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We propose a phenomenological yet general model in a form of extended com-
plex Ginzburg-Landau equation to understand edge-localized modes (ELMs), a
class of quasi-periodic fluid instabilities in the boundary of toroidal magnetized
high-temperature plasmas. The model reproduces key dynamical features of the
ELMs (except the final explosive relaxation stage) observed in the high-confinement
state plasmas on the Korea Superconducting Tokamak Advanced Research: quasi-
steady states characterized by field-aligned filamentary eigenmodes, transitions
between different quasi-steady eigenmodes, and rapid transition to non-modal fil-
amentary structure prior to the relaxation. It is found that the inclusion of time-
varying perpendicular sheared flow is crucial for reproducing all of the observed
dynamical features. © 2018 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5006554

I. INTRODUCTION

Relaxation phenomena in magnetized plasmas are widespread in nature.1,2 A notable example
is the explosive flares on the surface of the Sun. Another example is the semi-periodic explosive
bursts appearing at the boundary of toroidally-confined high-temperature plasmas (e.g., tokamak). In
toroidal magnetic confinement devices, sufficient heating of the plasma can lead to a transition from
low-confinement state (L-mode) to high-confinement state (H-mode) if the heating power exceeds a
threshold. During the transition, a transport barrier (called pedestal) spontaneously appears at the edge
of plasma via strong E ×B flow shear which reduces heat and particle transports. However, this barrier
is quite unstable and prone to a class of fluid instabilities called edge-localized modes (ELMs) driven
by the large gradient of density, temperature, current density, and flow.3–8 It is believed that these
instabilities are responsible for the relaxation (or crash) of the transport barrier, i.e., rapid expulsion of
heat and particles. The expulsion events are commonly called ELM crash. The H-mode plasmas are
characterized by semi-periodic cycles between slow transport barrier buildup and its fast relaxation.

The ELM crash must be controlled because the natural or uncontrolled crashes induce signifi-
cant heat and particle fluxes which can damage the plasma-facing walls of the confinement device.
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Magnetic perturbations have been used successfully to mitigate or suppress the crash9–11 but the
underlying mechanisms of mitigation and suppression are still unclear. Accordingly, it is crucial to
understand the dynamics of ELM for more reliable and robust methods to avoid the crash. For this
reason, a nonlinear mathematical analysis is required beyond linear stability analyses.12

For the purpose of studying the nonlinear behavior, a nonlinear model for the perturbed pressure
was derived in a form of complex Ginzburg-Landau equation based on a 1D reduced MHD model.13

The numerical solutions to the model equation showed nonlinear relaxation oscillations with the
characteristics of type-III ELM. Inspired by Ref. 13, we mathematically studied the model equation
to understand the effect of perpendicular flow shear on the nonlinear behavior of the perturbed pressure
during the ELM cycle.14 More precisely, it was shown that there exists a linearly stable symmetric
steady state for small shear and the first eigenvalues of unstable states for the case of zero shear are
bounded below by a positive constant. In the case of large shear, a theoretical clue was found for
the long-time behavior of the solutions: 1) nonlinear oscillation; 2) convergence to 0. The theoretical
results were supported by numerical verifications.

However, in Ref. 14, the shear strength was set constant in time, which was insufficient to
explore clues for the various phenomena observed in experiments on the Korea Superconducting
Tokamak Advanced Research (KSTAR) device such as quasi-steady state with a single eigenmode-
like structure15 and fast transitions between the quasi-steady states.16 In this paper, the effect of
time-varying flow shear is analyzed as the key for accessing different dynamical states. The remaining
of the article is organized as follows. In section II, we present the analysis of the model for the case
of a single-mode. In section III, we extend the model to treat the case of two coupled modes. In
section IV, we discuss the results and give a conclusion with a prospect for comparison with future
numerical simulation including the effect of time-varying flow shear.

II. ANALYSIS OF SINGLE-MODE

We consider the following single-mode equation for the perturbed pressure P(t, x, y) in cylindrical
magnetized plasma assuming local slab geometry with the magnetic field direction z, the local radial
direction x, and the perpendicular direction y:

∂tP + γN |P |
2 P= iAWK (x) P + γLP + η∂2

x P, (1)

where WK (x)= tanh (Kx) is the prescribed shear flow with x ∈ [−1, 1], K > 0 is the inverse of the
shear layer width, and A ≥ 0 is the shear flow strength. Eq. (1) may be considered an extension
of Ginzburg-Landau equation (GLE) with constant complex coefficients. Note that P represents the
complex-valued amplitude of a Fourier mode, i.e. δP(x, y, t) = P(x, t)eiky + c.c. Here, γN , γL and η
are constant coefficients for the nonlinear, the linear growth and the dissipative terms respectively.
It was observed that the behavior of a solution to Eq. (1) is completely different with the presence
of the flow-shear for both the Dirichlet and Neumann boundary conditions.13,14 Since it is unclear
which boundary condition is reasonable in real experiments, both types of boundary conditions are
considered here to understand the long-time behavior of a solution P (t, x) to Eq. (1):

P (t,±1)= 0 (Dirichlet),

∂P
∂x

(t,±1)= 0 (Neumann).

Inspired by Ref. 14, we will consider two subjects for the model Eq. (1). The first subject is to
characterize the long-time behavior of a solution P(t, x) for the fixed large shear strength A so that we
can distinguish the regions of either convergence to 0 or nonlinear oscillations in the γL–η parameter
space. The second subject is to characterize the long-time behavior of a solution P(t, x) between
nonlinear oscillations and convergence to nontrivial steady states in the A–K parameter space under
suitable fixed parameters γL and η such that non-trivial solutions are guaranteed. We find a threshold
AK > 0 for each K such that solutions converge to a nonzero steady state of Eq. (1) for A < AK and
nonlinearly oscillate for A > AK . Combining these results, we propose that the salient features of the
ELM dynamics observed in the KSTAR H-mode plasmas can be explained based on time-varying
perpendicular shear flow.
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A. Long-time behavior of P(t, x) on γL and η

Notice that the Dirichlet boundary condition does not allow nonzero uniform steady states of
Eq. (1) even without the shear in contrast with the Neumann boundary condition. Nevertheless, we
obtained similar results for both boundary conditions. Fig. 1 represents the long-time behaviors of a
solution P(t, x) on γL and η for a fixed large A = 50 in both boundary conditions. The blue regions
in Fig. 1(a)–(b) display that P(t, x) converges to 0 as t →∞. Conversely, red regions in Fig. 1(a)–(b)
display that P (t, x) oscillates nonlinearly in time. These results show a certain relation between η and
γL which determines the long-time behavior of P (t, x). Inspecting Fig. 1, it is clear that nonlinear
oscillations are guaranteed only if the ratio γL/η is sufficiently large. Otherwise, P(t, x) converges to
0. Note that the parameters in Eq. (1) are related to heat flux Q as (see Ref. 13),

γL = γL0
Q − Qc

η
ap−1

0 , γN = a2γ2
L0/η, and

γL

η
∝ γL0

Q − Qc

η2
.

where Qc is the threshold heat flux related to the critical pressure gradient for linear instability, p0 is
the reference pressure, and a denotes the radius of the cylinder (see Ref. 13 for detail). Therefore,
even if the heat flux Q exceeds the linear threshold Qc, nonlinear oscillations may not occur if
0 < Q � Qc � 1 such that γL � 1 and (γL/η)� 1. This is consistent with experiment observations
since it is known that ELM crash does not immediately occur after Q exceeds Qc (see Fig. 1 in Ref. 17).
It is also possible to interpret the case of Q � Qc < 0 (γL < 0) as L-mode. γL < 0 guarantees the
long time behavior of P (t, x) such that limt→∞ |P (t, x)| → 0. Therefore, Eq. (1) provides a reasonable
explanation of the overall ELM dynamics.

We need to discuss the effect of γN . Our expectation is that the stability of the zero solution
is crucial to determine the long-time dynamics of P(t, x) for a fixed A � 1. In consideration of the
analysis result in Ref. 14, it is natural to think that P(t, x) will oscillate nonlinearly if the zero solution
is unstable, but converge to 0 if the zero solution is stable. For this prediction, we linearized Eq. (1)
around the zero solution P = 0 and proved that the stability of the zero solution is independent of γN ,
as expected:

∂tPL = iAWK (x) PL + γLPL + η∂2
x PL. (2)

Accordingly, it is reasonable to expect that γN cannot affect the long-time behavior of the zero
solution for large A > 0. Conversely, γN is expected to affect the long-time behavior of the non-zero
solution for large A > 0. Under this prediction, we confirmed numerically that γN does not affect the
qualitative long-time behavior of the solutions illustrated in Fig. 1(a)–(b). Instead, γN can affect the
amplitude of nonlinear oscillations. The change of the amplitude |P (t, 0)| in our model is strongly

associated with (γL/γN )1/2 = 1
a

(
pref
γL0

(Q − Qc)
)1/2

.

FIG. 1. The qualitative long-time behavior of a solution P (t, x) to Eq. (1): nonlinear oscillation (red regions) or convergence
to 0 (blue regions) on the Neumann and the Dirichlet boundary conditions in (a) and (b) respectively. Here, we set γN = 1,
A = 50, and WK (x)= tanh (25x). In each case, there exists a clear boundary separating the two regions.
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B. Long-time behavior of P (t,x) on A and K

Fig. 2 suggests that there exists a threshold flow shear amplitude AK for given K for both boundary
conditions. If 0 < A < AK (blue regions), the solution P(t, x) converges to a nonconstant steady state
Ps (x) for any given initial condition. On the other hand, the qualitative long-time behavior of P(t, x)
abruptly changes if A > AK (red regions). P(t, x) oscillates nonlinearly and never converges to any
steady state in the red regions. These numerical results show that there is a certain stability/instability
criterion AK of A for each K > 0 for both boundary conditions. According to Fig. 2, we can also
predict that ELM crash only occurs under sufficiently strong flow shear. We can also observe that as
approaching the threshold line in Fig. 2, the amplitude of nonlinear oscillations (in the red regions)
increases and the central value |P(0)| for a nonzero steady state P(x) (in the blue regions) decreases
but remain finite (i.e. nonzero). Besides, it is also observed that AK and K are inversely correlated for
small K for both boundary conditions, but AK barely changes for large K.

Mathematical clues for the two different dynamic behaviors illustrated in Figs. 1 and 2 can be
explained in the case of the Neumann boundary condition. Let P(t, x)=R(t, x) exp (iθ(t, x)) to rewrite
Eq. (1) as:

∂tR= γLR + η∂2
x R − ηRθ ′2 − γN R3, (3)

∂tθ = η∂xθ
′ + 2η(∂x ln R)θ ′ − AWK (x) , (4)

where θ
′

= ∂xθ. In Eq. (3), the shear term AWK (x) affects the amplitude R only indirectly via the
phase-gradient θ

′

. Without flow-shear (A = 0), the steady-state P= (γL/γN )1/2 is the only stable
equilibrium.18 Hence, without flow-shear, the phase-gradient θ

′

converges to 0. However, for finite
flow-shear, the term ηRθ ′2 in Eq. (3) is nonzero and causes R to decay in time. If the shear is large, the
term ηRθ ′2 dominates the linear growth term γLR in a neighborhood of x = 0, so R (t, 0) decays due
to the phase-gradient θ

′

until a critical phase-gradient θ ′ = θ ′c is reached. After decaying, however,
the term γN R3 is weak close to 0 and the term η∂2

x R grows so large that R(t, 0) tends to return to
its original state with the help of the linear drive γLR. This interaction between decay and growth
terms makes the nonlinear oscillation. However, if γL is too small, i.e., the mode is linearly stable, the
term η∂2

x R is insufficient to fully dominate the term ηRθ ′2. Accordingly, it is impossible to return to
the initial state and R(t, x) converges to 0 instead. Similar explanations for the behavior of nonlinear

FIG. 2. The qualitative long-time behavior of a solution P(t, x) to (1) with η = 1, γN = 1, and γL = 10: nonlinear oscillation
(red regions) or convergence to a nonzero steady state (blue regions) for the Neumann and the Dirichlet boundary conditions
in (a)-(b) respectively: The values in the red regions in (a)-(b) denote limt→∞max |P (t, 0) |. The values in the blue regions
(a)-(b) denote − |P (0) | for a nonzero steady state P(t, x) = P(x). It is clear that there is AK for each K which determines the
long-time behavior of the solution. Note that, as approaching the interfaces, the values in the red and blue regions increase, so
the amplitude of nonlinear oscillations increases and |P(0)| for a nonzero steady state P(x) decreases, but not to 0.
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FIG. 3. The time behaviors of the amplitude |P(t, 0) | of the solution P(t, x) to Eq. (1) with γN = 1, γL = 10, η = 1,
W (x)= tanh(25x) on the Neumann boundary condition. The initial condition is P(0, x)= (γL/γN )1/2 cos

(
πx
2

)
. (a) A(t) is

modeled such that A increases linearly on time from 0 initially but decreases to 0 rapidly after the transition (crash) which
occurs at A ≈ 6.5, and this procedure is repeated. (b) A = 6.5 is constant. The quasi-steady state is only observed in (a).

oscillations were introduced in Refs. 13 and 14. In addition, it can be proved that K is not an important
parameter in Fig. 2 for K � 1 [c.f. Appendix].

C. The effect of time-varying A

Nevertheless, we could not observe non-oscillating quasi-steady state for the prescribed shear
flow AWK (x) for both boundary conditions when A > AK . The existence of a quasi-steady state
is important for the validation of our model because the ELM dynamics observed on the KSTAR
consists of distinctive stages including quasi-steady states, transition phase, and crash phase.15 We
believe that it is impossible to obtain a quasi-steady state for time-independent coefficients. Indeed,
if |∂PL/∂t | � 1, then a solution should be close to a steady state. However, there is no reasonable

FIG. 4. The time behaviors of the amplitude |P(t, 0) | of the solution P(t, x) to (1) withγN = 1,γL = 50,η = 1, W (x)= tanh(25x)
on the Dirichlet boundary conditions. The initial condition is P(0, x)= (γL/γN )1/2 cos

(
πx
2

)
. (a) A(t) is modeled such that A

increases linearly on time from 10 initially but decreases to 10 rapidly after the transition (crash) which occur at A ≈ 18, and
this procedure is repeated. (b) A = 18 is constant. The quasi-steady state is only observed in (a).
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steady state Ps
A,K (such that ∂xPs

A,K (x) ≤ 0 in 0 ≤ x ≤ 1 and ∂xPs
A,K (x) ≥ 0 in � 1 ≤ x ≤ 0) for a

sufficiently large fixed shear,14 so we cannot expect a quasi-steady state. In real experiment, it is
natural to think that shear flow evolves, i.e., A and K vary in time. Thus, it makes sense that in the
quasi-steady state phase, the parameters A and K are initially located in a region where solutions
converge to a steady state (blue regions in Fig. 2), but as time flows, a shear flow gradually increases,
and A and K gradually change. As a consequence, as A exceeds the critical point AK , i.e., A moves
from the blue regions to the red regions in Fig. 2, the quasi-steady state can no longer exist, which
may amount to the sudden crash observed in each ELM cycle.

The existence of quasi-steady states with time-varying A(t) is numerically illustrated in Figures 3
and 4 for both boundary conditions. These numerical examples suggest that the change of A induces
different stages in the ELM dynamics. Based on these results, we expect that magnetic perturbations
can reduce the shear flow strength A such that quasi-steady ELMs can persist without crash, which
would correspond to the suppression (absence) of ELM crashes.

III. ANALYSIS OF COUPLED MODES

In this section, we consider two coupled modes with the Neumann boundary condition to study
the mode transitions during the quasi-steady observed on the KSTAR.16 Let W (x) be a prescribed
shear flow profile and the pressure P be written as

P=P + P̃,

where P=P(t, x) is the slowly time-varying equilibrium pressure and P̃= P̃(t, x, y) is the pressure
perturbation:

P̃=P1 exp (ik1y) + P2 exp (ik2y) + c.c., (5)

with |k1 | , |k2 |. Extending the single mode model in Ref. 13, we consider the following model:

∂P1

∂t
− η

∂2P1

∂x2
+ ik1AW (x) P1 =−b *

,

∂P
∂x

P1+
-

+ C1P1, (6)

∂P2

∂t
− η

∂2P2

∂x2
+ ik2AW (x) P2 =−b *

,

∂P
∂x

P2+
-

+ C2P2, (7)

∂P
∂t

+ c
∂

∂x

(∫ 1

0
|P̃ |2dy

)
= d

∂2P

∂x2
, (8)

where η > 0, A > 0, b > 0, c > 0, d > 0, C1 ≥ 0, and C2 ≥ 0 are constants. With the help of the

slaving approximation
(
∂P
∂t ≈ 0

)
,13 we can obtain

c
(
|P1 |

2 + |P2 |
2
)
− e

d
=
∂P
∂x

(9)

from Eq. (8) for a constant e ∈R using ∫
1

0 |P̃ |
2dy= |P1 |

2 + |P2 |
2 . Therefore, substituting Eq. (9) into

Eqs. (6)–(7) yields

∂P1

∂t
− η

∂2P1

∂x2
+ iAk1W (x) P1 =−b *.

,

c
(
|P1 |

2 + |P2 |
2
)
− e

d
+/
-

P1 + C1P1, (10)

∂P2

∂t
− η

∂2P2

∂x2
+ iAk2W (x) P2 =−b *.

,

c
(
|P1 |

2 + |P2 |
2
)
− e

d
+/
-

P2 + C2P2, (11)

Denoting

γN B
bc
d

,

γL1 B

(
be
d

+ C1

)
,
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γL2 B

(
be
d

+ C2

)
,

we can rewrite Eqs. (10)–(11) as

∂P1

∂t
− η

∂2P1

∂x2
+ iAk1W (x) P1 =−γN P1

(
|P1 |

2 + |P2 |
2
)

+ γL1 P1, (12)

∂P2

∂t
− η

∂2P2

∂x2
+ iAk2W (x) P2 =−γN P2

(
|P1 |

2 + |P2 |
2
)

+ γL2 P2. (13)

Let P1 =R1 exp (iθ1) and P1 =R2 exp (iθ2) . Then Eqs. (12)–(13) can be written as

Ṙ1 − ηR′′1 + ηR1θ
′
1

2
=−γN

(
R3

1 + R1R2
2

)
+ γL1 R1,

Ṙ2 − ηR′′2 + ηR2θ
′
2

2
=−γN

(
R3

2 + R1R2
2

)
+ γL2 R2

We assume that γL1 , γL2 . Here, we can interpret γN , γL1 , γL2 and η as constant coefficients for
the nonlinear term, the linear growth terms for P1 and P2, and the dissipative term respectively.
In this paper, we only consider positive values of γL1 , γL2 , η and γN . The only difference from
Eq. (1) to Eqs. (12)–(13) is the presence of the coupling terms γN P1 |P2 |

2 and γN P2 |P1 |
2 in

the equations for P1 and P2 respectively, which can account for the mode transition observed in
Ref. 16.

A. Long-time behavior on the linear growth terms

To understand the dependence of the time behavior of the couple modes on the linear growth
terms, we performed numerical calculations with fixed η = γN = 1, A = 10, W (x) = tanh (25x), k1 = 5
and k2 = 8 for different γ′Ls. Fig. 5 shows the time behaviors of |P1(t, 0)| and |P2(t, 0)| for γL1 = 30 and
γL2 = 20 with the initial condition |P1(0, x)| � |P2(0, x)|. |P1(t, 0)| grows and becomes dominant with
nonlinear oscillation while |P2 (t, 0) | decays. Fig. 6 shows the case for γL1 = 15 and γL2 = 20 with
the opposite initial condition |P1(0, x)| � |P2(0, x)|. |P1(t, 0)| converges to 0 and |P2(t, 0)| becomes
dominant as t →∞.

In both cases, the mode with higher γL becomes dominant eventually as expected. However,
there is a subtle difference in the time scale between Fig. 5 and Fig. 6. We can explain the difference
as follows. For the case of Fig. 5, γL1 > γL2 and |k1 | < |k2 | mean that P1 has stronger linear growth
and, at the same time, less suppression due to the shear compared to P2 so that P1 will quickly
become dominant. However, in the case of Fig. 6, although γL1 < γL2 , it takes longer for P2 to become
dominant because P1 is less suppressed than P2 by the shear.

FIG. 5. The time behaviors of |P1(t, 0) | and |P2(t, 0) | , where P1(t, x) and P2(t, x) are solutions to Eqs. (12), (13) respectively.
We set η = 1, A = 10, k1 = 5, k2 = 8, γN = 1 and W (x)= tanh(25x). Besides, we imposed γL1 = 30 and γL2 = 20 and

initial conditions P1(0, x) and P2(0, x) as
(
γL1
γN

)1/2
(0.01) and

(
γL2
γN

)1/2
(0.99) respectively. |P1(t, 0) | becomes dominant and

oscillates nonlinearly although the initial value is small while |P2(t, 0) | converges to 0 although the initial value is large.
Hence, the conditions γL1 >γL2 and k1 < k2 means the dominance of |P1(t, 0) | for sufficiently large shear.
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FIG. 6. The time behaviors of |P1(t, 0) | and |P2(t, 0) | where P1(t, x) and P2(t, x) are solutions to Eqs. (12), (13) respectively.
We set the same values for the parameters η, A, k1, k2, γN , and W (x) as in Fig. 5. Besides, we imposed γL1 = 15 and γL2 = 20

and initial conditions P1(0, x) and P2(0, x) as
(
γL1
γN

)1/2
(0.99) and

(
γL2
γN

)1/2
(0.01) respectively. |P1(t, 0) | converges to 0

and |P2(t, 0) | oscillates nonlinearly, showing that the linear growth terms highly affect the long-time behavior of the two
modes.

To conclude, the long-time behaviors of |P1 | and |P2 | under ‘fixed’ parameters with k1 < k2 are
determined by γL1 and γL2 .

B. Long-time behavior for time-varying A

The analysis shown in Figs. 5–6 still cannot explain the transitions between quasi-stable modes
observed in experiments.16 Now, we consider time-varying A in Eqs. (12)–(13) to understand the
mode transitions for the case with γ2 > γ1 and k2 > k1. P2 is dominant for sufficiently small A. If
A increases in time, it is expected that P2 is more suppressed than P1 because k2 > k1 means that
P2 is more sensitive to A than P1, so P1 can become dominant finally. Figs. 7–8 show the behaviors
of |P2(t, 0)| and |P1(t, 0)| with growing A, supporting our prediction. Note that |P2(t, 0)| is highly
oscillating before convergence to 0 in Fig. 8, but not in Fig. 7. We should mention that the numerical
examples presented here capture the importance of time-varying A and offer qualitative explanations
for various types of mode transitions observed in experiments.

FIG. 7. The time behaviors of |P1(t, 0) | and |P2(t, 0) | for time-dependent A(t) with η = 1, k1 = 1, k2 = 3,γL1 = 10,
γL2 = 11, γN = 1 and W (x)= tanh(25x). We imposed weak initial conditions P1(0, x) and P2(0, x) as (γL1/γN )1/2/1000
and (γL2/γN )1/2/1000 respectively. A increases linearly, reaching the value 6.4393 at the end of the horizontal x-axis in the
figure. First, P2(t, 0) is dominant and quasi-steady when the shear is small. As the shear increases beyond a critical value,
|P1(t, 0) | increases rapidly while |P2(t, 0) | vanishes rapidly. After that, P1(t, 0) remains in a quasi-steady state until it falls to
0 abruptly.
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FIG. 8. The time behaviors of |P1(t, 0) | and |P2(t, 0) | for time-dependent A(t) with η = 1, k1 = 1, k2 = 3,γL1 = 10,
γL2 = 12, γN = 1 and W (x)= tanh(25x). We imposed weak initial conditions P1(0, x) and P2(0, x) as (γL1/γN )1/2/1000
and (γL2/γN )1/2/1000 respectively. A increases linearly, so A reaches to 6.4393 at the end of the horizontal x-axis in the fig-
ure. First, |P2(t, 0) | is dominant when the shear is small. As the shear increases, |P1(t, 0) | increases, but |P2(t, 0) | decreases.
After that, |P1(t, 0) | act as a quasi-steady state, and finally, |P1(t, 0) | falls to 0 abruptly. Compared to Fig. 7, it is also remarkable
that the high oscillation of |P2(t, 0) | before converging to 0 is observed.

IV. CONCLUSION

In summary, we considered two cases of ELM dynamics based on the extended complex GLE,
Eq. (1). In the case of the single-mode, we studied the long-time behavior of the solution with
fixed model coefficients and showed that the linear drive γL and the time-varying shear flow A(t)
determine the long time behavior of the solution. If the linear growth term is sufficiently large,
the nonlinear oscillations are guaranteed for large shear flow. Conversely, the solution converges
to a nonzero steady state for weak shear flow (Fig. 2). The long-time behavior for the small linear
growth term is interesting because a solution converges to 0 for large flow shear (Fig. 1). Combining
these results, we conclude that it is insufficient to consider the fixed coefficients on time to realize
the quasi-steady states which are observed in experiments.15 Therefore, by imposing time-varying
shear flow, we obtained quasi-steady states numerically (Figs. 3–4). Note that the plasma rotation
(flow) and its shear are well recognized as important factors for the stabilization of ELMs in MHD
simulations, in particular for high toroidal mode numbers.19–22 In recent nonlinear simulations using
the nonlinear resistive MHD code JOREK for KASTAR H-mode plasmas,22 it was shown that the
shear of the self-consistent poloidal rotation profile becomes stronger toward the onset of ELM
crash for the case of a single harmonic (eigenmode) simulation with the measured toroidal rotation
profile.

Based on our numerical analysis, we expect that the quasi-steady mode can persist if the shear
flow is reduced below the critical threshold by application of external magnetic perturbations, which
may provide a candidate mechanism for the non-bursting quasi-steady modes in the ELM crash
suppression experiment.11

To study the dynamics of coupled modes P1 and P2, we derived equations (12)–(13). We con-
firmed that the linear growth terms are crucial to determine the long-time behavior of P1 and P2

(Figs.5–6). Inspired by these results, we considered the increasing A(t) on time and showed that rapid
mode transition occurs (Figs.7–8), reproducing qualitatively the observed mode transitions in exper-
iments.16 Although we dealt with the equations (12)–(13) for coupled modes, it is also possible to
obtain equations for more than two modes and show that each mode solution is successively dominant
with suitable time-dependent A(t).

Note that our extended complex GLE model does not resolve the trigger problem for the ELM
crash because the model does not directly show the existence of non-modal solitary perturbation and
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its burst (which initiates the pedestal collapse) observed in the experiments.15,23,24 Nevertheless, the
rapid disappearance of eigenmodes in our model may allude to a condition for the rapid unidirectional
transition to the non-modal perturbation. In this regard, our model may be considered complementary
to the existing trigger theory25,26 and the nonlinear multi-harmonic simulations where the energy
of the linearly dominant mode is redistributed into a broad spectrum as approaching to the ELM
crash.22,27,28

To conclude, it is critical to consider the time-varying A for explanation of dynamic fea-
tures in ELM phenomena using the given models (1) and (12)-(13) for single and coupled-modes,
respectively.
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APPENDIX: EXPLANATION OF WHY THE NONLINEAR OSCILLATION THRESHOLD
IS INDEPENDENT OF K, FOR LARGE K

Notice that even if the shear AWK (x) appears, there exists a unique linearly stable steady state
denoted by the superscript s, Ps

A,K =Rs
A,K exp

(
iθs

A,K

)
such that Rs

A,K (−x)=Rs
A,K (x) and ∂xθ

s
A,K (x)

= ∂xθ
s
A,K (−x) for small A << 1.14 We can also deduce from (4)

∂θ

∂x
���
s

A,K
=

A
η

∫ x

−1
WK

(
x′

) Rs
A,K (x′)

Rs
A,K (x)

dx′. (A1)

It should be checked how K affects the profile of ���P
s
A,K

��� . It was numerically observed that there are
stable symmetric stable steady states before A < AK (see Ref. 14). Due to

lim
K→∞

WK (x)=

{
−1 if x < 0
1 if x > 0

}
,

we can obtain

∂θ

∂x
���
s

A,K
=−A

∫ x

−1

Rs
A,K (x′)

Rs
A,K (x)

dx′ + A
∫ x

−1

(
WK

(
x′

)
+ 1

) Rs
A,K (x′)

Rs
A,K (x)

dx′

≈−A
∫ x

−1

Rs
A,K (x′)

Rs
A,K (x)

dx′, (A2)

if K >> 1. Therefore, the equation (3) for Ps
A,K =Rs

A,K exp
(
iθs

A,K

)
barely changes for K >> 1, so the

profile of ���R
s
A,K (x)��� is almost independent of K for K >> 1 due to (A2).
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