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Abstract: Management of coastal areas requires monitoring and modeling of the anthropogenic
drivers and the bio-physical processes affecting water quality. To assess the range of hydrographic
conditions controlling oxygen distribution in the bottom layers of sand pits, a multi-year
oceanographic survey has been conducted in a coastal area with several extraction pits. Hydrographic
data including profiles of temperature, salinity and oxygen were collected and related to local wind
conditions and circulation. Moreover, 1D and 3D high-resolution non-hydrostatic ocean models were
used to describe turbulent mixing regimes and to obtain the range of wind speeds for which the
critical anoxic conditions may occur. It is shown that wind speed appears to control the dynamics
of oxygen concentrations, with oxygen depleted zones developing in a short time in low wind
speed conditions. Moreover, the depth and the shape of the extraction pit contribute to decrease
the mixing of the bottom layers and increase the water retention in the hole increasing the output
and the persistence of oxygen depleted zones in the excavated area. The results of the numerical
simulations show that the risk of hypoxia at the bottom of the sand pits is associated with higher
temperatures and wind speed lower than 5 m/s, which is not infrequent during the summer season.
However, the number of consecutive days of oxygen depletion can be considered lower than the
danger threshold level assumed in the literature.
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1. Introduction

The term coastal hypoxia refers to the depletion of oxygen in the bottom waters of coastal
systems; this phenomenon occurs when the consumption of oxygen outweighs the oxygen supply
for a sufficiently long period [1]. Water masses can become under-saturated with oxygen when
organic carbon, produced by photosynthesis and microbial respiration, is aerobically decomposed at
a greater rate than that of oxygen re-aeration. In this situation, major impacts may occur to the coastal
ecosystems, as, below a certain “hypoxia threshold”, marine organisms are exposed to a variety of
stresses, which become lethal when the oxygen concentration becomes too low [2]. Early stages of
hypoxia are often missed until obvious signs, such as mass mortality of fish, indicate that thresholds
have been passed. Examples can be found in the Gulf of Mexico and the East China Sea, and in
European waters, the Adriatic Sea, the German Bight, the Baltic Sea and the north western shelf of
the Black Sea [3]. Upwelling of anoxic water in Tokyo Bay, Japan, called blue tide, sometimes causes
benthic animal mortality in shallow and tidal flats at the head of the bay [4–6].
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Intermittent low oxygen conditions affect many of the shallower areas of the Kattegat [7]
with the development of severe seasonal hypoxia in the southeastern Kattegat which negatively
affects both the benthos and the Norway lobster fisheries [8]. Exposure to low dissolved oxygen
concentrations also appears to have an immunosuppression effect. The incidence of diseases such
as lymphocystis, epidermial hyperplasias, and papillomas in dab (Limanda limanda) in the eastern
North Sea and southern Kattegat increased in the year following hypoxia and remained elevated for
3–4 years at stations experiencing oxygen concentrations <3 mg L−1 [9]. In the inner Danish waters,
Behrens et al. [10] estimated how oxygen deficiency may reduce the extent of suitable habitat for
sandeels, a small planktivorous fish. They observed that hypoxia normally develops in late summer
and early autumn, when warm and calm periods prevail for longer periods. They also underlined
that increased temperature would further exacerbate the situation by augmenting sediment oxygen
demand. Moreover, Conley et al. [11] demonstrated that the combination of sustained eutrophication
with future climate change could intensify hypoxia to new levels of ecosystem impacts.

The amount of oxygen present in waters is normally expressed as a concentration (mg L−1) or as
a percentage of full saturation at specific temperature and salinity conditions. The measure of hypoxia
effects on organisms is generally evaluated over the period that the dissolved oxygen level is below
2 mg L−1 [12]. In general, percentage saturation is a more useful unit for comparing oxygen values,
where there are large seasonal changes in salinity and temperature values. The oxygen re-supply rate
is indirectly related to its isolation from the surface layer, which is increased for sand pits excavated by
suction dredges for mineral extraction. For this reason, formation of hypoxic areas has been aggravated
in Denmark by intensive sand extraction [13].

To assess the sustainability of the dredging activity and the main negative effects induced,
monitoring and modeling of bio-physical parameters has to be set up, particularly in waters with
high residence times in areas of restricted exchange, which may experience considerable oxygen
depletion if oxygen consuming organic matter is present [14]. Aerated oxygen is transported to the
seabed by vertical mixing through turbulence. This oxygen transport is significantly reduced at
a picnocline (a halocline or thermocline) in stratified waters: here the turbulent diffusivity is very
low [15]. Thus, the deepening of the seabed can increase stratification of the water column and
suppress turbulent mixing, limiting the amount of atmospheric oxygen that is transported from the
surface to the benthic community. Additionally, seabed deepening reduces the amount of light available
to the benthic community, reducing, in turn, the production of oxygen via photosynthesis. In this
situation, oxygen depletion can be ameliorated by horizontal transport from adjacent oxygen-rich areas,
if the residence time of the water inside the pit is short compared to oxygen consumption. On the other
hand, formation of oxygen-depleted conditions can be expected when the water in the pit has a long
residence time with limited exchanges with surrounding areas [15]. Hence, it is crucial to understand
the relative importance of patterns and time scales involved in oxygen transport, production and
consumption in the sand pit to identify critical conditions for hypoxia.

In this study, we focused on the abiotic factors of Nørrefjord area, located in the southwestern
side of the Funen Island, in Denmark, which has been impacted by sand mining. Indeed, several
extraction pits 3–5 m deep are today still present in the Nørrefjord even though the extraction activity
ceased more than a decade ago. A major concern of these extraction pits is that hypoxia or oxygen
depletion may develop near the bottom with possible negative effects on benthos and other sea
life [16,17]. In particular we investigated the hydrodynamic processes affecting mixing and oxygen
distribution in the area of extraction pits, monitoring hydrological data on the circulation patterns
through temperature and salinity measurements and oxygen concentrations near the bed. The seasonal
variation of these parameters was related to turbulent mixing at the bottom of the sand pit. Moreover,
to predict potential harmful consequences in the extraction area, a set of numerical models was
implemented to evaluate the residence time of the water inside the pit as a function of the wind forcing.

A description of the study area together with the general hydrography of the fjords is provided
in Section 2, while Section 3 describes the methods and techniques used to analyze the data and the
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numerical models used in the study. Results from observations and numerical simulation are discussed
in Section 4. Finally, the main conclusions are summarized in Section 5.

2. Geographical Domain and Hydrographic Conditions

Nørrefjord is located in the southwestern part of Funen Island, Denmark (Figure 1). It has
an area of 38.9 km2 with a mean depth of 5.5 m and a maximum depth of 12 m. In this area static
suction dredging has been the most commonly used method for extraction. Suction dredging impacts
a relatively small area, but the impacted area is affected several meters into the seafloor sediment [18].
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Figure 1. Map of the Nørrefjord area on the southern side of the Funen Island in Denmark. The area
impacted by sand mining (blue area) and the transect (red line) used in the high-resolution data acquisition
are also shown.

Nørrefjord has been considered as a eutrophic basin largely affected by anthropogenic inputs
from the coastal communities [19]. There are two main inlets and outlets to the fjord. Inlets are from
the two smaller creeks Hattebækken and Hårby Å while the outlets are located across a sill at a depth
of 4 m at the entrance of the fjord.

The circulation in the shallow fjord is influenced by the surface wind stress and the large-scale
circulation outside the inlet, as well as by the local freshwater runoff due to the steep topography of
the surrounding land areas. Salinity fluctuates between 12 and 20 psu and is controlled by inflow over
the sills, the freshwater runoff and the conditions in the adjacent Sound. All the channels and straits
around Funen Island compose a shallow transition area with estuarine character between the high
saline Skagerrak towards the north and the more brackish Baltic Sea to the south. Low salinity water
flows northward at the surface, while high density Skagerrak water flows southward as a bottom
current, often creating a halocline that prevents vertical mixing of the water column. During summer,
the halocline is further reinforced by temperature stratification [19]. As a result, lack of oxygen—both
anoxia, [O2] < 0.5 mg L−1, and hypoxia, [O2] < 2 mg L−1—can occur, with critical consequences for the
benthos and the whole trophic web.
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The total area impacted by extraction pits is about 2 km2. It is located in the southern part of the
fjord between 4 and 7 m, close to the two small islands, Horsehoved and Illum (Figure 1). The seafloor
of the impacted area is characterized by numerous extraction pits with a diameter of 15–20 m and
a depth of 2–4 m. The slopes of the pits are relatively steep with an angle of 90%. The distance between
extraction pits ranges from 25 to 100 m. The combined effect of eutrophication and frequent anoxic
bottom conditions in the Nørrefjord, as well as in the whole Baltic Sea, can drive seasonal hypoxia
events in the shallow water part of the fjord, thus affecting coastal biodiversity and the recruitment of
coastal spawning fish species.

3. Methods and Materials

3.1. Temperature, Salinity and Oxygen Parameters

Oceanographic instruments as Seacat SBE 19 plus CTD collected temperature, conductivity
(salinity) and oxygen levels during basin-scale surveys carried out in May and August 2008 and 2009.
Before each cast the CTD was held at the surface for 2 min to stabilize sensors and lowered down with
a speed of approximately 0.5 m s−1. Data were subsequently downloaded and processed with the
software SBE Data processing version 7.20c. Only the downcast data were processed. Temperature,
salinity and oxygen conditions around the impact area were also monitored by an in situ Uni Troll
9500 from May to October 2008 and 2009. In 2008, the Troll 9500 was released from the surface into
an excavated hole, while in 2009 a diver positioned the sensor in one of the pits. In both years,
the sensors were positioned at 0.5 m above the bottom.

3.2. Circulation Pattern

Surface circulation was estimated by means of drifters. A subsurface drogue with a diameter of
1 m was mounted on a 5 kg sinker at 2.5 m below the surface. A GPS tracker was mounted on the top
of the surface buoy. Four drifters were deployed on three days, 20, 23 and 24 August 2011, and drifted
for a couple of days.

3.3. Water Level and Wind Data

Water level data on Assens and Faaborg harbor were collected by the Danish Coastal Authority in
the period from 2001 to 2011. In addition, a water level logger in Falsled (Nørrefjord) was installed
in the period 16 June to 27 November 2009. Wind speed and direction data were obtained from
the Danish Meteorological Institute using the monitoring station located at Assens for the period
2001–2013. Wind was measured 10 m above ground level and was expressed as average speed and
direction over 10 min periods.

3.4. Small-Scale Dynamics in the Impact Area

The hydrology of a deep (~4 m) excavation hole in the coastal inlet was investigated with
a high-resolution sampling program to analyze mixing events and oxygen conditions in the water
column. On 10, 11 and 17 September 2013, a total of 160 CTD casts were collected along a transect
of 5 stations crossing one of the excavated holes and the surrounding area (Figure 1). Up to four
parameters were included at each station: temperature, salinity, density and oxygen profiles as well as
wind speed and direction data collected at the Assens’ weather station, in order to examine the effects
of wind on the hydrodynamics around the pit.

3.5. Numerical Modeling of the Ocean Dynamics

Environmental monitoring was accomplished by means of high-resolution numerical models to
simulate the mixing of the water layers and evaluate a possible range of environmental parameters
which could bring about critical conditions.
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Several different environmental models are available for this purpose. Wind wave modeling can
describe the physical processes of wave generation, dissipation and wave-wave interaction [20–23].
These models have been validated by means of remote and in-situ observations [24–27] and have been
used for different environmental applications [28–31]. Similarly, Ocean Circulation Models can describe
the velocity field, physical parameters as temperature, salinity and turbulence which characterize the
physical and biological processes affecting water quality. These high resolution, non-hydrostatic ocean
models, have been often used to describe the turbulent mixing regimes of the water column [32].

The dynamics of the mixed layer in the Nørrefjord was investigated with a 1D general ocean
turbulence model (GOTM, [33,34]). Using 60 vertical levels over a depth of 9 m, the model simulated
24 h employing a range of constant wind stress as atmospheric forcing and different stratification
conditions for the water column. A time step of 30 s and a κ-ε turbulence closure model was used
while mixed layer depth (MLD) was estimated using a threshold on turbulence kinetic energy of
κ =10−5 m2 s−2. The wind speed values, W, ranged between 1 ms−1 to 10 ms−1 and the wind stress
(τ), which is the horizontal force of the wind on the sea surface, was calculated as:

τ = Cd ρa W2 (1)

where Cd = 1.5 × 10−3 is the drag coefficient, and ρa = 1.2 kg m−3 is the density of air. In the model,
the stratification of the water column was manipulated by assuming an average temperature profile in
May and variable salinity profiles (S). The stratification index was then calculated from the square root
of the Brunt–Väisälä frequency:

ϕ =
√

(g/ρ0 ∂ρ/∂z) (2)

where g is the gravity, ρ0 is the average water density and z is the depth of the water column.
To evaluate horizontal and vertical transport across the sand pit, we applied a 3D non-hydrostatic

model, the Bergen Ocean Model (BOM). BOM was developed by the University of Bergen and it
solves the full three-dimensional primitive equation system [35,36]. The model calculates velocity
field, pressure, density, salinity and temperature governed by momentum, mass conservation and the
continuity equations. The discretization method uses an Arakawa-C staggered grid with σ-coordinate
in the vertical. The model is applied to a square area of 30 m sides and includes a sand pit in the center.
The model includes the effects of non-hydrostatic pressure and uses a domain of 60 × 60 horizontal
points and 81 vertical layers. Hence, a 0.5 m resolution is used in the horizontal plane and between
5–10 cm in the vertical plane. We simulated 3D scenarios of 3 h length using a time step of 0.2 s and
a range of constant wind stress over a realistic stratification structure. A non-reflective boundary
condition at the open boundaries and zero velocities at the bottom boundary were applied. The model
was executed using a Message Passing Interface language on a 16 cores cluster.

4. Results

4.1. Wind and Temperature Influence on Density Stratification

The surface circulation in the Nørrefjord is tightly linked to wind conditions, which are
characterized by different speeds during the year (Figure 2). In particular the average wind speed
from 13 to 17 May 2008 was 3.8 m s−1 (Figure 2a), while from 18 to 23 August 2008 it was 6.5 m s−1

(Figure 2c). In 2008, the different wind conditions were clearly reflected in the profiles of temperature
and salinity observed with the repeated CTD casts (Figure 3a,b). In case of weak wind conditions
(May 2008) a well-defined picnocline between 6 m and 8 m was driven by both changes in temperature
and salinity (red and blue profiles), while in August 2008 well-mixed conditions were present due
to stronger winds (Figure 3a). In May 2008, temperatures ranged between 15–16 ◦C at surface level,
to 10 ◦C at the bottom, while it was much colder in May 2009 with a uniform distribution around 12 ◦C
(Figure 3c). On the other hand, in August 2008 and 2009, the temperature was homogeneous along the
water column and its value was around 18–20 ◦C. Similar patterns were observed for salinity profiles
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in 2008 and in 2009 (Figure 3). In May 2008, salinity value was 12 psu in the upper 5 m and increased
steadily up to 18 psu at 10 m depth (Figure 3a). In August 2008, a value around 15 psu was present at
all depths while a uniform value of 17 psu was observed in August 2009 (Figure 3c,d).
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4.2. Hydrography across the Sand Pit

The excavated areas were characterized by high variability of the hydrographic conditions
recorded from 9 to 18 September 2013 (Figure 4a). In particular, stratified conditions of the water
column can build during the day but are quickly lost as soon as changes in wind conditions or changes
in larger scale circulation occur, as shown below (Figure 4). The first day of sampling, lateral advection
of fresh water (salinity values are around 15.4 psu) entered the area, driving changes in density
profiles and stratification conditions (Figure 4b). These conditions persisted throughout the first day
(~4:00 p.m.). During the second day of sampling, the relatively strong stratification condition was lost
within a few hours because of overnight cooling (Figure 4c).
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Figure 4. Distribution of: (a) density (kg m−3–1000); (b) temperature (◦C); and (c) salinity (psu) in the
160 CTD casts on 10, 11 and 17 September 2013 across a transect crossing the sand pit.

Indeed, temperature decreased from 17 ◦C to 16.5 ◦C and salinity increased to 15.75 psu. During
the day (around 1:00 p.m.) a weak thermal stratification was seen to build up as well as a weak
stratification in the density profiles (Figure 4c). This weakly stratified condition was present only at
low wind regimes (~3 m/s, Figure 4a). Day 3 sampling was on 17 September, seven days after the last
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sampling. This was due to strong wind conditions (up to 14 m/s) prevailing from 14 September to
18 September in the area which prevented the sampling operations (Figure 5a). Thus, the hydrographic
conditions observed in 17 September were quite different from the first two days, but showed patterns
consistent with the effects of strong wind mixing and cooling of the water column (Figure 4).

4.3. Dynamics of Oxygen Saturation

Oxygen saturation is the relative measure between the dissolved oxygen concentration and the
oxygen solubility in equilibrium. For surveying periods in 2008, the oxygen concentration was always
very close to equilibrium, hence saturation was around 100% (Figure 3b). In particular, we noted that
only positive values in the range from 101% to 102% were observed in 2008. Moreover, changes in
salinity concentration were related to oxygen distribution (Figure 3b). Lower salinity was typically
associated to lower oxygen saturation while higher surplus of oxygen was present in the deeper
layers, possibly reflecting changes in the biological productivity. Data for 2009 showed a different
situation: the water in May was mainly close to equilibrium (oxygen saturation around 100%), but at
around T = 14 ◦C and S = 13.5 psu a body of unsaturated water was present (Figure 3d). In August
2009, the water column was mainly under-saturated with minimum values of oxygen saturation
at about 65%. When sampling at high temporal frequency across the sand pit in 2013, patterns in
oxygen distribution were visible both in the vertical and throughout the days (Figure 5b,c). However,
the range of variability was small since oxygen concentration was always within 8.3–9.1 mg L−1.
The oxygen saturation (Figure 5b) showed a deficit (92%) or surplus (107%) during the first and the
second day, respectively, whereas the well mixed conditions of the third day showed oxygen values
close to equilibrium conditions (~100% oxygen saturation in Figure 5b).
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Figure 5. Time series of the wind speed in the study area from 9 to 18 September. The three periods
(grey areas) when CTD casts area available are also shown (a). Oxygen saturation against water density
(b) for the three sampling periods: 10 September (red), 11 September (green) and 17 September (yellow);
and corresponding oxygen distribution (mg L−1) in the 160 CTD casts on 10, 11 and 17 September
across the study transect (c).

Continuous oxygen measurements at the bottom of the sand pit were highly variable in time,
in both 2008 and 2009 (Figure 6). Nonetheless, there was a provable seasonal pattern in the oxygen
concentration at the bottom. Often the oxygen concentration reached a minimum at the end of the
summer when the seawater temperature was high, stratification stronger, and there was an abundance
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of dead material sinking to the bottom. In fact, long periods (up to 30 days) of hypoxic conditions were
observed during the summer of 2009 and with lower frequency in 2008. These low oxygen periods are
however highly variable.
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Oxygen levels were recorded at the bottom of an excavated hole.

Significant changes in oxygen concentrations occurred in seasonal scales as well as within a few
hours. In particular, in 2009 the oxygen concentration on 28 June was around 8 mg L−1 and decreased
to almost zero within three days (Figure 6). These changes were most likely driven by biological
production as suggested for example by the large daily variation in oxygen, which is associated
with negligible changes in temperature, salinity and hence solubility conditions. Nevertheless,
on longer time scales, a correlation between wind speed and oxygen saturation was evident (Figure 6).
This correlation was further explored using the entire dataset including 2008 and 2009 data (Figure 7),
showing that an oxygen surplus could occur at low or high wind speed conditions, while oxygen deficit
and anoxic conditions were more likely to occur at low wind speeds (2–4 m s−1). Moreover, with high
wind speeds (>12 m s−1) only 100% oxygen saturation was present; over-saturated or under-saturated
conditions were never recorded at high wind speed conditions (Figure 7). This supported the
hypothesis of biology mediated effects on oxygen saturation conditions.
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Thus, biological production can be inhibited by strong wind conditions, while in conditions of low
wind speed and stratified water columns it can reach a maximum, favoring over-saturated conditions
in the upper layers, or possibly hypoxia can develop in the deepest layers.

4.4. Numerical Simulation of the Mixed Layer Dynamics

To investigate the frequency of occurrence of these low oxygen levels at the bottom of a sand pit,
we ran a set of numerical models to simulate the vertical mixing of a tracer induced by wind velocity.
Simulations of 1D water column suggested that the balance between stratification and shear produced
by the wind stress was responsible for the dynamics of the mixed layer depth (MLD) (Figure 8).

The depth of the mixed layer appeared to be mainly controlled by wind conditions: <4 m at wind
speed values less than 3 m s−1, within 4–6 m at wind speed values of 4–5 m s−1 and 9 m (the total
depth) at wind speed above 8 m s−1. For intermediate wind speed values (5–7 m s−1), a full mixed
water column was simulated if the stratification was weak. In other words, with winds above 8 m s−1

the entire water column was well mixed within 24 h, while between 6 and 8 m s−1 the water column
was either well mixed or stratified, largely depending on the density profile used in the model.

To establish the time scales and the range of wind velocity at which vertical mixing can reduce
bottom oxygen depletion, a 3D model was used to simulate dispersion of a passive tracer under the
non-hydrostatic circulation across a sand pit (Figure 9).
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Figure 8. Map of the simulated mixed layer depth (MLD) at different wind speeds and with a set of
realistic density profiles based on observations made in May. The model runs for 24 h with constant
wind, MLD for the last time step is shown and is calculated using a turbulent kinetic threshold
of 10−5 m2 s−2. Stratification index is defined based on the density profiles, higher index in more
stratified conditions.

The tracer was initially released close to the bottom and the model simulated the effects of
different wind conditions acting on a summer stratified water column initially at rest. Since the wind
was blowing from the left to the right of this shallow depth section, we would expect a flushing of
the bottom layers all across the domain in the direction of the transport. However, at wind speeds
of 3–5 m s−1, he pit was not significantly affected by wind mixing during the simulated 3 h; in fact,
high concentrations of the tracer were still present in the pit at the end of the simulations. More likely,
the shape of the pit was controlling the recirculation in the excavated pit than favoring water retention.
Moreover, adjacent areas were also affected by the presence of the excavation. The up-wind side at
4 m depth had low tracer concentration while the down-wind kept a high tracer concentration due
to the transport of tracer from the pit. This pattern was reversed at wind speed ≥7 m s−1, due to
turbulent vortices being created by the interaction between wind-driven current and the slope of the
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pit. With a stronger wind scenario (13 m s−1), a complete mixing of the bottom layer was obtained by
the end of the simulated period (Figure 9).
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on a linear color range from 0 (blue) to 1 (red).

5. Discussion

Oxygen depletion at the bottom of a deep sand pit depends on a combination of physical and
biological factors. A significant stratification of the water column hinders the downward oxygen
transport by turbulence. This stratification is caused mainly by the increased water depth and
reduced flow velocity, so that thermal stratification can occur in the spring and summer months.
Both experimental evidence and numerical simulations showed a limited occurrence of conditions that
can potentially lead to hypoxia. In fact, the number of consecutive days in which very low oxygen
concentrations were recorded is lower than 10 (lowest level reported in the literature), while the
numerical simulations show that the risk conditions are related to wind speeds lower than 5 m/s,
which is infrequent in Danish waters. The inner Danish waters have experienced a gradual decrease in
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levels of oxygen in the bottom waters since the 1960s [37] due to increasing nutrient loadings, primarily
from agricultural sources since the 1950s. The nutrient loading culminated in the late 1980s, at which
time several mitigating measures were implemented to reduce nutrient loadings from several sources.
Nørrefjord has also received considerable amounts of nutrients from the surrounding landscape during
the last three to four decades causing habitat deterioration and decline in extent and distribution of
blue mussel beds [38]. Oxygen depletion has also been reported to occur regularly in Nørrefjord, in the
deep basin in late summer, although it has only been observed for a limited number of days. Nutrient
loading persists, even though at lower levels than in the 1980s and may continue to cause periods of
anoxia, which together with the conditions in the extraction pits and the restricted water exchange
may slow down the process of recovery in this fjord.

There is a seasonal pattern in the oxygen concentration at Norrefjord. During winter, the oxygen
concentration increases and reaches a maximum in May. Afterwards, the oxygen concentration reaches
a minimum at the end of the summer when the seawater temperature is high and there is an abundance
of dead material from algal blooms. In these conditions, there is a high risk of hypoxia at the bottom of
the sand pit. The area impacted by sand mining shows clear patterns in terms of oxygen dynamics.
The water column is fully saturated with oxygen in this area, when the winds are strong (>10 m s−1),
which is a relatively frequent situation especially outside the summer months. In particular, we find
that the water column is completely mixed in the sand pit when wind is stronger than 8 m s−1.
According to the simulations using the 1D model, when wind speed is stronger than 8 m s−1 for at
least 24 h, active mixing is present at the depth of 9 m and the water column is fully mixed. On the
other hand, oxygen depletion and oxygen surplus conditions (due to biological production) occur at
wind speed lower than 5 m s−1.

In particular, hypoxic layers frequently develop in summer, when strong water column
stratification and a weak wind regime allows both the sinking of organic material and the dampening
of the wind-driven mixing. Under these conditions strong oxygen-depletion and anoxic layers are
developed within a few hours. When the oxygen-depleted zone is created then with a wind speed
>8 m s−1 the sand pit could act as a source of low oxygen for adjacent areas. This pattern is confirmed
by the more detailed and computationally expensive 3D model, which shows that the regions located
down-wind relative to the sand pit can be affected by transport of low oxygen concentrations from
the sand pit. The 3D model also shows that the excavated area is effectively mixed over short time
periods when winds are very strong (>13 m s−1). However, these strong winds are quite rare in the
area during summer months.

The study area is a coastal inlet characterized by very shallow water (<5 m). The shallow depth
supports rapid changes of the environmental conditions in the water, such as temperature, salinity and
oxygen concentration. These changes are mainly driven by wind patterns in terms of both direction
and speed. The observed variability in oxygen concentration can be explained as a combination of the
effects of temperature, salinity and wind speed, which influence the depth of the mixed layer but also
biological productivity.

6. Conclusions

Waters with high residence times in areas of restricted exchange may experience considerable
oxygen depletion in the presence of high amounts of oxygen consuming organic matter. In the highly
eutrophicated estuarine systems of the inner Danish waters, the risk evaluation of hypoxic events
was developed from the computation of oxygen dynamics as a function of the wind-driven mixing.
The Danish measures implemented to reduce nutrient loadings have resulted in reduced inputs, but the
accumulation of internal nutrient pools in the sediments and increased stratification may delay system
recovery [39].

The persistent presence of extraction pits may further hinder the process towards system recovery
in the Nørrefjord. In fact, the observed evidences and the obtained numerical results taking into account
numerical simulations and extensive monitoring of the main physical parameters, cannot completely
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exclude intolerable oxygen conditions for the benthic communities in proximity of excavated sand pits.
Hypoxic events have been observed during warm and calm summer months, because oxygen depletion
may develop near the bottom in sand pits mainly at low wind speeds or, alternatively, when the wind
is strong but blows for short periods. In autumn and winter strong winds and the general cooling and
convective mixing of the water column exclude formations of oxygen depleted conditions.

The predictions of the vertical mixing inside the pit according to wind forcing, evaluated by
a numerical model, established the range of parameters for which the occurrence of conditions favoring
oxygen-depletion can develop inside the sand pit.

The elements identified in this study can be articulated in view of the recovery process to
improve the status of degraded coastal and estuarine ecosystems. Existing studies indicate that
complete recovery of coastal ecosystems to their previous baseline is rarely a realistic assumption [40].
The results obtained imply that pressures giving rise to eutrophication need to be reduced below the
threshold levels, the crossing of which originally brought about the degradation, to obtain at least
a partial recovery. In this context, the results of this study are a valuable input for future management
of marine mineral aggregate extraction to guide the choice of extraction method, thus leading to
a reduced environmental impact of such pits.
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