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Background
One of the key applications of intracortical brain–machine interfaces (BMIs) is providing 
a neuroprosthetic technology to restore motor functions in humans with paralysis such 
as the amyotrophic lateral sclerosis and the brainstem stroke [1–5]. An intracortical BMI 
achieves this goal by detecting and translating the movement intention of users directly 
from cortical neuronal signals. In spite of the high cost and the possibility of tissue dam-
ages and infection, it can make good use of high signal-to-noise ratio (SNR) of intracorti-
cal signals and rich movement-related information for fine motor control [6]. A number 
of non-human studies have shown real-time control of an effector in 2D or 3D spaces 
using intracortical BMIs [7–13]. Recent intracortical BMI studies have also demonstrated 
real-time, multi-degree robotic arm control in humans with tetraplegia [2–5].

Abstract 

Background:  Intracortical brain–machine interfaces (BMIs) harness movement infor‑
mation by sensing neuronal activities using chronic microelectrode implants to restore 
lost functions to patients with paralysis. However, neuronal signals often vary over 
time, even within a day, forcing one to rebuild a BMI every time they operate it. The 
term “rebuild” means overall procedures for operating a BMI, such as decoder selection, 
decoder training, and decoder testing. It gives rise to a practical issue of what decoder 
should be built for a given neuronal ensemble. This study aims to address it by explor‑
ing how decoders’ performance varies with the neuronal properties. To extensively 
explore a range of neuronal properties, we conduct a simulation study.

Methods:  Focusing on movement direction, we examine several basic neuronal 
properties, including the signal-to-noise ratio of neurons, the proportion of well-tuned 
neurons, the uniformity of their preferred directions (PDs), and the non-stationarity 
of PDs. We investigate the performance of three popular BMI decoders: Kalman filter, 
optimal linear estimator, and population vector algorithm.

Results:  Our simulation results showed that decoding performance of all the decod‑
ers was affected more by the proportion of well-tuned neurons that their uniformity.

Conclusions:  Our study suggests a simulated scenario of how to choose a decoder for 
intracortical BMIs in various neuronal conditions.
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Intracortical BMIs translate motor cortical activity by a decoder, a set of computa-
tional algorithms that estimates motor information from the observed firing activities 
of neuronal ensembles. In general, BMI decoders directly estimate kinematic parame-
ters such as position, velocity, acceleration, direction and joint angles [2, 3, 8, 12, 14]. 
Many decoders rely on computational models of the motor information of cortical activ-
ity such as the tuning function, which relates the primary motor cortical activity to the 
hand movement direction and estimates the preferred direction (PD) characterizing a 
specific movement direction on a single neuron. Thus, the well-tuned neurons, which 
imply how single neurons well fit the specific direction, provide considerable influence 
for the decoding algorithm. Here, the PD represents the movement direction at which 
a neuron maximizes its firing rate [15]. Various decoding algorithms have been pro-
posed for intracortical BMIs, including the population vector algorithm (PVA) [8, 16], 
the optimal linear estimator (OLE) [1, 7, 9, 17], and the Kalman filter (KF) [18–20]. The 
PVA predicts kinematic states by neuronal population characterizing various directions 
in vector space. It allows employing population properties of neurons intuitively. The 
OLE is operated based on the linear model optimizing the ordinary least squares esti-
mator. It is known that can expect better performance than the PVA through analyz-
ing regression residuals. The KF performs prediction and update of states through the 
system and observation model based on the Markov chain rule, and it is known to be 
optimized in real-time BMI system. To understand how different decoders work in the 
context of BMI, some studies have attempted to compare decoders in both offline and 
online circumstances [14, 21, 22]. Koyama et al. [21] compared the KF and the PVA in 
various conditions of neuronal ensembles in the context of the open-loop and closed-
loop control and showed that the KF basically decoded neural activity better than the 
PVA when the PDs were not uniformly distributed. Chase et al. [22] compared the open-
loop and closed-loop performance of two decoders; the OLE and the PVA. It showed 
that the OLE performed better than the PVA under open-loop control, whereas both 
decoders exhibited a similar performance level under closed-loop control where subjects 
could compensate for a directional bias in decoders by feedback. Kim et al. [14] reported 
that using the KF to decode cursor velocity improved online 2D cursor control perfor-
mance compared to using the OLE to decode cursor position for an intracortical BMI 
in humans with tetraplegia. Yet, the previous studies focused on only particular aspects 
of neuronal ensemble properties to investigate performance translation from offline to 
online decoding, without paying much attention to influences of a variety of neuronal 
ensemble properties such as the uniformity and proportion of well-tuned neurons on 
decoding performance.

In addition to the consideration of intrinsic characteristics of individual decoders, 
the design of an intracortical BMI should also be concerned with practical issues aris-
ing from inconsistency of chronic intracortical recordings using microelectrode arrays. 
Single- and multi-unit activities detected by an array often vary over time, even across 
recording sessions within a single day, in terms of the number of units, the SNR and 
other aspects of movement-related information in each unit [23]. Non-stationarity, 
cortical dynamics, tissue responses to electrodes and other unknown sources may 
contribute to these variations. At all events, it implies that one needs to rebuild a BMI 
corresponding to the ensemble of neuronal units detected in a particular session. This 
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raises a question of what decoder would best fit to a given neuronal ensemble. It will be 
practically advantageous if one can approximately predict the performance of a chosen 
decoder using neuronal ensemble data obtained from a calibration phase before under-
taking the entire course of building and operating BMIs.

The present study aims to address this question by exploring a relationship between 
decoding performance and a range of the properties of neuronal ensembles. Under-
standing this relationship is important for BMIs because it is often uncertain what 
type of decoding algorithm to choose for maximize BMI performance given a neuronal 
ensemble. There are many available decoding algorithms but the choice of a decod-
ing algorithm for a given neuronal ensemble should depend on the properties of the 
ensemble. However, there is lack of efforts for investigating such a relationship for BMI 
decoding. Thus, we believe that this study may provide a useful guideline to choose an 
appropriate decoding algorithm depending on the neuronal states of the individual sub-
ject. In this study, we conduct a simulation study in which the firing activities of motor 
cortical neurons are synthesized and evaluated in the context of intracortical BMIs to 
extensively explore all possible variations of the selected properties [24]. Such computer 
simulations allow us to investigate a number of properties of neuronal ensembles in 
a systematic way, which is not usually tractable using the chronic recording data with 
implanted arrays. The present study focuses on one of the key kinematic parameters, 
hand movement direction, which has been widely used in BMIs [25, 26].

The basic neuronal ensemble properties studied here include the SNR of each neu-
ron, the uniformity of PDs across the ensemble, the proportion of well-tuned neurons 
in the ensemble, and the distribution of the PDs of well-tuned neurons. In particular, 
the effect of the proportion of well-tuned neurons has not been examined before. But 
we assume that decoding performance may draw upon how many well-tuned neurons 
are detected in an ensemble and thus consider it as a key factor in this study. Here, a 
well-tuned neuron is defined as a neuron whose firing activity can be well explained by 
hand direction information. In addition, the neuronal ensemble properties are likely to 
change across recording sessions as well as within sessions. As such, we also investigate 
the effect of temporal variation of neuronal properties on decoding performance. Spe-
cifically, we examine how time-varying changes of the PDs of individual neurons affect 
decoding performance [27, 28].

In this study, we opt to test three most widely used decoders for intracortical BMIs: 
the KF, the OLE, and the PVA [19, 21, 22, 29, 30]. Although there are numerous decod-
ing algorithms that can be used for intracortical BMIs, we focus on linear ones, as our 
goal is to understand relationships between decoding performance and neuronal prop-
erties rather than in-depth analysis of computational aspects of decoders. In addition, 
linear decoders have their own merits such that they can be readily implemented in real 
time and transferred to light-weight portable BMIs [17, 31].

Simulation procedures
In order to simulate hand direction estimation via intracortical BMIs, we assumed the 
followings. First, we assumed that the tuning curve of simulated cortical neurons fol-
lowed a unimodal bell-shaped curve [15]. In particular, we employed the cosine tuning 
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model that is based on a sinusoidal curve because of following directional property with 
single neurons [15].

Second, we assumed a linear generative model with additive white Gaussian noise 
when we generated neuronal spikes. Here the noise was regarded any firing activity 
other than that encoding movement direction. Third, we probabilistically generated a 
neuronal spike based on the Poisson process, is defined as:

where j denotes the number of spikes in interval, X is the observation. The mean param-
eter, λ, of the Poisson process was determined by the firing rate estimated from the 
tuning curve. Fourth, we assumed that every neuron carried its own PD. Fifth, we also 
assumed that no cortical plasticity phenomena take place.

The overall simulation procedure consisted of three steps: (1) the determination of 
neuronal properties, including the PD and SNR of each neuron, the uniformity of the 
PDs, the proportion of well-tuned neurons, the uniformity of the PDs of the well-tuned 
neurons and the non-stationarity of the PDs; (2) spike generation through the Poisson 
process; and (3) the decoding process (see Fig.  1). The details of each step are given 
below.

Behavior tasks

To generate neuronal firing rates via tuning models and evaluate the performance of 
decoders, we created 2D hand movement data using a computer mouse (1000 dots/in., 
Logitech Co., USA) at a 200-Hz sampling rate. The experimenter performed the random 
pursuit task [1] on a preset area (30.3 cm × 30.3 cm) of a computer screen, generating 
angles of movement direction as diverse as possible. This task was carried out for 5 min 
(300 s × 20 Hz = 6000 points).

Determination of neuronal properties

Before the start of a simulation, we determined the value of each property of a neuronal 
ensemble. In addition, we set the number of neurons in the ensemble. Here, we assumed 
that a neuron represented a single-unit or multi-unit activity recorded from the motor 
cortex. It has been shown that the number of neurons in practical BMIs affect decoding 
performance directly. In general, BMI performance increases as the number of neurons 
increases. The present study however did not explore the effect of the number of neu-
rons on decoding performance, as it focused more on other neuronal ensemble prop-
erties such as the number of well-tuned neurons. For all the simulations, therefore, we 
fixed the number of neurons to be 60 according to the saturated performance of the pre-
vious BMI study [21].

First, we set the SNR of each neuron. Here, “signal” was defined as the firing activity of 
a neuron modulated by movement direction whereas “noise” as all other firing activities 
irrelevant to movement direction. In our simulation, firing activity was represented by a 
firing rate. The firing rate was used as a rate parameter for the subsequent Poisson spike 
generator. The firing rate of a neuron at any time instant was composed of two terms, a 
signal term represented by a firing rate merely modulated by movement direction, and 

(1)Pr(X ≤ j) =
�
j exp (−�)

j!
,
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a noise term represented by additive white Gaussian noise (AWGN). The firing rate of a 
neuron was calculated as:

where zi,t is the firing rate of a neuron i at time t, st denotes the signal term and εt denotes 
the noise term. The SNR was defined as a ratio of the power of st to that of εt. Therefore, 
if we knew the signal power a priori then we could control the noise power (i.e. variance 
of AWGN) to yield a certain SNR. In our study, the SNR played a role in representing 
how well a neuron was tuned to movement direction.

In general, however, one cannot know this SNR before building a tuning model because 
zi,t is only observed. One can estimate the SNR only after acquiring certain amount of 
neuronal spiking data together with movement data and fitting a tuning model to them. 
This data-driven estimate of SNR is not necessarily equivalent to the intrinsic SNR in 
the original firing activity of the neuron because of complex and nonlinear spike genera-
tion processes and noisy estimation of firing rates from spike trains. But since only the 
data-driven estimate of SNR is available to researchers in most BMI circumstances, the 
present study focused on the effect of the data-driven SNR, not the intrinsic SNR, on 
decoding performance. To this end, we attempted to have a control of the intrinsic SNR 
before the start of simulations to acquire a target value of the data-driven SNR. This was 

(1)zi,t = si,t + εi,t

Fig. 1  A diagram illustrating the simulation procedure. In the beginning of a simulation, we initialize the 
number of neurons, SNR, the uniformity of PDs, the proportion or the uniformity of well-tuned neurons, and 
model parameters for the non-stationarity of PDs. Then, the PD of each neuron in an ensemble is determined 
based on the initial conditions. The spike train of each neuron is generated using the kinematic data 
generated by hand movements. The spike data and hand movement data are used to build and evaluate 
decoding algorithms
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accomplished by creating a function that predicted the data-driven SNR from the intrin-
sic SNR. Instead of finding a closed-form solution to this predictive function, we empiri-
cally estimated it via a preliminary simulation in which we set a priori the intrinsic SNR 
(SNRInt), generated spikes based on it along with movement data using the cosine tuning 
function and the Poisson process, fitted a tuning function to the generated data and cal-
culated the data-driven SNR (SNRDD) using the error variance of the tuning model. The 
signal power, SPi, of a neuron i was then calculated as the mean squares of the tuning 
function output:

where Dx,t and Dy,t denote the x-, and y-coordinate of movement direction at time instant 
t, bi,0, bi,1 and bi,2 are the cosine tuning model parameters, and M is the number of data 
samples. More details of the cosine tuning model will be given below. The noise power of 
the neuron was estimated by:

here NPi denotes a noise power on the neuron i at time instant t and et denotes estima-
tion residual error of the tuning function. The SNRDD

i  was then calculated as:

We calculated SNRDD by varying SNRInt in a specific range (− 10 to 10 dB) enough to 
represent a relationship between two variables. From the simulation results of both vari-
ables, SNRDD and SNRInt, we empirically found that the six, or higher-order polynomials 
explained the relationship better than lower-order polynomials. Therefore, we chose to 
use the six-order polynomial to describe the relationship between SNRDD and SNRInt as 
follows:

where a0, a1, …, a6 are coefficients of the six-order polynomial model. These coefficients 
were empirically determined the polynomial orders from the simulated data. This out-
come came from examining a mean squared error (MSE) between SNRDD and SNRInt 
with making increase the polynomial orders. Namely, we got the polynomial orders 
when the MSE is no decreased any more. Also, the parameters of the SNR set in our 
simulation were determined under practical conditions. As the variance of the SNRDD 
was not considerable, we used the average value of SNRDD obtained from the simula-
tion. As this function provided a one-to-one mapping between SNRDD and SNRInt, we set 
SNRInt in the beginning to elicit a target SNRDD estimated through the function. Then, 

(2)SPi =
1

M

M∑

t=1

(
bi,0 + bi,1Dx,t + bi,2Dy,t

)2
,

(3)NPi =
1

T

T∑

t=1

e2t , t = 1, 2, . . . ,T ,

(4)SNRDD
i = 10 log10

SPi

NPi
.

(5)SNRDD
= f

(
SNRInt

)
=

6∑

i=0

ai
(
SNRInt

)i
,
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we investigated how decoding performance was influenced by changes in SNRDD. Fig-
ure 2 shows the result of our preliminary simulation for the relationship between SNRDD 
and SNRInt.

Second, we determined the PD of each neuron and its uniformity. The PD is defined as 
a 2D hand movement direction at which a neuron maximally discharges action poten-
tials [29]. To set the PD of each neuron, we first needed to consider how to distribute 
the PDs among the neurons. It has been demonstrated that BMI performance could be 
influenced by the uniformity of the PDs across the ensemble [24]. The uniformity indi-
cates how uniformly the PDs were distributed in the 2D angular space. Low uniformity 
means that neurons are tuned to similar directions covering only a part of the entire 
angular space. High uniformity on the other hand indicates that neurons are tuned to 
a wider range of directions. Here, we defined the uniformity as a percentage (%) of the 
whole angular space all the PDs of a neuronal ensemble occupied (see the bottom row 
of Fig. 3). Once the uniformity was set, PDs were set to be uniformly distributed within 
a given angular subspace. In this setting, we determined the central angle of uniformly 
distributed PDs, which was termed as a bias of PD (see the first row of Fig. 3). With the 
uniformity and the bias, we finally assigned a PD to each neuron.

Third, we determined the proportion of well-tuned neurons and their PD distribution 
in the ensemble. Ideally, two perfectly tuned neurons would be sufficient to decode 2D 
movement direction since their activities could form a basis for the 2D space (but in 
reality, much more than two neurons are required, if they are perfectly tuned as cosine 
function). Often, exploiting the activity of a small number of fairly well-tuned neurons 
could provide good decoding performance in BMIs. Therefore, it is important to find 
how many neurons are well-tuned in a given ensemble. However, it may also be equally 
important to know how widely the PDs of well-tuned neurons are distributed. If those 
PDs are distributed within a small range of the angular space, it will be still problematic 
to decode uncovered directions. Therefore, we encompassed this point in our simulation 

Fig. 2  Relationship between the initial SNR (SNRInt) and estimated SNR (SNRDD). The estimated SNR is 
calculated by relationship between intrinsic firing activity and residual components of non-linear regression 
from generated spike trains
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to investigate the effect of the proportion of well-tuned neurons (PWTN) and the uni-
formity of well-tuned neurons (UWTN) on decoding performance (see Fig. 3).

The well-tuned and poorly tuned neurons were determined by controlling SNRDD. In 
our simulation, the SNRs of well-tuned and poorly tuned neurons were fixed as 2.45 and 
− 2.31 dB, respectively. We set the PDs of poorly tuned neurons to be uniformly distrib-
uted. Figure 3 illustrates how PDs are generated depending on the uniformity and pro-
portion of well-tuned neurons, together with uniformly distributed PDs of poorly tuned 
neurons.

Fourth, we examined how non-stationary neuronal properties affect decoding perfor-
mance. We implemented the non-stationarity by gradually changing PDs over time. The 
PD of a neuron changed according to the Gompertz model [32, 33] given by:

(6)yt = αe−�ect , t = 0, 1, 2, . . . ,T

Fig. 3  The distributions of the PDs of neuronal ensembles. Each orange or black line shows the PD of each 
neuron in the angular space. The orange lines denote well-tune neuron whereas the black lines denote 
poorly tuned neurons. The PDs of sixty neurons are displayed. (First row) Examples of the PD distributions 
with uniformity of 50%. Note that the PD distribution covers half of the angular space. The numbers on 
top indicates a bias (in degree) that is the central direction of the group of PDs. (Second—last rows) 
Representative examples of PD distributions of a mixture of well-tuned neurons (orange lines) and poorly 
tuned neurons (black lines) with various proportions of the well-tuned neurons (P) and the uniformity of 
these well-tuned neurons (U). Poorly tuned neurons are assumed to be uniformly distributed. P increases 
from the second to the last rows. U increases from the first to last columns
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where y denotes a time series of a PD and α, λ, and c are model parameters that deter-
mine the degree of the angular shift of a PD, the displacement along the time axis and the 
changing rate, respectively. The Gompertz model allows us to systematically implement 
the non-stationarity of the PDs by adjusting its model parameters. In our simulation, α 
was randomly chosen between − 45° and 45° and c was randomly chosen between 0.001 
and 0.004, for each neuron. The parameter λ was fixed such that an angular shift began 
after the training period (Fig. 4). Both PWTN and UWTN were fixed to be 100%. We 
repeatedly evaluated the performance of the decoders for the synthetic neuronal ensem-
ble with non-stationary PDs by randomly choosing α and c 1000 times.

Neuronal spike generation

After the neuronal properties were determined, we generated the spikes of every neu-
ron in a given ensemble. Given a PD of a neuron i, we first created a tuning coefficient 
vector, bi = [bi,1 bi,2]T, where ||bi|| = 1, bi,1 = cos(PD) and bi,2 = sin(PD). Then, we used 
the cosine tuning function and AWGN process to synthesize the firing rate of each of N 
neurons such as:

where zi,t is the firing rate of a neuron i at time instant t. Dx,t = cosθt and Dy,t =  sinθt 
are the x- and y-coordinates of movement direction with the angle θt, and εt indicates 
AWGN with variance σ2 and zero-mean. The variance σ2 was adjusted to produce a pre-
determined SNRDD.

The spikes of a neuron i were generated by the inhomogeneous Poisson process with 
the firing rate zi,t. To generate the time series of movement direction (Dx,t and Dy,t), 
we generated 2D hand movement data using a computer mouse control (see “Behav-
ior tasks” section). A spike was probabilistically generated every 1  ms by the Poisson 
process.

(7)zi,t = bi,0 + bi,1Dx,t + bi,2Dy,t + εt , i = 0, 1, 2, . . . ,N

Fig. 4  Illustrations of the non-stationarity of the PDs over time. The transparent gray color area from 
t = − 3000 to 0 denotes the training period in which the PDs do not change over time. On the contrary, the 
transparent red color area from t = 0 to 3000 denotes the test period in which the PDs gradually change over 
time
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Decoding

In this study, we tested three decoders, including the PVA, the OLE, and the KF, which 
have been employed to decode direction from neuronal ensemble activity. The neuronal 
data for the decoders were the bin-count data obtained from the spike trains through the 
spike generation process above, with the bin width of 50 ms. These bin data as well as the 
2D movement direction data were used together to train and evaluate the decoders. A 
total number of data points from the 5-min long hand movements was 6000. We divided 
the data into two halves: 50% for training and 50% for testing. A decoder was trained 
using the training set alone and its performance was evaluated using the test set.

The PVA decodes movement direction by linearly combining the firing activities of a 
population of directionally tuned neurons [16]. The PVA first estimates the PD of each 
neuron using the cosine tuning model. Then, it builds a population vector as a weighted 
sum of the PD vectors assigned to individual neurons. Here, the PD vector for a neuron 
is a unit vector with an angle equal to the PD of the neuron. The weight assigned to each 
neuronal PD vector changes every time instant and is determined by the deviation of the 
current firing rate from the mean firing rate of the neuron. The movement direction is 
then decoded as the direction of the population vector, which is given as:

d̂ denotes the population vector, ci is the PD vector of neuron i, zi indicates the current 
firing rate and b0 the mean firing rate.

The OLE decodes movement direction using the ordinary least squares (OLS) estima-
tor. The optimal estimate of direction, d̂ , is produced by the OLE as [17, 21, 22]:

The covariance matrix, Σ, for optimizing the OLS estimator is derived from the linear 
regression residuals [21, 22].

The KF recursively estimates the state of movement direction using the observation 
and system models assuming that these models are a form of the linear Gaussian model 
[18, 19, 21, 30]. The KF first builds the observation model that represents the encoding 
of direction in neuronal ensemble, similar to the PVA:

A multivariate Gaussian random vector, εt, represents noise with zero-mean and a 
covariance matrix of Qt. The matrix of the linear tuning model, Ht, is estimated by the 
least squares method. Here we assume that Ht and Qt are time invariant. Next, the KF 
builds the system model that approximates how a direction state vector changes over 
time with the first-order Markov process assumption:

Here, At and vt are estimated again by the least square method. Once the two models 
are built, the KF decodes the direction state in the two steps of the prediction of the next 

(8)d̂t =

N∑

i=1

(zi − b0)ci,

(9)d̂t =
(
bTΣ−1b

)−1
bTΣ−1zt .

(10)zt = Htdt + εt

(11)xt = Atxt−1 + vt
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direction state and the update of this state based on the difference between the predicted 
and observed neuronal activity [19, 30].

Evaluation

To evaluate decoding performance, we compared decoded direction with the true direc-
tion of hand movements using the testing dataset. An angle difference in radians at the 
time index t of a sample (ADt) in the testing dataset between the decoded and true direc-
tions was calculated as:

where Dt denotes the true direction of hand movements consisting of [Dx,t Dy,t]T and 
dt is the estimated direction by a given decoder. To calculate the mean angles, we first 
convert ADt into the rectangular (or Cartesian) coordinates of the mean angle in radian, 
which is calculated as:

where X and Y denote the sum of each Cartesian coordinate from ADi for i = 1,…, N. 
Here, i denotes the i-th run of decoding simulation and N is the number of runs (in our 
simulation, N = 100). Each run of decoding simulation was repeated 100 times by vary-
ing values of the bias that denoted the central direction of the PDs of the well-tuned 
neurons (see “Determination of neuronal properties” section).

The mean angle is defined as:

where θ indicates the mean ADi. We tested whether θ was significantly different from 
zero using Rayleigh’s z-test (based on the probabilistic criterion via critical z-values fol-
lowing Zar et al.) [34]. We then compared mean ADs between decoders using Watson’s 
U2 test that is known as one of the methods for evaluating directional statistics [35].

Finally, we evaluated a stability of a decoder against changes in neuronal ensemble 
properties represented by UWTN and PWTN. The stability was defined as the varia-
tion of AD as UWTN or PWTN changed. Specifically, we calculated a difference in ADs 
when UWTN (or PWTN) dropped from a higher to lower levels (e.g. 100% →  80%). 
Then, we divided this difference by the original higher UWTN (or PWTN) level to 
depict the amount of changes in AD according to a decrease in UWTN (or PWTN). We 
repeatedly measured this by dropping UWTN (or PWTN) levels successively and aver-
aged the measures. The resulting mean AD was defined as a variation of AD and repre-
sented a stability of a given decoder against changes in UWTN (or PWTN). Then, we 

(12)ADt =

∣∣∣arcos
(
Dt · d

T
t

)∣∣∣

(13)X =
1

N

N∑

i=1

cosADi,

(14)Y =
1

N

N∑

i=1

sinADi,

(15)θ = tan−1 Y

X
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performed two-way analysis of variance (ANOVA) with Bonferroni correction for mul-
tiple comparisons to compare stabilities between decoders. In other words, we analyzed 
the effect of decoder type and the condition of PWTN (or UWTN) on the variation of 
AD against changes in UWTN (or PWTN). A lower variation of AD indicated a higher 
stability of a given decoder.

Results
The simulation result of the effect of SNR along with PD uniformity on decoding perfor-
mance showed that AD of each decoding algorithm decreased exponentially as the SNR 
increased regardless of the PD uniformity (Fig. 5). Overall, the KF performed better than 
the other decoders for the most SNR range in all the uniformity conditions. In particular, 
it was superior to the others when uniformity = 20%. The OLE and PVA were slightly 
better than the KF when SNR > 1.85 dB on average across uniformity. Between the KF 
and the OLE, AD of the KF (ADKF) was smaller than AD of the OLE (ADOLE) when SNR 
was low (< 1.84 dB on average across uniformity) with all the uniformity values, whereas 
ADOLE was smaller than ADKF when SNR was high (> 1.88 dB on average across uni-
formity) and uniformity ≥  40% (Watson’s U2 test, p  <  0.01). Between the KF and the 
PVA, ADKF was smaller than AD of the PVA (ADPVA) when SNR was low (< 1.86 dB on 
average across uniformity) and uniformity was greater than or equal to 20%, whereas 
ADPVA was smaller than ADKF when SNR was high (> 1.88 dB) and uniformity was 100% 
(Watson’s U2 test, p < 0.01). Between the OLE and the PVA, ADOLE was smaller than 
ADPVA when SNR was high (> −0.73 dB on average across uniformity) for the uniform-
ity values of 20, 40 and 80% (Watson’s U2 test, p < 0.01), whereas ADPVA was similar to 
ADOLE for all SNRs when uniformity = 100% (Fig. 5).

Next, the simulation result for the effects of PWTN and UWTN on decoding perfor-
mance showed that the KF and the OLE performed significantly better than the PVA for 
most cases of PWTN and UWTN (Fig. 6). ADKF was smaller than ADPVA for all the val-
ues of PWTN and UWTN except for the cases when PWTN = 100% and UWTN ≥ 40%. 
(Watson’s U2 test, p < 0.01). ADOLE was smaller than ADPVA for all the values of PWTN 
and UWTN except for the cases when PWTN = 100% and UWTN = 60 or 100% (Wat-
son’s U2 test, p  <  0.01). With PWTN ≥  80% and UWTN ≥  40%, ADOLE was smaller 

Fig. 5  Mean change of decoders’ ADs on neuronal SNR and uniformity. These panels depict the AD change 
of each decoder depending on SNR change (from − 2.31 to 2.45 dB) of the neuronal ensemble with fixed 
uniformity (from 20 to 100%, step of the 20%). Solid red line denotes AD of the KF, green is that of the OLE, 
and purple is that of the PVA. Top square-dots signify SNR ranges which are a significantly different (based 
on Watson’s U2 test, p < 0.01) between decoders. The red square-dot denotes significant range between AD 
of the KF and that of the OLE. The green and purple also denote significant ranges regarding the KF–PVA 
and the OLE–PVA. On the first panel, because SNR variation has the large interval of 0.24 dB, the purple 
square-dots were filled although the OLE–PVA between − 1.7 and − 1.5 dB was not significant
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than ADKF (Watson’s U2 test, p  <  0.01). The performance gaps between the PVA and 
other decoders decreased as PWTN increased for UWTN ≥ 40%. The curves of the AD 
for all the decoders as a function of PWTN were not changed much by UWTN when 
UWTN ≥ 40%. For this range of UWTN (≥ 40%), the average (across different UWTN 
values) differences in ADs between a pair of decoders were: ADPVA − ADKF =  [20.93, 
17.50, 11.76, 5.48, − 0.31] (°), ADPVA − ADOLE = [20.07, 17.11, 12.08, 6.26, − 0.44] (°), 
and ADKF − ADOLE = [− 3.08, − 1.20, − 0.42, 0.26, 0.36](°) for the PWTN values = [20, 
40, 60, 80, 100] (%), respectively.

We further investigated which of PWTN and UWTN influenced decoding perfor-
mance more. To this end, we examined the distribution of ADs over the joint space of 
PWTN and UWTN for each decoder as shown in the top panel of Fig.  7. For all the 
decoders, an increase in PWTN seemingly improved performance more than an increase 
in UWTN. In other words, at any location on the 2D distribution map of ADs, moving 
in the direction of increasing PWTN deceased AD more than moving in the direction of 
increasing UWTN (Table 1). To quantify this, we performed a statistical analysis on AD 
differences between a pair of symmetric points with respect to the main diagonal in the 
2D AD map—for example, a difference of AD between the (i, j)-th entry and the (j, i)-th 
entry of the map (Fig. 7, bottom). As a result, the ADs of the upper triangular points 
in the map, namely the points with PWTN  >  UWTN, were significantly smaller than 
those of the lower triangular points, namely the points with UWTN > PWTN, for all the 
decoders (Watson’s U2 test, p < 0.01). This implies a more crucial role of PWTN in the 
improvement of decoding performance compared to UWTN.

Figure 8 depicts the stability of each decoder against changes in UWTN or PWTN. 
For the variation of AD against changes in UWTN, two-way ANOVA reveals the main 
effects of decoder type as well as PWTN on the variation of AD (p < 0.01). There was an 
interaction between decoder type and PWTN (p < 0.01). The KF and the OLE were more 
stable than the PVA when PWTN changed. For the variation of AD against changes in 

Fig. 6  Influence of AD on the UWTN and PWTN change. Top row indicates the AD change of each decoder 
depending on PWTN change (from 20 to 100%) of neuronal ensemble with fixed UWTN (from 20 to 100%), 
whereas bottom row indicates vice versa. Solid red line denotes AD of the KF, green is that of the OLE, and 
the blue is that of the PVA. Top square-dots signify SNR ranges which are a significantly different (based on 
Watson’s U2 test, p < 0.01) between decoders. The red square-dot denotes significant range between AD of 
the KF and that of the OLE. The green and purple also denote significant ranges regarding the KF–PVA and 
the OLE–PVA
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Fig. 7  Joint space of PWTN and UWTN for each decoder. The top row contains AD topological plots, which 
represent the relationship between UWTN and PWTN. The character K, O, and P corresponds to the KF, OLE, 
and PVA, respectively, and denotes the other decoder whose performance is statistically different from the 
given decoder. For example, P on the KF plot indicates that the AD of the PVA is statistically different from 
that of the KF (p < 0.01). The bottom row indicates an AD difference map between an upper triangular 
space and a lower triangular space divided by a black-dotted diagonal boundary. Asterisks indicate that two 
conditions symmetric with respect to the diagonal boundary yielded statistically different ADs (Watson’s U2 
test, p < 0.01)

Fig. 8  Comparison of decoding stability on UWTN or PWTN change. Top row indicates AD variation against 
UWTN changes and the bottom row shows that against PWTN changes. The first column depicts the AD 
variation of each decoder as PWTN (top) or UWTN (bottom) increased. Colored circles denote the mean 
AD variation of each decoder (red: KF, black: OLE, and white: PVA). The second column shows the mean 
AD variations for each PWTN (top) or UTWN (bottom) conditions. N.S. denotes that differences were not 
significant between conditions by the post hoc analysis. On the contrary, the rest unmarked bars denote 
significant difference (two-way ANOVA, multiple comparison tests with Bonferroni correction, p < 0.01). The 
third column shows the mean AD variations for each decoder (two-way ANOVA, multiple comparison tests 
with Bonferroni correction, p < 0.01). Error bars show the standard deviation over angle shifts (see Fig. 3)
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PWTN, two-way ANOVA reveals the main effects of decoder type as well as UWTN on 
the variation of AD (p < 0.01). It also reveals an interaction between decoder type and 
UWTN. The KF and the OLE were more stable than the PVA when PWTN changed 
from 20 to 40%. The post hoc analysis on decoder types shows that the KF was the most 
stable against decreases in UWTN (or PWTN), whereas the PVA was the least stable 
(Bonferroni correction, p < 0.01). In addition, the stability of the PVA against changes in 
UWTN was greatly affected by the condition of PWTN, which was not the case for the 
KF and the OLE. Another post hoc analysis on PWTN shows that the variation of AD 
increased as PWTN increased (p < 0.01). Also, the analysis on UWTN shows that the 
variation of AD increased UTWN changed from 20 to 40% (p < 0.01).

As stated in “Determination of neuronal properties” section, the stationary PD resulted 
in low ADs when it had high SNR of 2.45 dB, UWTN and PWTN of 100% [ADKF = 9.62°, 
ADOLE = 9.26°, and ADPVA = 9.18°]. The ADKF increased by 23.05°, whereas the ADOLE 
and the ADPVA increased by 24.8°–24.84° respectively. Consequently, the analysis on the 
effect of non-stationarity of PDs on decoding performance showed that the KF yielded 
smaller ADs than other decoders (Watson’s U2 test, p < 0.01), whereas there was no sig-
nificant difference in AD between the OLE and the PVA (see Fig. 9). It implies that the 
KF was more robust to non-stationarity of PD than the other decoders.

Conclusions and discussion
Many previous studies of the arm-reaching BMI were performed to investigate direction 
related neuronal tuning properties in two-or three-dimensional spaces. Mainly, direc-
tional parameters in the 2D polar coordinate are appropriate to visualize the association 
of neural properties, whereas those of the 3D spherical coordinate become more com-
plex. However, 3D arm movements are more natural than 2D movements and thus rep-
resent neural tuning in a more general sense.

The main purpose of this simulation study was to investigate the influences of the vari-
ous tuning properties of a neuronal ensemble on decoding performance, including the 
uniformity of neuronal PDs and SNR, the PWTN in an ensemble and the UTWN, and 
the non-stationarity of PDs. These investigations were performed by the intracortical 
BMI simulations, under the assumption of the recordings of the ensemble of direction-
ally tuned motor cortical neurons. Three decoding models, including the KF, the OLE 
and the PVA, were tested in the simulations for estimating the hand direction.

As expected, decoding performance of all the models exponentially increased as SNR 
increased. With the distributions of PDs of uniformity  >  20%, the KF outperformed 
others when SNR  < −  0.48  dB whereas the OLE performed better than others when 
SNR > 1.42 dB. The poorer performance of the KF than others for high SNR might be 
due to an additional noise term of the KF [30]. Our result thus suggests that one may 
employ the KF with low SNRs or the OLE with high SNRs when the ensemble PDs cover 
more than 20% of the whole angular space. On the other hand, when the coverage of the 
ensemble PDs is less than 20%, the KF appears to be the best option among the three 
models.

As PWTN decreased, decoding performance of the PVA degraded more drastically 
than those of the KF and the OLE. In essence, it implies that the PVA relies more on 
the number of well-tuned neurons in an ensemble than other models. On the contrary, 
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the KF and the OLE seem to exploit a small population of well-tuned neurons better 
than the PVA. In addition, a greater influence of PWTN on decoding performance than 
UTWN for all the models indicates that harvesting one more well-tuned neuron may be 
more crucial to direction decoding than having more widespread PDs. For instance, if 
one attempts to improve the performance of an intracortical BMI by enhancing direc-
tional tuning of a neuronal ensemble using a certain training paradigm, it would be 
better to design the training paradigm in a way of converting poorly-tuned neurons to 
well-tuned neurons than in a way of broadening the PDs of a fixed set of well-tuned 
neurons. Then, a question may arise why PWTN influences decoding performance more 
than UTWN. Figure 5 may provide a clue to answer for this question. It shows that AD 
decreases exponentially as SNR increases, implying that including well-tuned neurons 
with higher SNRs could be more influential to decrease ADs than increasing uniform-
ity without increases in SNRs. We also speculate that greater impact of PWTN may be 
related to the algebraic characteristics of the kinematic parameter decoded here: 2-D 
movement direction. Theoretically, if two neurons are perfectly tuned to 2-D movement 
direction and work independently, they can form a basis for the 2-D space. So, modula-
tion of their firing rates would be sufficient to reconstruct any point in the 2-D space. 
However, actual decoding involves estimation error of tuning model parameters due to 
noisy neuronal activity as well as any other unknown noise, requiring more neurons to 
estimate movement direction. Hence we speculate that harvesting one more well-tuned 
neuron would help building a more accurate basis for estimating a 2-D direction vector 
than simply increasing the uniformity of PDs with noisy neurons.

We also compared decoding performance of the models with respect to changes in PDs 
over time. The KF yielded the best performance among others, revealing its robustness 
to the non-stationarity of PD. Both the PVA and the OLE are dependent on linear mod-
els of each neuron whose coefficients are learned using the training data. These model 
coefficients are primarily determined by the PDs of neurons under the assumption of 

Fig. 9  Comparison of decoders’ ADs depending on PDs change. Asterisks imply significantly different 
relationship (based on Watson’s U2 test, p < 0.01)
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stationary data, and therefore if the PDs change after training, there is few ways the PVA 
or the OLE can overcome such unexpected changes. On the other hand, the KF employs 
the system model to predict a new state from a previous state without neuronal infor-
mation, where the newly predicted state is then updated by novel neuronal data in the 
observation model. With this system model, the KF might have an advantage to be rela-
tively more robust to the error from unexpected changes due to time-varying PDs.

This study demonstrates that the performance of the PVA was substantially affected 
by the conditions of several neuronal properties such as PWTN or SNR. Note, however, 
that the open-loop analysis does not always predict outcomes in closed-loop BMIs due 
to many other crucial factors including feedback and adaptation [21]. Thus, it is impor-
tant to evaluate performance in closed-loop environments to comprehensively under-
stand the effect of neuronal properties on decoders. However, it would still be useful 
to have a database to help experimenters predict the performance of a decoder before 
operating a BMI online, which may be made plausible by an extensive simulation study.

It is well known that decoding performance is not linearly increased as the ensem-
ble size increases [22, 24]. Rather, performance saturates at certain point no matter how 
many neurons are included [36, 37]. This may indicate that now only the ensemble size 
itself but the properties of the neurons in the ensemble are important as a determinant 
of decoding performance. These facts may associate with the plasticity of cortical neu-
rons. For example, user repetitive BMI training or experience are known to improve the 
decoding performance, which it may take place enhancing the neuronal plasticity and 
then changes the number of well-tuned neurons or their uniformity. This cortical adap-
tation might positively or negatively occur according to daily or temporally conditions 
of the subject. The present study demonstrates this by looking into the effect of the pro-
portion of well-tuned neurons [37], which can be readily informed during a calibration 
stage on decoding a simple kinematic parameter (i.e. direction). Our results demonstrate 
that the proportion of well-tuned neurons is even more influential than the uniformity 
of PDs that has been generally considered as a key property for direction decoding.

The ensemble size was fixed in our simulation. However, dependency of decoding 
performance on various ensemble properties may be changed when the ensemble size 
changes. Moreover, it still remains unanswered what is more important to decoding: a 
few well-tuned neurons, or many mediocre neurons? If the former is correct, our focus 
is to select the well-tuned neurons out of all the recorded ones and extract the best 
information from them for decoders. If the latter is correct, we should develop a means 
to best exploit the information from a population of neurons. We hope that more exten-
sive simulation studies may reveal further insights on neuronal ensemble decoding.

Although the present study explored a few basic tuning properties of a neuronal 
ensemble in the initialization stage of the simulation, there can be much more proper-
ties of the ensemble we can consider further. For instance, we can determine how to 
generate the firing rates with various directional tuning functions: e.g. von Mises func-
tion, Gaussian function as well as cosine function. Also, we can add either Poisson noise 
or Gaussian noise. Then, we can determine how to generate neuronal spikes with vari-
ous probabilistic processes in addition to the Poisson process [38]. We can also specify 
correlations between neurons when generating spikes or whether the variance of the 
firing rate is constant or proportional to the mean. All these options can be accounted 
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for to predict the performance a decoder and worthy of investigation. Yet, it would be 
also important to be concerned with the characteristics of the decoders to be analyzed 
and how well the synthetic data represent the realistic neuronal activities for BMIs. We 
anticipate that our study may provide an additional step to further investigate relation-
ships between neuronal ensemble properties and decoding performance. Most impor-
tantly, however, it must be emphasized that the results of any BMI simulation studies 
should ultimately be verified in closed-loop intracortical BMIs.
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