

properly and has no anomalies that could jeopardize its mission. Many of the cur-

rent methods of monitoring system health are difficult to use as the complexity of

spacecraft increase, and are in many cases impractical on CubeSat satellites which

have strict size and resource limitations. To overcome these problems, new data-

driven techniques such as Inductive Monitoring System (IMS), use data mining and

machine learning on archived system telemetry to create models that characterize

nominal system behavior. The models that IMS creates are in the form of clusters

that capture the relationship between a set of sensors in time series data. Each of

these clusters define a nominal operating state of the satellite and the range of sensor

values that represent it. These characterizations can then be autonomously compared

against real-time telemetry on-board the spacecraft to determine if the spacecraft is

operating nominally.

This thesis presents an adaption of IMS to create a spacecraft health monitoring

system for CubeSat missions developed by the PolySat lab. This system is integrated

into PolySat’s flight software and provides real time health monitoring of the space-

craft during its mission. Any anomalies detected are reported and further analysis

can be done to determine the cause. The system can also be used for the analy-

sis of archived events. The IMS algorithms used by the system were validated, and

ground testing was done to determine the performance, reliability, and accuracy of

the system. The system was successful in the detection and identification of known

anomalies in archived flight telemetry from the IPEX mission. In addition, real-time

monitoring performed on the satellite yielded great results that give us confidence in
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the use of this system in all future missions.
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Chapter 1

INTRODUCTION

The role of satellites in the current technological age is immense. They provide

essential services and modern conveniences that have become ingrained into society’s

fabric. Some of the many important applications of satellites include radio commu-

nications, GPS, weather monitoring, broadcast media, and scientific research. Thou-

sands of satellites have been deployed in various orbits around Earth and beyond that

either provide services or conduct experiments. Due to this big role that satellites

play in our lives, it is important that proper care and maintenance is given to these

systems so they remain reliable and function properly. As a result, satellite health

monitoring, which involves verifying the proper functionality of all systems on board,

is essential to ensure that a satellite is operating properly and has no anomalies that

could jeopardize its mission.

There have been many advancements and improvements made throughout the

years on the capabilities and functions of various satellites. The design of such systems

that fulfill all the specifications make them extremely sophisticated and complex [11].

Unfortunately, the monitoring of such systems also becomes very complex as there

are many sensor and component interactions that become hard to predict and classify

as nominal through traditional techniques. There are currently many traditional

methods of monitoring spacecraft that include parameter limit checking, model-based,

and rule-based techniques that become difficult and cumbersome as the complexity of

the spacecraft increases [10]. These challenges are exacerbated in CubeSat satellites

where using extra downlink capacity for high resolution engineering telemetry is not

feasible. In order to overcome some of the problems with traditional approaches to

health monitoring, new data-driven techniques based on data-mining and machine
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learning have been developed to make this task much simpler and manageable.

These techniques create models that characterize nominal system behavior by

looking at an archive of nominal system telemetry. These characterizations can then

be autonomously compared against real-time telemetry on-board the spacecraft to de-

termine if the spacecraft is operating nominally. This approach has many advantages

over traditional approaches; the main ones being efficiency, simplicity, and adaptabil-

ity. One such data-driven system is called Inductive Monitoring System (IMS) and

has been successfully implemented in various applications.

IMS models the relationship between a set of sensors in time series data as clusters.

It goes through the archived data and matches consistent or similar telemetry points

into the same cluster. Each of these clusters end up defining a different nominal

state of the spacecraft and the range of sensor values that represent it. The end

result of the training portion is a knowledge base of clusters that can be compared

against real-time telemetry to see if any readings fall outside the known good clusters.

If there is a cluster match, then the system is most likely performing nominally;

otherwise there may be an anomaly. IMS is beneficial in that it allows modeling the

complex interactions between related parameters instead of looking at the parameters

individually.

1.1 Contribution

The goal of this thesis is to use the research and work done on the Inductive Mon-

itoring System and apply it to create a validated and flight ready system for use on

CubeSat satellites. CubeSat’s are miniature satellites that are primarily used for space

research by many educational institutions and private firms [1]. PolySat is a club on

the Cal Poly San Luis Obispo campus that designs, fabricates, and tests CubeSats.

This particular health monitoring system will be integrated into PolySats flight soft-
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ware to provide real-time health monitoring of the spacecraft during its mission. The

system flags anomalies that may be occurring and reports them back to the ground

for analysis. This paper covers the system design of this health monitoring module

and how it communicates with different subsystems on the satellite. Performance and

results of the health monitoring system are explored through ground testing. These

tests include detection of known anomalies using archived flight telemetry from the

IPEX mission, injecting failures in real-time, and running computation profiling tools

to examine overall resource requirements. The benefits and limitations of using this

system will be examined, and a recommendation will be made on how useful it is for

use in other missions.
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Chapter 2

BACKGROUND

The focus of this thesis is to create a validated and flight ready implementation

of an autonomous spacecraft health monitoring system for use on CubeSat satellites

developed by the PolySat lab. Specifically, the Inductive Monitoring System is used

because of its simplicity, power, and success on similar applications. To give some

background on the material this paper will cover, this section discusses data mining

and machine learning, different spacecraft monitoring techniques including IMS, an

overview of PolySat, and the design of the flight software in which this system is

implemented.

2.1 Data Mining and Machine Learning

In this current age of computing, information in the form of raw data is being

generated at a huge scale that has resulted in large data warehouses containing statis-

tics ranging from what websites you visit, to detailed records of your spending. This

trend of collecting large amounts of data also applies to the field of aeronautics and

spacecraft. There are large archives of system telemetry that have been gathered by

organizations such as NASA from many spacecraft missions. These data sets give

valuable information on the state of various subsystems and sensors on-board differ-

ent spacecraft during their mission [13]. This underlying data may contain patterns

and relationships that are not visible through manual inspection alone. These pat-

terns may reveal potentially important information that can be used to glean a better

understanding of the underlying data.

The goal of data mining is to extract the implicit, previously unknown, and po-
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tentially useful information from the data [22]. This process of discovering useful

patterns in data is usually semi or fully autonomous and the patterns that are mined

are represented in a structure that can be easily examined and reasoned about. The

data can also be used to make informed future decisions. This information may re-

veal strong patterns between certain data points that allow accurate predictions to

be made on future data that matches these patterns. In the real world, a lot of data

may be imperfect in that some portions may be missing or reveal no patterns at all.

Algorithms used in data mining are robust enough to ignore imperfections and still

find regularities that may be useful.

Machine learning provides the technical means of performing data mining [22]. In

other words, it is the technique for finding, describing, and learning these structural

patterns that can be found in the data. Programs can now use machine learning

techniques to extract useful information from the data and train their system to learn

from the patterns and relationships found. By doing this, you can make informed

future decisions and perform a lot of autonomous functions. No longer does the

program have to be explicitly programmed; instead, the behavior is learned from

large sets of data. Machine learning is being extensively used in a wide array of

fields ranging from facial recognition, to complex medical machines used to perform

surgeries [20]. Data mining and machine learning is used in this thesis to generate

complex models that model nominal system behavior in CubeSats and allow for the

monitoring of future data.

2.1.1 Learning techniques

The field of statistics is very important in machine learning because it aids in the

generation of the mathematical models that describe the patterns and variations in

the data. The field of computer science also has two big roles in machine learning.

5



First is using efficient algorithms to process the data and generating or “training”

the mathematical model that describes this data. Once the model is generated, its

representation and algorithmic solution also needs to be efficient and provide results in

a timely manner [5]. This highlights two important phases that are seen throughout

machine learning, the training/learning phase where the models that describe the

data are generated, and the monitoring/inference stage where those models are used

to understand the data and make new predictions based off of it.

There are also different types of learning algorithms that are used to train the

models. Which of these algorithms to use is usually determined by the type of data

that is used. These algorithms generally fall in two main categories, Supervised and

Unsupervised learning algorithms.

2.1.2 Supervised Learning

Currently, the large majority of machine learning applications use some form of

supervised learning [4]. In supervised learning, labeled training data is used to learn

the mapping function that maps the input variables to the output variables. This

mapping function is approximated to then predict the output variables based on new

input data. The learning is “supervised” in that for each input variable, we know what

the output should be and the function will be optimized to learn this. There are many

different supervised learning algorithms that can be used to create this approximation

function. These can be grouped into classification and regression problems.

Classification problems are those which have a defined class or category that its

output variable falls within. An example of this could be a binary classifier that

predicts whether or not it will rain. The set of input variables or “features” that

the classifier uses to create the mapping function could be various attributes of the

day such as humidity, temperature, and pressure. The output in this example would
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fall into one of two categories, yes or no. The model will be trained with previous

labeled data that contain both vectors of features and the output yes or no. After

the system has been trained, it can then be used to predict future output based on

new input. The classifiers in classification problems can have many categories that

the input data can map to and this number usually depends on the specific problem

[5].

Regression problems are different from classification in that the output variable no

longer falls into a category; rather, it is a real number value such as dollars or weights

[4]. These problems also take in labeled training data and use the input features and

their output values to create a fitting function that maps the input to the output. It

can then predict a value from this function based on new input data.

2.1.3 Unsupervised Learning

As discussed, supervised learning algorithms contained labeled training data where

the input variables are mapped to an output. In unsupervised learning, the training

data only contains the input, and there is no output for which we can create a fitting

function. The goal for these algorithms is to discover regularities and patterns in the

input space, model the structure and distribution in the data, and see if we can learn

something useful from the data. This is known as density estimation in statistics [5].

One of the methods to do this density estimation is called clustering where the goal

is to find clusters or groupings in which the input fall. For example one may want

to cluster customers based on purchasing behavior. There could be many clusters

that are formed from any given input and the points in each cluster are very similar

to each other and different from points in another cluster. Once these clusters are

formed, future data points can be compared against them to see if there are any

matches. Clustering can be used for classification where each grouping of data defines
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a different class. It differs from supervised learning classification in that it decides

these classes looking at unlabeled data, rather than having labeled data that specifies

the class the point belongs to. Clustering is also good for anomaly detection where

there is only one class that the data defines; nominal data. Once this data has been

separated into clusters, it is easy to find anomalous points or outliers that do not fit

any of the grouping that represent nominal behavior. There are several clustering

algorithms such as K-means and density-based approaches that form these clusters in

different ways. [4]. Clustering is the main machine learning technique that is utilized

by the Inductive Monitoring System to provide its monitoring capabilities. We will

discuss the algorithm in more detail later.

2.2 Spacecraft Health Monitoring

Spacecraft health monitoring is essential to ensure that a spacecraft is operating

properly and has no anomalies that could jeopardize its mission. This monitoring

involves a host of people, including mission controllers and systems engineers, who

monitor the down-linked data and analyze it. As mentioned earlier, the increased ca-

pabilities of modern satellites has led to incredibly sophisticated systems with complex

interactions between hardware components and software. As a result, the monitoring

of the system’s health also becomes very complex. We will take a look at traditional

methods of spacecraft monitoring, and then present a more practical data-driven tech-

nique that can be used alongside existing systems to provide accurate and valuable

decision support for the monitoring of a satellite.

One method of health tracking is parameter limit checking where a reference table

of nominal sensor values is created for all the sensors across the system. These values

will specify a range where such sensors can be deemed healthy. If a value doesn’t

fall within this range, then that particular component may have an anomaly [11].
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This method of health monitoring is very inefficient and time consuming because as

the number of components increases, the generation of this reference table becomes

extremely hard. It is very difficult to correctly determine what would constitute a

healthy sensor value. Also, multiple reference tables would have to be made for each

of the satellites different operational modes due to different component interactions in

each case. Another drawback of such an approach is that it only considers individual

parameter ranges when making its decision, and can’t model complex interactions

that may involve several concurrent parameters in the operating context.

Since we want more functions on the satellite to be autonomous and not need

human interaction to determine whether the state of a satellite is nominal, we need

to make the monitoring more autonomous. One common approach to anomaly and

fault detection within satellite systems is hardware redundancy. This method makes

direct comparisons from multiple identical sensors and uses a voting system to try to

identify a faulty sensor. If one sensor provides faulty results, we can identify which

one it is. This method requires very little computation, however can be expensive and

space-limiting [7]. It is also not practical for CubeSats because redundant hardware

is expensive in both size and power requirements.

2.3 Inductive Health Monitoring System

In order to address the challenge of monitoring the increasingly complex compo-

nent interactions of modern spacecraft and other aerospace related systems, new data-

driven techniques have been developed that provide more advanced system health

monitoring. These techniques have been made possible to use by the abundance of

archived system telemetry that has been collected over the years for several different

spacecraft and applications. These systems can provide valuable decision support

for the people responsible for monitoring the system [13]. These data driven tech-
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niques try to characterize nominal system behavior models by analyzing archived

operational data fed to it [10]. Access to extensive nominal operational data allows

for the creation of complex characterizations of component interactions that are only

discovered by using data mining and machine learning techniques such as clustering.

These characterizations can than be used for health monitoring by comparing them

to real-time telemetry. If the system is performing nominally, the telemetry will fall

under one of the models. If not, than this may indicate a potential anomaly or fault

in the system.

One benefit of such data-driven approaches over existing ones is that a deep knowl-

edge of the system that needs to be monitored is not required. There is no need to

figure out what constitutes a healthy system and how the internal components inter-

act in order to create a model that represents this. Only archived data is needed to

determine the nominal ranges of operation. Another benefit is that special analysis

is not required to determine the relationships among sensors because these relation-

ships and patterns are found from the data itself. This is very beneficial because it

becomes extremely hard to model these relationships as the complexity of the space-

craft increases. Data driven techniques can also work in high dimensional spaces

and multiple sensors can be examined concurrently rather than individual parameter

checking. Overall, data driven techniques provide many benefits that makes the job

of health monitoring simpler and more efficient. One such data driven system is the

Inductive Monitoring System (IMS).

IMS was developed by an engineer at NASA, David Iverson, and is a data-driven

health monitoring technique that models the relationship between a set of sensors in

time-series data as clusters. IMS uses vectors as a data structure that holds the values

of several related system parameters for a specific time. It goes through the archived

data, forms these vectors, and groups vectors with similar or consistent values in

the same cluster. Therefore, each cluster has a set of vectors that defines a different
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characterization or nominal state that the system can be in and the sensor ranges

that represent it. This is beneficial because it allows us to model interactions between

related parameters instead of looking at each one individually. The end result is a

knowledge base of many clusters that define a model of the nominal states of the

system. This can be used for real time monitoring or analysis of archived events

[13]. Since the training data used only has one class, nominal, a new vector that falls

into any of the clusters will be accepted. Because this application of clustering isn’t

classification, it does not matter which cluster the vector falls within, as long as it

is in one. If the point is anomalous, it will be an outlier in the data space and not

belong to any cluster.

For monitoring, new spacecraft data can be input and compared against the model

generated by IMS and a deviation value can be calculated that defines how close or far

the current system behavior is from nominal. A high deviation value could signify a

malfunction in the system and alert mission controllers to perform a closer inspection

of the data. It is important to note that IMS does not solve or pinpoint the exact

cause of anomalies on the spacecraft or application. It can only detects anomalies

and gives details on which sensors or features may be causing the issue so that it is

easier to find the problem.

IMS as a tool for anomaly detection can be thought of consisting of two main

phases, learning and monitoring. The learning modules takes as input archived data

and some learning parameters, and then uses machine learning in the form of clus-

tering to create a model of the nominal operating states for that particular system.

The output of the learning phase produces a knowledge base of this model consisting

of many clusters that each represent a different nominal state of the spacecraft. The

monitoring phase uses the knowledge base that was created by the learning phase to

monitor any new input data that is given to it. The output of the monitoring phase

is a deviation score of how well the inputted data matches the nominal clusters in the
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knowledge base. A high level diagram of these two phases in IMS is shown in figure

2.1. We will now take a deeper look into how these two phases work and how the

algorithms work.

Figure 2.1: High-level overview Inductive Health monitoring systems

2.3.1 IMS Learning

The first step of IMS and other data-driven health monitoring techniques is the

Training/Learning phase. IMS uses an unsupervised clustering algorithm for training

that will capture the patterns and regularities from the data and output a model

in the form of multiple clusters of similar points [11]. In this step, nominal archived

operational data is used to generate the models that characterize the different nominal

clusters. It is important that this data be free of any errors and checked for accuracy

because if not, incorrect system behavior may be incorporated into the model and

provide bad results. If data with anomalies is included within the dataset, then if the

same undesired behavior occurs, the system will think it nominal. It is also important

to ensure that the training data is extensive enough to provide the model the ability

to capture all possible interactions and behavior from the set of sensors. If there

is not enough training data, then normal system behavior that may have not been

modeled by the training data may incorrectly define the behavior of a healthy system
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as anomalous.

In the case of IMS, a vector of system parameter values is used as the data

structure that holds the information necessary to create the model and is shown in

Figure 2.2. Mission controllers would want to pick the parameter values they are most

interested in monitoring and place them in the vector. We will call these parameters or

sensors chosen as the vectors “features”. This vector defines a point in N-dimensional

space that will be used by the clustering algorithm to select the most similar cluster

that the point falls within. The values in the vector can be the raw data values of the

selected features/sensors at a given time or can be derived values that are calculated

from the collected data. As you can see in Figure 2.2, this sample vector contains

voltage, temperature, and current features along with a couple of derived features

that calculate the rate of change of certain sensors. IMS produces the best models

when the features in each data vector are correlated in some way. For example, a

data vector that contains the temperature sensors on one axis of the spacecraft will

usually be very correlated and thus produce the best monitoring results.

Figure 2.2: Example of an IMS Vector

A mission controller can chose to add a large number of features in one data

vector depending on how related they are to one another. The number of features

does have a limit, and IMS starts to see a decline in monitoring performance as very

large number of features are added due to the fact that as the number of features

increase, a lot of smaller sensitive system behavior can become too generalized and
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lost in the model. Generally, a data vector works best when the number of features

is less than 30 [13].

Now that a data vector has been defined, the next step is building the cluster

knowledge base from the nominal training data. At each time point, IMS will parse

the input data into the predefined vector format and use it as an input to the learning

algorithm. Every cluster generated by IMS defines a range of allowable values for each

feature in the input vector [11]. This cluster can be thought of as a two dimensional

data vector that for each feature has a minimum and maximum allowable value. An

example of this is shown in figure 2.3. The values in this two dimensional data vector

define the corners of a N-dimensional minimum bounding hyper-cube where N is the

number of features in the vector. Any values that fall very near or inside this bounding

hyper-cube can be thought of as being nominal and part of the cluster, while ones

that fall outside may be anomalous. Each cluster thus characterizes a range of values

that a given nominal input vector should be near. This clustering algorithm differs

from other more traditional approaches in that the clusters it generates aren’t tightly

defined around its points. Depending on what the low and high values are for each

feature, it could produce a cluster that is too generalized and accepts new points that

may be considered outliers in relation to its data points. To address this issue, a

threshold value is given to the algorithm which determines how tight the bounds are

in the cluster. This value is discussed in more detail next.

Figure 2.3: Two dimensional vector that defines a cluster
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Now we will take a deeper look into the IMS learning algorithm. The learning

process starts with an empty cluster database. The inputs to the algorithm will be a

formatted vector for a given time in the training data, and a threshold value ε. This

threshold value ε defines the maximum distance that an input vector can be from an

existing cluster, to be included as part of that cluster.

1. The first step is to normalize the input data vector in order to standardize

the feature values and make sure they are on the same scale. Without this

crucial step, some features with larger ranges will dominate over ones that have

a smaller scale. Usually, standard z-score normalization is used for this step.

In addition to normalization, each significant feature can be weighted so that

any deviation can be amplified for that particular feature. It can be useful to

do this to highly correlated features.

2. If the first vector is being processed, then it is added to the cluster database

as the initial cluster. Otherwise, the distance between the vector and every

existing cluster in the database is computed in order to find the cluster with

the minimum distance. Several methods can be used to compute this distance,

the simplest being using the Euclidean distance between the centroid of the

cluster and the current vector being processed. The centroid of the cluster

can simply be found by taking the average of each feature range within the

vector. The algorithm will loop through each cluster and return the one with

the minimum distance.

3. After finding the cluster that is closest, there will be a comparison done to see

if it falls within minimum bounding hyper-cube of the cluster.

(a) If yes, then the vector is added to the cluster.

(b) If not, then the distance will be compared to ε to see if it is less than this
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maximum allowable radius. If it is, the vector is added to the cluster and

the high and low ranges of the cluster are adjusted to include the current

vector. If not, then a new cluster is created having the values of the vector

as its high and low ranges.

These steps will continue until each vector in the training data is processed. The

end result will be a knowledge base of all the clusters that have been generated. A

flowchart of these steps is shown in Figure 2.4. This knowledge base will then be used

as an input to the monitoring phase.

It is important to note that different values for the threshold value ε will result

in a larger or smaller amount of clusters for the same input training data. The size

chosen can be a trade off between tighter and better monitoring tolerances, or faster

more efficient speed that may sacrifice some quality. For large values of ε, each cluster

will have a larger radius and can thus accept more vectors. The end result will be

a knowledge base with fewer clusters which are larger. This significantly speeds up

the monitoring process because there are fewer clusters to process. However a higher

threshold value causes the clusters it creates to be more generalized and therefore

it can accept points that may not actually belong and could be considered outliers.

This problem can be solved using smaller values for the threshold. Smaller values of ε

will result in a large knowledge base of smaller clusters that are much more sensitive

and can pick up more subtle system behavior. These will create clusters that better

fit the points that they contain. However this smaller ε will cause the monitoring to

be slower due to the increased number of clusters.
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Figure 2.4: Flow of how the learning algorithm works [9]

2.3.2 IMS Monitoring

Once a knowledge base has been created from the learning phase, it can be used

for real time monitoring or the analysis of archived events. This monitoring produces
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a deviation value that signifies if the system is operating within an optimal region

or may fall outside one. Large deviation values may highlight a precursor to a mal-

function or a malfunction itself. This monitoring phase does not explicitly pinpoint

the exact problem with the system, rather it gives details as to which features are

causing the issue and where it is occurring. A mission controller can later do a closer

inspection. IMS works great as an additional tool that provides an advanced method

of monitoring.

IMS monitoring starts by formatting real-time data coming from the system to

be monitored into the predefined data vectors from the learning phase. This data is

then normalized using the same means and standard deviations that normalized the

data points in the learning phase. After the normalization, the new data is in the

same scale as those that were used in learning. Further scaling is done based off of the

weights that were chosen for selected features in the learning phase. Once the new

data vector has been normalized and weighted, the knowledge base can be queried to

find the cluster that is closest. There can be two schemes for matching: strict and

fuzzy [13]. In strict matching, the input vector must fall entirely within a cluster to

be accepted, while in fuzzy matching a distance is calculated from the vector to each

cluster and the smallest distance chosen. Strict matching is much faster as the list of

clusters needs to be only traversed once to see if the given vector falls within. One

drawback of strict matching is that if the training data isn’t comprehensive, than the

system may give an otherwise nominal vector an anomalous result. Fuzzy matching

on the other hand, is much slower since a distance needs to be calculated between

the input vector and each cluster. Distances that are close enough to a given vector

may indicate behavior that is nominal but not contained within the training data.

Overall the fuzzy scheme is much more robust, and used much more often.

The full process to obtain this deviation value for a real-time system works as

follows:
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1. Perform real-time data acquisition for the parameters that were selected for

monitoring in the learning phase and place them in a new data vector that will

be used for monitoring. It is important that the format of the data vector is

exactly the same as the one used for learning; otherwise, the algorithm will try

to relate different parameters. A threshold value ε is also given as input, which

specifies an acceptable limit that the deviation score can be to be accepted as

nominal.

2. Normalize the newly created data vector with the same scale that was used in

the learning phase. This may involve saving the means and standard deviations

for each feature in the training data and then using these values to perform the

normalization on new values as is the case in z-score normalization. In addition

to normalization, if feature weighting was used in the training phase, then the

same weights must be applied to the new monitoring vector.

3. Once the data has been normalized and scaled, the knowledge base will be

queried to find the cluster that is closest to the data vector. The algorithm

will loop through each cluster in the knowledge base and calculate the distance

between the monitored vector and the closest edge of the clusters minimum

bounding hyper-cube. This distance can be found by simply using the Euclidean

formula for distance for two n-dimensional points shown here where x and y

represent the two points.

d =

√√√√ n∑
i=0

(xi − yi)
2

If the vector falls within the nominal operating region defined by the n-dimensional

hyper-cube, then the distance returned is zero. If one or more parameters within

the vector do not fall within the cluster, then a non-zero value will be returned

indicating the deviation value.

During this step, the individual sums for each feature that contribute to the
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overall distance can be saved. This allows the operator to get a more detailed

look at which sensors are problematic. Parameters that are contributing higher

sums are farther from the hyper-cube in that dimension, which indicate that

the particular sensor isn’t conforming with the model.

4. The cluster with the lowest distance is then checked to see if that data vector

falls inside its nominal operating range. If it is, then the the system is performing

nominally. If not, then this distance is compared against the threshold value.

If the value is greater, then an alert can be sent that warns mission controllers

that there may be a problem with the system. There can potentially be multiple

alert levels based off this deviation value with higher values indicating major

malfunctions.

Mission controllers can have special tools, such as Graphical User Interface’s, that

can graph the overall deviation scores over time and also allow for easier trend analysis

of the individual parameters. It is important to note that while IMS does a great job

at finding potential issues with the system, it doesn’t fix them. Once the problem has

been identified, a course of action needs to be made by mission controllers to rectify

the issue.

Overall, IMS’s monitoring capabilities are robust and powerful. It provides a

means to capture nominal system behavior by creating models that correlate the be-

havior of multiple sensors. The sensitivity of these models can be adjusted based on

the training data used and the threshold values given so that there can be a balance

between speed and accuracy. IMS is also very adaptable for system monitoring appli-

cations. The knowledge base that the monitoring algorithm uses can be updated at

any time to provide a more accurate model of the system as more nominal telemetry

is gathered. The features that are monitored can also be updated to remove or add

new features that may provide better results. The strengths of IMS have led it to
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become very successful in a number of system applications.

IMS will be the machine learning algorithm used in this thesis to create a real-time

health monitoring system for CubeSats.

2.3.3 IMS Applications

The potential applications of the Inductive Monitoring System are not limited

to the monitoring of spacecraft. Any domain which has access to large archives of

previous operational data could use IMS as a health monitoring tool. IMS has seen

significant success in its application across these fields as a tool that can actively find

anomalies in data that were previously undiscovered. IMS was originally created for

spacecraft applications, and was initially part of NASA’s Integrated Vehicle Health

Management suite that ran on board the vehicle or in the mission control room to

provide monitoring of the vehicle.

STS-107 Analysis

IMS’s utility was first proven useful by its analysis of the Space Shuttle Columbia

(STS-107) disaster that occurred on February 1, 2003. The space shuttle orbiter

was destroyed during re-entry into the atmosphere and killed all seven astronauts on

board [8]. An investigation into the incident concluded that a large piece of foam was

released from the shuttle’s external tank 82 seconds after takeoff and hit the leading

edge of the left wing which caused a breach in the Thermal Protection System of

the spacecraft. No damage to the orbiter was noticed by mission control until 17

days after launch, and was a small increase in the brake line temperature of the left

landing gear that was seen only seven minutes before the spacecraft was destroyed

[11]. Existing monitoring tools on the spacecraft failed to detect this anomaly until

it was too late.
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Because of this disaster, it was clear that more advanced tools were necessary to

enhance the monitoring capabilities of the spacecraft. To demonstrate that the newly

developed IMS tool could provide advanced monitoring of such systems, Iverson used

archived telemetry from the temperature sensors of the wings of previous successful

space shuttle missions. Through this training data, multiple knowledge bases of

nominal operating regions were created from the temperature of the wings during

several phases of the flight including launch, ascent, and re-entry. These knowledge

bases were then utilized to analyze the archived data of the STS-107 flight and see if

it was able to pick up any anomalies [11].

The training vectors were formed from four temperature sensors on each wing of

the shuttle. These vectors were normalized and then used for the generation of a

separate knowledge base for each wing. The end results was a knowledge base of 490

clusters for the left wing and 237 clusters for the right wing.

After feeding the flight data of STS-107 into IMS, the output in Figure 2.5 was

produced. The horizontal axis represents the time from the beginning of lift off,

while the vertical axis represents the deviation value from nominal that the analysis

produced for a certain time. The blue line represents the deviation values of the right

wing while the pink line represents the deviation values of the left wing. The moment

of the foam impact is also marked by a small vertical line at about 15:40:22. Looking

at these results, it can be seen that before the impact, the deviation values for both

wings were trailing each other and were quite small. However after the impact the

left wing saw huge spikes in the deviation value that indicated some type of error or

malfunction. Closer analysis of the individual temperature sensors that were causing

these spikes would have alerted mission controllers to this problem much sooner.

These results show that IMS can be effectively used to provide advanced monitoring

and detect system anomalies. This analysis was done post-disaster on the archived

telemetry of the mission. However it can also be used for real time monitoring of the
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spacecraft to provide mission controllers with more monitoring capabilities [11].

Figure 2.5: Results of IMS analysis of STS-107 [11]

International Space Station Mission Control

IMS has been further matured and slightly adapted for use in the real time mon-

itoring of several application including the International Space Station(ISS) flight

control room. For this application, IMS provides monitoring of two flight control dis-

ciplines, Attitude Control and Thermal Operations [10]. Four large gyroscopes make

up the ISS Control Moment Gyroscope (CMG) attitude control system which provide

the ISS with “non-propulsive attitude control devices that exchange momentum with

the ISS through induced gyroscopic torques. [10]” These systems have been known

to degrade throughout time enough to malfunction, and thus need to be replaced.

Due to this, flight control officers are interested in discovering any early symptoms of

degradation so that replacements can be scheduled.

IMS was deployed in the assistance of this task to provide real time monitoring of

the CMGs degradation. The IMS data vectors for this application consisted of nine
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sensors and four derived parameters that were chosen with the help of special flight

controllers. Some of these parameters include rotation speed, bearing temperature,

rotation rates, and rate of change of the temperature and current sensors over time. In

order to generate the models for the nominal operating regions, seven to ten months of

archived telemetry was used from four CMGs to capture their unique characteristics.

The result was four IMS knowledge bases that were generated from the data that

would be used to monitor each CMG.

This IMS system was integrated with the NASA Mission Control data server

software so that it could access real-time telemetry coming from the ISS. Each CMG

had its own IMS module running to provide continuous real-time monitoring of the

incoming telemetry to the appropriate CMG knowledge base. Each of these IMS

modules would report the overall deviation of the telemetry from the nominal regions

and could also provide the individual deviation contribution of each parameter so more

concise analysis could be done and the source determined. These results are posted

on the ISS Mission Control data server which can then be plotted on console displays

and alerts issued if significant deviations occur. The success of this system has led

to further advancement and development of the system to provide more specialized

monitoring capabilities. Another significant advantage of the system is that it can be

updated frequently as new telemetry data sets are archived and provide more details

of the overall system.

2.4 CubeSat

CubeSats are small pico-satellites that are designed to reduce costs and develop-

ment times, increase access to space, and be able to sustain frequent launches with

launch providers [14]. The CubeSat project began in 1999 as a collaborative effort

between California Polytechic University, San Luis Obispo and Stanford University’s
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Space Development Laboratory [19]. They were created so that educational insti-

tutions and small private firms could have the capability to create small affordable

satellites that could be developed in 1-2 years and each perform a specific mission.

The CubeSat standard defines the shape and size of one unit(U) to be a 10 cm cube

with a mass of up to 1.33 kg per unit [14]. A CubeSat can be multiple units long as is

the case with 2U and 3U CubeSats as long as each unit follows the standard. Creating

larger CubeSats can allow for missions of increasing complexity and value, however

can lead to increased costs and development times. The power and size constraints of

CubeSats can introduce challenges in terms of hardware/software design and certain

trade-offs have to be made to balance the cost, effectiveness, and fault tolerance of

these systems [16]. Most CubeSats consist of a unique payload that performs the

science experiments that are required for the mission. CubeSats are deployed using

the Picosatellite Orbital Deployer (P-POD) that was developed at Cal Poly which

protects the satellite from the launch vehicle and provides deployment capabilities

when in orbit [14].

Each CubeSat can have a plethora of hardware components and micro controllers

that as a whole constitute the spacecraft. Most components have some type of sensor

that can give the ground station more information about its state. This information

can include the temperature, current, and voltage of certain components. These sen-

sors can be analyzed to detect and locate any malfunctions and monitor the overall

health of the satellite. Overall, due to their low costs and development times, Cube-

Sats have seen widespread development from different universities and private firms

including PolySat which has been a leader in the development of CubeSats since their

inception.

25



2.5 PolySat

PolySat is a multidisciplinary lab run by students on Cal Poly’s campus devoted

to the design, implementation, testing, and integration of CubeSats. The lab has

successfully launched 8 CubeSats since the start of the program and each mission

has given new insights on how to improve both the hardware and software design of

the spacecraft [3]. The current design of the lab’s avionics system relies on a a few

key design principles that make the spacecraft economical, radiation resistant, easy

to develop for, and match the size and power constraints.

The hardware is designed to minimize modularity and redundancy in order to

make it more generalized for more missions and to reduce the space the base hardware

occupies [16]. This design has led to the consolidation of most of the spacecraft’s

hardware into a single system board which contains both the command and data

handling and electronic power supply subsystems. This system board consists of

a small but powerful 32-bit ARM9-based Atmel processor which runs at a clock

rate of 400MHz. It also contains 64 MB of S-RAM, 512MB of non-volatile NAND

flash memory, and 16 MB of non-volatile phase change memory which is far more

radiation tolerant than other forms of memory. Radiation tolerance is very important

for CubeSats because the environment in space is susceptible to radiation events

which can damage hardware and corrupt the software. For additional storage, the

spacecraft contains a SD card with a capacity of 32 GB [15]. Many standard serial

communication protocols such as I2C and SPI are used to connect and communicate

with the different components and sensors that make up the spacecraft.

There is also a certain level of fault tolerance built into the CubeSats developed

by the lab. This capability allows for the spacecraft to recover from any transient

faults that occur during the mission and impact the operations of the spacecraft. To

provide this fault tolerance, there are a number of hardware and software watchdog’s
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that periodically check if the spacecraft has reached some kind of error state. If so,

the system is rebooted in order to recover from the error state and continue operation

as normal. Checksum’s are also used to verify that persistently stored data hasn’t

been corrupted [16]. While these fault tolerance systems provide the spacecraft with

a good level of protection from transient faults that can occur in the harsh space

environment, they fail to identify and detect any major hardware malfunctions that

may have occurred.

PolySat currently has no health monitoring system that exists within the flight

software that allows for the monitoring of the spacecraft while in orbit. The current

method of monitoring involves collecting large chunks of system telemetry that are

stored on an onboard SQLite database and analyzing each sensor to try to find the

cause of a problem. Since the downlink capability of the spacecraft is severely limited,

transferring these large files can be time consuming. It can also take a long time

to analyze the data for potential problems. Some of the current PolySat missions

have over 200 sensors on board that would have to be examined. A subtle problem

would be extremely hard to detect by just eye balling the data. An automated health

monitoring system could greatly enhance the way the lab detects malfunctions during

the satellite’s mission time frame. To do this, IMS will be implemented within the

flight software to provide this capability that is much needed. In this section, we will

be taking a look at the flight software design of PolySat to better understand how

IMS will be integrated.

2.5.1 Software Design and Architecture

PolySat’s flight software was designed to be highly modular, extensible, and robust

so that it can be used reliably for many missions. These design goals allow for reuse of

large portions of the flight software for new missions instead of tailoring the software
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for a specific mission. Modularity improves the overall organization of the software by

isolating major spacecraft functions into their own modules. This modular design has

a number of important benefits including speed, simpler debugging and maintenance,

ability for parallel development, and extensibility. It is much easier to debug problems

that may be occurring in a modular architecture because the problem will be isolated

within one or two specific processes without affecting the whole system [15]. Another

big advantage is that it allows for parallel development by multiple students where

each student can work on different modules at the same time. Since CubeSat missions

have a short turnaround time, development speed is an important factor to consider

and parallel development reduces this time by a substantial amount. Also since each

major function of the satellite is its own module, full knowledge of the system is not

necessary and a student developer can begin contributing much sooner.

To support some of these goals and make development easier, the flight software

is built on top of the Linux operating system. Linux provides a large amount of pre-

existing code and libraries that handle the low-level tasks of managing the hardware,

drivers, and communication [16]. Linux’s process model also supports the goal of

modularity by providing address space and code isolation of major spacecraft tasks

into separate processes. As a result, PolySat’s flight software consists of several core

processes that handle the major tasks of the system. The overall software architecture

consists of three main layers: processes, abstraction libraries, and drivers. Since most

processes perform similar tasks such as event scheduling and command handling,

abstraction libraries provide a mechanism to provide these common services to each

process. The flight software also operates in an event-driven fashion where processes

block until there is some timed or command initiated event that causes something to

happen. A high level overview of the different components that make up the PolySat

flight software can be seen in Figure 2.6.
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2.5.2 Processes

The flight software is broken down into a number of core processes that perform

the major operational functions of the system. Each process performs a very specific

function and uses the custom PolySat abstraction libraries to perform common tasks.

Communication between processes is done using Inter-Process communication which

leverages the UDP/IP Networking Protocol built into the Linux kernel [15]. Each

process in the flight software is assigned its own port and any other process that

wishes to communicate simply generates a UDP packet with a destination at the

given port. UDP and IP also contain built in error detection by utilizing checksums

which allow for a much more reliable method of transmission.

Figure 2.6: High-level overview of the different components in PolySat’s
Flight Software

Some of the main processes include:

1. System Manager - Responsible for maintaining the state of the avionics sys-

tem, which includes various kernel statistics, hardware state information, and
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sensor information. It also has the capability to give administrative actions that

can do important tasks such as killing a specific process or rebooting the satel-

lite. It is also responsible for the reading and storing of spacecraft telemetry.

2. SatComm - Responsible for controlling the radio and sending/receiving data

from the ground. SatComm handles the encoding and decoding of the packets

from the transceiver and provides the low level network management required

to send and receive data from the ground station. SatComm also is responsible

for the routing of packets within the spacecraft itself and uses Linux’s built

in networking libraries to allow for the Inter-process communication that is

essential for the spacecraft to communicate with itself.

3. Beacon - Periodically broadcasts spacecraft identification and health informa-

tion. The Beacon process is very important and allows for the tracking and

identification of individual CubeSats in orbit which can be a difficult task if

multiple spacecraft are released at the same time. The packet broadcast by the

Beacon process contains essential information about the health of the system

and can be received and decoded by the ground station or via any amateur

radio station.

4. Watchdog - Provides a mechanism for the software fault tolerance of the sys-

tem. As mentioned before, there are many radiation events that can occur

in the space environment that can cause bit flips and data corruption. These

events could cause a process to behave abnormally or reach an error state. The

software watchdog periodically queries each process and validates if they are

working correctly. If not, it causes a system reboot which will hopefully solve

the issue.

5. Datalogger - Responsible for administration and storing of all telemetry in the

SQLite Database. The storage of telemetry in the the database is an important
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event that occurs at a scheduled interval throughout the mission and Datalogger

handles this task. It can also store other data that may be generated from the

scientific mission in the form of key value pairs. All this data can be later

accessed and down-linked for further analyzing.

There are also other processes that may be mission specific such as a payload

process that interfaces with the mission payload. There are also other temporary

processes that can manipulate the database or perform ”One-off” experiments. Each

process also has command handlers which handle any commands that may be trans-

mitted by the ground station or another process. Each command may perform a

specific function that may be specific to a process.

2.5.3 Abstraction libraries

There is a large set of functionality that is common across all processes. Examples

of this include event and command handling, inter-process communication, and con-

figuration management. This common functionality is provided by a standard set of

custom libraries that expose an API that processes can use. By using these libraries,

the development of the process is significantly easier and faster.

The main libraries consist of the following:

1. Event handling- As mentioned earlier, the spacecraft is a event-driven sys-

tem that responds to various commanded or timed events. Each process must

therefore have an event handler that can generate events or respond to events

that may occur. The event handling system is provided as a library that each

process can use to provide this functionality. The library takes advantage of the

Linux select call which can monitor various file descriptors in the system and

also wait for timed events. Since each process is assigned a socket file descriptor,
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this file descriptor can be used by the select call to register commands. Each

process will block until either a file descriptor is set or a timed event occurs.

The library provides a method to register a callback function to be called once

either of the two events occurs so that process can respond accordingly to the

event. This library abstracts all of the details into a concise set of API calls

that sets up the event handler for the process and can schedule events.

2. Command handling- Any spacecraft must have the capability to respond to

commands that are sent from the ground or any subsystem on board. Com-

mand handling is done on each process by using a library that maps command

numbers to functions. Commands are sent to a pre-designated port number

assigned to each process during initialization, and consist of a one byte com-

mand number that is appended to the beginning of a command packet. This

command number is used as an index into an array of function pointers that

provide the functionality required of the process for that command [15]. This

mapping is defined using a command configuration file that provides details

on each command that a process can handle. An example of a common com-

mand that is seen across most processes is a status command that returns state

telemetry of the selected process. Each command returns a unique command

response number as part of its packet to identify which command handler is

responding.

3. Inter-Process Communication - Inter-process communication between pro-

cesses within the satellite is also abstracted into a library that is utilized by every

process. This library utilizes existing Linux API calls to create non-blocking

UDP sockets that are used by the command handler to send and receive com-

mands. It also provides an abstraction to look up the port number of any

process using the process name.
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PolySat’s flight software adheres to the main design goals of modularity, extensi-

bility, and robustness that make development much more streamlined and organized.

The success of this system has been seen in its utilization in multiple missions.

33



Chapter 3

RELATED WORK

The algorithms in the Inductive Health Monitoring System are not the only ones

that can be used for anomaly detection and monitoring in this application. There are

several other unsupervised and supervised algorithms that can be used for outlier and

anomaly detection. Many of these algorithm are also data-driven and require archived

training data to generate some nominal representation of system behavior. Some

examples of such algorithms include ORCA, One-class SVM’s, and Virtual Sensors.

In this section, some of these alternative algorithm are examined and compared to

IMS.

3.1 ORCA

ORCA is a tool that also uses a data driven unsupervised algorithm for anomaly

and outlier detection [6]. It is distance based like IMS and uses a nearest neighbor

approach to calculate the average distance between a point and its k nearest neighbor’s

that reside in the feature space around it. This distance is reported as the anomaly

score that can be used to determine if the new point is an anomaly or not. It is a very

fast and efficient algorithm that uses a simple pruning rule that creates near linear

time performance on large data sets.

One of the big advantages that ORCA has over IMS is that it can be used to find

outliers in a large heterogeneous data set [10]. This can be useful when trying to find

outliers in the training data. IMS relies on all data points in the training data to be

nominal. If there are any anomalous points, then this bad behavior is included in

model that IMS generates. ORCA can identify these outliers within a data set and
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therefore doesn’t suffer from this problem of including bad data in its models. ORCA

can be used in conjunction with IMS to remove all outliers from a training data set

before running the IMS algorithms.

3.2 One-class Support Vector Machines

One-class Support Vector Machines (SVMs) use training data with one class, in

this case nominal data, to create a model which is used for anomaly detection [21].

They can be used to separate anomalous data from nominal data. They are a subset

of a Generic Support Vector machine, which is used in classification to classify data

by finding a decision boundary which separates each class from the other classes.

It finds these decision boundaries by mapping data from a lower dimension to a

higher dimension so a linearly separable hyper-plane can be found that splits each

feature. In the case of one-class SVMs, this hyper-plane separates points that are

deemed nominal from those that are anomalous. An example of this separation in

high dimensional space can be seen in Figure 3.1, where the purple dots are nominal

observations whereas the yellow dots represent an outlier. These SVMs return a

measure of strongly a new data point is nominal or anomalous.

Since these SVMs are not distance based in the same sense as ORCA or IMS,

the points that it finds anomalous often differ from these distance based models.

One-class SVMs calculate the distance from a point to its separating hyper-plane

instead of analyzing the data and finding distances in the original data space [17].

IMS and ORCA are more robust and better at monitoring applications that may

have significant mode changes throughout operations because their models use the

characteristics of the original data space to define anomalousness.
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Figure 3.1: One-class SVM [2]

3.3 Virtual Sensors

Virtual Sensors is a supervised machine learning algorithm that can be used for

anomaly detection and differs from IMS’s one class monitoring scheme. This algo-

rithm predicts the values of certain features at time t using available data up to and

including the given time. It does this prediction by using a non-parametric model to

create an approximating function that predicts the value of a specific output variable

as a function of other observed variables and an input vector. This predicted value

is compared against an observed value to determine an error value which defines how

anomalous the given input vector is [18].

Since this algorithm uses adaptive modeling to create an approximating function,

it needs a way to adapt to changing system operating modes that cause the data to

change significantly. To address this issue, multiple models are created for different
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operating modes and a distribution of the estimates is used to generate the error

value that takes into account any transient mode of operation changes. Both IMS and

Virtual Sensors produce similar results when used to detect anomalies. Differences

in the ways these algorithm determine errors may causes either algorithm to find an

anomaly that the other may not detect.

Most of the algorithms that have been discussed in this section can be used along-

side or replace IMS as a potential anomaly detection algorithm. The best results are

obtained when multiple algorithms can be used alongside each other so any anomaly

that is hard to detect in one model, can be captured in another.
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Chapter 4

SYSTEM OVERVIEW

PolySat’s system health monitoring abilities are only limited to detection of prob-

lems that are glaringly obvious through its beacon or manual examination of flight

telemetry. These methods are not only inefficient and time-consuming for mission

controllers, but also require increased bandwidth to send large amounts of telemetry

which could be utilized more effectively for mission tasks. Also, as the complexity of

future CubeSat missions increase, it will become increasingly difficult to find small

problems that effect mission operations and results.

Fortunately, PolySat has collected a large archive of system flight data throughout

many missions that make it possible to use data-driven monitoring techniques such

as IMS to monitor the health of the satellite. By using this technique, we gain all of

the advantages IMS offers such as simplicity, adaptability, and efficiency. IMS is used

in this thesis to create a flight ready and validated implementation that will be used

in all future missions. This section discusses the requirements and high-level design

of the IMS system that is integrated into PolySat’s flight software.

4.1 Requirements and Goals

For this new health monitoring system to be successfully integrated in future

missions, it must meet a set of requirements. These requirements ensure that the

system doesn’t negatively impact spacecraft operations, and can provide the best

monitoring results throughout the mission cycle. These main requirements can be

listed as follows:

• Speed and efficiency - The health monitoring system should be able to pro-
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cess and output the deviation score in real-time. Therefore the monitoring

algorithm should be fast and efficient during operation.

• Low resource consumption - The system should not require a significant

amount of resources in terms of memory or processing power from the satellite.

CubeSat’s are very power limited due to their size and therefore power must

be efficiently used. A lot of processing from the system increases this power

draw and may cause power issues. The memory of the CubeSat is also limited

to 64MB to be shared among all processes. The health monitoring system

should use the least amount of memory possible in order to conserve this limited

resource.

• Anomaly reporting capability - The system must be able to provide alerts

when the spacecraft may not be functioning nominally. Along with these alerts,

it should provide more details about the severity of the issue and possible causes.

• Generic - The system must be generic so that it can be used in multiple

missions with very little changes. Since each mission is different in terms of

design and complexity, the system should be able to adapt to the new hardware

and sensors each mission introduces. It can be used by any process on the flight

software to provide specific monitoring.

• Adaptability - The system must be able to be updated as the mission pro-

gresses. These updates can improve upon the existing model as new nominal

flight telemetry is gathered. Since it is highly unlikely that complete system

behavior is captured for a specific mission before flight, updates on orbit can

fill in the missing holes to provide better results. The system must also be able

to be shut down in case it is performing poorly.

The overall goal of this health monitoring system is to provide an autonomous
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monitoring tool that PolySat mission controllers can use to check if the spacecraft

is operating nominally. This system could potentially catch issues far before they

become apparent and cause real damage to the spacecraft. It will also ensure that

any scientific results that are being down-linked haven’t been influenced by some

malfunction.

4.2 High level design

The new health monitoring system needs to be designed in a way so that these

critical requirements can be met. Fortunately, IMS is a great system to use which

meets most of these requirements. This new system was designed around IMS’s

learning and monitoring phases, and uses the same algorithms that were discussed

in Section 2.3. The success and speed of these algorithms on some of IMS’s previous

applications made us confident to use it for a spacecraft wide monitoring application.

The high level design of this system consists of a learning phase which occurs

on the ground, and a monitoring phase which occurs on the spacecraft during its

mission. The idea behind this separation is to perform the more resource intensive

learning phase on a computer on the ground, and then load the knowledge base onto

the spacecraft so that it can perform the less intensive monitoring. The monitoring

returns a report on the health status of the system. This design works well to meet

the speed and resource requirement listed. The steps can be summarized as such:

1. Gather all nominal telemetry from the archives

2. Select features to monitor

3. Run the learning algorithm on selected features and archived data

4. Upload the resulting knowledge base of clusters onto satellite
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5. Run monitoring

6. Report health status

The model that is generated during the learning phase can be updated as the

mission progresses and the spacecraft down-links relevant nominal telemetry. This

new telemetry is added to the archive, and a new model is generated that represents

a more comprehensive and accurate representation of system behavior. This cycle

can continue throughout the mission. This achieves the requirement of adaptability.

This high level design is illustrated in Figure 4.1.

Figure 4.1: High level system design

Reporting of the health status will be done through the satellites beacon packet

which broadcasts periodically as discussed in Section 2.5.2. This beacon packet can

be received by the ground station and the health report read. Additionally, the

monitoring algorithm’s deviation score and individual feature contributions can be

saved on a file on board that can be down-linked for further analysis.
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The final system will consist of multiple IMS modules that define different feature

sets to be monitored. Each module will be trained separately on the ground and run

independently on the satellite. Each module will belong to a process on the satellite

and the monitoring capabilities will be provided as a library that the process uses.

During monitoring, feature values will be obtained by sending UDP commands to

the processes that own that particular feature. Once all feature values in a module

are available, the monitoring algorithm will process the data and return a deviation

score. More details on this system will be discussed in the next sections.

4.3 Config/Cluster files

A standard structure and format of the knowledge base is important so that the

output of the learning phase can be easily read by the monitoring library. In Section

2.3.1 we see that the learning phase will generate a knowledge base containing all the

clusters that define the nominal behavior of each feature set. To provide the best

monitoring results, multiple feature sets or ”monitoring modules” will be created and

trained to run as separate models on the satellite.

These modules need to be explicitly defined so both the learning and monitoring

phases can run on the correct features. This is achieved using configuration files that

are built into PolySat’s software libraries. These configuration files will be generated

by lab members and each file will define important information about the specific

module including its name, cluster file location, the process is belongs to, and details

on all of its features. It will be used to select which features to train on from the

archived telemetry during learning. The real power of these files comes from its use

by the monitoring library on the satellite to define the proper modules and initialize

the proper data structures required for monitoring. These configuration files have a

style similar to XML and consist of tags and values.
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In addition to the configuration file, the actual knowledge base or cluster files

generated by the learning phase are required for monitoring. These also need to be

saved and correspond to the correct configuration file which defines its feature set.

The cluster file will be a large data file consisting of floating point numbers that

represent the clusters. The configuration files define the modules while the cluster

files provides the details and data of the module. This generates a file hierarchy that

the spacecraft will use to perform the monitoring. This is illustrated in Figure 4.2.

Figure 4.2: Cluster and Configuration file hierarchy

This hierarchy begins with a root directory HMSData which consists of sub-

directories that contain the configuration and cluster files, ModuleCnfgFiles and

ClusterFiles respectively. This directory also contains a HMSRun.txt that speci-

fies whether or not the monitoring should be running. The configuration and cluster
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file directories contain multiple sub-directories for each module defined. For example,

if three modules were created, there would be three subdirectories with the names

of the module under both the ModuleCnfgFiles and ClusterFiles directories. These

directories then finally contain the respective configuration or cluster file for the mod-

ule selected. Finally, each ClusterFiles module sub-directory contains a AnomOutput

sub-directory which stores detailed information on any anomalies that may have oc-

curred for that specific module. One of the reasons for this seemingly excessive and

complex file hierarchy has to do with the adaptability of the system which will be

discussed more thoroughly later. This file structure will be copied to the /data di-

rectory on the file system of the satellite, and be used to initialize the monitoring

structures and perform the anomaly detection.

4.4 Learning Module

One of the first steps in this health monitoring application is to create the models

that will represent nominal system behavior for the satellite. This is done using IMS

learning and will be performed on a local computer on the ground. The output of

this learning phase is the hierarchical file structure mentioned in the previous section.

IMS learning requires large amounts of archived nominal telemetry to train its

models and generate cluster files that characterizes most of the system behavior.

PolySat has gathered large amounts of flight telemetry from its past missions that

can be used for this purpose. It is important that this data contains no anomalies

so that bad behavior isn’t included in the final model. As a result, portions of this

data have been analyzed and filtered of any potential anomalies. In particular flight

data from the Intelligent Payload Experiment (IPEX) mission was used to generate

the models necessary. This data set consists of about 50,000 time series data points

taken about every 10 minutes that each contain data for over 150 features. This large
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number of features includes hardware sensors that monitor temperature, current,

voltage, pressure, etc, and a number of software telemetry points that give various

statistics about the state of the software.

4.4.1 Feature Selection

Given this large number of features, it is best to not just pack them all into one

model. IMS works best when features are correlated and changes in one feature in

the feature set have a predictable change in another. Also one big benefit of having

a feature set that is highly correlated is that a smaller amount of training data is

needed to capture the behavior for that set. It is also not good practice to have

more than 25-30 features in one model due to it becoming too generalized and losing

specific system behavior. For these reasons, it is best to break up this data into

multiple correlated feature sets that can be used for monitoring. In order to do this,

a technique to find the correlation of each feature in this data set will need to be

used. For this application, we take advantage of the power of a correlation matrix.

Covariance is a statistical measure of the linear association between two random

variables x and y. It measures the strength of the correlation between these two

variables and is defined by the formula:

f(x) =
n∑

i=0

(xi − x)(yi − y)

n

This formula basically finds the sum of the pairwise data points that fall on the

same side of the mean or on opposite ends. The covariance of two variables is positive

when this sum indicates that most data points fall on the same side of the mean, and

negative otherwise. The strength of the correlation, either positive or negative, is

determined by the absolute value returned. The larger the value, the stronger the

linear relationship between the two variables [23].
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Covariance is highly influenced by the scale of the data points and this influence

needs to be removed. To find a scale-free metric of this linear relationship, a correla-

tion coefficient is used. The correlation coefficient r is a normalized measure of the

linear relationship between two variables and is defined as the covariance of x and y

divided by the standard deviation of x multiplied by the standard deviation of y.

r =
cov(x, y)

σxσy

The correlation coefficient is a much better metric to use to find the correlation of

two or more variables in a large dataset because it is scale free. A correlation matrix

is created by finding the pairwise correlation coefficients between each variable in the

dataset. Highly correlated pairs of variables will have a correlation coefficient close

to 1 or -1. Pairs with low correlation will have values closer to zero.

For our application, we want to find instances of either strong positive or negative

correlation between variables and group them into the same module. A correlation

matrix was generated for the hardware sensors in the IPEX training data and the

correlation coefficient between each pair of features was calculated.

Figure 4.3: Correlation matrix for small set of features

Figure 4.3 illustrates a small set of the entire correlation matrix. We can see that

there seems to be strong correlations between each of the temperature sensors and

low correlation between a temperature sensor and power sensor. This relationship
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was seen throughout the rest of the matrix. This relationship makes sense because

we expect sensors in the same vicinity to experience the same temperature changes.

Strong correlations were also seen between most of the training data’s power sensors.

These results led to the creation of two main modules for monitoring: one that

contains a large set of temperature sensors, and the second which contains most of

the power sensors. The configuration files that define these modules can be seen in

Appendix A.

4.4.2 Output

Once these feature sets were determined, the learning algorithm could be run on

each module to generate the cluster files. The IPEX data would be parsed to include

only the selected features in the module, and then the clustering would occur on

this parsed data. The resulting cluster file includes the clusters, along with some

scaling information needed for the data normalization such as the means, standard

deviations, and weights of each parameter. More information on this will be provided

in the implementation section.

Along with the cluster file, a configuration file needs to be created for each of

the modules to include the necessary information for the module and each feature it

contains. All these files need to be organized into a file hierarchy that matches Figure

4.2 and placed in the /data directory on the spacecraft for the monitoring library to

use.

4.5 Monitoring Library

The monitoring module that is to run on the spacecraft was designed to fulfill all

the requirements listed in Section 4.1. The code to perform the monitoring should be

compatible with the flight software and integrated in way that makes full use of the
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libraries and abstractions provided. The first instinct was to implement the health

monitoring system as a new process on the spacecraft. This idea made sense because

monitoring can be seen as its own entity in the modular design of the architecture, and

would therefore fit well. It would interact with other processes to obtain information

to do the monitoring and would exist in its own code-space. However, this design

doesn’t fit well with the requirement of making this system generic. The hardware

components and complexity of each spacecraft differ from mission to mission and

this would require frequent updates to the code of the process to make the system

compatible to the new hardware of a different mission.

To better fit this requirement, the monitoring phase is provided as a new library

that processes can import for monitoring. Through this design, each process can

have a unique monitoring module running with its own parameters and feature sets.

Also, the library can be easily and separately updated to coincide with any changes

to hardware components without any major changes needed in the system process

itself. The library will initialize the data structure objects containing the information

for monitoring, and have methods for checking anomalies and cleanup.

At a high level, the monitoring library will add scheduled events to each importing

process so that the monitoring can run continuously. The configuration and cluster

files will be read to set up the data structures needed to perform monitoring. An

anomaly checking event will send commands to obtain the values for each feature in

the module. Once all the data has arrived, the monitoring algorithm will return a

deviation score that is reported. This cycle will continue throughout the mission life

cycle.
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4.5.1 Add scheduled Events

Since the monitoring is designed as a library, its functions for setup, processing,

updating, and cleanup need to be called by each process where the monitoring will

run. The initialization needs to only run once at the beginning of each process to

setup the data structures that will be used. However, the anomaly detection and

update functions are events that need to run continuously throughout the mission

cycle . As a result, these events need to be registered to run at given time intervals.

This is where the event handling library is used to register these events that will

continuously run on the process’s event queue.

4.5.2 UDP commands response

Real time values for the features in each module are required for the monitoring

algorithm to process and return a deviation score. Each process owns a set of sensors

that it can read and obtain a value from easily. The values for almost all the sensors

owned by a process can be obtained through UDP commands that the ground or

other processes send. The response packets can then be parsed for the individual

feature values required. We utilize this capability to acquire all the values needed in

each module to perform the monitoring.

This library can be utilized by any process in the system. Each feature in a

module will have a command number and process name that is used to generate and

send these commands to the correct destination command handler. The command

handler will generate the response, and it will be sent back to the original process.

To improve the speed and efficiency of the system, multiple feature values can be

obtained from one call if their corresponding command numbers match. This process

will be discussed more in depth in the implementation section.
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4.5.3 API

The API for this library consists of four simple methods:

1. hms init - This function performs the initialization of the data structures that

provide information for the monitoring. This initialization step consists of al-

locating proper amounts of memory for the data structures, reading the cluster

and configuration files, storing this information, and returning a HMSData ob-

ject consisting of all necessary data fields to be used by the other methods.

2. hms check anomaly - This function uses the HMSData object created in

the initialization step to perform the monitoring and report any anomalies.

It sends all commands needed to obtain feature values, and then runs the IMS

monitoring algorithm to return a deviation score. This score is compared against

a threshold and an appropriate health response is generated.

3. hms check file modification - This function checks for any updates to con-

figuration or cluster file that may have occurred. If a change is detected, all

relevant models will be updated.

4. hms cleanup - Standard cleanup function to stop the monitoring and free up

any allocated memory

4.5.4 Error reporting

This system will report any anomalies when the deviation score calculated by

hms check anomaly is greater than the threshold value given. Once an anomaly is

detected, it will be reported by the beacon packets that are broadcast by the satellite.

In addition to this, the timestamp, deviation value and the individual feature error

contributions will be stored in a file on the AnomOutput directory in Figure 4.2.
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In response to an anomaly, the system could also respond by increasing the rate of

telemetry storage in the database so a more thorough investigation of the cause can

be done.

4.6 Adaptability

Finally the system must be adaptable throughout its mission life cycle. Usually

to perform updates on the satellite, a new command is generated that provides the

update functionality. Since we are using a library to perform monitoring, creating a

command for each process that uses the library is bad design.

The update functionality for the monitoring system will utilize the file hierarchy

design in Figure 4.2. The basic concept to update the models on the system is to copy

the updated file to its corresponding model sub-directory in either the clusterFile or

configuration directory. Files can be sent to the satellite while it is in orbit through its

IP address. The hms check file modification will run at a set interval and check

for changes in the directory structure. If a change is detected, it will reconfigure the

models to include the changes. In the case where the model update fails, it will delete

the new file and revert back to the original. It is for this reason, that each model has

its own directory.

The system can also be configured to stop running if it is performing poorly. This

can simply be done by changing a value in the HMSRun.txt file.
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Chapter 5

IMPLEMENTATION

This section discusses the implementation of the PolySat health monitoring system

based on the system design presented in the last section. It does a more detailed

analysis on how the learning module works and what its output looks like. The

monitoring library’s integration into the current flight software is also examined in

more depth.

5.1 Learning

The learning phase which runs on the ground was written in Python to take

advantage of its ease of development and plethora of libraries and frameworks. This

includes machine learning libraries such as Sci-Kit learn and scientific computation

and statistical libraries such as NumPy. NumPy was a very useful library because

it provided the ability to create homogeneous multi-dimensional arrays in Python,

and use many of its built in high-level mathematical and statistical functions to

manipulate these arrays. These arrays are much faster and efficient to do scientific

computation on then Python’s built in lists.

The learning program that was created is a single file that executes one training

module with a unique feature set at a time and outputs the finished cluster file. If

there were multiple modules created, this program needs to be run multiple times

with the parameters for each module provided as input.

The implementation of the learning algorithm is very similar to the one mentioned

in Section 2.3.1. There exists a global Cluster database object that contains all

clusters that are generated by the algorithm for each module. A Cluster class also
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exists which constructs a Cluster object that contains the upper and lower bound

vectors, number of elements, and the centroid of the cluster. This Cluster object also

contains various function that can add, remove, or manipulate data vectors in the

cluster.

As input, this program takes a list of file names that contain the time series

data required to train the model and generate the Cluster database. It also takes the

threshold value ε that specifies the cluster radius. Since the training data can possibly

contain hundreds of columns worth of feature values, a list of column numbers that

specify which features constitute the module needs to be supplied. The configuration

file can be referenced for the feature names and the corresponding columns found in

the training data. Finally, a list of weights for each feature is required if you want to

scale certain features more than others.

Once it obtains all necessary input, the program parses through each file and

generates a NumPy array for each data vector. The end result of this parsing is a

multi-dimensional array that contains all the data vectors that were provided by the

training data. Since the training data may contain portions where some of the data

is not available for a subset of the sensors, there is some cleanup performed to remove

such vectors. This array of data vectors is then scaled using z-score normalization

and the weights that were provided as input. After this, each scaled data vector is

processed as described in Section 2.3.1, and the final product is a list of Clusters in

the Cluster database object that defines the model for the selected feature set module.

The content of the Cluster database is then written to a file with the name of the

model. This file consists of floating point numbers which represent the upper and

lower bounds for each cluster. Each cluster is defined in one line with the upper-

bounds representing the first half, and the lower-bounds representing the last half.

Since any new monitoring input vector needs to be scaled according to the training
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data, scaling information is also required in the file. For the normalization, the means

and standard deviation of the features are added. The weights of each feature are

also saved along with the total number of clusters in the file so the parsing in the

monitoring library knows how many lines to read. The content of this file is shown

in Figure 5.1. This process is then repeated for each monitoring module defined by

the configuration files.

Figure 5.1: Example of a cluster file

The cluster files and configuration files are then saved in the directory structure

show in Figure 4.2 and uploaded to the file system on the satellite.

5.2 Monitoring - Initializing HMS Object

Like most of the code written in the flight software, the monitoring library uses the

C programming language. Many existing flight software libraries use object-oriented

design choices to provide their functionality. Since C doesn’t provide a built-in mech-

anism for object-oriented programming, it is mimicked. In these cases, a data object

in the form of a C struct is created that encompasses all of the data structures and

variables necessary for that library to work. This data object is then passed as a pa-
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rameter to most library functions for use or manipulation. A similar design choice was

made for the health monitoring library. This library starts by initializing a HMSData

object which contains all monitoring information and is passed to the other func-

tions provided by the library. The HMSData object has references to multiple other

HMSModule objects which define a monitoring module. This includes information

such as the model name, features, current state, and feature values which make up

the module. It also contains a reference to a ClusterState object, which contains the

cluster file information including the means, standard deviations, weights, and actual

clusters. This overall structure is shown in Figure 5.2.

The HMSData object is represented as a C struct and some of its important fields

include:

• procName - The process’s name which is creating the object for monitoring.

• numModules - The number of monitoring modules which are to run for the

given process name.

• udpPacketProcs - This data structure will hold all UDP commands that need

to be sent to each process to obtain all data vector values. This information

is provided by the configuration file, where each feature has a corresponding

process name and command number which defines where to obtain its value.

Since a large portion of data vector values can be obtained from the same

command, this structure contains only one reference to each required command

so there are no repeats.

• filesInfo - This data structure contains the file paths for the latest versions of

the configuration and cluster files for each module.

• modules - A reference to a list of HMSModule objects.
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Figure 5.2: Object structure for monitoring library

The HMSModule object’s important fields include:

• numFeatures - The number of features that exist for the the given module.

• features - A data structure that holds important information for all the features

in the module. For each feature , this includes the name of the sensor or

telemetry point, the process which owns it, its command and response number,

and a function pointer to a function that extracts the feature value from the
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response command packet.

• modelName - The unique name given to the module, which corresponds to

the correct directory in the file hierarchy.

• featureVals - An array that holds the feature values from the commands that

have been sent and acts as the input vector. This array has a size equivalent

to numFeatures and is reset every time a new check anomaly event is fired.

Processing of the monitoring vector does not occur until this array is full. A

count variable is also provided that is incremented every time a data value

has been received. This count is initialized to zero at the beginning of each

monitoring event.

• clusterState - A reference to the ClusterState object which contains the means,

standards devations, weights, and clusters that correspond to the given model.

This object is used by the monitoring algorithm to compare the new input

vector to the cluster knowledge base.

Now that we have gone over the structure and important fields of the monitoring

objects, the initialization process will be discussed.

5.2.1 Read Files from directory

The first step involves dynamically allocating the space for the monitoring objects

and initializing the fields to zero or NULL. Next, the file paths for the latest version

of the configuration and cluster files need to be placed within the filesInfo field of the

HMSData object so that we can process each file. This is accomplished by calling

a function that returns a reference to an object that contains these paths. This

function starts by looking in the ModuleCnfgFiles directory and going through each

Model sub-directory within it. For each Model subdirectory, it looks at each file and
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returns the path of the one that has the latest last modified date. The last modified

date is also saved as part of this object. Since we want to work with the latest models,

this ensures that we are running the monitoring with the most up to date files. A

similar process is repeated for the files in the ClusterFiles directory and the paths to

the latest cluster files are returned.

5.2.2 Read Module Cnfg File

Next, we loop through each module configuration file contained in the filesInfo

data structure. Since this object has a path of every model in the system, we need

to extract only the one’s that were defined for the current process that the library

is being run on. Each configuration file is read and parsed using the built in library

that handles configuration files. This library returns an object that has all of the tags

and values in the file. The process name field in the config file is compared against

the current process name to determine if that module belongs to the process. If it

is a match, then a new HMSModule object is initialized and added to the HMSData

object. The rest of the fields in the HMSModule object are initialized using the

information that was contained in the configuration file. The featureVals array is

allocated with space for numFeatures and is initialized to have default values of zero.

5.2.3 Register Feature callbacks

The next step involves setting up the features data structure with the feature

information from the configuration file.

The library includes a large array of static structs which contains all possible

sensors/features that exist for a given satellite. Each struct within this array contain

the same fields as the features field in the HMSModule object. One of the most

important fields in this struct is the function pointer which for a provided response
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packet, extracts the specific feature value. This function calculates the offset of

the specific field in the response packet and reads the correct number of bytes that

correspond to the size of the feature. It also does any unit conversions required such

as changing a raw temperature sensor value to degrees Celsius. It is important for

the units of each feature to match the units of the training cluster files so there exists

no discrepancies which may end up with bad results. In most cases, we use the raw

sensor values provided and perform no conversions to reduce some complexity. The

training data must also have its data stored as raw values returned by the sensors.

This large array of structs is traversed and a reference to the matching feature

is returned to be saved in the features field. The command and response number of

the handler that contains the specific feature value are also provided as members of

this object. Usually, a command handler that returns telemetry status contains many

telemetry fields, one for each sensor the process owns. This results in multiple features

requiring the same command to obtain their values. Instead of sending commands

the naive way where a new command is sent for each feature, features which share

commands will all get their values from one copy of the command. To ensure this

happens, any feature that requires a command that hasn’t been seen before will save

the command and response number in the udpPacketProcs field in the HMSData

object. By the end of the initialization, this field will have one copy of all commands

that need to be sent to obtain feature values for all the modules. This design choice

significantly improves the performance and efficiency of the system.

Now any time a command response arrives, all feature values can be easily ex-

tracted into the featureVals array which is used in further processing.
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5.2.4 Read Cluster Files

The last step in the initialization function involves reading the cluster file that

corresponds to the model name. Once again the filesInfo object is traversed to find

the file path for the latest version of the cluster file for the specified model name. Once

the correct file is found, a function parses the cluster file, allocates necessary variables,

and saves the means, standard deviations, weights, and clusters in the clusterState

object. The parser is smart enough to separate the single line that represents each

cluster to the correct upper and lower bounds for the cluster. This object contains all

the information required for the monitoring algorithm to produce a deviation value

for a given input vector. This finishes the initialization for one module.

The initialization of the HMSData object is complete when this function has

looped through each module file that belongs to the given process. This object is

then passed to the check anomaly, check for updates, and clean up functions that are

provided as part of the API. A summary of this is illustrated in Figure 5.3.

Figure 5.3: Flow of the initialization process
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5.3 Check Anomaly

Once initialization is complete, monitoring of new input vectors can begin. The

sample rate for monitoring can vary and is expressed by the time period given to the

event handler which calls the monitoring function. To get high sample rate real-time

monitoring, the time given would be very small. This does come at the cost of more

processing power as the monitoring would continuously run at a high rate. A high

sample rate is also not efficient if the response values don’t change very much. To

balance efficiency and performance, a small sample rate of one run every 30 seconds

was chosen. This rate seemed to provide the best monitoring capability.

The check anomaly function sets and processes all the modules defined for the

process at the same time, instead of doing it individually. This is more efficient in

that the commands sent can set the values for features across all modules rather than

for the individual module. This results in less commands being sent.

The check anomaly function takes as input the HMSData object, a ProcessData

object, and the threshold value determines if a non-zero deviation score is accepted

as nominal. The ProcessData object is created for each process in the system and

holds important state and event handling information. This object will be used for

some event handling described later. This function first saves a reference to the

HMSData object that was passed in a global variable. This is necessary for the

response command handler to know which object to reference and save the feature

values. The next step involves setting all the fields in the featureVals array and the

count variable to zero to set up a new input vector.
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5.3.1 Send all commands

Once the new input vector is set, all the commands to set the feature values need

to be sent to the correct processes to obtain response packets with the values. To

do this, all the commands in the udpPacketProcs field are sent. Once a command is

sent, the response packet is sent as another command by the supplying process. We

need to be able to process this response. To do this, a command handler needs to

be set for the given response command. The commanding library provides a set of

command handlers for the default commands set for any given process. These com-

mand handlers call a callback function which processes each request. The command

library also provides a way to set a new handler for any command number specified.

This method is usually used when a process does inter-process communication and

needs to do something with the response. We require a similar sort of functionality

for the commands sent by this library. We need to set a new handler that allows

us to access the response packet. However, since this is a library, we don’t want to

overwrite any other command handlers that may have been set by the process itself

to perform some important function. In order to solve this problem, a new network

socket needs to be created for each command that handles both the sending of the

command and the response.

To add this functionality, some additions needed to be made in the existing com-

manding library to give the ability to send and receive commands on a new socket. A

new function was added that does this very thing. It takes as input a callback func-

tion that acts as the response handler for the given command, and the ProcessData

object. The function creates the new socket, and sets up a sockaddr in struct so that

the command can be sent to the correct destination. The event handler from the

ProcessData object is then used to set a new file descriptor event when a response

has been sent back. This event will call a callback function that reads the response
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from the socket and calls the given response handler. A timeout is also set in case

the command fails. Once this setup is complete the command is sent. These steps

are summarized in Figure 5.4

This process repeats for each command that was defined in the udpPacketProcs

data structure.

Figure 5.4: Steps for sending a command from the monitoring library

5.3.2 Response handlers

When the command response arrives on the socket file descriptor, the socket is

read and the event callback function calls the response handler that was initially

passed to the new commanding function. This is illustrated in Figure 5.5. These

response handlers extract all feature values from the response packet and perform

any further processing. A response handler needs to be created for each process since

process’s command numbers can overlap. A new handler for each process ensures we

know the source and structure of the response.

The response handler first extracts the relevant feature values from the response

packets. It does this by looping through each module and looking for features that

match the response process name and command response number. Once there is a
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Figure 5.5: Response handler flow

match, the response packet is sent as a parameter to the feature’s function pointer

so that it can get the value. This value is saved in the correct spot of the featureVals

array for the module the feature belongs to. The feature set count variable is also

incremented as each value is set. By the end of this, all features that had their values

stored in this response packet will have their values set.

Lastly, the response handler checks if every feature has been set so that the mon-

itoring algorithm can be called. It does this by once again looping through each

module and checking if the feature’s set count variable equals the total number of

features in the module. If this is the case, then the featureVals array for each module

is set and can be processed. If not, then all command responses have not yet been

returned and the function returns.

5.3.3 Call monitoring algorithm

Once all features values have been set, the IMS monitoring algorithm described

in Section 2.3.2 can be called on each module feature set. The algorithm takes as

input the new monitoring vector along with the ClusterState object which contains

the cluster knowledge base for the module. Each monitoring vector is normalized and

scaled accordingly to the means, standard deviations, and weights that were provided
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by the cluster file. Once normalized, the steps described in Section 2.3.2 are taken

to produce a measure of how close the monitoring vector behaves with the nominal

model.

5.3.4 Deviation score

The monitoring algorithm returns a deviation value that specifies the distance

between the input vector and the closest nominal cluster. If the deviation value is

zero, then the input vector exists within a defined cluster and is accepted as nominal.

If it is a non-zero number, then it is compared against the threshold value that

was given as a parameter. If it is lower than this threshold, it will be accepted as

nominal. If not, then it will be rejected and an anomaly will be reported. Along with

the deviation score, the monitoring algorithm saves the individual deviation sums

that each feature contributed to the overall deviation score. This allows the operator

analyzing the error to identify which features are causing the issue.

When there is an anomaly detected for a certain module, a time-stamp, deviation

score, and individual sums are saved to a file in the AnomOutput subdirectory of the

file hierarchy in figure 4.2. This is the file that is read by the operator to analyze

the issues. Along with this error report, the beacon can broadcast that error has

occurred. These steps are illustrated in Figure 5.6.

5.4 Updating model

The ability to update the monitoring models during the mission cycle is an impor-

tant requirement. As discussed in the overview section, updating the models involves

adding, modifying, or deleting files in the IMS file hierarchy. This is done by using

a custom File Transfer Protocol on the satellite which handles the transferring of

files while it is in orbit. The transfered files need to be placed in the appropriate
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Figure 5.6: Flow of the check anomaly function

66



directories. The monitoring library provides a function hms check file modification

that detects changes by setting up an event that periodically checks the content of

the directory.

This function takes as input the HMSData object and starts by calling the func-

tion that returns the latest versions of the configuration and cluster files in the file

hierarchy which was discussed in Section 5.2.1. The last modified date of each file

that was returned is compared against its counterpart in the filesInfo field of the

HMSData object which contains a reference to all files that are currently being used

in monitoring. If there is a discrepancy in the number of files or the last modified

date for a certain model, an update is detected.

Once an update is detected, a copy of the old filesInfo object is saved. The new

updated files object then replaces the content in filesInfo, and the HMSData object

is reinitialized to reflect the new changes. There can be errors that occur during

re-initialization that may be caused by human error in the updated files or during the

transferring process. In these cases, we don’t want the system to completely break,

so the reference to the old filesInfo object is used to reinitialize with the previous

files that are known to work. The function also deletes the faulty files so when the

event fires again in the future, the same problem won’t occur. This design provides

a powerful way to update any cluster or configuration file for monitoring without the

need to add new commands.

5.4.1 Stopping HMS

Stopping the health monitoring system at any time is also an important ability

that the library provides. In cases where the library is performing poorly, which

can be caused if the models were generated using poor training data, the monitoring

should stop so unnecessary resources aren’t used by the system. The HMSRun.txt file
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that exists in the root of the file hierarchy allows us to stop and restart the monitoring

by simply changing the one byte flag that it contains. If the operator wants to stop

the monitoring, the content of the file is changed to 0. If a restart is required, the

content is changed back to a non-zero number. This file is checked as part of the

hms check file modification function and the value saved in the data object. Every

time the check anomaly event is triggered, it checks if the flag is set to continue

processing.

5.5 Cleanup

A cleanup function is also provided to free any allocated memory and gracefully

end the monitoring in case there is some error, or the operator wants to stop the

system.

5.6 Adding Events to Selected Processes

Any process that has its own instance of the monitoring library needs to call the

API to initialize and run the monitoring. The initialization occurs once in the pro-

cess’s main event loop. Once successful, events are registered for the check anomaly

and hms check file modification functions to run at certain intervals. As discussed

before, the check anomaly function runs once every 30 seconds. Updates to the mon-

itoring files should be rare and far in between. As a result, the update function is

registered to run every 30 minutes. Once these events are registered in the process

event loop, the monitoring library can provide its functionality.

Overall, the system was designed and implemented to meet the requirements

discussed in Section 4.1. This results in a robust and efficient system that performs

very well.
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Chapter 6

VALIDATION AND RESULTS

The integration of the new Inductive Health Monitoring System into the PolySat

flight software code base will have to be thoroughly tested and validated to ensure

that the system provides good results and doesn’t waste any precious resources on

the CubeSat. The system should at least be able to detect major failures that occur

with the hope that it picks up subtle errors as well. Testing the system involves

validating the implementation of the IMS algorithms, checking if the system can

identify anomalies on archived events, running the system real-time on a test unit, and

checking resource consumption. This validation and experimental testing is detailed

in this chapter and the results are analyzed.

6.1 Algorithm Validation

It is important to ensure that the IMS learning and monitoring algorithms are

working properly because the success of the system is highly dependent on these

properly identifying anomalies. They make up the core of the IMS system and a small

problem in one may cause incorrect results and wrong predictions by the system.

6.1.1 Learning module clustering

The first step in testing the IMS learning algorithm was to examine the clusters

that were being generated from various data. Correct cluster formation and hyper-

cube generation is vital for the correct modeling of the nominal operating regions of

the satellite, and for the monitoring algorithm to provide accurate results.

In order to validate the IMS clustering approach, multiple two dimensional data
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sets were generated by the make blobs function in the Sci-Kit learn library provided

in Python. Two-dimensions were chosen so that it would be easier to visualize and

examine the clusters that were being formed. The make blobs function creates N

number of random samples that are clustered around a given number of centers X. A

cluster standard deviation σ is also given to control the spread of the points. Multiple

data sets with different values for N , X, and σ were created and tested against the

IMS clustering. The IMS clustering algorithm was also given different threshold values

to see how it would effect the clusters formed.

Two examples of the results are show in Figures 6.1 and 6.2. The data generated in

Figure 6.1 had 5000 samples clustered around 6 centers. The IMS clustering algorithm

ran with a threshold of 0.75 and produced the clusters shown. The data points in each

cluster formed by the algorithm have a different color, and the bounding rectangle the

represents the cluster is displayed around the points. This rectangle defines the upper

and lower ranges of the cluster in each dimension. As can be seen, the algorithm did

a good job finding the points in all six clusters. Since the dataset had clusters that

varied in size, some overlap between clusters can be seen. This is expected due to

the fact that the size of the cluster is highly dependent on the threshold value given.

If the threshold is large, then it may capture some points from a nearby cluster that

it may not belong too. Some of the cluster overlap is also due to the fact that the

points are randomly created around the cluster, and not in time series. Time series

data creates nicely defined clusters that have minimal overlap.

This result also demonstrates how large threshold values can cause the operating

region to be too generalized. Since IMS doesn’t use a more traditional clustering

approach where the bounds of the cluster will be tightly defined around its data

points, it could accept vectors that may not belong. Since the clusters generated

by the dataset are more spherical, empty space exists in the rectangular clusters

generated by IMS. This is especially apparent in the cluster that contains the blue
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points in Figure 6.1. If an input vector was chosen that exists on the lower right corner

of the cluster, it would consider it nominal since it is within the bounds. However, we

can clearly see how this point should not belong and is more of an outlier compared to

the other data points in the cluster. This again shows the important of the threshold

value. In this case the threshold value was a bit too high for this data and lead to a

lot of empty space being captured in the cluster. If you want a more higher fidelity

model of the data that has tighter bounds and fits the data better, you may want to

choose smaller threshold value.

The data generated in Figure 6.2 had 10 cluster centers with the samples creating

smaller clusters. IMS ran on this data set with a lower threshold value of 0.5 and

produced the following clusters. IMS once again did a good job finding the clusters

and defining the bounding rectangle. Once again there is overlap, but this time it is

mostly due to the threshold value being too small which split certain larger clusters

into two. It is important to note that these overlaps won’t result in bad monitoring

prediction due to the fact that the application isn’t classification where precise clusters

are necessary. As long as the behavior is captured in any cluster, monitoring should

be fine.

These good results carry on into higher dimensional data as well. The clusters

generated with a N-dimensional data set would create a N-dimensional hyper-cube

around the cluster which is hard to illustrate in this case. A two-dimensional test

allowed us to verify that the clustering was working properly.

6.1.2 Monitoring module

The IMS monitoring algorithm was also tested to verify that it would correctly

identify any anomalous results and produce a good deviation value. This algorithm

would take input data vectors and use the cluster knowledge base to predict whether
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Figure 6.1: Cluster formation, N=5000, threshold = .75, X = 6

Figure 6.2: Cluster formation, N=5000, threshold = .5, X = 10
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or not the system is performing nominally. To perform a preliminary test of this,

the clusters generated in Figures 6.1 and 6.2 were used as the knowledge base. Since

the bounding rectangles were clearly visible, it was easy to pick a point inside or

outside any defined cluster. After picking multiple points, the monitoring algorithm

would correctly identify if the point chosen was anomalous or not, verifying that the

monitoring works in this simple case.

The monitoring was also tested on a larger dataset with multiple features. David

Iverson, the original creator of IMS, provided some example data sets that he tested

his implementation against. This data set was from a real application that involved

collecting telemetry from a rocket engine fire test. He provided a nominal dataset

with over 150,000 vectors consisting of seven features that measured the pressure of

various sensors to train against. He also provided a test data set that had some known

anomalies inserted.

Our implementation of IMS was trained against the training data set given, and

monitoring was run on the test set. The monitoring algorithm would read every input

vector from the test set file, normalize it, and process it using the knowledge base to

produce a deviation score for each vector. The result was written to a file for analysis.

The results of the run were plotted in Figure 6.3. Iverson also provided a graph of

his results for reference as shown in Figure 6.4. The first 3/4th of the test data set

had nominal data vectors as seen by the zero deviation score for these points. In

the results of our run and Iverson’s, the first anomaly is detected at the same time

of about 52644.06718 GMT. The rest of the data has deviation scores that increase

exponentially at first and then slow down and grow polynomially. Looking at both

Figure’s 6.3 and 6.4, similar trends can be seen highlighting that our implementation

works as expected. Iverson’s graph looks slightly different because it’s exponential

growth is shorter and it produces a much smoother curve. These differences are likely

due to different threshold value’s given in each run. His learning module created 236
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clusters while ours only generated 72 which leads to different deviation scores being

generated. There may have also been slight differences in the implementation and the

way the deviation score is calculated leading to these slightly different results. The

important point is that our run was successful in identifying anomalous points and

produced growing deviation scores.

The validation of our implementation of the learning and monitoring algorithms

went very well and produced results that were expected. The system was able to

identify nominal and anomalous results and this gave us good confidence that these

algorithms would work correctly for our application on CubeSat’s.

6.2 Experimental Tests on archived data

The next phase of testing was to utilize real CubeSat flight data with known

anomalies to see if the system could identify the problems. Archived flight data from

the Intelligent Payload Experiment (IPEX) described in Section 4.4 was used for this

purpose. The original IPEX flight dataset contained anomalies that occurred to the

satellite during the mission. There were two major problems that the data reflected.

To create a valid nominal training data set, the sensors that were contributing to

these anomalies were manually corrected to reflect nominal behavior. This training

set would be used for training the system and creating the knowledge base, while the

original data set would be used as the test set for monitoring. The goal was to have

the system identify the anomalous sensors.

As discussed in Section 4.4, we used a correlation matrix on the IPEX training

set to generate our feature sets or modules for the IMS system to run against. We

produced two modules, one that contained most of the temperature sensors in the

data, and another which contained the power sensors. See Appendix A for a detailed

look at these sensors. To identify which sensors/features were causing the issue, the
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Figure 6.3: Deviation scores produced by running IMS on test data set
using our implementation

Figure 6.4: Deviation scores produced by IMS given by Iverson
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individual sum that each feature contributed to the overall deviation score was also

stored. These modules were run separately and the deviation score along with the

individual sums were written to a file to analyze.

6.2.1 Temperature Model

The first run of the monitoring system against the IPEX flight data used the tem-

perature model and produced the individual feature deviation sums seen in Figure 6.5.

This graph reflects the overall sum of the error produced by each feature throughout

the run and contains a partial set of the features. Looking at this graph, the boardpx

sensor contributed to the most error. This sensor measures the temperature on one of

the side panels of the satellite, in this case the positive X panel that is oriented in the

x-axis of the satellites reference frame. Some error sums were also seen in the other

side panel temperature sensors, but to a less extent. The other temperature sensors

in the model contributed very little to the error sum which indicates that they were

performing nominally. Small deviations and sums can mostly be attributed to noise.

Most of the contribution to the error sum was seen in the first quarter of the

test set, with very little seen in the latter part. Figure 6.6 shows a line chart of the

temperature data for the boardpx sensor that was contained in both the training and

test set. The red line represents the temperature data for the training set while the

blue line is for the test set. Looking at this chart, it can be seen that the temperature

of the sensor in the flight set was higher than the seen anywhere in the training set,

especially in the beginning. This matches with the large increase in the error sum we

saw in the beginning of Figure 6.5.

After looking at these results, it was obvious that there was some sort of anomaly

on the boardpx side panel. There was in fact a problem with the side panels that

occurred during the IPEX mission. The panels were found to not have good thermal
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Figure 6.5: The overall sum produced by each feature in IMS run of
temperature model

Figure 6.6: Comparison of the temperature data in the training and test
data set for the boardpx sensor

77



conductivity and would get too hot when facing the sun. The positive X panel in

particular would get very hot as reflected by the sensor readings. The other panels had

a brass mass placed behind them that actually absorbed most of the heat, and that is

why those sensors contributed much less error. Over time, the thermal conductivity

increased and more heat was absorbed as reflected by the flattening of the error sum

in Figure 6.5. These results on the temperature model show that our system was able

to successfully identify one of the anomalies that occurred during the IPEX mission.

6.2.2 Power Model

The second run of the monitoring system against the IPEX flight data used the

power model that contained most of the voltage and current sensors in the data. The

results of this run are shown in Figure 6.7 and again reflect the total sum of the error

produced by each feature. The top five features that produced the most sum are

shown in this chart.

In Figure 6.7, the sensor that produced the most error is the threeVpl curr sensor

that measures the current going to the satellite payload co-processor. The second

most error is seen by the threeV volt sensor which measures the voltage on the main

system board’s 3.3 voltage line. There was also smaller amount of error seen in the

threeVpl volt sensor that measured the voltage going to the payload. Where as the

error for the threeV volt sensor gradually increases, the error on the payload sensor

grows rapidly and sees periods of stability. These results indicate that there were

some anomalies on the components on which these sensors reside.

There was a confirmed anomaly on the system board’s 3.3 voltage line that was

measured by the threeV volt sensor. Essentially, there was a hardware defect that

caused the voltage on this line to be badly regulated which resulted in higher than

expected voltages. This is the reason we saw a steady and continuous increase in
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the error for that sensor. Our implementation of IMS was therefore successful in

identifying this anomaly. However, there were no known anomalies on the threeV

payload sensors which these results seem to contradict. Therefore, a false positive

was picked up in this run.

At first, the explanation for this behavior was that the training data did not

capture the specific relationship between this sensor and the others. This caused the

threeVpl curr sensor to contribute the most errors. Also, there is a software telemetry

point that specifies when power is switched on to the payload which wasn’t found in

the training data. If this telemetry point was included, it could have defined distinct

nominal operating regions for when the power to the payload was switched on or

off which would have led to better results. However, after taking a look again at

the correlation matrix, there was very weak correlation found between some of the

features in the power model. There were a total of 14 features in this module including

the power sensors for the solar panels. We decided to remove and separate some of

the solar panel sensors that had weak correlation to another model. After running

the monitoring again, we obtained the results in Figure 6.8.

The results in this chart look far better and only contain high error for the prob-

lematic threeV volt sensor. The error for the threeV payload power sensors was almost

non-existent in this run. This result highlights the need for well formed and highly

correlated features in a given model. Large models with a lot of features are good

if you want to monitor a lot of sensors. However, they require much more training

data to capture every possible behavior between each sensor in the set. If the models

contain fewer, highly correlated features, then not as much training data is needed

and the results are usually more accurate. Therefore a decision has to be made on

the the size of the feature sets that depends on the amount of training data available

for use. In our case, it was apparent that more training data was necessary to create

a more comprehensive model.
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Figure 6.7: The overall sum produced by each feature in IMS run of power
model that contained some features with bad correlation

Figure 6.8: The overall sum produced by each feature in IMS run of smaller
power model with better correlations

80



6.3 Real-time CubeSat testing

Through previous testing we were able to conclude that given well formed feature

sets, our system worked successfully to identify any anomalies that occurred in the

data. The final step involves testing the full IMS system that was integrated into the

PolySat flight software to see if we could reliably use this system in future missions.

Real time telemetry acquired through commands sent to various processes, were for-

matted into input vectors and run through the monitoring algorithm as explained in

the implementation section.

These tests were run on a experimental test unit for the Ionospheric Scintillation

explorer (ISX) mission that is planned to launch in late 2017. During the time of

testing, this test unit had most of its components assembled except the side panels

which contain the solar panels. This meant that readings from all sensors were not

possible, because some of the hardware wasn’t connected.

For monitoring, two modules were created that used the feature sets in the tem-

perature and power models that were created using the correlation matrix. To train

the model, the archived IPEX data was used. Since the side panels were not attached,

the corresponding sensors were removed from the two modules which resulted in the

monitoring of most of the sensors that reside on the system board. The temperature

module now contained 5 features, and the power module contained 10. These modules

were trained and the resulting configuration and cluster files were uploaded to the

appropriate directories in the IMS file hierarchy. A temporary process was created in

the flight software which initialized the monitoring library objects and set the event

for the anomaly detection to run every five seconds.
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6.3.1 Temperature Module

The result of running the temperature module on the ISX test unit was very good.

The system was run for several minutes and produced a deviation score of zero for

every input data vector. Since the IPEX data contains temperatures seen in space, the

ambient temperatures in the PolySat lab may have resulted in an anomalous result.

However, somewhere in the training flight data, similar temperature conditions to our

lab were captured and modeled in the knowledge base which led to nominal results.

The accuracy of this system in orbit is debatable because each mission is in a

different orbit. The space environment in different orbits may not be the same which

may cause the system to report errors if the temperatures experienced were not in

the model. Therefore the system would have to be updated once better telemetry is

gathered that is more representative of the space environment.

6.3.2 Power Module

The result of running the power module were not as good as the temperature

module. The resulting deviation scores are illustrated in Figure 6.9. As can be seen,

the deviation scores were quite high indicating that the system was picking up some

sort of anomaly in one or more of the sensors. The error deviation sum for the top

contributing features is shown in Figure 6.10. This chart indicates that the Atmel

processor current sensor was producing most of the error. Looking at the sensor data

in the training data, we found that the average current draw from IPEX was about

35 mA. The standard deviation of this feature in the training data was also very low

indicating that this value did not fluctuate much. Looking at the current readings

from ISX, we found that the average current draw for this sensor was about 25 mA.

This isn’t much of a difference and isn’t indicative of a major malfunction. This

difference can be due to the fact that this is a test unit for a completely different
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mission, and may have different current draws from the processor. However since the

training data does not capture this difference, it resulted in the system reporting a

large anomaly for this sensor.

This result once again shows the importance of a good, comprehensive training

data set that contains as much component interaction behavior as possible. The

more data in the training set, the better the algorithm can model the behavior of the

system. This result also demonstrates one of the drawbacks of using this system. Not

all missions are the same, and telemetry that corresponds to one mission may not be

what is experienced by another. Therefore training data must be carefully selected

and used only for missions and features that should experience similar behavior. In

our case, all but this Atmel sensor conformed to the training data, which is still an

overall good result. In this case, we would include in that training set, this new data

that we received from the ISX power model so we can adapt the system to produce

better results. After including this new data in the training set, the model performed

far better and we saw much lower deviation scores which could just be attributed to

noise.

6.3.3 Fault injection

For a final test, a simulated error was injected into the system running on ISX to

see if the monitoring module could pick up the anomaly. For this test, the temperature

module was used and a new feature that measured the temperature of the negative

Z side panel was added to the feature set. This new module was trained and placed

in the file hierarchy. Since the side panels were not attached, a default value of zero

would be returned any time that sensor was queried thereby simulating a “fault”.

Since the training data contained actual values for this sensor, it should produce an

anomaly by the system.
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Figure 6.9: Deviation scores produced by run of power model on ISX

Figure 6.10: Deviation Sums for top five sensors that contributed the most
error

84



The individual deviation sums of each feature in this run are shown in Figure

6.11. The deviation sums seen in the first half of this chart are the results from

before this fault injection. As can be seen, the behavior was nominal and resulted

in no deviations. The fault injection occurs when you see the steep increase in the

deviation value on the nz panel sensor which should reside on the non-existent side

panel. This results shows that the system was able successfully detect the anomaly

and identify which feature was causing the issue.

Figure 6.11: The feature deviation sums after fault injection

6.4 Resources and efficiency

The new monitoring library’s drain on system resources was also important to

test. Too much resource usage in terms of memory and processing is indicative of a

slow and inefficient system. We want the monitoring to be done fast so it is important

that as new telemetry comes in, the system is able to immediately process and make

a prediction without using too much system memory.
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The monitoring library has to make UDP calls to different processes to get the

feature values, and also has to go through an array of clusters to locate the one

with the minimal distance. This introduces a certain level of processing time as all

this information is gathered. We tested the system with two modules that together

contained 1600 clusters with 23 features. This is representative of a relatively large

monitoring load. Each time the anomaly event fired, the resulting deviation value

would be available in less the 70 milliseconds. This speed is well within the range

that we were aiming for. Since the check anomaly event is scheduled to run every 30

seconds, we should see no problems at all for getting a result on time. This fast speed

also means that there is not much processing being done and we have an efficient

algorithm that is using minimal computing resources.

Using Unix’s built in top task management utility, the max CPU usage was only

3% when the check anomaly event was processing. Most of the time it would stay at

around 1%. These results that we see with the speed and processing required, fit with

our requirement of making the system fast and efficient. The output of the top utility

can be seen in Figure 6.12, where ./temp is the process running the monitoring.

Figure 6.12: Resource usage by the monitoring library

The memory usage of the monitoring library was also examined using the top

utility. With the same test setup mentioned above, the library was using about

3.2 MB or 6% of the total amount of virtual memory in the system. This is with a
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relatively large amount of clusters allocated to the memory space. This is a reasonable

amount of memory that the monitoring library is using. Most of this memory is used

by the data structure defining each cluster. Some improvements can be made on

this percentage by using 4 byte floats to store the feature values instead of 8 byte

doubles. Also some optimization’s can be made in the code to further reduce this

memory usage. However as of now, the memory used by the monitoring system

can be deemed acceptable. As the number of modules and cluster’s increase, some

improvements to the memory usage may have to be made.

Overall, the resource usage and efficiency of the system meet the goal of our

requirements.
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Chapter 7

CONCLUSION

The application of the Inductive Monitoring System for system health monitor-

ing of CubeSat satellites has great potential. Such a system can be accurately and

efficiently used to monitor for anomalies in a size and resource restricted CubeSat

satellite. Archived telemetry can be used by data driven health monitoring tech-

niques such as IMS to characterize models of nominal system behavior from the data

itself instead of having to rely on more traditional parameter checking methods or

more complicated model based techniques. As the amount of archived telemetry and

data increases the more missions that are flown, these models can be updated to

provide better and more accurate results that generate a more comprehensive model

of the system’s behavior.

IMS was used in this thesis as a tool to analyze and detect errors in archived

flight telemetry, and as a system that was integrated into PolySat’s flight software

to provide real-time monitoring of anomalies. The system was designed to meet the

goals of efficiency, low resource consumption, genericity, and adaptability that are

important precursors for use in CubeSat satellites. The end product is a system that

generates the training models on the ground and uploads them to the satellite which

runs a monitoring library to produce deviation scores and anomaly reports. This

monitoring system will be used in all future missions for anomaly detection.

The results of our tests indicate that the system performed very well in finding

errors in archived flight telemetry and real time monitoring given good training mod-

els. The training data used must be comprehensive to include all possible system

behavior. Since this requirement is somewhat impractical, the ability for the system

to update itself given new flight telemetry allows for a more accurate representation
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of the system as the mission progresses. The importance of well correlated feature

sets for monitoring was also examined so the system can perform at its best and have

the least amount of false positives. The resource usage and efficiency of the integrated

system was well within the limits of the resource constrained CubeSats, making such

a system completely practical for use. The success of this system makes it perfect for

use as a autonomous tool for system health monitoring in all future PolySat missions.

7.1 Future Work

There were quite a few things in this thesis that weren’t fully explored. They are

a perfect opportunity for future work by any new PolySat lab member.

7.1.1 Multiple models for different modes of operation

The current system characterizes only one model per module for the entire system

behavior of the spacecraft. However, throughout its mission, a CubeSat can change

its mode of operation many times which can cause completely different system be-

havior. Examples of these different modes of operations include when the spacecraft

is idle, or when it is running an experiment. For these cases, system behavior changes

significantly in a way that may not be well defined in one big model.

In these cases it is best to create a separate model for each mode of operation and

switch between models as these modes change. This leads to much more accurate and

reliable results because the system adapts itself to use a model more consistent with

the current system behavior. This ability was not possible to currently implement in

the system because the archived IPEX data was limited and did not contain clearly

defined regions of different modes. However as future missions progress and more

telemetry is gathered, these different modes can be characterized and used in the

monitoring library. There currently exists a placeholder in the monitoring library
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that allows for this functionality to be added so any future interested lab member

can work on this.

7.1.2 Dynamic cluster expansion

IMS can be extended to add the ability to dynamically expand its clusters while

the monitoring phase is running. This ability allows for the capture of additional

system behavior that is close enough to existing models that was not captured in the

training data. The clusters that exist can be expanded to include new nominal data

vectors that are within a certain range of existing clusters. In a way, it allows for

a certain extent of training to occur while the mission is in progress. This ability

can be extremely useful in cases where the archived telemetry is limited and some

system behavior needs to be learned as the mission is in progress. This extension

can be added to the monitoring library to make the system more robust to different

environmental conditions that are seen from mission to mission.

7.1.3 Analysis of other anomaly detection algorithms

Other anomaly detection algorithms such as ORCA, one-class SVMs, and Virtual

sensors can be explored and implemented as an additional tool that can be used

alongside IMS to provide anomaly detection. The results and detection capabilities

of these algorithms can be compared and contrasted to see which algorithm provides

the best results and to see if it is feasible to run multiple systems efficiently on

the CubeSat. Such an exploration could improve upon the accuracy of the current

system and provide a great opportunity for research and learning of other data-driven

machine learning algorithms.
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Appendix

CONFIGURATION FILES FOR MODELS

This appendix contains the configuration files that were used in this thesis to select

features for training and monitoring. There were two models created, one for the set

of power sensors and the other for the set of temperature sensors. Each file contains

the name of the model to which this configuration file corresponds. It also contains

the file path of the corresponding cluster file and gives the name of the process to

which this model belongs. The file also specifies the total number of features in the

model and for each feature gives its sensor name, the name of the process that owns

the it, and the number of the command that needs to be sent to obtain its value.

Testing used the full set or a subset of these features listed.
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Figure A.1: Configuration file for the full Power Model
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Figure A.2: Configuration file for the full Temperature Model
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